xref: /linux/drivers/ufs/core/ufs-mcq.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2022 Qualcomm Innovation Center. All rights reserved.
4  *
5  * Authors:
6  *	Asutosh Das <quic_asutoshd@quicinc.com>
7  *	Can Guo <quic_cang@quicinc.com>
8  */
9 
10 #include <linux/unaligned.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/module.h>
13 #include <linux/platform_device.h>
14 #include "ufshcd-priv.h"
15 #include <linux/delay.h>
16 #include <scsi/scsi_cmnd.h>
17 #include <linux/bitfield.h>
18 #include <linux/iopoll.h>
19 
20 #define MAX_QUEUE_SUP GENMASK(7, 0)
21 #define QCFGPTR GENMASK(23, 16)
22 #define UFS_MCQ_MIN_RW_QUEUES 2
23 #define UFS_MCQ_MIN_READ_QUEUES 0
24 #define UFS_MCQ_MIN_POLL_QUEUES 0
25 #define QUEUE_EN_OFFSET 31
26 #define QUEUE_ID_OFFSET 16
27 
28 #define MCQ_CFG_MAC_MASK	GENMASK(16, 8)
29 #define MCQ_ENTRY_SIZE_IN_DWORD	8
30 #define CQE_UCD_BA GENMASK_ULL(63, 7)
31 
32 /* Max mcq register polling time in microseconds */
33 #define MCQ_POLL_US 500000
34 
35 static int rw_queue_count_set(const char *val, const struct kernel_param *kp)
36 {
37 	return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_RW_QUEUES,
38 				     num_possible_cpus());
39 }
40 
41 static const struct kernel_param_ops rw_queue_count_ops = {
42 	.set = rw_queue_count_set,
43 	.get = param_get_uint,
44 };
45 
46 static unsigned int rw_queues;
47 module_param_cb(rw_queues, &rw_queue_count_ops, &rw_queues, 0644);
48 MODULE_PARM_DESC(rw_queues,
49 		 "Number of interrupt driven I/O queues used for rw. Default value is nr_cpus");
50 
51 static int read_queue_count_set(const char *val, const struct kernel_param *kp)
52 {
53 	return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_READ_QUEUES,
54 				     num_possible_cpus());
55 }
56 
57 static const struct kernel_param_ops read_queue_count_ops = {
58 	.set = read_queue_count_set,
59 	.get = param_get_uint,
60 };
61 
62 static unsigned int read_queues;
63 module_param_cb(read_queues, &read_queue_count_ops, &read_queues, 0644);
64 MODULE_PARM_DESC(read_queues,
65 		 "Number of interrupt driven read queues used for read. Default value is 0");
66 
67 static int poll_queue_count_set(const char *val, const struct kernel_param *kp)
68 {
69 	return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_POLL_QUEUES,
70 				     num_possible_cpus());
71 }
72 
73 static const struct kernel_param_ops poll_queue_count_ops = {
74 	.set = poll_queue_count_set,
75 	.get = param_get_uint,
76 };
77 
78 static unsigned int poll_queues = 1;
79 module_param_cb(poll_queues, &poll_queue_count_ops, &poll_queues, 0644);
80 MODULE_PARM_DESC(poll_queues,
81 		 "Number of poll queues used for r/w. Default value is 1");
82 
83 /**
84  * ufshcd_mcq_config_mac - Set the #Max Activ Cmds.
85  * @hba: per adapter instance
86  * @max_active_cmds: maximum # of active commands to the device at any time.
87  *
88  * The controller won't send more than the max_active_cmds to the device at
89  * any time.
90  */
91 void ufshcd_mcq_config_mac(struct ufs_hba *hba, u32 max_active_cmds)
92 {
93 	u32 val;
94 
95 	val = ufshcd_readl(hba, REG_UFS_MCQ_CFG);
96 	val &= ~MCQ_CFG_MAC_MASK;
97 	val |= FIELD_PREP(MCQ_CFG_MAC_MASK, max_active_cmds - 1);
98 	ufshcd_writel(hba, val, REG_UFS_MCQ_CFG);
99 }
100 EXPORT_SYMBOL_GPL(ufshcd_mcq_config_mac);
101 
102 /**
103  * ufshcd_mcq_req_to_hwq - find the hardware queue on which the
104  * request would be issued.
105  * @hba: per adapter instance
106  * @req: pointer to the request to be issued
107  *
108  * Return: the hardware queue instance on which the request will be or has
109  * been queued. %NULL if the request has already been freed.
110  */
111 struct ufs_hw_queue *ufshcd_mcq_req_to_hwq(struct ufs_hba *hba,
112 					 struct request *req)
113 {
114 	struct blk_mq_hw_ctx *hctx = READ_ONCE(req->mq_hctx);
115 
116 	return hctx ? &hba->uhq[hctx->queue_num] : NULL;
117 }
118 
119 /**
120  * ufshcd_mcq_queue_cfg_addr - get an start address of the MCQ Queue Config
121  * Registers.
122  * @hba: per adapter instance
123  *
124  * Return: Start address of MCQ Queue Config Registers in HCI
125  */
126 unsigned int ufshcd_mcq_queue_cfg_addr(struct ufs_hba *hba)
127 {
128 	return FIELD_GET(QCFGPTR, hba->mcq_capabilities) * 0x200;
129 }
130 EXPORT_SYMBOL_GPL(ufshcd_mcq_queue_cfg_addr);
131 
132 /**
133  * ufshcd_mcq_decide_queue_depth - decide the queue depth
134  * @hba: per adapter instance
135  *
136  * Return: queue-depth on success, non-zero on error
137  *
138  * MAC - Max. Active Command of the Host Controller (HC)
139  * HC wouldn't send more than this commands to the device.
140  * Calculates and adjusts the queue depth based on the depth
141  * supported by the HC and ufs device.
142  */
143 int ufshcd_mcq_decide_queue_depth(struct ufs_hba *hba)
144 {
145 	int mac;
146 
147 	if (!hba->vops || !hba->vops->get_hba_mac) {
148 		/*
149 		 * Extract the maximum number of active transfer tasks value
150 		 * from the host controller capabilities register. This value is
151 		 * 0-based.
152 		 */
153 		hba->capabilities =
154 			ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
155 		mac = hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_MCQ;
156 		mac++;
157 	} else {
158 		mac = hba->vops->get_hba_mac(hba);
159 	}
160 	if (mac < 0)
161 		goto err;
162 
163 	WARN_ON_ONCE(!hba->dev_info.bqueuedepth);
164 	/*
165 	 * max. value of bqueuedepth = 256, mac is host dependent.
166 	 * It is mandatory for UFS device to define bQueueDepth if
167 	 * shared queuing architecture is enabled.
168 	 */
169 	return min_t(int, mac, hba->dev_info.bqueuedepth);
170 
171 err:
172 	dev_err(hba->dev, "Failed to get mac, err=%d\n", mac);
173 	return mac;
174 }
175 
176 static int ufshcd_mcq_config_nr_queues(struct ufs_hba *hba)
177 {
178 	int i;
179 	u32 hba_maxq, rem, tot_queues;
180 	struct Scsi_Host *host = hba->host;
181 
182 	/* maxq is 0 based value */
183 	hba_maxq = FIELD_GET(MAX_QUEUE_SUP, hba->mcq_capabilities) + 1;
184 
185 	tot_queues = read_queues + poll_queues + rw_queues;
186 
187 	if (hba_maxq < tot_queues) {
188 		dev_err(hba->dev, "Total queues (%d) exceeds HC capacity (%d)\n",
189 			tot_queues, hba_maxq);
190 		return -EOPNOTSUPP;
191 	}
192 
193 	/*
194 	 * Device should support at least one I/O queue to handle device
195 	 * commands via hba->dev_cmd_queue.
196 	 */
197 	if (hba_maxq == poll_queues) {
198 		dev_err(hba->dev, "At least one non-poll queue required\n");
199 		return -EOPNOTSUPP;
200 	}
201 
202 	rem = hba_maxq;
203 
204 	if (rw_queues) {
205 		hba->nr_queues[HCTX_TYPE_DEFAULT] = rw_queues;
206 		rem -= hba->nr_queues[HCTX_TYPE_DEFAULT];
207 	} else {
208 		rw_queues = num_possible_cpus();
209 	}
210 
211 	if (poll_queues) {
212 		hba->nr_queues[HCTX_TYPE_POLL] = poll_queues;
213 		rem -= hba->nr_queues[HCTX_TYPE_POLL];
214 	}
215 
216 	if (read_queues) {
217 		hba->nr_queues[HCTX_TYPE_READ] = read_queues;
218 		rem -= hba->nr_queues[HCTX_TYPE_READ];
219 	}
220 
221 	if (!hba->nr_queues[HCTX_TYPE_DEFAULT])
222 		hba->nr_queues[HCTX_TYPE_DEFAULT] = min3(rem, rw_queues,
223 							 num_possible_cpus());
224 
225 	for (i = 0; i < HCTX_MAX_TYPES; i++)
226 		host->nr_hw_queues += hba->nr_queues[i];
227 
228 	hba->nr_hw_queues = host->nr_hw_queues;
229 	return 0;
230 }
231 
232 int ufshcd_mcq_memory_alloc(struct ufs_hba *hba)
233 {
234 	struct ufs_hw_queue *hwq;
235 	size_t utrdl_size, cqe_size;
236 	int i;
237 
238 	for (i = 0; i < hba->nr_hw_queues; i++) {
239 		hwq = &hba->uhq[i];
240 
241 		utrdl_size = sizeof(struct utp_transfer_req_desc) *
242 			     hwq->max_entries;
243 		hwq->sqe_base_addr = dmam_alloc_coherent(hba->dev, utrdl_size,
244 							 &hwq->sqe_dma_addr,
245 							 GFP_KERNEL);
246 		if (!hwq->sqe_dma_addr) {
247 			dev_err(hba->dev, "SQE allocation failed\n");
248 			return -ENOMEM;
249 		}
250 
251 		cqe_size = sizeof(struct cq_entry) * hwq->max_entries;
252 		hwq->cqe_base_addr = dmam_alloc_coherent(hba->dev, cqe_size,
253 							 &hwq->cqe_dma_addr,
254 							 GFP_KERNEL);
255 		if (!hwq->cqe_dma_addr) {
256 			dev_err(hba->dev, "CQE allocation failed\n");
257 			return -ENOMEM;
258 		}
259 	}
260 
261 	return 0;
262 }
263 
264 static void __iomem *mcq_opr_base(struct ufs_hba *hba,
265 					 enum ufshcd_mcq_opr n, int i)
266 {
267 	struct ufshcd_mcq_opr_info_t *opr = &hba->mcq_opr[n];
268 
269 	return opr->base + opr->stride * i;
270 }
271 
272 u32 ufshcd_mcq_read_cqis(struct ufs_hba *hba, int i)
273 {
274 	return readl(mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS);
275 }
276 EXPORT_SYMBOL_GPL(ufshcd_mcq_read_cqis);
277 
278 void ufshcd_mcq_write_cqis(struct ufs_hba *hba, u32 val, int i)
279 {
280 	writel(val, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS);
281 }
282 EXPORT_SYMBOL_GPL(ufshcd_mcq_write_cqis);
283 
284 /*
285  * Current MCQ specification doesn't provide a Task Tag or its equivalent in
286  * the Completion Queue Entry. Find the Task Tag using an indirect method.
287  */
288 static int ufshcd_mcq_get_tag(struct ufs_hba *hba, struct cq_entry *cqe)
289 {
290 	u64 addr;
291 
292 	/* sizeof(struct utp_transfer_cmd_desc) must be a multiple of 128 */
293 	BUILD_BUG_ON(sizeof(struct utp_transfer_cmd_desc) & GENMASK(6, 0));
294 
295 	/* Bits 63:7 UCD base address, 6:5 are reserved, 4:0 is SQ ID */
296 	addr = (le64_to_cpu(cqe->command_desc_base_addr) & CQE_UCD_BA) -
297 		hba->ucdl_dma_addr;
298 
299 	return div_u64(addr, ufshcd_get_ucd_size(hba));
300 }
301 
302 static void ufshcd_mcq_process_cqe(struct ufs_hba *hba,
303 				   struct ufs_hw_queue *hwq)
304 {
305 	struct cq_entry *cqe = ufshcd_mcq_cur_cqe(hwq);
306 	int tag = ufshcd_mcq_get_tag(hba, cqe);
307 
308 	if (cqe->command_desc_base_addr) {
309 		ufshcd_compl_one_cqe(hba, tag, cqe);
310 		/* After processed the cqe, mark it empty (invalid) entry */
311 		cqe->command_desc_base_addr = 0;
312 	}
313 }
314 
315 void ufshcd_mcq_compl_all_cqes_lock(struct ufs_hba *hba,
316 				    struct ufs_hw_queue *hwq)
317 {
318 	unsigned long flags;
319 	u32 entries = hwq->max_entries;
320 
321 	spin_lock_irqsave(&hwq->cq_lock, flags);
322 	while (entries > 0) {
323 		ufshcd_mcq_process_cqe(hba, hwq);
324 		ufshcd_mcq_inc_cq_head_slot(hwq);
325 		entries--;
326 	}
327 
328 	ufshcd_mcq_update_cq_tail_slot(hwq);
329 	hwq->cq_head_slot = hwq->cq_tail_slot;
330 	spin_unlock_irqrestore(&hwq->cq_lock, flags);
331 }
332 
333 unsigned long ufshcd_mcq_poll_cqe_lock(struct ufs_hba *hba,
334 				       struct ufs_hw_queue *hwq)
335 {
336 	unsigned long completed_reqs = 0;
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(&hwq->cq_lock, flags);
340 	ufshcd_mcq_update_cq_tail_slot(hwq);
341 	while (!ufshcd_mcq_is_cq_empty(hwq)) {
342 		ufshcd_mcq_process_cqe(hba, hwq);
343 		ufshcd_mcq_inc_cq_head_slot(hwq);
344 		completed_reqs++;
345 	}
346 
347 	if (completed_reqs)
348 		ufshcd_mcq_update_cq_head(hwq);
349 	spin_unlock_irqrestore(&hwq->cq_lock, flags);
350 
351 	return completed_reqs;
352 }
353 EXPORT_SYMBOL_GPL(ufshcd_mcq_poll_cqe_lock);
354 
355 void ufshcd_mcq_make_queues_operational(struct ufs_hba *hba)
356 {
357 	struct ufs_hw_queue *hwq;
358 	u16 qsize;
359 	int i;
360 
361 	for (i = 0; i < hba->nr_hw_queues; i++) {
362 		hwq = &hba->uhq[i];
363 		hwq->id = i;
364 		qsize = hwq->max_entries * MCQ_ENTRY_SIZE_IN_DWORD - 1;
365 
366 		/* Submission Queue Lower Base Address */
367 		ufsmcq_writelx(hba, lower_32_bits(hwq->sqe_dma_addr),
368 			      ufshcd_mcq_cfg_offset(REG_SQLBA, i));
369 		/* Submission Queue Upper Base Address */
370 		ufsmcq_writelx(hba, upper_32_bits(hwq->sqe_dma_addr),
371 			      ufshcd_mcq_cfg_offset(REG_SQUBA, i));
372 		/* Submission Queue Doorbell Address Offset */
373 		ufsmcq_writelx(hba, ufshcd_mcq_opr_offset(hba, OPR_SQD, i),
374 			      ufshcd_mcq_cfg_offset(REG_SQDAO, i));
375 		/* Submission Queue Interrupt Status Address Offset */
376 		ufsmcq_writelx(hba, ufshcd_mcq_opr_offset(hba, OPR_SQIS, i),
377 			      ufshcd_mcq_cfg_offset(REG_SQISAO, i));
378 
379 		/* Completion Queue Lower Base Address */
380 		ufsmcq_writelx(hba, lower_32_bits(hwq->cqe_dma_addr),
381 			      ufshcd_mcq_cfg_offset(REG_CQLBA, i));
382 		/* Completion Queue Upper Base Address */
383 		ufsmcq_writelx(hba, upper_32_bits(hwq->cqe_dma_addr),
384 			      ufshcd_mcq_cfg_offset(REG_CQUBA, i));
385 		/* Completion Queue Doorbell Address Offset */
386 		ufsmcq_writelx(hba, ufshcd_mcq_opr_offset(hba, OPR_CQD, i),
387 			      ufshcd_mcq_cfg_offset(REG_CQDAO, i));
388 		/* Completion Queue Interrupt Status Address Offset */
389 		ufsmcq_writelx(hba, ufshcd_mcq_opr_offset(hba, OPR_CQIS, i),
390 			      ufshcd_mcq_cfg_offset(REG_CQISAO, i));
391 
392 		/* Save the base addresses for quicker access */
393 		hwq->mcq_sq_head = mcq_opr_base(hba, OPR_SQD, i) + REG_SQHP;
394 		hwq->mcq_sq_tail = mcq_opr_base(hba, OPR_SQD, i) + REG_SQTP;
395 		hwq->mcq_cq_head = mcq_opr_base(hba, OPR_CQD, i) + REG_CQHP;
396 		hwq->mcq_cq_tail = mcq_opr_base(hba, OPR_CQD, i) + REG_CQTP;
397 
398 		/* Reinitializing is needed upon HC reset */
399 		hwq->sq_tail_slot = hwq->cq_tail_slot = hwq->cq_head_slot = 0;
400 
401 		/* Enable Tail Entry Push Status interrupt only for non-poll queues */
402 		if (i < hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL])
403 			writel(1, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIE);
404 
405 		/* Completion Queue Enable|Size to Completion Queue Attribute */
406 		ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize,
407 			      ufshcd_mcq_cfg_offset(REG_CQATTR, i));
408 
409 		/*
410 		 * Submission Qeueue Enable|Size|Completion Queue ID to
411 		 * Submission Queue Attribute
412 		 */
413 		ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize |
414 			      (i << QUEUE_ID_OFFSET),
415 			      ufshcd_mcq_cfg_offset(REG_SQATTR, i));
416 	}
417 }
418 EXPORT_SYMBOL_GPL(ufshcd_mcq_make_queues_operational);
419 
420 void ufshcd_mcq_enable(struct ufs_hba *hba)
421 {
422 	ufshcd_rmwl(hba, MCQ_MODE_SELECT, MCQ_MODE_SELECT, REG_UFS_MEM_CFG);
423 	hba->mcq_enabled = true;
424 }
425 EXPORT_SYMBOL_GPL(ufshcd_mcq_enable);
426 
427 void ufshcd_mcq_disable(struct ufs_hba *hba)
428 {
429 	ufshcd_rmwl(hba, MCQ_MODE_SELECT, 0, REG_UFS_MEM_CFG);
430 	hba->mcq_enabled = false;
431 }
432 
433 void ufshcd_mcq_enable_esi(struct ufs_hba *hba)
434 {
435 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x2,
436 		      REG_UFS_MEM_CFG);
437 }
438 EXPORT_SYMBOL_GPL(ufshcd_mcq_enable_esi);
439 
440 void ufshcd_mcq_config_esi(struct ufs_hba *hba, struct msi_msg *msg)
441 {
442 	ufshcd_writel(hba, msg->address_lo, REG_UFS_ESILBA);
443 	ufshcd_writel(hba, msg->address_hi, REG_UFS_ESIUBA);
444 }
445 EXPORT_SYMBOL_GPL(ufshcd_mcq_config_esi);
446 
447 int ufshcd_mcq_init(struct ufs_hba *hba)
448 {
449 	struct Scsi_Host *host = hba->host;
450 	struct ufs_hw_queue *hwq;
451 	int ret, i;
452 
453 	ret = ufshcd_mcq_config_nr_queues(hba);
454 	if (ret)
455 		return ret;
456 
457 	ret = ufshcd_vops_mcq_config_resource(hba);
458 	if (ret)
459 		return ret;
460 
461 	ret = ufshcd_mcq_vops_op_runtime_config(hba);
462 	if (ret) {
463 		dev_err(hba->dev, "Operation runtime config failed, ret=%d\n",
464 			ret);
465 		return ret;
466 	}
467 	hba->uhq = devm_kzalloc(hba->dev,
468 				hba->nr_hw_queues * sizeof(struct ufs_hw_queue),
469 				GFP_KERNEL);
470 	if (!hba->uhq) {
471 		dev_err(hba->dev, "ufs hw queue memory allocation failed\n");
472 		return -ENOMEM;
473 	}
474 
475 	for (i = 0; i < hba->nr_hw_queues; i++) {
476 		hwq = &hba->uhq[i];
477 		hwq->max_entries = hba->nutrs + 1;
478 		spin_lock_init(&hwq->sq_lock);
479 		spin_lock_init(&hwq->cq_lock);
480 		mutex_init(&hwq->sq_mutex);
481 	}
482 
483 	/* The very first HW queue serves device commands */
484 	hba->dev_cmd_queue = &hba->uhq[0];
485 
486 	host->host_tagset = 1;
487 	return 0;
488 }
489 
490 static int ufshcd_mcq_sq_stop(struct ufs_hba *hba, struct ufs_hw_queue *hwq)
491 {
492 	void __iomem *reg;
493 	u32 id = hwq->id, val;
494 	int err;
495 
496 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC)
497 		return -ETIMEDOUT;
498 
499 	writel(SQ_STOP, mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTC);
500 	reg = mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTS;
501 	err = read_poll_timeout(readl, val, val & SQ_STS, 20,
502 				MCQ_POLL_US, false, reg);
503 	if (err)
504 		dev_err(hba->dev, "%s: failed. hwq-id=%d, err=%d\n",
505 			__func__, id, err);
506 	return err;
507 }
508 
509 static int ufshcd_mcq_sq_start(struct ufs_hba *hba, struct ufs_hw_queue *hwq)
510 {
511 	void __iomem *reg;
512 	u32 id = hwq->id, val;
513 	int err;
514 
515 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC)
516 		return -ETIMEDOUT;
517 
518 	writel(SQ_START, mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTC);
519 	reg = mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTS;
520 	err = read_poll_timeout(readl, val, !(val & SQ_STS), 20,
521 				MCQ_POLL_US, false, reg);
522 	if (err)
523 		dev_err(hba->dev, "%s: failed. hwq-id=%d, err=%d\n",
524 			__func__, id, err);
525 	return err;
526 }
527 
528 /**
529  * ufshcd_mcq_sq_cleanup - Clean up submission queue resources
530  * associated with the pending command.
531  * @hba: per adapter instance.
532  * @task_tag: The command's task tag.
533  *
534  * Return: 0 for success; error code otherwise.
535  */
536 int ufshcd_mcq_sq_cleanup(struct ufs_hba *hba, int task_tag)
537 {
538 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
539 	struct scsi_cmnd *cmd = lrbp->cmd;
540 	struct ufs_hw_queue *hwq;
541 	void __iomem *reg, *opr_sqd_base;
542 	u32 nexus, id, val;
543 	int err;
544 
545 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC)
546 		return -ETIMEDOUT;
547 
548 	if (task_tag != hba->nutrs - UFSHCD_NUM_RESERVED) {
549 		if (!cmd)
550 			return -EINVAL;
551 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
552 		if (!hwq)
553 			return 0;
554 	} else {
555 		hwq = hba->dev_cmd_queue;
556 	}
557 
558 	id = hwq->id;
559 
560 	mutex_lock(&hwq->sq_mutex);
561 
562 	/* stop the SQ fetching before working on it */
563 	err = ufshcd_mcq_sq_stop(hba, hwq);
564 	if (err)
565 		goto unlock;
566 
567 	/* SQCTI = EXT_IID, IID, LUN, Task Tag */
568 	nexus = lrbp->lun << 8 | task_tag;
569 	opr_sqd_base = mcq_opr_base(hba, OPR_SQD, id);
570 	writel(nexus, opr_sqd_base + REG_SQCTI);
571 
572 	/* Initiate Cleanup */
573 	writel(readl(opr_sqd_base + REG_SQRTC) | SQ_ICU,
574 		opr_sqd_base + REG_SQRTC);
575 
576 	/* Wait until SQRTSy.CUS = 1. Report SQRTSy.RTC. */
577 	reg = opr_sqd_base + REG_SQRTS;
578 	err = read_poll_timeout(readl, val, val & SQ_CUS, 20,
579 				MCQ_POLL_US, false, reg);
580 	if (err)
581 		dev_err(hba->dev, "%s: failed. hwq=%d, tag=%d err=%d\n",
582 			__func__, id, task_tag, err);
583 	else
584 		dev_info(hba->dev,
585 			 "%s, hwq %d: cleanup return code (RTC) %ld\n",
586 			 __func__, id,
587 			 FIELD_GET(SQ_ICU_ERR_CODE_MASK, readl(reg)));
588 
589 	if (ufshcd_mcq_sq_start(hba, hwq))
590 		err = -ETIMEDOUT;
591 
592 unlock:
593 	mutex_unlock(&hwq->sq_mutex);
594 	return err;
595 }
596 
597 /**
598  * ufshcd_mcq_nullify_sqe - Nullify the submission queue entry.
599  * Write the sqe's Command Type to 0xF. The host controller will not
600  * fetch any sqe with Command Type = 0xF.
601  *
602  * @utrd: UTP Transfer Request Descriptor to be nullified.
603  */
604 static void ufshcd_mcq_nullify_sqe(struct utp_transfer_req_desc *utrd)
605 {
606 	utrd->header.command_type = 0xf;
607 }
608 
609 /**
610  * ufshcd_mcq_sqe_search - Search for the command in the submission queue
611  * If the command is in the submission queue and not issued to the device yet,
612  * nullify the sqe so the host controller will skip fetching the sqe.
613  *
614  * @hba: per adapter instance.
615  * @hwq: Hardware Queue to be searched.
616  * @task_tag: The command's task tag.
617  *
618  * Return: true if the SQE containing the command is present in the SQ
619  * (not fetched by the controller); returns false if the SQE is not in the SQ.
620  */
621 static bool ufshcd_mcq_sqe_search(struct ufs_hba *hba,
622 				  struct ufs_hw_queue *hwq, int task_tag)
623 {
624 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
625 	struct utp_transfer_req_desc *utrd;
626 	__le64  cmd_desc_base_addr;
627 	bool ret = false;
628 	u64 addr, match;
629 	u32 sq_head_slot;
630 
631 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC)
632 		return true;
633 
634 	mutex_lock(&hwq->sq_mutex);
635 
636 	ufshcd_mcq_sq_stop(hba, hwq);
637 	sq_head_slot = ufshcd_mcq_get_sq_head_slot(hwq);
638 	if (sq_head_slot == hwq->sq_tail_slot)
639 		goto out;
640 
641 	cmd_desc_base_addr = lrbp->utr_descriptor_ptr->command_desc_base_addr;
642 	addr = le64_to_cpu(cmd_desc_base_addr) & CQE_UCD_BA;
643 
644 	while (sq_head_slot != hwq->sq_tail_slot) {
645 		utrd = hwq->sqe_base_addr + sq_head_slot;
646 		match = le64_to_cpu(utrd->command_desc_base_addr) & CQE_UCD_BA;
647 		if (addr == match) {
648 			ufshcd_mcq_nullify_sqe(utrd);
649 			ret = true;
650 			goto out;
651 		}
652 
653 		sq_head_slot++;
654 		if (sq_head_slot == hwq->max_entries)
655 			sq_head_slot = 0;
656 	}
657 
658 out:
659 	ufshcd_mcq_sq_start(hba, hwq);
660 	mutex_unlock(&hwq->sq_mutex);
661 	return ret;
662 }
663 
664 /**
665  * ufshcd_mcq_abort - Abort the command in MCQ.
666  * @cmd: The command to be aborted.
667  *
668  * Return: SUCCESS or FAILED error codes
669  */
670 int ufshcd_mcq_abort(struct scsi_cmnd *cmd)
671 {
672 	struct Scsi_Host *host = cmd->device->host;
673 	struct ufs_hba *hba = shost_priv(host);
674 	int tag = scsi_cmd_to_rq(cmd)->tag;
675 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
676 	struct ufs_hw_queue *hwq;
677 	unsigned long flags;
678 	int err;
679 
680 	if (!ufshcd_cmd_inflight(lrbp->cmd)) {
681 		dev_err(hba->dev,
682 			"%s: skip abort. cmd at tag %d already completed.\n",
683 			__func__, tag);
684 		return FAILED;
685 	}
686 
687 	/* Skip task abort in case previous aborts failed and report failure */
688 	if (lrbp->req_abort_skip) {
689 		dev_err(hba->dev, "%s: skip abort. tag %d failed earlier\n",
690 			__func__, tag);
691 		return FAILED;
692 	}
693 
694 	hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
695 
696 	if (ufshcd_mcq_sqe_search(hba, hwq, tag)) {
697 		/*
698 		 * Failure. The command should not be "stuck" in SQ for
699 		 * a long time which resulted in command being aborted.
700 		 */
701 		dev_err(hba->dev, "%s: cmd found in sq. hwq=%d, tag=%d\n",
702 			__func__, hwq->id, tag);
703 		return FAILED;
704 	}
705 
706 	/*
707 	 * The command is not in the submission queue, and it is not
708 	 * in the completion queue either. Query the device to see if
709 	 * the command is being processed in the device.
710 	 */
711 	err = ufshcd_try_to_abort_task(hba, tag);
712 	if (err) {
713 		dev_err(hba->dev, "%s: device abort failed %d\n", __func__, err);
714 		lrbp->req_abort_skip = true;
715 		return FAILED;
716 	}
717 
718 	spin_lock_irqsave(&hwq->cq_lock, flags);
719 	if (ufshcd_cmd_inflight(lrbp->cmd))
720 		ufshcd_release_scsi_cmd(hba, lrbp);
721 	spin_unlock_irqrestore(&hwq->cq_lock, flags);
722 
723 	return SUCCESS;
724 }
725