xref: /linux/drivers/tty/tty_io.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400,
127 	/* .c_line = N_TTY, */
128 };
129 
130 EXPORT_SYMBOL(tty_std_termios);
131 
132 /* This list gets poked at by procfs and various bits of boot up code. This
133    could do with some rationalisation such as pulling the tty proc function
134    into this file */
135 
136 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
137 
138 /* Mutex to protect creating and releasing a tty */
139 DEFINE_MUTEX(tty_mutex);
140 
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 							size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 				unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 
158 /**
159  *	free_tty_struct		-	free a disused tty
160  *	@tty: tty struct to free
161  *
162  *	Free the write buffers, tty queue and tty memory itself.
163  *
164  *	Locking: none. Must be called after tty is definitely unused
165  */
166 
167 static void free_tty_struct(struct tty_struct *tty)
168 {
169 	tty_ldisc_deinit(tty);
170 	put_device(tty->dev);
171 	kfree(tty->write_buf);
172 	tty->magic = 0xDEADDEAD;
173 	kfree(tty);
174 }
175 
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty->files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty->files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
213 void tty_free_file(struct file *file)
214 {
215 	struct tty_file_private *priv = file->private_data;
216 
217 	file->private_data = NULL;
218 	kfree(priv);
219 }
220 
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224 	struct tty_file_private *priv = file->private_data;
225 	struct tty_struct *tty = priv->tty;
226 
227 	spin_lock(&tty->files_lock);
228 	list_del(&priv->list);
229 	spin_unlock(&tty->files_lock);
230 	tty_free_file(file);
231 }
232 
233 /**
234  *	tty_name	-	return tty naming
235  *	@tty: tty structure
236  *
237  *	Convert a tty structure into a name. The name reflects the kernel
238  *	naming policy and if udev is in use may not reflect user space
239  *
240  *	Locking: none
241  */
242 
243 const char *tty_name(const struct tty_struct *tty)
244 {
245 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
246 		return "NULL tty";
247 	return tty->name;
248 }
249 
250 EXPORT_SYMBOL(tty_name);
251 
252 const char *tty_driver_name(const struct tty_struct *tty)
253 {
254 	if (!tty || !tty->driver)
255 		return "";
256 	return tty->driver->name;
257 }
258 
259 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 			      const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 	if (!tty) {
264 		pr_warn("(%d:%d): %s: NULL tty\n",
265 			imajor(inode), iminor(inode), routine);
266 		return 1;
267 	}
268 	if (tty->magic != TTY_MAGIC) {
269 		pr_warn("(%d:%d): %s: bad magic number\n",
270 			imajor(inode), iminor(inode), routine);
271 		return 1;
272 	}
273 #endif
274 	return 0;
275 }
276 
277 /* Caller must hold tty_lock */
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281 	struct list_head *p;
282 	int count = 0;
283 
284 	spin_lock(&tty->files_lock);
285 	list_for_each(p, &tty->tty_files) {
286 		count++;
287 	}
288 	spin_unlock(&tty->files_lock);
289 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
291 	    tty->link && tty->link->count)
292 		count++;
293 	if (tty->count != count) {
294 		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
295 			 routine, tty->count, count);
296 		return count;
297 	}
298 #endif
299 	return 0;
300 }
301 
302 /**
303  *	get_tty_driver		-	find device of a tty
304  *	@dev_t: device identifier
305  *	@index: returns the index of the tty
306  *
307  *	This routine returns a tty driver structure, given a device number
308  *	and also passes back the index number.
309  *
310  *	Locking: caller must hold tty_mutex
311  */
312 
313 static struct tty_driver *get_tty_driver(dev_t device, int *index)
314 {
315 	struct tty_driver *p;
316 
317 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
318 		dev_t base = MKDEV(p->major, p->minor_start);
319 		if (device < base || device >= base + p->num)
320 			continue;
321 		*index = device - base;
322 		return tty_driver_kref_get(p);
323 	}
324 	return NULL;
325 }
326 
327 #ifdef CONFIG_CONSOLE_POLL
328 
329 /**
330  *	tty_find_polling_driver	-	find device of a polled tty
331  *	@name: name string to match
332  *	@line: pointer to resulting tty line nr
333  *
334  *	This routine returns a tty driver structure, given a name
335  *	and the condition that the tty driver is capable of polled
336  *	operation.
337  */
338 struct tty_driver *tty_find_polling_driver(char *name, int *line)
339 {
340 	struct tty_driver *p, *res = NULL;
341 	int tty_line = 0;
342 	int len;
343 	char *str, *stp;
344 
345 	for (str = name; *str; str++)
346 		if ((*str >= '0' && *str <= '9') || *str == ',')
347 			break;
348 	if (!*str)
349 		return NULL;
350 
351 	len = str - name;
352 	tty_line = simple_strtoul(str, &str, 10);
353 
354 	mutex_lock(&tty_mutex);
355 	/* Search through the tty devices to look for a match */
356 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
357 		if (strncmp(name, p->name, len) != 0)
358 			continue;
359 		stp = str;
360 		if (*stp == ',')
361 			stp++;
362 		if (*stp == '\0')
363 			stp = NULL;
364 
365 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
366 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
367 			res = tty_driver_kref_get(p);
368 			*line = tty_line;
369 			break;
370 		}
371 	}
372 	mutex_unlock(&tty_mutex);
373 
374 	return res;
375 }
376 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
377 #endif
378 
379 static int is_ignored(int sig)
380 {
381 	return (sigismember(&current->blocked, sig) ||
382 		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
383 }
384 
385 /**
386  *	tty_check_change	-	check for POSIX terminal changes
387  *	@tty: tty to check
388  *
389  *	If we try to write to, or set the state of, a terminal and we're
390  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
391  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
392  *
393  *	Locking: ctrl_lock
394  */
395 
396 int __tty_check_change(struct tty_struct *tty, int sig)
397 {
398 	unsigned long flags;
399 	struct pid *pgrp, *tty_pgrp;
400 	int ret = 0;
401 
402 	if (current->signal->tty != tty)
403 		return 0;
404 
405 	rcu_read_lock();
406 	pgrp = task_pgrp(current);
407 
408 	spin_lock_irqsave(&tty->ctrl_lock, flags);
409 	tty_pgrp = tty->pgrp;
410 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
411 
412 	if (tty_pgrp && pgrp != tty->pgrp) {
413 		if (is_ignored(sig)) {
414 			if (sig == SIGTTIN)
415 				ret = -EIO;
416 		} else if (is_current_pgrp_orphaned())
417 			ret = -EIO;
418 		else {
419 			kill_pgrp(pgrp, sig, 1);
420 			set_thread_flag(TIF_SIGPENDING);
421 			ret = -ERESTARTSYS;
422 		}
423 	}
424 	rcu_read_unlock();
425 
426 	if (!tty_pgrp)
427 		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
428 
429 	return ret;
430 }
431 
432 int tty_check_change(struct tty_struct *tty)
433 {
434 	return __tty_check_change(tty, SIGTTOU);
435 }
436 EXPORT_SYMBOL(tty_check_change);
437 
438 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
439 				size_t count, loff_t *ppos)
440 {
441 	return 0;
442 }
443 
444 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
445 				 size_t count, loff_t *ppos)
446 {
447 	return -EIO;
448 }
449 
450 /* No kernel lock held - none needed ;) */
451 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
452 {
453 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
454 }
455 
456 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
457 		unsigned long arg)
458 {
459 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
460 }
461 
462 static long hung_up_tty_compat_ioctl(struct file *file,
463 				     unsigned int cmd, unsigned long arg)
464 {
465 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
466 }
467 
468 static int hung_up_tty_fasync(int fd, struct file *file, int on)
469 {
470 	return -ENOTTY;
471 }
472 
473 static const struct file_operations tty_fops = {
474 	.llseek		= no_llseek,
475 	.read		= tty_read,
476 	.write		= tty_write,
477 	.poll		= tty_poll,
478 	.unlocked_ioctl	= tty_ioctl,
479 	.compat_ioctl	= tty_compat_ioctl,
480 	.open		= tty_open,
481 	.release	= tty_release,
482 	.fasync		= tty_fasync,
483 };
484 
485 static const struct file_operations console_fops = {
486 	.llseek		= no_llseek,
487 	.read		= tty_read,
488 	.write		= redirected_tty_write,
489 	.poll		= tty_poll,
490 	.unlocked_ioctl	= tty_ioctl,
491 	.compat_ioctl	= tty_compat_ioctl,
492 	.open		= tty_open,
493 	.release	= tty_release,
494 	.fasync		= tty_fasync,
495 };
496 
497 static const struct file_operations hung_up_tty_fops = {
498 	.llseek		= no_llseek,
499 	.read		= hung_up_tty_read,
500 	.write		= hung_up_tty_write,
501 	.poll		= hung_up_tty_poll,
502 	.unlocked_ioctl	= hung_up_tty_ioctl,
503 	.compat_ioctl	= hung_up_tty_compat_ioctl,
504 	.release	= tty_release,
505 	.fasync		= hung_up_tty_fasync,
506 };
507 
508 static DEFINE_SPINLOCK(redirect_lock);
509 static struct file *redirect;
510 
511 
512 void proc_clear_tty(struct task_struct *p)
513 {
514 	unsigned long flags;
515 	struct tty_struct *tty;
516 	spin_lock_irqsave(&p->sighand->siglock, flags);
517 	tty = p->signal->tty;
518 	p->signal->tty = NULL;
519 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
520 	tty_kref_put(tty);
521 }
522 
523 /**
524  * proc_set_tty -  set the controlling terminal
525  *
526  * Only callable by the session leader and only if it does not already have
527  * a controlling terminal.
528  *
529  * Caller must hold:  tty_lock()
530  *		      a readlock on tasklist_lock
531  *		      sighand lock
532  */
533 static void __proc_set_tty(struct tty_struct *tty)
534 {
535 	unsigned long flags;
536 
537 	spin_lock_irqsave(&tty->ctrl_lock, flags);
538 	/*
539 	 * The session and fg pgrp references will be non-NULL if
540 	 * tiocsctty() is stealing the controlling tty
541 	 */
542 	put_pid(tty->session);
543 	put_pid(tty->pgrp);
544 	tty->pgrp = get_pid(task_pgrp(current));
545 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
546 	tty->session = get_pid(task_session(current));
547 	if (current->signal->tty) {
548 		tty_debug(tty, "current tty %s not NULL!!\n",
549 			  current->signal->tty->name);
550 		tty_kref_put(current->signal->tty);
551 	}
552 	put_pid(current->signal->tty_old_pgrp);
553 	current->signal->tty = tty_kref_get(tty);
554 	current->signal->tty_old_pgrp = NULL;
555 }
556 
557 static void proc_set_tty(struct tty_struct *tty)
558 {
559 	spin_lock_irq(&current->sighand->siglock);
560 	__proc_set_tty(tty);
561 	spin_unlock_irq(&current->sighand->siglock);
562 }
563 
564 struct tty_struct *get_current_tty(void)
565 {
566 	struct tty_struct *tty;
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&current->sighand->siglock, flags);
570 	tty = tty_kref_get(current->signal->tty);
571 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
572 	return tty;
573 }
574 EXPORT_SYMBOL_GPL(get_current_tty);
575 
576 static void session_clear_tty(struct pid *session)
577 {
578 	struct task_struct *p;
579 	do_each_pid_task(session, PIDTYPE_SID, p) {
580 		proc_clear_tty(p);
581 	} while_each_pid_task(session, PIDTYPE_SID, p);
582 }
583 
584 /**
585  *	tty_wakeup	-	request more data
586  *	@tty: terminal
587  *
588  *	Internal and external helper for wakeups of tty. This function
589  *	informs the line discipline if present that the driver is ready
590  *	to receive more output data.
591  */
592 
593 void tty_wakeup(struct tty_struct *tty)
594 {
595 	struct tty_ldisc *ld;
596 
597 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
598 		ld = tty_ldisc_ref(tty);
599 		if (ld) {
600 			if (ld->ops->write_wakeup)
601 				ld->ops->write_wakeup(tty);
602 			tty_ldisc_deref(ld);
603 		}
604 	}
605 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
606 }
607 
608 EXPORT_SYMBOL_GPL(tty_wakeup);
609 
610 /**
611  *	tty_signal_session_leader	- sends SIGHUP to session leader
612  *	@tty		controlling tty
613  *	@exit_session	if non-zero, signal all foreground group processes
614  *
615  *	Send SIGHUP and SIGCONT to the session leader and its process group.
616  *	Optionally, signal all processes in the foreground process group.
617  *
618  *	Returns the number of processes in the session with this tty
619  *	as their controlling terminal. This value is used to drop
620  *	tty references for those processes.
621  */
622 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
623 {
624 	struct task_struct *p;
625 	int refs = 0;
626 	struct pid *tty_pgrp = NULL;
627 
628 	read_lock(&tasklist_lock);
629 	if (tty->session) {
630 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
631 			spin_lock_irq(&p->sighand->siglock);
632 			if (p->signal->tty == tty) {
633 				p->signal->tty = NULL;
634 				/* We defer the dereferences outside fo
635 				   the tasklist lock */
636 				refs++;
637 			}
638 			if (!p->signal->leader) {
639 				spin_unlock_irq(&p->sighand->siglock);
640 				continue;
641 			}
642 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
643 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
644 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
645 			spin_lock(&tty->ctrl_lock);
646 			tty_pgrp = get_pid(tty->pgrp);
647 			if (tty->pgrp)
648 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
649 			spin_unlock(&tty->ctrl_lock);
650 			spin_unlock_irq(&p->sighand->siglock);
651 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
652 	}
653 	read_unlock(&tasklist_lock);
654 
655 	if (tty_pgrp) {
656 		if (exit_session)
657 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
658 		put_pid(tty_pgrp);
659 	}
660 
661 	return refs;
662 }
663 
664 /**
665  *	__tty_hangup		-	actual handler for hangup events
666  *	@work: tty device
667  *
668  *	This can be called by a "kworker" kernel thread.  That is process
669  *	synchronous but doesn't hold any locks, so we need to make sure we
670  *	have the appropriate locks for what we're doing.
671  *
672  *	The hangup event clears any pending redirections onto the hung up
673  *	device. It ensures future writes will error and it does the needed
674  *	line discipline hangup and signal delivery. The tty object itself
675  *	remains intact.
676  *
677  *	Locking:
678  *		BTM
679  *		  redirect lock for undoing redirection
680  *		  file list lock for manipulating list of ttys
681  *		  tty_ldiscs_lock from called functions
682  *		  termios_rwsem resetting termios data
683  *		  tasklist_lock to walk task list for hangup event
684  *		    ->siglock to protect ->signal/->sighand
685  */
686 static void __tty_hangup(struct tty_struct *tty, int exit_session)
687 {
688 	struct file *cons_filp = NULL;
689 	struct file *filp, *f = NULL;
690 	struct tty_file_private *priv;
691 	int    closecount = 0, n;
692 	int refs;
693 
694 	if (!tty)
695 		return;
696 
697 
698 	spin_lock(&redirect_lock);
699 	if (redirect && file_tty(redirect) == tty) {
700 		f = redirect;
701 		redirect = NULL;
702 	}
703 	spin_unlock(&redirect_lock);
704 
705 	tty_lock(tty);
706 
707 	if (test_bit(TTY_HUPPED, &tty->flags)) {
708 		tty_unlock(tty);
709 		return;
710 	}
711 
712 	/* inuse_filps is protected by the single tty lock,
713 	   this really needs to change if we want to flush the
714 	   workqueue with the lock held */
715 	check_tty_count(tty, "tty_hangup");
716 
717 	spin_lock(&tty->files_lock);
718 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
719 	list_for_each_entry(priv, &tty->tty_files, list) {
720 		filp = priv->file;
721 		if (filp->f_op->write == redirected_tty_write)
722 			cons_filp = filp;
723 		if (filp->f_op->write != tty_write)
724 			continue;
725 		closecount++;
726 		__tty_fasync(-1, filp, 0);	/* can't block */
727 		filp->f_op = &hung_up_tty_fops;
728 	}
729 	spin_unlock(&tty->files_lock);
730 
731 	refs = tty_signal_session_leader(tty, exit_session);
732 	/* Account for the p->signal references we killed */
733 	while (refs--)
734 		tty_kref_put(tty);
735 
736 	tty_ldisc_hangup(tty, cons_filp != NULL);
737 
738 	spin_lock_irq(&tty->ctrl_lock);
739 	clear_bit(TTY_THROTTLED, &tty->flags);
740 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
741 	put_pid(tty->session);
742 	put_pid(tty->pgrp);
743 	tty->session = NULL;
744 	tty->pgrp = NULL;
745 	tty->ctrl_status = 0;
746 	spin_unlock_irq(&tty->ctrl_lock);
747 
748 	/*
749 	 * If one of the devices matches a console pointer, we
750 	 * cannot just call hangup() because that will cause
751 	 * tty->count and state->count to go out of sync.
752 	 * So we just call close() the right number of times.
753 	 */
754 	if (cons_filp) {
755 		if (tty->ops->close)
756 			for (n = 0; n < closecount; n++)
757 				tty->ops->close(tty, cons_filp);
758 	} else if (tty->ops->hangup)
759 		tty->ops->hangup(tty);
760 	/*
761 	 * We don't want to have driver/ldisc interactions beyond the ones
762 	 * we did here. The driver layer expects no calls after ->hangup()
763 	 * from the ldisc side, which is now guaranteed.
764 	 */
765 	set_bit(TTY_HUPPED, &tty->flags);
766 	tty_unlock(tty);
767 
768 	if (f)
769 		fput(f);
770 }
771 
772 static void do_tty_hangup(struct work_struct *work)
773 {
774 	struct tty_struct *tty =
775 		container_of(work, struct tty_struct, hangup_work);
776 
777 	__tty_hangup(tty, 0);
778 }
779 
780 /**
781  *	tty_hangup		-	trigger a hangup event
782  *	@tty: tty to hangup
783  *
784  *	A carrier loss (virtual or otherwise) has occurred on this like
785  *	schedule a hangup sequence to run after this event.
786  */
787 
788 void tty_hangup(struct tty_struct *tty)
789 {
790 	tty_debug_hangup(tty, "hangup\n");
791 	schedule_work(&tty->hangup_work);
792 }
793 
794 EXPORT_SYMBOL(tty_hangup);
795 
796 /**
797  *	tty_vhangup		-	process vhangup
798  *	@tty: tty to hangup
799  *
800  *	The user has asked via system call for the terminal to be hung up.
801  *	We do this synchronously so that when the syscall returns the process
802  *	is complete. That guarantee is necessary for security reasons.
803  */
804 
805 void tty_vhangup(struct tty_struct *tty)
806 {
807 	tty_debug_hangup(tty, "vhangup\n");
808 	__tty_hangup(tty, 0);
809 }
810 
811 EXPORT_SYMBOL(tty_vhangup);
812 
813 
814 /**
815  *	tty_vhangup_self	-	process vhangup for own ctty
816  *
817  *	Perform a vhangup on the current controlling tty
818  */
819 
820 void tty_vhangup_self(void)
821 {
822 	struct tty_struct *tty;
823 
824 	tty = get_current_tty();
825 	if (tty) {
826 		tty_vhangup(tty);
827 		tty_kref_put(tty);
828 	}
829 }
830 
831 /**
832  *	tty_vhangup_session		-	hangup session leader exit
833  *	@tty: tty to hangup
834  *
835  *	The session leader is exiting and hanging up its controlling terminal.
836  *	Every process in the foreground process group is signalled SIGHUP.
837  *
838  *	We do this synchronously so that when the syscall returns the process
839  *	is complete. That guarantee is necessary for security reasons.
840  */
841 
842 static void tty_vhangup_session(struct tty_struct *tty)
843 {
844 	tty_debug_hangup(tty, "session hangup\n");
845 	__tty_hangup(tty, 1);
846 }
847 
848 /**
849  *	tty_hung_up_p		-	was tty hung up
850  *	@filp: file pointer of tty
851  *
852  *	Return true if the tty has been subject to a vhangup or a carrier
853  *	loss
854  */
855 
856 int tty_hung_up_p(struct file *filp)
857 {
858 	return (filp->f_op == &hung_up_tty_fops);
859 }
860 
861 EXPORT_SYMBOL(tty_hung_up_p);
862 
863 /**
864  *	disassociate_ctty	-	disconnect controlling tty
865  *	@on_exit: true if exiting so need to "hang up" the session
866  *
867  *	This function is typically called only by the session leader, when
868  *	it wants to disassociate itself from its controlling tty.
869  *
870  *	It performs the following functions:
871  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
872  * 	(2)  Clears the tty from being controlling the session
873  * 	(3)  Clears the controlling tty for all processes in the
874  * 		session group.
875  *
876  *	The argument on_exit is set to 1 if called when a process is
877  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
878  *
879  *	Locking:
880  *		BTM is taken for hysterical raisins, and held when
881  *		  called from no_tty().
882  *		  tty_mutex is taken to protect tty
883  *		  ->siglock is taken to protect ->signal/->sighand
884  *		  tasklist_lock is taken to walk process list for sessions
885  *		    ->siglock is taken to protect ->signal/->sighand
886  */
887 
888 void disassociate_ctty(int on_exit)
889 {
890 	struct tty_struct *tty;
891 
892 	if (!current->signal->leader)
893 		return;
894 
895 	tty = get_current_tty();
896 	if (tty) {
897 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
898 			tty_vhangup_session(tty);
899 		} else {
900 			struct pid *tty_pgrp = tty_get_pgrp(tty);
901 			if (tty_pgrp) {
902 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
903 				if (!on_exit)
904 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
905 				put_pid(tty_pgrp);
906 			}
907 		}
908 		tty_kref_put(tty);
909 
910 	} else if (on_exit) {
911 		struct pid *old_pgrp;
912 		spin_lock_irq(&current->sighand->siglock);
913 		old_pgrp = current->signal->tty_old_pgrp;
914 		current->signal->tty_old_pgrp = NULL;
915 		spin_unlock_irq(&current->sighand->siglock);
916 		if (old_pgrp) {
917 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
918 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
919 			put_pid(old_pgrp);
920 		}
921 		return;
922 	}
923 
924 	spin_lock_irq(&current->sighand->siglock);
925 	put_pid(current->signal->tty_old_pgrp);
926 	current->signal->tty_old_pgrp = NULL;
927 
928 	tty = tty_kref_get(current->signal->tty);
929 	if (tty) {
930 		unsigned long flags;
931 		spin_lock_irqsave(&tty->ctrl_lock, flags);
932 		put_pid(tty->session);
933 		put_pid(tty->pgrp);
934 		tty->session = NULL;
935 		tty->pgrp = NULL;
936 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
937 		tty_kref_put(tty);
938 	} else
939 		tty_debug_hangup(tty, "no current tty\n");
940 
941 	spin_unlock_irq(&current->sighand->siglock);
942 	/* Now clear signal->tty under the lock */
943 	read_lock(&tasklist_lock);
944 	session_clear_tty(task_session(current));
945 	read_unlock(&tasklist_lock);
946 }
947 
948 /**
949  *
950  *	no_tty	- Ensure the current process does not have a controlling tty
951  */
952 void no_tty(void)
953 {
954 	/* FIXME: Review locking here. The tty_lock never covered any race
955 	   between a new association and proc_clear_tty but possible we need
956 	   to protect against this anyway */
957 	struct task_struct *tsk = current;
958 	disassociate_ctty(0);
959 	proc_clear_tty(tsk);
960 }
961 
962 
963 /**
964  *	stop_tty	-	propagate flow control
965  *	@tty: tty to stop
966  *
967  *	Perform flow control to the driver. May be called
968  *	on an already stopped device and will not re-call the driver
969  *	method.
970  *
971  *	This functionality is used by both the line disciplines for
972  *	halting incoming flow and by the driver. It may therefore be
973  *	called from any context, may be under the tty atomic_write_lock
974  *	but not always.
975  *
976  *	Locking:
977  *		flow_lock
978  */
979 
980 void __stop_tty(struct tty_struct *tty)
981 {
982 	if (tty->stopped)
983 		return;
984 	tty->stopped = 1;
985 	if (tty->ops->stop)
986 		tty->ops->stop(tty);
987 }
988 
989 void stop_tty(struct tty_struct *tty)
990 {
991 	unsigned long flags;
992 
993 	spin_lock_irqsave(&tty->flow_lock, flags);
994 	__stop_tty(tty);
995 	spin_unlock_irqrestore(&tty->flow_lock, flags);
996 }
997 EXPORT_SYMBOL(stop_tty);
998 
999 /**
1000  *	start_tty	-	propagate flow control
1001  *	@tty: tty to start
1002  *
1003  *	Start a tty that has been stopped if at all possible. If this
1004  *	tty was previous stopped and is now being started, the driver
1005  *	start method is invoked and the line discipline woken.
1006  *
1007  *	Locking:
1008  *		flow_lock
1009  */
1010 
1011 void __start_tty(struct tty_struct *tty)
1012 {
1013 	if (!tty->stopped || tty->flow_stopped)
1014 		return;
1015 	tty->stopped = 0;
1016 	if (tty->ops->start)
1017 		tty->ops->start(tty);
1018 	tty_wakeup(tty);
1019 }
1020 
1021 void start_tty(struct tty_struct *tty)
1022 {
1023 	unsigned long flags;
1024 
1025 	spin_lock_irqsave(&tty->flow_lock, flags);
1026 	__start_tty(tty);
1027 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1028 }
1029 EXPORT_SYMBOL(start_tty);
1030 
1031 static void tty_update_time(struct timespec *time)
1032 {
1033 	unsigned long sec = get_seconds();
1034 
1035 	/*
1036 	 * We only care if the two values differ in anything other than the
1037 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1038 	 * the time of the tty device, otherwise it could be construded as a
1039 	 * security leak to let userspace know the exact timing of the tty.
1040 	 */
1041 	if ((sec ^ time->tv_sec) & ~7)
1042 		time->tv_sec = sec;
1043 }
1044 
1045 /**
1046  *	tty_read	-	read method for tty device files
1047  *	@file: pointer to tty file
1048  *	@buf: user buffer
1049  *	@count: size of user buffer
1050  *	@ppos: unused
1051  *
1052  *	Perform the read system call function on this terminal device. Checks
1053  *	for hung up devices before calling the line discipline method.
1054  *
1055  *	Locking:
1056  *		Locks the line discipline internally while needed. Multiple
1057  *	read calls may be outstanding in parallel.
1058  */
1059 
1060 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1061 			loff_t *ppos)
1062 {
1063 	int i;
1064 	struct inode *inode = file_inode(file);
1065 	struct tty_struct *tty = file_tty(file);
1066 	struct tty_ldisc *ld;
1067 
1068 	if (tty_paranoia_check(tty, inode, "tty_read"))
1069 		return -EIO;
1070 	if (!tty || tty_io_error(tty))
1071 		return -EIO;
1072 
1073 	/* We want to wait for the line discipline to sort out in this
1074 	   situation */
1075 	ld = tty_ldisc_ref_wait(tty);
1076 	if (!ld)
1077 		return hung_up_tty_read(file, buf, count, ppos);
1078 	if (ld->ops->read)
1079 		i = ld->ops->read(tty, file, buf, count);
1080 	else
1081 		i = -EIO;
1082 	tty_ldisc_deref(ld);
1083 
1084 	if (i > 0)
1085 		tty_update_time(&inode->i_atime);
1086 
1087 	return i;
1088 }
1089 
1090 static void tty_write_unlock(struct tty_struct *tty)
1091 {
1092 	mutex_unlock(&tty->atomic_write_lock);
1093 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1094 }
1095 
1096 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1097 {
1098 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1099 		if (ndelay)
1100 			return -EAGAIN;
1101 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1102 			return -ERESTARTSYS;
1103 	}
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Split writes up in sane blocksizes to avoid
1109  * denial-of-service type attacks
1110  */
1111 static inline ssize_t do_tty_write(
1112 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1113 	struct tty_struct *tty,
1114 	struct file *file,
1115 	const char __user *buf,
1116 	size_t count)
1117 {
1118 	ssize_t ret, written = 0;
1119 	unsigned int chunk;
1120 
1121 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1122 	if (ret < 0)
1123 		return ret;
1124 
1125 	/*
1126 	 * We chunk up writes into a temporary buffer. This
1127 	 * simplifies low-level drivers immensely, since they
1128 	 * don't have locking issues and user mode accesses.
1129 	 *
1130 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1131 	 * big chunk-size..
1132 	 *
1133 	 * The default chunk-size is 2kB, because the NTTY
1134 	 * layer has problems with bigger chunks. It will
1135 	 * claim to be able to handle more characters than
1136 	 * it actually does.
1137 	 *
1138 	 * FIXME: This can probably go away now except that 64K chunks
1139 	 * are too likely to fail unless switched to vmalloc...
1140 	 */
1141 	chunk = 2048;
1142 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1143 		chunk = 65536;
1144 	if (count < chunk)
1145 		chunk = count;
1146 
1147 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1148 	if (tty->write_cnt < chunk) {
1149 		unsigned char *buf_chunk;
1150 
1151 		if (chunk < 1024)
1152 			chunk = 1024;
1153 
1154 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1155 		if (!buf_chunk) {
1156 			ret = -ENOMEM;
1157 			goto out;
1158 		}
1159 		kfree(tty->write_buf);
1160 		tty->write_cnt = chunk;
1161 		tty->write_buf = buf_chunk;
1162 	}
1163 
1164 	/* Do the write .. */
1165 	for (;;) {
1166 		size_t size = count;
1167 		if (size > chunk)
1168 			size = chunk;
1169 		ret = -EFAULT;
1170 		if (copy_from_user(tty->write_buf, buf, size))
1171 			break;
1172 		ret = write(tty, file, tty->write_buf, size);
1173 		if (ret <= 0)
1174 			break;
1175 		written += ret;
1176 		buf += ret;
1177 		count -= ret;
1178 		if (!count)
1179 			break;
1180 		ret = -ERESTARTSYS;
1181 		if (signal_pending(current))
1182 			break;
1183 		cond_resched();
1184 	}
1185 	if (written) {
1186 		tty_update_time(&file_inode(file)->i_mtime);
1187 		ret = written;
1188 	}
1189 out:
1190 	tty_write_unlock(tty);
1191 	return ret;
1192 }
1193 
1194 /**
1195  * tty_write_message - write a message to a certain tty, not just the console.
1196  * @tty: the destination tty_struct
1197  * @msg: the message to write
1198  *
1199  * This is used for messages that need to be redirected to a specific tty.
1200  * We don't put it into the syslog queue right now maybe in the future if
1201  * really needed.
1202  *
1203  * We must still hold the BTM and test the CLOSING flag for the moment.
1204  */
1205 
1206 void tty_write_message(struct tty_struct *tty, char *msg)
1207 {
1208 	if (tty) {
1209 		mutex_lock(&tty->atomic_write_lock);
1210 		tty_lock(tty);
1211 		if (tty->ops->write && tty->count > 0)
1212 			tty->ops->write(tty, msg, strlen(msg));
1213 		tty_unlock(tty);
1214 		tty_write_unlock(tty);
1215 	}
1216 	return;
1217 }
1218 
1219 
1220 /**
1221  *	tty_write		-	write method for tty device file
1222  *	@file: tty file pointer
1223  *	@buf: user data to write
1224  *	@count: bytes to write
1225  *	@ppos: unused
1226  *
1227  *	Write data to a tty device via the line discipline.
1228  *
1229  *	Locking:
1230  *		Locks the line discipline as required
1231  *		Writes to the tty driver are serialized by the atomic_write_lock
1232  *	and are then processed in chunks to the device. The line discipline
1233  *	write method will not be invoked in parallel for each device.
1234  */
1235 
1236 static ssize_t tty_write(struct file *file, const char __user *buf,
1237 						size_t count, loff_t *ppos)
1238 {
1239 	struct tty_struct *tty = file_tty(file);
1240  	struct tty_ldisc *ld;
1241 	ssize_t ret;
1242 
1243 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1244 		return -EIO;
1245 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1246 			return -EIO;
1247 	/* Short term debug to catch buggy drivers */
1248 	if (tty->ops->write_room == NULL)
1249 		tty_err(tty, "missing write_room method\n");
1250 	ld = tty_ldisc_ref_wait(tty);
1251 	if (!ld)
1252 		return hung_up_tty_write(file, buf, count, ppos);
1253 	if (!ld->ops->write)
1254 		ret = -EIO;
1255 	else
1256 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1257 	tty_ldisc_deref(ld);
1258 	return ret;
1259 }
1260 
1261 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1262 						size_t count, loff_t *ppos)
1263 {
1264 	struct file *p = NULL;
1265 
1266 	spin_lock(&redirect_lock);
1267 	if (redirect)
1268 		p = get_file(redirect);
1269 	spin_unlock(&redirect_lock);
1270 
1271 	if (p) {
1272 		ssize_t res;
1273 		res = vfs_write(p, buf, count, &p->f_pos);
1274 		fput(p);
1275 		return res;
1276 	}
1277 	return tty_write(file, buf, count, ppos);
1278 }
1279 
1280 /**
1281  *	tty_send_xchar	-	send priority character
1282  *
1283  *	Send a high priority character to the tty even if stopped
1284  *
1285  *	Locking: none for xchar method, write ordering for write method.
1286  */
1287 
1288 int tty_send_xchar(struct tty_struct *tty, char ch)
1289 {
1290 	int	was_stopped = tty->stopped;
1291 
1292 	if (tty->ops->send_xchar) {
1293 		down_read(&tty->termios_rwsem);
1294 		tty->ops->send_xchar(tty, ch);
1295 		up_read(&tty->termios_rwsem);
1296 		return 0;
1297 	}
1298 
1299 	if (tty_write_lock(tty, 0) < 0)
1300 		return -ERESTARTSYS;
1301 
1302 	down_read(&tty->termios_rwsem);
1303 	if (was_stopped)
1304 		start_tty(tty);
1305 	tty->ops->write(tty, &ch, 1);
1306 	if (was_stopped)
1307 		stop_tty(tty);
1308 	up_read(&tty->termios_rwsem);
1309 	tty_write_unlock(tty);
1310 	return 0;
1311 }
1312 
1313 static char ptychar[] = "pqrstuvwxyzabcde";
1314 
1315 /**
1316  *	pty_line_name	-	generate name for a pty
1317  *	@driver: the tty driver in use
1318  *	@index: the minor number
1319  *	@p: output buffer of at least 6 bytes
1320  *
1321  *	Generate a name from a driver reference and write it to the output
1322  *	buffer.
1323  *
1324  *	Locking: None
1325  */
1326 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1327 {
1328 	int i = index + driver->name_base;
1329 	/* ->name is initialized to "ttyp", but "tty" is expected */
1330 	sprintf(p, "%s%c%x",
1331 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1332 		ptychar[i >> 4 & 0xf], i & 0xf);
1333 }
1334 
1335 /**
1336  *	tty_line_name	-	generate name for a tty
1337  *	@driver: the tty driver in use
1338  *	@index: the minor number
1339  *	@p: output buffer of at least 7 bytes
1340  *
1341  *	Generate a name from a driver reference and write it to the output
1342  *	buffer.
1343  *
1344  *	Locking: None
1345  */
1346 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1347 {
1348 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1349 		return sprintf(p, "%s", driver->name);
1350 	else
1351 		return sprintf(p, "%s%d", driver->name,
1352 			       index + driver->name_base);
1353 }
1354 
1355 /**
1356  *	tty_driver_lookup_tty() - find an existing tty, if any
1357  *	@driver: the driver for the tty
1358  *	@idx:	 the minor number
1359  *
1360  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1361  *	driver lookup() method returns an error.
1362  *
1363  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1364  */
1365 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1366 		struct file *file, int idx)
1367 {
1368 	struct tty_struct *tty;
1369 
1370 	if (driver->ops->lookup)
1371 		tty = driver->ops->lookup(driver, file, idx);
1372 	else
1373 		tty = driver->ttys[idx];
1374 
1375 	if (!IS_ERR(tty))
1376 		tty_kref_get(tty);
1377 	return tty;
1378 }
1379 
1380 /**
1381  *	tty_init_termios	-  helper for termios setup
1382  *	@tty: the tty to set up
1383  *
1384  *	Initialise the termios structures for this tty. Thus runs under
1385  *	the tty_mutex currently so we can be relaxed about ordering.
1386  */
1387 
1388 void tty_init_termios(struct tty_struct *tty)
1389 {
1390 	struct ktermios *tp;
1391 	int idx = tty->index;
1392 
1393 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1394 		tty->termios = tty->driver->init_termios;
1395 	else {
1396 		/* Check for lazy saved data */
1397 		tp = tty->driver->termios[idx];
1398 		if (tp != NULL) {
1399 			tty->termios = *tp;
1400 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1401 		} else
1402 			tty->termios = tty->driver->init_termios;
1403 	}
1404 	/* Compatibility until drivers always set this */
1405 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1406 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1407 }
1408 EXPORT_SYMBOL_GPL(tty_init_termios);
1409 
1410 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1411 {
1412 	tty_init_termios(tty);
1413 	tty_driver_kref_get(driver);
1414 	tty->count++;
1415 	driver->ttys[tty->index] = tty;
1416 	return 0;
1417 }
1418 EXPORT_SYMBOL_GPL(tty_standard_install);
1419 
1420 /**
1421  *	tty_driver_install_tty() - install a tty entry in the driver
1422  *	@driver: the driver for the tty
1423  *	@tty: the tty
1424  *
1425  *	Install a tty object into the driver tables. The tty->index field
1426  *	will be set by the time this is called. This method is responsible
1427  *	for ensuring any need additional structures are allocated and
1428  *	configured.
1429  *
1430  *	Locking: tty_mutex for now
1431  */
1432 static int tty_driver_install_tty(struct tty_driver *driver,
1433 						struct tty_struct *tty)
1434 {
1435 	return driver->ops->install ? driver->ops->install(driver, tty) :
1436 		tty_standard_install(driver, tty);
1437 }
1438 
1439 /**
1440  *	tty_driver_remove_tty() - remove a tty from the driver tables
1441  *	@driver: the driver for the tty
1442  *	@idx:	 the minor number
1443  *
1444  *	Remvoe a tty object from the driver tables. The tty->index field
1445  *	will be set by the time this is called.
1446  *
1447  *	Locking: tty_mutex for now
1448  */
1449 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1450 {
1451 	if (driver->ops->remove)
1452 		driver->ops->remove(driver, tty);
1453 	else
1454 		driver->ttys[tty->index] = NULL;
1455 }
1456 
1457 /*
1458  * 	tty_reopen()	- fast re-open of an open tty
1459  * 	@tty	- the tty to open
1460  *
1461  *	Return 0 on success, -errno on error.
1462  *	Re-opens on master ptys are not allowed and return -EIO.
1463  *
1464  *	Locking: Caller must hold tty_lock
1465  */
1466 static int tty_reopen(struct tty_struct *tty)
1467 {
1468 	struct tty_driver *driver = tty->driver;
1469 
1470 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1471 	    driver->subtype == PTY_TYPE_MASTER)
1472 		return -EIO;
1473 
1474 	if (!tty->count)
1475 		return -EAGAIN;
1476 
1477 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1478 		return -EBUSY;
1479 
1480 	tty->count++;
1481 
1482 	if (!tty->ldisc)
1483 		return tty_ldisc_reinit(tty, tty->termios.c_line);
1484 
1485 	return 0;
1486 }
1487 
1488 /**
1489  *	tty_init_dev		-	initialise a tty device
1490  *	@driver: tty driver we are opening a device on
1491  *	@idx: device index
1492  *	@ret_tty: returned tty structure
1493  *
1494  *	Prepare a tty device. This may not be a "new" clean device but
1495  *	could also be an active device. The pty drivers require special
1496  *	handling because of this.
1497  *
1498  *	Locking:
1499  *		The function is called under the tty_mutex, which
1500  *	protects us from the tty struct or driver itself going away.
1501  *
1502  *	On exit the tty device has the line discipline attached and
1503  *	a reference count of 1. If a pair was created for pty/tty use
1504  *	and the other was a pty master then it too has a reference count of 1.
1505  *
1506  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1507  * failed open.  The new code protects the open with a mutex, so it's
1508  * really quite straightforward.  The mutex locking can probably be
1509  * relaxed for the (most common) case of reopening a tty.
1510  */
1511 
1512 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1513 {
1514 	struct tty_struct *tty;
1515 	int retval;
1516 
1517 	/*
1518 	 * First time open is complex, especially for PTY devices.
1519 	 * This code guarantees that either everything succeeds and the
1520 	 * TTY is ready for operation, or else the table slots are vacated
1521 	 * and the allocated memory released.  (Except that the termios
1522 	 * and locked termios may be retained.)
1523 	 */
1524 
1525 	if (!try_module_get(driver->owner))
1526 		return ERR_PTR(-ENODEV);
1527 
1528 	tty = alloc_tty_struct(driver, idx);
1529 	if (!tty) {
1530 		retval = -ENOMEM;
1531 		goto err_module_put;
1532 	}
1533 
1534 	tty_lock(tty);
1535 	retval = tty_driver_install_tty(driver, tty);
1536 	if (retval < 0)
1537 		goto err_free_tty;
1538 
1539 	if (!tty->port)
1540 		tty->port = driver->ports[idx];
1541 
1542 	WARN_RATELIMIT(!tty->port,
1543 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1544 			__func__, tty->driver->name);
1545 
1546 	tty->port->itty = tty;
1547 
1548 	/*
1549 	 * Structures all installed ... call the ldisc open routines.
1550 	 * If we fail here just call release_tty to clean up.  No need
1551 	 * to decrement the use counts, as release_tty doesn't care.
1552 	 */
1553 	retval = tty_ldisc_setup(tty, tty->link);
1554 	if (retval)
1555 		goto err_release_tty;
1556 	/* Return the tty locked so that it cannot vanish under the caller */
1557 	return tty;
1558 
1559 err_free_tty:
1560 	tty_unlock(tty);
1561 	free_tty_struct(tty);
1562 err_module_put:
1563 	module_put(driver->owner);
1564 	return ERR_PTR(retval);
1565 
1566 	/* call the tty release_tty routine to clean out this slot */
1567 err_release_tty:
1568 	tty_unlock(tty);
1569 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1570 			     retval, idx);
1571 	release_tty(tty, idx);
1572 	return ERR_PTR(retval);
1573 }
1574 
1575 static void tty_free_termios(struct tty_struct *tty)
1576 {
1577 	struct ktermios *tp;
1578 	int idx = tty->index;
1579 
1580 	/* If the port is going to reset then it has no termios to save */
1581 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1582 		return;
1583 
1584 	/* Stash the termios data */
1585 	tp = tty->driver->termios[idx];
1586 	if (tp == NULL) {
1587 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1588 		if (tp == NULL)
1589 			return;
1590 		tty->driver->termios[idx] = tp;
1591 	}
1592 	*tp = tty->termios;
1593 }
1594 
1595 /**
1596  *	tty_flush_works		-	flush all works of a tty/pty pair
1597  *	@tty: tty device to flush works for (or either end of a pty pair)
1598  *
1599  *	Sync flush all works belonging to @tty (and the 'other' tty).
1600  */
1601 static void tty_flush_works(struct tty_struct *tty)
1602 {
1603 	flush_work(&tty->SAK_work);
1604 	flush_work(&tty->hangup_work);
1605 	if (tty->link) {
1606 		flush_work(&tty->link->SAK_work);
1607 		flush_work(&tty->link->hangup_work);
1608 	}
1609 }
1610 
1611 /**
1612  *	release_one_tty		-	release tty structure memory
1613  *	@kref: kref of tty we are obliterating
1614  *
1615  *	Releases memory associated with a tty structure, and clears out the
1616  *	driver table slots. This function is called when a device is no longer
1617  *	in use. It also gets called when setup of a device fails.
1618  *
1619  *	Locking:
1620  *		takes the file list lock internally when working on the list
1621  *	of ttys that the driver keeps.
1622  *
1623  *	This method gets called from a work queue so that the driver private
1624  *	cleanup ops can sleep (needed for USB at least)
1625  */
1626 static void release_one_tty(struct work_struct *work)
1627 {
1628 	struct tty_struct *tty =
1629 		container_of(work, struct tty_struct, hangup_work);
1630 	struct tty_driver *driver = tty->driver;
1631 	struct module *owner = driver->owner;
1632 
1633 	if (tty->ops->cleanup)
1634 		tty->ops->cleanup(tty);
1635 
1636 	tty->magic = 0;
1637 	tty_driver_kref_put(driver);
1638 	module_put(owner);
1639 
1640 	spin_lock(&tty->files_lock);
1641 	list_del_init(&tty->tty_files);
1642 	spin_unlock(&tty->files_lock);
1643 
1644 	put_pid(tty->pgrp);
1645 	put_pid(tty->session);
1646 	free_tty_struct(tty);
1647 }
1648 
1649 static void queue_release_one_tty(struct kref *kref)
1650 {
1651 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1652 
1653 	/* The hangup queue is now free so we can reuse it rather than
1654 	   waste a chunk of memory for each port */
1655 	INIT_WORK(&tty->hangup_work, release_one_tty);
1656 	schedule_work(&tty->hangup_work);
1657 }
1658 
1659 /**
1660  *	tty_kref_put		-	release a tty kref
1661  *	@tty: tty device
1662  *
1663  *	Release a reference to a tty device and if need be let the kref
1664  *	layer destruct the object for us
1665  */
1666 
1667 void tty_kref_put(struct tty_struct *tty)
1668 {
1669 	if (tty)
1670 		kref_put(&tty->kref, queue_release_one_tty);
1671 }
1672 EXPORT_SYMBOL(tty_kref_put);
1673 
1674 /**
1675  *	release_tty		-	release tty structure memory
1676  *
1677  *	Release both @tty and a possible linked partner (think pty pair),
1678  *	and decrement the refcount of the backing module.
1679  *
1680  *	Locking:
1681  *		tty_mutex
1682  *		takes the file list lock internally when working on the list
1683  *	of ttys that the driver keeps.
1684  *
1685  */
1686 static void release_tty(struct tty_struct *tty, int idx)
1687 {
1688 	/* This should always be true but check for the moment */
1689 	WARN_ON(tty->index != idx);
1690 	WARN_ON(!mutex_is_locked(&tty_mutex));
1691 	if (tty->ops->shutdown)
1692 		tty->ops->shutdown(tty);
1693 	tty_free_termios(tty);
1694 	tty_driver_remove_tty(tty->driver, tty);
1695 	tty->port->itty = NULL;
1696 	if (tty->link)
1697 		tty->link->port->itty = NULL;
1698 	tty_buffer_cancel_work(tty->port);
1699 
1700 	tty_kref_put(tty->link);
1701 	tty_kref_put(tty);
1702 }
1703 
1704 /**
1705  *	tty_release_checks - check a tty before real release
1706  *	@tty: tty to check
1707  *	@o_tty: link of @tty (if any)
1708  *	@idx: index of the tty
1709  *
1710  *	Performs some paranoid checking before true release of the @tty.
1711  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1712  */
1713 static int tty_release_checks(struct tty_struct *tty, int idx)
1714 {
1715 #ifdef TTY_PARANOIA_CHECK
1716 	if (idx < 0 || idx >= tty->driver->num) {
1717 		tty_debug(tty, "bad idx %d\n", idx);
1718 		return -1;
1719 	}
1720 
1721 	/* not much to check for devpts */
1722 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1723 		return 0;
1724 
1725 	if (tty != tty->driver->ttys[idx]) {
1726 		tty_debug(tty, "bad driver table[%d] = %p\n",
1727 			  idx, tty->driver->ttys[idx]);
1728 		return -1;
1729 	}
1730 	if (tty->driver->other) {
1731 		struct tty_struct *o_tty = tty->link;
1732 
1733 		if (o_tty != tty->driver->other->ttys[idx]) {
1734 			tty_debug(tty, "bad other table[%d] = %p\n",
1735 				  idx, tty->driver->other->ttys[idx]);
1736 			return -1;
1737 		}
1738 		if (o_tty->link != tty) {
1739 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1740 			return -1;
1741 		}
1742 	}
1743 #endif
1744 	return 0;
1745 }
1746 
1747 /**
1748  *	tty_release		-	vfs callback for close
1749  *	@inode: inode of tty
1750  *	@filp: file pointer for handle to tty
1751  *
1752  *	Called the last time each file handle is closed that references
1753  *	this tty. There may however be several such references.
1754  *
1755  *	Locking:
1756  *		Takes bkl. See tty_release_dev
1757  *
1758  * Even releasing the tty structures is a tricky business.. We have
1759  * to be very careful that the structures are all released at the
1760  * same time, as interrupts might otherwise get the wrong pointers.
1761  *
1762  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1763  * lead to double frees or releasing memory still in use.
1764  */
1765 
1766 int tty_release(struct inode *inode, struct file *filp)
1767 {
1768 	struct tty_struct *tty = file_tty(filp);
1769 	struct tty_struct *o_tty = NULL;
1770 	int	do_sleep, final;
1771 	int	idx;
1772 	long	timeout = 0;
1773 	int	once = 1;
1774 
1775 	if (tty_paranoia_check(tty, inode, __func__))
1776 		return 0;
1777 
1778 	tty_lock(tty);
1779 	check_tty_count(tty, __func__);
1780 
1781 	__tty_fasync(-1, filp, 0);
1782 
1783 	idx = tty->index;
1784 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1785 	    tty->driver->subtype == PTY_TYPE_MASTER)
1786 		o_tty = tty->link;
1787 
1788 	if (tty_release_checks(tty, idx)) {
1789 		tty_unlock(tty);
1790 		return 0;
1791 	}
1792 
1793 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1794 
1795 	if (tty->ops->close)
1796 		tty->ops->close(tty, filp);
1797 
1798 	/* If tty is pty master, lock the slave pty (stable lock order) */
1799 	tty_lock_slave(o_tty);
1800 
1801 	/*
1802 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1803 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1804 	 * wait queues and kick everyone out _before_ actually starting to
1805 	 * close.  This ensures that we won't block while releasing the tty
1806 	 * structure.
1807 	 *
1808 	 * The test for the o_tty closing is necessary, since the master and
1809 	 * slave sides may close in any order.  If the slave side closes out
1810 	 * first, its count will be one, since the master side holds an open.
1811 	 * Thus this test wouldn't be triggered at the time the slave closed,
1812 	 * so we do it now.
1813 	 */
1814 	while (1) {
1815 		do_sleep = 0;
1816 
1817 		if (tty->count <= 1) {
1818 			if (waitqueue_active(&tty->read_wait)) {
1819 				wake_up_poll(&tty->read_wait, POLLIN);
1820 				do_sleep++;
1821 			}
1822 			if (waitqueue_active(&tty->write_wait)) {
1823 				wake_up_poll(&tty->write_wait, POLLOUT);
1824 				do_sleep++;
1825 			}
1826 		}
1827 		if (o_tty && o_tty->count <= 1) {
1828 			if (waitqueue_active(&o_tty->read_wait)) {
1829 				wake_up_poll(&o_tty->read_wait, POLLIN);
1830 				do_sleep++;
1831 			}
1832 			if (waitqueue_active(&o_tty->write_wait)) {
1833 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1834 				do_sleep++;
1835 			}
1836 		}
1837 		if (!do_sleep)
1838 			break;
1839 
1840 		if (once) {
1841 			once = 0;
1842 			tty_warn(tty, "read/write wait queue active!\n");
1843 		}
1844 		schedule_timeout_killable(timeout);
1845 		if (timeout < 120 * HZ)
1846 			timeout = 2 * timeout + 1;
1847 		else
1848 			timeout = MAX_SCHEDULE_TIMEOUT;
1849 	}
1850 
1851 	if (o_tty) {
1852 		if (--o_tty->count < 0) {
1853 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1854 			o_tty->count = 0;
1855 		}
1856 	}
1857 	if (--tty->count < 0) {
1858 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1859 		tty->count = 0;
1860 	}
1861 
1862 	/*
1863 	 * We've decremented tty->count, so we need to remove this file
1864 	 * descriptor off the tty->tty_files list; this serves two
1865 	 * purposes:
1866 	 *  - check_tty_count sees the correct number of file descriptors
1867 	 *    associated with this tty.
1868 	 *  - do_tty_hangup no longer sees this file descriptor as
1869 	 *    something that needs to be handled for hangups.
1870 	 */
1871 	tty_del_file(filp);
1872 
1873 	/*
1874 	 * Perform some housekeeping before deciding whether to return.
1875 	 *
1876 	 * If _either_ side is closing, make sure there aren't any
1877 	 * processes that still think tty or o_tty is their controlling
1878 	 * tty.
1879 	 */
1880 	if (!tty->count) {
1881 		read_lock(&tasklist_lock);
1882 		session_clear_tty(tty->session);
1883 		if (o_tty)
1884 			session_clear_tty(o_tty->session);
1885 		read_unlock(&tasklist_lock);
1886 	}
1887 
1888 	/* check whether both sides are closing ... */
1889 	final = !tty->count && !(o_tty && o_tty->count);
1890 
1891 	tty_unlock_slave(o_tty);
1892 	tty_unlock(tty);
1893 
1894 	/* At this point, the tty->count == 0 should ensure a dead tty
1895 	   cannot be re-opened by a racing opener */
1896 
1897 	if (!final)
1898 		return 0;
1899 
1900 	tty_debug_hangup(tty, "final close\n");
1901 	/*
1902 	 * Ask the line discipline code to release its structures
1903 	 */
1904 	tty_ldisc_release(tty);
1905 
1906 	/* Wait for pending work before tty destruction commmences */
1907 	tty_flush_works(tty);
1908 
1909 	tty_debug_hangup(tty, "freeing structure\n");
1910 	/*
1911 	 * The release_tty function takes care of the details of clearing
1912 	 * the slots and preserving the termios structure. The tty_unlock_pair
1913 	 * should be safe as we keep a kref while the tty is locked (so the
1914 	 * unlock never unlocks a freed tty).
1915 	 */
1916 	mutex_lock(&tty_mutex);
1917 	release_tty(tty, idx);
1918 	mutex_unlock(&tty_mutex);
1919 
1920 	return 0;
1921 }
1922 
1923 /**
1924  *	tty_open_current_tty - get locked tty of current task
1925  *	@device: device number
1926  *	@filp: file pointer to tty
1927  *	@return: locked tty of the current task iff @device is /dev/tty
1928  *
1929  *	Performs a re-open of the current task's controlling tty.
1930  *
1931  *	We cannot return driver and index like for the other nodes because
1932  *	devpts will not work then. It expects inodes to be from devpts FS.
1933  */
1934 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1935 {
1936 	struct tty_struct *tty;
1937 	int retval;
1938 
1939 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1940 		return NULL;
1941 
1942 	tty = get_current_tty();
1943 	if (!tty)
1944 		return ERR_PTR(-ENXIO);
1945 
1946 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1947 	/* noctty = 1; */
1948 	tty_lock(tty);
1949 	tty_kref_put(tty);	/* safe to drop the kref now */
1950 
1951 	retval = tty_reopen(tty);
1952 	if (retval < 0) {
1953 		tty_unlock(tty);
1954 		tty = ERR_PTR(retval);
1955 	}
1956 	return tty;
1957 }
1958 
1959 /**
1960  *	tty_lookup_driver - lookup a tty driver for a given device file
1961  *	@device: device number
1962  *	@filp: file pointer to tty
1963  *	@index: index for the device in the @return driver
1964  *	@return: driver for this inode (with increased refcount)
1965  *
1966  * 	If @return is not erroneous, the caller is responsible to decrement the
1967  * 	refcount by tty_driver_kref_put.
1968  *
1969  *	Locking: tty_mutex protects get_tty_driver
1970  */
1971 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1972 		int *index)
1973 {
1974 	struct tty_driver *driver;
1975 
1976 	switch (device) {
1977 #ifdef CONFIG_VT
1978 	case MKDEV(TTY_MAJOR, 0): {
1979 		extern struct tty_driver *console_driver;
1980 		driver = tty_driver_kref_get(console_driver);
1981 		*index = fg_console;
1982 		break;
1983 	}
1984 #endif
1985 	case MKDEV(TTYAUX_MAJOR, 1): {
1986 		struct tty_driver *console_driver = console_device(index);
1987 		if (console_driver) {
1988 			driver = tty_driver_kref_get(console_driver);
1989 			if (driver) {
1990 				/* Don't let /dev/console block */
1991 				filp->f_flags |= O_NONBLOCK;
1992 				break;
1993 			}
1994 		}
1995 		return ERR_PTR(-ENODEV);
1996 	}
1997 	default:
1998 		driver = get_tty_driver(device, index);
1999 		if (!driver)
2000 			return ERR_PTR(-ENODEV);
2001 		break;
2002 	}
2003 	return driver;
2004 }
2005 
2006 /**
2007  *	tty_open_by_driver	-	open a tty device
2008  *	@device: dev_t of device to open
2009  *	@inode: inode of device file
2010  *	@filp: file pointer to tty
2011  *
2012  *	Performs the driver lookup, checks for a reopen, or otherwise
2013  *	performs the first-time tty initialization.
2014  *
2015  *	Returns the locked initialized or re-opened &tty_struct
2016  *
2017  *	Claims the global tty_mutex to serialize:
2018  *	  - concurrent first-time tty initialization
2019  *	  - concurrent tty driver removal w/ lookup
2020  *	  - concurrent tty removal from driver table
2021  */
2022 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2023 					     struct file *filp)
2024 {
2025 	struct tty_struct *tty;
2026 	struct tty_driver *driver = NULL;
2027 	int index = -1;
2028 	int retval;
2029 
2030 	mutex_lock(&tty_mutex);
2031 	driver = tty_lookup_driver(device, filp, &index);
2032 	if (IS_ERR(driver)) {
2033 		mutex_unlock(&tty_mutex);
2034 		return ERR_CAST(driver);
2035 	}
2036 
2037 	/* check whether we're reopening an existing tty */
2038 	tty = tty_driver_lookup_tty(driver, filp, index);
2039 	if (IS_ERR(tty)) {
2040 		mutex_unlock(&tty_mutex);
2041 		goto out;
2042 	}
2043 
2044 	if (tty) {
2045 		mutex_unlock(&tty_mutex);
2046 		retval = tty_lock_interruptible(tty);
2047 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2048 		if (retval) {
2049 			if (retval == -EINTR)
2050 				retval = -ERESTARTSYS;
2051 			tty = ERR_PTR(retval);
2052 			goto out;
2053 		}
2054 		retval = tty_reopen(tty);
2055 		if (retval < 0) {
2056 			tty_unlock(tty);
2057 			tty = ERR_PTR(retval);
2058 		}
2059 	} else { /* Returns with the tty_lock held for now */
2060 		tty = tty_init_dev(driver, index);
2061 		mutex_unlock(&tty_mutex);
2062 	}
2063 out:
2064 	tty_driver_kref_put(driver);
2065 	return tty;
2066 }
2067 
2068 /**
2069  *	tty_open		-	open a tty device
2070  *	@inode: inode of device file
2071  *	@filp: file pointer to tty
2072  *
2073  *	tty_open and tty_release keep up the tty count that contains the
2074  *	number of opens done on a tty. We cannot use the inode-count, as
2075  *	different inodes might point to the same tty.
2076  *
2077  *	Open-counting is needed for pty masters, as well as for keeping
2078  *	track of serial lines: DTR is dropped when the last close happens.
2079  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2080  *
2081  *	The termios state of a pty is reset on first open so that
2082  *	settings don't persist across reuse.
2083  *
2084  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2085  *		 tty->count should protect the rest.
2086  *		 ->siglock protects ->signal/->sighand
2087  *
2088  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2089  *	tty_mutex
2090  */
2091 
2092 static int tty_open(struct inode *inode, struct file *filp)
2093 {
2094 	struct tty_struct *tty;
2095 	int noctty, retval;
2096 	dev_t device = inode->i_rdev;
2097 	unsigned saved_flags = filp->f_flags;
2098 
2099 	nonseekable_open(inode, filp);
2100 
2101 retry_open:
2102 	retval = tty_alloc_file(filp);
2103 	if (retval)
2104 		return -ENOMEM;
2105 
2106 	tty = tty_open_current_tty(device, filp);
2107 	if (!tty)
2108 		tty = tty_open_by_driver(device, inode, filp);
2109 
2110 	if (IS_ERR(tty)) {
2111 		tty_free_file(filp);
2112 		retval = PTR_ERR(tty);
2113 		if (retval != -EAGAIN || signal_pending(current))
2114 			return retval;
2115 		schedule();
2116 		goto retry_open;
2117 	}
2118 
2119 	tty_add_file(tty, filp);
2120 
2121 	check_tty_count(tty, __func__);
2122 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2123 
2124 	if (tty->ops->open)
2125 		retval = tty->ops->open(tty, filp);
2126 	else
2127 		retval = -ENODEV;
2128 	filp->f_flags = saved_flags;
2129 
2130 	if (retval) {
2131 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2132 
2133 		tty_unlock(tty); /* need to call tty_release without BTM */
2134 		tty_release(inode, filp);
2135 		if (retval != -ERESTARTSYS)
2136 			return retval;
2137 
2138 		if (signal_pending(current))
2139 			return retval;
2140 
2141 		schedule();
2142 		/*
2143 		 * Need to reset f_op in case a hangup happened.
2144 		 */
2145 		if (tty_hung_up_p(filp))
2146 			filp->f_op = &tty_fops;
2147 		goto retry_open;
2148 	}
2149 	clear_bit(TTY_HUPPED, &tty->flags);
2150 
2151 
2152 	read_lock(&tasklist_lock);
2153 	spin_lock_irq(&current->sighand->siglock);
2154 	noctty = (filp->f_flags & O_NOCTTY) ||
2155 			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2156 			device == MKDEV(TTYAUX_MAJOR, 1) ||
2157 			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2158 			 tty->driver->subtype == PTY_TYPE_MASTER);
2159 
2160 	if (!noctty &&
2161 	    current->signal->leader &&
2162 	    !current->signal->tty &&
2163 	    tty->session == NULL) {
2164 		/*
2165 		 * Don't let a process that only has write access to the tty
2166 		 * obtain the privileges associated with having a tty as
2167 		 * controlling terminal (being able to reopen it with full
2168 		 * access through /dev/tty, being able to perform pushback).
2169 		 * Many distributions set the group of all ttys to "tty" and
2170 		 * grant write-only access to all terminals for setgid tty
2171 		 * binaries, which should not imply full privileges on all ttys.
2172 		 *
2173 		 * This could theoretically break old code that performs open()
2174 		 * on a write-only file descriptor. In that case, it might be
2175 		 * necessary to also permit this if
2176 		 * inode_permission(inode, MAY_READ) == 0.
2177 		 */
2178 		if (filp->f_mode & FMODE_READ)
2179 			__proc_set_tty(tty);
2180 	}
2181 	spin_unlock_irq(&current->sighand->siglock);
2182 	read_unlock(&tasklist_lock);
2183 	tty_unlock(tty);
2184 	return 0;
2185 }
2186 
2187 
2188 
2189 /**
2190  *	tty_poll	-	check tty status
2191  *	@filp: file being polled
2192  *	@wait: poll wait structures to update
2193  *
2194  *	Call the line discipline polling method to obtain the poll
2195  *	status of the device.
2196  *
2197  *	Locking: locks called line discipline but ldisc poll method
2198  *	may be re-entered freely by other callers.
2199  */
2200 
2201 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2202 {
2203 	struct tty_struct *tty = file_tty(filp);
2204 	struct tty_ldisc *ld;
2205 	int ret = 0;
2206 
2207 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208 		return 0;
2209 
2210 	ld = tty_ldisc_ref_wait(tty);
2211 	if (!ld)
2212 		return hung_up_tty_poll(filp, wait);
2213 	if (ld->ops->poll)
2214 		ret = ld->ops->poll(tty, filp, wait);
2215 	tty_ldisc_deref(ld);
2216 	return ret;
2217 }
2218 
2219 static int __tty_fasync(int fd, struct file *filp, int on)
2220 {
2221 	struct tty_struct *tty = file_tty(filp);
2222 	unsigned long flags;
2223 	int retval = 0;
2224 
2225 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226 		goto out;
2227 
2228 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229 	if (retval <= 0)
2230 		goto out;
2231 
2232 	if (on) {
2233 		enum pid_type type;
2234 		struct pid *pid;
2235 
2236 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2237 		if (tty->pgrp) {
2238 			pid = tty->pgrp;
2239 			type = PIDTYPE_PGID;
2240 		} else {
2241 			pid = task_pid(current);
2242 			type = PIDTYPE_PID;
2243 		}
2244 		get_pid(pid);
2245 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2246 		__f_setown(filp, pid, type, 0);
2247 		put_pid(pid);
2248 		retval = 0;
2249 	}
2250 out:
2251 	return retval;
2252 }
2253 
2254 static int tty_fasync(int fd, struct file *filp, int on)
2255 {
2256 	struct tty_struct *tty = file_tty(filp);
2257 	int retval = -ENOTTY;
2258 
2259 	tty_lock(tty);
2260 	if (!tty_hung_up_p(filp))
2261 		retval = __tty_fasync(fd, filp, on);
2262 	tty_unlock(tty);
2263 
2264 	return retval;
2265 }
2266 
2267 /**
2268  *	tiocsti			-	fake input character
2269  *	@tty: tty to fake input into
2270  *	@p: pointer to character
2271  *
2272  *	Fake input to a tty device. Does the necessary locking and
2273  *	input management.
2274  *
2275  *	FIXME: does not honour flow control ??
2276  *
2277  *	Locking:
2278  *		Called functions take tty_ldiscs_lock
2279  *		current->signal->tty check is safe without locks
2280  *
2281  *	FIXME: may race normal receive processing
2282  */
2283 
2284 static int tiocsti(struct tty_struct *tty, char __user *p)
2285 {
2286 	char ch, mbz = 0;
2287 	struct tty_ldisc *ld;
2288 
2289 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290 		return -EPERM;
2291 	if (get_user(ch, p))
2292 		return -EFAULT;
2293 	tty_audit_tiocsti(tty, ch);
2294 	ld = tty_ldisc_ref_wait(tty);
2295 	if (!ld)
2296 		return -EIO;
2297 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2298 	tty_ldisc_deref(ld);
2299 	return 0;
2300 }
2301 
2302 /**
2303  *	tiocgwinsz		-	implement window query ioctl
2304  *	@tty; tty
2305  *	@arg: user buffer for result
2306  *
2307  *	Copies the kernel idea of the window size into the user buffer.
2308  *
2309  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2310  *		is consistent.
2311  */
2312 
2313 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2314 {
2315 	int err;
2316 
2317 	mutex_lock(&tty->winsize_mutex);
2318 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2319 	mutex_unlock(&tty->winsize_mutex);
2320 
2321 	return err ? -EFAULT: 0;
2322 }
2323 
2324 /**
2325  *	tty_do_resize		-	resize event
2326  *	@tty: tty being resized
2327  *	@rows: rows (character)
2328  *	@cols: cols (character)
2329  *
2330  *	Update the termios variables and send the necessary signals to
2331  *	peform a terminal resize correctly
2332  */
2333 
2334 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335 {
2336 	struct pid *pgrp;
2337 
2338 	/* Lock the tty */
2339 	mutex_lock(&tty->winsize_mutex);
2340 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341 		goto done;
2342 
2343 	/* Signal the foreground process group */
2344 	pgrp = tty_get_pgrp(tty);
2345 	if (pgrp)
2346 		kill_pgrp(pgrp, SIGWINCH, 1);
2347 	put_pid(pgrp);
2348 
2349 	tty->winsize = *ws;
2350 done:
2351 	mutex_unlock(&tty->winsize_mutex);
2352 	return 0;
2353 }
2354 EXPORT_SYMBOL(tty_do_resize);
2355 
2356 /**
2357  *	tiocswinsz		-	implement window size set ioctl
2358  *	@tty; tty side of tty
2359  *	@arg: user buffer for result
2360  *
2361  *	Copies the user idea of the window size to the kernel. Traditionally
2362  *	this is just advisory information but for the Linux console it
2363  *	actually has driver level meaning and triggers a VC resize.
2364  *
2365  *	Locking:
2366  *		Driver dependent. The default do_resize method takes the
2367  *	tty termios mutex and ctrl_lock. The console takes its own lock
2368  *	then calls into the default method.
2369  */
2370 
2371 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2372 {
2373 	struct winsize tmp_ws;
2374 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375 		return -EFAULT;
2376 
2377 	if (tty->ops->resize)
2378 		return tty->ops->resize(tty, &tmp_ws);
2379 	else
2380 		return tty_do_resize(tty, &tmp_ws);
2381 }
2382 
2383 /**
2384  *	tioccons	-	allow admin to move logical console
2385  *	@file: the file to become console
2386  *
2387  *	Allow the administrator to move the redirected console device
2388  *
2389  *	Locking: uses redirect_lock to guard the redirect information
2390  */
2391 
2392 static int tioccons(struct file *file)
2393 {
2394 	if (!capable(CAP_SYS_ADMIN))
2395 		return -EPERM;
2396 	if (file->f_op->write == redirected_tty_write) {
2397 		struct file *f;
2398 		spin_lock(&redirect_lock);
2399 		f = redirect;
2400 		redirect = NULL;
2401 		spin_unlock(&redirect_lock);
2402 		if (f)
2403 			fput(f);
2404 		return 0;
2405 	}
2406 	spin_lock(&redirect_lock);
2407 	if (redirect) {
2408 		spin_unlock(&redirect_lock);
2409 		return -EBUSY;
2410 	}
2411 	redirect = get_file(file);
2412 	spin_unlock(&redirect_lock);
2413 	return 0;
2414 }
2415 
2416 /**
2417  *	fionbio		-	non blocking ioctl
2418  *	@file: file to set blocking value
2419  *	@p: user parameter
2420  *
2421  *	Historical tty interfaces had a blocking control ioctl before
2422  *	the generic functionality existed. This piece of history is preserved
2423  *	in the expected tty API of posix OS's.
2424  *
2425  *	Locking: none, the open file handle ensures it won't go away.
2426  */
2427 
2428 static int fionbio(struct file *file, int __user *p)
2429 {
2430 	int nonblock;
2431 
2432 	if (get_user(nonblock, p))
2433 		return -EFAULT;
2434 
2435 	spin_lock(&file->f_lock);
2436 	if (nonblock)
2437 		file->f_flags |= O_NONBLOCK;
2438 	else
2439 		file->f_flags &= ~O_NONBLOCK;
2440 	spin_unlock(&file->f_lock);
2441 	return 0;
2442 }
2443 
2444 /**
2445  *	tiocsctty	-	set controlling tty
2446  *	@tty: tty structure
2447  *	@arg: user argument
2448  *
2449  *	This ioctl is used to manage job control. It permits a session
2450  *	leader to set this tty as the controlling tty for the session.
2451  *
2452  *	Locking:
2453  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2454  *		Takes tasklist_lock internally to walk sessions
2455  *		Takes ->siglock() when updating signal->tty
2456  */
2457 
2458 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2459 {
2460 	int ret = 0;
2461 
2462 	tty_lock(tty);
2463 	read_lock(&tasklist_lock);
2464 
2465 	if (current->signal->leader && (task_session(current) == tty->session))
2466 		goto unlock;
2467 
2468 	/*
2469 	 * The process must be a session leader and
2470 	 * not have a controlling tty already.
2471 	 */
2472 	if (!current->signal->leader || current->signal->tty) {
2473 		ret = -EPERM;
2474 		goto unlock;
2475 	}
2476 
2477 	if (tty->session) {
2478 		/*
2479 		 * This tty is already the controlling
2480 		 * tty for another session group!
2481 		 */
2482 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2483 			/*
2484 			 * Steal it away
2485 			 */
2486 			session_clear_tty(tty->session);
2487 		} else {
2488 			ret = -EPERM;
2489 			goto unlock;
2490 		}
2491 	}
2492 
2493 	/* See the comment in tty_open(). */
2494 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2495 		ret = -EPERM;
2496 		goto unlock;
2497 	}
2498 
2499 	proc_set_tty(tty);
2500 unlock:
2501 	read_unlock(&tasklist_lock);
2502 	tty_unlock(tty);
2503 	return ret;
2504 }
2505 
2506 /**
2507  *	tty_get_pgrp	-	return a ref counted pgrp pid
2508  *	@tty: tty to read
2509  *
2510  *	Returns a refcounted instance of the pid struct for the process
2511  *	group controlling the tty.
2512  */
2513 
2514 struct pid *tty_get_pgrp(struct tty_struct *tty)
2515 {
2516 	unsigned long flags;
2517 	struct pid *pgrp;
2518 
2519 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2520 	pgrp = get_pid(tty->pgrp);
2521 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2522 
2523 	return pgrp;
2524 }
2525 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2526 
2527 /*
2528  * This checks not only the pgrp, but falls back on the pid if no
2529  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2530  * without this...
2531  *
2532  * The caller must hold rcu lock or the tasklist lock.
2533  */
2534 static struct pid *session_of_pgrp(struct pid *pgrp)
2535 {
2536 	struct task_struct *p;
2537 	struct pid *sid = NULL;
2538 
2539 	p = pid_task(pgrp, PIDTYPE_PGID);
2540 	if (p == NULL)
2541 		p = pid_task(pgrp, PIDTYPE_PID);
2542 	if (p != NULL)
2543 		sid = task_session(p);
2544 
2545 	return sid;
2546 }
2547 
2548 /**
2549  *	tiocgpgrp		-	get process group
2550  *	@tty: tty passed by user
2551  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2552  *	@p: returned pid
2553  *
2554  *	Obtain the process group of the tty. If there is no process group
2555  *	return an error.
2556  *
2557  *	Locking: none. Reference to current->signal->tty is safe.
2558  */
2559 
2560 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2561 {
2562 	struct pid *pid;
2563 	int ret;
2564 	/*
2565 	 * (tty == real_tty) is a cheap way of
2566 	 * testing if the tty is NOT a master pty.
2567 	 */
2568 	if (tty == real_tty && current->signal->tty != real_tty)
2569 		return -ENOTTY;
2570 	pid = tty_get_pgrp(real_tty);
2571 	ret =  put_user(pid_vnr(pid), p);
2572 	put_pid(pid);
2573 	return ret;
2574 }
2575 
2576 /**
2577  *	tiocspgrp		-	attempt to set process group
2578  *	@tty: tty passed by user
2579  *	@real_tty: tty side device matching tty passed by user
2580  *	@p: pid pointer
2581  *
2582  *	Set the process group of the tty to the session passed. Only
2583  *	permitted where the tty session is our session.
2584  *
2585  *	Locking: RCU, ctrl lock
2586  */
2587 
2588 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2589 {
2590 	struct pid *pgrp;
2591 	pid_t pgrp_nr;
2592 	int retval = tty_check_change(real_tty);
2593 
2594 	if (retval == -EIO)
2595 		return -ENOTTY;
2596 	if (retval)
2597 		return retval;
2598 	if (!current->signal->tty ||
2599 	    (current->signal->tty != real_tty) ||
2600 	    (real_tty->session != task_session(current)))
2601 		return -ENOTTY;
2602 	if (get_user(pgrp_nr, p))
2603 		return -EFAULT;
2604 	if (pgrp_nr < 0)
2605 		return -EINVAL;
2606 	rcu_read_lock();
2607 	pgrp = find_vpid(pgrp_nr);
2608 	retval = -ESRCH;
2609 	if (!pgrp)
2610 		goto out_unlock;
2611 	retval = -EPERM;
2612 	if (session_of_pgrp(pgrp) != task_session(current))
2613 		goto out_unlock;
2614 	retval = 0;
2615 	spin_lock_irq(&tty->ctrl_lock);
2616 	put_pid(real_tty->pgrp);
2617 	real_tty->pgrp = get_pid(pgrp);
2618 	spin_unlock_irq(&tty->ctrl_lock);
2619 out_unlock:
2620 	rcu_read_unlock();
2621 	return retval;
2622 }
2623 
2624 /**
2625  *	tiocgsid		-	get session id
2626  *	@tty: tty passed by user
2627  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2628  *	@p: pointer to returned session id
2629  *
2630  *	Obtain the session id of the tty. If there is no session
2631  *	return an error.
2632  *
2633  *	Locking: none. Reference to current->signal->tty is safe.
2634  */
2635 
2636 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2637 {
2638 	/*
2639 	 * (tty == real_tty) is a cheap way of
2640 	 * testing if the tty is NOT a master pty.
2641 	*/
2642 	if (tty == real_tty && current->signal->tty != real_tty)
2643 		return -ENOTTY;
2644 	if (!real_tty->session)
2645 		return -ENOTTY;
2646 	return put_user(pid_vnr(real_tty->session), p);
2647 }
2648 
2649 /**
2650  *	tiocsetd	-	set line discipline
2651  *	@tty: tty device
2652  *	@p: pointer to user data
2653  *
2654  *	Set the line discipline according to user request.
2655  *
2656  *	Locking: see tty_set_ldisc, this function is just a helper
2657  */
2658 
2659 static int tiocsetd(struct tty_struct *tty, int __user *p)
2660 {
2661 	int disc;
2662 	int ret;
2663 
2664 	if (get_user(disc, p))
2665 		return -EFAULT;
2666 
2667 	ret = tty_set_ldisc(tty, disc);
2668 
2669 	return ret;
2670 }
2671 
2672 /**
2673  *	tiocgetd	-	get line discipline
2674  *	@tty: tty device
2675  *	@p: pointer to user data
2676  *
2677  *	Retrieves the line discipline id directly from the ldisc.
2678  *
2679  *	Locking: waits for ldisc reference (in case the line discipline
2680  *		is changing or the tty is being hungup)
2681  */
2682 
2683 static int tiocgetd(struct tty_struct *tty, int __user *p)
2684 {
2685 	struct tty_ldisc *ld;
2686 	int ret;
2687 
2688 	ld = tty_ldisc_ref_wait(tty);
2689 	if (!ld)
2690 		return -EIO;
2691 	ret = put_user(ld->ops->num, p);
2692 	tty_ldisc_deref(ld);
2693 	return ret;
2694 }
2695 
2696 /**
2697  *	send_break	-	performed time break
2698  *	@tty: device to break on
2699  *	@duration: timeout in mS
2700  *
2701  *	Perform a timed break on hardware that lacks its own driver level
2702  *	timed break functionality.
2703  *
2704  *	Locking:
2705  *		atomic_write_lock serializes
2706  *
2707  */
2708 
2709 static int send_break(struct tty_struct *tty, unsigned int duration)
2710 {
2711 	int retval;
2712 
2713 	if (tty->ops->break_ctl == NULL)
2714 		return 0;
2715 
2716 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2717 		retval = tty->ops->break_ctl(tty, duration);
2718 	else {
2719 		/* Do the work ourselves */
2720 		if (tty_write_lock(tty, 0) < 0)
2721 			return -EINTR;
2722 		retval = tty->ops->break_ctl(tty, -1);
2723 		if (retval)
2724 			goto out;
2725 		if (!signal_pending(current))
2726 			msleep_interruptible(duration);
2727 		retval = tty->ops->break_ctl(tty, 0);
2728 out:
2729 		tty_write_unlock(tty);
2730 		if (signal_pending(current))
2731 			retval = -EINTR;
2732 	}
2733 	return retval;
2734 }
2735 
2736 /**
2737  *	tty_tiocmget		-	get modem status
2738  *	@tty: tty device
2739  *	@file: user file pointer
2740  *	@p: pointer to result
2741  *
2742  *	Obtain the modem status bits from the tty driver if the feature
2743  *	is supported. Return -EINVAL if it is not available.
2744  *
2745  *	Locking: none (up to the driver)
2746  */
2747 
2748 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2749 {
2750 	int retval = -EINVAL;
2751 
2752 	if (tty->ops->tiocmget) {
2753 		retval = tty->ops->tiocmget(tty);
2754 
2755 		if (retval >= 0)
2756 			retval = put_user(retval, p);
2757 	}
2758 	return retval;
2759 }
2760 
2761 /**
2762  *	tty_tiocmset		-	set modem status
2763  *	@tty: tty device
2764  *	@cmd: command - clear bits, set bits or set all
2765  *	@p: pointer to desired bits
2766  *
2767  *	Set the modem status bits from the tty driver if the feature
2768  *	is supported. Return -EINVAL if it is not available.
2769  *
2770  *	Locking: none (up to the driver)
2771  */
2772 
2773 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2774 	     unsigned __user *p)
2775 {
2776 	int retval;
2777 	unsigned int set, clear, val;
2778 
2779 	if (tty->ops->tiocmset == NULL)
2780 		return -EINVAL;
2781 
2782 	retval = get_user(val, p);
2783 	if (retval)
2784 		return retval;
2785 	set = clear = 0;
2786 	switch (cmd) {
2787 	case TIOCMBIS:
2788 		set = val;
2789 		break;
2790 	case TIOCMBIC:
2791 		clear = val;
2792 		break;
2793 	case TIOCMSET:
2794 		set = val;
2795 		clear = ~val;
2796 		break;
2797 	}
2798 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2799 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2800 	return tty->ops->tiocmset(tty, set, clear);
2801 }
2802 
2803 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2804 {
2805 	int retval = -EINVAL;
2806 	struct serial_icounter_struct icount;
2807 	memset(&icount, 0, sizeof(icount));
2808 	if (tty->ops->get_icount)
2809 		retval = tty->ops->get_icount(tty, &icount);
2810 	if (retval != 0)
2811 		return retval;
2812 	if (copy_to_user(arg, &icount, sizeof(icount)))
2813 		return -EFAULT;
2814 	return 0;
2815 }
2816 
2817 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2818 {
2819 	static DEFINE_RATELIMIT_STATE(depr_flags,
2820 			DEFAULT_RATELIMIT_INTERVAL,
2821 			DEFAULT_RATELIMIT_BURST);
2822 	char comm[TASK_COMM_LEN];
2823 	int flags;
2824 
2825 	if (get_user(flags, &ss->flags))
2826 		return;
2827 
2828 	flags &= ASYNC_DEPRECATED;
2829 
2830 	if (flags && __ratelimit(&depr_flags))
2831 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2832 				__func__, get_task_comm(comm, current), flags);
2833 }
2834 
2835 /*
2836  * if pty, return the slave side (real_tty)
2837  * otherwise, return self
2838  */
2839 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2840 {
2841 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2842 	    tty->driver->subtype == PTY_TYPE_MASTER)
2843 		tty = tty->link;
2844 	return tty;
2845 }
2846 
2847 /*
2848  * Split this up, as gcc can choke on it otherwise..
2849  */
2850 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2851 {
2852 	struct tty_struct *tty = file_tty(file);
2853 	struct tty_struct *real_tty;
2854 	void __user *p = (void __user *)arg;
2855 	int retval;
2856 	struct tty_ldisc *ld;
2857 
2858 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2859 		return -EINVAL;
2860 
2861 	real_tty = tty_pair_get_tty(tty);
2862 
2863 	/*
2864 	 * Factor out some common prep work
2865 	 */
2866 	switch (cmd) {
2867 	case TIOCSETD:
2868 	case TIOCSBRK:
2869 	case TIOCCBRK:
2870 	case TCSBRK:
2871 	case TCSBRKP:
2872 		retval = tty_check_change(tty);
2873 		if (retval)
2874 			return retval;
2875 		if (cmd != TIOCCBRK) {
2876 			tty_wait_until_sent(tty, 0);
2877 			if (signal_pending(current))
2878 				return -EINTR;
2879 		}
2880 		break;
2881 	}
2882 
2883 	/*
2884 	 *	Now do the stuff.
2885 	 */
2886 	switch (cmd) {
2887 	case TIOCSTI:
2888 		return tiocsti(tty, p);
2889 	case TIOCGWINSZ:
2890 		return tiocgwinsz(real_tty, p);
2891 	case TIOCSWINSZ:
2892 		return tiocswinsz(real_tty, p);
2893 	case TIOCCONS:
2894 		return real_tty != tty ? -EINVAL : tioccons(file);
2895 	case FIONBIO:
2896 		return fionbio(file, p);
2897 	case TIOCEXCL:
2898 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2899 		return 0;
2900 	case TIOCNXCL:
2901 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2902 		return 0;
2903 	case TIOCGEXCL:
2904 	{
2905 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2906 		return put_user(excl, (int __user *)p);
2907 	}
2908 	case TIOCNOTTY:
2909 		if (current->signal->tty != tty)
2910 			return -ENOTTY;
2911 		no_tty();
2912 		return 0;
2913 	case TIOCSCTTY:
2914 		return tiocsctty(real_tty, file, arg);
2915 	case TIOCGPGRP:
2916 		return tiocgpgrp(tty, real_tty, p);
2917 	case TIOCSPGRP:
2918 		return tiocspgrp(tty, real_tty, p);
2919 	case TIOCGSID:
2920 		return tiocgsid(tty, real_tty, p);
2921 	case TIOCGETD:
2922 		return tiocgetd(tty, p);
2923 	case TIOCSETD:
2924 		return tiocsetd(tty, p);
2925 	case TIOCVHANGUP:
2926 		if (!capable(CAP_SYS_ADMIN))
2927 			return -EPERM;
2928 		tty_vhangup(tty);
2929 		return 0;
2930 	case TIOCGDEV:
2931 	{
2932 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2933 		return put_user(ret, (unsigned int __user *)p);
2934 	}
2935 	/*
2936 	 * Break handling
2937 	 */
2938 	case TIOCSBRK:	/* Turn break on, unconditionally */
2939 		if (tty->ops->break_ctl)
2940 			return tty->ops->break_ctl(tty, -1);
2941 		return 0;
2942 	case TIOCCBRK:	/* Turn break off, unconditionally */
2943 		if (tty->ops->break_ctl)
2944 			return tty->ops->break_ctl(tty, 0);
2945 		return 0;
2946 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2947 		/* non-zero arg means wait for all output data
2948 		 * to be sent (performed above) but don't send break.
2949 		 * This is used by the tcdrain() termios function.
2950 		 */
2951 		if (!arg)
2952 			return send_break(tty, 250);
2953 		return 0;
2954 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2955 		return send_break(tty, arg ? arg*100 : 250);
2956 
2957 	case TIOCMGET:
2958 		return tty_tiocmget(tty, p);
2959 	case TIOCMSET:
2960 	case TIOCMBIC:
2961 	case TIOCMBIS:
2962 		return tty_tiocmset(tty, cmd, p);
2963 	case TIOCGICOUNT:
2964 		retval = tty_tiocgicount(tty, p);
2965 		/* For the moment allow fall through to the old method */
2966         	if (retval != -EINVAL)
2967 			return retval;
2968 		break;
2969 	case TCFLSH:
2970 		switch (arg) {
2971 		case TCIFLUSH:
2972 		case TCIOFLUSH:
2973 		/* flush tty buffer and allow ldisc to process ioctl */
2974 			tty_buffer_flush(tty, NULL);
2975 			break;
2976 		}
2977 		break;
2978 	case TIOCSSERIAL:
2979 		tty_warn_deprecated_flags(p);
2980 		break;
2981 	}
2982 	if (tty->ops->ioctl) {
2983 		retval = tty->ops->ioctl(tty, cmd, arg);
2984 		if (retval != -ENOIOCTLCMD)
2985 			return retval;
2986 	}
2987 	ld = tty_ldisc_ref_wait(tty);
2988 	if (!ld)
2989 		return hung_up_tty_ioctl(file, cmd, arg);
2990 	retval = -EINVAL;
2991 	if (ld->ops->ioctl) {
2992 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2993 		if (retval == -ENOIOCTLCMD)
2994 			retval = -ENOTTY;
2995 	}
2996 	tty_ldisc_deref(ld);
2997 	return retval;
2998 }
2999 
3000 #ifdef CONFIG_COMPAT
3001 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3002 				unsigned long arg)
3003 {
3004 	struct tty_struct *tty = file_tty(file);
3005 	struct tty_ldisc *ld;
3006 	int retval = -ENOIOCTLCMD;
3007 
3008 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3009 		return -EINVAL;
3010 
3011 	if (tty->ops->compat_ioctl) {
3012 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3013 		if (retval != -ENOIOCTLCMD)
3014 			return retval;
3015 	}
3016 
3017 	ld = tty_ldisc_ref_wait(tty);
3018 	if (!ld)
3019 		return hung_up_tty_compat_ioctl(file, cmd, arg);
3020 	if (ld->ops->compat_ioctl)
3021 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3022 	else
3023 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3024 	tty_ldisc_deref(ld);
3025 
3026 	return retval;
3027 }
3028 #endif
3029 
3030 static int this_tty(const void *t, struct file *file, unsigned fd)
3031 {
3032 	if (likely(file->f_op->read != tty_read))
3033 		return 0;
3034 	return file_tty(file) != t ? 0 : fd + 1;
3035 }
3036 
3037 /*
3038  * This implements the "Secure Attention Key" ---  the idea is to
3039  * prevent trojan horses by killing all processes associated with this
3040  * tty when the user hits the "Secure Attention Key".  Required for
3041  * super-paranoid applications --- see the Orange Book for more details.
3042  *
3043  * This code could be nicer; ideally it should send a HUP, wait a few
3044  * seconds, then send a INT, and then a KILL signal.  But you then
3045  * have to coordinate with the init process, since all processes associated
3046  * with the current tty must be dead before the new getty is allowed
3047  * to spawn.
3048  *
3049  * Now, if it would be correct ;-/ The current code has a nasty hole -
3050  * it doesn't catch files in flight. We may send the descriptor to ourselves
3051  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3052  *
3053  * Nasty bug: do_SAK is being called in interrupt context.  This can
3054  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3055  */
3056 void __do_SAK(struct tty_struct *tty)
3057 {
3058 #ifdef TTY_SOFT_SAK
3059 	tty_hangup(tty);
3060 #else
3061 	struct task_struct *g, *p;
3062 	struct pid *session;
3063 	int		i;
3064 
3065 	if (!tty)
3066 		return;
3067 	session = tty->session;
3068 
3069 	tty_ldisc_flush(tty);
3070 
3071 	tty_driver_flush_buffer(tty);
3072 
3073 	read_lock(&tasklist_lock);
3074 	/* Kill the entire session */
3075 	do_each_pid_task(session, PIDTYPE_SID, p) {
3076 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3077 			   task_pid_nr(p), p->comm);
3078 		send_sig(SIGKILL, p, 1);
3079 	} while_each_pid_task(session, PIDTYPE_SID, p);
3080 
3081 	/* Now kill any processes that happen to have the tty open */
3082 	do_each_thread(g, p) {
3083 		if (p->signal->tty == tty) {
3084 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3085 				   task_pid_nr(p), p->comm);
3086 			send_sig(SIGKILL, p, 1);
3087 			continue;
3088 		}
3089 		task_lock(p);
3090 		i = iterate_fd(p->files, 0, this_tty, tty);
3091 		if (i != 0) {
3092 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3093 				   task_pid_nr(p), p->comm, i - 1);
3094 			force_sig(SIGKILL, p);
3095 		}
3096 		task_unlock(p);
3097 	} while_each_thread(g, p);
3098 	read_unlock(&tasklist_lock);
3099 #endif
3100 }
3101 
3102 static void do_SAK_work(struct work_struct *work)
3103 {
3104 	struct tty_struct *tty =
3105 		container_of(work, struct tty_struct, SAK_work);
3106 	__do_SAK(tty);
3107 }
3108 
3109 /*
3110  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3111  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3112  * the values which we write to it will be identical to the values which it
3113  * already has. --akpm
3114  */
3115 void do_SAK(struct tty_struct *tty)
3116 {
3117 	if (!tty)
3118 		return;
3119 	schedule_work(&tty->SAK_work);
3120 }
3121 
3122 EXPORT_SYMBOL(do_SAK);
3123 
3124 static int dev_match_devt(struct device *dev, const void *data)
3125 {
3126 	const dev_t *devt = data;
3127 	return dev->devt == *devt;
3128 }
3129 
3130 /* Must put_device() after it's unused! */
3131 static struct device *tty_get_device(struct tty_struct *tty)
3132 {
3133 	dev_t devt = tty_devnum(tty);
3134 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3135 }
3136 
3137 
3138 /**
3139  *	alloc_tty_struct
3140  *
3141  *	This subroutine allocates and initializes a tty structure.
3142  *
3143  *	Locking: none - tty in question is not exposed at this point
3144  */
3145 
3146 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3147 {
3148 	struct tty_struct *tty;
3149 
3150 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3151 	if (!tty)
3152 		return NULL;
3153 
3154 	kref_init(&tty->kref);
3155 	tty->magic = TTY_MAGIC;
3156 	tty_ldisc_init(tty);
3157 	tty->session = NULL;
3158 	tty->pgrp = NULL;
3159 	mutex_init(&tty->legacy_mutex);
3160 	mutex_init(&tty->throttle_mutex);
3161 	init_rwsem(&tty->termios_rwsem);
3162 	mutex_init(&tty->winsize_mutex);
3163 	init_ldsem(&tty->ldisc_sem);
3164 	init_waitqueue_head(&tty->write_wait);
3165 	init_waitqueue_head(&tty->read_wait);
3166 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3167 	mutex_init(&tty->atomic_write_lock);
3168 	spin_lock_init(&tty->ctrl_lock);
3169 	spin_lock_init(&tty->flow_lock);
3170 	spin_lock_init(&tty->files_lock);
3171 	INIT_LIST_HEAD(&tty->tty_files);
3172 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3173 
3174 	tty->driver = driver;
3175 	tty->ops = driver->ops;
3176 	tty->index = idx;
3177 	tty_line_name(driver, idx, tty->name);
3178 	tty->dev = tty_get_device(tty);
3179 
3180 	return tty;
3181 }
3182 
3183 /**
3184  *	tty_put_char	-	write one character to a tty
3185  *	@tty: tty
3186  *	@ch: character
3187  *
3188  *	Write one byte to the tty using the provided put_char method
3189  *	if present. Returns the number of characters successfully output.
3190  *
3191  *	Note: the specific put_char operation in the driver layer may go
3192  *	away soon. Don't call it directly, use this method
3193  */
3194 
3195 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3196 {
3197 	if (tty->ops->put_char)
3198 		return tty->ops->put_char(tty, ch);
3199 	return tty->ops->write(tty, &ch, 1);
3200 }
3201 EXPORT_SYMBOL_GPL(tty_put_char);
3202 
3203 struct class *tty_class;
3204 
3205 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3206 		unsigned int index, unsigned int count)
3207 {
3208 	int err;
3209 
3210 	/* init here, since reused cdevs cause crashes */
3211 	driver->cdevs[index] = cdev_alloc();
3212 	if (!driver->cdevs[index])
3213 		return -ENOMEM;
3214 	driver->cdevs[index]->ops = &tty_fops;
3215 	driver->cdevs[index]->owner = driver->owner;
3216 	err = cdev_add(driver->cdevs[index], dev, count);
3217 	if (err)
3218 		kobject_put(&driver->cdevs[index]->kobj);
3219 	return err;
3220 }
3221 
3222 /**
3223  *	tty_register_device - register a tty device
3224  *	@driver: the tty driver that describes the tty device
3225  *	@index: the index in the tty driver for this tty device
3226  *	@device: a struct device that is associated with this tty device.
3227  *		This field is optional, if there is no known struct device
3228  *		for this tty device it can be set to NULL safely.
3229  *
3230  *	Returns a pointer to the struct device for this tty device
3231  *	(or ERR_PTR(-EFOO) on error).
3232  *
3233  *	This call is required to be made to register an individual tty device
3234  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3235  *	that bit is not set, this function should not be called by a tty
3236  *	driver.
3237  *
3238  *	Locking: ??
3239  */
3240 
3241 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3242 				   struct device *device)
3243 {
3244 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3245 }
3246 EXPORT_SYMBOL(tty_register_device);
3247 
3248 static void tty_device_create_release(struct device *dev)
3249 {
3250 	dev_dbg(dev, "releasing...\n");
3251 	kfree(dev);
3252 }
3253 
3254 /**
3255  *	tty_register_device_attr - register a tty device
3256  *	@driver: the tty driver that describes the tty device
3257  *	@index: the index in the tty driver for this tty device
3258  *	@device: a struct device that is associated with this tty device.
3259  *		This field is optional, if there is no known struct device
3260  *		for this tty device it can be set to NULL safely.
3261  *	@drvdata: Driver data to be set to device.
3262  *	@attr_grp: Attribute group to be set on device.
3263  *
3264  *	Returns a pointer to the struct device for this tty device
3265  *	(or ERR_PTR(-EFOO) on error).
3266  *
3267  *	This call is required to be made to register an individual tty device
3268  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3269  *	that bit is not set, this function should not be called by a tty
3270  *	driver.
3271  *
3272  *	Locking: ??
3273  */
3274 struct device *tty_register_device_attr(struct tty_driver *driver,
3275 				   unsigned index, struct device *device,
3276 				   void *drvdata,
3277 				   const struct attribute_group **attr_grp)
3278 {
3279 	char name[64];
3280 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3281 	struct device *dev = NULL;
3282 	int retval = -ENODEV;
3283 	bool cdev = false;
3284 
3285 	if (index >= driver->num) {
3286 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3287 		       driver->name, index);
3288 		return ERR_PTR(-EINVAL);
3289 	}
3290 
3291 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3292 		pty_line_name(driver, index, name);
3293 	else
3294 		tty_line_name(driver, index, name);
3295 
3296 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3297 		retval = tty_cdev_add(driver, devt, index, 1);
3298 		if (retval)
3299 			goto error;
3300 		cdev = true;
3301 	}
3302 
3303 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3304 	if (!dev) {
3305 		retval = -ENOMEM;
3306 		goto error;
3307 	}
3308 
3309 	dev->devt = devt;
3310 	dev->class = tty_class;
3311 	dev->parent = device;
3312 	dev->release = tty_device_create_release;
3313 	dev_set_name(dev, "%s", name);
3314 	dev->groups = attr_grp;
3315 	dev_set_drvdata(dev, drvdata);
3316 
3317 	retval = device_register(dev);
3318 	if (retval)
3319 		goto error;
3320 
3321 	return dev;
3322 
3323 error:
3324 	put_device(dev);
3325 	if (cdev) {
3326 		cdev_del(driver->cdevs[index]);
3327 		driver->cdevs[index] = NULL;
3328 	}
3329 	return ERR_PTR(retval);
3330 }
3331 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3332 
3333 /**
3334  * 	tty_unregister_device - unregister a tty device
3335  * 	@driver: the tty driver that describes the tty device
3336  * 	@index: the index in the tty driver for this tty device
3337  *
3338  * 	If a tty device is registered with a call to tty_register_device() then
3339  *	this function must be called when the tty device is gone.
3340  *
3341  *	Locking: ??
3342  */
3343 
3344 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3345 {
3346 	device_destroy(tty_class,
3347 		MKDEV(driver->major, driver->minor_start) + index);
3348 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3349 		cdev_del(driver->cdevs[index]);
3350 		driver->cdevs[index] = NULL;
3351 	}
3352 }
3353 EXPORT_SYMBOL(tty_unregister_device);
3354 
3355 /**
3356  * __tty_alloc_driver -- allocate tty driver
3357  * @lines: count of lines this driver can handle at most
3358  * @owner: module which is repsonsible for this driver
3359  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3360  *
3361  * This should not be called directly, some of the provided macros should be
3362  * used instead. Use IS_ERR and friends on @retval.
3363  */
3364 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3365 		unsigned long flags)
3366 {
3367 	struct tty_driver *driver;
3368 	unsigned int cdevs = 1;
3369 	int err;
3370 
3371 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3372 		return ERR_PTR(-EINVAL);
3373 
3374 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3375 	if (!driver)
3376 		return ERR_PTR(-ENOMEM);
3377 
3378 	kref_init(&driver->kref);
3379 	driver->magic = TTY_DRIVER_MAGIC;
3380 	driver->num = lines;
3381 	driver->owner = owner;
3382 	driver->flags = flags;
3383 
3384 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3385 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3386 				GFP_KERNEL);
3387 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3388 				GFP_KERNEL);
3389 		if (!driver->ttys || !driver->termios) {
3390 			err = -ENOMEM;
3391 			goto err_free_all;
3392 		}
3393 	}
3394 
3395 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3396 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3397 				GFP_KERNEL);
3398 		if (!driver->ports) {
3399 			err = -ENOMEM;
3400 			goto err_free_all;
3401 		}
3402 		cdevs = lines;
3403 	}
3404 
3405 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3406 	if (!driver->cdevs) {
3407 		err = -ENOMEM;
3408 		goto err_free_all;
3409 	}
3410 
3411 	return driver;
3412 err_free_all:
3413 	kfree(driver->ports);
3414 	kfree(driver->ttys);
3415 	kfree(driver->termios);
3416 	kfree(driver->cdevs);
3417 	kfree(driver);
3418 	return ERR_PTR(err);
3419 }
3420 EXPORT_SYMBOL(__tty_alloc_driver);
3421 
3422 static void destruct_tty_driver(struct kref *kref)
3423 {
3424 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3425 	int i;
3426 	struct ktermios *tp;
3427 
3428 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3429 		/*
3430 		 * Free the termios and termios_locked structures because
3431 		 * we don't want to get memory leaks when modular tty
3432 		 * drivers are removed from the kernel.
3433 		 */
3434 		for (i = 0; i < driver->num; i++) {
3435 			tp = driver->termios[i];
3436 			if (tp) {
3437 				driver->termios[i] = NULL;
3438 				kfree(tp);
3439 			}
3440 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3441 				tty_unregister_device(driver, i);
3442 		}
3443 		proc_tty_unregister_driver(driver);
3444 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3445 			cdev_del(driver->cdevs[0]);
3446 	}
3447 	kfree(driver->cdevs);
3448 	kfree(driver->ports);
3449 	kfree(driver->termios);
3450 	kfree(driver->ttys);
3451 	kfree(driver);
3452 }
3453 
3454 void tty_driver_kref_put(struct tty_driver *driver)
3455 {
3456 	kref_put(&driver->kref, destruct_tty_driver);
3457 }
3458 EXPORT_SYMBOL(tty_driver_kref_put);
3459 
3460 void tty_set_operations(struct tty_driver *driver,
3461 			const struct tty_operations *op)
3462 {
3463 	driver->ops = op;
3464 };
3465 EXPORT_SYMBOL(tty_set_operations);
3466 
3467 void put_tty_driver(struct tty_driver *d)
3468 {
3469 	tty_driver_kref_put(d);
3470 }
3471 EXPORT_SYMBOL(put_tty_driver);
3472 
3473 /*
3474  * Called by a tty driver to register itself.
3475  */
3476 int tty_register_driver(struct tty_driver *driver)
3477 {
3478 	int error;
3479 	int i;
3480 	dev_t dev;
3481 	struct device *d;
3482 
3483 	if (!driver->major) {
3484 		error = alloc_chrdev_region(&dev, driver->minor_start,
3485 						driver->num, driver->name);
3486 		if (!error) {
3487 			driver->major = MAJOR(dev);
3488 			driver->minor_start = MINOR(dev);
3489 		}
3490 	} else {
3491 		dev = MKDEV(driver->major, driver->minor_start);
3492 		error = register_chrdev_region(dev, driver->num, driver->name);
3493 	}
3494 	if (error < 0)
3495 		goto err;
3496 
3497 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3498 		error = tty_cdev_add(driver, dev, 0, driver->num);
3499 		if (error)
3500 			goto err_unreg_char;
3501 	}
3502 
3503 	mutex_lock(&tty_mutex);
3504 	list_add(&driver->tty_drivers, &tty_drivers);
3505 	mutex_unlock(&tty_mutex);
3506 
3507 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3508 		for (i = 0; i < driver->num; i++) {
3509 			d = tty_register_device(driver, i, NULL);
3510 			if (IS_ERR(d)) {
3511 				error = PTR_ERR(d);
3512 				goto err_unreg_devs;
3513 			}
3514 		}
3515 	}
3516 	proc_tty_register_driver(driver);
3517 	driver->flags |= TTY_DRIVER_INSTALLED;
3518 	return 0;
3519 
3520 err_unreg_devs:
3521 	for (i--; i >= 0; i--)
3522 		tty_unregister_device(driver, i);
3523 
3524 	mutex_lock(&tty_mutex);
3525 	list_del(&driver->tty_drivers);
3526 	mutex_unlock(&tty_mutex);
3527 
3528 err_unreg_char:
3529 	unregister_chrdev_region(dev, driver->num);
3530 err:
3531 	return error;
3532 }
3533 EXPORT_SYMBOL(tty_register_driver);
3534 
3535 /*
3536  * Called by a tty driver to unregister itself.
3537  */
3538 int tty_unregister_driver(struct tty_driver *driver)
3539 {
3540 #if 0
3541 	/* FIXME */
3542 	if (driver->refcount)
3543 		return -EBUSY;
3544 #endif
3545 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3546 				driver->num);
3547 	mutex_lock(&tty_mutex);
3548 	list_del(&driver->tty_drivers);
3549 	mutex_unlock(&tty_mutex);
3550 	return 0;
3551 }
3552 
3553 EXPORT_SYMBOL(tty_unregister_driver);
3554 
3555 dev_t tty_devnum(struct tty_struct *tty)
3556 {
3557 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3558 }
3559 EXPORT_SYMBOL(tty_devnum);
3560 
3561 void tty_default_fops(struct file_operations *fops)
3562 {
3563 	*fops = tty_fops;
3564 }
3565 
3566 /*
3567  * Initialize the console device. This is called *early*, so
3568  * we can't necessarily depend on lots of kernel help here.
3569  * Just do some early initializations, and do the complex setup
3570  * later.
3571  */
3572 void __init console_init(void)
3573 {
3574 	initcall_t *call;
3575 
3576 	/* Setup the default TTY line discipline. */
3577 	n_tty_init();
3578 
3579 	/*
3580 	 * set up the console device so that later boot sequences can
3581 	 * inform about problems etc..
3582 	 */
3583 	call = __con_initcall_start;
3584 	while (call < __con_initcall_end) {
3585 		(*call)();
3586 		call++;
3587 	}
3588 }
3589 
3590 static char *tty_devnode(struct device *dev, umode_t *mode)
3591 {
3592 	if (!mode)
3593 		return NULL;
3594 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3595 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3596 		*mode = 0666;
3597 	return NULL;
3598 }
3599 
3600 static int __init tty_class_init(void)
3601 {
3602 	tty_class = class_create(THIS_MODULE, "tty");
3603 	if (IS_ERR(tty_class))
3604 		return PTR_ERR(tty_class);
3605 	tty_class->devnode = tty_devnode;
3606 	return 0;
3607 }
3608 
3609 postcore_initcall(tty_class_init);
3610 
3611 /* 3/2004 jmc: why do these devices exist? */
3612 static struct cdev tty_cdev, console_cdev;
3613 
3614 static ssize_t show_cons_active(struct device *dev,
3615 				struct device_attribute *attr, char *buf)
3616 {
3617 	struct console *cs[16];
3618 	int i = 0;
3619 	struct console *c;
3620 	ssize_t count = 0;
3621 
3622 	console_lock();
3623 	for_each_console(c) {
3624 		if (!c->device)
3625 			continue;
3626 		if (!c->write)
3627 			continue;
3628 		if ((c->flags & CON_ENABLED) == 0)
3629 			continue;
3630 		cs[i++] = c;
3631 		if (i >= ARRAY_SIZE(cs))
3632 			break;
3633 	}
3634 	while (i--) {
3635 		int index = cs[i]->index;
3636 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3637 
3638 		/* don't resolve tty0 as some programs depend on it */
3639 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3640 			count += tty_line_name(drv, index, buf + count);
3641 		else
3642 			count += sprintf(buf + count, "%s%d",
3643 					 cs[i]->name, cs[i]->index);
3644 
3645 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3646 	}
3647 	console_unlock();
3648 
3649 	return count;
3650 }
3651 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3652 
3653 static struct attribute *cons_dev_attrs[] = {
3654 	&dev_attr_active.attr,
3655 	NULL
3656 };
3657 
3658 ATTRIBUTE_GROUPS(cons_dev);
3659 
3660 static struct device *consdev;
3661 
3662 void console_sysfs_notify(void)
3663 {
3664 	if (consdev)
3665 		sysfs_notify(&consdev->kobj, NULL, "active");
3666 }
3667 
3668 /*
3669  * Ok, now we can initialize the rest of the tty devices and can count
3670  * on memory allocations, interrupts etc..
3671  */
3672 int __init tty_init(void)
3673 {
3674 	cdev_init(&tty_cdev, &tty_fops);
3675 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3676 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3677 		panic("Couldn't register /dev/tty driver\n");
3678 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3679 
3680 	cdev_init(&console_cdev, &console_fops);
3681 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3682 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3683 		panic("Couldn't register /dev/console driver\n");
3684 	consdev = device_create_with_groups(tty_class, NULL,
3685 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3686 					    cons_dev_groups, "console");
3687 	if (IS_ERR(consdev))
3688 		consdev = NULL;
3689 
3690 #ifdef CONFIG_VT
3691 	vty_init(&console_fops);
3692 #endif
3693 	return 0;
3694 }
3695 
3696