1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 */ 5 6 /* 7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 8 * or rs-channels. It also implements echoing, cooked mode etc. 9 * 10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 11 * 12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 13 * tty_struct and tty_queue structures. Previously there was an array 14 * of 256 tty_struct's which was statically allocated, and the 15 * tty_queue structures were allocated at boot time. Both are now 16 * dynamically allocated only when the tty is open. 17 * 18 * Also restructured routines so that there is more of a separation 19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 20 * the low-level tty routines (serial.c, pty.c, console.c). This 21 * makes for cleaner and more compact code. -TYT, 9/17/92 22 * 23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 24 * which can be dynamically activated and de-activated by the line 25 * discipline handling modules (like SLIP). 26 * 27 * NOTE: pay no attention to the line discipline code (yet); its 28 * interface is still subject to change in this version... 29 * -- TYT, 1/31/92 30 * 31 * Added functionality to the OPOST tty handling. No delays, but all 32 * other bits should be there. 33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 34 * 35 * Rewrote canonical mode and added more termios flags. 36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 37 * 38 * Reorganized FASYNC support so mouse code can share it. 39 * -- ctm@ardi.com, 9Sep95 40 * 41 * New TIOCLINUX variants added. 42 * -- mj@k332.feld.cvut.cz, 19-Nov-95 43 * 44 * Restrict vt switching via ioctl() 45 * -- grif@cs.ucr.edu, 5-Dec-95 46 * 47 * Move console and virtual terminal code to more appropriate files, 48 * implement CONFIG_VT and generalize console device interface. 49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 50 * 51 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 52 * -- Bill Hawes <whawes@star.net>, June 97 53 * 54 * Added devfs support. 55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 56 * 57 * Added support for a Unix98-style ptmx device. 58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 59 * 60 * Reduced memory usage for older ARM systems 61 * -- Russell King <rmk@arm.linux.org.uk> 62 * 63 * Move do_SAK() into process context. Less stack use in devfs functions. 64 * alloc_tty_struct() always uses kmalloc() 65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 66 */ 67 68 #include <linux/types.h> 69 #include <linux/major.h> 70 #include <linux/errno.h> 71 #include <linux/signal.h> 72 #include <linux/fcntl.h> 73 #include <linux/sched/signal.h> 74 #include <linux/sched/task.h> 75 #include <linux/interrupt.h> 76 #include <linux/tty.h> 77 #include <linux/tty_driver.h> 78 #include <linux/tty_flip.h> 79 #include <linux/devpts_fs.h> 80 #include <linux/file.h> 81 #include <linux/fdtable.h> 82 #include <linux/console.h> 83 #include <linux/timer.h> 84 #include <linux/ctype.h> 85 #include <linux/kd.h> 86 #include <linux/mm.h> 87 #include <linux/string.h> 88 #include <linux/slab.h> 89 #include <linux/poll.h> 90 #include <linux/proc_fs.h> 91 #include <linux/init.h> 92 #include <linux/module.h> 93 #include <linux/device.h> 94 #include <linux/wait.h> 95 #include <linux/bitops.h> 96 #include <linux/delay.h> 97 #include <linux/seq_file.h> 98 #include <linux/serial.h> 99 #include <linux/ratelimit.h> 100 101 #include <linux/uaccess.h> 102 103 #include <linux/kbd_kern.h> 104 #include <linux/vt_kern.h> 105 #include <linux/selection.h> 106 107 #include <linux/kmod.h> 108 #include <linux/nsproxy.h> 109 110 #undef TTY_DEBUG_HANGUP 111 #ifdef TTY_DEBUG_HANGUP 112 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 113 #else 114 # define tty_debug_hangup(tty, f, args...) do { } while (0) 115 #endif 116 117 #define TTY_PARANOIA_CHECK 1 118 #define CHECK_TTY_COUNT 1 119 120 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 121 .c_iflag = ICRNL | IXON, 122 .c_oflag = OPOST | ONLCR, 123 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 124 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 125 ECHOCTL | ECHOKE | IEXTEN, 126 .c_cc = INIT_C_CC, 127 .c_ispeed = 38400, 128 .c_ospeed = 38400, 129 /* .c_line = N_TTY, */ 130 }; 131 132 EXPORT_SYMBOL(tty_std_termios); 133 134 /* This list gets poked at by procfs and various bits of boot up code. This 135 could do with some rationalisation such as pulling the tty proc function 136 into this file */ 137 138 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 139 140 /* Mutex to protect creating and releasing a tty */ 141 DEFINE_MUTEX(tty_mutex); 142 143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 145 ssize_t redirected_tty_write(struct file *, const char __user *, 146 size_t, loff_t *); 147 static unsigned int tty_poll(struct file *, poll_table *); 148 static int tty_open(struct inode *, struct file *); 149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 150 #ifdef CONFIG_COMPAT 151 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 152 unsigned long arg); 153 #else 154 #define tty_compat_ioctl NULL 155 #endif 156 static int __tty_fasync(int fd, struct file *filp, int on); 157 static int tty_fasync(int fd, struct file *filp, int on); 158 static void release_tty(struct tty_struct *tty, int idx); 159 160 /** 161 * free_tty_struct - free a disused tty 162 * @tty: tty struct to free 163 * 164 * Free the write buffers, tty queue and tty memory itself. 165 * 166 * Locking: none. Must be called after tty is definitely unused 167 */ 168 169 static void free_tty_struct(struct tty_struct *tty) 170 { 171 tty_ldisc_deinit(tty); 172 put_device(tty->dev); 173 kfree(tty->write_buf); 174 tty->magic = 0xDEADDEAD; 175 kfree(tty); 176 } 177 178 static inline struct tty_struct *file_tty(struct file *file) 179 { 180 return ((struct tty_file_private *)file->private_data)->tty; 181 } 182 183 int tty_alloc_file(struct file *file) 184 { 185 struct tty_file_private *priv; 186 187 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 188 if (!priv) 189 return -ENOMEM; 190 191 file->private_data = priv; 192 193 return 0; 194 } 195 196 /* Associate a new file with the tty structure */ 197 void tty_add_file(struct tty_struct *tty, struct file *file) 198 { 199 struct tty_file_private *priv = file->private_data; 200 201 priv->tty = tty; 202 priv->file = file; 203 204 spin_lock(&tty->files_lock); 205 list_add(&priv->list, &tty->tty_files); 206 spin_unlock(&tty->files_lock); 207 } 208 209 /** 210 * tty_free_file - free file->private_data 211 * 212 * This shall be used only for fail path handling when tty_add_file was not 213 * called yet. 214 */ 215 void tty_free_file(struct file *file) 216 { 217 struct tty_file_private *priv = file->private_data; 218 219 file->private_data = NULL; 220 kfree(priv); 221 } 222 223 /* Delete file from its tty */ 224 static void tty_del_file(struct file *file) 225 { 226 struct tty_file_private *priv = file->private_data; 227 struct tty_struct *tty = priv->tty; 228 229 spin_lock(&tty->files_lock); 230 list_del(&priv->list); 231 spin_unlock(&tty->files_lock); 232 tty_free_file(file); 233 } 234 235 /** 236 * tty_name - return tty naming 237 * @tty: tty structure 238 * 239 * Convert a tty structure into a name. The name reflects the kernel 240 * naming policy and if udev is in use may not reflect user space 241 * 242 * Locking: none 243 */ 244 245 const char *tty_name(const struct tty_struct *tty) 246 { 247 if (!tty) /* Hmm. NULL pointer. That's fun. */ 248 return "NULL tty"; 249 return tty->name; 250 } 251 252 EXPORT_SYMBOL(tty_name); 253 254 const char *tty_driver_name(const struct tty_struct *tty) 255 { 256 if (!tty || !tty->driver) 257 return ""; 258 return tty->driver->name; 259 } 260 261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 262 const char *routine) 263 { 264 #ifdef TTY_PARANOIA_CHECK 265 if (!tty) { 266 pr_warn("(%d:%d): %s: NULL tty\n", 267 imajor(inode), iminor(inode), routine); 268 return 1; 269 } 270 if (tty->magic != TTY_MAGIC) { 271 pr_warn("(%d:%d): %s: bad magic number\n", 272 imajor(inode), iminor(inode), routine); 273 return 1; 274 } 275 #endif 276 return 0; 277 } 278 279 /* Caller must hold tty_lock */ 280 static int check_tty_count(struct tty_struct *tty, const char *routine) 281 { 282 #ifdef CHECK_TTY_COUNT 283 struct list_head *p; 284 int count = 0, kopen_count = 0; 285 286 spin_lock(&tty->files_lock); 287 list_for_each(p, &tty->tty_files) { 288 count++; 289 } 290 spin_unlock(&tty->files_lock); 291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 292 tty->driver->subtype == PTY_TYPE_SLAVE && 293 tty->link && tty->link->count) 294 count++; 295 if (tty_port_kopened(tty->port)) 296 kopen_count++; 297 if (tty->count != (count + kopen_count)) { 298 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n", 299 routine, tty->count, count, kopen_count); 300 return (count + kopen_count); 301 } 302 #endif 303 return 0; 304 } 305 306 /** 307 * get_tty_driver - find device of a tty 308 * @dev_t: device identifier 309 * @index: returns the index of the tty 310 * 311 * This routine returns a tty driver structure, given a device number 312 * and also passes back the index number. 313 * 314 * Locking: caller must hold tty_mutex 315 */ 316 317 static struct tty_driver *get_tty_driver(dev_t device, int *index) 318 { 319 struct tty_driver *p; 320 321 list_for_each_entry(p, &tty_drivers, tty_drivers) { 322 dev_t base = MKDEV(p->major, p->minor_start); 323 if (device < base || device >= base + p->num) 324 continue; 325 *index = device - base; 326 return tty_driver_kref_get(p); 327 } 328 return NULL; 329 } 330 331 /** 332 * tty_dev_name_to_number - return dev_t for device name 333 * @name: user space name of device under /dev 334 * @number: pointer to dev_t that this function will populate 335 * 336 * This function converts device names like ttyS0 or ttyUSB1 into dev_t 337 * like (4, 64) or (188, 1). If no corresponding driver is registered then 338 * the function returns -ENODEV. 339 * 340 * Locking: this acquires tty_mutex to protect the tty_drivers list from 341 * being modified while we are traversing it, and makes sure to 342 * release it before exiting. 343 */ 344 int tty_dev_name_to_number(const char *name, dev_t *number) 345 { 346 struct tty_driver *p; 347 int ret; 348 int index, prefix_length = 0; 349 const char *str; 350 351 for (str = name; *str && !isdigit(*str); str++) 352 ; 353 354 if (!*str) 355 return -EINVAL; 356 357 ret = kstrtoint(str, 10, &index); 358 if (ret) 359 return ret; 360 361 prefix_length = str - name; 362 mutex_lock(&tty_mutex); 363 364 list_for_each_entry(p, &tty_drivers, tty_drivers) 365 if (prefix_length == strlen(p->name) && strncmp(name, 366 p->name, prefix_length) == 0) { 367 if (index < p->num) { 368 *number = MKDEV(p->major, p->minor_start + index); 369 goto out; 370 } 371 } 372 373 /* if here then driver wasn't found */ 374 ret = -ENODEV; 375 out: 376 mutex_unlock(&tty_mutex); 377 return ret; 378 } 379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number); 380 381 #ifdef CONFIG_CONSOLE_POLL 382 383 /** 384 * tty_find_polling_driver - find device of a polled tty 385 * @name: name string to match 386 * @line: pointer to resulting tty line nr 387 * 388 * This routine returns a tty driver structure, given a name 389 * and the condition that the tty driver is capable of polled 390 * operation. 391 */ 392 struct tty_driver *tty_find_polling_driver(char *name, int *line) 393 { 394 struct tty_driver *p, *res = NULL; 395 int tty_line = 0; 396 int len; 397 char *str, *stp; 398 399 for (str = name; *str; str++) 400 if ((*str >= '0' && *str <= '9') || *str == ',') 401 break; 402 if (!*str) 403 return NULL; 404 405 len = str - name; 406 tty_line = simple_strtoul(str, &str, 10); 407 408 mutex_lock(&tty_mutex); 409 /* Search through the tty devices to look for a match */ 410 list_for_each_entry(p, &tty_drivers, tty_drivers) { 411 if (strncmp(name, p->name, len) != 0) 412 continue; 413 stp = str; 414 if (*stp == ',') 415 stp++; 416 if (*stp == '\0') 417 stp = NULL; 418 419 if (tty_line >= 0 && tty_line < p->num && p->ops && 420 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 421 res = tty_driver_kref_get(p); 422 *line = tty_line; 423 break; 424 } 425 } 426 mutex_unlock(&tty_mutex); 427 428 return res; 429 } 430 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 431 #endif 432 433 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 434 size_t count, loff_t *ppos) 435 { 436 return 0; 437 } 438 439 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 440 size_t count, loff_t *ppos) 441 { 442 return -EIO; 443 } 444 445 /* No kernel lock held - none needed ;) */ 446 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 447 { 448 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 449 } 450 451 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 452 unsigned long arg) 453 { 454 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 455 } 456 457 static long hung_up_tty_compat_ioctl(struct file *file, 458 unsigned int cmd, unsigned long arg) 459 { 460 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 461 } 462 463 static int hung_up_tty_fasync(int fd, struct file *file, int on) 464 { 465 return -ENOTTY; 466 } 467 468 static void tty_show_fdinfo(struct seq_file *m, struct file *file) 469 { 470 struct tty_struct *tty = file_tty(file); 471 472 if (tty && tty->ops && tty->ops->show_fdinfo) 473 tty->ops->show_fdinfo(tty, m); 474 } 475 476 static const struct file_operations tty_fops = { 477 .llseek = no_llseek, 478 .read = tty_read, 479 .write = tty_write, 480 .poll = tty_poll, 481 .unlocked_ioctl = tty_ioctl, 482 .compat_ioctl = tty_compat_ioctl, 483 .open = tty_open, 484 .release = tty_release, 485 .fasync = tty_fasync, 486 .show_fdinfo = tty_show_fdinfo, 487 }; 488 489 static const struct file_operations console_fops = { 490 .llseek = no_llseek, 491 .read = tty_read, 492 .write = redirected_tty_write, 493 .poll = tty_poll, 494 .unlocked_ioctl = tty_ioctl, 495 .compat_ioctl = tty_compat_ioctl, 496 .open = tty_open, 497 .release = tty_release, 498 .fasync = tty_fasync, 499 }; 500 501 static const struct file_operations hung_up_tty_fops = { 502 .llseek = no_llseek, 503 .read = hung_up_tty_read, 504 .write = hung_up_tty_write, 505 .poll = hung_up_tty_poll, 506 .unlocked_ioctl = hung_up_tty_ioctl, 507 .compat_ioctl = hung_up_tty_compat_ioctl, 508 .release = tty_release, 509 .fasync = hung_up_tty_fasync, 510 }; 511 512 static DEFINE_SPINLOCK(redirect_lock); 513 static struct file *redirect; 514 515 /** 516 * tty_wakeup - request more data 517 * @tty: terminal 518 * 519 * Internal and external helper for wakeups of tty. This function 520 * informs the line discipline if present that the driver is ready 521 * to receive more output data. 522 */ 523 524 void tty_wakeup(struct tty_struct *tty) 525 { 526 struct tty_ldisc *ld; 527 528 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 529 ld = tty_ldisc_ref(tty); 530 if (ld) { 531 if (ld->ops->write_wakeup) 532 ld->ops->write_wakeup(tty); 533 tty_ldisc_deref(ld); 534 } 535 } 536 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 537 } 538 539 EXPORT_SYMBOL_GPL(tty_wakeup); 540 541 /** 542 * __tty_hangup - actual handler for hangup events 543 * @work: tty device 544 * 545 * This can be called by a "kworker" kernel thread. That is process 546 * synchronous but doesn't hold any locks, so we need to make sure we 547 * have the appropriate locks for what we're doing. 548 * 549 * The hangup event clears any pending redirections onto the hung up 550 * device. It ensures future writes will error and it does the needed 551 * line discipline hangup and signal delivery. The tty object itself 552 * remains intact. 553 * 554 * Locking: 555 * BTM 556 * redirect lock for undoing redirection 557 * file list lock for manipulating list of ttys 558 * tty_ldiscs_lock from called functions 559 * termios_rwsem resetting termios data 560 * tasklist_lock to walk task list for hangup event 561 * ->siglock to protect ->signal/->sighand 562 */ 563 static void __tty_hangup(struct tty_struct *tty, int exit_session) 564 { 565 struct file *cons_filp = NULL; 566 struct file *filp, *f = NULL; 567 struct tty_file_private *priv; 568 int closecount = 0, n; 569 int refs; 570 571 if (!tty) 572 return; 573 574 575 spin_lock(&redirect_lock); 576 if (redirect && file_tty(redirect) == tty) { 577 f = redirect; 578 redirect = NULL; 579 } 580 spin_unlock(&redirect_lock); 581 582 tty_lock(tty); 583 584 if (test_bit(TTY_HUPPED, &tty->flags)) { 585 tty_unlock(tty); 586 return; 587 } 588 589 /* inuse_filps is protected by the single tty lock, 590 this really needs to change if we want to flush the 591 workqueue with the lock held */ 592 check_tty_count(tty, "tty_hangup"); 593 594 spin_lock(&tty->files_lock); 595 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 596 list_for_each_entry(priv, &tty->tty_files, list) { 597 filp = priv->file; 598 if (filp->f_op->write == redirected_tty_write) 599 cons_filp = filp; 600 if (filp->f_op->write != tty_write) 601 continue; 602 closecount++; 603 __tty_fasync(-1, filp, 0); /* can't block */ 604 filp->f_op = &hung_up_tty_fops; 605 } 606 spin_unlock(&tty->files_lock); 607 608 refs = tty_signal_session_leader(tty, exit_session); 609 /* Account for the p->signal references we killed */ 610 while (refs--) 611 tty_kref_put(tty); 612 613 tty_ldisc_hangup(tty, cons_filp != NULL); 614 615 spin_lock_irq(&tty->ctrl_lock); 616 clear_bit(TTY_THROTTLED, &tty->flags); 617 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 618 put_pid(tty->session); 619 put_pid(tty->pgrp); 620 tty->session = NULL; 621 tty->pgrp = NULL; 622 tty->ctrl_status = 0; 623 spin_unlock_irq(&tty->ctrl_lock); 624 625 /* 626 * If one of the devices matches a console pointer, we 627 * cannot just call hangup() because that will cause 628 * tty->count and state->count to go out of sync. 629 * So we just call close() the right number of times. 630 */ 631 if (cons_filp) { 632 if (tty->ops->close) 633 for (n = 0; n < closecount; n++) 634 tty->ops->close(tty, cons_filp); 635 } else if (tty->ops->hangup) 636 tty->ops->hangup(tty); 637 /* 638 * We don't want to have driver/ldisc interactions beyond the ones 639 * we did here. The driver layer expects no calls after ->hangup() 640 * from the ldisc side, which is now guaranteed. 641 */ 642 set_bit(TTY_HUPPED, &tty->flags); 643 tty_unlock(tty); 644 645 if (f) 646 fput(f); 647 } 648 649 static void do_tty_hangup(struct work_struct *work) 650 { 651 struct tty_struct *tty = 652 container_of(work, struct tty_struct, hangup_work); 653 654 __tty_hangup(tty, 0); 655 } 656 657 /** 658 * tty_hangup - trigger a hangup event 659 * @tty: tty to hangup 660 * 661 * A carrier loss (virtual or otherwise) has occurred on this like 662 * schedule a hangup sequence to run after this event. 663 */ 664 665 void tty_hangup(struct tty_struct *tty) 666 { 667 tty_debug_hangup(tty, "hangup\n"); 668 schedule_work(&tty->hangup_work); 669 } 670 671 EXPORT_SYMBOL(tty_hangup); 672 673 /** 674 * tty_vhangup - process vhangup 675 * @tty: tty to hangup 676 * 677 * The user has asked via system call for the terminal to be hung up. 678 * We do this synchronously so that when the syscall returns the process 679 * is complete. That guarantee is necessary for security reasons. 680 */ 681 682 void tty_vhangup(struct tty_struct *tty) 683 { 684 tty_debug_hangup(tty, "vhangup\n"); 685 __tty_hangup(tty, 0); 686 } 687 688 EXPORT_SYMBOL(tty_vhangup); 689 690 691 /** 692 * tty_vhangup_self - process vhangup for own ctty 693 * 694 * Perform a vhangup on the current controlling tty 695 */ 696 697 void tty_vhangup_self(void) 698 { 699 struct tty_struct *tty; 700 701 tty = get_current_tty(); 702 if (tty) { 703 tty_vhangup(tty); 704 tty_kref_put(tty); 705 } 706 } 707 708 /** 709 * tty_vhangup_session - hangup session leader exit 710 * @tty: tty to hangup 711 * 712 * The session leader is exiting and hanging up its controlling terminal. 713 * Every process in the foreground process group is signalled SIGHUP. 714 * 715 * We do this synchronously so that when the syscall returns the process 716 * is complete. That guarantee is necessary for security reasons. 717 */ 718 719 void tty_vhangup_session(struct tty_struct *tty) 720 { 721 tty_debug_hangup(tty, "session hangup\n"); 722 __tty_hangup(tty, 1); 723 } 724 725 /** 726 * tty_hung_up_p - was tty hung up 727 * @filp: file pointer of tty 728 * 729 * Return true if the tty has been subject to a vhangup or a carrier 730 * loss 731 */ 732 733 int tty_hung_up_p(struct file *filp) 734 { 735 return (filp && filp->f_op == &hung_up_tty_fops); 736 } 737 738 EXPORT_SYMBOL(tty_hung_up_p); 739 740 /** 741 * stop_tty - propagate flow control 742 * @tty: tty to stop 743 * 744 * Perform flow control to the driver. May be called 745 * on an already stopped device and will not re-call the driver 746 * method. 747 * 748 * This functionality is used by both the line disciplines for 749 * halting incoming flow and by the driver. It may therefore be 750 * called from any context, may be under the tty atomic_write_lock 751 * but not always. 752 * 753 * Locking: 754 * flow_lock 755 */ 756 757 void __stop_tty(struct tty_struct *tty) 758 { 759 if (tty->stopped) 760 return; 761 tty->stopped = 1; 762 if (tty->ops->stop) 763 tty->ops->stop(tty); 764 } 765 766 void stop_tty(struct tty_struct *tty) 767 { 768 unsigned long flags; 769 770 spin_lock_irqsave(&tty->flow_lock, flags); 771 __stop_tty(tty); 772 spin_unlock_irqrestore(&tty->flow_lock, flags); 773 } 774 EXPORT_SYMBOL(stop_tty); 775 776 /** 777 * start_tty - propagate flow control 778 * @tty: tty to start 779 * 780 * Start a tty that has been stopped if at all possible. If this 781 * tty was previous stopped and is now being started, the driver 782 * start method is invoked and the line discipline woken. 783 * 784 * Locking: 785 * flow_lock 786 */ 787 788 void __start_tty(struct tty_struct *tty) 789 { 790 if (!tty->stopped || tty->flow_stopped) 791 return; 792 tty->stopped = 0; 793 if (tty->ops->start) 794 tty->ops->start(tty); 795 tty_wakeup(tty); 796 } 797 798 void start_tty(struct tty_struct *tty) 799 { 800 unsigned long flags; 801 802 spin_lock_irqsave(&tty->flow_lock, flags); 803 __start_tty(tty); 804 spin_unlock_irqrestore(&tty->flow_lock, flags); 805 } 806 EXPORT_SYMBOL(start_tty); 807 808 static void tty_update_time(struct timespec *time) 809 { 810 unsigned long sec = get_seconds(); 811 812 /* 813 * We only care if the two values differ in anything other than the 814 * lower three bits (i.e every 8 seconds). If so, then we can update 815 * the time of the tty device, otherwise it could be construded as a 816 * security leak to let userspace know the exact timing of the tty. 817 */ 818 if ((sec ^ time->tv_sec) & ~7) 819 time->tv_sec = sec; 820 } 821 822 /** 823 * tty_read - read method for tty device files 824 * @file: pointer to tty file 825 * @buf: user buffer 826 * @count: size of user buffer 827 * @ppos: unused 828 * 829 * Perform the read system call function on this terminal device. Checks 830 * for hung up devices before calling the line discipline method. 831 * 832 * Locking: 833 * Locks the line discipline internally while needed. Multiple 834 * read calls may be outstanding in parallel. 835 */ 836 837 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 838 loff_t *ppos) 839 { 840 int i; 841 struct inode *inode = file_inode(file); 842 struct tty_struct *tty = file_tty(file); 843 struct tty_ldisc *ld; 844 845 if (tty_paranoia_check(tty, inode, "tty_read")) 846 return -EIO; 847 if (!tty || tty_io_error(tty)) 848 return -EIO; 849 850 /* We want to wait for the line discipline to sort out in this 851 situation */ 852 ld = tty_ldisc_ref_wait(tty); 853 if (!ld) 854 return hung_up_tty_read(file, buf, count, ppos); 855 if (ld->ops->read) 856 i = ld->ops->read(tty, file, buf, count); 857 else 858 i = -EIO; 859 tty_ldisc_deref(ld); 860 861 if (i > 0) 862 tty_update_time(&inode->i_atime); 863 864 return i; 865 } 866 867 static void tty_write_unlock(struct tty_struct *tty) 868 { 869 mutex_unlock(&tty->atomic_write_lock); 870 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 871 } 872 873 static int tty_write_lock(struct tty_struct *tty, int ndelay) 874 { 875 if (!mutex_trylock(&tty->atomic_write_lock)) { 876 if (ndelay) 877 return -EAGAIN; 878 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 879 return -ERESTARTSYS; 880 } 881 return 0; 882 } 883 884 /* 885 * Split writes up in sane blocksizes to avoid 886 * denial-of-service type attacks 887 */ 888 static inline ssize_t do_tty_write( 889 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 890 struct tty_struct *tty, 891 struct file *file, 892 const char __user *buf, 893 size_t count) 894 { 895 ssize_t ret, written = 0; 896 unsigned int chunk; 897 898 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 899 if (ret < 0) 900 return ret; 901 902 /* 903 * We chunk up writes into a temporary buffer. This 904 * simplifies low-level drivers immensely, since they 905 * don't have locking issues and user mode accesses. 906 * 907 * But if TTY_NO_WRITE_SPLIT is set, we should use a 908 * big chunk-size.. 909 * 910 * The default chunk-size is 2kB, because the NTTY 911 * layer has problems with bigger chunks. It will 912 * claim to be able to handle more characters than 913 * it actually does. 914 * 915 * FIXME: This can probably go away now except that 64K chunks 916 * are too likely to fail unless switched to vmalloc... 917 */ 918 chunk = 2048; 919 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 920 chunk = 65536; 921 if (count < chunk) 922 chunk = count; 923 924 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 925 if (tty->write_cnt < chunk) { 926 unsigned char *buf_chunk; 927 928 if (chunk < 1024) 929 chunk = 1024; 930 931 buf_chunk = kmalloc(chunk, GFP_KERNEL); 932 if (!buf_chunk) { 933 ret = -ENOMEM; 934 goto out; 935 } 936 kfree(tty->write_buf); 937 tty->write_cnt = chunk; 938 tty->write_buf = buf_chunk; 939 } 940 941 /* Do the write .. */ 942 for (;;) { 943 size_t size = count; 944 if (size > chunk) 945 size = chunk; 946 ret = -EFAULT; 947 if (copy_from_user(tty->write_buf, buf, size)) 948 break; 949 ret = write(tty, file, tty->write_buf, size); 950 if (ret <= 0) 951 break; 952 written += ret; 953 buf += ret; 954 count -= ret; 955 if (!count) 956 break; 957 ret = -ERESTARTSYS; 958 if (signal_pending(current)) 959 break; 960 cond_resched(); 961 } 962 if (written) { 963 tty_update_time(&file_inode(file)->i_mtime); 964 ret = written; 965 } 966 out: 967 tty_write_unlock(tty); 968 return ret; 969 } 970 971 /** 972 * tty_write_message - write a message to a certain tty, not just the console. 973 * @tty: the destination tty_struct 974 * @msg: the message to write 975 * 976 * This is used for messages that need to be redirected to a specific tty. 977 * We don't put it into the syslog queue right now maybe in the future if 978 * really needed. 979 * 980 * We must still hold the BTM and test the CLOSING flag for the moment. 981 */ 982 983 void tty_write_message(struct tty_struct *tty, char *msg) 984 { 985 if (tty) { 986 mutex_lock(&tty->atomic_write_lock); 987 tty_lock(tty); 988 if (tty->ops->write && tty->count > 0) 989 tty->ops->write(tty, msg, strlen(msg)); 990 tty_unlock(tty); 991 tty_write_unlock(tty); 992 } 993 return; 994 } 995 996 997 /** 998 * tty_write - write method for tty device file 999 * @file: tty file pointer 1000 * @buf: user data to write 1001 * @count: bytes to write 1002 * @ppos: unused 1003 * 1004 * Write data to a tty device via the line discipline. 1005 * 1006 * Locking: 1007 * Locks the line discipline as required 1008 * Writes to the tty driver are serialized by the atomic_write_lock 1009 * and are then processed in chunks to the device. The line discipline 1010 * write method will not be invoked in parallel for each device. 1011 */ 1012 1013 static ssize_t tty_write(struct file *file, const char __user *buf, 1014 size_t count, loff_t *ppos) 1015 { 1016 struct tty_struct *tty = file_tty(file); 1017 struct tty_ldisc *ld; 1018 ssize_t ret; 1019 1020 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1021 return -EIO; 1022 if (!tty || !tty->ops->write || tty_io_error(tty)) 1023 return -EIO; 1024 /* Short term debug to catch buggy drivers */ 1025 if (tty->ops->write_room == NULL) 1026 tty_err(tty, "missing write_room method\n"); 1027 ld = tty_ldisc_ref_wait(tty); 1028 if (!ld) 1029 return hung_up_tty_write(file, buf, count, ppos); 1030 if (!ld->ops->write) 1031 ret = -EIO; 1032 else 1033 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1034 tty_ldisc_deref(ld); 1035 return ret; 1036 } 1037 1038 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1039 size_t count, loff_t *ppos) 1040 { 1041 struct file *p = NULL; 1042 1043 spin_lock(&redirect_lock); 1044 if (redirect) 1045 p = get_file(redirect); 1046 spin_unlock(&redirect_lock); 1047 1048 if (p) { 1049 ssize_t res; 1050 res = vfs_write(p, buf, count, &p->f_pos); 1051 fput(p); 1052 return res; 1053 } 1054 return tty_write(file, buf, count, ppos); 1055 } 1056 1057 /** 1058 * tty_send_xchar - send priority character 1059 * 1060 * Send a high priority character to the tty even if stopped 1061 * 1062 * Locking: none for xchar method, write ordering for write method. 1063 */ 1064 1065 int tty_send_xchar(struct tty_struct *tty, char ch) 1066 { 1067 int was_stopped = tty->stopped; 1068 1069 if (tty->ops->send_xchar) { 1070 down_read(&tty->termios_rwsem); 1071 tty->ops->send_xchar(tty, ch); 1072 up_read(&tty->termios_rwsem); 1073 return 0; 1074 } 1075 1076 if (tty_write_lock(tty, 0) < 0) 1077 return -ERESTARTSYS; 1078 1079 down_read(&tty->termios_rwsem); 1080 if (was_stopped) 1081 start_tty(tty); 1082 tty->ops->write(tty, &ch, 1); 1083 if (was_stopped) 1084 stop_tty(tty); 1085 up_read(&tty->termios_rwsem); 1086 tty_write_unlock(tty); 1087 return 0; 1088 } 1089 1090 static char ptychar[] = "pqrstuvwxyzabcde"; 1091 1092 /** 1093 * pty_line_name - generate name for a pty 1094 * @driver: the tty driver in use 1095 * @index: the minor number 1096 * @p: output buffer of at least 6 bytes 1097 * 1098 * Generate a name from a driver reference and write it to the output 1099 * buffer. 1100 * 1101 * Locking: None 1102 */ 1103 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1104 { 1105 int i = index + driver->name_base; 1106 /* ->name is initialized to "ttyp", but "tty" is expected */ 1107 sprintf(p, "%s%c%x", 1108 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1109 ptychar[i >> 4 & 0xf], i & 0xf); 1110 } 1111 1112 /** 1113 * tty_line_name - generate name for a tty 1114 * @driver: the tty driver in use 1115 * @index: the minor number 1116 * @p: output buffer of at least 7 bytes 1117 * 1118 * Generate a name from a driver reference and write it to the output 1119 * buffer. 1120 * 1121 * Locking: None 1122 */ 1123 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1124 { 1125 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1126 return sprintf(p, "%s", driver->name); 1127 else 1128 return sprintf(p, "%s%d", driver->name, 1129 index + driver->name_base); 1130 } 1131 1132 /** 1133 * tty_driver_lookup_tty() - find an existing tty, if any 1134 * @driver: the driver for the tty 1135 * @idx: the minor number 1136 * 1137 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1138 * driver lookup() method returns an error. 1139 * 1140 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1141 */ 1142 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1143 struct file *file, int idx) 1144 { 1145 struct tty_struct *tty; 1146 1147 if (driver->ops->lookup) 1148 if (!file) 1149 tty = ERR_PTR(-EIO); 1150 else 1151 tty = driver->ops->lookup(driver, file, idx); 1152 else 1153 tty = driver->ttys[idx]; 1154 1155 if (!IS_ERR(tty)) 1156 tty_kref_get(tty); 1157 return tty; 1158 } 1159 1160 /** 1161 * tty_init_termios - helper for termios setup 1162 * @tty: the tty to set up 1163 * 1164 * Initialise the termios structures for this tty. Thus runs under 1165 * the tty_mutex currently so we can be relaxed about ordering. 1166 */ 1167 1168 void tty_init_termios(struct tty_struct *tty) 1169 { 1170 struct ktermios *tp; 1171 int idx = tty->index; 1172 1173 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1174 tty->termios = tty->driver->init_termios; 1175 else { 1176 /* Check for lazy saved data */ 1177 tp = tty->driver->termios[idx]; 1178 if (tp != NULL) { 1179 tty->termios = *tp; 1180 tty->termios.c_line = tty->driver->init_termios.c_line; 1181 } else 1182 tty->termios = tty->driver->init_termios; 1183 } 1184 /* Compatibility until drivers always set this */ 1185 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1186 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1187 } 1188 EXPORT_SYMBOL_GPL(tty_init_termios); 1189 1190 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1191 { 1192 tty_init_termios(tty); 1193 tty_driver_kref_get(driver); 1194 tty->count++; 1195 driver->ttys[tty->index] = tty; 1196 return 0; 1197 } 1198 EXPORT_SYMBOL_GPL(tty_standard_install); 1199 1200 /** 1201 * tty_driver_install_tty() - install a tty entry in the driver 1202 * @driver: the driver for the tty 1203 * @tty: the tty 1204 * 1205 * Install a tty object into the driver tables. The tty->index field 1206 * will be set by the time this is called. This method is responsible 1207 * for ensuring any need additional structures are allocated and 1208 * configured. 1209 * 1210 * Locking: tty_mutex for now 1211 */ 1212 static int tty_driver_install_tty(struct tty_driver *driver, 1213 struct tty_struct *tty) 1214 { 1215 return driver->ops->install ? driver->ops->install(driver, tty) : 1216 tty_standard_install(driver, tty); 1217 } 1218 1219 /** 1220 * tty_driver_remove_tty() - remove a tty from the driver tables 1221 * @driver: the driver for the tty 1222 * @idx: the minor number 1223 * 1224 * Remvoe a tty object from the driver tables. The tty->index field 1225 * will be set by the time this is called. 1226 * 1227 * Locking: tty_mutex for now 1228 */ 1229 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1230 { 1231 if (driver->ops->remove) 1232 driver->ops->remove(driver, tty); 1233 else 1234 driver->ttys[tty->index] = NULL; 1235 } 1236 1237 /* 1238 * tty_reopen() - fast re-open of an open tty 1239 * @tty - the tty to open 1240 * 1241 * Return 0 on success, -errno on error. 1242 * Re-opens on master ptys are not allowed and return -EIO. 1243 * 1244 * Locking: Caller must hold tty_lock 1245 */ 1246 static int tty_reopen(struct tty_struct *tty) 1247 { 1248 struct tty_driver *driver = tty->driver; 1249 1250 if (driver->type == TTY_DRIVER_TYPE_PTY && 1251 driver->subtype == PTY_TYPE_MASTER) 1252 return -EIO; 1253 1254 if (!tty->count) 1255 return -EAGAIN; 1256 1257 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1258 return -EBUSY; 1259 1260 tty->count++; 1261 1262 if (!tty->ldisc) 1263 return tty_ldisc_reinit(tty, tty->termios.c_line); 1264 1265 return 0; 1266 } 1267 1268 /** 1269 * tty_init_dev - initialise a tty device 1270 * @driver: tty driver we are opening a device on 1271 * @idx: device index 1272 * @ret_tty: returned tty structure 1273 * 1274 * Prepare a tty device. This may not be a "new" clean device but 1275 * could also be an active device. The pty drivers require special 1276 * handling because of this. 1277 * 1278 * Locking: 1279 * The function is called under the tty_mutex, which 1280 * protects us from the tty struct or driver itself going away. 1281 * 1282 * On exit the tty device has the line discipline attached and 1283 * a reference count of 1. If a pair was created for pty/tty use 1284 * and the other was a pty master then it too has a reference count of 1. 1285 * 1286 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1287 * failed open. The new code protects the open with a mutex, so it's 1288 * really quite straightforward. The mutex locking can probably be 1289 * relaxed for the (most common) case of reopening a tty. 1290 */ 1291 1292 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1293 { 1294 struct tty_struct *tty; 1295 int retval; 1296 1297 /* 1298 * First time open is complex, especially for PTY devices. 1299 * This code guarantees that either everything succeeds and the 1300 * TTY is ready for operation, or else the table slots are vacated 1301 * and the allocated memory released. (Except that the termios 1302 * may be retained.) 1303 */ 1304 1305 if (!try_module_get(driver->owner)) 1306 return ERR_PTR(-ENODEV); 1307 1308 tty = alloc_tty_struct(driver, idx); 1309 if (!tty) { 1310 retval = -ENOMEM; 1311 goto err_module_put; 1312 } 1313 1314 tty_lock(tty); 1315 retval = tty_driver_install_tty(driver, tty); 1316 if (retval < 0) 1317 goto err_free_tty; 1318 1319 if (!tty->port) 1320 tty->port = driver->ports[idx]; 1321 1322 WARN_RATELIMIT(!tty->port, 1323 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1324 __func__, tty->driver->name); 1325 1326 tty->port->itty = tty; 1327 1328 /* 1329 * Structures all installed ... call the ldisc open routines. 1330 * If we fail here just call release_tty to clean up. No need 1331 * to decrement the use counts, as release_tty doesn't care. 1332 */ 1333 retval = tty_ldisc_setup(tty, tty->link); 1334 if (retval) 1335 goto err_release_tty; 1336 /* Return the tty locked so that it cannot vanish under the caller */ 1337 return tty; 1338 1339 err_free_tty: 1340 tty_unlock(tty); 1341 free_tty_struct(tty); 1342 err_module_put: 1343 module_put(driver->owner); 1344 return ERR_PTR(retval); 1345 1346 /* call the tty release_tty routine to clean out this slot */ 1347 err_release_tty: 1348 tty_unlock(tty); 1349 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1350 retval, idx); 1351 release_tty(tty, idx); 1352 return ERR_PTR(retval); 1353 } 1354 1355 static void tty_free_termios(struct tty_struct *tty) 1356 { 1357 struct ktermios *tp; 1358 int idx = tty->index; 1359 1360 /* If the port is going to reset then it has no termios to save */ 1361 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1362 return; 1363 1364 /* Stash the termios data */ 1365 tp = tty->driver->termios[idx]; 1366 if (tp == NULL) { 1367 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1368 if (tp == NULL) 1369 return; 1370 tty->driver->termios[idx] = tp; 1371 } 1372 *tp = tty->termios; 1373 } 1374 1375 /** 1376 * tty_flush_works - flush all works of a tty/pty pair 1377 * @tty: tty device to flush works for (or either end of a pty pair) 1378 * 1379 * Sync flush all works belonging to @tty (and the 'other' tty). 1380 */ 1381 static void tty_flush_works(struct tty_struct *tty) 1382 { 1383 flush_work(&tty->SAK_work); 1384 flush_work(&tty->hangup_work); 1385 if (tty->link) { 1386 flush_work(&tty->link->SAK_work); 1387 flush_work(&tty->link->hangup_work); 1388 } 1389 } 1390 1391 /** 1392 * release_one_tty - release tty structure memory 1393 * @kref: kref of tty we are obliterating 1394 * 1395 * Releases memory associated with a tty structure, and clears out the 1396 * driver table slots. This function is called when a device is no longer 1397 * in use. It also gets called when setup of a device fails. 1398 * 1399 * Locking: 1400 * takes the file list lock internally when working on the list 1401 * of ttys that the driver keeps. 1402 * 1403 * This method gets called from a work queue so that the driver private 1404 * cleanup ops can sleep (needed for USB at least) 1405 */ 1406 static void release_one_tty(struct work_struct *work) 1407 { 1408 struct tty_struct *tty = 1409 container_of(work, struct tty_struct, hangup_work); 1410 struct tty_driver *driver = tty->driver; 1411 struct module *owner = driver->owner; 1412 1413 if (tty->ops->cleanup) 1414 tty->ops->cleanup(tty); 1415 1416 tty->magic = 0; 1417 tty_driver_kref_put(driver); 1418 module_put(owner); 1419 1420 spin_lock(&tty->files_lock); 1421 list_del_init(&tty->tty_files); 1422 spin_unlock(&tty->files_lock); 1423 1424 put_pid(tty->pgrp); 1425 put_pid(tty->session); 1426 free_tty_struct(tty); 1427 } 1428 1429 static void queue_release_one_tty(struct kref *kref) 1430 { 1431 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1432 1433 /* The hangup queue is now free so we can reuse it rather than 1434 waste a chunk of memory for each port */ 1435 INIT_WORK(&tty->hangup_work, release_one_tty); 1436 schedule_work(&tty->hangup_work); 1437 } 1438 1439 /** 1440 * tty_kref_put - release a tty kref 1441 * @tty: tty device 1442 * 1443 * Release a reference to a tty device and if need be let the kref 1444 * layer destruct the object for us 1445 */ 1446 1447 void tty_kref_put(struct tty_struct *tty) 1448 { 1449 if (tty) 1450 kref_put(&tty->kref, queue_release_one_tty); 1451 } 1452 EXPORT_SYMBOL(tty_kref_put); 1453 1454 /** 1455 * release_tty - release tty structure memory 1456 * 1457 * Release both @tty and a possible linked partner (think pty pair), 1458 * and decrement the refcount of the backing module. 1459 * 1460 * Locking: 1461 * tty_mutex 1462 * takes the file list lock internally when working on the list 1463 * of ttys that the driver keeps. 1464 * 1465 */ 1466 static void release_tty(struct tty_struct *tty, int idx) 1467 { 1468 /* This should always be true but check for the moment */ 1469 WARN_ON(tty->index != idx); 1470 WARN_ON(!mutex_is_locked(&tty_mutex)); 1471 if (tty->ops->shutdown) 1472 tty->ops->shutdown(tty); 1473 tty_free_termios(tty); 1474 tty_driver_remove_tty(tty->driver, tty); 1475 tty->port->itty = NULL; 1476 if (tty->link) 1477 tty->link->port->itty = NULL; 1478 tty_buffer_cancel_work(tty->port); 1479 1480 tty_kref_put(tty->link); 1481 tty_kref_put(tty); 1482 } 1483 1484 /** 1485 * tty_release_checks - check a tty before real release 1486 * @tty: tty to check 1487 * @o_tty: link of @tty (if any) 1488 * @idx: index of the tty 1489 * 1490 * Performs some paranoid checking before true release of the @tty. 1491 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1492 */ 1493 static int tty_release_checks(struct tty_struct *tty, int idx) 1494 { 1495 #ifdef TTY_PARANOIA_CHECK 1496 if (idx < 0 || idx >= tty->driver->num) { 1497 tty_debug(tty, "bad idx %d\n", idx); 1498 return -1; 1499 } 1500 1501 /* not much to check for devpts */ 1502 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1503 return 0; 1504 1505 if (tty != tty->driver->ttys[idx]) { 1506 tty_debug(tty, "bad driver table[%d] = %p\n", 1507 idx, tty->driver->ttys[idx]); 1508 return -1; 1509 } 1510 if (tty->driver->other) { 1511 struct tty_struct *o_tty = tty->link; 1512 1513 if (o_tty != tty->driver->other->ttys[idx]) { 1514 tty_debug(tty, "bad other table[%d] = %p\n", 1515 idx, tty->driver->other->ttys[idx]); 1516 return -1; 1517 } 1518 if (o_tty->link != tty) { 1519 tty_debug(tty, "bad link = %p\n", o_tty->link); 1520 return -1; 1521 } 1522 } 1523 #endif 1524 return 0; 1525 } 1526 1527 /** 1528 * tty_kclose - closes tty opened by tty_kopen 1529 * @tty: tty device 1530 * 1531 * Performs the final steps to release and free a tty device. It is the 1532 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED 1533 * flag on tty->port. 1534 */ 1535 void tty_kclose(struct tty_struct *tty) 1536 { 1537 /* 1538 * Ask the line discipline code to release its structures 1539 */ 1540 tty_ldisc_release(tty); 1541 1542 /* Wait for pending work before tty destruction commmences */ 1543 tty_flush_works(tty); 1544 1545 tty_debug_hangup(tty, "freeing structure\n"); 1546 /* 1547 * The release_tty function takes care of the details of clearing 1548 * the slots and preserving the termios structure. The tty_unlock_pair 1549 * should be safe as we keep a kref while the tty is locked (so the 1550 * unlock never unlocks a freed tty). 1551 */ 1552 mutex_lock(&tty_mutex); 1553 tty_port_set_kopened(tty->port, 0); 1554 release_tty(tty, tty->index); 1555 mutex_unlock(&tty_mutex); 1556 } 1557 EXPORT_SYMBOL_GPL(tty_kclose); 1558 1559 /** 1560 * tty_release_struct - release a tty struct 1561 * @tty: tty device 1562 * @idx: index of the tty 1563 * 1564 * Performs the final steps to release and free a tty device. It is 1565 * roughly the reverse of tty_init_dev. 1566 */ 1567 void tty_release_struct(struct tty_struct *tty, int idx) 1568 { 1569 /* 1570 * Ask the line discipline code to release its structures 1571 */ 1572 tty_ldisc_release(tty); 1573 1574 /* Wait for pending work before tty destruction commmences */ 1575 tty_flush_works(tty); 1576 1577 tty_debug_hangup(tty, "freeing structure\n"); 1578 /* 1579 * The release_tty function takes care of the details of clearing 1580 * the slots and preserving the termios structure. The tty_unlock_pair 1581 * should be safe as we keep a kref while the tty is locked (so the 1582 * unlock never unlocks a freed tty). 1583 */ 1584 mutex_lock(&tty_mutex); 1585 release_tty(tty, idx); 1586 mutex_unlock(&tty_mutex); 1587 } 1588 EXPORT_SYMBOL_GPL(tty_release_struct); 1589 1590 /** 1591 * tty_release - vfs callback for close 1592 * @inode: inode of tty 1593 * @filp: file pointer for handle to tty 1594 * 1595 * Called the last time each file handle is closed that references 1596 * this tty. There may however be several such references. 1597 * 1598 * Locking: 1599 * Takes bkl. See tty_release_dev 1600 * 1601 * Even releasing the tty structures is a tricky business.. We have 1602 * to be very careful that the structures are all released at the 1603 * same time, as interrupts might otherwise get the wrong pointers. 1604 * 1605 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1606 * lead to double frees or releasing memory still in use. 1607 */ 1608 1609 int tty_release(struct inode *inode, struct file *filp) 1610 { 1611 struct tty_struct *tty = file_tty(filp); 1612 struct tty_struct *o_tty = NULL; 1613 int do_sleep, final; 1614 int idx; 1615 long timeout = 0; 1616 int once = 1; 1617 1618 if (tty_paranoia_check(tty, inode, __func__)) 1619 return 0; 1620 1621 tty_lock(tty); 1622 check_tty_count(tty, __func__); 1623 1624 __tty_fasync(-1, filp, 0); 1625 1626 idx = tty->index; 1627 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1628 tty->driver->subtype == PTY_TYPE_MASTER) 1629 o_tty = tty->link; 1630 1631 if (tty_release_checks(tty, idx)) { 1632 tty_unlock(tty); 1633 return 0; 1634 } 1635 1636 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1637 1638 if (tty->ops->close) 1639 tty->ops->close(tty, filp); 1640 1641 /* If tty is pty master, lock the slave pty (stable lock order) */ 1642 tty_lock_slave(o_tty); 1643 1644 /* 1645 * Sanity check: if tty->count is going to zero, there shouldn't be 1646 * any waiters on tty->read_wait or tty->write_wait. We test the 1647 * wait queues and kick everyone out _before_ actually starting to 1648 * close. This ensures that we won't block while releasing the tty 1649 * structure. 1650 * 1651 * The test for the o_tty closing is necessary, since the master and 1652 * slave sides may close in any order. If the slave side closes out 1653 * first, its count will be one, since the master side holds an open. 1654 * Thus this test wouldn't be triggered at the time the slave closed, 1655 * so we do it now. 1656 */ 1657 while (1) { 1658 do_sleep = 0; 1659 1660 if (tty->count <= 1) { 1661 if (waitqueue_active(&tty->read_wait)) { 1662 wake_up_poll(&tty->read_wait, POLLIN); 1663 do_sleep++; 1664 } 1665 if (waitqueue_active(&tty->write_wait)) { 1666 wake_up_poll(&tty->write_wait, POLLOUT); 1667 do_sleep++; 1668 } 1669 } 1670 if (o_tty && o_tty->count <= 1) { 1671 if (waitqueue_active(&o_tty->read_wait)) { 1672 wake_up_poll(&o_tty->read_wait, POLLIN); 1673 do_sleep++; 1674 } 1675 if (waitqueue_active(&o_tty->write_wait)) { 1676 wake_up_poll(&o_tty->write_wait, POLLOUT); 1677 do_sleep++; 1678 } 1679 } 1680 if (!do_sleep) 1681 break; 1682 1683 if (once) { 1684 once = 0; 1685 tty_warn(tty, "read/write wait queue active!\n"); 1686 } 1687 schedule_timeout_killable(timeout); 1688 if (timeout < 120 * HZ) 1689 timeout = 2 * timeout + 1; 1690 else 1691 timeout = MAX_SCHEDULE_TIMEOUT; 1692 } 1693 1694 if (o_tty) { 1695 if (--o_tty->count < 0) { 1696 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1697 o_tty->count = 0; 1698 } 1699 } 1700 if (--tty->count < 0) { 1701 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1702 tty->count = 0; 1703 } 1704 1705 /* 1706 * We've decremented tty->count, so we need to remove this file 1707 * descriptor off the tty->tty_files list; this serves two 1708 * purposes: 1709 * - check_tty_count sees the correct number of file descriptors 1710 * associated with this tty. 1711 * - do_tty_hangup no longer sees this file descriptor as 1712 * something that needs to be handled for hangups. 1713 */ 1714 tty_del_file(filp); 1715 1716 /* 1717 * Perform some housekeeping before deciding whether to return. 1718 * 1719 * If _either_ side is closing, make sure there aren't any 1720 * processes that still think tty or o_tty is their controlling 1721 * tty. 1722 */ 1723 if (!tty->count) { 1724 read_lock(&tasklist_lock); 1725 session_clear_tty(tty->session); 1726 if (o_tty) 1727 session_clear_tty(o_tty->session); 1728 read_unlock(&tasklist_lock); 1729 } 1730 1731 /* check whether both sides are closing ... */ 1732 final = !tty->count && !(o_tty && o_tty->count); 1733 1734 tty_unlock_slave(o_tty); 1735 tty_unlock(tty); 1736 1737 /* At this point, the tty->count == 0 should ensure a dead tty 1738 cannot be re-opened by a racing opener */ 1739 1740 if (!final) 1741 return 0; 1742 1743 tty_debug_hangup(tty, "final close\n"); 1744 1745 tty_release_struct(tty, idx); 1746 return 0; 1747 } 1748 1749 /** 1750 * tty_open_current_tty - get locked tty of current task 1751 * @device: device number 1752 * @filp: file pointer to tty 1753 * @return: locked tty of the current task iff @device is /dev/tty 1754 * 1755 * Performs a re-open of the current task's controlling tty. 1756 * 1757 * We cannot return driver and index like for the other nodes because 1758 * devpts will not work then. It expects inodes to be from devpts FS. 1759 */ 1760 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1761 { 1762 struct tty_struct *tty; 1763 int retval; 1764 1765 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1766 return NULL; 1767 1768 tty = get_current_tty(); 1769 if (!tty) 1770 return ERR_PTR(-ENXIO); 1771 1772 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1773 /* noctty = 1; */ 1774 tty_lock(tty); 1775 tty_kref_put(tty); /* safe to drop the kref now */ 1776 1777 retval = tty_reopen(tty); 1778 if (retval < 0) { 1779 tty_unlock(tty); 1780 tty = ERR_PTR(retval); 1781 } 1782 return tty; 1783 } 1784 1785 /** 1786 * tty_lookup_driver - lookup a tty driver for a given device file 1787 * @device: device number 1788 * @filp: file pointer to tty 1789 * @index: index for the device in the @return driver 1790 * @return: driver for this inode (with increased refcount) 1791 * 1792 * If @return is not erroneous, the caller is responsible to decrement the 1793 * refcount by tty_driver_kref_put. 1794 * 1795 * Locking: tty_mutex protects get_tty_driver 1796 */ 1797 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1798 int *index) 1799 { 1800 struct tty_driver *driver; 1801 1802 switch (device) { 1803 #ifdef CONFIG_VT 1804 case MKDEV(TTY_MAJOR, 0): { 1805 extern struct tty_driver *console_driver; 1806 driver = tty_driver_kref_get(console_driver); 1807 *index = fg_console; 1808 break; 1809 } 1810 #endif 1811 case MKDEV(TTYAUX_MAJOR, 1): { 1812 struct tty_driver *console_driver = console_device(index); 1813 if (console_driver) { 1814 driver = tty_driver_kref_get(console_driver); 1815 if (driver && filp) { 1816 /* Don't let /dev/console block */ 1817 filp->f_flags |= O_NONBLOCK; 1818 break; 1819 } 1820 } 1821 return ERR_PTR(-ENODEV); 1822 } 1823 default: 1824 driver = get_tty_driver(device, index); 1825 if (!driver) 1826 return ERR_PTR(-ENODEV); 1827 break; 1828 } 1829 return driver; 1830 } 1831 1832 /** 1833 * tty_kopen - open a tty device for kernel 1834 * @device: dev_t of device to open 1835 * 1836 * Opens tty exclusively for kernel. Performs the driver lookup, 1837 * makes sure it's not already opened and performs the first-time 1838 * tty initialization. 1839 * 1840 * Returns the locked initialized &tty_struct 1841 * 1842 * Claims the global tty_mutex to serialize: 1843 * - concurrent first-time tty initialization 1844 * - concurrent tty driver removal w/ lookup 1845 * - concurrent tty removal from driver table 1846 */ 1847 struct tty_struct *tty_kopen(dev_t device) 1848 { 1849 struct tty_struct *tty; 1850 struct tty_driver *driver = NULL; 1851 int index = -1; 1852 1853 mutex_lock(&tty_mutex); 1854 driver = tty_lookup_driver(device, NULL, &index); 1855 if (IS_ERR(driver)) { 1856 mutex_unlock(&tty_mutex); 1857 return ERR_CAST(driver); 1858 } 1859 1860 /* check whether we're reopening an existing tty */ 1861 tty = tty_driver_lookup_tty(driver, NULL, index); 1862 if (IS_ERR(tty)) 1863 goto out; 1864 1865 if (tty) { 1866 /* drop kref from tty_driver_lookup_tty() */ 1867 tty_kref_put(tty); 1868 tty = ERR_PTR(-EBUSY); 1869 } else { /* tty_init_dev returns tty with the tty_lock held */ 1870 tty = tty_init_dev(driver, index); 1871 if (IS_ERR(tty)) 1872 goto out; 1873 tty_port_set_kopened(tty->port, 1); 1874 } 1875 out: 1876 mutex_unlock(&tty_mutex); 1877 tty_driver_kref_put(driver); 1878 return tty; 1879 } 1880 EXPORT_SYMBOL_GPL(tty_kopen); 1881 1882 /** 1883 * tty_open_by_driver - open a tty device 1884 * @device: dev_t of device to open 1885 * @inode: inode of device file 1886 * @filp: file pointer to tty 1887 * 1888 * Performs the driver lookup, checks for a reopen, or otherwise 1889 * performs the first-time tty initialization. 1890 * 1891 * Returns the locked initialized or re-opened &tty_struct 1892 * 1893 * Claims the global tty_mutex to serialize: 1894 * - concurrent first-time tty initialization 1895 * - concurrent tty driver removal w/ lookup 1896 * - concurrent tty removal from driver table 1897 */ 1898 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode, 1899 struct file *filp) 1900 { 1901 struct tty_struct *tty; 1902 struct tty_driver *driver = NULL; 1903 int index = -1; 1904 int retval; 1905 1906 mutex_lock(&tty_mutex); 1907 driver = tty_lookup_driver(device, filp, &index); 1908 if (IS_ERR(driver)) { 1909 mutex_unlock(&tty_mutex); 1910 return ERR_CAST(driver); 1911 } 1912 1913 /* check whether we're reopening an existing tty */ 1914 tty = tty_driver_lookup_tty(driver, filp, index); 1915 if (IS_ERR(tty)) { 1916 mutex_unlock(&tty_mutex); 1917 goto out; 1918 } 1919 1920 if (tty) { 1921 if (tty_port_kopened(tty->port)) { 1922 tty_kref_put(tty); 1923 mutex_unlock(&tty_mutex); 1924 tty = ERR_PTR(-EBUSY); 1925 goto out; 1926 } 1927 mutex_unlock(&tty_mutex); 1928 retval = tty_lock_interruptible(tty); 1929 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 1930 if (retval) { 1931 if (retval == -EINTR) 1932 retval = -ERESTARTSYS; 1933 tty = ERR_PTR(retval); 1934 goto out; 1935 } 1936 retval = tty_reopen(tty); 1937 if (retval < 0) { 1938 tty_unlock(tty); 1939 tty = ERR_PTR(retval); 1940 } 1941 } else { /* Returns with the tty_lock held for now */ 1942 tty = tty_init_dev(driver, index); 1943 mutex_unlock(&tty_mutex); 1944 } 1945 out: 1946 tty_driver_kref_put(driver); 1947 return tty; 1948 } 1949 1950 /** 1951 * tty_open - open a tty device 1952 * @inode: inode of device file 1953 * @filp: file pointer to tty 1954 * 1955 * tty_open and tty_release keep up the tty count that contains the 1956 * number of opens done on a tty. We cannot use the inode-count, as 1957 * different inodes might point to the same tty. 1958 * 1959 * Open-counting is needed for pty masters, as well as for keeping 1960 * track of serial lines: DTR is dropped when the last close happens. 1961 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1962 * 1963 * The termios state of a pty is reset on first open so that 1964 * settings don't persist across reuse. 1965 * 1966 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1967 * tty->count should protect the rest. 1968 * ->siglock protects ->signal/->sighand 1969 * 1970 * Note: the tty_unlock/lock cases without a ref are only safe due to 1971 * tty_mutex 1972 */ 1973 1974 static int tty_open(struct inode *inode, struct file *filp) 1975 { 1976 struct tty_struct *tty; 1977 int noctty, retval; 1978 dev_t device = inode->i_rdev; 1979 unsigned saved_flags = filp->f_flags; 1980 1981 nonseekable_open(inode, filp); 1982 1983 retry_open: 1984 retval = tty_alloc_file(filp); 1985 if (retval) 1986 return -ENOMEM; 1987 1988 tty = tty_open_current_tty(device, filp); 1989 if (!tty) 1990 tty = tty_open_by_driver(device, inode, filp); 1991 1992 if (IS_ERR(tty)) { 1993 tty_free_file(filp); 1994 retval = PTR_ERR(tty); 1995 if (retval != -EAGAIN || signal_pending(current)) 1996 return retval; 1997 schedule(); 1998 goto retry_open; 1999 } 2000 2001 tty_add_file(tty, filp); 2002 2003 check_tty_count(tty, __func__); 2004 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2005 2006 if (tty->ops->open) 2007 retval = tty->ops->open(tty, filp); 2008 else 2009 retval = -ENODEV; 2010 filp->f_flags = saved_flags; 2011 2012 if (retval) { 2013 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2014 2015 tty_unlock(tty); /* need to call tty_release without BTM */ 2016 tty_release(inode, filp); 2017 if (retval != -ERESTARTSYS) 2018 return retval; 2019 2020 if (signal_pending(current)) 2021 return retval; 2022 2023 schedule(); 2024 /* 2025 * Need to reset f_op in case a hangup happened. 2026 */ 2027 if (tty_hung_up_p(filp)) 2028 filp->f_op = &tty_fops; 2029 goto retry_open; 2030 } 2031 clear_bit(TTY_HUPPED, &tty->flags); 2032 2033 noctty = (filp->f_flags & O_NOCTTY) || 2034 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2035 device == MKDEV(TTYAUX_MAJOR, 1) || 2036 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2037 tty->driver->subtype == PTY_TYPE_MASTER); 2038 if (!noctty) 2039 tty_open_proc_set_tty(filp, tty); 2040 tty_unlock(tty); 2041 return 0; 2042 } 2043 2044 2045 2046 /** 2047 * tty_poll - check tty status 2048 * @filp: file being polled 2049 * @wait: poll wait structures to update 2050 * 2051 * Call the line discipline polling method to obtain the poll 2052 * status of the device. 2053 * 2054 * Locking: locks called line discipline but ldisc poll method 2055 * may be re-entered freely by other callers. 2056 */ 2057 2058 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2059 { 2060 struct tty_struct *tty = file_tty(filp); 2061 struct tty_ldisc *ld; 2062 int ret = 0; 2063 2064 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2065 return 0; 2066 2067 ld = tty_ldisc_ref_wait(tty); 2068 if (!ld) 2069 return hung_up_tty_poll(filp, wait); 2070 if (ld->ops->poll) 2071 ret = ld->ops->poll(tty, filp, wait); 2072 tty_ldisc_deref(ld); 2073 return ret; 2074 } 2075 2076 static int __tty_fasync(int fd, struct file *filp, int on) 2077 { 2078 struct tty_struct *tty = file_tty(filp); 2079 unsigned long flags; 2080 int retval = 0; 2081 2082 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2083 goto out; 2084 2085 retval = fasync_helper(fd, filp, on, &tty->fasync); 2086 if (retval <= 0) 2087 goto out; 2088 2089 if (on) { 2090 enum pid_type type; 2091 struct pid *pid; 2092 2093 spin_lock_irqsave(&tty->ctrl_lock, flags); 2094 if (tty->pgrp) { 2095 pid = tty->pgrp; 2096 type = PIDTYPE_PGID; 2097 } else { 2098 pid = task_pid(current); 2099 type = PIDTYPE_PID; 2100 } 2101 get_pid(pid); 2102 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2103 __f_setown(filp, pid, type, 0); 2104 put_pid(pid); 2105 retval = 0; 2106 } 2107 out: 2108 return retval; 2109 } 2110 2111 static int tty_fasync(int fd, struct file *filp, int on) 2112 { 2113 struct tty_struct *tty = file_tty(filp); 2114 int retval = -ENOTTY; 2115 2116 tty_lock(tty); 2117 if (!tty_hung_up_p(filp)) 2118 retval = __tty_fasync(fd, filp, on); 2119 tty_unlock(tty); 2120 2121 return retval; 2122 } 2123 2124 /** 2125 * tiocsti - fake input character 2126 * @tty: tty to fake input into 2127 * @p: pointer to character 2128 * 2129 * Fake input to a tty device. Does the necessary locking and 2130 * input management. 2131 * 2132 * FIXME: does not honour flow control ?? 2133 * 2134 * Locking: 2135 * Called functions take tty_ldiscs_lock 2136 * current->signal->tty check is safe without locks 2137 * 2138 * FIXME: may race normal receive processing 2139 */ 2140 2141 static int tiocsti(struct tty_struct *tty, char __user *p) 2142 { 2143 char ch, mbz = 0; 2144 struct tty_ldisc *ld; 2145 2146 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2147 return -EPERM; 2148 if (get_user(ch, p)) 2149 return -EFAULT; 2150 tty_audit_tiocsti(tty, ch); 2151 ld = tty_ldisc_ref_wait(tty); 2152 if (!ld) 2153 return -EIO; 2154 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2155 tty_ldisc_deref(ld); 2156 return 0; 2157 } 2158 2159 /** 2160 * tiocgwinsz - implement window query ioctl 2161 * @tty; tty 2162 * @arg: user buffer for result 2163 * 2164 * Copies the kernel idea of the window size into the user buffer. 2165 * 2166 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2167 * is consistent. 2168 */ 2169 2170 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2171 { 2172 int err; 2173 2174 mutex_lock(&tty->winsize_mutex); 2175 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2176 mutex_unlock(&tty->winsize_mutex); 2177 2178 return err ? -EFAULT: 0; 2179 } 2180 2181 /** 2182 * tty_do_resize - resize event 2183 * @tty: tty being resized 2184 * @rows: rows (character) 2185 * @cols: cols (character) 2186 * 2187 * Update the termios variables and send the necessary signals to 2188 * peform a terminal resize correctly 2189 */ 2190 2191 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2192 { 2193 struct pid *pgrp; 2194 2195 /* Lock the tty */ 2196 mutex_lock(&tty->winsize_mutex); 2197 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2198 goto done; 2199 2200 /* Signal the foreground process group */ 2201 pgrp = tty_get_pgrp(tty); 2202 if (pgrp) 2203 kill_pgrp(pgrp, SIGWINCH, 1); 2204 put_pid(pgrp); 2205 2206 tty->winsize = *ws; 2207 done: 2208 mutex_unlock(&tty->winsize_mutex); 2209 return 0; 2210 } 2211 EXPORT_SYMBOL(tty_do_resize); 2212 2213 /** 2214 * tiocswinsz - implement window size set ioctl 2215 * @tty; tty side of tty 2216 * @arg: user buffer for result 2217 * 2218 * Copies the user idea of the window size to the kernel. Traditionally 2219 * this is just advisory information but for the Linux console it 2220 * actually has driver level meaning and triggers a VC resize. 2221 * 2222 * Locking: 2223 * Driver dependent. The default do_resize method takes the 2224 * tty termios mutex and ctrl_lock. The console takes its own lock 2225 * then calls into the default method. 2226 */ 2227 2228 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2229 { 2230 struct winsize tmp_ws; 2231 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2232 return -EFAULT; 2233 2234 if (tty->ops->resize) 2235 return tty->ops->resize(tty, &tmp_ws); 2236 else 2237 return tty_do_resize(tty, &tmp_ws); 2238 } 2239 2240 /** 2241 * tioccons - allow admin to move logical console 2242 * @file: the file to become console 2243 * 2244 * Allow the administrator to move the redirected console device 2245 * 2246 * Locking: uses redirect_lock to guard the redirect information 2247 */ 2248 2249 static int tioccons(struct file *file) 2250 { 2251 if (!capable(CAP_SYS_ADMIN)) 2252 return -EPERM; 2253 if (file->f_op->write == redirected_tty_write) { 2254 struct file *f; 2255 spin_lock(&redirect_lock); 2256 f = redirect; 2257 redirect = NULL; 2258 spin_unlock(&redirect_lock); 2259 if (f) 2260 fput(f); 2261 return 0; 2262 } 2263 spin_lock(&redirect_lock); 2264 if (redirect) { 2265 spin_unlock(&redirect_lock); 2266 return -EBUSY; 2267 } 2268 redirect = get_file(file); 2269 spin_unlock(&redirect_lock); 2270 return 0; 2271 } 2272 2273 /** 2274 * fionbio - non blocking ioctl 2275 * @file: file to set blocking value 2276 * @p: user parameter 2277 * 2278 * Historical tty interfaces had a blocking control ioctl before 2279 * the generic functionality existed. This piece of history is preserved 2280 * in the expected tty API of posix OS's. 2281 * 2282 * Locking: none, the open file handle ensures it won't go away. 2283 */ 2284 2285 static int fionbio(struct file *file, int __user *p) 2286 { 2287 int nonblock; 2288 2289 if (get_user(nonblock, p)) 2290 return -EFAULT; 2291 2292 spin_lock(&file->f_lock); 2293 if (nonblock) 2294 file->f_flags |= O_NONBLOCK; 2295 else 2296 file->f_flags &= ~O_NONBLOCK; 2297 spin_unlock(&file->f_lock); 2298 return 0; 2299 } 2300 2301 /** 2302 * tiocsetd - set line discipline 2303 * @tty: tty device 2304 * @p: pointer to user data 2305 * 2306 * Set the line discipline according to user request. 2307 * 2308 * Locking: see tty_set_ldisc, this function is just a helper 2309 */ 2310 2311 static int tiocsetd(struct tty_struct *tty, int __user *p) 2312 { 2313 int disc; 2314 int ret; 2315 2316 if (get_user(disc, p)) 2317 return -EFAULT; 2318 2319 ret = tty_set_ldisc(tty, disc); 2320 2321 return ret; 2322 } 2323 2324 /** 2325 * tiocgetd - get line discipline 2326 * @tty: tty device 2327 * @p: pointer to user data 2328 * 2329 * Retrieves the line discipline id directly from the ldisc. 2330 * 2331 * Locking: waits for ldisc reference (in case the line discipline 2332 * is changing or the tty is being hungup) 2333 */ 2334 2335 static int tiocgetd(struct tty_struct *tty, int __user *p) 2336 { 2337 struct tty_ldisc *ld; 2338 int ret; 2339 2340 ld = tty_ldisc_ref_wait(tty); 2341 if (!ld) 2342 return -EIO; 2343 ret = put_user(ld->ops->num, p); 2344 tty_ldisc_deref(ld); 2345 return ret; 2346 } 2347 2348 /** 2349 * send_break - performed time break 2350 * @tty: device to break on 2351 * @duration: timeout in mS 2352 * 2353 * Perform a timed break on hardware that lacks its own driver level 2354 * timed break functionality. 2355 * 2356 * Locking: 2357 * atomic_write_lock serializes 2358 * 2359 */ 2360 2361 static int send_break(struct tty_struct *tty, unsigned int duration) 2362 { 2363 int retval; 2364 2365 if (tty->ops->break_ctl == NULL) 2366 return 0; 2367 2368 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2369 retval = tty->ops->break_ctl(tty, duration); 2370 else { 2371 /* Do the work ourselves */ 2372 if (tty_write_lock(tty, 0) < 0) 2373 return -EINTR; 2374 retval = tty->ops->break_ctl(tty, -1); 2375 if (retval) 2376 goto out; 2377 if (!signal_pending(current)) 2378 msleep_interruptible(duration); 2379 retval = tty->ops->break_ctl(tty, 0); 2380 out: 2381 tty_write_unlock(tty); 2382 if (signal_pending(current)) 2383 retval = -EINTR; 2384 } 2385 return retval; 2386 } 2387 2388 /** 2389 * tty_tiocmget - get modem status 2390 * @tty: tty device 2391 * @file: user file pointer 2392 * @p: pointer to result 2393 * 2394 * Obtain the modem status bits from the tty driver if the feature 2395 * is supported. Return -EINVAL if it is not available. 2396 * 2397 * Locking: none (up to the driver) 2398 */ 2399 2400 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2401 { 2402 int retval = -EINVAL; 2403 2404 if (tty->ops->tiocmget) { 2405 retval = tty->ops->tiocmget(tty); 2406 2407 if (retval >= 0) 2408 retval = put_user(retval, p); 2409 } 2410 return retval; 2411 } 2412 2413 /** 2414 * tty_tiocmset - set modem status 2415 * @tty: tty device 2416 * @cmd: command - clear bits, set bits or set all 2417 * @p: pointer to desired bits 2418 * 2419 * Set the modem status bits from the tty driver if the feature 2420 * is supported. Return -EINVAL if it is not available. 2421 * 2422 * Locking: none (up to the driver) 2423 */ 2424 2425 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2426 unsigned __user *p) 2427 { 2428 int retval; 2429 unsigned int set, clear, val; 2430 2431 if (tty->ops->tiocmset == NULL) 2432 return -EINVAL; 2433 2434 retval = get_user(val, p); 2435 if (retval) 2436 return retval; 2437 set = clear = 0; 2438 switch (cmd) { 2439 case TIOCMBIS: 2440 set = val; 2441 break; 2442 case TIOCMBIC: 2443 clear = val; 2444 break; 2445 case TIOCMSET: 2446 set = val; 2447 clear = ~val; 2448 break; 2449 } 2450 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2451 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2452 return tty->ops->tiocmset(tty, set, clear); 2453 } 2454 2455 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2456 { 2457 int retval = -EINVAL; 2458 struct serial_icounter_struct icount; 2459 memset(&icount, 0, sizeof(icount)); 2460 if (tty->ops->get_icount) 2461 retval = tty->ops->get_icount(tty, &icount); 2462 if (retval != 0) 2463 return retval; 2464 if (copy_to_user(arg, &icount, sizeof(icount))) 2465 return -EFAULT; 2466 return 0; 2467 } 2468 2469 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2470 { 2471 static DEFINE_RATELIMIT_STATE(depr_flags, 2472 DEFAULT_RATELIMIT_INTERVAL, 2473 DEFAULT_RATELIMIT_BURST); 2474 char comm[TASK_COMM_LEN]; 2475 int flags; 2476 2477 if (get_user(flags, &ss->flags)) 2478 return; 2479 2480 flags &= ASYNC_DEPRECATED; 2481 2482 if (flags && __ratelimit(&depr_flags)) 2483 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2484 __func__, get_task_comm(comm, current), flags); 2485 } 2486 2487 /* 2488 * if pty, return the slave side (real_tty) 2489 * otherwise, return self 2490 */ 2491 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2492 { 2493 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2494 tty->driver->subtype == PTY_TYPE_MASTER) 2495 tty = tty->link; 2496 return tty; 2497 } 2498 2499 /* 2500 * Split this up, as gcc can choke on it otherwise.. 2501 */ 2502 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2503 { 2504 struct tty_struct *tty = file_tty(file); 2505 struct tty_struct *real_tty; 2506 void __user *p = (void __user *)arg; 2507 int retval; 2508 struct tty_ldisc *ld; 2509 2510 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2511 return -EINVAL; 2512 2513 real_tty = tty_pair_get_tty(tty); 2514 2515 /* 2516 * Factor out some common prep work 2517 */ 2518 switch (cmd) { 2519 case TIOCSETD: 2520 case TIOCSBRK: 2521 case TIOCCBRK: 2522 case TCSBRK: 2523 case TCSBRKP: 2524 retval = tty_check_change(tty); 2525 if (retval) 2526 return retval; 2527 if (cmd != TIOCCBRK) { 2528 tty_wait_until_sent(tty, 0); 2529 if (signal_pending(current)) 2530 return -EINTR; 2531 } 2532 break; 2533 } 2534 2535 /* 2536 * Now do the stuff. 2537 */ 2538 switch (cmd) { 2539 case TIOCSTI: 2540 return tiocsti(tty, p); 2541 case TIOCGWINSZ: 2542 return tiocgwinsz(real_tty, p); 2543 case TIOCSWINSZ: 2544 return tiocswinsz(real_tty, p); 2545 case TIOCCONS: 2546 return real_tty != tty ? -EINVAL : tioccons(file); 2547 case FIONBIO: 2548 return fionbio(file, p); 2549 case TIOCEXCL: 2550 set_bit(TTY_EXCLUSIVE, &tty->flags); 2551 return 0; 2552 case TIOCNXCL: 2553 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2554 return 0; 2555 case TIOCGEXCL: 2556 { 2557 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2558 return put_user(excl, (int __user *)p); 2559 } 2560 case TIOCGETD: 2561 return tiocgetd(tty, p); 2562 case TIOCSETD: 2563 return tiocsetd(tty, p); 2564 case TIOCVHANGUP: 2565 if (!capable(CAP_SYS_ADMIN)) 2566 return -EPERM; 2567 tty_vhangup(tty); 2568 return 0; 2569 case TIOCGDEV: 2570 { 2571 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2572 return put_user(ret, (unsigned int __user *)p); 2573 } 2574 /* 2575 * Break handling 2576 */ 2577 case TIOCSBRK: /* Turn break on, unconditionally */ 2578 if (tty->ops->break_ctl) 2579 return tty->ops->break_ctl(tty, -1); 2580 return 0; 2581 case TIOCCBRK: /* Turn break off, unconditionally */ 2582 if (tty->ops->break_ctl) 2583 return tty->ops->break_ctl(tty, 0); 2584 return 0; 2585 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2586 /* non-zero arg means wait for all output data 2587 * to be sent (performed above) but don't send break. 2588 * This is used by the tcdrain() termios function. 2589 */ 2590 if (!arg) 2591 return send_break(tty, 250); 2592 return 0; 2593 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2594 return send_break(tty, arg ? arg*100 : 250); 2595 2596 case TIOCMGET: 2597 return tty_tiocmget(tty, p); 2598 case TIOCMSET: 2599 case TIOCMBIC: 2600 case TIOCMBIS: 2601 return tty_tiocmset(tty, cmd, p); 2602 case TIOCGICOUNT: 2603 retval = tty_tiocgicount(tty, p); 2604 /* For the moment allow fall through to the old method */ 2605 if (retval != -EINVAL) 2606 return retval; 2607 break; 2608 case TCFLSH: 2609 switch (arg) { 2610 case TCIFLUSH: 2611 case TCIOFLUSH: 2612 /* flush tty buffer and allow ldisc to process ioctl */ 2613 tty_buffer_flush(tty, NULL); 2614 break; 2615 } 2616 break; 2617 case TIOCSSERIAL: 2618 tty_warn_deprecated_flags(p); 2619 break; 2620 case TIOCGPTPEER: 2621 /* Special because the struct file is needed */ 2622 return ptm_open_peer(file, tty, (int)arg); 2623 default: 2624 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg); 2625 if (retval != -ENOIOCTLCMD) 2626 return retval; 2627 } 2628 if (tty->ops->ioctl) { 2629 retval = tty->ops->ioctl(tty, cmd, arg); 2630 if (retval != -ENOIOCTLCMD) 2631 return retval; 2632 } 2633 ld = tty_ldisc_ref_wait(tty); 2634 if (!ld) 2635 return hung_up_tty_ioctl(file, cmd, arg); 2636 retval = -EINVAL; 2637 if (ld->ops->ioctl) { 2638 retval = ld->ops->ioctl(tty, file, cmd, arg); 2639 if (retval == -ENOIOCTLCMD) 2640 retval = -ENOTTY; 2641 } 2642 tty_ldisc_deref(ld); 2643 return retval; 2644 } 2645 2646 #ifdef CONFIG_COMPAT 2647 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2648 unsigned long arg) 2649 { 2650 struct tty_struct *tty = file_tty(file); 2651 struct tty_ldisc *ld; 2652 int retval = -ENOIOCTLCMD; 2653 2654 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2655 return -EINVAL; 2656 2657 if (tty->ops->compat_ioctl) { 2658 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2659 if (retval != -ENOIOCTLCMD) 2660 return retval; 2661 } 2662 2663 ld = tty_ldisc_ref_wait(tty); 2664 if (!ld) 2665 return hung_up_tty_compat_ioctl(file, cmd, arg); 2666 if (ld->ops->compat_ioctl) 2667 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2668 else 2669 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2670 tty_ldisc_deref(ld); 2671 2672 return retval; 2673 } 2674 #endif 2675 2676 static int this_tty(const void *t, struct file *file, unsigned fd) 2677 { 2678 if (likely(file->f_op->read != tty_read)) 2679 return 0; 2680 return file_tty(file) != t ? 0 : fd + 1; 2681 } 2682 2683 /* 2684 * This implements the "Secure Attention Key" --- the idea is to 2685 * prevent trojan horses by killing all processes associated with this 2686 * tty when the user hits the "Secure Attention Key". Required for 2687 * super-paranoid applications --- see the Orange Book for more details. 2688 * 2689 * This code could be nicer; ideally it should send a HUP, wait a few 2690 * seconds, then send a INT, and then a KILL signal. But you then 2691 * have to coordinate with the init process, since all processes associated 2692 * with the current tty must be dead before the new getty is allowed 2693 * to spawn. 2694 * 2695 * Now, if it would be correct ;-/ The current code has a nasty hole - 2696 * it doesn't catch files in flight. We may send the descriptor to ourselves 2697 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2698 * 2699 * Nasty bug: do_SAK is being called in interrupt context. This can 2700 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2701 */ 2702 void __do_SAK(struct tty_struct *tty) 2703 { 2704 #ifdef TTY_SOFT_SAK 2705 tty_hangup(tty); 2706 #else 2707 struct task_struct *g, *p; 2708 struct pid *session; 2709 int i; 2710 2711 if (!tty) 2712 return; 2713 session = tty->session; 2714 2715 tty_ldisc_flush(tty); 2716 2717 tty_driver_flush_buffer(tty); 2718 2719 read_lock(&tasklist_lock); 2720 /* Kill the entire session */ 2721 do_each_pid_task(session, PIDTYPE_SID, p) { 2722 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 2723 task_pid_nr(p), p->comm); 2724 send_sig(SIGKILL, p, 1); 2725 } while_each_pid_task(session, PIDTYPE_SID, p); 2726 2727 /* Now kill any processes that happen to have the tty open */ 2728 do_each_thread(g, p) { 2729 if (p->signal->tty == tty) { 2730 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 2731 task_pid_nr(p), p->comm); 2732 send_sig(SIGKILL, p, 1); 2733 continue; 2734 } 2735 task_lock(p); 2736 i = iterate_fd(p->files, 0, this_tty, tty); 2737 if (i != 0) { 2738 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 2739 task_pid_nr(p), p->comm, i - 1); 2740 force_sig(SIGKILL, p); 2741 } 2742 task_unlock(p); 2743 } while_each_thread(g, p); 2744 read_unlock(&tasklist_lock); 2745 #endif 2746 } 2747 2748 static void do_SAK_work(struct work_struct *work) 2749 { 2750 struct tty_struct *tty = 2751 container_of(work, struct tty_struct, SAK_work); 2752 __do_SAK(tty); 2753 } 2754 2755 /* 2756 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2757 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2758 * the values which we write to it will be identical to the values which it 2759 * already has. --akpm 2760 */ 2761 void do_SAK(struct tty_struct *tty) 2762 { 2763 if (!tty) 2764 return; 2765 schedule_work(&tty->SAK_work); 2766 } 2767 2768 EXPORT_SYMBOL(do_SAK); 2769 2770 static int dev_match_devt(struct device *dev, const void *data) 2771 { 2772 const dev_t *devt = data; 2773 return dev->devt == *devt; 2774 } 2775 2776 /* Must put_device() after it's unused! */ 2777 static struct device *tty_get_device(struct tty_struct *tty) 2778 { 2779 dev_t devt = tty_devnum(tty); 2780 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 2781 } 2782 2783 2784 /** 2785 * alloc_tty_struct 2786 * 2787 * This subroutine allocates and initializes a tty structure. 2788 * 2789 * Locking: none - tty in question is not exposed at this point 2790 */ 2791 2792 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 2793 { 2794 struct tty_struct *tty; 2795 2796 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 2797 if (!tty) 2798 return NULL; 2799 2800 kref_init(&tty->kref); 2801 tty->magic = TTY_MAGIC; 2802 tty_ldisc_init(tty); 2803 tty->session = NULL; 2804 tty->pgrp = NULL; 2805 mutex_init(&tty->legacy_mutex); 2806 mutex_init(&tty->throttle_mutex); 2807 init_rwsem(&tty->termios_rwsem); 2808 mutex_init(&tty->winsize_mutex); 2809 init_ldsem(&tty->ldisc_sem); 2810 init_waitqueue_head(&tty->write_wait); 2811 init_waitqueue_head(&tty->read_wait); 2812 INIT_WORK(&tty->hangup_work, do_tty_hangup); 2813 mutex_init(&tty->atomic_write_lock); 2814 spin_lock_init(&tty->ctrl_lock); 2815 spin_lock_init(&tty->flow_lock); 2816 spin_lock_init(&tty->files_lock); 2817 INIT_LIST_HEAD(&tty->tty_files); 2818 INIT_WORK(&tty->SAK_work, do_SAK_work); 2819 2820 tty->driver = driver; 2821 tty->ops = driver->ops; 2822 tty->index = idx; 2823 tty_line_name(driver, idx, tty->name); 2824 tty->dev = tty_get_device(tty); 2825 2826 return tty; 2827 } 2828 2829 /** 2830 * tty_put_char - write one character to a tty 2831 * @tty: tty 2832 * @ch: character 2833 * 2834 * Write one byte to the tty using the provided put_char method 2835 * if present. Returns the number of characters successfully output. 2836 * 2837 * Note: the specific put_char operation in the driver layer may go 2838 * away soon. Don't call it directly, use this method 2839 */ 2840 2841 int tty_put_char(struct tty_struct *tty, unsigned char ch) 2842 { 2843 if (tty->ops->put_char) 2844 return tty->ops->put_char(tty, ch); 2845 return tty->ops->write(tty, &ch, 1); 2846 } 2847 EXPORT_SYMBOL_GPL(tty_put_char); 2848 2849 struct class *tty_class; 2850 2851 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 2852 unsigned int index, unsigned int count) 2853 { 2854 int err; 2855 2856 /* init here, since reused cdevs cause crashes */ 2857 driver->cdevs[index] = cdev_alloc(); 2858 if (!driver->cdevs[index]) 2859 return -ENOMEM; 2860 driver->cdevs[index]->ops = &tty_fops; 2861 driver->cdevs[index]->owner = driver->owner; 2862 err = cdev_add(driver->cdevs[index], dev, count); 2863 if (err) 2864 kobject_put(&driver->cdevs[index]->kobj); 2865 return err; 2866 } 2867 2868 /** 2869 * tty_register_device - register a tty device 2870 * @driver: the tty driver that describes the tty device 2871 * @index: the index in the tty driver for this tty device 2872 * @device: a struct device that is associated with this tty device. 2873 * This field is optional, if there is no known struct device 2874 * for this tty device it can be set to NULL safely. 2875 * 2876 * Returns a pointer to the struct device for this tty device 2877 * (or ERR_PTR(-EFOO) on error). 2878 * 2879 * This call is required to be made to register an individual tty device 2880 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 2881 * that bit is not set, this function should not be called by a tty 2882 * driver. 2883 * 2884 * Locking: ?? 2885 */ 2886 2887 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 2888 struct device *device) 2889 { 2890 return tty_register_device_attr(driver, index, device, NULL, NULL); 2891 } 2892 EXPORT_SYMBOL(tty_register_device); 2893 2894 static void tty_device_create_release(struct device *dev) 2895 { 2896 dev_dbg(dev, "releasing...\n"); 2897 kfree(dev); 2898 } 2899 2900 /** 2901 * tty_register_device_attr - register a tty device 2902 * @driver: the tty driver that describes the tty device 2903 * @index: the index in the tty driver for this tty device 2904 * @device: a struct device that is associated with this tty device. 2905 * This field is optional, if there is no known struct device 2906 * for this tty device it can be set to NULL safely. 2907 * @drvdata: Driver data to be set to device. 2908 * @attr_grp: Attribute group to be set on device. 2909 * 2910 * Returns a pointer to the struct device for this tty device 2911 * (or ERR_PTR(-EFOO) on error). 2912 * 2913 * This call is required to be made to register an individual tty device 2914 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 2915 * that bit is not set, this function should not be called by a tty 2916 * driver. 2917 * 2918 * Locking: ?? 2919 */ 2920 struct device *tty_register_device_attr(struct tty_driver *driver, 2921 unsigned index, struct device *device, 2922 void *drvdata, 2923 const struct attribute_group **attr_grp) 2924 { 2925 char name[64]; 2926 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 2927 struct ktermios *tp; 2928 struct device *dev; 2929 int retval; 2930 2931 if (index >= driver->num) { 2932 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 2933 driver->name, index); 2934 return ERR_PTR(-EINVAL); 2935 } 2936 2937 if (driver->type == TTY_DRIVER_TYPE_PTY) 2938 pty_line_name(driver, index, name); 2939 else 2940 tty_line_name(driver, index, name); 2941 2942 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2943 if (!dev) 2944 return ERR_PTR(-ENOMEM); 2945 2946 dev->devt = devt; 2947 dev->class = tty_class; 2948 dev->parent = device; 2949 dev->release = tty_device_create_release; 2950 dev_set_name(dev, "%s", name); 2951 dev->groups = attr_grp; 2952 dev_set_drvdata(dev, drvdata); 2953 2954 dev_set_uevent_suppress(dev, 1); 2955 2956 retval = device_register(dev); 2957 if (retval) 2958 goto err_put; 2959 2960 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 2961 /* 2962 * Free any saved termios data so that the termios state is 2963 * reset when reusing a minor number. 2964 */ 2965 tp = driver->termios[index]; 2966 if (tp) { 2967 driver->termios[index] = NULL; 2968 kfree(tp); 2969 } 2970 2971 retval = tty_cdev_add(driver, devt, index, 1); 2972 if (retval) 2973 goto err_del; 2974 } 2975 2976 dev_set_uevent_suppress(dev, 0); 2977 kobject_uevent(&dev->kobj, KOBJ_ADD); 2978 2979 return dev; 2980 2981 err_del: 2982 device_del(dev); 2983 err_put: 2984 put_device(dev); 2985 2986 return ERR_PTR(retval); 2987 } 2988 EXPORT_SYMBOL_GPL(tty_register_device_attr); 2989 2990 /** 2991 * tty_unregister_device - unregister a tty device 2992 * @driver: the tty driver that describes the tty device 2993 * @index: the index in the tty driver for this tty device 2994 * 2995 * If a tty device is registered with a call to tty_register_device() then 2996 * this function must be called when the tty device is gone. 2997 * 2998 * Locking: ?? 2999 */ 3000 3001 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3002 { 3003 device_destroy(tty_class, 3004 MKDEV(driver->major, driver->minor_start) + index); 3005 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3006 cdev_del(driver->cdevs[index]); 3007 driver->cdevs[index] = NULL; 3008 } 3009 } 3010 EXPORT_SYMBOL(tty_unregister_device); 3011 3012 /** 3013 * __tty_alloc_driver -- allocate tty driver 3014 * @lines: count of lines this driver can handle at most 3015 * @owner: module which is responsible for this driver 3016 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3017 * 3018 * This should not be called directly, some of the provided macros should be 3019 * used instead. Use IS_ERR and friends on @retval. 3020 */ 3021 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3022 unsigned long flags) 3023 { 3024 struct tty_driver *driver; 3025 unsigned int cdevs = 1; 3026 int err; 3027 3028 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3029 return ERR_PTR(-EINVAL); 3030 3031 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3032 if (!driver) 3033 return ERR_PTR(-ENOMEM); 3034 3035 kref_init(&driver->kref); 3036 driver->magic = TTY_DRIVER_MAGIC; 3037 driver->num = lines; 3038 driver->owner = owner; 3039 driver->flags = flags; 3040 3041 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3042 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3043 GFP_KERNEL); 3044 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3045 GFP_KERNEL); 3046 if (!driver->ttys || !driver->termios) { 3047 err = -ENOMEM; 3048 goto err_free_all; 3049 } 3050 } 3051 3052 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3053 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3054 GFP_KERNEL); 3055 if (!driver->ports) { 3056 err = -ENOMEM; 3057 goto err_free_all; 3058 } 3059 cdevs = lines; 3060 } 3061 3062 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3063 if (!driver->cdevs) { 3064 err = -ENOMEM; 3065 goto err_free_all; 3066 } 3067 3068 return driver; 3069 err_free_all: 3070 kfree(driver->ports); 3071 kfree(driver->ttys); 3072 kfree(driver->termios); 3073 kfree(driver->cdevs); 3074 kfree(driver); 3075 return ERR_PTR(err); 3076 } 3077 EXPORT_SYMBOL(__tty_alloc_driver); 3078 3079 static void destruct_tty_driver(struct kref *kref) 3080 { 3081 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3082 int i; 3083 struct ktermios *tp; 3084 3085 if (driver->flags & TTY_DRIVER_INSTALLED) { 3086 for (i = 0; i < driver->num; i++) { 3087 tp = driver->termios[i]; 3088 if (tp) { 3089 driver->termios[i] = NULL; 3090 kfree(tp); 3091 } 3092 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3093 tty_unregister_device(driver, i); 3094 } 3095 proc_tty_unregister_driver(driver); 3096 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3097 cdev_del(driver->cdevs[0]); 3098 } 3099 kfree(driver->cdevs); 3100 kfree(driver->ports); 3101 kfree(driver->termios); 3102 kfree(driver->ttys); 3103 kfree(driver); 3104 } 3105 3106 void tty_driver_kref_put(struct tty_driver *driver) 3107 { 3108 kref_put(&driver->kref, destruct_tty_driver); 3109 } 3110 EXPORT_SYMBOL(tty_driver_kref_put); 3111 3112 void tty_set_operations(struct tty_driver *driver, 3113 const struct tty_operations *op) 3114 { 3115 driver->ops = op; 3116 }; 3117 EXPORT_SYMBOL(tty_set_operations); 3118 3119 void put_tty_driver(struct tty_driver *d) 3120 { 3121 tty_driver_kref_put(d); 3122 } 3123 EXPORT_SYMBOL(put_tty_driver); 3124 3125 /* 3126 * Called by a tty driver to register itself. 3127 */ 3128 int tty_register_driver(struct tty_driver *driver) 3129 { 3130 int error; 3131 int i; 3132 dev_t dev; 3133 struct device *d; 3134 3135 if (!driver->major) { 3136 error = alloc_chrdev_region(&dev, driver->minor_start, 3137 driver->num, driver->name); 3138 if (!error) { 3139 driver->major = MAJOR(dev); 3140 driver->minor_start = MINOR(dev); 3141 } 3142 } else { 3143 dev = MKDEV(driver->major, driver->minor_start); 3144 error = register_chrdev_region(dev, driver->num, driver->name); 3145 } 3146 if (error < 0) 3147 goto err; 3148 3149 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3150 error = tty_cdev_add(driver, dev, 0, driver->num); 3151 if (error) 3152 goto err_unreg_char; 3153 } 3154 3155 mutex_lock(&tty_mutex); 3156 list_add(&driver->tty_drivers, &tty_drivers); 3157 mutex_unlock(&tty_mutex); 3158 3159 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3160 for (i = 0; i < driver->num; i++) { 3161 d = tty_register_device(driver, i, NULL); 3162 if (IS_ERR(d)) { 3163 error = PTR_ERR(d); 3164 goto err_unreg_devs; 3165 } 3166 } 3167 } 3168 proc_tty_register_driver(driver); 3169 driver->flags |= TTY_DRIVER_INSTALLED; 3170 return 0; 3171 3172 err_unreg_devs: 3173 for (i--; i >= 0; i--) 3174 tty_unregister_device(driver, i); 3175 3176 mutex_lock(&tty_mutex); 3177 list_del(&driver->tty_drivers); 3178 mutex_unlock(&tty_mutex); 3179 3180 err_unreg_char: 3181 unregister_chrdev_region(dev, driver->num); 3182 err: 3183 return error; 3184 } 3185 EXPORT_SYMBOL(tty_register_driver); 3186 3187 /* 3188 * Called by a tty driver to unregister itself. 3189 */ 3190 int tty_unregister_driver(struct tty_driver *driver) 3191 { 3192 #if 0 3193 /* FIXME */ 3194 if (driver->refcount) 3195 return -EBUSY; 3196 #endif 3197 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3198 driver->num); 3199 mutex_lock(&tty_mutex); 3200 list_del(&driver->tty_drivers); 3201 mutex_unlock(&tty_mutex); 3202 return 0; 3203 } 3204 3205 EXPORT_SYMBOL(tty_unregister_driver); 3206 3207 dev_t tty_devnum(struct tty_struct *tty) 3208 { 3209 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3210 } 3211 EXPORT_SYMBOL(tty_devnum); 3212 3213 void tty_default_fops(struct file_operations *fops) 3214 { 3215 *fops = tty_fops; 3216 } 3217 3218 static char *tty_devnode(struct device *dev, umode_t *mode) 3219 { 3220 if (!mode) 3221 return NULL; 3222 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3223 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3224 *mode = 0666; 3225 return NULL; 3226 } 3227 3228 static int __init tty_class_init(void) 3229 { 3230 tty_class = class_create(THIS_MODULE, "tty"); 3231 if (IS_ERR(tty_class)) 3232 return PTR_ERR(tty_class); 3233 tty_class->devnode = tty_devnode; 3234 return 0; 3235 } 3236 3237 postcore_initcall(tty_class_init); 3238 3239 /* 3/2004 jmc: why do these devices exist? */ 3240 static struct cdev tty_cdev, console_cdev; 3241 3242 static ssize_t show_cons_active(struct device *dev, 3243 struct device_attribute *attr, char *buf) 3244 { 3245 struct console *cs[16]; 3246 int i = 0; 3247 struct console *c; 3248 ssize_t count = 0; 3249 3250 console_lock(); 3251 for_each_console(c) { 3252 if (!c->device) 3253 continue; 3254 if (!c->write) 3255 continue; 3256 if ((c->flags & CON_ENABLED) == 0) 3257 continue; 3258 cs[i++] = c; 3259 if (i >= ARRAY_SIZE(cs)) 3260 break; 3261 } 3262 while (i--) { 3263 int index = cs[i]->index; 3264 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3265 3266 /* don't resolve tty0 as some programs depend on it */ 3267 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3268 count += tty_line_name(drv, index, buf + count); 3269 else 3270 count += sprintf(buf + count, "%s%d", 3271 cs[i]->name, cs[i]->index); 3272 3273 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3274 } 3275 console_unlock(); 3276 3277 return count; 3278 } 3279 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3280 3281 static struct attribute *cons_dev_attrs[] = { 3282 &dev_attr_active.attr, 3283 NULL 3284 }; 3285 3286 ATTRIBUTE_GROUPS(cons_dev); 3287 3288 static struct device *consdev; 3289 3290 void console_sysfs_notify(void) 3291 { 3292 if (consdev) 3293 sysfs_notify(&consdev->kobj, NULL, "active"); 3294 } 3295 3296 /* 3297 * Ok, now we can initialize the rest of the tty devices and can count 3298 * on memory allocations, interrupts etc.. 3299 */ 3300 int __init tty_init(void) 3301 { 3302 cdev_init(&tty_cdev, &tty_fops); 3303 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3304 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3305 panic("Couldn't register /dev/tty driver\n"); 3306 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3307 3308 cdev_init(&console_cdev, &console_fops); 3309 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3310 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3311 panic("Couldn't register /dev/console driver\n"); 3312 consdev = device_create_with_groups(tty_class, NULL, 3313 MKDEV(TTYAUX_MAJOR, 1), NULL, 3314 cons_dev_groups, "console"); 3315 if (IS_ERR(consdev)) 3316 consdev = NULL; 3317 3318 #ifdef CONFIG_VT 3319 vty_init(&console_fops); 3320 #endif 3321 return 0; 3322 } 3323 3324