1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2018 Western Digital Corporation 3 4 #include <linux/err.h> 5 #include <linux/string.h> 6 #include <linux/bitfield.h> 7 #include <linux/unaligned.h> 8 #include <linux/string_choices.h> 9 10 #include <ufs/ufs.h> 11 #include <ufs/unipro.h> 12 #include "ufs-sysfs.h" 13 #include "ufshcd-priv.h" 14 15 static const char *ufs_pa_pwr_mode_to_string(enum ufs_pa_pwr_mode mode) 16 { 17 switch (mode) { 18 case FAST_MODE: return "FAST_MODE"; 19 case SLOW_MODE: return "SLOW_MODE"; 20 case FASTAUTO_MODE: return "FASTAUTO_MODE"; 21 case SLOWAUTO_MODE: return "SLOWAUTO_MODE"; 22 default: return "UNKNOWN"; 23 } 24 } 25 26 static const char *ufs_hs_gear_rate_to_string(enum ufs_hs_gear_rate rate) 27 { 28 switch (rate) { 29 case PA_HS_MODE_A: return "HS_RATE_A"; 30 case PA_HS_MODE_B: return "HS_RATE_B"; 31 default: return "UNKNOWN"; 32 } 33 } 34 35 static const char *ufs_pwm_gear_to_string(enum ufs_pwm_gear_tag gear) 36 { 37 switch (gear) { 38 case UFS_PWM_G1: return "PWM_GEAR1"; 39 case UFS_PWM_G2: return "PWM_GEAR2"; 40 case UFS_PWM_G3: return "PWM_GEAR3"; 41 case UFS_PWM_G4: return "PWM_GEAR4"; 42 case UFS_PWM_G5: return "PWM_GEAR5"; 43 case UFS_PWM_G6: return "PWM_GEAR6"; 44 case UFS_PWM_G7: return "PWM_GEAR7"; 45 default: return "UNKNOWN"; 46 } 47 } 48 49 static const char *ufs_hs_gear_to_string(enum ufs_hs_gear_tag gear) 50 { 51 switch (gear) { 52 case UFS_HS_G1: return "HS_GEAR1"; 53 case UFS_HS_G2: return "HS_GEAR2"; 54 case UFS_HS_G3: return "HS_GEAR3"; 55 case UFS_HS_G4: return "HS_GEAR4"; 56 case UFS_HS_G5: return "HS_GEAR5"; 57 default: return "UNKNOWN"; 58 } 59 } 60 61 static const char *ufs_wb_resize_hint_to_string(enum wb_resize_hint hint) 62 { 63 switch (hint) { 64 case WB_RESIZE_HINT_KEEP: 65 return "keep"; 66 case WB_RESIZE_HINT_DECREASE: 67 return "decrease"; 68 case WB_RESIZE_HINT_INCREASE: 69 return "increase"; 70 default: 71 return "unknown"; 72 } 73 } 74 75 static const char *ufs_wb_resize_status_to_string(enum wb_resize_status status) 76 { 77 switch (status) { 78 case WB_RESIZE_STATUS_IDLE: 79 return "idle"; 80 case WB_RESIZE_STATUS_IN_PROGRESS: 81 return "in_progress"; 82 case WB_RESIZE_STATUS_COMPLETE_SUCCESS: 83 return "complete_success"; 84 case WB_RESIZE_STATUS_GENERAL_FAILURE: 85 return "general_failure"; 86 default: 87 return "unknown"; 88 } 89 } 90 91 static const char * const ufs_hid_states[] = { 92 [HID_IDLE] = "idle", 93 [ANALYSIS_IN_PROGRESS] = "analysis_in_progress", 94 [DEFRAG_REQUIRED] = "defrag_required", 95 [DEFRAG_IN_PROGRESS] = "defrag_in_progress", 96 [DEFRAG_COMPLETED] = "defrag_completed", 97 [DEFRAG_NOT_REQUIRED] = "defrag_not_required", 98 }; 99 100 static const char *ufs_hid_state_to_string(enum ufs_hid_state state) 101 { 102 if (state < NUM_UFS_HID_STATES) 103 return ufs_hid_states[state]; 104 105 return "unknown"; 106 } 107 108 static const char *ufshcd_uic_link_state_to_string( 109 enum uic_link_state state) 110 { 111 switch (state) { 112 case UIC_LINK_OFF_STATE: return "OFF"; 113 case UIC_LINK_ACTIVE_STATE: return "ACTIVE"; 114 case UIC_LINK_HIBERN8_STATE: return "HIBERN8"; 115 case UIC_LINK_BROKEN_STATE: return "BROKEN"; 116 default: return "UNKNOWN"; 117 } 118 } 119 120 static const char *ufshcd_ufs_dev_pwr_mode_to_string( 121 enum ufs_dev_pwr_mode state) 122 { 123 switch (state) { 124 case UFS_ACTIVE_PWR_MODE: return "ACTIVE"; 125 case UFS_SLEEP_PWR_MODE: return "SLEEP"; 126 case UFS_POWERDOWN_PWR_MODE: return "POWERDOWN"; 127 case UFS_DEEPSLEEP_PWR_MODE: return "DEEPSLEEP"; 128 default: return "UNKNOWN"; 129 } 130 } 131 132 static inline ssize_t ufs_sysfs_pm_lvl_store(struct device *dev, 133 struct device_attribute *attr, 134 const char *buf, size_t count, 135 bool rpm) 136 { 137 struct ufs_hba *hba = dev_get_drvdata(dev); 138 struct ufs_dev_info *dev_info = &hba->dev_info; 139 unsigned long flags, value; 140 141 if (kstrtoul(buf, 0, &value)) 142 return -EINVAL; 143 144 if (value >= UFS_PM_LVL_MAX) 145 return -EINVAL; 146 147 if (ufs_pm_lvl_states[value].dev_state == UFS_DEEPSLEEP_PWR_MODE && 148 (!(hba->caps & UFSHCD_CAP_DEEPSLEEP) || 149 !(dev_info->wspecversion >= 0x310))) 150 return -EINVAL; 151 152 spin_lock_irqsave(hba->host->host_lock, flags); 153 if (rpm) 154 hba->rpm_lvl = value; 155 else 156 hba->spm_lvl = value; 157 spin_unlock_irqrestore(hba->host->host_lock, flags); 158 return count; 159 } 160 161 static ssize_t rpm_lvl_show(struct device *dev, 162 struct device_attribute *attr, char *buf) 163 { 164 struct ufs_hba *hba = dev_get_drvdata(dev); 165 166 return sysfs_emit(buf, "%d\n", hba->rpm_lvl); 167 } 168 169 static ssize_t rpm_lvl_store(struct device *dev, 170 struct device_attribute *attr, const char *buf, size_t count) 171 { 172 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, true); 173 } 174 175 static ssize_t rpm_target_dev_state_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct ufs_hba *hba = dev_get_drvdata(dev); 179 180 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( 181 ufs_pm_lvl_states[hba->rpm_lvl].dev_state)); 182 } 183 184 static ssize_t rpm_target_link_state_show(struct device *dev, 185 struct device_attribute *attr, char *buf) 186 { 187 struct ufs_hba *hba = dev_get_drvdata(dev); 188 189 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( 190 ufs_pm_lvl_states[hba->rpm_lvl].link_state)); 191 } 192 193 static ssize_t spm_lvl_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct ufs_hba *hba = dev_get_drvdata(dev); 197 198 return sysfs_emit(buf, "%d\n", hba->spm_lvl); 199 } 200 201 static ssize_t spm_lvl_store(struct device *dev, 202 struct device_attribute *attr, const char *buf, size_t count) 203 { 204 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, false); 205 } 206 207 static ssize_t spm_target_dev_state_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 struct ufs_hba *hba = dev_get_drvdata(dev); 211 212 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( 213 ufs_pm_lvl_states[hba->spm_lvl].dev_state)); 214 } 215 216 static ssize_t spm_target_link_state_show(struct device *dev, 217 struct device_attribute *attr, char *buf) 218 { 219 struct ufs_hba *hba = dev_get_drvdata(dev); 220 221 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( 222 ufs_pm_lvl_states[hba->spm_lvl].link_state)); 223 } 224 225 /* Convert Auto-Hibernate Idle Timer register value to microseconds */ 226 static int ufshcd_ahit_to_us(u32 ahit) 227 { 228 int timer = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, ahit); 229 int scale = FIELD_GET(UFSHCI_AHIBERN8_SCALE_MASK, ahit); 230 231 for (; scale > 0; --scale) 232 timer *= UFSHCI_AHIBERN8_SCALE_FACTOR; 233 234 return timer; 235 } 236 237 /* Convert microseconds to Auto-Hibernate Idle Timer register value */ 238 static u32 ufshcd_us_to_ahit(unsigned int timer) 239 { 240 unsigned int scale; 241 242 for (scale = 0; timer > UFSHCI_AHIBERN8_TIMER_MASK; ++scale) 243 timer /= UFSHCI_AHIBERN8_SCALE_FACTOR; 244 245 return FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, timer) | 246 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, scale); 247 } 248 249 static int ufshcd_read_hci_reg(struct ufs_hba *hba, u32 *val, unsigned int reg) 250 { 251 down(&hba->host_sem); 252 if (!ufshcd_is_user_access_allowed(hba)) { 253 up(&hba->host_sem); 254 return -EBUSY; 255 } 256 257 ufshcd_rpm_get_sync(hba); 258 ufshcd_hold(hba); 259 *val = ufshcd_readl(hba, reg); 260 ufshcd_release(hba); 261 ufshcd_rpm_put_sync(hba); 262 263 up(&hba->host_sem); 264 return 0; 265 } 266 267 static ssize_t auto_hibern8_show(struct device *dev, 268 struct device_attribute *attr, char *buf) 269 { 270 u32 ahit; 271 int ret; 272 struct ufs_hba *hba = dev_get_drvdata(dev); 273 274 if (!ufshcd_is_auto_hibern8_supported(hba)) 275 return -EOPNOTSUPP; 276 277 ret = ufshcd_read_hci_reg(hba, &ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 278 if (ret) 279 return ret; 280 281 return sysfs_emit(buf, "%d\n", ufshcd_ahit_to_us(ahit)); 282 } 283 284 static ssize_t auto_hibern8_store(struct device *dev, 285 struct device_attribute *attr, 286 const char *buf, size_t count) 287 { 288 struct ufs_hba *hba = dev_get_drvdata(dev); 289 unsigned int timer; 290 int ret = 0; 291 292 if (!ufshcd_is_auto_hibern8_supported(hba)) 293 return -EOPNOTSUPP; 294 295 if (kstrtouint(buf, 0, &timer)) 296 return -EINVAL; 297 298 if (timer > UFSHCI_AHIBERN8_MAX) 299 return -EINVAL; 300 301 down(&hba->host_sem); 302 if (!ufshcd_is_user_access_allowed(hba)) { 303 ret = -EBUSY; 304 goto out; 305 } 306 307 ufshcd_auto_hibern8_update(hba, ufshcd_us_to_ahit(timer)); 308 309 out: 310 up(&hba->host_sem); 311 return ret ? ret : count; 312 } 313 314 static ssize_t wb_on_show(struct device *dev, struct device_attribute *attr, 315 char *buf) 316 { 317 struct ufs_hba *hba = dev_get_drvdata(dev); 318 319 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_enabled); 320 } 321 322 static ssize_t wb_on_store(struct device *dev, struct device_attribute *attr, 323 const char *buf, size_t count) 324 { 325 struct ufs_hba *hba = dev_get_drvdata(dev); 326 unsigned int wb_enable; 327 ssize_t res; 328 329 if (!ufshcd_is_wb_allowed(hba) || (ufshcd_is_clkscaling_supported(hba) 330 && ufshcd_enable_wb_if_scaling_up(hba))) { 331 /* 332 * If the platform supports UFSHCD_CAP_CLK_SCALING, turn WB 333 * on/off will be done while clock scaling up/down. 334 */ 335 dev_warn(dev, "It is not allowed to configure WB!\n"); 336 return -EOPNOTSUPP; 337 } 338 339 if (kstrtouint(buf, 0, &wb_enable)) 340 return -EINVAL; 341 342 if (wb_enable != 0 && wb_enable != 1) 343 return -EINVAL; 344 345 down(&hba->host_sem); 346 if (!ufshcd_is_user_access_allowed(hba)) { 347 res = -EBUSY; 348 goto out; 349 } 350 351 ufshcd_rpm_get_sync(hba); 352 res = ufshcd_wb_toggle(hba, wb_enable); 353 ufshcd_rpm_put_sync(hba); 354 out: 355 up(&hba->host_sem); 356 return res < 0 ? res : count; 357 } 358 359 static ssize_t rtc_update_ms_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct ufs_hba *hba = dev_get_drvdata(dev); 363 364 return sysfs_emit(buf, "%d\n", hba->dev_info.rtc_update_period); 365 } 366 367 static ssize_t rtc_update_ms_store(struct device *dev, struct device_attribute *attr, 368 const char *buf, size_t count) 369 { 370 struct ufs_hba *hba = dev_get_drvdata(dev); 371 unsigned int ms; 372 bool resume_period_update = false; 373 374 if (kstrtouint(buf, 0, &ms)) 375 return -EINVAL; 376 377 if (!hba->dev_info.rtc_update_period && ms > 0) 378 resume_period_update = true; 379 /* Minimum and maximum update frequency should be synchronized with all UFS vendors */ 380 hba->dev_info.rtc_update_period = ms; 381 382 if (resume_period_update) 383 schedule_delayed_work(&hba->ufs_rtc_update_work, 384 msecs_to_jiffies(hba->dev_info.rtc_update_period)); 385 return count; 386 } 387 388 static ssize_t enable_wb_buf_flush_show(struct device *dev, 389 struct device_attribute *attr, 390 char *buf) 391 { 392 struct ufs_hba *hba = dev_get_drvdata(dev); 393 394 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_buf_flush_enabled); 395 } 396 397 static ssize_t enable_wb_buf_flush_store(struct device *dev, 398 struct device_attribute *attr, 399 const char *buf, size_t count) 400 { 401 struct ufs_hba *hba = dev_get_drvdata(dev); 402 unsigned int enable_wb_buf_flush; 403 ssize_t res; 404 405 if (!ufshcd_is_wb_buf_flush_allowed(hba)) { 406 dev_warn(dev, "It is not allowed to configure WB buf flushing!\n"); 407 return -EOPNOTSUPP; 408 } 409 410 if (kstrtouint(buf, 0, &enable_wb_buf_flush)) 411 return -EINVAL; 412 413 if (enable_wb_buf_flush != 0 && enable_wb_buf_flush != 1) 414 return -EINVAL; 415 416 down(&hba->host_sem); 417 if (!ufshcd_is_user_access_allowed(hba)) { 418 res = -EBUSY; 419 goto out; 420 } 421 422 ufshcd_rpm_get_sync(hba); 423 res = ufshcd_wb_toggle_buf_flush(hba, enable_wb_buf_flush); 424 ufshcd_rpm_put_sync(hba); 425 426 out: 427 up(&hba->host_sem); 428 return res < 0 ? res : count; 429 } 430 431 static ssize_t wb_flush_threshold_show(struct device *dev, 432 struct device_attribute *attr, 433 char *buf) 434 { 435 struct ufs_hba *hba = dev_get_drvdata(dev); 436 437 return sysfs_emit(buf, "%u\n", hba->vps->wb_flush_threshold); 438 } 439 440 static ssize_t wb_flush_threshold_store(struct device *dev, 441 struct device_attribute *attr, 442 const char *buf, size_t count) 443 { 444 struct ufs_hba *hba = dev_get_drvdata(dev); 445 unsigned int wb_flush_threshold; 446 447 if (kstrtouint(buf, 0, &wb_flush_threshold)) 448 return -EINVAL; 449 450 /* The range of values for wb_flush_threshold is (0,10] */ 451 if (wb_flush_threshold > UFS_WB_BUF_REMAIN_PERCENT(100) || 452 wb_flush_threshold == 0) { 453 dev_err(dev, "The value of wb_flush_threshold is invalid!\n"); 454 return -EINVAL; 455 } 456 457 hba->vps->wb_flush_threshold = wb_flush_threshold; 458 459 return count; 460 } 461 462 static const char * const wb_resize_en_mode[] = { 463 [WB_RESIZE_EN_IDLE] = "idle", 464 [WB_RESIZE_EN_DECREASE] = "decrease", 465 [WB_RESIZE_EN_INCREASE] = "increase", 466 }; 467 468 static ssize_t wb_resize_enable_store(struct device *dev, 469 struct device_attribute *attr, 470 const char *buf, size_t count) 471 { 472 struct ufs_hba *hba = dev_get_drvdata(dev); 473 int mode; 474 ssize_t res; 475 476 if (!ufshcd_is_wb_allowed(hba) || !hba->dev_info.wb_enabled 477 || !hba->dev_info.b_presrv_uspc_en 478 || !(hba->dev_info.ext_wb_sup & UFS_DEV_WB_BUF_RESIZE)) 479 return -EOPNOTSUPP; 480 481 mode = sysfs_match_string(wb_resize_en_mode, buf); 482 if (mode < 0) 483 return -EINVAL; 484 485 down(&hba->host_sem); 486 if (!ufshcd_is_user_access_allowed(hba)) { 487 res = -EBUSY; 488 goto out; 489 } 490 491 ufshcd_rpm_get_sync(hba); 492 res = ufshcd_wb_set_resize_en(hba, mode); 493 ufshcd_rpm_put_sync(hba); 494 495 out: 496 up(&hba->host_sem); 497 return res < 0 ? res : count; 498 } 499 500 /** 501 * pm_qos_enable_show - sysfs handler to show pm qos enable value 502 * @dev: device associated with the UFS controller 503 * @attr: sysfs attribute handle 504 * @buf: buffer for sysfs file 505 * 506 * Print 1 if PM QoS feature is enabled, 0 if disabled. 507 * 508 * Returns number of characters written to @buf. 509 */ 510 static ssize_t pm_qos_enable_show(struct device *dev, 511 struct device_attribute *attr, char *buf) 512 { 513 struct ufs_hba *hba = dev_get_drvdata(dev); 514 515 guard(mutex)(&hba->pm_qos_mutex); 516 517 return sysfs_emit(buf, "%d\n", hba->pm_qos_enabled); 518 } 519 520 /** 521 * pm_qos_enable_store - sysfs handler to store value 522 * @dev: device associated with the UFS controller 523 * @attr: sysfs attribute handle 524 * @buf: buffer for sysfs file 525 * @count: stores buffer characters count 526 * 527 * Input 0 to disable PM QoS and 1 value to enable. 528 * Default state: 1 529 * 530 * Return: number of characters written to @buf on success, < 0 upon failure. 531 */ 532 static ssize_t pm_qos_enable_store(struct device *dev, 533 struct device_attribute *attr, const char *buf, size_t count) 534 { 535 struct ufs_hba *hba = dev_get_drvdata(dev); 536 bool value; 537 538 if (kstrtobool(buf, &value)) 539 return -EINVAL; 540 541 if (value) 542 ufshcd_pm_qos_init(hba); 543 else 544 ufshcd_pm_qos_exit(hba); 545 546 return count; 547 } 548 549 static ssize_t critical_health_show(struct device *dev, 550 struct device_attribute *attr, char *buf) 551 { 552 struct ufs_hba *hba = dev_get_drvdata(dev); 553 554 return sysfs_emit(buf, "%d\n", hba->critical_health_count); 555 } 556 557 static ssize_t device_lvl_exception_count_show(struct device *dev, 558 struct device_attribute *attr, 559 char *buf) 560 { 561 struct ufs_hba *hba = dev_get_drvdata(dev); 562 563 if (hba->dev_info.wspecversion < 0x410) 564 return -EOPNOTSUPP; 565 566 return sysfs_emit(buf, "%u\n", atomic_read(&hba->dev_lvl_exception_count)); 567 } 568 569 static ssize_t device_lvl_exception_count_store(struct device *dev, 570 struct device_attribute *attr, 571 const char *buf, size_t count) 572 { 573 struct ufs_hba *hba = dev_get_drvdata(dev); 574 unsigned int value; 575 576 if (kstrtouint(buf, 0, &value)) 577 return -EINVAL; 578 579 /* the only supported usecase is to reset the dev_lvl_exception_count */ 580 if (value) 581 return -EINVAL; 582 583 atomic_set(&hba->dev_lvl_exception_count, 0); 584 585 return count; 586 } 587 588 static ssize_t device_lvl_exception_id_show(struct device *dev, 589 struct device_attribute *attr, 590 char *buf) 591 { 592 struct ufs_hba *hba = dev_get_drvdata(dev); 593 u64 exception_id; 594 int err; 595 596 ufshcd_rpm_get_sync(hba); 597 err = ufshcd_read_device_lvl_exception_id(hba, &exception_id); 598 ufshcd_rpm_put_sync(hba); 599 600 if (err) 601 return err; 602 603 hba->dev_lvl_exception_id = exception_id; 604 return sysfs_emit(buf, "%llu\n", exception_id); 605 } 606 607 static DEVICE_ATTR_RW(rpm_lvl); 608 static DEVICE_ATTR_RO(rpm_target_dev_state); 609 static DEVICE_ATTR_RO(rpm_target_link_state); 610 static DEVICE_ATTR_RW(spm_lvl); 611 static DEVICE_ATTR_RO(spm_target_dev_state); 612 static DEVICE_ATTR_RO(spm_target_link_state); 613 static DEVICE_ATTR_RW(auto_hibern8); 614 static DEVICE_ATTR_RW(wb_on); 615 static DEVICE_ATTR_RW(enable_wb_buf_flush); 616 static DEVICE_ATTR_RW(wb_flush_threshold); 617 static DEVICE_ATTR_WO(wb_resize_enable); 618 static DEVICE_ATTR_RW(rtc_update_ms); 619 static DEVICE_ATTR_RW(pm_qos_enable); 620 static DEVICE_ATTR_RO(critical_health); 621 static DEVICE_ATTR_RW(device_lvl_exception_count); 622 static DEVICE_ATTR_RO(device_lvl_exception_id); 623 624 static struct attribute *ufs_sysfs_ufshcd_attrs[] = { 625 &dev_attr_rpm_lvl.attr, 626 &dev_attr_rpm_target_dev_state.attr, 627 &dev_attr_rpm_target_link_state.attr, 628 &dev_attr_spm_lvl.attr, 629 &dev_attr_spm_target_dev_state.attr, 630 &dev_attr_spm_target_link_state.attr, 631 &dev_attr_auto_hibern8.attr, 632 &dev_attr_wb_on.attr, 633 &dev_attr_enable_wb_buf_flush.attr, 634 &dev_attr_wb_flush_threshold.attr, 635 &dev_attr_wb_resize_enable.attr, 636 &dev_attr_rtc_update_ms.attr, 637 &dev_attr_pm_qos_enable.attr, 638 &dev_attr_critical_health.attr, 639 &dev_attr_device_lvl_exception_count.attr, 640 &dev_attr_device_lvl_exception_id.attr, 641 NULL 642 }; 643 644 static const struct attribute_group ufs_sysfs_default_group = { 645 .attrs = ufs_sysfs_ufshcd_attrs, 646 }; 647 648 static ssize_t clock_scaling_show(struct device *dev, struct device_attribute *attr, 649 char *buf) 650 { 651 struct ufs_hba *hba = dev_get_drvdata(dev); 652 653 return sysfs_emit(buf, "%d\n", ufshcd_is_clkscaling_supported(hba)); 654 } 655 656 static ssize_t write_booster_show(struct device *dev, struct device_attribute *attr, 657 char *buf) 658 { 659 struct ufs_hba *hba = dev_get_drvdata(dev); 660 661 return sysfs_emit(buf, "%d\n", ufshcd_is_wb_allowed(hba)); 662 } 663 664 static DEVICE_ATTR_RO(clock_scaling); 665 static DEVICE_ATTR_RO(write_booster); 666 667 /* 668 * See Documentation/ABI/testing/sysfs-driver-ufs for the semantics of this 669 * group. 670 */ 671 static struct attribute *ufs_sysfs_capabilities_attrs[] = { 672 &dev_attr_clock_scaling.attr, 673 &dev_attr_write_booster.attr, 674 NULL 675 }; 676 677 static const struct attribute_group ufs_sysfs_capabilities_group = { 678 .name = "capabilities", 679 .attrs = ufs_sysfs_capabilities_attrs, 680 }; 681 682 static ssize_t version_show(struct device *dev, 683 struct device_attribute *attr, char *buf) 684 { 685 struct ufs_hba *hba = dev_get_drvdata(dev); 686 687 return sysfs_emit(buf, "0x%x\n", hba->ufs_version); 688 } 689 690 static ssize_t product_id_show(struct device *dev, 691 struct device_attribute *attr, char *buf) 692 { 693 int ret; 694 u32 val; 695 struct ufs_hba *hba = dev_get_drvdata(dev); 696 697 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_PID); 698 if (ret) 699 return ret; 700 701 return sysfs_emit(buf, "0x%x\n", val); 702 } 703 704 static ssize_t man_id_show(struct device *dev, 705 struct device_attribute *attr, char *buf) 706 { 707 int ret; 708 u32 val; 709 struct ufs_hba *hba = dev_get_drvdata(dev); 710 711 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_MID); 712 if (ret) 713 return ret; 714 715 return sysfs_emit(buf, "0x%x\n", val); 716 } 717 718 static DEVICE_ATTR_RO(version); 719 static DEVICE_ATTR_RO(product_id); 720 static DEVICE_ATTR_RO(man_id); 721 722 static struct attribute *ufs_sysfs_ufshci_cap_attrs[] = { 723 &dev_attr_version.attr, 724 &dev_attr_product_id.attr, 725 &dev_attr_man_id.attr, 726 NULL 727 }; 728 729 static const struct attribute_group ufs_sysfs_ufshci_group = { 730 .name = "ufshci_capabilities", 731 .attrs = ufs_sysfs_ufshci_cap_attrs, 732 }; 733 734 static ssize_t monitor_enable_show(struct device *dev, 735 struct device_attribute *attr, char *buf) 736 { 737 struct ufs_hba *hba = dev_get_drvdata(dev); 738 739 return sysfs_emit(buf, "%d\n", hba->monitor.enabled); 740 } 741 742 static ssize_t monitor_enable_store(struct device *dev, 743 struct device_attribute *attr, 744 const char *buf, size_t count) 745 { 746 struct ufs_hba *hba = dev_get_drvdata(dev); 747 unsigned long value, flags; 748 749 if (kstrtoul(buf, 0, &value)) 750 return -EINVAL; 751 752 value = !!value; 753 spin_lock_irqsave(hba->host->host_lock, flags); 754 if (value == hba->monitor.enabled) 755 goto out_unlock; 756 757 if (!value) { 758 memset(&hba->monitor, 0, sizeof(hba->monitor)); 759 } else { 760 hba->monitor.enabled = true; 761 hba->monitor.enabled_ts = ktime_get(); 762 } 763 764 out_unlock: 765 spin_unlock_irqrestore(hba->host->host_lock, flags); 766 return count; 767 } 768 769 static ssize_t monitor_chunk_size_show(struct device *dev, 770 struct device_attribute *attr, char *buf) 771 { 772 struct ufs_hba *hba = dev_get_drvdata(dev); 773 774 return sysfs_emit(buf, "%lu\n", hba->monitor.chunk_size); 775 } 776 777 static ssize_t monitor_chunk_size_store(struct device *dev, 778 struct device_attribute *attr, 779 const char *buf, size_t count) 780 { 781 struct ufs_hba *hba = dev_get_drvdata(dev); 782 unsigned long value, flags; 783 784 if (kstrtoul(buf, 0, &value)) 785 return -EINVAL; 786 787 spin_lock_irqsave(hba->host->host_lock, flags); 788 /* Only allow chunk size change when monitor is disabled */ 789 if (!hba->monitor.enabled) 790 hba->monitor.chunk_size = value; 791 spin_unlock_irqrestore(hba->host->host_lock, flags); 792 return count; 793 } 794 795 static ssize_t read_total_sectors_show(struct device *dev, 796 struct device_attribute *attr, char *buf) 797 { 798 struct ufs_hba *hba = dev_get_drvdata(dev); 799 800 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[READ]); 801 } 802 803 static ssize_t read_total_busy_show(struct device *dev, 804 struct device_attribute *attr, char *buf) 805 { 806 struct ufs_hba *hba = dev_get_drvdata(dev); 807 808 return sysfs_emit(buf, "%llu\n", 809 ktime_to_us(hba->monitor.total_busy[READ])); 810 } 811 812 static ssize_t read_nr_requests_show(struct device *dev, 813 struct device_attribute *attr, char *buf) 814 { 815 struct ufs_hba *hba = dev_get_drvdata(dev); 816 817 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[READ]); 818 } 819 820 static ssize_t read_req_latency_avg_show(struct device *dev, 821 struct device_attribute *attr, 822 char *buf) 823 { 824 struct ufs_hba *hba = dev_get_drvdata(dev); 825 struct ufs_hba_monitor *m = &hba->monitor; 826 827 if (!m->nr_req[READ]) 828 return sysfs_emit(buf, "0\n"); 829 830 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[READ]), 831 m->nr_req[READ])); 832 } 833 834 static ssize_t read_req_latency_max_show(struct device *dev, 835 struct device_attribute *attr, 836 char *buf) 837 { 838 struct ufs_hba *hba = dev_get_drvdata(dev); 839 840 return sysfs_emit(buf, "%llu\n", 841 ktime_to_us(hba->monitor.lat_max[READ])); 842 } 843 844 static ssize_t read_req_latency_min_show(struct device *dev, 845 struct device_attribute *attr, 846 char *buf) 847 { 848 struct ufs_hba *hba = dev_get_drvdata(dev); 849 850 return sysfs_emit(buf, "%llu\n", 851 ktime_to_us(hba->monitor.lat_min[READ])); 852 } 853 854 static ssize_t read_req_latency_sum_show(struct device *dev, 855 struct device_attribute *attr, 856 char *buf) 857 { 858 struct ufs_hba *hba = dev_get_drvdata(dev); 859 860 return sysfs_emit(buf, "%llu\n", 861 ktime_to_us(hba->monitor.lat_sum[READ])); 862 } 863 864 static ssize_t write_total_sectors_show(struct device *dev, 865 struct device_attribute *attr, 866 char *buf) 867 { 868 struct ufs_hba *hba = dev_get_drvdata(dev); 869 870 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[WRITE]); 871 } 872 873 static ssize_t write_total_busy_show(struct device *dev, 874 struct device_attribute *attr, char *buf) 875 { 876 struct ufs_hba *hba = dev_get_drvdata(dev); 877 878 return sysfs_emit(buf, "%llu\n", 879 ktime_to_us(hba->monitor.total_busy[WRITE])); 880 } 881 882 static ssize_t write_nr_requests_show(struct device *dev, 883 struct device_attribute *attr, char *buf) 884 { 885 struct ufs_hba *hba = dev_get_drvdata(dev); 886 887 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[WRITE]); 888 } 889 890 static ssize_t write_req_latency_avg_show(struct device *dev, 891 struct device_attribute *attr, 892 char *buf) 893 { 894 struct ufs_hba *hba = dev_get_drvdata(dev); 895 struct ufs_hba_monitor *m = &hba->monitor; 896 897 if (!m->nr_req[WRITE]) 898 return sysfs_emit(buf, "0\n"); 899 900 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[WRITE]), 901 m->nr_req[WRITE])); 902 } 903 904 static ssize_t write_req_latency_max_show(struct device *dev, 905 struct device_attribute *attr, 906 char *buf) 907 { 908 struct ufs_hba *hba = dev_get_drvdata(dev); 909 910 return sysfs_emit(buf, "%llu\n", 911 ktime_to_us(hba->monitor.lat_max[WRITE])); 912 } 913 914 static ssize_t write_req_latency_min_show(struct device *dev, 915 struct device_attribute *attr, 916 char *buf) 917 { 918 struct ufs_hba *hba = dev_get_drvdata(dev); 919 920 return sysfs_emit(buf, "%llu\n", 921 ktime_to_us(hba->monitor.lat_min[WRITE])); 922 } 923 924 static ssize_t write_req_latency_sum_show(struct device *dev, 925 struct device_attribute *attr, 926 char *buf) 927 { 928 struct ufs_hba *hba = dev_get_drvdata(dev); 929 930 return sysfs_emit(buf, "%llu\n", 931 ktime_to_us(hba->monitor.lat_sum[WRITE])); 932 } 933 934 static DEVICE_ATTR_RW(monitor_enable); 935 static DEVICE_ATTR_RW(monitor_chunk_size); 936 static DEVICE_ATTR_RO(read_total_sectors); 937 static DEVICE_ATTR_RO(read_total_busy); 938 static DEVICE_ATTR_RO(read_nr_requests); 939 static DEVICE_ATTR_RO(read_req_latency_avg); 940 static DEVICE_ATTR_RO(read_req_latency_max); 941 static DEVICE_ATTR_RO(read_req_latency_min); 942 static DEVICE_ATTR_RO(read_req_latency_sum); 943 static DEVICE_ATTR_RO(write_total_sectors); 944 static DEVICE_ATTR_RO(write_total_busy); 945 static DEVICE_ATTR_RO(write_nr_requests); 946 static DEVICE_ATTR_RO(write_req_latency_avg); 947 static DEVICE_ATTR_RO(write_req_latency_max); 948 static DEVICE_ATTR_RO(write_req_latency_min); 949 static DEVICE_ATTR_RO(write_req_latency_sum); 950 951 static struct attribute *ufs_sysfs_monitor_attrs[] = { 952 &dev_attr_monitor_enable.attr, 953 &dev_attr_monitor_chunk_size.attr, 954 &dev_attr_read_total_sectors.attr, 955 &dev_attr_read_total_busy.attr, 956 &dev_attr_read_nr_requests.attr, 957 &dev_attr_read_req_latency_avg.attr, 958 &dev_attr_read_req_latency_max.attr, 959 &dev_attr_read_req_latency_min.attr, 960 &dev_attr_read_req_latency_sum.attr, 961 &dev_attr_write_total_sectors.attr, 962 &dev_attr_write_total_busy.attr, 963 &dev_attr_write_nr_requests.attr, 964 &dev_attr_write_req_latency_avg.attr, 965 &dev_attr_write_req_latency_max.attr, 966 &dev_attr_write_req_latency_min.attr, 967 &dev_attr_write_req_latency_sum.attr, 968 NULL 969 }; 970 971 static const struct attribute_group ufs_sysfs_monitor_group = { 972 .name = "monitor", 973 .attrs = ufs_sysfs_monitor_attrs, 974 }; 975 976 static ssize_t lane_show(struct device *dev, struct device_attribute *attr, 977 char *buf) 978 { 979 struct ufs_hba *hba = dev_get_drvdata(dev); 980 981 return sysfs_emit(buf, "%u\n", hba->pwr_info.lane_rx); 982 } 983 984 static ssize_t mode_show(struct device *dev, struct device_attribute *attr, 985 char *buf) 986 { 987 struct ufs_hba *hba = dev_get_drvdata(dev); 988 989 return sysfs_emit(buf, "%s\n", ufs_pa_pwr_mode_to_string(hba->pwr_info.pwr_rx)); 990 } 991 992 static ssize_t rate_show(struct device *dev, struct device_attribute *attr, 993 char *buf) 994 { 995 struct ufs_hba *hba = dev_get_drvdata(dev); 996 997 return sysfs_emit(buf, "%s\n", ufs_hs_gear_rate_to_string(hba->pwr_info.hs_rate)); 998 } 999 1000 static ssize_t gear_show(struct device *dev, struct device_attribute *attr, 1001 char *buf) 1002 { 1003 struct ufs_hba *hba = dev_get_drvdata(dev); 1004 1005 return sysfs_emit(buf, "%s\n", hba->pwr_info.hs_rate ? 1006 ufs_hs_gear_to_string(hba->pwr_info.gear_rx) : 1007 ufs_pwm_gear_to_string(hba->pwr_info.gear_rx)); 1008 } 1009 1010 static ssize_t dev_pm_show(struct device *dev, struct device_attribute *attr, 1011 char *buf) 1012 { 1013 struct ufs_hba *hba = dev_get_drvdata(dev); 1014 1015 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(hba->curr_dev_pwr_mode)); 1016 } 1017 1018 static ssize_t link_state_show(struct device *dev, 1019 struct device_attribute *attr, char *buf) 1020 { 1021 struct ufs_hba *hba = dev_get_drvdata(dev); 1022 1023 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(hba->uic_link_state)); 1024 } 1025 1026 static DEVICE_ATTR_RO(lane); 1027 static DEVICE_ATTR_RO(mode); 1028 static DEVICE_ATTR_RO(rate); 1029 static DEVICE_ATTR_RO(gear); 1030 static DEVICE_ATTR_RO(dev_pm); 1031 static DEVICE_ATTR_RO(link_state); 1032 1033 static struct attribute *ufs_power_info_attrs[] = { 1034 &dev_attr_lane.attr, 1035 &dev_attr_mode.attr, 1036 &dev_attr_rate.attr, 1037 &dev_attr_gear.attr, 1038 &dev_attr_dev_pm.attr, 1039 &dev_attr_link_state.attr, 1040 NULL 1041 }; 1042 1043 static const struct attribute_group ufs_sysfs_power_info_group = { 1044 .name = "power_info", 1045 .attrs = ufs_power_info_attrs, 1046 }; 1047 1048 static ssize_t ufs_sysfs_read_desc_param(struct ufs_hba *hba, 1049 enum desc_idn desc_id, 1050 u8 desc_index, 1051 u8 param_offset, 1052 u8 *sysfs_buf, 1053 u8 param_size) 1054 { 1055 u8 desc_buf[8] = {0}; 1056 int ret; 1057 1058 if (param_size > 8) 1059 return -EINVAL; 1060 1061 down(&hba->host_sem); 1062 if (!ufshcd_is_user_access_allowed(hba)) { 1063 ret = -EBUSY; 1064 goto out; 1065 } 1066 1067 ufshcd_rpm_get_sync(hba); 1068 ret = ufshcd_read_desc_param(hba, desc_id, desc_index, 1069 param_offset, desc_buf, param_size); 1070 ufshcd_rpm_put_sync(hba); 1071 if (ret) { 1072 ret = -EINVAL; 1073 goto out; 1074 } 1075 1076 switch (param_size) { 1077 case 1: 1078 ret = sysfs_emit(sysfs_buf, "0x%02X\n", *desc_buf); 1079 break; 1080 case 2: 1081 ret = sysfs_emit(sysfs_buf, "0x%04X\n", 1082 get_unaligned_be16(desc_buf)); 1083 break; 1084 case 4: 1085 ret = sysfs_emit(sysfs_buf, "0x%08X\n", 1086 get_unaligned_be32(desc_buf)); 1087 break; 1088 case 8: 1089 ret = sysfs_emit(sysfs_buf, "0x%016llX\n", 1090 get_unaligned_be64(desc_buf)); 1091 break; 1092 } 1093 1094 out: 1095 up(&hba->host_sem); 1096 return ret; 1097 } 1098 1099 #define UFS_DESC_PARAM(_name, _puname, _duname, _size) \ 1100 static ssize_t _name##_show(struct device *dev, \ 1101 struct device_attribute *attr, char *buf) \ 1102 { \ 1103 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1104 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 1105 0, _duname##_DESC_PARAM##_puname, buf, _size); \ 1106 } \ 1107 static DEVICE_ATTR_RO(_name) 1108 1109 #define UFS_DEVICE_DESC_PARAM(_name, _uname, _size) \ 1110 UFS_DESC_PARAM(_name, _uname, DEVICE, _size) 1111 1112 UFS_DEVICE_DESC_PARAM(device_type, _DEVICE_TYPE, 1); 1113 UFS_DEVICE_DESC_PARAM(device_class, _DEVICE_CLASS, 1); 1114 UFS_DEVICE_DESC_PARAM(device_sub_class, _DEVICE_SUB_CLASS, 1); 1115 UFS_DEVICE_DESC_PARAM(protocol, _PRTCL, 1); 1116 UFS_DEVICE_DESC_PARAM(number_of_luns, _NUM_LU, 1); 1117 UFS_DEVICE_DESC_PARAM(number_of_wluns, _NUM_WLU, 1); 1118 UFS_DEVICE_DESC_PARAM(boot_enable, _BOOT_ENBL, 1); 1119 UFS_DEVICE_DESC_PARAM(descriptor_access_enable, _DESC_ACCSS_ENBL, 1); 1120 UFS_DEVICE_DESC_PARAM(initial_power_mode, _INIT_PWR_MODE, 1); 1121 UFS_DEVICE_DESC_PARAM(high_priority_lun, _HIGH_PR_LUN, 1); 1122 UFS_DEVICE_DESC_PARAM(secure_removal_type, _SEC_RMV_TYPE, 1); 1123 UFS_DEVICE_DESC_PARAM(support_security_lun, _SEC_LU, 1); 1124 UFS_DEVICE_DESC_PARAM(bkops_termination_latency, _BKOP_TERM_LT, 1); 1125 UFS_DEVICE_DESC_PARAM(initial_active_icc_level, _ACTVE_ICC_LVL, 1); 1126 UFS_DEVICE_DESC_PARAM(specification_version, _SPEC_VER, 2); 1127 UFS_DEVICE_DESC_PARAM(manufacturing_date, _MANF_DATE, 2); 1128 UFS_DEVICE_DESC_PARAM(manufacturer_id, _MANF_ID, 2); 1129 UFS_DEVICE_DESC_PARAM(rtt_capability, _RTT_CAP, 1); 1130 UFS_DEVICE_DESC_PARAM(rtc_update, _FRQ_RTC, 2); 1131 UFS_DEVICE_DESC_PARAM(ufs_features, _UFS_FEAT, 1); 1132 UFS_DEVICE_DESC_PARAM(ffu_timeout, _FFU_TMT, 1); 1133 UFS_DEVICE_DESC_PARAM(queue_depth, _Q_DPTH, 1); 1134 UFS_DEVICE_DESC_PARAM(device_version, _DEV_VER, 2); 1135 UFS_DEVICE_DESC_PARAM(number_of_secure_wpa, _NUM_SEC_WPA, 1); 1136 UFS_DEVICE_DESC_PARAM(psa_max_data_size, _PSA_MAX_DATA, 4); 1137 UFS_DEVICE_DESC_PARAM(psa_state_timeout, _PSA_TMT, 1); 1138 UFS_DEVICE_DESC_PARAM(ext_feature_sup, _EXT_UFS_FEATURE_SUP, 4); 1139 UFS_DEVICE_DESC_PARAM(wb_presv_us_en, _WB_PRESRV_USRSPC_EN, 1); 1140 UFS_DEVICE_DESC_PARAM(wb_type, _WB_TYPE, 1); 1141 UFS_DEVICE_DESC_PARAM(wb_shared_alloc_units, _WB_SHARED_ALLOC_UNITS, 4); 1142 1143 static struct attribute *ufs_sysfs_device_descriptor[] = { 1144 &dev_attr_device_type.attr, 1145 &dev_attr_device_class.attr, 1146 &dev_attr_device_sub_class.attr, 1147 &dev_attr_protocol.attr, 1148 &dev_attr_number_of_luns.attr, 1149 &dev_attr_number_of_wluns.attr, 1150 &dev_attr_boot_enable.attr, 1151 &dev_attr_descriptor_access_enable.attr, 1152 &dev_attr_initial_power_mode.attr, 1153 &dev_attr_high_priority_lun.attr, 1154 &dev_attr_secure_removal_type.attr, 1155 &dev_attr_support_security_lun.attr, 1156 &dev_attr_bkops_termination_latency.attr, 1157 &dev_attr_initial_active_icc_level.attr, 1158 &dev_attr_specification_version.attr, 1159 &dev_attr_manufacturing_date.attr, 1160 &dev_attr_manufacturer_id.attr, 1161 &dev_attr_rtt_capability.attr, 1162 &dev_attr_rtc_update.attr, 1163 &dev_attr_ufs_features.attr, 1164 &dev_attr_ffu_timeout.attr, 1165 &dev_attr_queue_depth.attr, 1166 &dev_attr_device_version.attr, 1167 &dev_attr_number_of_secure_wpa.attr, 1168 &dev_attr_psa_max_data_size.attr, 1169 &dev_attr_psa_state_timeout.attr, 1170 &dev_attr_ext_feature_sup.attr, 1171 &dev_attr_wb_presv_us_en.attr, 1172 &dev_attr_wb_type.attr, 1173 &dev_attr_wb_shared_alloc_units.attr, 1174 NULL, 1175 }; 1176 1177 static const struct attribute_group ufs_sysfs_device_descriptor_group = { 1178 .name = "device_descriptor", 1179 .attrs = ufs_sysfs_device_descriptor, 1180 }; 1181 1182 #define UFS_INTERCONNECT_DESC_PARAM(_name, _uname, _size) \ 1183 UFS_DESC_PARAM(_name, _uname, INTERCONNECT, _size) 1184 1185 UFS_INTERCONNECT_DESC_PARAM(unipro_version, _UNIPRO_VER, 2); 1186 UFS_INTERCONNECT_DESC_PARAM(mphy_version, _MPHY_VER, 2); 1187 1188 static struct attribute *ufs_sysfs_interconnect_descriptor[] = { 1189 &dev_attr_unipro_version.attr, 1190 &dev_attr_mphy_version.attr, 1191 NULL, 1192 }; 1193 1194 static const struct attribute_group ufs_sysfs_interconnect_descriptor_group = { 1195 .name = "interconnect_descriptor", 1196 .attrs = ufs_sysfs_interconnect_descriptor, 1197 }; 1198 1199 #define UFS_GEOMETRY_DESC_PARAM(_name, _uname, _size) \ 1200 UFS_DESC_PARAM(_name, _uname, GEOMETRY, _size) 1201 1202 UFS_GEOMETRY_DESC_PARAM(raw_device_capacity, _DEV_CAP, 8); 1203 UFS_GEOMETRY_DESC_PARAM(max_number_of_luns, _MAX_NUM_LUN, 1); 1204 UFS_GEOMETRY_DESC_PARAM(segment_size, _SEG_SIZE, 4); 1205 UFS_GEOMETRY_DESC_PARAM(allocation_unit_size, _ALLOC_UNIT_SIZE, 1); 1206 UFS_GEOMETRY_DESC_PARAM(min_addressable_block_size, _MIN_BLK_SIZE, 1); 1207 UFS_GEOMETRY_DESC_PARAM(optimal_read_block_size, _OPT_RD_BLK_SIZE, 1); 1208 UFS_GEOMETRY_DESC_PARAM(optimal_write_block_size, _OPT_WR_BLK_SIZE, 1); 1209 UFS_GEOMETRY_DESC_PARAM(max_in_buffer_size, _MAX_IN_BUF_SIZE, 1); 1210 UFS_GEOMETRY_DESC_PARAM(max_out_buffer_size, _MAX_OUT_BUF_SIZE, 1); 1211 UFS_GEOMETRY_DESC_PARAM(rpmb_rw_size, _RPMB_RW_SIZE, 1); 1212 UFS_GEOMETRY_DESC_PARAM(dyn_capacity_resource_policy, _DYN_CAP_RSRC_PLC, 1); 1213 UFS_GEOMETRY_DESC_PARAM(data_ordering, _DATA_ORDER, 1); 1214 UFS_GEOMETRY_DESC_PARAM(max_number_of_contexts, _MAX_NUM_CTX, 1); 1215 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_unit_size, _TAG_UNIT_SIZE, 1); 1216 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_resource_size, _TAG_RSRC_SIZE, 1); 1217 UFS_GEOMETRY_DESC_PARAM(secure_removal_types, _SEC_RM_TYPES, 1); 1218 UFS_GEOMETRY_DESC_PARAM(memory_types, _MEM_TYPES, 2); 1219 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_max_alloc_units, 1220 _SCM_MAX_NUM_UNITS, 4); 1221 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_capacity_adjustment_factor, 1222 _SCM_CAP_ADJ_FCTR, 2); 1223 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_max_alloc_units, 1224 _NPM_MAX_NUM_UNITS, 4); 1225 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_capacity_adjustment_factor, 1226 _NPM_CAP_ADJ_FCTR, 2); 1227 UFS_GEOMETRY_DESC_PARAM(enh1_memory_max_alloc_units, 1228 _ENM1_MAX_NUM_UNITS, 4); 1229 UFS_GEOMETRY_DESC_PARAM(enh1_memory_capacity_adjustment_factor, 1230 _ENM1_CAP_ADJ_FCTR, 2); 1231 UFS_GEOMETRY_DESC_PARAM(enh2_memory_max_alloc_units, 1232 _ENM2_MAX_NUM_UNITS, 4); 1233 UFS_GEOMETRY_DESC_PARAM(enh2_memory_capacity_adjustment_factor, 1234 _ENM2_CAP_ADJ_FCTR, 2); 1235 UFS_GEOMETRY_DESC_PARAM(enh3_memory_max_alloc_units, 1236 _ENM3_MAX_NUM_UNITS, 4); 1237 UFS_GEOMETRY_DESC_PARAM(enh3_memory_capacity_adjustment_factor, 1238 _ENM3_CAP_ADJ_FCTR, 2); 1239 UFS_GEOMETRY_DESC_PARAM(enh4_memory_max_alloc_units, 1240 _ENM4_MAX_NUM_UNITS, 4); 1241 UFS_GEOMETRY_DESC_PARAM(enh4_memory_capacity_adjustment_factor, 1242 _ENM4_CAP_ADJ_FCTR, 2); 1243 UFS_GEOMETRY_DESC_PARAM(wb_max_alloc_units, _WB_MAX_ALLOC_UNITS, 4); 1244 UFS_GEOMETRY_DESC_PARAM(wb_max_wb_luns, _WB_MAX_WB_LUNS, 1); 1245 UFS_GEOMETRY_DESC_PARAM(wb_buff_cap_adj, _WB_BUFF_CAP_ADJ, 1); 1246 UFS_GEOMETRY_DESC_PARAM(wb_sup_red_type, _WB_SUP_RED_TYPE, 1); 1247 UFS_GEOMETRY_DESC_PARAM(wb_sup_wb_type, _WB_SUP_WB_TYPE, 1); 1248 1249 1250 static struct attribute *ufs_sysfs_geometry_descriptor[] = { 1251 &dev_attr_raw_device_capacity.attr, 1252 &dev_attr_max_number_of_luns.attr, 1253 &dev_attr_segment_size.attr, 1254 &dev_attr_allocation_unit_size.attr, 1255 &dev_attr_min_addressable_block_size.attr, 1256 &dev_attr_optimal_read_block_size.attr, 1257 &dev_attr_optimal_write_block_size.attr, 1258 &dev_attr_max_in_buffer_size.attr, 1259 &dev_attr_max_out_buffer_size.attr, 1260 &dev_attr_rpmb_rw_size.attr, 1261 &dev_attr_dyn_capacity_resource_policy.attr, 1262 &dev_attr_data_ordering.attr, 1263 &dev_attr_max_number_of_contexts.attr, 1264 &dev_attr_sys_data_tag_unit_size.attr, 1265 &dev_attr_sys_data_tag_resource_size.attr, 1266 &dev_attr_secure_removal_types.attr, 1267 &dev_attr_memory_types.attr, 1268 &dev_attr_sys_code_memory_max_alloc_units.attr, 1269 &dev_attr_sys_code_memory_capacity_adjustment_factor.attr, 1270 &dev_attr_non_persist_memory_max_alloc_units.attr, 1271 &dev_attr_non_persist_memory_capacity_adjustment_factor.attr, 1272 &dev_attr_enh1_memory_max_alloc_units.attr, 1273 &dev_attr_enh1_memory_capacity_adjustment_factor.attr, 1274 &dev_attr_enh2_memory_max_alloc_units.attr, 1275 &dev_attr_enh2_memory_capacity_adjustment_factor.attr, 1276 &dev_attr_enh3_memory_max_alloc_units.attr, 1277 &dev_attr_enh3_memory_capacity_adjustment_factor.attr, 1278 &dev_attr_enh4_memory_max_alloc_units.attr, 1279 &dev_attr_enh4_memory_capacity_adjustment_factor.attr, 1280 &dev_attr_wb_max_alloc_units.attr, 1281 &dev_attr_wb_max_wb_luns.attr, 1282 &dev_attr_wb_buff_cap_adj.attr, 1283 &dev_attr_wb_sup_red_type.attr, 1284 &dev_attr_wb_sup_wb_type.attr, 1285 NULL, 1286 }; 1287 1288 static const struct attribute_group ufs_sysfs_geometry_descriptor_group = { 1289 .name = "geometry_descriptor", 1290 .attrs = ufs_sysfs_geometry_descriptor, 1291 }; 1292 1293 #define UFS_HEALTH_DESC_PARAM(_name, _uname, _size) \ 1294 UFS_DESC_PARAM(_name, _uname, HEALTH, _size) 1295 1296 UFS_HEALTH_DESC_PARAM(eol_info, _EOL_INFO, 1); 1297 UFS_HEALTH_DESC_PARAM(life_time_estimation_a, _LIFE_TIME_EST_A, 1); 1298 UFS_HEALTH_DESC_PARAM(life_time_estimation_b, _LIFE_TIME_EST_B, 1); 1299 1300 static struct attribute *ufs_sysfs_health_descriptor[] = { 1301 &dev_attr_eol_info.attr, 1302 &dev_attr_life_time_estimation_a.attr, 1303 &dev_attr_life_time_estimation_b.attr, 1304 NULL, 1305 }; 1306 1307 static const struct attribute_group ufs_sysfs_health_descriptor_group = { 1308 .name = "health_descriptor", 1309 .attrs = ufs_sysfs_health_descriptor, 1310 }; 1311 1312 #define UFS_POWER_DESC_PARAM(_name, _uname, _index) \ 1313 static ssize_t _name##_index##_show(struct device *dev, \ 1314 struct device_attribute *attr, char *buf) \ 1315 { \ 1316 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1317 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, \ 1318 PWR_DESC##_uname##_0 + _index * 2, buf, 2); \ 1319 } \ 1320 static DEVICE_ATTR_RO(_name##_index) 1321 1322 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 0); 1323 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 1); 1324 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 2); 1325 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 3); 1326 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 4); 1327 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 5); 1328 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 6); 1329 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 7); 1330 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 8); 1331 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 9); 1332 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 10); 1333 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 11); 1334 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 12); 1335 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 13); 1336 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 14); 1337 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 15); 1338 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 0); 1339 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 1); 1340 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 2); 1341 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 3); 1342 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 4); 1343 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 5); 1344 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 6); 1345 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 7); 1346 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 8); 1347 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 9); 1348 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 10); 1349 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 11); 1350 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 12); 1351 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 13); 1352 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 14); 1353 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 15); 1354 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 0); 1355 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 1); 1356 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 2); 1357 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 3); 1358 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 4); 1359 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 5); 1360 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 6); 1361 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 7); 1362 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 8); 1363 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 9); 1364 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 10); 1365 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 11); 1366 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 12); 1367 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 13); 1368 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 14); 1369 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 15); 1370 1371 static struct attribute *ufs_sysfs_power_descriptor[] = { 1372 &dev_attr_active_icc_levels_vcc0.attr, 1373 &dev_attr_active_icc_levels_vcc1.attr, 1374 &dev_attr_active_icc_levels_vcc2.attr, 1375 &dev_attr_active_icc_levels_vcc3.attr, 1376 &dev_attr_active_icc_levels_vcc4.attr, 1377 &dev_attr_active_icc_levels_vcc5.attr, 1378 &dev_attr_active_icc_levels_vcc6.attr, 1379 &dev_attr_active_icc_levels_vcc7.attr, 1380 &dev_attr_active_icc_levels_vcc8.attr, 1381 &dev_attr_active_icc_levels_vcc9.attr, 1382 &dev_attr_active_icc_levels_vcc10.attr, 1383 &dev_attr_active_icc_levels_vcc11.attr, 1384 &dev_attr_active_icc_levels_vcc12.attr, 1385 &dev_attr_active_icc_levels_vcc13.attr, 1386 &dev_attr_active_icc_levels_vcc14.attr, 1387 &dev_attr_active_icc_levels_vcc15.attr, 1388 &dev_attr_active_icc_levels_vccq0.attr, 1389 &dev_attr_active_icc_levels_vccq1.attr, 1390 &dev_attr_active_icc_levels_vccq2.attr, 1391 &dev_attr_active_icc_levels_vccq3.attr, 1392 &dev_attr_active_icc_levels_vccq4.attr, 1393 &dev_attr_active_icc_levels_vccq5.attr, 1394 &dev_attr_active_icc_levels_vccq6.attr, 1395 &dev_attr_active_icc_levels_vccq7.attr, 1396 &dev_attr_active_icc_levels_vccq8.attr, 1397 &dev_attr_active_icc_levels_vccq9.attr, 1398 &dev_attr_active_icc_levels_vccq10.attr, 1399 &dev_attr_active_icc_levels_vccq11.attr, 1400 &dev_attr_active_icc_levels_vccq12.attr, 1401 &dev_attr_active_icc_levels_vccq13.attr, 1402 &dev_attr_active_icc_levels_vccq14.attr, 1403 &dev_attr_active_icc_levels_vccq15.attr, 1404 &dev_attr_active_icc_levels_vccq20.attr, 1405 &dev_attr_active_icc_levels_vccq21.attr, 1406 &dev_attr_active_icc_levels_vccq22.attr, 1407 &dev_attr_active_icc_levels_vccq23.attr, 1408 &dev_attr_active_icc_levels_vccq24.attr, 1409 &dev_attr_active_icc_levels_vccq25.attr, 1410 &dev_attr_active_icc_levels_vccq26.attr, 1411 &dev_attr_active_icc_levels_vccq27.attr, 1412 &dev_attr_active_icc_levels_vccq28.attr, 1413 &dev_attr_active_icc_levels_vccq29.attr, 1414 &dev_attr_active_icc_levels_vccq210.attr, 1415 &dev_attr_active_icc_levels_vccq211.attr, 1416 &dev_attr_active_icc_levels_vccq212.attr, 1417 &dev_attr_active_icc_levels_vccq213.attr, 1418 &dev_attr_active_icc_levels_vccq214.attr, 1419 &dev_attr_active_icc_levels_vccq215.attr, 1420 NULL, 1421 }; 1422 1423 static const struct attribute_group ufs_sysfs_power_descriptor_group = { 1424 .name = "power_descriptor", 1425 .attrs = ufs_sysfs_power_descriptor, 1426 }; 1427 1428 #define UFS_STRING_DESCRIPTOR(_name, _pname) \ 1429 static ssize_t _name##_show(struct device *dev, \ 1430 struct device_attribute *attr, char *buf) \ 1431 { \ 1432 u8 index; \ 1433 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1434 int ret; \ 1435 int desc_len = QUERY_DESC_MAX_SIZE; \ 1436 u8 *desc_buf; \ 1437 \ 1438 down(&hba->host_sem); \ 1439 if (!ufshcd_is_user_access_allowed(hba)) { \ 1440 up(&hba->host_sem); \ 1441 return -EBUSY; \ 1442 } \ 1443 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_ATOMIC); \ 1444 if (!desc_buf) { \ 1445 up(&hba->host_sem); \ 1446 return -ENOMEM; \ 1447 } \ 1448 ufshcd_rpm_get_sync(hba); \ 1449 ret = ufshcd_query_descriptor_retry(hba, \ 1450 UPIU_QUERY_OPCODE_READ_DESC, QUERY_DESC_IDN_DEVICE, \ 1451 0, 0, desc_buf, &desc_len); \ 1452 if (ret) { \ 1453 ret = -EINVAL; \ 1454 goto out; \ 1455 } \ 1456 index = desc_buf[DEVICE_DESC_PARAM##_pname]; \ 1457 kfree(desc_buf); \ 1458 desc_buf = NULL; \ 1459 ret = ufshcd_read_string_desc(hba, index, &desc_buf, \ 1460 SD_ASCII_STD); \ 1461 if (ret < 0) \ 1462 goto out; \ 1463 ret = sysfs_emit(buf, "%s\n", desc_buf); \ 1464 out: \ 1465 ufshcd_rpm_put_sync(hba); \ 1466 kfree(desc_buf); \ 1467 up(&hba->host_sem); \ 1468 return ret; \ 1469 } \ 1470 static DEVICE_ATTR_RO(_name) 1471 1472 UFS_STRING_DESCRIPTOR(manufacturer_name, _MANF_NAME); 1473 UFS_STRING_DESCRIPTOR(product_name, _PRDCT_NAME); 1474 UFS_STRING_DESCRIPTOR(oem_id, _OEM_ID); 1475 UFS_STRING_DESCRIPTOR(serial_number, _SN); 1476 UFS_STRING_DESCRIPTOR(product_revision, _PRDCT_REV); 1477 1478 static struct attribute *ufs_sysfs_string_descriptors[] = { 1479 &dev_attr_manufacturer_name.attr, 1480 &dev_attr_product_name.attr, 1481 &dev_attr_oem_id.attr, 1482 &dev_attr_serial_number.attr, 1483 &dev_attr_product_revision.attr, 1484 NULL, 1485 }; 1486 1487 static const struct attribute_group ufs_sysfs_string_descriptors_group = { 1488 .name = "string_descriptors", 1489 .attrs = ufs_sysfs_string_descriptors, 1490 }; 1491 1492 static inline bool ufshcd_is_wb_flags(enum flag_idn idn) 1493 { 1494 return idn >= QUERY_FLAG_IDN_WB_EN && 1495 idn <= QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8; 1496 } 1497 1498 #define UFS_FLAG(_name, _uname) \ 1499 static ssize_t _name##_show(struct device *dev, \ 1500 struct device_attribute *attr, char *buf) \ 1501 { \ 1502 bool flag; \ 1503 u8 index = 0; \ 1504 int ret; \ 1505 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1506 \ 1507 down(&hba->host_sem); \ 1508 if (!ufshcd_is_user_access_allowed(hba)) { \ 1509 up(&hba->host_sem); \ 1510 return -EBUSY; \ 1511 } \ 1512 if (ufshcd_is_wb_flags(QUERY_FLAG_IDN##_uname)) \ 1513 index = ufshcd_wb_get_query_index(hba); \ 1514 ufshcd_rpm_get_sync(hba); \ 1515 ret = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, \ 1516 QUERY_FLAG_IDN##_uname, index, &flag); \ 1517 ufshcd_rpm_put_sync(hba); \ 1518 if (ret) { \ 1519 ret = -EINVAL; \ 1520 goto out; \ 1521 } \ 1522 ret = sysfs_emit(buf, "%s\n", str_true_false(flag)); \ 1523 out: \ 1524 up(&hba->host_sem); \ 1525 return ret; \ 1526 } \ 1527 static DEVICE_ATTR_RO(_name) 1528 1529 UFS_FLAG(device_init, _FDEVICEINIT); 1530 UFS_FLAG(permanent_wpe, _PERMANENT_WPE); 1531 UFS_FLAG(power_on_wpe, _PWR_ON_WPE); 1532 UFS_FLAG(bkops_enable, _BKOPS_EN); 1533 UFS_FLAG(life_span_mode_enable, _LIFE_SPAN_MODE_ENABLE); 1534 UFS_FLAG(phy_resource_removal, _FPHYRESOURCEREMOVAL); 1535 UFS_FLAG(busy_rtc, _BUSY_RTC); 1536 UFS_FLAG(disable_fw_update, _PERMANENTLY_DISABLE_FW_UPDATE); 1537 UFS_FLAG(wb_enable, _WB_EN); 1538 UFS_FLAG(wb_flush_en, _WB_BUFF_FLUSH_EN); 1539 UFS_FLAG(wb_flush_during_h8, _WB_BUFF_FLUSH_DURING_HIBERN8); 1540 1541 static struct attribute *ufs_sysfs_device_flags[] = { 1542 &dev_attr_device_init.attr, 1543 &dev_attr_permanent_wpe.attr, 1544 &dev_attr_power_on_wpe.attr, 1545 &dev_attr_bkops_enable.attr, 1546 &dev_attr_life_span_mode_enable.attr, 1547 &dev_attr_phy_resource_removal.attr, 1548 &dev_attr_busy_rtc.attr, 1549 &dev_attr_disable_fw_update.attr, 1550 &dev_attr_wb_enable.attr, 1551 &dev_attr_wb_flush_en.attr, 1552 &dev_attr_wb_flush_during_h8.attr, 1553 NULL, 1554 }; 1555 1556 static const struct attribute_group ufs_sysfs_flags_group = { 1557 .name = "flags", 1558 .attrs = ufs_sysfs_device_flags, 1559 }; 1560 1561 static ssize_t max_number_of_rtt_show(struct device *dev, 1562 struct device_attribute *attr, char *buf) 1563 { 1564 struct ufs_hba *hba = dev_get_drvdata(dev); 1565 u32 rtt; 1566 int ret; 1567 1568 down(&hba->host_sem); 1569 if (!ufshcd_is_user_access_allowed(hba)) { 1570 up(&hba->host_sem); 1571 return -EBUSY; 1572 } 1573 1574 ufshcd_rpm_get_sync(hba); 1575 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1576 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt); 1577 ufshcd_rpm_put_sync(hba); 1578 1579 if (ret) 1580 goto out; 1581 1582 ret = sysfs_emit(buf, "0x%08X\n", rtt); 1583 1584 out: 1585 up(&hba->host_sem); 1586 return ret; 1587 } 1588 1589 static ssize_t max_number_of_rtt_store(struct device *dev, 1590 struct device_attribute *attr, 1591 const char *buf, size_t count) 1592 { 1593 struct ufs_hba *hba = dev_get_drvdata(dev); 1594 struct ufs_dev_info *dev_info = &hba->dev_info; 1595 struct scsi_device *sdev; 1596 unsigned int memflags; 1597 unsigned int rtt; 1598 int ret; 1599 1600 if (kstrtouint(buf, 0, &rtt)) 1601 return -EINVAL; 1602 1603 if (rtt > dev_info->rtt_cap) { 1604 dev_err(dev, "rtt can be at most bDeviceRTTCap\n"); 1605 return -EINVAL; 1606 } 1607 1608 down(&hba->host_sem); 1609 if (!ufshcd_is_user_access_allowed(hba)) { 1610 ret = -EBUSY; 1611 goto out; 1612 } 1613 1614 ufshcd_rpm_get_sync(hba); 1615 1616 memflags = memalloc_noio_save(); 1617 shost_for_each_device(sdev, hba->host) 1618 blk_mq_freeze_queue_nomemsave(sdev->request_queue); 1619 1620 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1621 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt); 1622 1623 shost_for_each_device(sdev, hba->host) 1624 blk_mq_unfreeze_queue_nomemrestore(sdev->request_queue); 1625 memalloc_noio_restore(memflags); 1626 1627 ufshcd_rpm_put_sync(hba); 1628 1629 out: 1630 up(&hba->host_sem); 1631 return ret < 0 ? ret : count; 1632 } 1633 1634 static DEVICE_ATTR_RW(max_number_of_rtt); 1635 1636 static inline bool ufshcd_is_wb_attrs(enum attr_idn idn) 1637 { 1638 return idn >= QUERY_ATTR_IDN_WB_FLUSH_STATUS && 1639 idn <= QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE; 1640 } 1641 1642 static int wb_read_resize_attrs(struct ufs_hba *hba, 1643 enum attr_idn idn, u32 *attr_val) 1644 { 1645 u8 index = 0; 1646 int ret; 1647 1648 if (!ufshcd_is_wb_allowed(hba) || !hba->dev_info.wb_enabled 1649 || !hba->dev_info.b_presrv_uspc_en 1650 || !(hba->dev_info.ext_wb_sup & UFS_DEV_WB_BUF_RESIZE)) 1651 return -EOPNOTSUPP; 1652 1653 down(&hba->host_sem); 1654 if (!ufshcd_is_user_access_allowed(hba)) { 1655 up(&hba->host_sem); 1656 return -EBUSY; 1657 } 1658 1659 index = ufshcd_wb_get_query_index(hba); 1660 ufshcd_rpm_get_sync(hba); 1661 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1662 idn, index, 0, attr_val); 1663 ufshcd_rpm_put_sync(hba); 1664 1665 up(&hba->host_sem); 1666 return ret; 1667 } 1668 1669 static ssize_t wb_resize_hint_show(struct device *dev, 1670 struct device_attribute *attr, char *buf) 1671 { 1672 struct ufs_hba *hba = dev_get_drvdata(dev); 1673 int ret; 1674 u32 value; 1675 1676 ret = wb_read_resize_attrs(hba, 1677 QUERY_ATTR_IDN_WB_BUF_RESIZE_HINT, &value); 1678 if (ret) 1679 return ret; 1680 1681 return sysfs_emit(buf, "%s\n", ufs_wb_resize_hint_to_string(value)); 1682 } 1683 1684 static DEVICE_ATTR_RO(wb_resize_hint); 1685 1686 static ssize_t wb_resize_status_show(struct device *dev, 1687 struct device_attribute *attr, char *buf) 1688 { 1689 struct ufs_hba *hba = dev_get_drvdata(dev); 1690 int ret; 1691 u32 value; 1692 1693 ret = wb_read_resize_attrs(hba, 1694 QUERY_ATTR_IDN_WB_BUF_RESIZE_STATUS, &value); 1695 if (ret) 1696 return ret; 1697 1698 return sysfs_emit(buf, "%s\n", ufs_wb_resize_status_to_string(value)); 1699 } 1700 1701 static DEVICE_ATTR_RO(wb_resize_status); 1702 1703 #define UFS_ATTRIBUTE(_name, _uname) \ 1704 static ssize_t _name##_show(struct device *dev, \ 1705 struct device_attribute *attr, char *buf) \ 1706 { \ 1707 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1708 u32 value; \ 1709 int ret; \ 1710 u8 index = 0; \ 1711 \ 1712 down(&hba->host_sem); \ 1713 if (!ufshcd_is_user_access_allowed(hba)) { \ 1714 up(&hba->host_sem); \ 1715 return -EBUSY; \ 1716 } \ 1717 if (ufshcd_is_wb_attrs(QUERY_ATTR_IDN##_uname)) \ 1718 index = ufshcd_wb_get_query_index(hba); \ 1719 ufshcd_rpm_get_sync(hba); \ 1720 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, \ 1721 QUERY_ATTR_IDN##_uname, index, 0, &value); \ 1722 ufshcd_rpm_put_sync(hba); \ 1723 if (ret) { \ 1724 ret = -EINVAL; \ 1725 goto out; \ 1726 } \ 1727 ret = sysfs_emit(buf, "0x%08X\n", value); \ 1728 out: \ 1729 up(&hba->host_sem); \ 1730 return ret; \ 1731 } \ 1732 static DEVICE_ATTR_RO(_name) 1733 1734 UFS_ATTRIBUTE(boot_lun_enabled, _BOOT_LU_EN); 1735 UFS_ATTRIBUTE(current_power_mode, _POWER_MODE); 1736 UFS_ATTRIBUTE(active_icc_level, _ACTIVE_ICC_LVL); 1737 UFS_ATTRIBUTE(ooo_data_enabled, _OOO_DATA_EN); 1738 UFS_ATTRIBUTE(bkops_status, _BKOPS_STATUS); 1739 UFS_ATTRIBUTE(purge_status, _PURGE_STATUS); 1740 UFS_ATTRIBUTE(max_data_in_size, _MAX_DATA_IN); 1741 UFS_ATTRIBUTE(max_data_out_size, _MAX_DATA_OUT); 1742 UFS_ATTRIBUTE(reference_clock_frequency, _REF_CLK_FREQ); 1743 UFS_ATTRIBUTE(configuration_descriptor_lock, _CONF_DESC_LOCK); 1744 UFS_ATTRIBUTE(exception_event_control, _EE_CONTROL); 1745 UFS_ATTRIBUTE(exception_event_status, _EE_STATUS); 1746 UFS_ATTRIBUTE(ffu_status, _FFU_STATUS); 1747 UFS_ATTRIBUTE(psa_state, _PSA_STATE); 1748 UFS_ATTRIBUTE(psa_data_size, _PSA_DATA_SIZE); 1749 UFS_ATTRIBUTE(wb_flush_status, _WB_FLUSH_STATUS); 1750 UFS_ATTRIBUTE(wb_avail_buf, _AVAIL_WB_BUFF_SIZE); 1751 UFS_ATTRIBUTE(wb_life_time_est, _WB_BUFF_LIFE_TIME_EST); 1752 UFS_ATTRIBUTE(wb_cur_buf, _CURR_WB_BUFF_SIZE); 1753 1754 1755 static struct attribute *ufs_sysfs_attributes[] = { 1756 &dev_attr_boot_lun_enabled.attr, 1757 &dev_attr_current_power_mode.attr, 1758 &dev_attr_active_icc_level.attr, 1759 &dev_attr_ooo_data_enabled.attr, 1760 &dev_attr_bkops_status.attr, 1761 &dev_attr_purge_status.attr, 1762 &dev_attr_max_data_in_size.attr, 1763 &dev_attr_max_data_out_size.attr, 1764 &dev_attr_reference_clock_frequency.attr, 1765 &dev_attr_configuration_descriptor_lock.attr, 1766 &dev_attr_max_number_of_rtt.attr, 1767 &dev_attr_exception_event_control.attr, 1768 &dev_attr_exception_event_status.attr, 1769 &dev_attr_ffu_status.attr, 1770 &dev_attr_psa_state.attr, 1771 &dev_attr_psa_data_size.attr, 1772 &dev_attr_wb_flush_status.attr, 1773 &dev_attr_wb_avail_buf.attr, 1774 &dev_attr_wb_life_time_est.attr, 1775 &dev_attr_wb_cur_buf.attr, 1776 &dev_attr_wb_resize_hint.attr, 1777 &dev_attr_wb_resize_status.attr, 1778 NULL, 1779 }; 1780 1781 static const struct attribute_group ufs_sysfs_attributes_group = { 1782 .name = "attributes", 1783 .attrs = ufs_sysfs_attributes, 1784 }; 1785 1786 static int hid_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 1787 enum attr_idn idn, u32 *attr_val) 1788 { 1789 int ret; 1790 1791 down(&hba->host_sem); 1792 if (!ufshcd_is_user_access_allowed(hba)) { 1793 up(&hba->host_sem); 1794 return -EBUSY; 1795 } 1796 1797 ufshcd_rpm_get_sync(hba); 1798 ret = ufshcd_query_attr(hba, opcode, idn, 0, 0, attr_val); 1799 ufshcd_rpm_put_sync(hba); 1800 1801 up(&hba->host_sem); 1802 return ret; 1803 } 1804 1805 static ssize_t analysis_trigger_store(struct device *dev, 1806 struct device_attribute *attr, const char *buf, size_t count) 1807 { 1808 struct ufs_hba *hba = dev_get_drvdata(dev); 1809 int mode; 1810 int ret; 1811 1812 if (sysfs_streq(buf, "enable")) 1813 mode = HID_ANALYSIS_ENABLE; 1814 else if (sysfs_streq(buf, "disable")) 1815 mode = HID_ANALYSIS_AND_DEFRAG_DISABLE; 1816 else 1817 return -EINVAL; 1818 1819 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1820 QUERY_ATTR_IDN_HID_DEFRAG_OPERATION, &mode); 1821 1822 return ret < 0 ? ret : count; 1823 } 1824 1825 static DEVICE_ATTR_WO(analysis_trigger); 1826 1827 static ssize_t defrag_trigger_store(struct device *dev, 1828 struct device_attribute *attr, const char *buf, size_t count) 1829 { 1830 struct ufs_hba *hba = dev_get_drvdata(dev); 1831 int mode; 1832 int ret; 1833 1834 if (sysfs_streq(buf, "enable")) 1835 mode = HID_ANALYSIS_AND_DEFRAG_ENABLE; 1836 else if (sysfs_streq(buf, "disable")) 1837 mode = HID_ANALYSIS_AND_DEFRAG_DISABLE; 1838 else 1839 return -EINVAL; 1840 1841 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1842 QUERY_ATTR_IDN_HID_DEFRAG_OPERATION, &mode); 1843 1844 return ret < 0 ? ret : count; 1845 } 1846 1847 static DEVICE_ATTR_WO(defrag_trigger); 1848 1849 static ssize_t fragmented_size_show(struct device *dev, 1850 struct device_attribute *attr, char *buf) 1851 { 1852 struct ufs_hba *hba = dev_get_drvdata(dev); 1853 u32 value; 1854 int ret; 1855 1856 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1857 QUERY_ATTR_IDN_HID_AVAILABLE_SIZE, &value); 1858 if (ret) 1859 return ret; 1860 1861 return sysfs_emit(buf, "%u\n", value); 1862 } 1863 1864 static DEVICE_ATTR_RO(fragmented_size); 1865 1866 static ssize_t defrag_size_show(struct device *dev, 1867 struct device_attribute *attr, char *buf) 1868 { 1869 struct ufs_hba *hba = dev_get_drvdata(dev); 1870 u32 value; 1871 int ret; 1872 1873 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1874 QUERY_ATTR_IDN_HID_SIZE, &value); 1875 if (ret) 1876 return ret; 1877 1878 return sysfs_emit(buf, "%u\n", value); 1879 } 1880 1881 static ssize_t defrag_size_store(struct device *dev, 1882 struct device_attribute *attr, const char *buf, size_t count) 1883 { 1884 struct ufs_hba *hba = dev_get_drvdata(dev); 1885 u32 value; 1886 int ret; 1887 1888 if (kstrtou32(buf, 0, &value)) 1889 return -EINVAL; 1890 1891 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1892 QUERY_ATTR_IDN_HID_SIZE, &value); 1893 1894 return ret < 0 ? ret : count; 1895 } 1896 1897 static DEVICE_ATTR_RW(defrag_size); 1898 1899 static ssize_t progress_ratio_show(struct device *dev, 1900 struct device_attribute *attr, char *buf) 1901 { 1902 struct ufs_hba *hba = dev_get_drvdata(dev); 1903 u32 value; 1904 int ret; 1905 1906 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1907 QUERY_ATTR_IDN_HID_PROGRESS_RATIO, &value); 1908 if (ret) 1909 return ret; 1910 1911 return sysfs_emit(buf, "%u\n", value); 1912 } 1913 1914 static DEVICE_ATTR_RO(progress_ratio); 1915 1916 static ssize_t state_show(struct device *dev, 1917 struct device_attribute *attr, char *buf) 1918 { 1919 struct ufs_hba *hba = dev_get_drvdata(dev); 1920 u32 value; 1921 int ret; 1922 1923 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1924 QUERY_ATTR_IDN_HID_STATE, &value); 1925 if (ret) 1926 return ret; 1927 1928 return sysfs_emit(buf, "%s\n", ufs_hid_state_to_string(value)); 1929 } 1930 1931 static DEVICE_ATTR_RO(state); 1932 1933 static struct attribute *ufs_sysfs_hid[] = { 1934 &dev_attr_analysis_trigger.attr, 1935 &dev_attr_defrag_trigger.attr, 1936 &dev_attr_fragmented_size.attr, 1937 &dev_attr_defrag_size.attr, 1938 &dev_attr_progress_ratio.attr, 1939 &dev_attr_state.attr, 1940 NULL, 1941 }; 1942 1943 static umode_t ufs_sysfs_hid_is_visible(struct kobject *kobj, 1944 struct attribute *attr, int n) 1945 { 1946 struct device *dev = container_of(kobj, struct device, kobj); 1947 struct ufs_hba *hba = dev_get_drvdata(dev); 1948 1949 return hba->dev_info.hid_sup ? attr->mode : 0; 1950 } 1951 1952 static const struct attribute_group ufs_sysfs_hid_group = { 1953 .name = "hid", 1954 .attrs = ufs_sysfs_hid, 1955 .is_visible = ufs_sysfs_hid_is_visible, 1956 }; 1957 1958 static const struct attribute_group *ufs_sysfs_groups[] = { 1959 &ufs_sysfs_default_group, 1960 &ufs_sysfs_capabilities_group, 1961 &ufs_sysfs_ufshci_group, 1962 &ufs_sysfs_monitor_group, 1963 &ufs_sysfs_power_info_group, 1964 &ufs_sysfs_device_descriptor_group, 1965 &ufs_sysfs_interconnect_descriptor_group, 1966 &ufs_sysfs_geometry_descriptor_group, 1967 &ufs_sysfs_health_descriptor_group, 1968 &ufs_sysfs_power_descriptor_group, 1969 &ufs_sysfs_string_descriptors_group, 1970 &ufs_sysfs_flags_group, 1971 &ufs_sysfs_attributes_group, 1972 &ufs_sysfs_hid_group, 1973 NULL, 1974 }; 1975 1976 #define UFS_LUN_DESC_PARAM(_pname, _puname, _duname, _size) \ 1977 static ssize_t _pname##_show(struct device *dev, \ 1978 struct device_attribute *attr, char *buf) \ 1979 { \ 1980 struct scsi_device *sdev = to_scsi_device(dev); \ 1981 struct ufs_hba *hba = shost_priv(sdev->host); \ 1982 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); \ 1983 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) \ 1984 return -EINVAL; \ 1985 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 1986 lun, _duname##_DESC_PARAM##_puname, buf, _size); \ 1987 } \ 1988 static DEVICE_ATTR_RO(_pname) 1989 1990 #define UFS_UNIT_DESC_PARAM(_name, _uname, _size) \ 1991 UFS_LUN_DESC_PARAM(_name, _uname, UNIT, _size) 1992 1993 UFS_UNIT_DESC_PARAM(lu_enable, _LU_ENABLE, 1); 1994 UFS_UNIT_DESC_PARAM(boot_lun_id, _BOOT_LUN_ID, 1); 1995 UFS_UNIT_DESC_PARAM(lun_write_protect, _LU_WR_PROTECT, 1); 1996 UFS_UNIT_DESC_PARAM(lun_queue_depth, _LU_Q_DEPTH, 1); 1997 UFS_UNIT_DESC_PARAM(psa_sensitive, _PSA_SENSITIVE, 1); 1998 UFS_UNIT_DESC_PARAM(lun_memory_type, _MEM_TYPE, 1); 1999 UFS_UNIT_DESC_PARAM(data_reliability, _DATA_RELIABILITY, 1); 2000 UFS_UNIT_DESC_PARAM(logical_block_size, _LOGICAL_BLK_SIZE, 1); 2001 UFS_UNIT_DESC_PARAM(logical_block_count, _LOGICAL_BLK_COUNT, 8); 2002 UFS_UNIT_DESC_PARAM(erase_block_size, _ERASE_BLK_SIZE, 4); 2003 UFS_UNIT_DESC_PARAM(provisioning_type, _PROVISIONING_TYPE, 1); 2004 UFS_UNIT_DESC_PARAM(physical_memory_resource_count, _PHY_MEM_RSRC_CNT, 8); 2005 UFS_UNIT_DESC_PARAM(context_capabilities, _CTX_CAPABILITIES, 2); 2006 UFS_UNIT_DESC_PARAM(large_unit_granularity, _LARGE_UNIT_SIZE_M1, 1); 2007 UFS_UNIT_DESC_PARAM(wb_buf_alloc_units, _WB_BUF_ALLOC_UNITS, 4); 2008 2009 static struct attribute *ufs_sysfs_unit_descriptor[] = { 2010 &dev_attr_lu_enable.attr, 2011 &dev_attr_boot_lun_id.attr, 2012 &dev_attr_lun_write_protect.attr, 2013 &dev_attr_lun_queue_depth.attr, 2014 &dev_attr_psa_sensitive.attr, 2015 &dev_attr_lun_memory_type.attr, 2016 &dev_attr_data_reliability.attr, 2017 &dev_attr_logical_block_size.attr, 2018 &dev_attr_logical_block_count.attr, 2019 &dev_attr_erase_block_size.attr, 2020 &dev_attr_provisioning_type.attr, 2021 &dev_attr_physical_memory_resource_count.attr, 2022 &dev_attr_context_capabilities.attr, 2023 &dev_attr_large_unit_granularity.attr, 2024 &dev_attr_wb_buf_alloc_units.attr, 2025 NULL, 2026 }; 2027 2028 static umode_t ufs_unit_descriptor_is_visible(struct kobject *kobj, struct attribute *attr, int n) 2029 { 2030 struct device *dev = container_of(kobj, struct device, kobj); 2031 struct scsi_device *sdev = to_scsi_device(dev); 2032 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 2033 umode_t mode = attr->mode; 2034 2035 if (lun == UFS_UPIU_BOOT_WLUN || lun == UFS_UPIU_UFS_DEVICE_WLUN) 2036 /* Boot and device WLUN have no unit descriptors */ 2037 mode = 0; 2038 if (lun == UFS_UPIU_RPMB_WLUN && attr == &dev_attr_wb_buf_alloc_units.attr) 2039 mode = 0; 2040 2041 return mode; 2042 } 2043 2044 2045 const struct attribute_group ufs_sysfs_unit_descriptor_group = { 2046 .name = "unit_descriptor", 2047 .attrs = ufs_sysfs_unit_descriptor, 2048 .is_visible = ufs_unit_descriptor_is_visible, 2049 }; 2050 2051 static ssize_t dyn_cap_needed_attribute_show(struct device *dev, 2052 struct device_attribute *attr, char *buf) 2053 { 2054 u32 value; 2055 struct scsi_device *sdev = to_scsi_device(dev); 2056 struct ufs_hba *hba = shost_priv(sdev->host); 2057 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 2058 int ret; 2059 2060 down(&hba->host_sem); 2061 if (!ufshcd_is_user_access_allowed(hba)) { 2062 ret = -EBUSY; 2063 goto out; 2064 } 2065 2066 ufshcd_rpm_get_sync(hba); 2067 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 2068 QUERY_ATTR_IDN_DYN_CAP_NEEDED, lun, 0, &value); 2069 ufshcd_rpm_put_sync(hba); 2070 if (ret) { 2071 ret = -EINVAL; 2072 goto out; 2073 } 2074 2075 ret = sysfs_emit(buf, "0x%08X\n", value); 2076 2077 out: 2078 up(&hba->host_sem); 2079 return ret; 2080 } 2081 static DEVICE_ATTR_RO(dyn_cap_needed_attribute); 2082 2083 static struct attribute *ufs_sysfs_lun_attributes[] = { 2084 &dev_attr_dyn_cap_needed_attribute.attr, 2085 NULL, 2086 }; 2087 2088 const struct attribute_group ufs_sysfs_lun_attributes_group = { 2089 .attrs = ufs_sysfs_lun_attributes, 2090 }; 2091 2092 void ufs_sysfs_add_nodes(struct device *dev) 2093 { 2094 int ret; 2095 2096 ret = sysfs_create_groups(&dev->kobj, ufs_sysfs_groups); 2097 if (ret) 2098 dev_err(dev, 2099 "%s: sysfs groups creation failed (err = %d)\n", 2100 __func__, ret); 2101 } 2102 2103 void ufs_sysfs_remove_nodes(struct device *dev) 2104 { 2105 sysfs_remove_groups(&dev->kobj, ufs_sysfs_groups); 2106 } 2107