1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2022 Qualcomm Innovation Center. All rights reserved. 4 * 5 * Authors: 6 * Asutosh Das <quic_asutoshd@quicinc.com> 7 * Can Guo <quic_cang@quicinc.com> 8 */ 9 10 #include <linux/unaligned.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/module.h> 13 #include <linux/platform_device.h> 14 #include "ufshcd-priv.h" 15 #include <linux/delay.h> 16 #include <scsi/scsi_cmnd.h> 17 #include <linux/bitfield.h> 18 #include <linux/iopoll.h> 19 20 #define MAX_QUEUE_SUP GENMASK(7, 0) 21 #define QCFGPTR GENMASK(23, 16) 22 #define UFS_MCQ_MIN_RW_QUEUES 2 23 #define UFS_MCQ_MIN_READ_QUEUES 0 24 #define UFS_MCQ_MIN_POLL_QUEUES 0 25 #define QUEUE_EN_OFFSET 31 26 #define QUEUE_ID_OFFSET 16 27 28 #define MCQ_CFG_MAC_MASK GENMASK(16, 8) 29 #define MCQ_ENTRY_SIZE_IN_DWORD 8 30 #define CQE_UCD_BA GENMASK_ULL(63, 7) 31 32 /* Max mcq register polling time in microseconds */ 33 #define MCQ_POLL_US 500000 34 35 static int rw_queue_count_set(const char *val, const struct kernel_param *kp) 36 { 37 return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_RW_QUEUES, 38 num_possible_cpus()); 39 } 40 41 static const struct kernel_param_ops rw_queue_count_ops = { 42 .set = rw_queue_count_set, 43 .get = param_get_uint, 44 }; 45 46 static unsigned int rw_queues; 47 module_param_cb(rw_queues, &rw_queue_count_ops, &rw_queues, 0644); 48 MODULE_PARM_DESC(rw_queues, 49 "Number of interrupt driven I/O queues used for rw. Default value is nr_cpus"); 50 51 static int read_queue_count_set(const char *val, const struct kernel_param *kp) 52 { 53 return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_READ_QUEUES, 54 num_possible_cpus()); 55 } 56 57 static const struct kernel_param_ops read_queue_count_ops = { 58 .set = read_queue_count_set, 59 .get = param_get_uint, 60 }; 61 62 static unsigned int read_queues; 63 module_param_cb(read_queues, &read_queue_count_ops, &read_queues, 0644); 64 MODULE_PARM_DESC(read_queues, 65 "Number of interrupt driven read queues used for read. Default value is 0"); 66 67 static int poll_queue_count_set(const char *val, const struct kernel_param *kp) 68 { 69 return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_POLL_QUEUES, 70 num_possible_cpus()); 71 } 72 73 static const struct kernel_param_ops poll_queue_count_ops = { 74 .set = poll_queue_count_set, 75 .get = param_get_uint, 76 }; 77 78 static unsigned int poll_queues = 1; 79 module_param_cb(poll_queues, &poll_queue_count_ops, &poll_queues, 0644); 80 MODULE_PARM_DESC(poll_queues, 81 "Number of poll queues used for r/w. Default value is 1"); 82 83 /** 84 * ufshcd_mcq_config_mac - Set the #Max Activ Cmds. 85 * @hba: per adapter instance 86 * @max_active_cmds: maximum # of active commands to the device at any time. 87 * 88 * The controller won't send more than the max_active_cmds to the device at 89 * any time. 90 */ 91 void ufshcd_mcq_config_mac(struct ufs_hba *hba, u32 max_active_cmds) 92 { 93 u32 val; 94 95 val = ufshcd_readl(hba, REG_UFS_MCQ_CFG); 96 val &= ~MCQ_CFG_MAC_MASK; 97 val |= FIELD_PREP(MCQ_CFG_MAC_MASK, max_active_cmds - 1); 98 ufshcd_writel(hba, val, REG_UFS_MCQ_CFG); 99 } 100 EXPORT_SYMBOL_GPL(ufshcd_mcq_config_mac); 101 102 /** 103 * ufshcd_mcq_req_to_hwq - find the hardware queue on which the 104 * request would be issued. 105 * @hba: per adapter instance 106 * @req: pointer to the request to be issued 107 * 108 * Return: the hardware queue instance on which the request will be or has 109 * been queued. %NULL if the request has already been freed. 110 */ 111 struct ufs_hw_queue *ufshcd_mcq_req_to_hwq(struct ufs_hba *hba, 112 struct request *req) 113 { 114 struct blk_mq_hw_ctx *hctx = READ_ONCE(req->mq_hctx); 115 116 return hctx ? &hba->uhq[hctx->queue_num] : NULL; 117 } 118 119 /** 120 * ufshcd_mcq_queue_cfg_addr - get an start address of the MCQ Queue Config 121 * Registers. 122 * @hba: per adapter instance 123 * 124 * Return: Start address of MCQ Queue Config Registers in HCI 125 */ 126 unsigned int ufshcd_mcq_queue_cfg_addr(struct ufs_hba *hba) 127 { 128 return FIELD_GET(QCFGPTR, hba->mcq_capabilities) * 0x200; 129 } 130 EXPORT_SYMBOL_GPL(ufshcd_mcq_queue_cfg_addr); 131 132 /** 133 * ufshcd_mcq_decide_queue_depth - decide the queue depth 134 * @hba: per adapter instance 135 * 136 * Return: queue-depth on success, non-zero on error 137 * 138 * MAC - Max. Active Command of the Host Controller (HC) 139 * HC wouldn't send more than this commands to the device. 140 * Calculates and adjusts the queue depth based on the depth 141 * supported by the HC and ufs device. 142 */ 143 int ufshcd_mcq_decide_queue_depth(struct ufs_hba *hba) 144 { 145 int mac; 146 147 if (!hba->vops || !hba->vops->get_hba_mac) { 148 /* 149 * Extract the maximum number of active transfer tasks value 150 * from the host controller capabilities register. This value is 151 * 0-based. 152 */ 153 hba->capabilities = 154 ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 155 mac = hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_MCQ; 156 mac++; 157 } else { 158 mac = hba->vops->get_hba_mac(hba); 159 } 160 if (mac < 0) 161 goto err; 162 163 WARN_ON_ONCE(!hba->dev_info.bqueuedepth); 164 /* 165 * max. value of bqueuedepth = 256, mac is host dependent. 166 * It is mandatory for UFS device to define bQueueDepth if 167 * shared queuing architecture is enabled. 168 */ 169 return min_t(int, mac, hba->dev_info.bqueuedepth); 170 171 err: 172 dev_err(hba->dev, "Failed to get mac, err=%d\n", mac); 173 return mac; 174 } 175 176 static int ufshcd_mcq_config_nr_queues(struct ufs_hba *hba) 177 { 178 int i; 179 u32 hba_maxq, rem, tot_queues; 180 struct Scsi_Host *host = hba->host; 181 182 /* maxq is 0 based value */ 183 hba_maxq = FIELD_GET(MAX_QUEUE_SUP, hba->mcq_capabilities) + 1; 184 185 tot_queues = read_queues + poll_queues + rw_queues; 186 187 if (hba_maxq < tot_queues) { 188 dev_err(hba->dev, "Total queues (%d) exceeds HC capacity (%d)\n", 189 tot_queues, hba_maxq); 190 return -EOPNOTSUPP; 191 } 192 193 /* 194 * Device should support at least one I/O queue to handle device 195 * commands via hba->dev_cmd_queue. 196 */ 197 if (hba_maxq == poll_queues) { 198 dev_err(hba->dev, "At least one non-poll queue required\n"); 199 return -EOPNOTSUPP; 200 } 201 202 rem = hba_maxq; 203 204 if (rw_queues) { 205 hba->nr_queues[HCTX_TYPE_DEFAULT] = rw_queues; 206 rem -= hba->nr_queues[HCTX_TYPE_DEFAULT]; 207 } else { 208 rw_queues = num_possible_cpus(); 209 } 210 211 if (poll_queues) { 212 hba->nr_queues[HCTX_TYPE_POLL] = poll_queues; 213 rem -= hba->nr_queues[HCTX_TYPE_POLL]; 214 } 215 216 if (read_queues) { 217 hba->nr_queues[HCTX_TYPE_READ] = read_queues; 218 rem -= hba->nr_queues[HCTX_TYPE_READ]; 219 } 220 221 if (!hba->nr_queues[HCTX_TYPE_DEFAULT]) 222 hba->nr_queues[HCTX_TYPE_DEFAULT] = min3(rem, rw_queues, 223 num_possible_cpus()); 224 225 for (i = 0; i < HCTX_MAX_TYPES; i++) 226 host->nr_hw_queues += hba->nr_queues[i]; 227 228 hba->nr_hw_queues = host->nr_hw_queues; 229 return 0; 230 } 231 232 int ufshcd_mcq_memory_alloc(struct ufs_hba *hba) 233 { 234 struct ufs_hw_queue *hwq; 235 size_t utrdl_size, cqe_size; 236 int i; 237 238 for (i = 0; i < hba->nr_hw_queues; i++) { 239 hwq = &hba->uhq[i]; 240 241 utrdl_size = sizeof(struct utp_transfer_req_desc) * 242 hwq->max_entries; 243 hwq->sqe_base_addr = dmam_alloc_coherent(hba->dev, utrdl_size, 244 &hwq->sqe_dma_addr, 245 GFP_KERNEL); 246 if (!hwq->sqe_dma_addr) { 247 dev_err(hba->dev, "SQE allocation failed\n"); 248 return -ENOMEM; 249 } 250 251 cqe_size = sizeof(struct cq_entry) * hwq->max_entries; 252 hwq->cqe_base_addr = dmam_alloc_coherent(hba->dev, cqe_size, 253 &hwq->cqe_dma_addr, 254 GFP_KERNEL); 255 if (!hwq->cqe_dma_addr) { 256 dev_err(hba->dev, "CQE allocation failed\n"); 257 return -ENOMEM; 258 } 259 } 260 261 return 0; 262 } 263 264 static void __iomem *mcq_opr_base(struct ufs_hba *hba, 265 enum ufshcd_mcq_opr n, int i) 266 { 267 struct ufshcd_mcq_opr_info_t *opr = &hba->mcq_opr[n]; 268 269 return opr->base + opr->stride * i; 270 } 271 272 u32 ufshcd_mcq_read_cqis(struct ufs_hba *hba, int i) 273 { 274 return readl(mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS); 275 } 276 EXPORT_SYMBOL_GPL(ufshcd_mcq_read_cqis); 277 278 void ufshcd_mcq_write_cqis(struct ufs_hba *hba, u32 val, int i) 279 { 280 writel(val, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS); 281 } 282 EXPORT_SYMBOL_GPL(ufshcd_mcq_write_cqis); 283 284 /* 285 * Current MCQ specification doesn't provide a Task Tag or its equivalent in 286 * the Completion Queue Entry. Find the Task Tag using an indirect method. 287 */ 288 static int ufshcd_mcq_get_tag(struct ufs_hba *hba, struct cq_entry *cqe) 289 { 290 u64 addr; 291 292 /* sizeof(struct utp_transfer_cmd_desc) must be a multiple of 128 */ 293 BUILD_BUG_ON(sizeof(struct utp_transfer_cmd_desc) & GENMASK(6, 0)); 294 295 /* Bits 63:7 UCD base address, 6:5 are reserved, 4:0 is SQ ID */ 296 addr = (le64_to_cpu(cqe->command_desc_base_addr) & CQE_UCD_BA) - 297 hba->ucdl_dma_addr; 298 299 return div_u64(addr, ufshcd_get_ucd_size(hba)); 300 } 301 302 static void ufshcd_mcq_process_cqe(struct ufs_hba *hba, 303 struct ufs_hw_queue *hwq) 304 { 305 struct cq_entry *cqe = ufshcd_mcq_cur_cqe(hwq); 306 int tag = ufshcd_mcq_get_tag(hba, cqe); 307 308 if (cqe->command_desc_base_addr) { 309 ufshcd_compl_one_cqe(hba, tag, cqe); 310 /* After processed the cqe, mark it empty (invalid) entry */ 311 cqe->command_desc_base_addr = 0; 312 } 313 } 314 315 void ufshcd_mcq_compl_all_cqes_lock(struct ufs_hba *hba, 316 struct ufs_hw_queue *hwq) 317 { 318 unsigned long flags; 319 u32 entries = hwq->max_entries; 320 321 spin_lock_irqsave(&hwq->cq_lock, flags); 322 while (entries > 0) { 323 ufshcd_mcq_process_cqe(hba, hwq); 324 ufshcd_mcq_inc_cq_head_slot(hwq); 325 entries--; 326 } 327 328 ufshcd_mcq_update_cq_tail_slot(hwq); 329 hwq->cq_head_slot = hwq->cq_tail_slot; 330 spin_unlock_irqrestore(&hwq->cq_lock, flags); 331 } 332 333 unsigned long ufshcd_mcq_poll_cqe_lock(struct ufs_hba *hba, 334 struct ufs_hw_queue *hwq) 335 { 336 unsigned long completed_reqs = 0; 337 unsigned long flags; 338 339 spin_lock_irqsave(&hwq->cq_lock, flags); 340 ufshcd_mcq_update_cq_tail_slot(hwq); 341 while (!ufshcd_mcq_is_cq_empty(hwq)) { 342 ufshcd_mcq_process_cqe(hba, hwq); 343 ufshcd_mcq_inc_cq_head_slot(hwq); 344 completed_reqs++; 345 } 346 347 if (completed_reqs) 348 ufshcd_mcq_update_cq_head(hwq); 349 spin_unlock_irqrestore(&hwq->cq_lock, flags); 350 351 return completed_reqs; 352 } 353 EXPORT_SYMBOL_GPL(ufshcd_mcq_poll_cqe_lock); 354 355 void ufshcd_mcq_make_queues_operational(struct ufs_hba *hba) 356 { 357 struct ufs_hw_queue *hwq; 358 u16 qsize; 359 int i; 360 361 for (i = 0; i < hba->nr_hw_queues; i++) { 362 hwq = &hba->uhq[i]; 363 hwq->id = i; 364 qsize = hwq->max_entries * MCQ_ENTRY_SIZE_IN_DWORD - 1; 365 366 /* Submission Queue Lower Base Address */ 367 ufsmcq_writelx(hba, lower_32_bits(hwq->sqe_dma_addr), 368 ufshcd_mcq_cfg_offset(REG_SQLBA, i)); 369 /* Submission Queue Upper Base Address */ 370 ufsmcq_writelx(hba, upper_32_bits(hwq->sqe_dma_addr), 371 ufshcd_mcq_cfg_offset(REG_SQUBA, i)); 372 /* Submission Queue Doorbell Address Offset */ 373 ufsmcq_writelx(hba, ufshcd_mcq_opr_offset(hba, OPR_SQD, i), 374 ufshcd_mcq_cfg_offset(REG_SQDAO, i)); 375 /* Submission Queue Interrupt Status Address Offset */ 376 ufsmcq_writelx(hba, ufshcd_mcq_opr_offset(hba, OPR_SQIS, i), 377 ufshcd_mcq_cfg_offset(REG_SQISAO, i)); 378 379 /* Completion Queue Lower Base Address */ 380 ufsmcq_writelx(hba, lower_32_bits(hwq->cqe_dma_addr), 381 ufshcd_mcq_cfg_offset(REG_CQLBA, i)); 382 /* Completion Queue Upper Base Address */ 383 ufsmcq_writelx(hba, upper_32_bits(hwq->cqe_dma_addr), 384 ufshcd_mcq_cfg_offset(REG_CQUBA, i)); 385 /* Completion Queue Doorbell Address Offset */ 386 ufsmcq_writelx(hba, ufshcd_mcq_opr_offset(hba, OPR_CQD, i), 387 ufshcd_mcq_cfg_offset(REG_CQDAO, i)); 388 /* Completion Queue Interrupt Status Address Offset */ 389 ufsmcq_writelx(hba, ufshcd_mcq_opr_offset(hba, OPR_CQIS, i), 390 ufshcd_mcq_cfg_offset(REG_CQISAO, i)); 391 392 /* Save the base addresses for quicker access */ 393 hwq->mcq_sq_head = mcq_opr_base(hba, OPR_SQD, i) + REG_SQHP; 394 hwq->mcq_sq_tail = mcq_opr_base(hba, OPR_SQD, i) + REG_SQTP; 395 hwq->mcq_cq_head = mcq_opr_base(hba, OPR_CQD, i) + REG_CQHP; 396 hwq->mcq_cq_tail = mcq_opr_base(hba, OPR_CQD, i) + REG_CQTP; 397 398 /* Reinitializing is needed upon HC reset */ 399 hwq->sq_tail_slot = hwq->cq_tail_slot = hwq->cq_head_slot = 0; 400 401 /* Enable Tail Entry Push Status interrupt only for non-poll queues */ 402 if (i < hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]) 403 writel(1, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIE); 404 405 /* Completion Queue Enable|Size to Completion Queue Attribute */ 406 ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize, 407 ufshcd_mcq_cfg_offset(REG_CQATTR, i)); 408 409 /* 410 * Submission Qeueue Enable|Size|Completion Queue ID to 411 * Submission Queue Attribute 412 */ 413 ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize | 414 (i << QUEUE_ID_OFFSET), 415 ufshcd_mcq_cfg_offset(REG_SQATTR, i)); 416 } 417 } 418 EXPORT_SYMBOL_GPL(ufshcd_mcq_make_queues_operational); 419 420 void ufshcd_mcq_enable(struct ufs_hba *hba) 421 { 422 ufshcd_rmwl(hba, MCQ_MODE_SELECT, MCQ_MODE_SELECT, REG_UFS_MEM_CFG); 423 hba->mcq_enabled = true; 424 } 425 EXPORT_SYMBOL_GPL(ufshcd_mcq_enable); 426 427 void ufshcd_mcq_disable(struct ufs_hba *hba) 428 { 429 ufshcd_rmwl(hba, MCQ_MODE_SELECT, 0, REG_UFS_MEM_CFG); 430 hba->mcq_enabled = false; 431 } 432 433 void ufshcd_mcq_enable_esi(struct ufs_hba *hba) 434 { 435 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x2, 436 REG_UFS_MEM_CFG); 437 } 438 EXPORT_SYMBOL_GPL(ufshcd_mcq_enable_esi); 439 440 void ufshcd_mcq_config_esi(struct ufs_hba *hba, struct msi_msg *msg) 441 { 442 ufshcd_writel(hba, msg->address_lo, REG_UFS_ESILBA); 443 ufshcd_writel(hba, msg->address_hi, REG_UFS_ESIUBA); 444 } 445 EXPORT_SYMBOL_GPL(ufshcd_mcq_config_esi); 446 447 int ufshcd_mcq_init(struct ufs_hba *hba) 448 { 449 struct Scsi_Host *host = hba->host; 450 struct ufs_hw_queue *hwq; 451 int ret, i; 452 453 ret = ufshcd_mcq_config_nr_queues(hba); 454 if (ret) 455 return ret; 456 457 ret = ufshcd_vops_mcq_config_resource(hba); 458 if (ret) 459 return ret; 460 461 ret = ufshcd_mcq_vops_op_runtime_config(hba); 462 if (ret) { 463 dev_err(hba->dev, "Operation runtime config failed, ret=%d\n", 464 ret); 465 return ret; 466 } 467 hba->uhq = devm_kzalloc(hba->dev, 468 hba->nr_hw_queues * sizeof(struct ufs_hw_queue), 469 GFP_KERNEL); 470 if (!hba->uhq) { 471 dev_err(hba->dev, "ufs hw queue memory allocation failed\n"); 472 return -ENOMEM; 473 } 474 475 for (i = 0; i < hba->nr_hw_queues; i++) { 476 hwq = &hba->uhq[i]; 477 hwq->max_entries = hba->nutrs + 1; 478 spin_lock_init(&hwq->sq_lock); 479 spin_lock_init(&hwq->cq_lock); 480 mutex_init(&hwq->sq_mutex); 481 } 482 483 /* The very first HW queue serves device commands */ 484 hba->dev_cmd_queue = &hba->uhq[0]; 485 486 host->host_tagset = 1; 487 return 0; 488 } 489 490 static int ufshcd_mcq_sq_stop(struct ufs_hba *hba, struct ufs_hw_queue *hwq) 491 { 492 void __iomem *reg; 493 u32 id = hwq->id, val; 494 int err; 495 496 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC) 497 return -ETIMEDOUT; 498 499 writel(SQ_STOP, mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTC); 500 reg = mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTS; 501 err = read_poll_timeout(readl, val, val & SQ_STS, 20, 502 MCQ_POLL_US, false, reg); 503 if (err) 504 dev_err(hba->dev, "%s: failed. hwq-id=%d, err=%d\n", 505 __func__, id, err); 506 return err; 507 } 508 509 static int ufshcd_mcq_sq_start(struct ufs_hba *hba, struct ufs_hw_queue *hwq) 510 { 511 void __iomem *reg; 512 u32 id = hwq->id, val; 513 int err; 514 515 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC) 516 return -ETIMEDOUT; 517 518 writel(SQ_START, mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTC); 519 reg = mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTS; 520 err = read_poll_timeout(readl, val, !(val & SQ_STS), 20, 521 MCQ_POLL_US, false, reg); 522 if (err) 523 dev_err(hba->dev, "%s: failed. hwq-id=%d, err=%d\n", 524 __func__, id, err); 525 return err; 526 } 527 528 /** 529 * ufshcd_mcq_sq_cleanup - Clean up submission queue resources 530 * associated with the pending command. 531 * @hba: per adapter instance. 532 * @task_tag: The command's task tag. 533 * 534 * Return: 0 for success; error code otherwise. 535 */ 536 int ufshcd_mcq_sq_cleanup(struct ufs_hba *hba, int task_tag) 537 { 538 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 539 struct scsi_cmnd *cmd = lrbp->cmd; 540 struct ufs_hw_queue *hwq; 541 void __iomem *reg, *opr_sqd_base; 542 u32 nexus, id, val; 543 int err; 544 545 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC) 546 return -ETIMEDOUT; 547 548 if (task_tag != hba->nutrs - UFSHCD_NUM_RESERVED) { 549 if (!cmd) 550 return -EINVAL; 551 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 552 if (!hwq) 553 return 0; 554 } else { 555 hwq = hba->dev_cmd_queue; 556 } 557 558 id = hwq->id; 559 560 mutex_lock(&hwq->sq_mutex); 561 562 /* stop the SQ fetching before working on it */ 563 err = ufshcd_mcq_sq_stop(hba, hwq); 564 if (err) 565 goto unlock; 566 567 /* SQCTI = EXT_IID, IID, LUN, Task Tag */ 568 nexus = lrbp->lun << 8 | task_tag; 569 opr_sqd_base = mcq_opr_base(hba, OPR_SQD, id); 570 writel(nexus, opr_sqd_base + REG_SQCTI); 571 572 /* Initiate Cleanup */ 573 writel(readl(opr_sqd_base + REG_SQRTC) | SQ_ICU, 574 opr_sqd_base + REG_SQRTC); 575 576 /* Wait until SQRTSy.CUS = 1. Report SQRTSy.RTC. */ 577 reg = opr_sqd_base + REG_SQRTS; 578 err = read_poll_timeout(readl, val, val & SQ_CUS, 20, 579 MCQ_POLL_US, false, reg); 580 if (err) 581 dev_err(hba->dev, "%s: failed. hwq=%d, tag=%d err=%d\n", 582 __func__, id, task_tag, err); 583 else 584 dev_info(hba->dev, 585 "%s, hwq %d: cleanup return code (RTC) %ld\n", 586 __func__, id, 587 FIELD_GET(SQ_ICU_ERR_CODE_MASK, readl(reg))); 588 589 if (ufshcd_mcq_sq_start(hba, hwq)) 590 err = -ETIMEDOUT; 591 592 unlock: 593 mutex_unlock(&hwq->sq_mutex); 594 return err; 595 } 596 597 /** 598 * ufshcd_mcq_nullify_sqe - Nullify the submission queue entry. 599 * Write the sqe's Command Type to 0xF. The host controller will not 600 * fetch any sqe with Command Type = 0xF. 601 * 602 * @utrd: UTP Transfer Request Descriptor to be nullified. 603 */ 604 static void ufshcd_mcq_nullify_sqe(struct utp_transfer_req_desc *utrd) 605 { 606 utrd->header.command_type = 0xf; 607 } 608 609 /** 610 * ufshcd_mcq_sqe_search - Search for the command in the submission queue 611 * If the command is in the submission queue and not issued to the device yet, 612 * nullify the sqe so the host controller will skip fetching the sqe. 613 * 614 * @hba: per adapter instance. 615 * @hwq: Hardware Queue to be searched. 616 * @task_tag: The command's task tag. 617 * 618 * Return: true if the SQE containing the command is present in the SQ 619 * (not fetched by the controller); returns false if the SQE is not in the SQ. 620 */ 621 static bool ufshcd_mcq_sqe_search(struct ufs_hba *hba, 622 struct ufs_hw_queue *hwq, int task_tag) 623 { 624 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 625 struct utp_transfer_req_desc *utrd; 626 __le64 cmd_desc_base_addr; 627 bool ret = false; 628 u64 addr, match; 629 u32 sq_head_slot; 630 631 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC) 632 return true; 633 634 mutex_lock(&hwq->sq_mutex); 635 636 ufshcd_mcq_sq_stop(hba, hwq); 637 sq_head_slot = ufshcd_mcq_get_sq_head_slot(hwq); 638 if (sq_head_slot == hwq->sq_tail_slot) 639 goto out; 640 641 cmd_desc_base_addr = lrbp->utr_descriptor_ptr->command_desc_base_addr; 642 addr = le64_to_cpu(cmd_desc_base_addr) & CQE_UCD_BA; 643 644 while (sq_head_slot != hwq->sq_tail_slot) { 645 utrd = hwq->sqe_base_addr + sq_head_slot; 646 match = le64_to_cpu(utrd->command_desc_base_addr) & CQE_UCD_BA; 647 if (addr == match) { 648 ufshcd_mcq_nullify_sqe(utrd); 649 ret = true; 650 goto out; 651 } 652 653 sq_head_slot++; 654 if (sq_head_slot == hwq->max_entries) 655 sq_head_slot = 0; 656 } 657 658 out: 659 ufshcd_mcq_sq_start(hba, hwq); 660 mutex_unlock(&hwq->sq_mutex); 661 return ret; 662 } 663 664 /** 665 * ufshcd_mcq_abort - Abort the command in MCQ. 666 * @cmd: The command to be aborted. 667 * 668 * Return: SUCCESS or FAILED error codes 669 */ 670 int ufshcd_mcq_abort(struct scsi_cmnd *cmd) 671 { 672 struct Scsi_Host *host = cmd->device->host; 673 struct ufs_hba *hba = shost_priv(host); 674 int tag = scsi_cmd_to_rq(cmd)->tag; 675 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 676 struct ufs_hw_queue *hwq; 677 unsigned long flags; 678 int err; 679 680 if (!ufshcd_cmd_inflight(lrbp->cmd)) { 681 dev_err(hba->dev, 682 "%s: skip abort. cmd at tag %d already completed.\n", 683 __func__, tag); 684 return FAILED; 685 } 686 687 /* Skip task abort in case previous aborts failed and report failure */ 688 if (lrbp->req_abort_skip) { 689 dev_err(hba->dev, "%s: skip abort. tag %d failed earlier\n", 690 __func__, tag); 691 return FAILED; 692 } 693 694 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 695 696 if (ufshcd_mcq_sqe_search(hba, hwq, tag)) { 697 /* 698 * Failure. The command should not be "stuck" in SQ for 699 * a long time which resulted in command being aborted. 700 */ 701 dev_err(hba->dev, "%s: cmd found in sq. hwq=%d, tag=%d\n", 702 __func__, hwq->id, tag); 703 return FAILED; 704 } 705 706 /* 707 * The command is not in the submission queue, and it is not 708 * in the completion queue either. Query the device to see if 709 * the command is being processed in the device. 710 */ 711 err = ufshcd_try_to_abort_task(hba, tag); 712 if (err) { 713 dev_err(hba->dev, "%s: device abort failed %d\n", __func__, err); 714 lrbp->req_abort_skip = true; 715 return FAILED; 716 } 717 718 spin_lock_irqsave(&hwq->cq_lock, flags); 719 if (ufshcd_cmd_inflight(lrbp->cmd)) 720 ufshcd_release_scsi_cmd(hba, lrbp); 721 spin_unlock_irqrestore(&hwq->cq_lock, flags); 722 723 return SUCCESS; 724 } 725