1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Written for linux by Johan Myreen as a translation from 4 * the assembly version by Linus (with diacriticals added) 5 * 6 * Some additional features added by Christoph Niemann (ChN), March 1993 7 * 8 * Loadable keymaps by Risto Kankkunen, May 1993 9 * 10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 11 * Added decr/incr_console, dynamic keymaps, Unicode support, 12 * dynamic function/string keys, led setting, Sept 1994 13 * `Sticky' modifier keys, 951006. 14 * 15 * 11-11-96: SAK should now work in the raw mode (Martin Mares) 16 * 17 * Modified to provide 'generic' keyboard support by Hamish Macdonald 18 * Merge with the m68k keyboard driver and split-off of the PC low-level 19 * parts by Geert Uytterhoeven, May 1997 20 * 21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) 22 * 30-07-98: Dead keys redone, aeb@cwi.nl. 23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/consolemap.h> 29 #include <linux/init.h> 30 #include <linux/input.h> 31 #include <linux/jiffies.h> 32 #include <linux/kbd_diacr.h> 33 #include <linux/kbd_kern.h> 34 #include <linux/leds.h> 35 #include <linux/mm.h> 36 #include <linux/module.h> 37 #include <linux/nospec.h> 38 #include <linux/notifier.h> 39 #include <linux/reboot.h> 40 #include <linux/sched/debug.h> 41 #include <linux/sched/signal.h> 42 #include <linux/slab.h> 43 #include <linux/spinlock.h> 44 #include <linux/string.h> 45 #include <linux/tty_flip.h> 46 #include <linux/tty.h> 47 #include <linux/uaccess.h> 48 #include <linux/vt_kern.h> 49 50 #include <asm/irq_regs.h> 51 52 /* 53 * Exported functions/variables 54 */ 55 56 #define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META)) 57 58 #if defined(CONFIG_X86) || defined(CONFIG_PARISC) 59 #include <asm/kbdleds.h> 60 #else 61 static inline int kbd_defleds(void) 62 { 63 return 0; 64 } 65 #endif 66 67 #define KBD_DEFLOCK 0 68 69 /* 70 * Handler Tables. 71 */ 72 73 #define K_HANDLERS\ 74 k_self, k_fn, k_spec, k_pad,\ 75 k_dead, k_cons, k_cur, k_shift,\ 76 k_meta, k_ascii, k_lock, k_lowercase,\ 77 k_slock, k_dead2, k_brl, k_ignore 78 79 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, 80 char up_flag); 81 static k_handler_fn K_HANDLERS; 82 static k_handler_fn *k_handler[16] = { K_HANDLERS }; 83 84 #define FN_HANDLERS\ 85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ 86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ 87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ 88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ 89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num 90 91 typedef void (fn_handler_fn)(struct vc_data *vc); 92 static fn_handler_fn FN_HANDLERS; 93 static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; 94 95 /* 96 * Variables exported for vt_ioctl.c 97 */ 98 99 struct vt_spawn_console vt_spawn_con = { 100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), 101 .pid = NULL, 102 .sig = 0, 103 }; 104 105 106 /* 107 * Internal Data. 108 */ 109 110 static struct kbd_struct kbd_table[MAX_NR_CONSOLES]; 111 static struct kbd_struct *kbd = kbd_table; 112 113 /* maximum values each key_handler can handle */ 114 static const unsigned char max_vals[] = { 115 [ KT_LATIN ] = 255, 116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1, 117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1, 118 [ KT_PAD ] = NR_PAD - 1, 119 [ KT_DEAD ] = NR_DEAD - 1, 120 [ KT_CONS ] = 255, 121 [ KT_CUR ] = 3, 122 [ KT_SHIFT ] = NR_SHIFT - 1, 123 [ KT_META ] = 255, 124 [ KT_ASCII ] = NR_ASCII - 1, 125 [ KT_LOCK ] = NR_LOCK - 1, 126 [ KT_LETTER ] = 255, 127 [ KT_SLOCK ] = NR_LOCK - 1, 128 [ KT_DEAD2 ] = 255, 129 [ KT_BRL ] = NR_BRL - 1, 130 }; 131 132 static const int NR_TYPES = ARRAY_SIZE(max_vals); 133 134 static void kbd_bh(struct tasklet_struct *unused); 135 static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh); 136 137 static struct input_handler kbd_handler; 138 static DEFINE_SPINLOCK(kbd_event_lock); 139 static DEFINE_SPINLOCK(led_lock); 140 static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */ 141 static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */ 142 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ 143 static bool dead_key_next; 144 145 /* Handles a number being assembled on the number pad */ 146 static bool npadch_active; 147 static unsigned int npadch_value; 148 149 static unsigned int diacr; 150 static bool rep; /* flag telling character repeat */ 151 152 static int shift_state = 0; 153 154 static unsigned int ledstate = -1U; /* undefined */ 155 static unsigned char ledioctl; 156 static bool vt_switch; 157 158 /* 159 * Notifier list for console keyboard events 160 */ 161 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); 162 163 int register_keyboard_notifier(struct notifier_block *nb) 164 { 165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb); 166 } 167 EXPORT_SYMBOL_GPL(register_keyboard_notifier); 168 169 int unregister_keyboard_notifier(struct notifier_block *nb) 170 { 171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); 172 } 173 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); 174 175 /* 176 * Translation of scancodes to keycodes. We set them on only the first 177 * keyboard in the list that accepts the scancode and keycode. 178 * Explanation for not choosing the first attached keyboard anymore: 179 * USB keyboards for example have two event devices: one for all "normal" 180 * keys and one for extra function keys (like "volume up", "make coffee", 181 * etc.). So this means that scancodes for the extra function keys won't 182 * be valid for the first event device, but will be for the second. 183 */ 184 185 struct getset_keycode_data { 186 struct input_keymap_entry ke; 187 int error; 188 }; 189 190 static int getkeycode_helper(struct input_handle *handle, void *data) 191 { 192 struct getset_keycode_data *d = data; 193 194 d->error = input_get_keycode(handle->dev, &d->ke); 195 196 return d->error == 0; /* stop as soon as we successfully get one */ 197 } 198 199 static int getkeycode(unsigned int scancode) 200 { 201 struct getset_keycode_data d = { 202 .ke = { 203 .flags = 0, 204 .len = sizeof(scancode), 205 .keycode = 0, 206 }, 207 .error = -ENODEV, 208 }; 209 210 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 211 212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper); 213 214 return d.error ?: d.ke.keycode; 215 } 216 217 static int setkeycode_helper(struct input_handle *handle, void *data) 218 { 219 struct getset_keycode_data *d = data; 220 221 d->error = input_set_keycode(handle->dev, &d->ke); 222 223 return d->error == 0; /* stop as soon as we successfully set one */ 224 } 225 226 static int setkeycode(unsigned int scancode, unsigned int keycode) 227 { 228 struct getset_keycode_data d = { 229 .ke = { 230 .flags = 0, 231 .len = sizeof(scancode), 232 .keycode = keycode, 233 }, 234 .error = -ENODEV, 235 }; 236 237 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 238 239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper); 240 241 return d.error; 242 } 243 244 /* 245 * Making beeps and bells. Note that we prefer beeps to bells, but when 246 * shutting the sound off we do both. 247 */ 248 249 static int kd_sound_helper(struct input_handle *handle, void *data) 250 { 251 unsigned int *hz = data; 252 struct input_dev *dev = handle->dev; 253 254 if (test_bit(EV_SND, dev->evbit)) { 255 if (test_bit(SND_TONE, dev->sndbit)) { 256 input_inject_event(handle, EV_SND, SND_TONE, *hz); 257 if (*hz) 258 return 0; 259 } 260 if (test_bit(SND_BELL, dev->sndbit)) 261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0); 262 } 263 264 return 0; 265 } 266 267 static void kd_nosound(struct timer_list *unused) 268 { 269 static unsigned int zero; 270 271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper); 272 } 273 274 static DEFINE_TIMER(kd_mksound_timer, kd_nosound); 275 276 void kd_mksound(unsigned int hz, unsigned int ticks) 277 { 278 del_timer_sync(&kd_mksound_timer); 279 280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper); 281 282 if (hz && ticks) 283 mod_timer(&kd_mksound_timer, jiffies + ticks); 284 } 285 EXPORT_SYMBOL(kd_mksound); 286 287 /* 288 * Setting the keyboard rate. 289 */ 290 291 static int kbd_rate_helper(struct input_handle *handle, void *data) 292 { 293 struct input_dev *dev = handle->dev; 294 struct kbd_repeat *rpt = data; 295 296 if (test_bit(EV_REP, dev->evbit)) { 297 298 if (rpt[0].delay > 0) 299 input_inject_event(handle, 300 EV_REP, REP_DELAY, rpt[0].delay); 301 if (rpt[0].period > 0) 302 input_inject_event(handle, 303 EV_REP, REP_PERIOD, rpt[0].period); 304 305 rpt[1].delay = dev->rep[REP_DELAY]; 306 rpt[1].period = dev->rep[REP_PERIOD]; 307 } 308 309 return 0; 310 } 311 312 int kbd_rate(struct kbd_repeat *rpt) 313 { 314 struct kbd_repeat data[2] = { *rpt }; 315 316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper); 317 *rpt = data[1]; /* Copy currently used settings */ 318 319 return 0; 320 } 321 322 /* 323 * Helper Functions. 324 */ 325 static void put_queue(struct vc_data *vc, int ch) 326 { 327 tty_insert_flip_char(&vc->port, ch, 0); 328 tty_flip_buffer_push(&vc->port); 329 } 330 331 static void puts_queue(struct vc_data *vc, const char *cp) 332 { 333 tty_insert_flip_string(&vc->port, cp, strlen(cp)); 334 tty_flip_buffer_push(&vc->port); 335 } 336 337 static void applkey(struct vc_data *vc, int key, char mode) 338 { 339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; 340 341 buf[1] = (mode ? 'O' : '['); 342 buf[2] = key; 343 puts_queue(vc, buf); 344 } 345 346 /* 347 * Many other routines do put_queue, but I think either 348 * they produce ASCII, or they produce some user-assigned 349 * string, and in both cases we might assume that it is 350 * in utf-8 already. 351 */ 352 static void to_utf8(struct vc_data *vc, uint c) 353 { 354 if (c < 0x80) 355 /* 0******* */ 356 put_queue(vc, c); 357 else if (c < 0x800) { 358 /* 110***** 10****** */ 359 put_queue(vc, 0xc0 | (c >> 6)); 360 put_queue(vc, 0x80 | (c & 0x3f)); 361 } else if (c < 0x10000) { 362 if (c >= 0xD800 && c < 0xE000) 363 return; 364 if (c == 0xFFFF) 365 return; 366 /* 1110**** 10****** 10****** */ 367 put_queue(vc, 0xe0 | (c >> 12)); 368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 369 put_queue(vc, 0x80 | (c & 0x3f)); 370 } else if (c < 0x110000) { 371 /* 11110*** 10****** 10****** 10****** */ 372 put_queue(vc, 0xf0 | (c >> 18)); 373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); 374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 375 put_queue(vc, 0x80 | (c & 0x3f)); 376 } 377 } 378 379 /* FIXME: review locking for vt.c callers */ 380 static void set_leds(void) 381 { 382 tasklet_schedule(&keyboard_tasklet); 383 } 384 385 /* 386 * Called after returning from RAW mode or when changing consoles - recompute 387 * shift_down[] and shift_state from key_down[] maybe called when keymap is 388 * undefined, so that shiftkey release is seen. The caller must hold the 389 * kbd_event_lock. 390 */ 391 392 static void do_compute_shiftstate(void) 393 { 394 unsigned int k, sym, val; 395 396 shift_state = 0; 397 memset(shift_down, 0, sizeof(shift_down)); 398 399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) { 400 sym = U(key_maps[0][k]); 401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) 402 continue; 403 404 val = KVAL(sym); 405 if (val == KVAL(K_CAPSSHIFT)) 406 val = KVAL(K_SHIFT); 407 408 shift_down[val]++; 409 shift_state |= BIT(val); 410 } 411 } 412 413 /* We still have to export this method to vt.c */ 414 void vt_set_leds_compute_shiftstate(void) 415 { 416 unsigned long flags; 417 418 /* 419 * When VT is switched, the keyboard led needs to be set once. 420 * Ensure that after the switch is completed, the state of the 421 * keyboard LED is consistent with the state of the keyboard lock. 422 */ 423 vt_switch = true; 424 set_leds(); 425 426 spin_lock_irqsave(&kbd_event_lock, flags); 427 do_compute_shiftstate(); 428 spin_unlock_irqrestore(&kbd_event_lock, flags); 429 } 430 431 /* 432 * We have a combining character DIACR here, followed by the character CH. 433 * If the combination occurs in the table, return the corresponding value. 434 * Otherwise, if CH is a space or equals DIACR, return DIACR. 435 * Otherwise, conclude that DIACR was not combining after all, 436 * queue it and return CH. 437 */ 438 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) 439 { 440 unsigned int d = diacr; 441 unsigned int i; 442 443 diacr = 0; 444 445 if ((d & ~0xff) == BRL_UC_ROW) { 446 if ((ch & ~0xff) == BRL_UC_ROW) 447 return d | ch; 448 } else { 449 for (i = 0; i < accent_table_size; i++) 450 if (accent_table[i].diacr == d && accent_table[i].base == ch) 451 return accent_table[i].result; 452 } 453 454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) 455 return d; 456 457 if (kbd->kbdmode == VC_UNICODE) 458 to_utf8(vc, d); 459 else { 460 int c = conv_uni_to_8bit(d); 461 if (c != -1) 462 put_queue(vc, c); 463 } 464 465 return ch; 466 } 467 468 /* 469 * Special function handlers 470 */ 471 static void fn_enter(struct vc_data *vc) 472 { 473 if (diacr) { 474 if (kbd->kbdmode == VC_UNICODE) 475 to_utf8(vc, diacr); 476 else { 477 int c = conv_uni_to_8bit(diacr); 478 if (c != -1) 479 put_queue(vc, c); 480 } 481 diacr = 0; 482 } 483 484 put_queue(vc, '\r'); 485 if (vc_kbd_mode(kbd, VC_CRLF)) 486 put_queue(vc, '\n'); 487 } 488 489 static void fn_caps_toggle(struct vc_data *vc) 490 { 491 if (rep) 492 return; 493 494 chg_vc_kbd_led(kbd, VC_CAPSLOCK); 495 } 496 497 static void fn_caps_on(struct vc_data *vc) 498 { 499 if (rep) 500 return; 501 502 set_vc_kbd_led(kbd, VC_CAPSLOCK); 503 } 504 505 static void fn_show_ptregs(struct vc_data *vc) 506 { 507 struct pt_regs *regs = get_irq_regs(); 508 509 if (regs) 510 show_regs(regs); 511 } 512 513 static void fn_hold(struct vc_data *vc) 514 { 515 struct tty_struct *tty = vc->port.tty; 516 517 if (rep || !tty) 518 return; 519 520 /* 521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); 522 * these routines are also activated by ^S/^Q. 523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) 524 */ 525 if (tty->flow.stopped) 526 start_tty(tty); 527 else 528 stop_tty(tty); 529 } 530 531 static void fn_num(struct vc_data *vc) 532 { 533 if (vc_kbd_mode(kbd, VC_APPLIC)) 534 applkey(vc, 'P', 1); 535 else 536 fn_bare_num(vc); 537 } 538 539 /* 540 * Bind this to Shift-NumLock if you work in application keypad mode 541 * but want to be able to change the NumLock flag. 542 * Bind this to NumLock if you prefer that the NumLock key always 543 * changes the NumLock flag. 544 */ 545 static void fn_bare_num(struct vc_data *vc) 546 { 547 if (!rep) 548 chg_vc_kbd_led(kbd, VC_NUMLOCK); 549 } 550 551 static void fn_lastcons(struct vc_data *vc) 552 { 553 /* switch to the last used console, ChN */ 554 set_console(last_console); 555 } 556 557 static void fn_dec_console(struct vc_data *vc) 558 { 559 int i, cur = fg_console; 560 561 /* Currently switching? Queue this next switch relative to that. */ 562 if (want_console != -1) 563 cur = want_console; 564 565 for (i = cur - 1; i != cur; i--) { 566 if (i == -1) 567 i = MAX_NR_CONSOLES - 1; 568 if (vc_cons_allocated(i)) 569 break; 570 } 571 set_console(i); 572 } 573 574 static void fn_inc_console(struct vc_data *vc) 575 { 576 int i, cur = fg_console; 577 578 /* Currently switching? Queue this next switch relative to that. */ 579 if (want_console != -1) 580 cur = want_console; 581 582 for (i = cur+1; i != cur; i++) { 583 if (i == MAX_NR_CONSOLES) 584 i = 0; 585 if (vc_cons_allocated(i)) 586 break; 587 } 588 set_console(i); 589 } 590 591 static void fn_send_intr(struct vc_data *vc) 592 { 593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK); 594 tty_flip_buffer_push(&vc->port); 595 } 596 597 static void fn_scroll_forw(struct vc_data *vc) 598 { 599 scrollfront(vc, 0); 600 } 601 602 static void fn_scroll_back(struct vc_data *vc) 603 { 604 scrollback(vc); 605 } 606 607 static void fn_show_mem(struct vc_data *vc) 608 { 609 show_mem(); 610 } 611 612 static void fn_show_state(struct vc_data *vc) 613 { 614 show_state(); 615 } 616 617 static void fn_boot_it(struct vc_data *vc) 618 { 619 ctrl_alt_del(); 620 } 621 622 static void fn_compose(struct vc_data *vc) 623 { 624 dead_key_next = true; 625 } 626 627 static void fn_spawn_con(struct vc_data *vc) 628 { 629 spin_lock(&vt_spawn_con.lock); 630 if (vt_spawn_con.pid) 631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { 632 put_pid(vt_spawn_con.pid); 633 vt_spawn_con.pid = NULL; 634 } 635 spin_unlock(&vt_spawn_con.lock); 636 } 637 638 static void fn_SAK(struct vc_data *vc) 639 { 640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; 641 schedule_work(SAK_work); 642 } 643 644 static void fn_null(struct vc_data *vc) 645 { 646 do_compute_shiftstate(); 647 } 648 649 /* 650 * Special key handlers 651 */ 652 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) 653 { 654 } 655 656 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) 657 { 658 if (up_flag) 659 return; 660 if (value >= ARRAY_SIZE(fn_handler)) 661 return; 662 if ((kbd->kbdmode == VC_RAW || 663 kbd->kbdmode == VC_MEDIUMRAW || 664 kbd->kbdmode == VC_OFF) && 665 value != KVAL(K_SAK)) 666 return; /* SAK is allowed even in raw mode */ 667 fn_handler[value](vc); 668 } 669 670 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) 671 { 672 pr_err("k_lowercase was called - impossible\n"); 673 } 674 675 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) 676 { 677 if (up_flag) 678 return; /* no action, if this is a key release */ 679 680 if (diacr) 681 value = handle_diacr(vc, value); 682 683 if (dead_key_next) { 684 dead_key_next = false; 685 diacr = value; 686 return; 687 } 688 if (kbd->kbdmode == VC_UNICODE) 689 to_utf8(vc, value); 690 else { 691 int c = conv_uni_to_8bit(value); 692 if (c != -1) 693 put_queue(vc, c); 694 } 695 } 696 697 /* 698 * Handle dead key. Note that we now may have several 699 * dead keys modifying the same character. Very useful 700 * for Vietnamese. 701 */ 702 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) 703 { 704 if (up_flag) 705 return; 706 707 diacr = (diacr ? handle_diacr(vc, value) : value); 708 } 709 710 static void k_self(struct vc_data *vc, unsigned char value, char up_flag) 711 { 712 k_unicode(vc, conv_8bit_to_uni(value), up_flag); 713 } 714 715 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) 716 { 717 k_deadunicode(vc, value, up_flag); 718 } 719 720 /* 721 * Obsolete - for backwards compatibility only 722 */ 723 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) 724 { 725 static const unsigned char ret_diacr[NR_DEAD] = { 726 '`', /* dead_grave */ 727 '\'', /* dead_acute */ 728 '^', /* dead_circumflex */ 729 '~', /* dead_tilda */ 730 '"', /* dead_diaeresis */ 731 ',', /* dead_cedilla */ 732 '_', /* dead_macron */ 733 'U', /* dead_breve */ 734 '.', /* dead_abovedot */ 735 '*', /* dead_abovering */ 736 '=', /* dead_doubleacute */ 737 'c', /* dead_caron */ 738 'k', /* dead_ogonek */ 739 'i', /* dead_iota */ 740 '#', /* dead_voiced_sound */ 741 'o', /* dead_semivoiced_sound */ 742 '!', /* dead_belowdot */ 743 '?', /* dead_hook */ 744 '+', /* dead_horn */ 745 '-', /* dead_stroke */ 746 ')', /* dead_abovecomma */ 747 '(', /* dead_abovereversedcomma */ 748 ':', /* dead_doublegrave */ 749 'n', /* dead_invertedbreve */ 750 ';', /* dead_belowcomma */ 751 '$', /* dead_currency */ 752 '@', /* dead_greek */ 753 }; 754 755 k_deadunicode(vc, ret_diacr[value], up_flag); 756 } 757 758 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) 759 { 760 if (up_flag) 761 return; 762 763 set_console(value); 764 } 765 766 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) 767 { 768 if (up_flag) 769 return; 770 771 if ((unsigned)value < ARRAY_SIZE(func_table)) { 772 unsigned long flags; 773 774 spin_lock_irqsave(&func_buf_lock, flags); 775 if (func_table[value]) 776 puts_queue(vc, func_table[value]); 777 spin_unlock_irqrestore(&func_buf_lock, flags); 778 779 } else 780 pr_err("k_fn called with value=%d\n", value); 781 } 782 783 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) 784 { 785 static const char cur_chars[] = "BDCA"; 786 787 if (up_flag) 788 return; 789 790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); 791 } 792 793 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) 794 { 795 static const char pad_chars[] = "0123456789+-*/\015,.?()#"; 796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; 797 798 if (up_flag) 799 return; /* no action, if this is a key release */ 800 801 /* kludge... shift forces cursor/number keys */ 802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { 803 applkey(vc, app_map[value], 1); 804 return; 805 } 806 807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) { 808 809 switch (value) { 810 case KVAL(K_PCOMMA): 811 case KVAL(K_PDOT): 812 k_fn(vc, KVAL(K_REMOVE), 0); 813 return; 814 case KVAL(K_P0): 815 k_fn(vc, KVAL(K_INSERT), 0); 816 return; 817 case KVAL(K_P1): 818 k_fn(vc, KVAL(K_SELECT), 0); 819 return; 820 case KVAL(K_P2): 821 k_cur(vc, KVAL(K_DOWN), 0); 822 return; 823 case KVAL(K_P3): 824 k_fn(vc, KVAL(K_PGDN), 0); 825 return; 826 case KVAL(K_P4): 827 k_cur(vc, KVAL(K_LEFT), 0); 828 return; 829 case KVAL(K_P6): 830 k_cur(vc, KVAL(K_RIGHT), 0); 831 return; 832 case KVAL(K_P7): 833 k_fn(vc, KVAL(K_FIND), 0); 834 return; 835 case KVAL(K_P8): 836 k_cur(vc, KVAL(K_UP), 0); 837 return; 838 case KVAL(K_P9): 839 k_fn(vc, KVAL(K_PGUP), 0); 840 return; 841 case KVAL(K_P5): 842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); 843 return; 844 } 845 } 846 847 put_queue(vc, pad_chars[value]); 848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) 849 put_queue(vc, '\n'); 850 } 851 852 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) 853 { 854 int old_state = shift_state; 855 856 if (rep) 857 return; 858 /* 859 * Mimic typewriter: 860 * a CapsShift key acts like Shift but undoes CapsLock 861 */ 862 if (value == KVAL(K_CAPSSHIFT)) { 863 value = KVAL(K_SHIFT); 864 if (!up_flag) 865 clr_vc_kbd_led(kbd, VC_CAPSLOCK); 866 } 867 868 if (up_flag) { 869 /* 870 * handle the case that two shift or control 871 * keys are depressed simultaneously 872 */ 873 if (shift_down[value]) 874 shift_down[value]--; 875 } else 876 shift_down[value]++; 877 878 if (shift_down[value]) 879 shift_state |= BIT(value); 880 else 881 shift_state &= ~BIT(value); 882 883 /* kludge */ 884 if (up_flag && shift_state != old_state && npadch_active) { 885 if (kbd->kbdmode == VC_UNICODE) 886 to_utf8(vc, npadch_value); 887 else 888 put_queue(vc, npadch_value & 0xff); 889 npadch_active = false; 890 } 891 } 892 893 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) 894 { 895 if (up_flag) 896 return; 897 898 if (vc_kbd_mode(kbd, VC_META)) { 899 put_queue(vc, '\033'); 900 put_queue(vc, value); 901 } else 902 put_queue(vc, value | BIT(7)); 903 } 904 905 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) 906 { 907 unsigned int base; 908 909 if (up_flag) 910 return; 911 912 if (value < 10) { 913 /* decimal input of code, while Alt depressed */ 914 base = 10; 915 } else { 916 /* hexadecimal input of code, while AltGr depressed */ 917 value -= 10; 918 base = 16; 919 } 920 921 if (!npadch_active) { 922 npadch_value = 0; 923 npadch_active = true; 924 } 925 926 npadch_value = npadch_value * base + value; 927 } 928 929 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) 930 { 931 if (up_flag || rep) 932 return; 933 934 chg_vc_kbd_lock(kbd, value); 935 } 936 937 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) 938 { 939 k_shift(vc, value, up_flag); 940 if (up_flag || rep) 941 return; 942 943 chg_vc_kbd_slock(kbd, value); 944 /* try to make Alt, oops, AltGr and such work */ 945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { 946 kbd->slockstate = 0; 947 chg_vc_kbd_slock(kbd, value); 948 } 949 } 950 951 /* by default, 300ms interval for combination release */ 952 static unsigned brl_timeout = 300; 953 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); 954 module_param(brl_timeout, uint, 0644); 955 956 static unsigned brl_nbchords = 1; 957 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); 958 module_param(brl_nbchords, uint, 0644); 959 960 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) 961 { 962 static unsigned long chords; 963 static unsigned committed; 964 965 if (!brl_nbchords) 966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); 967 else { 968 committed |= pattern; 969 chords++; 970 if (chords == brl_nbchords) { 971 k_unicode(vc, BRL_UC_ROW | committed, up_flag); 972 chords = 0; 973 committed = 0; 974 } 975 } 976 } 977 978 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) 979 { 980 static unsigned pressed, committing; 981 static unsigned long releasestart; 982 983 if (kbd->kbdmode != VC_UNICODE) { 984 if (!up_flag) 985 pr_warn("keyboard mode must be unicode for braille patterns\n"); 986 return; 987 } 988 989 if (!value) { 990 k_unicode(vc, BRL_UC_ROW, up_flag); 991 return; 992 } 993 994 if (value > 8) 995 return; 996 997 if (!up_flag) { 998 pressed |= BIT(value - 1); 999 if (!brl_timeout) 1000 committing = pressed; 1001 } else if (brl_timeout) { 1002 if (!committing || 1003 time_after(jiffies, 1004 releasestart + msecs_to_jiffies(brl_timeout))) { 1005 committing = pressed; 1006 releasestart = jiffies; 1007 } 1008 pressed &= ~BIT(value - 1); 1009 if (!pressed && committing) { 1010 k_brlcommit(vc, committing, 0); 1011 committing = 0; 1012 } 1013 } else { 1014 if (committing) { 1015 k_brlcommit(vc, committing, 0); 1016 committing = 0; 1017 } 1018 pressed &= ~BIT(value - 1); 1019 } 1020 } 1021 1022 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS) 1023 1024 struct kbd_led_trigger { 1025 struct led_trigger trigger; 1026 unsigned int mask; 1027 }; 1028 1029 static int kbd_led_trigger_activate(struct led_classdev *cdev) 1030 { 1031 struct kbd_led_trigger *trigger = 1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger); 1033 1034 tasklet_disable(&keyboard_tasklet); 1035 if (ledstate != -1U) 1036 led_set_brightness(cdev, ledstate & trigger->mask ? LED_FULL : LED_OFF); 1037 tasklet_enable(&keyboard_tasklet); 1038 1039 return 0; 1040 } 1041 1042 #define KBD_LED_TRIGGER(_led_bit, _name) { \ 1043 .trigger = { \ 1044 .name = _name, \ 1045 .activate = kbd_led_trigger_activate, \ 1046 }, \ 1047 .mask = BIT(_led_bit), \ 1048 } 1049 1050 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \ 1051 KBD_LED_TRIGGER((_led_bit) + 8, _name) 1052 1053 static struct kbd_led_trigger kbd_led_triggers[] = { 1054 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"), 1055 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"), 1056 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"), 1057 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"), 1058 1059 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"), 1060 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"), 1061 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"), 1062 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"), 1063 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"), 1064 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"), 1065 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"), 1066 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"), 1067 }; 1068 1069 static void kbd_propagate_led_state(unsigned int old_state, 1070 unsigned int new_state) 1071 { 1072 struct kbd_led_trigger *trigger; 1073 unsigned int changed = old_state ^ new_state; 1074 int i; 1075 1076 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { 1077 trigger = &kbd_led_triggers[i]; 1078 1079 if (changed & trigger->mask) 1080 led_trigger_event(&trigger->trigger, 1081 new_state & trigger->mask ? 1082 LED_FULL : LED_OFF); 1083 } 1084 } 1085 1086 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1087 { 1088 unsigned int led_state = *(unsigned int *)data; 1089 1090 if (test_bit(EV_LED, handle->dev->evbit)) 1091 kbd_propagate_led_state(~led_state, led_state); 1092 1093 return 0; 1094 } 1095 1096 static void kbd_init_leds(void) 1097 { 1098 int error; 1099 int i; 1100 1101 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { 1102 error = led_trigger_register(&kbd_led_triggers[i].trigger); 1103 if (error) 1104 pr_err("error %d while registering trigger %s\n", 1105 error, kbd_led_triggers[i].trigger.name); 1106 } 1107 } 1108 1109 #else 1110 1111 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1112 { 1113 unsigned int leds = *(unsigned int *)data; 1114 1115 if (test_bit(EV_LED, handle->dev->evbit)) { 1116 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0))); 1117 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1))); 1118 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2))); 1119 input_inject_event(handle, EV_SYN, SYN_REPORT, 0); 1120 } 1121 1122 return 0; 1123 } 1124 1125 static void kbd_propagate_led_state(unsigned int old_state, 1126 unsigned int new_state) 1127 { 1128 input_handler_for_each_handle(&kbd_handler, &new_state, 1129 kbd_update_leds_helper); 1130 } 1131 1132 static void kbd_init_leds(void) 1133 { 1134 } 1135 1136 #endif 1137 1138 /* 1139 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, 1140 * or (ii) whatever pattern of lights people want to show using KDSETLED, 1141 * or (iii) specified bits of specified words in kernel memory. 1142 */ 1143 static unsigned char getledstate(void) 1144 { 1145 return ledstate & 0xff; 1146 } 1147 1148 void setledstate(struct kbd_struct *kb, unsigned int led) 1149 { 1150 unsigned long flags; 1151 spin_lock_irqsave(&led_lock, flags); 1152 if (!(led & ~7)) { 1153 ledioctl = led; 1154 kb->ledmode = LED_SHOW_IOCTL; 1155 } else 1156 kb->ledmode = LED_SHOW_FLAGS; 1157 1158 set_leds(); 1159 spin_unlock_irqrestore(&led_lock, flags); 1160 } 1161 1162 static inline unsigned char getleds(void) 1163 { 1164 struct kbd_struct *kb = kbd_table + fg_console; 1165 1166 if (kb->ledmode == LED_SHOW_IOCTL) 1167 return ledioctl; 1168 1169 return kb->ledflagstate; 1170 } 1171 1172 /** 1173 * vt_get_leds - helper for braille console 1174 * @console: console to read 1175 * @flag: flag we want to check 1176 * 1177 * Check the status of a keyboard led flag and report it back 1178 */ 1179 int vt_get_leds(unsigned int console, int flag) 1180 { 1181 struct kbd_struct *kb = &kbd_table[console]; 1182 int ret; 1183 unsigned long flags; 1184 1185 spin_lock_irqsave(&led_lock, flags); 1186 ret = vc_kbd_led(kb, flag); 1187 spin_unlock_irqrestore(&led_lock, flags); 1188 1189 return ret; 1190 } 1191 EXPORT_SYMBOL_GPL(vt_get_leds); 1192 1193 /** 1194 * vt_set_led_state - set LED state of a console 1195 * @console: console to set 1196 * @leds: LED bits 1197 * 1198 * Set the LEDs on a console. This is a wrapper for the VT layer 1199 * so that we can keep kbd knowledge internal 1200 */ 1201 void vt_set_led_state(unsigned int console, int leds) 1202 { 1203 struct kbd_struct *kb = &kbd_table[console]; 1204 setledstate(kb, leds); 1205 } 1206 1207 /** 1208 * vt_kbd_con_start - Keyboard side of console start 1209 * @console: console 1210 * 1211 * Handle console start. This is a wrapper for the VT layer 1212 * so that we can keep kbd knowledge internal 1213 * 1214 * FIXME: We eventually need to hold the kbd lock here to protect 1215 * the LED updating. We can't do it yet because fn_hold calls stop_tty 1216 * and start_tty under the kbd_event_lock, while normal tty paths 1217 * don't hold the lock. We probably need to split out an LED lock 1218 * but not during an -rc release! 1219 */ 1220 void vt_kbd_con_start(unsigned int console) 1221 { 1222 struct kbd_struct *kb = &kbd_table[console]; 1223 unsigned long flags; 1224 spin_lock_irqsave(&led_lock, flags); 1225 clr_vc_kbd_led(kb, VC_SCROLLOCK); 1226 set_leds(); 1227 spin_unlock_irqrestore(&led_lock, flags); 1228 } 1229 1230 /** 1231 * vt_kbd_con_stop - Keyboard side of console stop 1232 * @console: console 1233 * 1234 * Handle console stop. This is a wrapper for the VT layer 1235 * so that we can keep kbd knowledge internal 1236 */ 1237 void vt_kbd_con_stop(unsigned int console) 1238 { 1239 struct kbd_struct *kb = &kbd_table[console]; 1240 unsigned long flags; 1241 spin_lock_irqsave(&led_lock, flags); 1242 set_vc_kbd_led(kb, VC_SCROLLOCK); 1243 set_leds(); 1244 spin_unlock_irqrestore(&led_lock, flags); 1245 } 1246 1247 /* 1248 * This is the tasklet that updates LED state of LEDs using standard 1249 * keyboard triggers. The reason we use tasklet is that we need to 1250 * handle the scenario when keyboard handler is not registered yet 1251 * but we already getting updates from the VT to update led state. 1252 */ 1253 static void kbd_bh(struct tasklet_struct *unused) 1254 { 1255 unsigned int leds; 1256 unsigned long flags; 1257 1258 spin_lock_irqsave(&led_lock, flags); 1259 leds = getleds(); 1260 leds |= (unsigned int)kbd->lockstate << 8; 1261 spin_unlock_irqrestore(&led_lock, flags); 1262 1263 if (vt_switch) { 1264 ledstate = ~leds; 1265 vt_switch = false; 1266 } 1267 1268 if (leds != ledstate) { 1269 kbd_propagate_led_state(ledstate, leds); 1270 ledstate = leds; 1271 } 1272 } 1273 1274 #if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\ 1275 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ 1276 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ 1277 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) 1278 1279 static inline bool kbd_is_hw_raw(const struct input_dev *dev) 1280 { 1281 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit)) 1282 return false; 1283 1284 return dev->id.bustype == BUS_I8042 && 1285 dev->id.vendor == 0x0001 && dev->id.product == 0x0001; 1286 } 1287 1288 static const unsigned short x86_keycodes[256] = 1289 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1290 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1291 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 1292 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1293 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 1294 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, 1295 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339, 1296 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, 1297 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, 1298 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, 1299 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, 1300 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, 1301 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, 1302 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, 1303 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; 1304 1305 #ifdef CONFIG_SPARC 1306 static int sparc_l1_a_state; 1307 extern void sun_do_break(void); 1308 #endif 1309 1310 static int emulate_raw(struct vc_data *vc, unsigned int keycode, 1311 unsigned char up_flag) 1312 { 1313 int code; 1314 1315 switch (keycode) { 1316 1317 case KEY_PAUSE: 1318 put_queue(vc, 0xe1); 1319 put_queue(vc, 0x1d | up_flag); 1320 put_queue(vc, 0x45 | up_flag); 1321 break; 1322 1323 case KEY_HANGEUL: 1324 if (!up_flag) 1325 put_queue(vc, 0xf2); 1326 break; 1327 1328 case KEY_HANJA: 1329 if (!up_flag) 1330 put_queue(vc, 0xf1); 1331 break; 1332 1333 case KEY_SYSRQ: 1334 /* 1335 * Real AT keyboards (that's what we're trying 1336 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when 1337 * pressing PrtSc/SysRq alone, but simply 0x54 1338 * when pressing Alt+PrtSc/SysRq. 1339 */ 1340 if (test_bit(KEY_LEFTALT, key_down) || 1341 test_bit(KEY_RIGHTALT, key_down)) { 1342 put_queue(vc, 0x54 | up_flag); 1343 } else { 1344 put_queue(vc, 0xe0); 1345 put_queue(vc, 0x2a | up_flag); 1346 put_queue(vc, 0xe0); 1347 put_queue(vc, 0x37 | up_flag); 1348 } 1349 break; 1350 1351 default: 1352 if (keycode > 255) 1353 return -1; 1354 1355 code = x86_keycodes[keycode]; 1356 if (!code) 1357 return -1; 1358 1359 if (code & 0x100) 1360 put_queue(vc, 0xe0); 1361 put_queue(vc, (code & 0x7f) | up_flag); 1362 1363 break; 1364 } 1365 1366 return 0; 1367 } 1368 1369 #else 1370 1371 static inline bool kbd_is_hw_raw(const struct input_dev *dev) 1372 { 1373 return false; 1374 } 1375 1376 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) 1377 { 1378 if (keycode > 127) 1379 return -1; 1380 1381 put_queue(vc, keycode | up_flag); 1382 return 0; 1383 } 1384 #endif 1385 1386 static void kbd_rawcode(unsigned char data) 1387 { 1388 struct vc_data *vc = vc_cons[fg_console].d; 1389 1390 kbd = &kbd_table[vc->vc_num]; 1391 if (kbd->kbdmode == VC_RAW) 1392 put_queue(vc, data); 1393 } 1394 1395 static void kbd_keycode(unsigned int keycode, int down, bool hw_raw) 1396 { 1397 struct vc_data *vc = vc_cons[fg_console].d; 1398 unsigned short keysym, *key_map; 1399 unsigned char type; 1400 bool raw_mode; 1401 struct tty_struct *tty; 1402 int shift_final; 1403 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; 1404 int rc; 1405 1406 tty = vc->port.tty; 1407 1408 if (tty && (!tty->driver_data)) { 1409 /* No driver data? Strange. Okay we fix it then. */ 1410 tty->driver_data = vc; 1411 } 1412 1413 kbd = &kbd_table[vc->vc_num]; 1414 1415 #ifdef CONFIG_SPARC 1416 if (keycode == KEY_STOP) 1417 sparc_l1_a_state = down; 1418 #endif 1419 1420 rep = (down == 2); 1421 1422 raw_mode = (kbd->kbdmode == VC_RAW); 1423 if (raw_mode && !hw_raw) 1424 if (emulate_raw(vc, keycode, !down << 7)) 1425 if (keycode < BTN_MISC && printk_ratelimit()) 1426 pr_warn("can't emulate rawmode for keycode %d\n", 1427 keycode); 1428 1429 #ifdef CONFIG_SPARC 1430 if (keycode == KEY_A && sparc_l1_a_state) { 1431 sparc_l1_a_state = false; 1432 sun_do_break(); 1433 } 1434 #endif 1435 1436 if (kbd->kbdmode == VC_MEDIUMRAW) { 1437 /* 1438 * This is extended medium raw mode, with keys above 127 1439 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing 1440 * the 'up' flag if needed. 0 is reserved, so this shouldn't 1441 * interfere with anything else. The two bytes after 0 will 1442 * always have the up flag set not to interfere with older 1443 * applications. This allows for 16384 different keycodes, 1444 * which should be enough. 1445 */ 1446 if (keycode < 128) { 1447 put_queue(vc, keycode | (!down << 7)); 1448 } else { 1449 put_queue(vc, !down << 7); 1450 put_queue(vc, (keycode >> 7) | BIT(7)); 1451 put_queue(vc, keycode | BIT(7)); 1452 } 1453 raw_mode = true; 1454 } 1455 1456 assign_bit(keycode, key_down, down); 1457 1458 if (rep && 1459 (!vc_kbd_mode(kbd, VC_REPEAT) || 1460 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { 1461 /* 1462 * Don't repeat a key if the input buffers are not empty and the 1463 * characters get aren't echoed locally. This makes key repeat 1464 * usable with slow applications and under heavy loads. 1465 */ 1466 return; 1467 } 1468 1469 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; 1470 param.ledstate = kbd->ledflagstate; 1471 key_map = key_maps[shift_final]; 1472 1473 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1474 KBD_KEYCODE, ¶m); 1475 if (rc == NOTIFY_STOP || !key_map) { 1476 atomic_notifier_call_chain(&keyboard_notifier_list, 1477 KBD_UNBOUND_KEYCODE, ¶m); 1478 do_compute_shiftstate(); 1479 kbd->slockstate = 0; 1480 return; 1481 } 1482 1483 if (keycode < NR_KEYS) 1484 keysym = key_map[keycode]; 1485 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) 1486 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1)); 1487 else 1488 return; 1489 1490 type = KTYP(keysym); 1491 1492 if (type < 0xf0) { 1493 param.value = keysym; 1494 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1495 KBD_UNICODE, ¶m); 1496 if (rc != NOTIFY_STOP) 1497 if (down && !raw_mode) 1498 k_unicode(vc, keysym, !down); 1499 return; 1500 } 1501 1502 type -= 0xf0; 1503 1504 if (type == KT_LETTER) { 1505 type = KT_LATIN; 1506 if (vc_kbd_led(kbd, VC_CAPSLOCK)) { 1507 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)]; 1508 if (key_map) 1509 keysym = key_map[keycode]; 1510 } 1511 } 1512 1513 param.value = keysym; 1514 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1515 KBD_KEYSYM, ¶m); 1516 if (rc == NOTIFY_STOP) 1517 return; 1518 1519 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT) 1520 return; 1521 1522 (*k_handler[type])(vc, keysym & 0xff, !down); 1523 1524 param.ledstate = kbd->ledflagstate; 1525 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); 1526 1527 if (type != KT_SLOCK) 1528 kbd->slockstate = 0; 1529 } 1530 1531 static void kbd_event(struct input_handle *handle, unsigned int event_type, 1532 unsigned int event_code, int value) 1533 { 1534 /* We are called with interrupts disabled, just take the lock */ 1535 spin_lock(&kbd_event_lock); 1536 1537 if (event_type == EV_MSC && event_code == MSC_RAW && 1538 kbd_is_hw_raw(handle->dev)) 1539 kbd_rawcode(value); 1540 if (event_type == EV_KEY && event_code <= KEY_MAX) 1541 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev)); 1542 1543 spin_unlock(&kbd_event_lock); 1544 1545 tasklet_schedule(&keyboard_tasklet); 1546 do_poke_blanked_console = 1; 1547 schedule_console_callback(); 1548 } 1549 1550 static bool kbd_match(struct input_handler *handler, struct input_dev *dev) 1551 { 1552 if (test_bit(EV_SND, dev->evbit)) 1553 return true; 1554 1555 if (test_bit(EV_KEY, dev->evbit)) { 1556 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) < 1557 BTN_MISC) 1558 return true; 1559 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1, 1560 KEY_BRL_DOT1) <= KEY_BRL_DOT10) 1561 return true; 1562 } 1563 1564 return false; 1565 } 1566 1567 /* 1568 * When a keyboard (or other input device) is found, the kbd_connect 1569 * function is called. The function then looks at the device, and if it 1570 * likes it, it can open it and get events from it. In this (kbd_connect) 1571 * function, we should decide which VT to bind that keyboard to initially. 1572 */ 1573 static int kbd_connect(struct input_handler *handler, struct input_dev *dev, 1574 const struct input_device_id *id) 1575 { 1576 struct input_handle *handle; 1577 int error; 1578 1579 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); 1580 if (!handle) 1581 return -ENOMEM; 1582 1583 handle->dev = dev; 1584 handle->handler = handler; 1585 handle->name = "kbd"; 1586 1587 error = input_register_handle(handle); 1588 if (error) 1589 goto err_free_handle; 1590 1591 error = input_open_device(handle); 1592 if (error) 1593 goto err_unregister_handle; 1594 1595 return 0; 1596 1597 err_unregister_handle: 1598 input_unregister_handle(handle); 1599 err_free_handle: 1600 kfree(handle); 1601 return error; 1602 } 1603 1604 static void kbd_disconnect(struct input_handle *handle) 1605 { 1606 input_close_device(handle); 1607 input_unregister_handle(handle); 1608 kfree(handle); 1609 } 1610 1611 /* 1612 * Start keyboard handler on the new keyboard by refreshing LED state to 1613 * match the rest of the system. 1614 */ 1615 static void kbd_start(struct input_handle *handle) 1616 { 1617 tasklet_disable(&keyboard_tasklet); 1618 1619 if (ledstate != -1U) 1620 kbd_update_leds_helper(handle, &ledstate); 1621 1622 tasklet_enable(&keyboard_tasklet); 1623 } 1624 1625 static const struct input_device_id kbd_ids[] = { 1626 { 1627 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1628 .evbit = { BIT_MASK(EV_KEY) }, 1629 }, 1630 1631 { 1632 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1633 .evbit = { BIT_MASK(EV_SND) }, 1634 }, 1635 1636 { }, /* Terminating entry */ 1637 }; 1638 1639 MODULE_DEVICE_TABLE(input, kbd_ids); 1640 1641 static struct input_handler kbd_handler = { 1642 .event = kbd_event, 1643 .match = kbd_match, 1644 .connect = kbd_connect, 1645 .disconnect = kbd_disconnect, 1646 .start = kbd_start, 1647 .name = "kbd", 1648 .id_table = kbd_ids, 1649 }; 1650 1651 int __init kbd_init(void) 1652 { 1653 int i; 1654 int error; 1655 1656 for (i = 0; i < MAX_NR_CONSOLES; i++) { 1657 kbd_table[i].ledflagstate = kbd_defleds(); 1658 kbd_table[i].default_ledflagstate = kbd_defleds(); 1659 kbd_table[i].ledmode = LED_SHOW_FLAGS; 1660 kbd_table[i].lockstate = KBD_DEFLOCK; 1661 kbd_table[i].slockstate = 0; 1662 kbd_table[i].modeflags = KBD_DEFMODE; 1663 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 1664 } 1665 1666 kbd_init_leds(); 1667 1668 error = input_register_handler(&kbd_handler); 1669 if (error) 1670 return error; 1671 1672 tasklet_enable(&keyboard_tasklet); 1673 tasklet_schedule(&keyboard_tasklet); 1674 1675 return 0; 1676 } 1677 1678 /* Ioctl support code */ 1679 1680 /** 1681 * vt_do_diacrit - diacritical table updates 1682 * @cmd: ioctl request 1683 * @udp: pointer to user data for ioctl 1684 * @perm: permissions check computed by caller 1685 * 1686 * Update the diacritical tables atomically and safely. Lock them 1687 * against simultaneous keypresses 1688 */ 1689 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm) 1690 { 1691 unsigned long flags; 1692 int asize; 1693 int ret = 0; 1694 1695 switch (cmd) { 1696 case KDGKBDIACR: 1697 { 1698 struct kbdiacrs __user *a = udp; 1699 struct kbdiacr *dia; 1700 int i; 1701 1702 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr), 1703 GFP_KERNEL); 1704 if (!dia) 1705 return -ENOMEM; 1706 1707 /* Lock the diacriticals table, make a copy and then 1708 copy it after we unlock */ 1709 spin_lock_irqsave(&kbd_event_lock, flags); 1710 1711 asize = accent_table_size; 1712 for (i = 0; i < asize; i++) { 1713 dia[i].diacr = conv_uni_to_8bit( 1714 accent_table[i].diacr); 1715 dia[i].base = conv_uni_to_8bit( 1716 accent_table[i].base); 1717 dia[i].result = conv_uni_to_8bit( 1718 accent_table[i].result); 1719 } 1720 spin_unlock_irqrestore(&kbd_event_lock, flags); 1721 1722 if (put_user(asize, &a->kb_cnt)) 1723 ret = -EFAULT; 1724 else if (copy_to_user(a->kbdiacr, dia, 1725 asize * sizeof(struct kbdiacr))) 1726 ret = -EFAULT; 1727 kfree(dia); 1728 return ret; 1729 } 1730 case KDGKBDIACRUC: 1731 { 1732 struct kbdiacrsuc __user *a = udp; 1733 void *buf; 1734 1735 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc), 1736 GFP_KERNEL); 1737 if (buf == NULL) 1738 return -ENOMEM; 1739 1740 /* Lock the diacriticals table, make a copy and then 1741 copy it after we unlock */ 1742 spin_lock_irqsave(&kbd_event_lock, flags); 1743 1744 asize = accent_table_size; 1745 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc)); 1746 1747 spin_unlock_irqrestore(&kbd_event_lock, flags); 1748 1749 if (put_user(asize, &a->kb_cnt)) 1750 ret = -EFAULT; 1751 else if (copy_to_user(a->kbdiacruc, buf, 1752 asize*sizeof(struct kbdiacruc))) 1753 ret = -EFAULT; 1754 kfree(buf); 1755 return ret; 1756 } 1757 1758 case KDSKBDIACR: 1759 { 1760 struct kbdiacrs __user *a = udp; 1761 struct kbdiacr *dia = NULL; 1762 unsigned int ct; 1763 int i; 1764 1765 if (!perm) 1766 return -EPERM; 1767 if (get_user(ct, &a->kb_cnt)) 1768 return -EFAULT; 1769 if (ct >= MAX_DIACR) 1770 return -EINVAL; 1771 1772 if (ct) { 1773 dia = memdup_array_user(a->kbdiacr, 1774 ct, sizeof(struct kbdiacr)); 1775 if (IS_ERR(dia)) 1776 return PTR_ERR(dia); 1777 } 1778 1779 spin_lock_irqsave(&kbd_event_lock, flags); 1780 accent_table_size = ct; 1781 for (i = 0; i < ct; i++) { 1782 accent_table[i].diacr = 1783 conv_8bit_to_uni(dia[i].diacr); 1784 accent_table[i].base = 1785 conv_8bit_to_uni(dia[i].base); 1786 accent_table[i].result = 1787 conv_8bit_to_uni(dia[i].result); 1788 } 1789 spin_unlock_irqrestore(&kbd_event_lock, flags); 1790 kfree(dia); 1791 return 0; 1792 } 1793 1794 case KDSKBDIACRUC: 1795 { 1796 struct kbdiacrsuc __user *a = udp; 1797 unsigned int ct; 1798 void *buf = NULL; 1799 1800 if (!perm) 1801 return -EPERM; 1802 1803 if (get_user(ct, &a->kb_cnt)) 1804 return -EFAULT; 1805 1806 if (ct >= MAX_DIACR) 1807 return -EINVAL; 1808 1809 if (ct) { 1810 buf = memdup_array_user(a->kbdiacruc, 1811 ct, sizeof(struct kbdiacruc)); 1812 if (IS_ERR(buf)) 1813 return PTR_ERR(buf); 1814 } 1815 spin_lock_irqsave(&kbd_event_lock, flags); 1816 if (ct) 1817 memcpy(accent_table, buf, 1818 ct * sizeof(struct kbdiacruc)); 1819 accent_table_size = ct; 1820 spin_unlock_irqrestore(&kbd_event_lock, flags); 1821 kfree(buf); 1822 return 0; 1823 } 1824 } 1825 return ret; 1826 } 1827 1828 /** 1829 * vt_do_kdskbmode - set keyboard mode ioctl 1830 * @console: the console to use 1831 * @arg: the requested mode 1832 * 1833 * Update the keyboard mode bits while holding the correct locks. 1834 * Return 0 for success or an error code. 1835 */ 1836 int vt_do_kdskbmode(unsigned int console, unsigned int arg) 1837 { 1838 struct kbd_struct *kb = &kbd_table[console]; 1839 int ret = 0; 1840 unsigned long flags; 1841 1842 spin_lock_irqsave(&kbd_event_lock, flags); 1843 switch(arg) { 1844 case K_RAW: 1845 kb->kbdmode = VC_RAW; 1846 break; 1847 case K_MEDIUMRAW: 1848 kb->kbdmode = VC_MEDIUMRAW; 1849 break; 1850 case K_XLATE: 1851 kb->kbdmode = VC_XLATE; 1852 do_compute_shiftstate(); 1853 break; 1854 case K_UNICODE: 1855 kb->kbdmode = VC_UNICODE; 1856 do_compute_shiftstate(); 1857 break; 1858 case K_OFF: 1859 kb->kbdmode = VC_OFF; 1860 break; 1861 default: 1862 ret = -EINVAL; 1863 } 1864 spin_unlock_irqrestore(&kbd_event_lock, flags); 1865 return ret; 1866 } 1867 1868 /** 1869 * vt_do_kdskbmeta - set keyboard meta state 1870 * @console: the console to use 1871 * @arg: the requested meta state 1872 * 1873 * Update the keyboard meta bits while holding the correct locks. 1874 * Return 0 for success or an error code. 1875 */ 1876 int vt_do_kdskbmeta(unsigned int console, unsigned int arg) 1877 { 1878 struct kbd_struct *kb = &kbd_table[console]; 1879 int ret = 0; 1880 unsigned long flags; 1881 1882 spin_lock_irqsave(&kbd_event_lock, flags); 1883 switch(arg) { 1884 case K_METABIT: 1885 clr_vc_kbd_mode(kb, VC_META); 1886 break; 1887 case K_ESCPREFIX: 1888 set_vc_kbd_mode(kb, VC_META); 1889 break; 1890 default: 1891 ret = -EINVAL; 1892 } 1893 spin_unlock_irqrestore(&kbd_event_lock, flags); 1894 return ret; 1895 } 1896 1897 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, 1898 int perm) 1899 { 1900 struct kbkeycode tmp; 1901 int kc = 0; 1902 1903 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) 1904 return -EFAULT; 1905 switch (cmd) { 1906 case KDGETKEYCODE: 1907 kc = getkeycode(tmp.scancode); 1908 if (kc >= 0) 1909 kc = put_user(kc, &user_kbkc->keycode); 1910 break; 1911 case KDSETKEYCODE: 1912 if (!perm) 1913 return -EPERM; 1914 kc = setkeycode(tmp.scancode, tmp.keycode); 1915 break; 1916 } 1917 return kc; 1918 } 1919 1920 static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx, 1921 unsigned char map) 1922 { 1923 unsigned short *key_map, val; 1924 unsigned long flags; 1925 1926 /* Ensure another thread doesn't free it under us */ 1927 spin_lock_irqsave(&kbd_event_lock, flags); 1928 key_map = key_maps[map]; 1929 if (key_map) { 1930 val = U(key_map[idx]); 1931 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) 1932 val = K_HOLE; 1933 } else 1934 val = idx ? K_HOLE : K_NOSUCHMAP; 1935 spin_unlock_irqrestore(&kbd_event_lock, flags); 1936 1937 return val; 1938 } 1939 1940 static int vt_kdskbent(unsigned char kbdmode, unsigned char idx, 1941 unsigned char map, unsigned short val) 1942 { 1943 unsigned long flags; 1944 unsigned short *key_map, *new_map, oldval; 1945 1946 if (!idx && val == K_NOSUCHMAP) { 1947 spin_lock_irqsave(&kbd_event_lock, flags); 1948 /* deallocate map */ 1949 key_map = key_maps[map]; 1950 if (map && key_map) { 1951 key_maps[map] = NULL; 1952 if (key_map[0] == U(K_ALLOCATED)) { 1953 kfree(key_map); 1954 keymap_count--; 1955 } 1956 } 1957 spin_unlock_irqrestore(&kbd_event_lock, flags); 1958 1959 return 0; 1960 } 1961 1962 if (KTYP(val) < NR_TYPES) { 1963 if (KVAL(val) > max_vals[KTYP(val)]) 1964 return -EINVAL; 1965 } else if (kbdmode != VC_UNICODE) 1966 return -EINVAL; 1967 1968 /* ++Geert: non-PC keyboards may generate keycode zero */ 1969 #if !defined(__mc68000__) && !defined(__powerpc__) 1970 /* assignment to entry 0 only tests validity of args */ 1971 if (!idx) 1972 return 0; 1973 #endif 1974 1975 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL); 1976 if (!new_map) 1977 return -ENOMEM; 1978 1979 spin_lock_irqsave(&kbd_event_lock, flags); 1980 key_map = key_maps[map]; 1981 if (key_map == NULL) { 1982 int j; 1983 1984 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && 1985 !capable(CAP_SYS_RESOURCE)) { 1986 spin_unlock_irqrestore(&kbd_event_lock, flags); 1987 kfree(new_map); 1988 return -EPERM; 1989 } 1990 key_maps[map] = new_map; 1991 key_map = new_map; 1992 key_map[0] = U(K_ALLOCATED); 1993 for (j = 1; j < NR_KEYS; j++) 1994 key_map[j] = U(K_HOLE); 1995 keymap_count++; 1996 } else 1997 kfree(new_map); 1998 1999 oldval = U(key_map[idx]); 2000 if (val == oldval) 2001 goto out; 2002 2003 /* Attention Key */ 2004 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) { 2005 spin_unlock_irqrestore(&kbd_event_lock, flags); 2006 return -EPERM; 2007 } 2008 2009 key_map[idx] = U(val); 2010 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT)) 2011 do_compute_shiftstate(); 2012 out: 2013 spin_unlock_irqrestore(&kbd_event_lock, flags); 2014 2015 return 0; 2016 } 2017 2018 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, 2019 unsigned int console) 2020 { 2021 struct kbd_struct *kb = &kbd_table[console]; 2022 struct kbentry kbe; 2023 2024 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry))) 2025 return -EFAULT; 2026 2027 switch (cmd) { 2028 case KDGKBENT: 2029 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index, 2030 kbe.kb_table), 2031 &user_kbe->kb_value); 2032 case KDSKBENT: 2033 if (!perm || !capable(CAP_SYS_TTY_CONFIG)) 2034 return -EPERM; 2035 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table, 2036 kbe.kb_value); 2037 } 2038 return 0; 2039 } 2040 2041 static char *vt_kdskbsent(char *kbs, unsigned char cur) 2042 { 2043 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC); 2044 char *cur_f = func_table[cur]; 2045 2046 if (cur_f && strlen(cur_f) >= strlen(kbs)) { 2047 strcpy(cur_f, kbs); 2048 return kbs; 2049 } 2050 2051 func_table[cur] = kbs; 2052 2053 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL; 2054 } 2055 2056 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) 2057 { 2058 unsigned char kb_func; 2059 unsigned long flags; 2060 char *kbs; 2061 int ret; 2062 2063 if (get_user(kb_func, &user_kdgkb->kb_func)) 2064 return -EFAULT; 2065 2066 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC); 2067 2068 switch (cmd) { 2069 case KDGKBSENT: { 2070 /* size should have been a struct member */ 2071 ssize_t len = sizeof(user_kdgkb->kb_string); 2072 2073 kbs = kmalloc(len, GFP_KERNEL); 2074 if (!kbs) 2075 return -ENOMEM; 2076 2077 spin_lock_irqsave(&func_buf_lock, flags); 2078 len = strscpy(kbs, func_table[kb_func] ? : "", len); 2079 spin_unlock_irqrestore(&func_buf_lock, flags); 2080 2081 if (len < 0) { 2082 ret = -ENOSPC; 2083 break; 2084 } 2085 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ? 2086 -EFAULT : 0; 2087 break; 2088 } 2089 case KDSKBSENT: 2090 if (!perm || !capable(CAP_SYS_TTY_CONFIG)) 2091 return -EPERM; 2092 2093 kbs = strndup_user(user_kdgkb->kb_string, 2094 sizeof(user_kdgkb->kb_string)); 2095 if (IS_ERR(kbs)) 2096 return PTR_ERR(kbs); 2097 2098 spin_lock_irqsave(&func_buf_lock, flags); 2099 kbs = vt_kdskbsent(kbs, kb_func); 2100 spin_unlock_irqrestore(&func_buf_lock, flags); 2101 2102 ret = 0; 2103 break; 2104 } 2105 2106 kfree(kbs); 2107 2108 return ret; 2109 } 2110 2111 int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm) 2112 { 2113 struct kbd_struct *kb = &kbd_table[console]; 2114 unsigned long flags; 2115 unsigned char ucval; 2116 2117 switch(cmd) { 2118 /* the ioctls below read/set the flags usually shown in the leds */ 2119 /* don't use them - they will go away without warning */ 2120 case KDGKBLED: 2121 spin_lock_irqsave(&kbd_event_lock, flags); 2122 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4); 2123 spin_unlock_irqrestore(&kbd_event_lock, flags); 2124 return put_user(ucval, (char __user *)arg); 2125 2126 case KDSKBLED: 2127 if (!perm) 2128 return -EPERM; 2129 if (arg & ~0x77) 2130 return -EINVAL; 2131 spin_lock_irqsave(&led_lock, flags); 2132 kb->ledflagstate = (arg & 7); 2133 kb->default_ledflagstate = ((arg >> 4) & 7); 2134 set_leds(); 2135 spin_unlock_irqrestore(&led_lock, flags); 2136 return 0; 2137 2138 /* the ioctls below only set the lights, not the functions */ 2139 /* for those, see KDGKBLED and KDSKBLED above */ 2140 case KDGETLED: 2141 ucval = getledstate(); 2142 return put_user(ucval, (char __user *)arg); 2143 2144 case KDSETLED: 2145 if (!perm) 2146 return -EPERM; 2147 setledstate(kb, arg); 2148 return 0; 2149 } 2150 return -ENOIOCTLCMD; 2151 } 2152 2153 int vt_do_kdgkbmode(unsigned int console) 2154 { 2155 struct kbd_struct *kb = &kbd_table[console]; 2156 /* This is a spot read so needs no locking */ 2157 switch (kb->kbdmode) { 2158 case VC_RAW: 2159 return K_RAW; 2160 case VC_MEDIUMRAW: 2161 return K_MEDIUMRAW; 2162 case VC_UNICODE: 2163 return K_UNICODE; 2164 case VC_OFF: 2165 return K_OFF; 2166 default: 2167 return K_XLATE; 2168 } 2169 } 2170 2171 /** 2172 * vt_do_kdgkbmeta - report meta status 2173 * @console: console to report 2174 * 2175 * Report the meta flag status of this console 2176 */ 2177 int vt_do_kdgkbmeta(unsigned int console) 2178 { 2179 struct kbd_struct *kb = &kbd_table[console]; 2180 /* Again a spot read so no locking */ 2181 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT; 2182 } 2183 2184 /** 2185 * vt_reset_unicode - reset the unicode status 2186 * @console: console being reset 2187 * 2188 * Restore the unicode console state to its default 2189 */ 2190 void vt_reset_unicode(unsigned int console) 2191 { 2192 unsigned long flags; 2193 2194 spin_lock_irqsave(&kbd_event_lock, flags); 2195 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 2196 spin_unlock_irqrestore(&kbd_event_lock, flags); 2197 } 2198 2199 /** 2200 * vt_get_shift_state - shift bit state 2201 * 2202 * Report the shift bits from the keyboard state. We have to export 2203 * this to support some oddities in the vt layer. 2204 */ 2205 int vt_get_shift_state(void) 2206 { 2207 /* Don't lock as this is a transient report */ 2208 return shift_state; 2209 } 2210 2211 /** 2212 * vt_reset_keyboard - reset keyboard state 2213 * @console: console to reset 2214 * 2215 * Reset the keyboard bits for a console as part of a general console 2216 * reset event 2217 */ 2218 void vt_reset_keyboard(unsigned int console) 2219 { 2220 struct kbd_struct *kb = &kbd_table[console]; 2221 unsigned long flags; 2222 2223 spin_lock_irqsave(&kbd_event_lock, flags); 2224 set_vc_kbd_mode(kb, VC_REPEAT); 2225 clr_vc_kbd_mode(kb, VC_CKMODE); 2226 clr_vc_kbd_mode(kb, VC_APPLIC); 2227 clr_vc_kbd_mode(kb, VC_CRLF); 2228 kb->lockstate = 0; 2229 kb->slockstate = 0; 2230 spin_lock(&led_lock); 2231 kb->ledmode = LED_SHOW_FLAGS; 2232 kb->ledflagstate = kb->default_ledflagstate; 2233 spin_unlock(&led_lock); 2234 /* do not do set_leds here because this causes an endless tasklet loop 2235 when the keyboard hasn't been initialized yet */ 2236 spin_unlock_irqrestore(&kbd_event_lock, flags); 2237 } 2238 2239 /** 2240 * vt_get_kbd_mode_bit - read keyboard status bits 2241 * @console: console to read from 2242 * @bit: mode bit to read 2243 * 2244 * Report back a vt mode bit. We do this without locking so the 2245 * caller must be sure that there are no synchronization needs 2246 */ 2247 2248 int vt_get_kbd_mode_bit(unsigned int console, int bit) 2249 { 2250 struct kbd_struct *kb = &kbd_table[console]; 2251 return vc_kbd_mode(kb, bit); 2252 } 2253 2254 /** 2255 * vt_set_kbd_mode_bit - read keyboard status bits 2256 * @console: console to read from 2257 * @bit: mode bit to read 2258 * 2259 * Set a vt mode bit. We do this without locking so the 2260 * caller must be sure that there are no synchronization needs 2261 */ 2262 2263 void vt_set_kbd_mode_bit(unsigned int console, int bit) 2264 { 2265 struct kbd_struct *kb = &kbd_table[console]; 2266 unsigned long flags; 2267 2268 spin_lock_irqsave(&kbd_event_lock, flags); 2269 set_vc_kbd_mode(kb, bit); 2270 spin_unlock_irqrestore(&kbd_event_lock, flags); 2271 } 2272 2273 /** 2274 * vt_clr_kbd_mode_bit - read keyboard status bits 2275 * @console: console to read from 2276 * @bit: mode bit to read 2277 * 2278 * Report back a vt mode bit. We do this without locking so the 2279 * caller must be sure that there are no synchronization needs 2280 */ 2281 2282 void vt_clr_kbd_mode_bit(unsigned int console, int bit) 2283 { 2284 struct kbd_struct *kb = &kbd_table[console]; 2285 unsigned long flags; 2286 2287 spin_lock_irqsave(&kbd_event_lock, flags); 2288 clr_vc_kbd_mode(kb, bit); 2289 spin_unlock_irqrestore(&kbd_event_lock, flags); 2290 } 2291