xref: /linux/drivers/tty/vt/keyboard.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Written for linux by Johan Myreen as a translation from
4  * the assembly version by Linus (with diacriticals added)
5  *
6  * Some additional features added by Christoph Niemann (ChN), March 1993
7  *
8  * Loadable keymaps by Risto Kankkunen, May 1993
9  *
10  * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11  * Added decr/incr_console, dynamic keymaps, Unicode support,
12  * dynamic function/string keys, led setting,  Sept 1994
13  * `Sticky' modifier keys, 951006.
14  *
15  * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16  *
17  * Modified to provide 'generic' keyboard support by Hamish Macdonald
18  * Merge with the m68k keyboard driver and split-off of the PC low-level
19  * parts by Geert Uytterhoeven, May 1997
20  *
21  * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22  * 30-07-98: Dead keys redone, aeb@cwi.nl.
23  * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/consolemap.h>
29 #include <linux/module.h>
30 #include <linux/sched/signal.h>
31 #include <linux/sched/debug.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/mm.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/leds.h>
39 
40 #include <linux/kbd_kern.h>
41 #include <linux/kbd_diacr.h>
42 #include <linux/vt_kern.h>
43 #include <linux/input.h>
44 #include <linux/reboot.h>
45 #include <linux/notifier.h>
46 #include <linux/jiffies.h>
47 #include <linux/uaccess.h>
48 
49 #include <asm/irq_regs.h>
50 
51 extern void ctrl_alt_del(void);
52 
53 /*
54  * Exported functions/variables
55  */
56 
57 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
58 
59 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
60 #include <asm/kbdleds.h>
61 #else
62 static inline int kbd_defleds(void)
63 {
64 	return 0;
65 }
66 #endif
67 
68 #define KBD_DEFLOCK 0
69 
70 /*
71  * Handler Tables.
72  */
73 
74 #define K_HANDLERS\
75 	k_self,		k_fn,		k_spec,		k_pad,\
76 	k_dead,		k_cons,		k_cur,		k_shift,\
77 	k_meta,		k_ascii,	k_lock,		k_lowercase,\
78 	k_slock,	k_dead2,	k_brl,		k_ignore
79 
80 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
81 			    char up_flag);
82 static k_handler_fn K_HANDLERS;
83 static k_handler_fn *k_handler[16] = { K_HANDLERS };
84 
85 #define FN_HANDLERS\
86 	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
87 	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
88 	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
89 	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
90 	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
91 
92 typedef void (fn_handler_fn)(struct vc_data *vc);
93 static fn_handler_fn FN_HANDLERS;
94 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
95 
96 /*
97  * Variables exported for vt_ioctl.c
98  */
99 
100 struct vt_spawn_console vt_spawn_con = {
101 	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
102 	.pid  = NULL,
103 	.sig  = 0,
104 };
105 
106 
107 /*
108  * Internal Data.
109  */
110 
111 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
112 static struct kbd_struct *kbd = kbd_table;
113 
114 /* maximum values each key_handler can handle */
115 static const int max_vals[] = {
116 	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
117 	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
118 	255, NR_LOCK - 1, 255, NR_BRL - 1
119 };
120 
121 static const int NR_TYPES = ARRAY_SIZE(max_vals);
122 
123 static struct input_handler kbd_handler;
124 static DEFINE_SPINLOCK(kbd_event_lock);
125 static DEFINE_SPINLOCK(led_lock);
126 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
127 static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
128 static bool dead_key_next;
129 static int npadch = -1;					/* -1 or number assembled on pad */
130 static unsigned int diacr;
131 static char rep;					/* flag telling character repeat */
132 
133 static int shift_state = 0;
134 
135 static unsigned int ledstate = -1U;			/* undefined */
136 static unsigned char ledioctl;
137 
138 /*
139  * Notifier list for console keyboard events
140  */
141 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
142 
143 int register_keyboard_notifier(struct notifier_block *nb)
144 {
145 	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
146 }
147 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
148 
149 int unregister_keyboard_notifier(struct notifier_block *nb)
150 {
151 	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
152 }
153 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
154 
155 /*
156  * Translation of scancodes to keycodes. We set them on only the first
157  * keyboard in the list that accepts the scancode and keycode.
158  * Explanation for not choosing the first attached keyboard anymore:
159  *  USB keyboards for example have two event devices: one for all "normal"
160  *  keys and one for extra function keys (like "volume up", "make coffee",
161  *  etc.). So this means that scancodes for the extra function keys won't
162  *  be valid for the first event device, but will be for the second.
163  */
164 
165 struct getset_keycode_data {
166 	struct input_keymap_entry ke;
167 	int error;
168 };
169 
170 static int getkeycode_helper(struct input_handle *handle, void *data)
171 {
172 	struct getset_keycode_data *d = data;
173 
174 	d->error = input_get_keycode(handle->dev, &d->ke);
175 
176 	return d->error == 0; /* stop as soon as we successfully get one */
177 }
178 
179 static int getkeycode(unsigned int scancode)
180 {
181 	struct getset_keycode_data d = {
182 		.ke	= {
183 			.flags		= 0,
184 			.len		= sizeof(scancode),
185 			.keycode	= 0,
186 		},
187 		.error	= -ENODEV,
188 	};
189 
190 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
191 
192 	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
193 
194 	return d.error ?: d.ke.keycode;
195 }
196 
197 static int setkeycode_helper(struct input_handle *handle, void *data)
198 {
199 	struct getset_keycode_data *d = data;
200 
201 	d->error = input_set_keycode(handle->dev, &d->ke);
202 
203 	return d->error == 0; /* stop as soon as we successfully set one */
204 }
205 
206 static int setkeycode(unsigned int scancode, unsigned int keycode)
207 {
208 	struct getset_keycode_data d = {
209 		.ke	= {
210 			.flags		= 0,
211 			.len		= sizeof(scancode),
212 			.keycode	= keycode,
213 		},
214 		.error	= -ENODEV,
215 	};
216 
217 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
218 
219 	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
220 
221 	return d.error;
222 }
223 
224 /*
225  * Making beeps and bells. Note that we prefer beeps to bells, but when
226  * shutting the sound off we do both.
227  */
228 
229 static int kd_sound_helper(struct input_handle *handle, void *data)
230 {
231 	unsigned int *hz = data;
232 	struct input_dev *dev = handle->dev;
233 
234 	if (test_bit(EV_SND, dev->evbit)) {
235 		if (test_bit(SND_TONE, dev->sndbit)) {
236 			input_inject_event(handle, EV_SND, SND_TONE, *hz);
237 			if (*hz)
238 				return 0;
239 		}
240 		if (test_bit(SND_BELL, dev->sndbit))
241 			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
242 	}
243 
244 	return 0;
245 }
246 
247 static void kd_nosound(struct timer_list *unused)
248 {
249 	static unsigned int zero;
250 
251 	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
252 }
253 
254 static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
255 
256 void kd_mksound(unsigned int hz, unsigned int ticks)
257 {
258 	del_timer_sync(&kd_mksound_timer);
259 
260 	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
261 
262 	if (hz && ticks)
263 		mod_timer(&kd_mksound_timer, jiffies + ticks);
264 }
265 EXPORT_SYMBOL(kd_mksound);
266 
267 /*
268  * Setting the keyboard rate.
269  */
270 
271 static int kbd_rate_helper(struct input_handle *handle, void *data)
272 {
273 	struct input_dev *dev = handle->dev;
274 	struct kbd_repeat *rpt = data;
275 
276 	if (test_bit(EV_REP, dev->evbit)) {
277 
278 		if (rpt[0].delay > 0)
279 			input_inject_event(handle,
280 					   EV_REP, REP_DELAY, rpt[0].delay);
281 		if (rpt[0].period > 0)
282 			input_inject_event(handle,
283 					   EV_REP, REP_PERIOD, rpt[0].period);
284 
285 		rpt[1].delay = dev->rep[REP_DELAY];
286 		rpt[1].period = dev->rep[REP_PERIOD];
287 	}
288 
289 	return 0;
290 }
291 
292 int kbd_rate(struct kbd_repeat *rpt)
293 {
294 	struct kbd_repeat data[2] = { *rpt };
295 
296 	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
297 	*rpt = data[1];	/* Copy currently used settings */
298 
299 	return 0;
300 }
301 
302 /*
303  * Helper Functions.
304  */
305 static void put_queue(struct vc_data *vc, int ch)
306 {
307 	tty_insert_flip_char(&vc->port, ch, 0);
308 	tty_schedule_flip(&vc->port);
309 }
310 
311 static void puts_queue(struct vc_data *vc, char *cp)
312 {
313 	while (*cp) {
314 		tty_insert_flip_char(&vc->port, *cp, 0);
315 		cp++;
316 	}
317 	tty_schedule_flip(&vc->port);
318 }
319 
320 static void applkey(struct vc_data *vc, int key, char mode)
321 {
322 	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
323 
324 	buf[1] = (mode ? 'O' : '[');
325 	buf[2] = key;
326 	puts_queue(vc, buf);
327 }
328 
329 /*
330  * Many other routines do put_queue, but I think either
331  * they produce ASCII, or they produce some user-assigned
332  * string, and in both cases we might assume that it is
333  * in utf-8 already.
334  */
335 static void to_utf8(struct vc_data *vc, uint c)
336 {
337 	if (c < 0x80)
338 		/*  0******* */
339 		put_queue(vc, c);
340 	else if (c < 0x800) {
341 		/* 110***** 10****** */
342 		put_queue(vc, 0xc0 | (c >> 6));
343 		put_queue(vc, 0x80 | (c & 0x3f));
344 	} else if (c < 0x10000) {
345 		if (c >= 0xD800 && c < 0xE000)
346 			return;
347 		if (c == 0xFFFF)
348 			return;
349 		/* 1110**** 10****** 10****** */
350 		put_queue(vc, 0xe0 | (c >> 12));
351 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
352 		put_queue(vc, 0x80 | (c & 0x3f));
353 	} else if (c < 0x110000) {
354 		/* 11110*** 10****** 10****** 10****** */
355 		put_queue(vc, 0xf0 | (c >> 18));
356 		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
357 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
358 		put_queue(vc, 0x80 | (c & 0x3f));
359 	}
360 }
361 
362 /*
363  * Called after returning from RAW mode or when changing consoles - recompute
364  * shift_down[] and shift_state from key_down[] maybe called when keymap is
365  * undefined, so that shiftkey release is seen. The caller must hold the
366  * kbd_event_lock.
367  */
368 
369 static void do_compute_shiftstate(void)
370 {
371 	unsigned int k, sym, val;
372 
373 	shift_state = 0;
374 	memset(shift_down, 0, sizeof(shift_down));
375 
376 	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
377 		sym = U(key_maps[0][k]);
378 		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
379 			continue;
380 
381 		val = KVAL(sym);
382 		if (val == KVAL(K_CAPSSHIFT))
383 			val = KVAL(K_SHIFT);
384 
385 		shift_down[val]++;
386 		shift_state |= BIT(val);
387 	}
388 }
389 
390 /* We still have to export this method to vt.c */
391 void compute_shiftstate(void)
392 {
393 	unsigned long flags;
394 	spin_lock_irqsave(&kbd_event_lock, flags);
395 	do_compute_shiftstate();
396 	spin_unlock_irqrestore(&kbd_event_lock, flags);
397 }
398 
399 /*
400  * We have a combining character DIACR here, followed by the character CH.
401  * If the combination occurs in the table, return the corresponding value.
402  * Otherwise, if CH is a space or equals DIACR, return DIACR.
403  * Otherwise, conclude that DIACR was not combining after all,
404  * queue it and return CH.
405  */
406 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
407 {
408 	unsigned int d = diacr;
409 	unsigned int i;
410 
411 	diacr = 0;
412 
413 	if ((d & ~0xff) == BRL_UC_ROW) {
414 		if ((ch & ~0xff) == BRL_UC_ROW)
415 			return d | ch;
416 	} else {
417 		for (i = 0; i < accent_table_size; i++)
418 			if (accent_table[i].diacr == d && accent_table[i].base == ch)
419 				return accent_table[i].result;
420 	}
421 
422 	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
423 		return d;
424 
425 	if (kbd->kbdmode == VC_UNICODE)
426 		to_utf8(vc, d);
427 	else {
428 		int c = conv_uni_to_8bit(d);
429 		if (c != -1)
430 			put_queue(vc, c);
431 	}
432 
433 	return ch;
434 }
435 
436 /*
437  * Special function handlers
438  */
439 static void fn_enter(struct vc_data *vc)
440 {
441 	if (diacr) {
442 		if (kbd->kbdmode == VC_UNICODE)
443 			to_utf8(vc, diacr);
444 		else {
445 			int c = conv_uni_to_8bit(diacr);
446 			if (c != -1)
447 				put_queue(vc, c);
448 		}
449 		diacr = 0;
450 	}
451 
452 	put_queue(vc, 13);
453 	if (vc_kbd_mode(kbd, VC_CRLF))
454 		put_queue(vc, 10);
455 }
456 
457 static void fn_caps_toggle(struct vc_data *vc)
458 {
459 	if (rep)
460 		return;
461 
462 	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
463 }
464 
465 static void fn_caps_on(struct vc_data *vc)
466 {
467 	if (rep)
468 		return;
469 
470 	set_vc_kbd_led(kbd, VC_CAPSLOCK);
471 }
472 
473 static void fn_show_ptregs(struct vc_data *vc)
474 {
475 	struct pt_regs *regs = get_irq_regs();
476 
477 	if (regs)
478 		show_regs(regs);
479 }
480 
481 static void fn_hold(struct vc_data *vc)
482 {
483 	struct tty_struct *tty = vc->port.tty;
484 
485 	if (rep || !tty)
486 		return;
487 
488 	/*
489 	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
490 	 * these routines are also activated by ^S/^Q.
491 	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
492 	 */
493 	if (tty->stopped)
494 		start_tty(tty);
495 	else
496 		stop_tty(tty);
497 }
498 
499 static void fn_num(struct vc_data *vc)
500 {
501 	if (vc_kbd_mode(kbd, VC_APPLIC))
502 		applkey(vc, 'P', 1);
503 	else
504 		fn_bare_num(vc);
505 }
506 
507 /*
508  * Bind this to Shift-NumLock if you work in application keypad mode
509  * but want to be able to change the NumLock flag.
510  * Bind this to NumLock if you prefer that the NumLock key always
511  * changes the NumLock flag.
512  */
513 static void fn_bare_num(struct vc_data *vc)
514 {
515 	if (!rep)
516 		chg_vc_kbd_led(kbd, VC_NUMLOCK);
517 }
518 
519 static void fn_lastcons(struct vc_data *vc)
520 {
521 	/* switch to the last used console, ChN */
522 	set_console(last_console);
523 }
524 
525 static void fn_dec_console(struct vc_data *vc)
526 {
527 	int i, cur = fg_console;
528 
529 	/* Currently switching?  Queue this next switch relative to that. */
530 	if (want_console != -1)
531 		cur = want_console;
532 
533 	for (i = cur - 1; i != cur; i--) {
534 		if (i == -1)
535 			i = MAX_NR_CONSOLES - 1;
536 		if (vc_cons_allocated(i))
537 			break;
538 	}
539 	set_console(i);
540 }
541 
542 static void fn_inc_console(struct vc_data *vc)
543 {
544 	int i, cur = fg_console;
545 
546 	/* Currently switching?  Queue this next switch relative to that. */
547 	if (want_console != -1)
548 		cur = want_console;
549 
550 	for (i = cur+1; i != cur; i++) {
551 		if (i == MAX_NR_CONSOLES)
552 			i = 0;
553 		if (vc_cons_allocated(i))
554 			break;
555 	}
556 	set_console(i);
557 }
558 
559 static void fn_send_intr(struct vc_data *vc)
560 {
561 	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
562 	tty_schedule_flip(&vc->port);
563 }
564 
565 static void fn_scroll_forw(struct vc_data *vc)
566 {
567 	scrollfront(vc, 0);
568 }
569 
570 static void fn_scroll_back(struct vc_data *vc)
571 {
572 	scrollback(vc);
573 }
574 
575 static void fn_show_mem(struct vc_data *vc)
576 {
577 	show_mem(0, NULL);
578 }
579 
580 static void fn_show_state(struct vc_data *vc)
581 {
582 	show_state();
583 }
584 
585 static void fn_boot_it(struct vc_data *vc)
586 {
587 	ctrl_alt_del();
588 }
589 
590 static void fn_compose(struct vc_data *vc)
591 {
592 	dead_key_next = true;
593 }
594 
595 static void fn_spawn_con(struct vc_data *vc)
596 {
597 	spin_lock(&vt_spawn_con.lock);
598 	if (vt_spawn_con.pid)
599 		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
600 			put_pid(vt_spawn_con.pid);
601 			vt_spawn_con.pid = NULL;
602 		}
603 	spin_unlock(&vt_spawn_con.lock);
604 }
605 
606 static void fn_SAK(struct vc_data *vc)
607 {
608 	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
609 	schedule_work(SAK_work);
610 }
611 
612 static void fn_null(struct vc_data *vc)
613 {
614 	do_compute_shiftstate();
615 }
616 
617 /*
618  * Special key handlers
619  */
620 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
621 {
622 }
623 
624 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
625 {
626 	if (up_flag)
627 		return;
628 	if (value >= ARRAY_SIZE(fn_handler))
629 		return;
630 	if ((kbd->kbdmode == VC_RAW ||
631 	     kbd->kbdmode == VC_MEDIUMRAW ||
632 	     kbd->kbdmode == VC_OFF) &&
633 	     value != KVAL(K_SAK))
634 		return;		/* SAK is allowed even in raw mode */
635 	fn_handler[value](vc);
636 }
637 
638 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
639 {
640 	pr_err("k_lowercase was called - impossible\n");
641 }
642 
643 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
644 {
645 	if (up_flag)
646 		return;		/* no action, if this is a key release */
647 
648 	if (diacr)
649 		value = handle_diacr(vc, value);
650 
651 	if (dead_key_next) {
652 		dead_key_next = false;
653 		diacr = value;
654 		return;
655 	}
656 	if (kbd->kbdmode == VC_UNICODE)
657 		to_utf8(vc, value);
658 	else {
659 		int c = conv_uni_to_8bit(value);
660 		if (c != -1)
661 			put_queue(vc, c);
662 	}
663 }
664 
665 /*
666  * Handle dead key. Note that we now may have several
667  * dead keys modifying the same character. Very useful
668  * for Vietnamese.
669  */
670 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
671 {
672 	if (up_flag)
673 		return;
674 
675 	diacr = (diacr ? handle_diacr(vc, value) : value);
676 }
677 
678 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
679 {
680 	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
681 }
682 
683 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
684 {
685 	k_deadunicode(vc, value, up_flag);
686 }
687 
688 /*
689  * Obsolete - for backwards compatibility only
690  */
691 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
692 {
693 	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
694 
695 	k_deadunicode(vc, ret_diacr[value], up_flag);
696 }
697 
698 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
699 {
700 	if (up_flag)
701 		return;
702 
703 	set_console(value);
704 }
705 
706 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
707 {
708 	if (up_flag)
709 		return;
710 
711 	if ((unsigned)value < ARRAY_SIZE(func_table)) {
712 		if (func_table[value])
713 			puts_queue(vc, func_table[value]);
714 	} else
715 		pr_err("k_fn called with value=%d\n", value);
716 }
717 
718 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
719 {
720 	static const char cur_chars[] = "BDCA";
721 
722 	if (up_flag)
723 		return;
724 
725 	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
726 }
727 
728 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
729 {
730 	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
731 	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
732 
733 	if (up_flag)
734 		return;		/* no action, if this is a key release */
735 
736 	/* kludge... shift forces cursor/number keys */
737 	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
738 		applkey(vc, app_map[value], 1);
739 		return;
740 	}
741 
742 	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
743 
744 		switch (value) {
745 		case KVAL(K_PCOMMA):
746 		case KVAL(K_PDOT):
747 			k_fn(vc, KVAL(K_REMOVE), 0);
748 			return;
749 		case KVAL(K_P0):
750 			k_fn(vc, KVAL(K_INSERT), 0);
751 			return;
752 		case KVAL(K_P1):
753 			k_fn(vc, KVAL(K_SELECT), 0);
754 			return;
755 		case KVAL(K_P2):
756 			k_cur(vc, KVAL(K_DOWN), 0);
757 			return;
758 		case KVAL(K_P3):
759 			k_fn(vc, KVAL(K_PGDN), 0);
760 			return;
761 		case KVAL(K_P4):
762 			k_cur(vc, KVAL(K_LEFT), 0);
763 			return;
764 		case KVAL(K_P6):
765 			k_cur(vc, KVAL(K_RIGHT), 0);
766 			return;
767 		case KVAL(K_P7):
768 			k_fn(vc, KVAL(K_FIND), 0);
769 			return;
770 		case KVAL(K_P8):
771 			k_cur(vc, KVAL(K_UP), 0);
772 			return;
773 		case KVAL(K_P9):
774 			k_fn(vc, KVAL(K_PGUP), 0);
775 			return;
776 		case KVAL(K_P5):
777 			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
778 			return;
779 		}
780 	}
781 
782 	put_queue(vc, pad_chars[value]);
783 	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
784 		put_queue(vc, 10);
785 }
786 
787 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
788 {
789 	int old_state = shift_state;
790 
791 	if (rep)
792 		return;
793 	/*
794 	 * Mimic typewriter:
795 	 * a CapsShift key acts like Shift but undoes CapsLock
796 	 */
797 	if (value == KVAL(K_CAPSSHIFT)) {
798 		value = KVAL(K_SHIFT);
799 		if (!up_flag)
800 			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
801 	}
802 
803 	if (up_flag) {
804 		/*
805 		 * handle the case that two shift or control
806 		 * keys are depressed simultaneously
807 		 */
808 		if (shift_down[value])
809 			shift_down[value]--;
810 	} else
811 		shift_down[value]++;
812 
813 	if (shift_down[value])
814 		shift_state |= (1 << value);
815 	else
816 		shift_state &= ~(1 << value);
817 
818 	/* kludge */
819 	if (up_flag && shift_state != old_state && npadch != -1) {
820 		if (kbd->kbdmode == VC_UNICODE)
821 			to_utf8(vc, npadch);
822 		else
823 			put_queue(vc, npadch & 0xff);
824 		npadch = -1;
825 	}
826 }
827 
828 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
829 {
830 	if (up_flag)
831 		return;
832 
833 	if (vc_kbd_mode(kbd, VC_META)) {
834 		put_queue(vc, '\033');
835 		put_queue(vc, value);
836 	} else
837 		put_queue(vc, value | 0x80);
838 }
839 
840 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
841 {
842 	int base;
843 
844 	if (up_flag)
845 		return;
846 
847 	if (value < 10) {
848 		/* decimal input of code, while Alt depressed */
849 		base = 10;
850 	} else {
851 		/* hexadecimal input of code, while AltGr depressed */
852 		value -= 10;
853 		base = 16;
854 	}
855 
856 	if (npadch == -1)
857 		npadch = value;
858 	else
859 		npadch = npadch * base + value;
860 }
861 
862 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
863 {
864 	if (up_flag || rep)
865 		return;
866 
867 	chg_vc_kbd_lock(kbd, value);
868 }
869 
870 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
871 {
872 	k_shift(vc, value, up_flag);
873 	if (up_flag || rep)
874 		return;
875 
876 	chg_vc_kbd_slock(kbd, value);
877 	/* try to make Alt, oops, AltGr and such work */
878 	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
879 		kbd->slockstate = 0;
880 		chg_vc_kbd_slock(kbd, value);
881 	}
882 }
883 
884 /* by default, 300ms interval for combination release */
885 static unsigned brl_timeout = 300;
886 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
887 module_param(brl_timeout, uint, 0644);
888 
889 static unsigned brl_nbchords = 1;
890 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
891 module_param(brl_nbchords, uint, 0644);
892 
893 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
894 {
895 	static unsigned long chords;
896 	static unsigned committed;
897 
898 	if (!brl_nbchords)
899 		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
900 	else {
901 		committed |= pattern;
902 		chords++;
903 		if (chords == brl_nbchords) {
904 			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
905 			chords = 0;
906 			committed = 0;
907 		}
908 	}
909 }
910 
911 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
912 {
913 	static unsigned pressed, committing;
914 	static unsigned long releasestart;
915 
916 	if (kbd->kbdmode != VC_UNICODE) {
917 		if (!up_flag)
918 			pr_warn("keyboard mode must be unicode for braille patterns\n");
919 		return;
920 	}
921 
922 	if (!value) {
923 		k_unicode(vc, BRL_UC_ROW, up_flag);
924 		return;
925 	}
926 
927 	if (value > 8)
928 		return;
929 
930 	if (!up_flag) {
931 		pressed |= 1 << (value - 1);
932 		if (!brl_timeout)
933 			committing = pressed;
934 	} else if (brl_timeout) {
935 		if (!committing ||
936 		    time_after(jiffies,
937 			       releasestart + msecs_to_jiffies(brl_timeout))) {
938 			committing = pressed;
939 			releasestart = jiffies;
940 		}
941 		pressed &= ~(1 << (value - 1));
942 		if (!pressed && committing) {
943 			k_brlcommit(vc, committing, 0);
944 			committing = 0;
945 		}
946 	} else {
947 		if (committing) {
948 			k_brlcommit(vc, committing, 0);
949 			committing = 0;
950 		}
951 		pressed &= ~(1 << (value - 1));
952 	}
953 }
954 
955 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
956 
957 struct kbd_led_trigger {
958 	struct led_trigger trigger;
959 	unsigned int mask;
960 };
961 
962 static void kbd_led_trigger_activate(struct led_classdev *cdev)
963 {
964 	struct kbd_led_trigger *trigger =
965 		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
966 
967 	tasklet_disable(&keyboard_tasklet);
968 	if (ledstate != -1U)
969 		led_trigger_event(&trigger->trigger,
970 				  ledstate & trigger->mask ?
971 					LED_FULL : LED_OFF);
972 	tasklet_enable(&keyboard_tasklet);
973 }
974 
975 #define KBD_LED_TRIGGER(_led_bit, _name) {			\
976 		.trigger = {					\
977 			.name = _name,				\
978 			.activate = kbd_led_trigger_activate,	\
979 		},						\
980 		.mask	= BIT(_led_bit),			\
981 	}
982 
983 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
984 	KBD_LED_TRIGGER((_led_bit) + 8, _name)
985 
986 static struct kbd_led_trigger kbd_led_triggers[] = {
987 	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
988 	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
989 	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
990 	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
991 
992 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
993 	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
994 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
995 	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
996 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
997 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
998 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
999 	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1000 };
1001 
1002 static void kbd_propagate_led_state(unsigned int old_state,
1003 				    unsigned int new_state)
1004 {
1005 	struct kbd_led_trigger *trigger;
1006 	unsigned int changed = old_state ^ new_state;
1007 	int i;
1008 
1009 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1010 		trigger = &kbd_led_triggers[i];
1011 
1012 		if (changed & trigger->mask)
1013 			led_trigger_event(&trigger->trigger,
1014 					  new_state & trigger->mask ?
1015 						LED_FULL : LED_OFF);
1016 	}
1017 }
1018 
1019 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1020 {
1021 	unsigned int led_state = *(unsigned int *)data;
1022 
1023 	if (test_bit(EV_LED, handle->dev->evbit))
1024 		kbd_propagate_led_state(~led_state, led_state);
1025 
1026 	return 0;
1027 }
1028 
1029 static void kbd_init_leds(void)
1030 {
1031 	int error;
1032 	int i;
1033 
1034 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1035 		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1036 		if (error)
1037 			pr_err("error %d while registering trigger %s\n",
1038 			       error, kbd_led_triggers[i].trigger.name);
1039 	}
1040 }
1041 
1042 #else
1043 
1044 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1045 {
1046 	unsigned int leds = *(unsigned int *)data;
1047 
1048 	if (test_bit(EV_LED, handle->dev->evbit)) {
1049 		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1050 		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1051 		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1052 		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 static void kbd_propagate_led_state(unsigned int old_state,
1059 				    unsigned int new_state)
1060 {
1061 	input_handler_for_each_handle(&kbd_handler, &new_state,
1062 				      kbd_update_leds_helper);
1063 }
1064 
1065 static void kbd_init_leds(void)
1066 {
1067 }
1068 
1069 #endif
1070 
1071 /*
1072  * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1073  * or (ii) whatever pattern of lights people want to show using KDSETLED,
1074  * or (iii) specified bits of specified words in kernel memory.
1075  */
1076 static unsigned char getledstate(void)
1077 {
1078 	return ledstate & 0xff;
1079 }
1080 
1081 void setledstate(struct kbd_struct *kb, unsigned int led)
1082 {
1083         unsigned long flags;
1084         spin_lock_irqsave(&led_lock, flags);
1085 	if (!(led & ~7)) {
1086 		ledioctl = led;
1087 		kb->ledmode = LED_SHOW_IOCTL;
1088 	} else
1089 		kb->ledmode = LED_SHOW_FLAGS;
1090 
1091 	set_leds();
1092 	spin_unlock_irqrestore(&led_lock, flags);
1093 }
1094 
1095 static inline unsigned char getleds(void)
1096 {
1097 	struct kbd_struct *kb = kbd_table + fg_console;
1098 
1099 	if (kb->ledmode == LED_SHOW_IOCTL)
1100 		return ledioctl;
1101 
1102 	return kb->ledflagstate;
1103 }
1104 
1105 /**
1106  *	vt_get_leds	-	helper for braille console
1107  *	@console: console to read
1108  *	@flag: flag we want to check
1109  *
1110  *	Check the status of a keyboard led flag and report it back
1111  */
1112 int vt_get_leds(int console, int flag)
1113 {
1114 	struct kbd_struct *kb = kbd_table + console;
1115 	int ret;
1116 	unsigned long flags;
1117 
1118 	spin_lock_irqsave(&led_lock, flags);
1119 	ret = vc_kbd_led(kb, flag);
1120 	spin_unlock_irqrestore(&led_lock, flags);
1121 
1122 	return ret;
1123 }
1124 EXPORT_SYMBOL_GPL(vt_get_leds);
1125 
1126 /**
1127  *	vt_set_led_state	-	set LED state of a console
1128  *	@console: console to set
1129  *	@leds: LED bits
1130  *
1131  *	Set the LEDs on a console. This is a wrapper for the VT layer
1132  *	so that we can keep kbd knowledge internal
1133  */
1134 void vt_set_led_state(int console, int leds)
1135 {
1136 	struct kbd_struct *kb = kbd_table + console;
1137 	setledstate(kb, leds);
1138 }
1139 
1140 /**
1141  *	vt_kbd_con_start	-	Keyboard side of console start
1142  *	@console: console
1143  *
1144  *	Handle console start. This is a wrapper for the VT layer
1145  *	so that we can keep kbd knowledge internal
1146  *
1147  *	FIXME: We eventually need to hold the kbd lock here to protect
1148  *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1149  *	and start_tty under the kbd_event_lock, while normal tty paths
1150  *	don't hold the lock. We probably need to split out an LED lock
1151  *	but not during an -rc release!
1152  */
1153 void vt_kbd_con_start(int console)
1154 {
1155 	struct kbd_struct *kb = kbd_table + console;
1156 	unsigned long flags;
1157 	spin_lock_irqsave(&led_lock, flags);
1158 	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1159 	set_leds();
1160 	spin_unlock_irqrestore(&led_lock, flags);
1161 }
1162 
1163 /**
1164  *	vt_kbd_con_stop		-	Keyboard side of console stop
1165  *	@console: console
1166  *
1167  *	Handle console stop. This is a wrapper for the VT layer
1168  *	so that we can keep kbd knowledge internal
1169  */
1170 void vt_kbd_con_stop(int console)
1171 {
1172 	struct kbd_struct *kb = kbd_table + console;
1173 	unsigned long flags;
1174 	spin_lock_irqsave(&led_lock, flags);
1175 	set_vc_kbd_led(kb, VC_SCROLLOCK);
1176 	set_leds();
1177 	spin_unlock_irqrestore(&led_lock, flags);
1178 }
1179 
1180 /*
1181  * This is the tasklet that updates LED state of LEDs using standard
1182  * keyboard triggers. The reason we use tasklet is that we need to
1183  * handle the scenario when keyboard handler is not registered yet
1184  * but we already getting updates from the VT to update led state.
1185  */
1186 static void kbd_bh(unsigned long dummy)
1187 {
1188 	unsigned int leds;
1189 	unsigned long flags;
1190 
1191 	spin_lock_irqsave(&led_lock, flags);
1192 	leds = getleds();
1193 	leds |= (unsigned int)kbd->lockstate << 8;
1194 	spin_unlock_irqrestore(&led_lock, flags);
1195 
1196 	if (leds != ledstate) {
1197 		kbd_propagate_led_state(ledstate, leds);
1198 		ledstate = leds;
1199 	}
1200 }
1201 
1202 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1203 
1204 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1205     defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1206     defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1207     (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1208 
1209 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1210 			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1211 
1212 static const unsigned short x86_keycodes[256] =
1213 	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1214 	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1215 	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1216 	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1217 	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1218 	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1219 	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1220 	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1221 	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1222 	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1223 	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1224 	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1225 	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1226 	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1227 	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1228 
1229 #ifdef CONFIG_SPARC
1230 static int sparc_l1_a_state;
1231 extern void sun_do_break(void);
1232 #endif
1233 
1234 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1235 		       unsigned char up_flag)
1236 {
1237 	int code;
1238 
1239 	switch (keycode) {
1240 
1241 	case KEY_PAUSE:
1242 		put_queue(vc, 0xe1);
1243 		put_queue(vc, 0x1d | up_flag);
1244 		put_queue(vc, 0x45 | up_flag);
1245 		break;
1246 
1247 	case KEY_HANGEUL:
1248 		if (!up_flag)
1249 			put_queue(vc, 0xf2);
1250 		break;
1251 
1252 	case KEY_HANJA:
1253 		if (!up_flag)
1254 			put_queue(vc, 0xf1);
1255 		break;
1256 
1257 	case KEY_SYSRQ:
1258 		/*
1259 		 * Real AT keyboards (that's what we're trying
1260 		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1261 		 * pressing PrtSc/SysRq alone, but simply 0x54
1262 		 * when pressing Alt+PrtSc/SysRq.
1263 		 */
1264 		if (test_bit(KEY_LEFTALT, key_down) ||
1265 		    test_bit(KEY_RIGHTALT, key_down)) {
1266 			put_queue(vc, 0x54 | up_flag);
1267 		} else {
1268 			put_queue(vc, 0xe0);
1269 			put_queue(vc, 0x2a | up_flag);
1270 			put_queue(vc, 0xe0);
1271 			put_queue(vc, 0x37 | up_flag);
1272 		}
1273 		break;
1274 
1275 	default:
1276 		if (keycode > 255)
1277 			return -1;
1278 
1279 		code = x86_keycodes[keycode];
1280 		if (!code)
1281 			return -1;
1282 
1283 		if (code & 0x100)
1284 			put_queue(vc, 0xe0);
1285 		put_queue(vc, (code & 0x7f) | up_flag);
1286 
1287 		break;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 #else
1294 
1295 #define HW_RAW(dev)	0
1296 
1297 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1298 {
1299 	if (keycode > 127)
1300 		return -1;
1301 
1302 	put_queue(vc, keycode | up_flag);
1303 	return 0;
1304 }
1305 #endif
1306 
1307 static void kbd_rawcode(unsigned char data)
1308 {
1309 	struct vc_data *vc = vc_cons[fg_console].d;
1310 
1311 	kbd = kbd_table + vc->vc_num;
1312 	if (kbd->kbdmode == VC_RAW)
1313 		put_queue(vc, data);
1314 }
1315 
1316 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1317 {
1318 	struct vc_data *vc = vc_cons[fg_console].d;
1319 	unsigned short keysym, *key_map;
1320 	unsigned char type;
1321 	bool raw_mode;
1322 	struct tty_struct *tty;
1323 	int shift_final;
1324 	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1325 	int rc;
1326 
1327 	tty = vc->port.tty;
1328 
1329 	if (tty && (!tty->driver_data)) {
1330 		/* No driver data? Strange. Okay we fix it then. */
1331 		tty->driver_data = vc;
1332 	}
1333 
1334 	kbd = kbd_table + vc->vc_num;
1335 
1336 #ifdef CONFIG_SPARC
1337 	if (keycode == KEY_STOP)
1338 		sparc_l1_a_state = down;
1339 #endif
1340 
1341 	rep = (down == 2);
1342 
1343 	raw_mode = (kbd->kbdmode == VC_RAW);
1344 	if (raw_mode && !hw_raw)
1345 		if (emulate_raw(vc, keycode, !down << 7))
1346 			if (keycode < BTN_MISC && printk_ratelimit())
1347 				pr_warn("can't emulate rawmode for keycode %d\n",
1348 					keycode);
1349 
1350 #ifdef CONFIG_SPARC
1351 	if (keycode == KEY_A && sparc_l1_a_state) {
1352 		sparc_l1_a_state = false;
1353 		sun_do_break();
1354 	}
1355 #endif
1356 
1357 	if (kbd->kbdmode == VC_MEDIUMRAW) {
1358 		/*
1359 		 * This is extended medium raw mode, with keys above 127
1360 		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1361 		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1362 		 * interfere with anything else. The two bytes after 0 will
1363 		 * always have the up flag set not to interfere with older
1364 		 * applications. This allows for 16384 different keycodes,
1365 		 * which should be enough.
1366 		 */
1367 		if (keycode < 128) {
1368 			put_queue(vc, keycode | (!down << 7));
1369 		} else {
1370 			put_queue(vc, !down << 7);
1371 			put_queue(vc, (keycode >> 7) | 0x80);
1372 			put_queue(vc, keycode | 0x80);
1373 		}
1374 		raw_mode = true;
1375 	}
1376 
1377 	if (down)
1378 		set_bit(keycode, key_down);
1379 	else
1380 		clear_bit(keycode, key_down);
1381 
1382 	if (rep &&
1383 	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1384 	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1385 		/*
1386 		 * Don't repeat a key if the input buffers are not empty and the
1387 		 * characters get aren't echoed locally. This makes key repeat
1388 		 * usable with slow applications and under heavy loads.
1389 		 */
1390 		return;
1391 	}
1392 
1393 	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1394 	param.ledstate = kbd->ledflagstate;
1395 	key_map = key_maps[shift_final];
1396 
1397 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1398 					KBD_KEYCODE, &param);
1399 	if (rc == NOTIFY_STOP || !key_map) {
1400 		atomic_notifier_call_chain(&keyboard_notifier_list,
1401 					   KBD_UNBOUND_KEYCODE, &param);
1402 		do_compute_shiftstate();
1403 		kbd->slockstate = 0;
1404 		return;
1405 	}
1406 
1407 	if (keycode < NR_KEYS)
1408 		keysym = key_map[keycode];
1409 	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1410 		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1411 	else
1412 		return;
1413 
1414 	type = KTYP(keysym);
1415 
1416 	if (type < 0xf0) {
1417 		param.value = keysym;
1418 		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1419 						KBD_UNICODE, &param);
1420 		if (rc != NOTIFY_STOP)
1421 			if (down && !raw_mode)
1422 				to_utf8(vc, keysym);
1423 		return;
1424 	}
1425 
1426 	type -= 0xf0;
1427 
1428 	if (type == KT_LETTER) {
1429 		type = KT_LATIN;
1430 		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1431 			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1432 			if (key_map)
1433 				keysym = key_map[keycode];
1434 		}
1435 	}
1436 
1437 	param.value = keysym;
1438 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1439 					KBD_KEYSYM, &param);
1440 	if (rc == NOTIFY_STOP)
1441 		return;
1442 
1443 	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1444 		return;
1445 
1446 	(*k_handler[type])(vc, keysym & 0xff, !down);
1447 
1448 	param.ledstate = kbd->ledflagstate;
1449 	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1450 
1451 	if (type != KT_SLOCK)
1452 		kbd->slockstate = 0;
1453 }
1454 
1455 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1456 		      unsigned int event_code, int value)
1457 {
1458 	/* We are called with interrupts disabled, just take the lock */
1459 	spin_lock(&kbd_event_lock);
1460 
1461 	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1462 		kbd_rawcode(value);
1463 	if (event_type == EV_KEY)
1464 		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1465 
1466 	spin_unlock(&kbd_event_lock);
1467 
1468 	tasklet_schedule(&keyboard_tasklet);
1469 	do_poke_blanked_console = 1;
1470 	schedule_console_callback();
1471 }
1472 
1473 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1474 {
1475 	int i;
1476 
1477 	if (test_bit(EV_SND, dev->evbit))
1478 		return true;
1479 
1480 	if (test_bit(EV_KEY, dev->evbit)) {
1481 		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1482 			if (test_bit(i, dev->keybit))
1483 				return true;
1484 		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1485 			if (test_bit(i, dev->keybit))
1486 				return true;
1487 	}
1488 
1489 	return false;
1490 }
1491 
1492 /*
1493  * When a keyboard (or other input device) is found, the kbd_connect
1494  * function is called. The function then looks at the device, and if it
1495  * likes it, it can open it and get events from it. In this (kbd_connect)
1496  * function, we should decide which VT to bind that keyboard to initially.
1497  */
1498 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1499 			const struct input_device_id *id)
1500 {
1501 	struct input_handle *handle;
1502 	int error;
1503 
1504 	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1505 	if (!handle)
1506 		return -ENOMEM;
1507 
1508 	handle->dev = dev;
1509 	handle->handler = handler;
1510 	handle->name = "kbd";
1511 
1512 	error = input_register_handle(handle);
1513 	if (error)
1514 		goto err_free_handle;
1515 
1516 	error = input_open_device(handle);
1517 	if (error)
1518 		goto err_unregister_handle;
1519 
1520 	return 0;
1521 
1522  err_unregister_handle:
1523 	input_unregister_handle(handle);
1524  err_free_handle:
1525 	kfree(handle);
1526 	return error;
1527 }
1528 
1529 static void kbd_disconnect(struct input_handle *handle)
1530 {
1531 	input_close_device(handle);
1532 	input_unregister_handle(handle);
1533 	kfree(handle);
1534 }
1535 
1536 /*
1537  * Start keyboard handler on the new keyboard by refreshing LED state to
1538  * match the rest of the system.
1539  */
1540 static void kbd_start(struct input_handle *handle)
1541 {
1542 	tasklet_disable(&keyboard_tasklet);
1543 
1544 	if (ledstate != -1U)
1545 		kbd_update_leds_helper(handle, &ledstate);
1546 
1547 	tasklet_enable(&keyboard_tasklet);
1548 }
1549 
1550 static const struct input_device_id kbd_ids[] = {
1551 	{
1552 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1553 		.evbit = { BIT_MASK(EV_KEY) },
1554 	},
1555 
1556 	{
1557 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1558 		.evbit = { BIT_MASK(EV_SND) },
1559 	},
1560 
1561 	{ },    /* Terminating entry */
1562 };
1563 
1564 MODULE_DEVICE_TABLE(input, kbd_ids);
1565 
1566 static struct input_handler kbd_handler = {
1567 	.event		= kbd_event,
1568 	.match		= kbd_match,
1569 	.connect	= kbd_connect,
1570 	.disconnect	= kbd_disconnect,
1571 	.start		= kbd_start,
1572 	.name		= "kbd",
1573 	.id_table	= kbd_ids,
1574 };
1575 
1576 int __init kbd_init(void)
1577 {
1578 	int i;
1579 	int error;
1580 
1581 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1582 		kbd_table[i].ledflagstate = kbd_defleds();
1583 		kbd_table[i].default_ledflagstate = kbd_defleds();
1584 		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1585 		kbd_table[i].lockstate = KBD_DEFLOCK;
1586 		kbd_table[i].slockstate = 0;
1587 		kbd_table[i].modeflags = KBD_DEFMODE;
1588 		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1589 	}
1590 
1591 	kbd_init_leds();
1592 
1593 	error = input_register_handler(&kbd_handler);
1594 	if (error)
1595 		return error;
1596 
1597 	tasklet_enable(&keyboard_tasklet);
1598 	tasklet_schedule(&keyboard_tasklet);
1599 
1600 	return 0;
1601 }
1602 
1603 /* Ioctl support code */
1604 
1605 /**
1606  *	vt_do_diacrit		-	diacritical table updates
1607  *	@cmd: ioctl request
1608  *	@udp: pointer to user data for ioctl
1609  *	@perm: permissions check computed by caller
1610  *
1611  *	Update the diacritical tables atomically and safely. Lock them
1612  *	against simultaneous keypresses
1613  */
1614 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1615 {
1616 	unsigned long flags;
1617 	int asize;
1618 	int ret = 0;
1619 
1620 	switch (cmd) {
1621 	case KDGKBDIACR:
1622 	{
1623 		struct kbdiacrs __user *a = udp;
1624 		struct kbdiacr *dia;
1625 		int i;
1626 
1627 		dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1628 								GFP_KERNEL);
1629 		if (!dia)
1630 			return -ENOMEM;
1631 
1632 		/* Lock the diacriticals table, make a copy and then
1633 		   copy it after we unlock */
1634 		spin_lock_irqsave(&kbd_event_lock, flags);
1635 
1636 		asize = accent_table_size;
1637 		for (i = 0; i < asize; i++) {
1638 			dia[i].diacr = conv_uni_to_8bit(
1639 						accent_table[i].diacr);
1640 			dia[i].base = conv_uni_to_8bit(
1641 						accent_table[i].base);
1642 			dia[i].result = conv_uni_to_8bit(
1643 						accent_table[i].result);
1644 		}
1645 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1646 
1647 		if (put_user(asize, &a->kb_cnt))
1648 			ret = -EFAULT;
1649 		else  if (copy_to_user(a->kbdiacr, dia,
1650 				asize * sizeof(struct kbdiacr)))
1651 			ret = -EFAULT;
1652 		kfree(dia);
1653 		return ret;
1654 	}
1655 	case KDGKBDIACRUC:
1656 	{
1657 		struct kbdiacrsuc __user *a = udp;
1658 		void *buf;
1659 
1660 		buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1661 								GFP_KERNEL);
1662 		if (buf == NULL)
1663 			return -ENOMEM;
1664 
1665 		/* Lock the diacriticals table, make a copy and then
1666 		   copy it after we unlock */
1667 		spin_lock_irqsave(&kbd_event_lock, flags);
1668 
1669 		asize = accent_table_size;
1670 		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1671 
1672 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1673 
1674 		if (put_user(asize, &a->kb_cnt))
1675 			ret = -EFAULT;
1676 		else if (copy_to_user(a->kbdiacruc, buf,
1677 				asize*sizeof(struct kbdiacruc)))
1678 			ret = -EFAULT;
1679 		kfree(buf);
1680 		return ret;
1681 	}
1682 
1683 	case KDSKBDIACR:
1684 	{
1685 		struct kbdiacrs __user *a = udp;
1686 		struct kbdiacr *dia = NULL;
1687 		unsigned int ct;
1688 		int i;
1689 
1690 		if (!perm)
1691 			return -EPERM;
1692 		if (get_user(ct, &a->kb_cnt))
1693 			return -EFAULT;
1694 		if (ct >= MAX_DIACR)
1695 			return -EINVAL;
1696 
1697 		if (ct) {
1698 
1699 			dia = memdup_user(a->kbdiacr,
1700 					sizeof(struct kbdiacr) * ct);
1701 			if (IS_ERR(dia))
1702 				return PTR_ERR(dia);
1703 
1704 		}
1705 
1706 		spin_lock_irqsave(&kbd_event_lock, flags);
1707 		accent_table_size = ct;
1708 		for (i = 0; i < ct; i++) {
1709 			accent_table[i].diacr =
1710 					conv_8bit_to_uni(dia[i].diacr);
1711 			accent_table[i].base =
1712 					conv_8bit_to_uni(dia[i].base);
1713 			accent_table[i].result =
1714 					conv_8bit_to_uni(dia[i].result);
1715 		}
1716 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1717 		kfree(dia);
1718 		return 0;
1719 	}
1720 
1721 	case KDSKBDIACRUC:
1722 	{
1723 		struct kbdiacrsuc __user *a = udp;
1724 		unsigned int ct;
1725 		void *buf = NULL;
1726 
1727 		if (!perm)
1728 			return -EPERM;
1729 
1730 		if (get_user(ct, &a->kb_cnt))
1731 			return -EFAULT;
1732 
1733 		if (ct >= MAX_DIACR)
1734 			return -EINVAL;
1735 
1736 		if (ct) {
1737 			buf = memdup_user(a->kbdiacruc,
1738 					  ct * sizeof(struct kbdiacruc));
1739 			if (IS_ERR(buf))
1740 				return PTR_ERR(buf);
1741 		}
1742 		spin_lock_irqsave(&kbd_event_lock, flags);
1743 		if (ct)
1744 			memcpy(accent_table, buf,
1745 					ct * sizeof(struct kbdiacruc));
1746 		accent_table_size = ct;
1747 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1748 		kfree(buf);
1749 		return 0;
1750 	}
1751 	}
1752 	return ret;
1753 }
1754 
1755 /**
1756  *	vt_do_kdskbmode		-	set keyboard mode ioctl
1757  *	@console: the console to use
1758  *	@arg: the requested mode
1759  *
1760  *	Update the keyboard mode bits while holding the correct locks.
1761  *	Return 0 for success or an error code.
1762  */
1763 int vt_do_kdskbmode(int console, unsigned int arg)
1764 {
1765 	struct kbd_struct *kb = kbd_table + console;
1766 	int ret = 0;
1767 	unsigned long flags;
1768 
1769 	spin_lock_irqsave(&kbd_event_lock, flags);
1770 	switch(arg) {
1771 	case K_RAW:
1772 		kb->kbdmode = VC_RAW;
1773 		break;
1774 	case K_MEDIUMRAW:
1775 		kb->kbdmode = VC_MEDIUMRAW;
1776 		break;
1777 	case K_XLATE:
1778 		kb->kbdmode = VC_XLATE;
1779 		do_compute_shiftstate();
1780 		break;
1781 	case K_UNICODE:
1782 		kb->kbdmode = VC_UNICODE;
1783 		do_compute_shiftstate();
1784 		break;
1785 	case K_OFF:
1786 		kb->kbdmode = VC_OFF;
1787 		break;
1788 	default:
1789 		ret = -EINVAL;
1790 	}
1791 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1792 	return ret;
1793 }
1794 
1795 /**
1796  *	vt_do_kdskbmeta		-	set keyboard meta state
1797  *	@console: the console to use
1798  *	@arg: the requested meta state
1799  *
1800  *	Update the keyboard meta bits while holding the correct locks.
1801  *	Return 0 for success or an error code.
1802  */
1803 int vt_do_kdskbmeta(int console, unsigned int arg)
1804 {
1805 	struct kbd_struct *kb = kbd_table + console;
1806 	int ret = 0;
1807 	unsigned long flags;
1808 
1809 	spin_lock_irqsave(&kbd_event_lock, flags);
1810 	switch(arg) {
1811 	case K_METABIT:
1812 		clr_vc_kbd_mode(kb, VC_META);
1813 		break;
1814 	case K_ESCPREFIX:
1815 		set_vc_kbd_mode(kb, VC_META);
1816 		break;
1817 	default:
1818 		ret = -EINVAL;
1819 	}
1820 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1821 	return ret;
1822 }
1823 
1824 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1825 								int perm)
1826 {
1827 	struct kbkeycode tmp;
1828 	int kc = 0;
1829 
1830 	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1831 		return -EFAULT;
1832 	switch (cmd) {
1833 	case KDGETKEYCODE:
1834 		kc = getkeycode(tmp.scancode);
1835 		if (kc >= 0)
1836 			kc = put_user(kc, &user_kbkc->keycode);
1837 		break;
1838 	case KDSETKEYCODE:
1839 		if (!perm)
1840 			return -EPERM;
1841 		kc = setkeycode(tmp.scancode, tmp.keycode);
1842 		break;
1843 	}
1844 	return kc;
1845 }
1846 
1847 #define i (tmp.kb_index)
1848 #define s (tmp.kb_table)
1849 #define v (tmp.kb_value)
1850 
1851 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1852 						int console)
1853 {
1854 	struct kbd_struct *kb = kbd_table + console;
1855 	struct kbentry tmp;
1856 	ushort *key_map, *new_map, val, ov;
1857 	unsigned long flags;
1858 
1859 	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1860 		return -EFAULT;
1861 
1862 	if (!capable(CAP_SYS_TTY_CONFIG))
1863 		perm = 0;
1864 
1865 	switch (cmd) {
1866 	case KDGKBENT:
1867 		/* Ensure another thread doesn't free it under us */
1868 		spin_lock_irqsave(&kbd_event_lock, flags);
1869 		key_map = key_maps[s];
1870 		if (key_map) {
1871 		    val = U(key_map[i]);
1872 		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1873 			val = K_HOLE;
1874 		} else
1875 		    val = (i ? K_HOLE : K_NOSUCHMAP);
1876 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1877 		return put_user(val, &user_kbe->kb_value);
1878 	case KDSKBENT:
1879 		if (!perm)
1880 			return -EPERM;
1881 		if (!i && v == K_NOSUCHMAP) {
1882 			spin_lock_irqsave(&kbd_event_lock, flags);
1883 			/* deallocate map */
1884 			key_map = key_maps[s];
1885 			if (s && key_map) {
1886 			    key_maps[s] = NULL;
1887 			    if (key_map[0] == U(K_ALLOCATED)) {
1888 					kfree(key_map);
1889 					keymap_count--;
1890 			    }
1891 			}
1892 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1893 			break;
1894 		}
1895 
1896 		if (KTYP(v) < NR_TYPES) {
1897 		    if (KVAL(v) > max_vals[KTYP(v)])
1898 				return -EINVAL;
1899 		} else
1900 		    if (kb->kbdmode != VC_UNICODE)
1901 				return -EINVAL;
1902 
1903 		/* ++Geert: non-PC keyboards may generate keycode zero */
1904 #if !defined(__mc68000__) && !defined(__powerpc__)
1905 		/* assignment to entry 0 only tests validity of args */
1906 		if (!i)
1907 			break;
1908 #endif
1909 
1910 		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1911 		if (!new_map)
1912 			return -ENOMEM;
1913 		spin_lock_irqsave(&kbd_event_lock, flags);
1914 		key_map = key_maps[s];
1915 		if (key_map == NULL) {
1916 			int j;
1917 
1918 			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1919 			    !capable(CAP_SYS_RESOURCE)) {
1920 				spin_unlock_irqrestore(&kbd_event_lock, flags);
1921 				kfree(new_map);
1922 				return -EPERM;
1923 			}
1924 			key_maps[s] = new_map;
1925 			key_map = new_map;
1926 			key_map[0] = U(K_ALLOCATED);
1927 			for (j = 1; j < NR_KEYS; j++)
1928 				key_map[j] = U(K_HOLE);
1929 			keymap_count++;
1930 		} else
1931 			kfree(new_map);
1932 
1933 		ov = U(key_map[i]);
1934 		if (v == ov)
1935 			goto out;
1936 		/*
1937 		 * Attention Key.
1938 		 */
1939 		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1940 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1941 			return -EPERM;
1942 		}
1943 		key_map[i] = U(v);
1944 		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1945 			do_compute_shiftstate();
1946 out:
1947 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1948 		break;
1949 	}
1950 	return 0;
1951 }
1952 #undef i
1953 #undef s
1954 #undef v
1955 
1956 /* FIXME: This one needs untangling and locking */
1957 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1958 {
1959 	struct kbsentry *kbs;
1960 	char *p;
1961 	u_char *q;
1962 	u_char __user *up;
1963 	int sz;
1964 	int delta;
1965 	char *first_free, *fj, *fnw;
1966 	int i, j, k;
1967 	int ret;
1968 
1969 	if (!capable(CAP_SYS_TTY_CONFIG))
1970 		perm = 0;
1971 
1972 	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1973 	if (!kbs) {
1974 		ret = -ENOMEM;
1975 		goto reterr;
1976 	}
1977 
1978 	/* we mostly copy too much here (512bytes), but who cares ;) */
1979 	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1980 		ret = -EFAULT;
1981 		goto reterr;
1982 	}
1983 	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1984 	i = kbs->kb_func;
1985 
1986 	switch (cmd) {
1987 	case KDGKBSENT:
1988 		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1989 						  a struct member */
1990 		up = user_kdgkb->kb_string;
1991 		p = func_table[i];
1992 		if(p)
1993 			for ( ; *p && sz; p++, sz--)
1994 				if (put_user(*p, up++)) {
1995 					ret = -EFAULT;
1996 					goto reterr;
1997 				}
1998 		if (put_user('\0', up)) {
1999 			ret = -EFAULT;
2000 			goto reterr;
2001 		}
2002 		kfree(kbs);
2003 		return ((p && *p) ? -EOVERFLOW : 0);
2004 	case KDSKBSENT:
2005 		if (!perm) {
2006 			ret = -EPERM;
2007 			goto reterr;
2008 		}
2009 
2010 		q = func_table[i];
2011 		first_free = funcbufptr + (funcbufsize - funcbufleft);
2012 		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2013 			;
2014 		if (j < MAX_NR_FUNC)
2015 			fj = func_table[j];
2016 		else
2017 			fj = first_free;
2018 
2019 		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2020 		if (delta <= funcbufleft) { 	/* it fits in current buf */
2021 		    if (j < MAX_NR_FUNC) {
2022 			memmove(fj + delta, fj, first_free - fj);
2023 			for (k = j; k < MAX_NR_FUNC; k++)
2024 			    if (func_table[k])
2025 				func_table[k] += delta;
2026 		    }
2027 		    if (!q)
2028 		      func_table[i] = fj;
2029 		    funcbufleft -= delta;
2030 		} else {			/* allocate a larger buffer */
2031 		    sz = 256;
2032 		    while (sz < funcbufsize - funcbufleft + delta)
2033 		      sz <<= 1;
2034 		    fnw = kmalloc(sz, GFP_KERNEL);
2035 		    if(!fnw) {
2036 		      ret = -ENOMEM;
2037 		      goto reterr;
2038 		    }
2039 
2040 		    if (!q)
2041 		      func_table[i] = fj;
2042 		    if (fj > funcbufptr)
2043 			memmove(fnw, funcbufptr, fj - funcbufptr);
2044 		    for (k = 0; k < j; k++)
2045 		      if (func_table[k])
2046 			func_table[k] = fnw + (func_table[k] - funcbufptr);
2047 
2048 		    if (first_free > fj) {
2049 			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2050 			for (k = j; k < MAX_NR_FUNC; k++)
2051 			  if (func_table[k])
2052 			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2053 		    }
2054 		    if (funcbufptr != func_buf)
2055 		      kfree(funcbufptr);
2056 		    funcbufptr = fnw;
2057 		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2058 		    funcbufsize = sz;
2059 		}
2060 		strcpy(func_table[i], kbs->kb_string);
2061 		break;
2062 	}
2063 	ret = 0;
2064 reterr:
2065 	kfree(kbs);
2066 	return ret;
2067 }
2068 
2069 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2070 {
2071 	struct kbd_struct *kb = kbd_table + console;
2072         unsigned long flags;
2073 	unsigned char ucval;
2074 
2075         switch(cmd) {
2076 	/* the ioctls below read/set the flags usually shown in the leds */
2077 	/* don't use them - they will go away without warning */
2078 	case KDGKBLED:
2079                 spin_lock_irqsave(&kbd_event_lock, flags);
2080 		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2081                 spin_unlock_irqrestore(&kbd_event_lock, flags);
2082 		return put_user(ucval, (char __user *)arg);
2083 
2084 	case KDSKBLED:
2085 		if (!perm)
2086 			return -EPERM;
2087 		if (arg & ~0x77)
2088 			return -EINVAL;
2089                 spin_lock_irqsave(&led_lock, flags);
2090 		kb->ledflagstate = (arg & 7);
2091 		kb->default_ledflagstate = ((arg >> 4) & 7);
2092 		set_leds();
2093                 spin_unlock_irqrestore(&led_lock, flags);
2094 		return 0;
2095 
2096 	/* the ioctls below only set the lights, not the functions */
2097 	/* for those, see KDGKBLED and KDSKBLED above */
2098 	case KDGETLED:
2099 		ucval = getledstate();
2100 		return put_user(ucval, (char __user *)arg);
2101 
2102 	case KDSETLED:
2103 		if (!perm)
2104 			return -EPERM;
2105 		setledstate(kb, arg);
2106 		return 0;
2107         }
2108         return -ENOIOCTLCMD;
2109 }
2110 
2111 int vt_do_kdgkbmode(int console)
2112 {
2113 	struct kbd_struct *kb = kbd_table + console;
2114 	/* This is a spot read so needs no locking */
2115 	switch (kb->kbdmode) {
2116 	case VC_RAW:
2117 		return K_RAW;
2118 	case VC_MEDIUMRAW:
2119 		return K_MEDIUMRAW;
2120 	case VC_UNICODE:
2121 		return K_UNICODE;
2122 	case VC_OFF:
2123 		return K_OFF;
2124 	default:
2125 		return K_XLATE;
2126 	}
2127 }
2128 
2129 /**
2130  *	vt_do_kdgkbmeta		-	report meta status
2131  *	@console: console to report
2132  *
2133  *	Report the meta flag status of this console
2134  */
2135 int vt_do_kdgkbmeta(int console)
2136 {
2137 	struct kbd_struct *kb = kbd_table + console;
2138         /* Again a spot read so no locking */
2139 	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2140 }
2141 
2142 /**
2143  *	vt_reset_unicode	-	reset the unicode status
2144  *	@console: console being reset
2145  *
2146  *	Restore the unicode console state to its default
2147  */
2148 void vt_reset_unicode(int console)
2149 {
2150 	unsigned long flags;
2151 
2152 	spin_lock_irqsave(&kbd_event_lock, flags);
2153 	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2154 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2155 }
2156 
2157 /**
2158  *	vt_get_shiftstate	-	shift bit state
2159  *
2160  *	Report the shift bits from the keyboard state. We have to export
2161  *	this to support some oddities in the vt layer.
2162  */
2163 int vt_get_shift_state(void)
2164 {
2165         /* Don't lock as this is a transient report */
2166         return shift_state;
2167 }
2168 
2169 /**
2170  *	vt_reset_keyboard	-	reset keyboard state
2171  *	@console: console to reset
2172  *
2173  *	Reset the keyboard bits for a console as part of a general console
2174  *	reset event
2175  */
2176 void vt_reset_keyboard(int console)
2177 {
2178 	struct kbd_struct *kb = kbd_table + console;
2179 	unsigned long flags;
2180 
2181 	spin_lock_irqsave(&kbd_event_lock, flags);
2182 	set_vc_kbd_mode(kb, VC_REPEAT);
2183 	clr_vc_kbd_mode(kb, VC_CKMODE);
2184 	clr_vc_kbd_mode(kb, VC_APPLIC);
2185 	clr_vc_kbd_mode(kb, VC_CRLF);
2186 	kb->lockstate = 0;
2187 	kb->slockstate = 0;
2188 	spin_lock(&led_lock);
2189 	kb->ledmode = LED_SHOW_FLAGS;
2190 	kb->ledflagstate = kb->default_ledflagstate;
2191 	spin_unlock(&led_lock);
2192 	/* do not do set_leds here because this causes an endless tasklet loop
2193 	   when the keyboard hasn't been initialized yet */
2194 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2195 }
2196 
2197 /**
2198  *	vt_get_kbd_mode_bit	-	read keyboard status bits
2199  *	@console: console to read from
2200  *	@bit: mode bit to read
2201  *
2202  *	Report back a vt mode bit. We do this without locking so the
2203  *	caller must be sure that there are no synchronization needs
2204  */
2205 
2206 int vt_get_kbd_mode_bit(int console, int bit)
2207 {
2208 	struct kbd_struct *kb = kbd_table + console;
2209 	return vc_kbd_mode(kb, bit);
2210 }
2211 
2212 /**
2213  *	vt_set_kbd_mode_bit	-	read keyboard status bits
2214  *	@console: console to read from
2215  *	@bit: mode bit to read
2216  *
2217  *	Set a vt mode bit. We do this without locking so the
2218  *	caller must be sure that there are no synchronization needs
2219  */
2220 
2221 void vt_set_kbd_mode_bit(int console, int bit)
2222 {
2223 	struct kbd_struct *kb = kbd_table + console;
2224 	unsigned long flags;
2225 
2226 	spin_lock_irqsave(&kbd_event_lock, flags);
2227 	set_vc_kbd_mode(kb, bit);
2228 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2229 }
2230 
2231 /**
2232  *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2233  *	@console: console to read from
2234  *	@bit: mode bit to read
2235  *
2236  *	Report back a vt mode bit. We do this without locking so the
2237  *	caller must be sure that there are no synchronization needs
2238  */
2239 
2240 void vt_clr_kbd_mode_bit(int console, int bit)
2241 {
2242 	struct kbd_struct *kb = kbd_table + console;
2243 	unsigned long flags;
2244 
2245 	spin_lock_irqsave(&kbd_event_lock, flags);
2246 	clr_vc_kbd_mode(kb, bit);
2247 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2248 }
2249