1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 #ifdef TTY_DEBUG_HANGUP 110 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 111 #else 112 # define tty_debug_hangup(tty, f, args...) do { } while (0) 113 #endif 114 115 #define TTY_PARANOIA_CHECK 1 116 #define CHECK_TTY_COUNT 1 117 118 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 119 .c_iflag = ICRNL | IXON, 120 .c_oflag = OPOST | ONLCR, 121 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 123 ECHOCTL | ECHOKE | IEXTEN, 124 .c_cc = INIT_C_CC, 125 .c_ispeed = 38400, 126 .c_ospeed = 38400, 127 /* .c_line = N_TTY, */ 128 }; 129 130 EXPORT_SYMBOL(tty_std_termios); 131 132 /* This list gets poked at by procfs and various bits of boot up code. This 133 could do with some rationalisation such as pulling the tty proc function 134 into this file */ 135 136 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 137 138 /* Mutex to protect creating and releasing a tty */ 139 DEFINE_MUTEX(tty_mutex); 140 141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 143 ssize_t redirected_tty_write(struct file *, const char __user *, 144 size_t, loff_t *); 145 static unsigned int tty_poll(struct file *, poll_table *); 146 static int tty_open(struct inode *, struct file *); 147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 148 #ifdef CONFIG_COMPAT 149 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 150 unsigned long arg); 151 #else 152 #define tty_compat_ioctl NULL 153 #endif 154 static int __tty_fasync(int fd, struct file *filp, int on); 155 static int tty_fasync(int fd, struct file *filp, int on); 156 static void release_tty(struct tty_struct *tty, int idx); 157 158 /** 159 * free_tty_struct - free a disused tty 160 * @tty: tty struct to free 161 * 162 * Free the write buffers, tty queue and tty memory itself. 163 * 164 * Locking: none. Must be called after tty is definitely unused 165 */ 166 167 static void free_tty_struct(struct tty_struct *tty) 168 { 169 tty_ldisc_deinit(tty); 170 put_device(tty->dev); 171 kfree(tty->write_buf); 172 tty->magic = 0xDEADDEAD; 173 kfree(tty); 174 } 175 176 static inline struct tty_struct *file_tty(struct file *file) 177 { 178 return ((struct tty_file_private *)file->private_data)->tty; 179 } 180 181 int tty_alloc_file(struct file *file) 182 { 183 struct tty_file_private *priv; 184 185 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 186 if (!priv) 187 return -ENOMEM; 188 189 file->private_data = priv; 190 191 return 0; 192 } 193 194 /* Associate a new file with the tty structure */ 195 void tty_add_file(struct tty_struct *tty, struct file *file) 196 { 197 struct tty_file_private *priv = file->private_data; 198 199 priv->tty = tty; 200 priv->file = file; 201 202 spin_lock(&tty->files_lock); 203 list_add(&priv->list, &tty->tty_files); 204 spin_unlock(&tty->files_lock); 205 } 206 207 /** 208 * tty_free_file - free file->private_data 209 * 210 * This shall be used only for fail path handling when tty_add_file was not 211 * called yet. 212 */ 213 void tty_free_file(struct file *file) 214 { 215 struct tty_file_private *priv = file->private_data; 216 217 file->private_data = NULL; 218 kfree(priv); 219 } 220 221 /* Delete file from its tty */ 222 static void tty_del_file(struct file *file) 223 { 224 struct tty_file_private *priv = file->private_data; 225 struct tty_struct *tty = priv->tty; 226 227 spin_lock(&tty->files_lock); 228 list_del(&priv->list); 229 spin_unlock(&tty->files_lock); 230 tty_free_file(file); 231 } 232 233 /** 234 * tty_name - return tty naming 235 * @tty: tty structure 236 * 237 * Convert a tty structure into a name. The name reflects the kernel 238 * naming policy and if udev is in use may not reflect user space 239 * 240 * Locking: none 241 */ 242 243 const char *tty_name(const struct tty_struct *tty) 244 { 245 if (!tty) /* Hmm. NULL pointer. That's fun. */ 246 return "NULL tty"; 247 return tty->name; 248 } 249 250 EXPORT_SYMBOL(tty_name); 251 252 const char *tty_driver_name(const struct tty_struct *tty) 253 { 254 if (!tty || !tty->driver) 255 return ""; 256 return tty->driver->name; 257 } 258 259 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 260 const char *routine) 261 { 262 #ifdef TTY_PARANOIA_CHECK 263 if (!tty) { 264 pr_warn("(%d:%d): %s: NULL tty\n", 265 imajor(inode), iminor(inode), routine); 266 return 1; 267 } 268 if (tty->magic != TTY_MAGIC) { 269 pr_warn("(%d:%d): %s: bad magic number\n", 270 imajor(inode), iminor(inode), routine); 271 return 1; 272 } 273 #endif 274 return 0; 275 } 276 277 /* Caller must hold tty_lock */ 278 static int check_tty_count(struct tty_struct *tty, const char *routine) 279 { 280 #ifdef CHECK_TTY_COUNT 281 struct list_head *p; 282 int count = 0; 283 284 spin_lock(&tty->files_lock); 285 list_for_each(p, &tty->tty_files) { 286 count++; 287 } 288 spin_unlock(&tty->files_lock); 289 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 290 tty->driver->subtype == PTY_TYPE_SLAVE && 291 tty->link && tty->link->count) 292 count++; 293 if (tty->count != count) { 294 tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n", 295 routine, tty->count, count); 296 return count; 297 } 298 #endif 299 return 0; 300 } 301 302 /** 303 * get_tty_driver - find device of a tty 304 * @dev_t: device identifier 305 * @index: returns the index of the tty 306 * 307 * This routine returns a tty driver structure, given a device number 308 * and also passes back the index number. 309 * 310 * Locking: caller must hold tty_mutex 311 */ 312 313 static struct tty_driver *get_tty_driver(dev_t device, int *index) 314 { 315 struct tty_driver *p; 316 317 list_for_each_entry(p, &tty_drivers, tty_drivers) { 318 dev_t base = MKDEV(p->major, p->minor_start); 319 if (device < base || device >= base + p->num) 320 continue; 321 *index = device - base; 322 return tty_driver_kref_get(p); 323 } 324 return NULL; 325 } 326 327 #ifdef CONFIG_CONSOLE_POLL 328 329 /** 330 * tty_find_polling_driver - find device of a polled tty 331 * @name: name string to match 332 * @line: pointer to resulting tty line nr 333 * 334 * This routine returns a tty driver structure, given a name 335 * and the condition that the tty driver is capable of polled 336 * operation. 337 */ 338 struct tty_driver *tty_find_polling_driver(char *name, int *line) 339 { 340 struct tty_driver *p, *res = NULL; 341 int tty_line = 0; 342 int len; 343 char *str, *stp; 344 345 for (str = name; *str; str++) 346 if ((*str >= '0' && *str <= '9') || *str == ',') 347 break; 348 if (!*str) 349 return NULL; 350 351 len = str - name; 352 tty_line = simple_strtoul(str, &str, 10); 353 354 mutex_lock(&tty_mutex); 355 /* Search through the tty devices to look for a match */ 356 list_for_each_entry(p, &tty_drivers, tty_drivers) { 357 if (strncmp(name, p->name, len) != 0) 358 continue; 359 stp = str; 360 if (*stp == ',') 361 stp++; 362 if (*stp == '\0') 363 stp = NULL; 364 365 if (tty_line >= 0 && tty_line < p->num && p->ops && 366 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 367 res = tty_driver_kref_get(p); 368 *line = tty_line; 369 break; 370 } 371 } 372 mutex_unlock(&tty_mutex); 373 374 return res; 375 } 376 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 377 #endif 378 379 static int is_ignored(int sig) 380 { 381 return (sigismember(¤t->blocked, sig) || 382 current->sighand->action[sig-1].sa.sa_handler == SIG_IGN); 383 } 384 385 /** 386 * tty_check_change - check for POSIX terminal changes 387 * @tty: tty to check 388 * 389 * If we try to write to, or set the state of, a terminal and we're 390 * not in the foreground, send a SIGTTOU. If the signal is blocked or 391 * ignored, go ahead and perform the operation. (POSIX 7.2) 392 * 393 * Locking: ctrl_lock 394 */ 395 396 int __tty_check_change(struct tty_struct *tty, int sig) 397 { 398 unsigned long flags; 399 struct pid *pgrp, *tty_pgrp; 400 int ret = 0; 401 402 if (current->signal->tty != tty) 403 return 0; 404 405 rcu_read_lock(); 406 pgrp = task_pgrp(current); 407 408 spin_lock_irqsave(&tty->ctrl_lock, flags); 409 tty_pgrp = tty->pgrp; 410 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 411 412 if (tty_pgrp && pgrp != tty->pgrp) { 413 if (is_ignored(sig)) { 414 if (sig == SIGTTIN) 415 ret = -EIO; 416 } else if (is_current_pgrp_orphaned()) 417 ret = -EIO; 418 else { 419 kill_pgrp(pgrp, sig, 1); 420 set_thread_flag(TIF_SIGPENDING); 421 ret = -ERESTARTSYS; 422 } 423 } 424 rcu_read_unlock(); 425 426 if (!tty_pgrp) 427 tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig); 428 429 return ret; 430 } 431 432 int tty_check_change(struct tty_struct *tty) 433 { 434 return __tty_check_change(tty, SIGTTOU); 435 } 436 EXPORT_SYMBOL(tty_check_change); 437 438 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 439 size_t count, loff_t *ppos) 440 { 441 return 0; 442 } 443 444 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 445 size_t count, loff_t *ppos) 446 { 447 return -EIO; 448 } 449 450 /* No kernel lock held - none needed ;) */ 451 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 452 { 453 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 454 } 455 456 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 457 unsigned long arg) 458 { 459 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 460 } 461 462 static long hung_up_tty_compat_ioctl(struct file *file, 463 unsigned int cmd, unsigned long arg) 464 { 465 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 466 } 467 468 static int hung_up_tty_fasync(int fd, struct file *file, int on) 469 { 470 return -ENOTTY; 471 } 472 473 static const struct file_operations tty_fops = { 474 .llseek = no_llseek, 475 .read = tty_read, 476 .write = tty_write, 477 .poll = tty_poll, 478 .unlocked_ioctl = tty_ioctl, 479 .compat_ioctl = tty_compat_ioctl, 480 .open = tty_open, 481 .release = tty_release, 482 .fasync = tty_fasync, 483 }; 484 485 static const struct file_operations console_fops = { 486 .llseek = no_llseek, 487 .read = tty_read, 488 .write = redirected_tty_write, 489 .poll = tty_poll, 490 .unlocked_ioctl = tty_ioctl, 491 .compat_ioctl = tty_compat_ioctl, 492 .open = tty_open, 493 .release = tty_release, 494 .fasync = tty_fasync, 495 }; 496 497 static const struct file_operations hung_up_tty_fops = { 498 .llseek = no_llseek, 499 .read = hung_up_tty_read, 500 .write = hung_up_tty_write, 501 .poll = hung_up_tty_poll, 502 .unlocked_ioctl = hung_up_tty_ioctl, 503 .compat_ioctl = hung_up_tty_compat_ioctl, 504 .release = tty_release, 505 .fasync = hung_up_tty_fasync, 506 }; 507 508 static DEFINE_SPINLOCK(redirect_lock); 509 static struct file *redirect; 510 511 512 void proc_clear_tty(struct task_struct *p) 513 { 514 unsigned long flags; 515 struct tty_struct *tty; 516 spin_lock_irqsave(&p->sighand->siglock, flags); 517 tty = p->signal->tty; 518 p->signal->tty = NULL; 519 spin_unlock_irqrestore(&p->sighand->siglock, flags); 520 tty_kref_put(tty); 521 } 522 523 /** 524 * proc_set_tty - set the controlling terminal 525 * 526 * Only callable by the session leader and only if it does not already have 527 * a controlling terminal. 528 * 529 * Caller must hold: tty_lock() 530 * a readlock on tasklist_lock 531 * sighand lock 532 */ 533 static void __proc_set_tty(struct tty_struct *tty) 534 { 535 unsigned long flags; 536 537 spin_lock_irqsave(&tty->ctrl_lock, flags); 538 /* 539 * The session and fg pgrp references will be non-NULL if 540 * tiocsctty() is stealing the controlling tty 541 */ 542 put_pid(tty->session); 543 put_pid(tty->pgrp); 544 tty->pgrp = get_pid(task_pgrp(current)); 545 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 546 tty->session = get_pid(task_session(current)); 547 if (current->signal->tty) { 548 tty_debug(tty, "current tty %s not NULL!!\n", 549 current->signal->tty->name); 550 tty_kref_put(current->signal->tty); 551 } 552 put_pid(current->signal->tty_old_pgrp); 553 current->signal->tty = tty_kref_get(tty); 554 current->signal->tty_old_pgrp = NULL; 555 } 556 557 static void proc_set_tty(struct tty_struct *tty) 558 { 559 spin_lock_irq(¤t->sighand->siglock); 560 __proc_set_tty(tty); 561 spin_unlock_irq(¤t->sighand->siglock); 562 } 563 564 struct tty_struct *get_current_tty(void) 565 { 566 struct tty_struct *tty; 567 unsigned long flags; 568 569 spin_lock_irqsave(¤t->sighand->siglock, flags); 570 tty = tty_kref_get(current->signal->tty); 571 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 572 return tty; 573 } 574 EXPORT_SYMBOL_GPL(get_current_tty); 575 576 static void session_clear_tty(struct pid *session) 577 { 578 struct task_struct *p; 579 do_each_pid_task(session, PIDTYPE_SID, p) { 580 proc_clear_tty(p); 581 } while_each_pid_task(session, PIDTYPE_SID, p); 582 } 583 584 /** 585 * tty_wakeup - request more data 586 * @tty: terminal 587 * 588 * Internal and external helper for wakeups of tty. This function 589 * informs the line discipline if present that the driver is ready 590 * to receive more output data. 591 */ 592 593 void tty_wakeup(struct tty_struct *tty) 594 { 595 struct tty_ldisc *ld; 596 597 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 598 ld = tty_ldisc_ref(tty); 599 if (ld) { 600 if (ld->ops->write_wakeup) 601 ld->ops->write_wakeup(tty); 602 tty_ldisc_deref(ld); 603 } 604 } 605 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 606 } 607 608 EXPORT_SYMBOL_GPL(tty_wakeup); 609 610 /** 611 * tty_signal_session_leader - sends SIGHUP to session leader 612 * @tty controlling tty 613 * @exit_session if non-zero, signal all foreground group processes 614 * 615 * Send SIGHUP and SIGCONT to the session leader and its process group. 616 * Optionally, signal all processes in the foreground process group. 617 * 618 * Returns the number of processes in the session with this tty 619 * as their controlling terminal. This value is used to drop 620 * tty references for those processes. 621 */ 622 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 623 { 624 struct task_struct *p; 625 int refs = 0; 626 struct pid *tty_pgrp = NULL; 627 628 read_lock(&tasklist_lock); 629 if (tty->session) { 630 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 631 spin_lock_irq(&p->sighand->siglock); 632 if (p->signal->tty == tty) { 633 p->signal->tty = NULL; 634 /* We defer the dereferences outside fo 635 the tasklist lock */ 636 refs++; 637 } 638 if (!p->signal->leader) { 639 spin_unlock_irq(&p->sighand->siglock); 640 continue; 641 } 642 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 643 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 644 put_pid(p->signal->tty_old_pgrp); /* A noop */ 645 spin_lock(&tty->ctrl_lock); 646 tty_pgrp = get_pid(tty->pgrp); 647 if (tty->pgrp) 648 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 649 spin_unlock(&tty->ctrl_lock); 650 spin_unlock_irq(&p->sighand->siglock); 651 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 652 } 653 read_unlock(&tasklist_lock); 654 655 if (tty_pgrp) { 656 if (exit_session) 657 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 658 put_pid(tty_pgrp); 659 } 660 661 return refs; 662 } 663 664 /** 665 * __tty_hangup - actual handler for hangup events 666 * @work: tty device 667 * 668 * This can be called by a "kworker" kernel thread. That is process 669 * synchronous but doesn't hold any locks, so we need to make sure we 670 * have the appropriate locks for what we're doing. 671 * 672 * The hangup event clears any pending redirections onto the hung up 673 * device. It ensures future writes will error and it does the needed 674 * line discipline hangup and signal delivery. The tty object itself 675 * remains intact. 676 * 677 * Locking: 678 * BTM 679 * redirect lock for undoing redirection 680 * file list lock for manipulating list of ttys 681 * tty_ldiscs_lock from called functions 682 * termios_rwsem resetting termios data 683 * tasklist_lock to walk task list for hangup event 684 * ->siglock to protect ->signal/->sighand 685 */ 686 static void __tty_hangup(struct tty_struct *tty, int exit_session) 687 { 688 struct file *cons_filp = NULL; 689 struct file *filp, *f = NULL; 690 struct tty_file_private *priv; 691 int closecount = 0, n; 692 int refs; 693 694 if (!tty) 695 return; 696 697 698 spin_lock(&redirect_lock); 699 if (redirect && file_tty(redirect) == tty) { 700 f = redirect; 701 redirect = NULL; 702 } 703 spin_unlock(&redirect_lock); 704 705 tty_lock(tty); 706 707 if (test_bit(TTY_HUPPED, &tty->flags)) { 708 tty_unlock(tty); 709 return; 710 } 711 712 /* inuse_filps is protected by the single tty lock, 713 this really needs to change if we want to flush the 714 workqueue with the lock held */ 715 check_tty_count(tty, "tty_hangup"); 716 717 spin_lock(&tty->files_lock); 718 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 719 list_for_each_entry(priv, &tty->tty_files, list) { 720 filp = priv->file; 721 if (filp->f_op->write == redirected_tty_write) 722 cons_filp = filp; 723 if (filp->f_op->write != tty_write) 724 continue; 725 closecount++; 726 __tty_fasync(-1, filp, 0); /* can't block */ 727 filp->f_op = &hung_up_tty_fops; 728 } 729 spin_unlock(&tty->files_lock); 730 731 refs = tty_signal_session_leader(tty, exit_session); 732 /* Account for the p->signal references we killed */ 733 while (refs--) 734 tty_kref_put(tty); 735 736 tty_ldisc_hangup(tty, cons_filp != NULL); 737 738 spin_lock_irq(&tty->ctrl_lock); 739 clear_bit(TTY_THROTTLED, &tty->flags); 740 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 741 put_pid(tty->session); 742 put_pid(tty->pgrp); 743 tty->session = NULL; 744 tty->pgrp = NULL; 745 tty->ctrl_status = 0; 746 spin_unlock_irq(&tty->ctrl_lock); 747 748 /* 749 * If one of the devices matches a console pointer, we 750 * cannot just call hangup() because that will cause 751 * tty->count and state->count to go out of sync. 752 * So we just call close() the right number of times. 753 */ 754 if (cons_filp) { 755 if (tty->ops->close) 756 for (n = 0; n < closecount; n++) 757 tty->ops->close(tty, cons_filp); 758 } else if (tty->ops->hangup) 759 tty->ops->hangup(tty); 760 /* 761 * We don't want to have driver/ldisc interactions beyond the ones 762 * we did here. The driver layer expects no calls after ->hangup() 763 * from the ldisc side, which is now guaranteed. 764 */ 765 set_bit(TTY_HUPPED, &tty->flags); 766 tty_unlock(tty); 767 768 if (f) 769 fput(f); 770 } 771 772 static void do_tty_hangup(struct work_struct *work) 773 { 774 struct tty_struct *tty = 775 container_of(work, struct tty_struct, hangup_work); 776 777 __tty_hangup(tty, 0); 778 } 779 780 /** 781 * tty_hangup - trigger a hangup event 782 * @tty: tty to hangup 783 * 784 * A carrier loss (virtual or otherwise) has occurred on this like 785 * schedule a hangup sequence to run after this event. 786 */ 787 788 void tty_hangup(struct tty_struct *tty) 789 { 790 tty_debug_hangup(tty, "hangup\n"); 791 schedule_work(&tty->hangup_work); 792 } 793 794 EXPORT_SYMBOL(tty_hangup); 795 796 /** 797 * tty_vhangup - process vhangup 798 * @tty: tty to hangup 799 * 800 * The user has asked via system call for the terminal to be hung up. 801 * We do this synchronously so that when the syscall returns the process 802 * is complete. That guarantee is necessary for security reasons. 803 */ 804 805 void tty_vhangup(struct tty_struct *tty) 806 { 807 tty_debug_hangup(tty, "vhangup\n"); 808 __tty_hangup(tty, 0); 809 } 810 811 EXPORT_SYMBOL(tty_vhangup); 812 813 814 /** 815 * tty_vhangup_self - process vhangup for own ctty 816 * 817 * Perform a vhangup on the current controlling tty 818 */ 819 820 void tty_vhangup_self(void) 821 { 822 struct tty_struct *tty; 823 824 tty = get_current_tty(); 825 if (tty) { 826 tty_vhangup(tty); 827 tty_kref_put(tty); 828 } 829 } 830 831 /** 832 * tty_vhangup_session - hangup session leader exit 833 * @tty: tty to hangup 834 * 835 * The session leader is exiting and hanging up its controlling terminal. 836 * Every process in the foreground process group is signalled SIGHUP. 837 * 838 * We do this synchronously so that when the syscall returns the process 839 * is complete. That guarantee is necessary for security reasons. 840 */ 841 842 static void tty_vhangup_session(struct tty_struct *tty) 843 { 844 tty_debug_hangup(tty, "session hangup\n"); 845 __tty_hangup(tty, 1); 846 } 847 848 /** 849 * tty_hung_up_p - was tty hung up 850 * @filp: file pointer of tty 851 * 852 * Return true if the tty has been subject to a vhangup or a carrier 853 * loss 854 */ 855 856 int tty_hung_up_p(struct file *filp) 857 { 858 return (filp->f_op == &hung_up_tty_fops); 859 } 860 861 EXPORT_SYMBOL(tty_hung_up_p); 862 863 /** 864 * disassociate_ctty - disconnect controlling tty 865 * @on_exit: true if exiting so need to "hang up" the session 866 * 867 * This function is typically called only by the session leader, when 868 * it wants to disassociate itself from its controlling tty. 869 * 870 * It performs the following functions: 871 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 872 * (2) Clears the tty from being controlling the session 873 * (3) Clears the controlling tty for all processes in the 874 * session group. 875 * 876 * The argument on_exit is set to 1 if called when a process is 877 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 878 * 879 * Locking: 880 * BTM is taken for hysterical raisins, and held when 881 * called from no_tty(). 882 * tty_mutex is taken to protect tty 883 * ->siglock is taken to protect ->signal/->sighand 884 * tasklist_lock is taken to walk process list for sessions 885 * ->siglock is taken to protect ->signal/->sighand 886 */ 887 888 void disassociate_ctty(int on_exit) 889 { 890 struct tty_struct *tty; 891 892 if (!current->signal->leader) 893 return; 894 895 tty = get_current_tty(); 896 if (tty) { 897 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 898 tty_vhangup_session(tty); 899 } else { 900 struct pid *tty_pgrp = tty_get_pgrp(tty); 901 if (tty_pgrp) { 902 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 903 if (!on_exit) 904 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 905 put_pid(tty_pgrp); 906 } 907 } 908 tty_kref_put(tty); 909 910 } else if (on_exit) { 911 struct pid *old_pgrp; 912 spin_lock_irq(¤t->sighand->siglock); 913 old_pgrp = current->signal->tty_old_pgrp; 914 current->signal->tty_old_pgrp = NULL; 915 spin_unlock_irq(¤t->sighand->siglock); 916 if (old_pgrp) { 917 kill_pgrp(old_pgrp, SIGHUP, on_exit); 918 kill_pgrp(old_pgrp, SIGCONT, on_exit); 919 put_pid(old_pgrp); 920 } 921 return; 922 } 923 924 spin_lock_irq(¤t->sighand->siglock); 925 put_pid(current->signal->tty_old_pgrp); 926 current->signal->tty_old_pgrp = NULL; 927 928 tty = tty_kref_get(current->signal->tty); 929 if (tty) { 930 unsigned long flags; 931 spin_lock_irqsave(&tty->ctrl_lock, flags); 932 put_pid(tty->session); 933 put_pid(tty->pgrp); 934 tty->session = NULL; 935 tty->pgrp = NULL; 936 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 937 tty_kref_put(tty); 938 } else 939 tty_debug_hangup(tty, "no current tty\n"); 940 941 spin_unlock_irq(¤t->sighand->siglock); 942 /* Now clear signal->tty under the lock */ 943 read_lock(&tasklist_lock); 944 session_clear_tty(task_session(current)); 945 read_unlock(&tasklist_lock); 946 } 947 948 /** 949 * 950 * no_tty - Ensure the current process does not have a controlling tty 951 */ 952 void no_tty(void) 953 { 954 /* FIXME: Review locking here. The tty_lock never covered any race 955 between a new association and proc_clear_tty but possible we need 956 to protect against this anyway */ 957 struct task_struct *tsk = current; 958 disassociate_ctty(0); 959 proc_clear_tty(tsk); 960 } 961 962 963 /** 964 * stop_tty - propagate flow control 965 * @tty: tty to stop 966 * 967 * Perform flow control to the driver. May be called 968 * on an already stopped device and will not re-call the driver 969 * method. 970 * 971 * This functionality is used by both the line disciplines for 972 * halting incoming flow and by the driver. It may therefore be 973 * called from any context, may be under the tty atomic_write_lock 974 * but not always. 975 * 976 * Locking: 977 * flow_lock 978 */ 979 980 void __stop_tty(struct tty_struct *tty) 981 { 982 if (tty->stopped) 983 return; 984 tty->stopped = 1; 985 if (tty->ops->stop) 986 tty->ops->stop(tty); 987 } 988 989 void stop_tty(struct tty_struct *tty) 990 { 991 unsigned long flags; 992 993 spin_lock_irqsave(&tty->flow_lock, flags); 994 __stop_tty(tty); 995 spin_unlock_irqrestore(&tty->flow_lock, flags); 996 } 997 EXPORT_SYMBOL(stop_tty); 998 999 /** 1000 * start_tty - propagate flow control 1001 * @tty: tty to start 1002 * 1003 * Start a tty that has been stopped if at all possible. If this 1004 * tty was previous stopped and is now being started, the driver 1005 * start method is invoked and the line discipline woken. 1006 * 1007 * Locking: 1008 * flow_lock 1009 */ 1010 1011 void __start_tty(struct tty_struct *tty) 1012 { 1013 if (!tty->stopped || tty->flow_stopped) 1014 return; 1015 tty->stopped = 0; 1016 if (tty->ops->start) 1017 tty->ops->start(tty); 1018 tty_wakeup(tty); 1019 } 1020 1021 void start_tty(struct tty_struct *tty) 1022 { 1023 unsigned long flags; 1024 1025 spin_lock_irqsave(&tty->flow_lock, flags); 1026 __start_tty(tty); 1027 spin_unlock_irqrestore(&tty->flow_lock, flags); 1028 } 1029 EXPORT_SYMBOL(start_tty); 1030 1031 static void tty_update_time(struct timespec *time) 1032 { 1033 unsigned long sec = get_seconds(); 1034 1035 /* 1036 * We only care if the two values differ in anything other than the 1037 * lower three bits (i.e every 8 seconds). If so, then we can update 1038 * the time of the tty device, otherwise it could be construded as a 1039 * security leak to let userspace know the exact timing of the tty. 1040 */ 1041 if ((sec ^ time->tv_sec) & ~7) 1042 time->tv_sec = sec; 1043 } 1044 1045 /** 1046 * tty_read - read method for tty device files 1047 * @file: pointer to tty file 1048 * @buf: user buffer 1049 * @count: size of user buffer 1050 * @ppos: unused 1051 * 1052 * Perform the read system call function on this terminal device. Checks 1053 * for hung up devices before calling the line discipline method. 1054 * 1055 * Locking: 1056 * Locks the line discipline internally while needed. Multiple 1057 * read calls may be outstanding in parallel. 1058 */ 1059 1060 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1061 loff_t *ppos) 1062 { 1063 int i; 1064 struct inode *inode = file_inode(file); 1065 struct tty_struct *tty = file_tty(file); 1066 struct tty_ldisc *ld; 1067 1068 if (tty_paranoia_check(tty, inode, "tty_read")) 1069 return -EIO; 1070 if (!tty || tty_io_error(tty)) 1071 return -EIO; 1072 1073 /* We want to wait for the line discipline to sort out in this 1074 situation */ 1075 ld = tty_ldisc_ref_wait(tty); 1076 if (!ld) 1077 return hung_up_tty_read(file, buf, count, ppos); 1078 if (ld->ops->read) 1079 i = ld->ops->read(tty, file, buf, count); 1080 else 1081 i = -EIO; 1082 tty_ldisc_deref(ld); 1083 1084 if (i > 0) 1085 tty_update_time(&inode->i_atime); 1086 1087 return i; 1088 } 1089 1090 static void tty_write_unlock(struct tty_struct *tty) 1091 { 1092 mutex_unlock(&tty->atomic_write_lock); 1093 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1094 } 1095 1096 static int tty_write_lock(struct tty_struct *tty, int ndelay) 1097 { 1098 if (!mutex_trylock(&tty->atomic_write_lock)) { 1099 if (ndelay) 1100 return -EAGAIN; 1101 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1102 return -ERESTARTSYS; 1103 } 1104 return 0; 1105 } 1106 1107 /* 1108 * Split writes up in sane blocksizes to avoid 1109 * denial-of-service type attacks 1110 */ 1111 static inline ssize_t do_tty_write( 1112 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1113 struct tty_struct *tty, 1114 struct file *file, 1115 const char __user *buf, 1116 size_t count) 1117 { 1118 ssize_t ret, written = 0; 1119 unsigned int chunk; 1120 1121 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1122 if (ret < 0) 1123 return ret; 1124 1125 /* 1126 * We chunk up writes into a temporary buffer. This 1127 * simplifies low-level drivers immensely, since they 1128 * don't have locking issues and user mode accesses. 1129 * 1130 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1131 * big chunk-size.. 1132 * 1133 * The default chunk-size is 2kB, because the NTTY 1134 * layer has problems with bigger chunks. It will 1135 * claim to be able to handle more characters than 1136 * it actually does. 1137 * 1138 * FIXME: This can probably go away now except that 64K chunks 1139 * are too likely to fail unless switched to vmalloc... 1140 */ 1141 chunk = 2048; 1142 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1143 chunk = 65536; 1144 if (count < chunk) 1145 chunk = count; 1146 1147 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1148 if (tty->write_cnt < chunk) { 1149 unsigned char *buf_chunk; 1150 1151 if (chunk < 1024) 1152 chunk = 1024; 1153 1154 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1155 if (!buf_chunk) { 1156 ret = -ENOMEM; 1157 goto out; 1158 } 1159 kfree(tty->write_buf); 1160 tty->write_cnt = chunk; 1161 tty->write_buf = buf_chunk; 1162 } 1163 1164 /* Do the write .. */ 1165 for (;;) { 1166 size_t size = count; 1167 if (size > chunk) 1168 size = chunk; 1169 ret = -EFAULT; 1170 if (copy_from_user(tty->write_buf, buf, size)) 1171 break; 1172 ret = write(tty, file, tty->write_buf, size); 1173 if (ret <= 0) 1174 break; 1175 written += ret; 1176 buf += ret; 1177 count -= ret; 1178 if (!count) 1179 break; 1180 ret = -ERESTARTSYS; 1181 if (signal_pending(current)) 1182 break; 1183 cond_resched(); 1184 } 1185 if (written) { 1186 tty_update_time(&file_inode(file)->i_mtime); 1187 ret = written; 1188 } 1189 out: 1190 tty_write_unlock(tty); 1191 return ret; 1192 } 1193 1194 /** 1195 * tty_write_message - write a message to a certain tty, not just the console. 1196 * @tty: the destination tty_struct 1197 * @msg: the message to write 1198 * 1199 * This is used for messages that need to be redirected to a specific tty. 1200 * We don't put it into the syslog queue right now maybe in the future if 1201 * really needed. 1202 * 1203 * We must still hold the BTM and test the CLOSING flag for the moment. 1204 */ 1205 1206 void tty_write_message(struct tty_struct *tty, char *msg) 1207 { 1208 if (tty) { 1209 mutex_lock(&tty->atomic_write_lock); 1210 tty_lock(tty); 1211 if (tty->ops->write && tty->count > 0) 1212 tty->ops->write(tty, msg, strlen(msg)); 1213 tty_unlock(tty); 1214 tty_write_unlock(tty); 1215 } 1216 return; 1217 } 1218 1219 1220 /** 1221 * tty_write - write method for tty device file 1222 * @file: tty file pointer 1223 * @buf: user data to write 1224 * @count: bytes to write 1225 * @ppos: unused 1226 * 1227 * Write data to a tty device via the line discipline. 1228 * 1229 * Locking: 1230 * Locks the line discipline as required 1231 * Writes to the tty driver are serialized by the atomic_write_lock 1232 * and are then processed in chunks to the device. The line discipline 1233 * write method will not be invoked in parallel for each device. 1234 */ 1235 1236 static ssize_t tty_write(struct file *file, const char __user *buf, 1237 size_t count, loff_t *ppos) 1238 { 1239 struct tty_struct *tty = file_tty(file); 1240 struct tty_ldisc *ld; 1241 ssize_t ret; 1242 1243 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1244 return -EIO; 1245 if (!tty || !tty->ops->write || tty_io_error(tty)) 1246 return -EIO; 1247 /* Short term debug to catch buggy drivers */ 1248 if (tty->ops->write_room == NULL) 1249 tty_err(tty, "missing write_room method\n"); 1250 ld = tty_ldisc_ref_wait(tty); 1251 if (!ld) 1252 return hung_up_tty_write(file, buf, count, ppos); 1253 if (!ld->ops->write) 1254 ret = -EIO; 1255 else 1256 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1257 tty_ldisc_deref(ld); 1258 return ret; 1259 } 1260 1261 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1262 size_t count, loff_t *ppos) 1263 { 1264 struct file *p = NULL; 1265 1266 spin_lock(&redirect_lock); 1267 if (redirect) 1268 p = get_file(redirect); 1269 spin_unlock(&redirect_lock); 1270 1271 if (p) { 1272 ssize_t res; 1273 res = vfs_write(p, buf, count, &p->f_pos); 1274 fput(p); 1275 return res; 1276 } 1277 return tty_write(file, buf, count, ppos); 1278 } 1279 1280 /** 1281 * tty_send_xchar - send priority character 1282 * 1283 * Send a high priority character to the tty even if stopped 1284 * 1285 * Locking: none for xchar method, write ordering for write method. 1286 */ 1287 1288 int tty_send_xchar(struct tty_struct *tty, char ch) 1289 { 1290 int was_stopped = tty->stopped; 1291 1292 if (tty->ops->send_xchar) { 1293 down_read(&tty->termios_rwsem); 1294 tty->ops->send_xchar(tty, ch); 1295 up_read(&tty->termios_rwsem); 1296 return 0; 1297 } 1298 1299 if (tty_write_lock(tty, 0) < 0) 1300 return -ERESTARTSYS; 1301 1302 down_read(&tty->termios_rwsem); 1303 if (was_stopped) 1304 start_tty(tty); 1305 tty->ops->write(tty, &ch, 1); 1306 if (was_stopped) 1307 stop_tty(tty); 1308 up_read(&tty->termios_rwsem); 1309 tty_write_unlock(tty); 1310 return 0; 1311 } 1312 1313 static char ptychar[] = "pqrstuvwxyzabcde"; 1314 1315 /** 1316 * pty_line_name - generate name for a pty 1317 * @driver: the tty driver in use 1318 * @index: the minor number 1319 * @p: output buffer of at least 6 bytes 1320 * 1321 * Generate a name from a driver reference and write it to the output 1322 * buffer. 1323 * 1324 * Locking: None 1325 */ 1326 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1327 { 1328 int i = index + driver->name_base; 1329 /* ->name is initialized to "ttyp", but "tty" is expected */ 1330 sprintf(p, "%s%c%x", 1331 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1332 ptychar[i >> 4 & 0xf], i & 0xf); 1333 } 1334 1335 /** 1336 * tty_line_name - generate name for a tty 1337 * @driver: the tty driver in use 1338 * @index: the minor number 1339 * @p: output buffer of at least 7 bytes 1340 * 1341 * Generate a name from a driver reference and write it to the output 1342 * buffer. 1343 * 1344 * Locking: None 1345 */ 1346 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1347 { 1348 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1349 return sprintf(p, "%s", driver->name); 1350 else 1351 return sprintf(p, "%s%d", driver->name, 1352 index + driver->name_base); 1353 } 1354 1355 /** 1356 * tty_driver_lookup_tty() - find an existing tty, if any 1357 * @driver: the driver for the tty 1358 * @idx: the minor number 1359 * 1360 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1361 * driver lookup() method returns an error. 1362 * 1363 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1364 */ 1365 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1366 struct file *file, int idx) 1367 { 1368 struct tty_struct *tty; 1369 1370 if (driver->ops->lookup) 1371 tty = driver->ops->lookup(driver, file, idx); 1372 else 1373 tty = driver->ttys[idx]; 1374 1375 if (!IS_ERR(tty)) 1376 tty_kref_get(tty); 1377 return tty; 1378 } 1379 1380 /** 1381 * tty_init_termios - helper for termios setup 1382 * @tty: the tty to set up 1383 * 1384 * Initialise the termios structures for this tty. Thus runs under 1385 * the tty_mutex currently so we can be relaxed about ordering. 1386 */ 1387 1388 void tty_init_termios(struct tty_struct *tty) 1389 { 1390 struct ktermios *tp; 1391 int idx = tty->index; 1392 1393 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1394 tty->termios = tty->driver->init_termios; 1395 else { 1396 /* Check for lazy saved data */ 1397 tp = tty->driver->termios[idx]; 1398 if (tp != NULL) { 1399 tty->termios = *tp; 1400 tty->termios.c_line = tty->driver->init_termios.c_line; 1401 } else 1402 tty->termios = tty->driver->init_termios; 1403 } 1404 /* Compatibility until drivers always set this */ 1405 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1406 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1407 } 1408 EXPORT_SYMBOL_GPL(tty_init_termios); 1409 1410 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1411 { 1412 tty_init_termios(tty); 1413 tty_driver_kref_get(driver); 1414 tty->count++; 1415 driver->ttys[tty->index] = tty; 1416 return 0; 1417 } 1418 EXPORT_SYMBOL_GPL(tty_standard_install); 1419 1420 /** 1421 * tty_driver_install_tty() - install a tty entry in the driver 1422 * @driver: the driver for the tty 1423 * @tty: the tty 1424 * 1425 * Install a tty object into the driver tables. The tty->index field 1426 * will be set by the time this is called. This method is responsible 1427 * for ensuring any need additional structures are allocated and 1428 * configured. 1429 * 1430 * Locking: tty_mutex for now 1431 */ 1432 static int tty_driver_install_tty(struct tty_driver *driver, 1433 struct tty_struct *tty) 1434 { 1435 return driver->ops->install ? driver->ops->install(driver, tty) : 1436 tty_standard_install(driver, tty); 1437 } 1438 1439 /** 1440 * tty_driver_remove_tty() - remove a tty from the driver tables 1441 * @driver: the driver for the tty 1442 * @idx: the minor number 1443 * 1444 * Remvoe a tty object from the driver tables. The tty->index field 1445 * will be set by the time this is called. 1446 * 1447 * Locking: tty_mutex for now 1448 */ 1449 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1450 { 1451 if (driver->ops->remove) 1452 driver->ops->remove(driver, tty); 1453 else 1454 driver->ttys[tty->index] = NULL; 1455 } 1456 1457 /* 1458 * tty_reopen() - fast re-open of an open tty 1459 * @tty - the tty to open 1460 * 1461 * Return 0 on success, -errno on error. 1462 * Re-opens on master ptys are not allowed and return -EIO. 1463 * 1464 * Locking: Caller must hold tty_lock 1465 */ 1466 static int tty_reopen(struct tty_struct *tty) 1467 { 1468 struct tty_driver *driver = tty->driver; 1469 1470 if (driver->type == TTY_DRIVER_TYPE_PTY && 1471 driver->subtype == PTY_TYPE_MASTER) 1472 return -EIO; 1473 1474 if (!tty->count) 1475 return -EAGAIN; 1476 1477 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1478 return -EBUSY; 1479 1480 tty->count++; 1481 1482 if (!tty->ldisc) 1483 return tty_ldisc_reinit(tty, tty->termios.c_line); 1484 1485 return 0; 1486 } 1487 1488 /** 1489 * tty_init_dev - initialise a tty device 1490 * @driver: tty driver we are opening a device on 1491 * @idx: device index 1492 * @ret_tty: returned tty structure 1493 * 1494 * Prepare a tty device. This may not be a "new" clean device but 1495 * could also be an active device. The pty drivers require special 1496 * handling because of this. 1497 * 1498 * Locking: 1499 * The function is called under the tty_mutex, which 1500 * protects us from the tty struct or driver itself going away. 1501 * 1502 * On exit the tty device has the line discipline attached and 1503 * a reference count of 1. If a pair was created for pty/tty use 1504 * and the other was a pty master then it too has a reference count of 1. 1505 * 1506 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1507 * failed open. The new code protects the open with a mutex, so it's 1508 * really quite straightforward. The mutex locking can probably be 1509 * relaxed for the (most common) case of reopening a tty. 1510 */ 1511 1512 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1513 { 1514 struct tty_struct *tty; 1515 int retval; 1516 1517 /* 1518 * First time open is complex, especially for PTY devices. 1519 * This code guarantees that either everything succeeds and the 1520 * TTY is ready for operation, or else the table slots are vacated 1521 * and the allocated memory released. (Except that the termios 1522 * and locked termios may be retained.) 1523 */ 1524 1525 if (!try_module_get(driver->owner)) 1526 return ERR_PTR(-ENODEV); 1527 1528 tty = alloc_tty_struct(driver, idx); 1529 if (!tty) { 1530 retval = -ENOMEM; 1531 goto err_module_put; 1532 } 1533 1534 tty_lock(tty); 1535 retval = tty_driver_install_tty(driver, tty); 1536 if (retval < 0) 1537 goto err_free_tty; 1538 1539 if (!tty->port) 1540 tty->port = driver->ports[idx]; 1541 1542 WARN_RATELIMIT(!tty->port, 1543 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1544 __func__, tty->driver->name); 1545 1546 tty->port->itty = tty; 1547 1548 /* 1549 * Structures all installed ... call the ldisc open routines. 1550 * If we fail here just call release_tty to clean up. No need 1551 * to decrement the use counts, as release_tty doesn't care. 1552 */ 1553 retval = tty_ldisc_setup(tty, tty->link); 1554 if (retval) 1555 goto err_release_tty; 1556 /* Return the tty locked so that it cannot vanish under the caller */ 1557 return tty; 1558 1559 err_free_tty: 1560 tty_unlock(tty); 1561 free_tty_struct(tty); 1562 err_module_put: 1563 module_put(driver->owner); 1564 return ERR_PTR(retval); 1565 1566 /* call the tty release_tty routine to clean out this slot */ 1567 err_release_tty: 1568 tty_unlock(tty); 1569 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1570 retval, idx); 1571 release_tty(tty, idx); 1572 return ERR_PTR(retval); 1573 } 1574 1575 static void tty_free_termios(struct tty_struct *tty) 1576 { 1577 struct ktermios *tp; 1578 int idx = tty->index; 1579 1580 /* If the port is going to reset then it has no termios to save */ 1581 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1582 return; 1583 1584 /* Stash the termios data */ 1585 tp = tty->driver->termios[idx]; 1586 if (tp == NULL) { 1587 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1588 if (tp == NULL) 1589 return; 1590 tty->driver->termios[idx] = tp; 1591 } 1592 *tp = tty->termios; 1593 } 1594 1595 /** 1596 * tty_flush_works - flush all works of a tty/pty pair 1597 * @tty: tty device to flush works for (or either end of a pty pair) 1598 * 1599 * Sync flush all works belonging to @tty (and the 'other' tty). 1600 */ 1601 static void tty_flush_works(struct tty_struct *tty) 1602 { 1603 flush_work(&tty->SAK_work); 1604 flush_work(&tty->hangup_work); 1605 if (tty->link) { 1606 flush_work(&tty->link->SAK_work); 1607 flush_work(&tty->link->hangup_work); 1608 } 1609 } 1610 1611 /** 1612 * release_one_tty - release tty structure memory 1613 * @kref: kref of tty we are obliterating 1614 * 1615 * Releases memory associated with a tty structure, and clears out the 1616 * driver table slots. This function is called when a device is no longer 1617 * in use. It also gets called when setup of a device fails. 1618 * 1619 * Locking: 1620 * takes the file list lock internally when working on the list 1621 * of ttys that the driver keeps. 1622 * 1623 * This method gets called from a work queue so that the driver private 1624 * cleanup ops can sleep (needed for USB at least) 1625 */ 1626 static void release_one_tty(struct work_struct *work) 1627 { 1628 struct tty_struct *tty = 1629 container_of(work, struct tty_struct, hangup_work); 1630 struct tty_driver *driver = tty->driver; 1631 struct module *owner = driver->owner; 1632 1633 if (tty->ops->cleanup) 1634 tty->ops->cleanup(tty); 1635 1636 tty->magic = 0; 1637 tty_driver_kref_put(driver); 1638 module_put(owner); 1639 1640 spin_lock(&tty->files_lock); 1641 list_del_init(&tty->tty_files); 1642 spin_unlock(&tty->files_lock); 1643 1644 put_pid(tty->pgrp); 1645 put_pid(tty->session); 1646 free_tty_struct(tty); 1647 } 1648 1649 static void queue_release_one_tty(struct kref *kref) 1650 { 1651 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1652 1653 /* The hangup queue is now free so we can reuse it rather than 1654 waste a chunk of memory for each port */ 1655 INIT_WORK(&tty->hangup_work, release_one_tty); 1656 schedule_work(&tty->hangup_work); 1657 } 1658 1659 /** 1660 * tty_kref_put - release a tty kref 1661 * @tty: tty device 1662 * 1663 * Release a reference to a tty device and if need be let the kref 1664 * layer destruct the object for us 1665 */ 1666 1667 void tty_kref_put(struct tty_struct *tty) 1668 { 1669 if (tty) 1670 kref_put(&tty->kref, queue_release_one_tty); 1671 } 1672 EXPORT_SYMBOL(tty_kref_put); 1673 1674 /** 1675 * release_tty - release tty structure memory 1676 * 1677 * Release both @tty and a possible linked partner (think pty pair), 1678 * and decrement the refcount of the backing module. 1679 * 1680 * Locking: 1681 * tty_mutex 1682 * takes the file list lock internally when working on the list 1683 * of ttys that the driver keeps. 1684 * 1685 */ 1686 static void release_tty(struct tty_struct *tty, int idx) 1687 { 1688 /* This should always be true but check for the moment */ 1689 WARN_ON(tty->index != idx); 1690 WARN_ON(!mutex_is_locked(&tty_mutex)); 1691 if (tty->ops->shutdown) 1692 tty->ops->shutdown(tty); 1693 tty_free_termios(tty); 1694 tty_driver_remove_tty(tty->driver, tty); 1695 tty->port->itty = NULL; 1696 if (tty->link) 1697 tty->link->port->itty = NULL; 1698 tty_buffer_cancel_work(tty->port); 1699 1700 tty_kref_put(tty->link); 1701 tty_kref_put(tty); 1702 } 1703 1704 /** 1705 * tty_release_checks - check a tty before real release 1706 * @tty: tty to check 1707 * @o_tty: link of @tty (if any) 1708 * @idx: index of the tty 1709 * 1710 * Performs some paranoid checking before true release of the @tty. 1711 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1712 */ 1713 static int tty_release_checks(struct tty_struct *tty, int idx) 1714 { 1715 #ifdef TTY_PARANOIA_CHECK 1716 if (idx < 0 || idx >= tty->driver->num) { 1717 tty_debug(tty, "bad idx %d\n", idx); 1718 return -1; 1719 } 1720 1721 /* not much to check for devpts */ 1722 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1723 return 0; 1724 1725 if (tty != tty->driver->ttys[idx]) { 1726 tty_debug(tty, "bad driver table[%d] = %p\n", 1727 idx, tty->driver->ttys[idx]); 1728 return -1; 1729 } 1730 if (tty->driver->other) { 1731 struct tty_struct *o_tty = tty->link; 1732 1733 if (o_tty != tty->driver->other->ttys[idx]) { 1734 tty_debug(tty, "bad other table[%d] = %p\n", 1735 idx, tty->driver->other->ttys[idx]); 1736 return -1; 1737 } 1738 if (o_tty->link != tty) { 1739 tty_debug(tty, "bad link = %p\n", o_tty->link); 1740 return -1; 1741 } 1742 } 1743 #endif 1744 return 0; 1745 } 1746 1747 /** 1748 * tty_release - vfs callback for close 1749 * @inode: inode of tty 1750 * @filp: file pointer for handle to tty 1751 * 1752 * Called the last time each file handle is closed that references 1753 * this tty. There may however be several such references. 1754 * 1755 * Locking: 1756 * Takes bkl. See tty_release_dev 1757 * 1758 * Even releasing the tty structures is a tricky business.. We have 1759 * to be very careful that the structures are all released at the 1760 * same time, as interrupts might otherwise get the wrong pointers. 1761 * 1762 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1763 * lead to double frees or releasing memory still in use. 1764 */ 1765 1766 int tty_release(struct inode *inode, struct file *filp) 1767 { 1768 struct tty_struct *tty = file_tty(filp); 1769 struct tty_struct *o_tty = NULL; 1770 int do_sleep, final; 1771 int idx; 1772 long timeout = 0; 1773 int once = 1; 1774 1775 if (tty_paranoia_check(tty, inode, __func__)) 1776 return 0; 1777 1778 tty_lock(tty); 1779 check_tty_count(tty, __func__); 1780 1781 __tty_fasync(-1, filp, 0); 1782 1783 idx = tty->index; 1784 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1785 tty->driver->subtype == PTY_TYPE_MASTER) 1786 o_tty = tty->link; 1787 1788 if (tty_release_checks(tty, idx)) { 1789 tty_unlock(tty); 1790 return 0; 1791 } 1792 1793 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1794 1795 if (tty->ops->close) 1796 tty->ops->close(tty, filp); 1797 1798 /* If tty is pty master, lock the slave pty (stable lock order) */ 1799 tty_lock_slave(o_tty); 1800 1801 /* 1802 * Sanity check: if tty->count is going to zero, there shouldn't be 1803 * any waiters on tty->read_wait or tty->write_wait. We test the 1804 * wait queues and kick everyone out _before_ actually starting to 1805 * close. This ensures that we won't block while releasing the tty 1806 * structure. 1807 * 1808 * The test for the o_tty closing is necessary, since the master and 1809 * slave sides may close in any order. If the slave side closes out 1810 * first, its count will be one, since the master side holds an open. 1811 * Thus this test wouldn't be triggered at the time the slave closed, 1812 * so we do it now. 1813 */ 1814 while (1) { 1815 do_sleep = 0; 1816 1817 if (tty->count <= 1) { 1818 if (waitqueue_active(&tty->read_wait)) { 1819 wake_up_poll(&tty->read_wait, POLLIN); 1820 do_sleep++; 1821 } 1822 if (waitqueue_active(&tty->write_wait)) { 1823 wake_up_poll(&tty->write_wait, POLLOUT); 1824 do_sleep++; 1825 } 1826 } 1827 if (o_tty && o_tty->count <= 1) { 1828 if (waitqueue_active(&o_tty->read_wait)) { 1829 wake_up_poll(&o_tty->read_wait, POLLIN); 1830 do_sleep++; 1831 } 1832 if (waitqueue_active(&o_tty->write_wait)) { 1833 wake_up_poll(&o_tty->write_wait, POLLOUT); 1834 do_sleep++; 1835 } 1836 } 1837 if (!do_sleep) 1838 break; 1839 1840 if (once) { 1841 once = 0; 1842 tty_warn(tty, "read/write wait queue active!\n"); 1843 } 1844 schedule_timeout_killable(timeout); 1845 if (timeout < 120 * HZ) 1846 timeout = 2 * timeout + 1; 1847 else 1848 timeout = MAX_SCHEDULE_TIMEOUT; 1849 } 1850 1851 if (o_tty) { 1852 if (--o_tty->count < 0) { 1853 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1854 o_tty->count = 0; 1855 } 1856 } 1857 if (--tty->count < 0) { 1858 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1859 tty->count = 0; 1860 } 1861 1862 /* 1863 * We've decremented tty->count, so we need to remove this file 1864 * descriptor off the tty->tty_files list; this serves two 1865 * purposes: 1866 * - check_tty_count sees the correct number of file descriptors 1867 * associated with this tty. 1868 * - do_tty_hangup no longer sees this file descriptor as 1869 * something that needs to be handled for hangups. 1870 */ 1871 tty_del_file(filp); 1872 1873 /* 1874 * Perform some housekeeping before deciding whether to return. 1875 * 1876 * If _either_ side is closing, make sure there aren't any 1877 * processes that still think tty or o_tty is their controlling 1878 * tty. 1879 */ 1880 if (!tty->count) { 1881 read_lock(&tasklist_lock); 1882 session_clear_tty(tty->session); 1883 if (o_tty) 1884 session_clear_tty(o_tty->session); 1885 read_unlock(&tasklist_lock); 1886 } 1887 1888 /* check whether both sides are closing ... */ 1889 final = !tty->count && !(o_tty && o_tty->count); 1890 1891 tty_unlock_slave(o_tty); 1892 tty_unlock(tty); 1893 1894 /* At this point, the tty->count == 0 should ensure a dead tty 1895 cannot be re-opened by a racing opener */ 1896 1897 if (!final) 1898 return 0; 1899 1900 tty_debug_hangup(tty, "final close\n"); 1901 /* 1902 * Ask the line discipline code to release its structures 1903 */ 1904 tty_ldisc_release(tty); 1905 1906 /* Wait for pending work before tty destruction commmences */ 1907 tty_flush_works(tty); 1908 1909 tty_debug_hangup(tty, "freeing structure\n"); 1910 /* 1911 * The release_tty function takes care of the details of clearing 1912 * the slots and preserving the termios structure. The tty_unlock_pair 1913 * should be safe as we keep a kref while the tty is locked (so the 1914 * unlock never unlocks a freed tty). 1915 */ 1916 mutex_lock(&tty_mutex); 1917 release_tty(tty, idx); 1918 mutex_unlock(&tty_mutex); 1919 1920 return 0; 1921 } 1922 1923 /** 1924 * tty_open_current_tty - get locked tty of current task 1925 * @device: device number 1926 * @filp: file pointer to tty 1927 * @return: locked tty of the current task iff @device is /dev/tty 1928 * 1929 * Performs a re-open of the current task's controlling tty. 1930 * 1931 * We cannot return driver and index like for the other nodes because 1932 * devpts will not work then. It expects inodes to be from devpts FS. 1933 */ 1934 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1935 { 1936 struct tty_struct *tty; 1937 int retval; 1938 1939 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1940 return NULL; 1941 1942 tty = get_current_tty(); 1943 if (!tty) 1944 return ERR_PTR(-ENXIO); 1945 1946 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1947 /* noctty = 1; */ 1948 tty_lock(tty); 1949 tty_kref_put(tty); /* safe to drop the kref now */ 1950 1951 retval = tty_reopen(tty); 1952 if (retval < 0) { 1953 tty_unlock(tty); 1954 tty = ERR_PTR(retval); 1955 } 1956 return tty; 1957 } 1958 1959 /** 1960 * tty_lookup_driver - lookup a tty driver for a given device file 1961 * @device: device number 1962 * @filp: file pointer to tty 1963 * @index: index for the device in the @return driver 1964 * @return: driver for this inode (with increased refcount) 1965 * 1966 * If @return is not erroneous, the caller is responsible to decrement the 1967 * refcount by tty_driver_kref_put. 1968 * 1969 * Locking: tty_mutex protects get_tty_driver 1970 */ 1971 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1972 int *index) 1973 { 1974 struct tty_driver *driver; 1975 1976 switch (device) { 1977 #ifdef CONFIG_VT 1978 case MKDEV(TTY_MAJOR, 0): { 1979 extern struct tty_driver *console_driver; 1980 driver = tty_driver_kref_get(console_driver); 1981 *index = fg_console; 1982 break; 1983 } 1984 #endif 1985 case MKDEV(TTYAUX_MAJOR, 1): { 1986 struct tty_driver *console_driver = console_device(index); 1987 if (console_driver) { 1988 driver = tty_driver_kref_get(console_driver); 1989 if (driver) { 1990 /* Don't let /dev/console block */ 1991 filp->f_flags |= O_NONBLOCK; 1992 break; 1993 } 1994 } 1995 return ERR_PTR(-ENODEV); 1996 } 1997 default: 1998 driver = get_tty_driver(device, index); 1999 if (!driver) 2000 return ERR_PTR(-ENODEV); 2001 break; 2002 } 2003 return driver; 2004 } 2005 2006 /** 2007 * tty_open_by_driver - open a tty device 2008 * @device: dev_t of device to open 2009 * @inode: inode of device file 2010 * @filp: file pointer to tty 2011 * 2012 * Performs the driver lookup, checks for a reopen, or otherwise 2013 * performs the first-time tty initialization. 2014 * 2015 * Returns the locked initialized or re-opened &tty_struct 2016 * 2017 * Claims the global tty_mutex to serialize: 2018 * - concurrent first-time tty initialization 2019 * - concurrent tty driver removal w/ lookup 2020 * - concurrent tty removal from driver table 2021 */ 2022 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode, 2023 struct file *filp) 2024 { 2025 struct tty_struct *tty; 2026 struct tty_driver *driver = NULL; 2027 int index = -1; 2028 int retval; 2029 2030 mutex_lock(&tty_mutex); 2031 driver = tty_lookup_driver(device, filp, &index); 2032 if (IS_ERR(driver)) { 2033 mutex_unlock(&tty_mutex); 2034 return ERR_CAST(driver); 2035 } 2036 2037 /* check whether we're reopening an existing tty */ 2038 tty = tty_driver_lookup_tty(driver, filp, index); 2039 if (IS_ERR(tty)) { 2040 mutex_unlock(&tty_mutex); 2041 goto out; 2042 } 2043 2044 if (tty) { 2045 mutex_unlock(&tty_mutex); 2046 retval = tty_lock_interruptible(tty); 2047 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 2048 if (retval) { 2049 if (retval == -EINTR) 2050 retval = -ERESTARTSYS; 2051 tty = ERR_PTR(retval); 2052 goto out; 2053 } 2054 retval = tty_reopen(tty); 2055 if (retval < 0) { 2056 tty_unlock(tty); 2057 tty = ERR_PTR(retval); 2058 } 2059 } else { /* Returns with the tty_lock held for now */ 2060 tty = tty_init_dev(driver, index); 2061 mutex_unlock(&tty_mutex); 2062 } 2063 out: 2064 tty_driver_kref_put(driver); 2065 return tty; 2066 } 2067 2068 /** 2069 * tty_open - open a tty device 2070 * @inode: inode of device file 2071 * @filp: file pointer to tty 2072 * 2073 * tty_open and tty_release keep up the tty count that contains the 2074 * number of opens done on a tty. We cannot use the inode-count, as 2075 * different inodes might point to the same tty. 2076 * 2077 * Open-counting is needed for pty masters, as well as for keeping 2078 * track of serial lines: DTR is dropped when the last close happens. 2079 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2080 * 2081 * The termios state of a pty is reset on first open so that 2082 * settings don't persist across reuse. 2083 * 2084 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2085 * tty->count should protect the rest. 2086 * ->siglock protects ->signal/->sighand 2087 * 2088 * Note: the tty_unlock/lock cases without a ref are only safe due to 2089 * tty_mutex 2090 */ 2091 2092 static int tty_open(struct inode *inode, struct file *filp) 2093 { 2094 struct tty_struct *tty; 2095 int noctty, retval; 2096 dev_t device = inode->i_rdev; 2097 unsigned saved_flags = filp->f_flags; 2098 2099 nonseekable_open(inode, filp); 2100 2101 retry_open: 2102 retval = tty_alloc_file(filp); 2103 if (retval) 2104 return -ENOMEM; 2105 2106 tty = tty_open_current_tty(device, filp); 2107 if (!tty) 2108 tty = tty_open_by_driver(device, inode, filp); 2109 2110 if (IS_ERR(tty)) { 2111 tty_free_file(filp); 2112 retval = PTR_ERR(tty); 2113 if (retval != -EAGAIN || signal_pending(current)) 2114 return retval; 2115 schedule(); 2116 goto retry_open; 2117 } 2118 2119 tty_add_file(tty, filp); 2120 2121 check_tty_count(tty, __func__); 2122 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2123 2124 if (tty->ops->open) 2125 retval = tty->ops->open(tty, filp); 2126 else 2127 retval = -ENODEV; 2128 filp->f_flags = saved_flags; 2129 2130 if (retval) { 2131 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2132 2133 tty_unlock(tty); /* need to call tty_release without BTM */ 2134 tty_release(inode, filp); 2135 if (retval != -ERESTARTSYS) 2136 return retval; 2137 2138 if (signal_pending(current)) 2139 return retval; 2140 2141 schedule(); 2142 /* 2143 * Need to reset f_op in case a hangup happened. 2144 */ 2145 if (tty_hung_up_p(filp)) 2146 filp->f_op = &tty_fops; 2147 goto retry_open; 2148 } 2149 clear_bit(TTY_HUPPED, &tty->flags); 2150 2151 2152 read_lock(&tasklist_lock); 2153 spin_lock_irq(¤t->sighand->siglock); 2154 noctty = (filp->f_flags & O_NOCTTY) || 2155 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2156 device == MKDEV(TTYAUX_MAJOR, 1) || 2157 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2158 tty->driver->subtype == PTY_TYPE_MASTER); 2159 2160 if (!noctty && 2161 current->signal->leader && 2162 !current->signal->tty && 2163 tty->session == NULL) { 2164 /* 2165 * Don't let a process that only has write access to the tty 2166 * obtain the privileges associated with having a tty as 2167 * controlling terminal (being able to reopen it with full 2168 * access through /dev/tty, being able to perform pushback). 2169 * Many distributions set the group of all ttys to "tty" and 2170 * grant write-only access to all terminals for setgid tty 2171 * binaries, which should not imply full privileges on all ttys. 2172 * 2173 * This could theoretically break old code that performs open() 2174 * on a write-only file descriptor. In that case, it might be 2175 * necessary to also permit this if 2176 * inode_permission(inode, MAY_READ) == 0. 2177 */ 2178 if (filp->f_mode & FMODE_READ) 2179 __proc_set_tty(tty); 2180 } 2181 spin_unlock_irq(¤t->sighand->siglock); 2182 read_unlock(&tasklist_lock); 2183 tty_unlock(tty); 2184 return 0; 2185 } 2186 2187 2188 2189 /** 2190 * tty_poll - check tty status 2191 * @filp: file being polled 2192 * @wait: poll wait structures to update 2193 * 2194 * Call the line discipline polling method to obtain the poll 2195 * status of the device. 2196 * 2197 * Locking: locks called line discipline but ldisc poll method 2198 * may be re-entered freely by other callers. 2199 */ 2200 2201 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2202 { 2203 struct tty_struct *tty = file_tty(filp); 2204 struct tty_ldisc *ld; 2205 int ret = 0; 2206 2207 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2208 return 0; 2209 2210 ld = tty_ldisc_ref_wait(tty); 2211 if (!ld) 2212 return hung_up_tty_poll(filp, wait); 2213 if (ld->ops->poll) 2214 ret = ld->ops->poll(tty, filp, wait); 2215 tty_ldisc_deref(ld); 2216 return ret; 2217 } 2218 2219 static int __tty_fasync(int fd, struct file *filp, int on) 2220 { 2221 struct tty_struct *tty = file_tty(filp); 2222 unsigned long flags; 2223 int retval = 0; 2224 2225 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2226 goto out; 2227 2228 retval = fasync_helper(fd, filp, on, &tty->fasync); 2229 if (retval <= 0) 2230 goto out; 2231 2232 if (on) { 2233 enum pid_type type; 2234 struct pid *pid; 2235 2236 spin_lock_irqsave(&tty->ctrl_lock, flags); 2237 if (tty->pgrp) { 2238 pid = tty->pgrp; 2239 type = PIDTYPE_PGID; 2240 } else { 2241 pid = task_pid(current); 2242 type = PIDTYPE_PID; 2243 } 2244 get_pid(pid); 2245 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2246 __f_setown(filp, pid, type, 0); 2247 put_pid(pid); 2248 retval = 0; 2249 } 2250 out: 2251 return retval; 2252 } 2253 2254 static int tty_fasync(int fd, struct file *filp, int on) 2255 { 2256 struct tty_struct *tty = file_tty(filp); 2257 int retval = -ENOTTY; 2258 2259 tty_lock(tty); 2260 if (!tty_hung_up_p(filp)) 2261 retval = __tty_fasync(fd, filp, on); 2262 tty_unlock(tty); 2263 2264 return retval; 2265 } 2266 2267 /** 2268 * tiocsti - fake input character 2269 * @tty: tty to fake input into 2270 * @p: pointer to character 2271 * 2272 * Fake input to a tty device. Does the necessary locking and 2273 * input management. 2274 * 2275 * FIXME: does not honour flow control ?? 2276 * 2277 * Locking: 2278 * Called functions take tty_ldiscs_lock 2279 * current->signal->tty check is safe without locks 2280 * 2281 * FIXME: may race normal receive processing 2282 */ 2283 2284 static int tiocsti(struct tty_struct *tty, char __user *p) 2285 { 2286 char ch, mbz = 0; 2287 struct tty_ldisc *ld; 2288 2289 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2290 return -EPERM; 2291 if (get_user(ch, p)) 2292 return -EFAULT; 2293 tty_audit_tiocsti(tty, ch); 2294 ld = tty_ldisc_ref_wait(tty); 2295 if (!ld) 2296 return -EIO; 2297 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2298 tty_ldisc_deref(ld); 2299 return 0; 2300 } 2301 2302 /** 2303 * tiocgwinsz - implement window query ioctl 2304 * @tty; tty 2305 * @arg: user buffer for result 2306 * 2307 * Copies the kernel idea of the window size into the user buffer. 2308 * 2309 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2310 * is consistent. 2311 */ 2312 2313 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2314 { 2315 int err; 2316 2317 mutex_lock(&tty->winsize_mutex); 2318 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2319 mutex_unlock(&tty->winsize_mutex); 2320 2321 return err ? -EFAULT: 0; 2322 } 2323 2324 /** 2325 * tty_do_resize - resize event 2326 * @tty: tty being resized 2327 * @rows: rows (character) 2328 * @cols: cols (character) 2329 * 2330 * Update the termios variables and send the necessary signals to 2331 * peform a terminal resize correctly 2332 */ 2333 2334 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2335 { 2336 struct pid *pgrp; 2337 2338 /* Lock the tty */ 2339 mutex_lock(&tty->winsize_mutex); 2340 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2341 goto done; 2342 2343 /* Signal the foreground process group */ 2344 pgrp = tty_get_pgrp(tty); 2345 if (pgrp) 2346 kill_pgrp(pgrp, SIGWINCH, 1); 2347 put_pid(pgrp); 2348 2349 tty->winsize = *ws; 2350 done: 2351 mutex_unlock(&tty->winsize_mutex); 2352 return 0; 2353 } 2354 EXPORT_SYMBOL(tty_do_resize); 2355 2356 /** 2357 * tiocswinsz - implement window size set ioctl 2358 * @tty; tty side of tty 2359 * @arg: user buffer for result 2360 * 2361 * Copies the user idea of the window size to the kernel. Traditionally 2362 * this is just advisory information but for the Linux console it 2363 * actually has driver level meaning and triggers a VC resize. 2364 * 2365 * Locking: 2366 * Driver dependent. The default do_resize method takes the 2367 * tty termios mutex and ctrl_lock. The console takes its own lock 2368 * then calls into the default method. 2369 */ 2370 2371 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2372 { 2373 struct winsize tmp_ws; 2374 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2375 return -EFAULT; 2376 2377 if (tty->ops->resize) 2378 return tty->ops->resize(tty, &tmp_ws); 2379 else 2380 return tty_do_resize(tty, &tmp_ws); 2381 } 2382 2383 /** 2384 * tioccons - allow admin to move logical console 2385 * @file: the file to become console 2386 * 2387 * Allow the administrator to move the redirected console device 2388 * 2389 * Locking: uses redirect_lock to guard the redirect information 2390 */ 2391 2392 static int tioccons(struct file *file) 2393 { 2394 if (!capable(CAP_SYS_ADMIN)) 2395 return -EPERM; 2396 if (file->f_op->write == redirected_tty_write) { 2397 struct file *f; 2398 spin_lock(&redirect_lock); 2399 f = redirect; 2400 redirect = NULL; 2401 spin_unlock(&redirect_lock); 2402 if (f) 2403 fput(f); 2404 return 0; 2405 } 2406 spin_lock(&redirect_lock); 2407 if (redirect) { 2408 spin_unlock(&redirect_lock); 2409 return -EBUSY; 2410 } 2411 redirect = get_file(file); 2412 spin_unlock(&redirect_lock); 2413 return 0; 2414 } 2415 2416 /** 2417 * fionbio - non blocking ioctl 2418 * @file: file to set blocking value 2419 * @p: user parameter 2420 * 2421 * Historical tty interfaces had a blocking control ioctl before 2422 * the generic functionality existed. This piece of history is preserved 2423 * in the expected tty API of posix OS's. 2424 * 2425 * Locking: none, the open file handle ensures it won't go away. 2426 */ 2427 2428 static int fionbio(struct file *file, int __user *p) 2429 { 2430 int nonblock; 2431 2432 if (get_user(nonblock, p)) 2433 return -EFAULT; 2434 2435 spin_lock(&file->f_lock); 2436 if (nonblock) 2437 file->f_flags |= O_NONBLOCK; 2438 else 2439 file->f_flags &= ~O_NONBLOCK; 2440 spin_unlock(&file->f_lock); 2441 return 0; 2442 } 2443 2444 /** 2445 * tiocsctty - set controlling tty 2446 * @tty: tty structure 2447 * @arg: user argument 2448 * 2449 * This ioctl is used to manage job control. It permits a session 2450 * leader to set this tty as the controlling tty for the session. 2451 * 2452 * Locking: 2453 * Takes tty_lock() to serialize proc_set_tty() for this tty 2454 * Takes tasklist_lock internally to walk sessions 2455 * Takes ->siglock() when updating signal->tty 2456 */ 2457 2458 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg) 2459 { 2460 int ret = 0; 2461 2462 tty_lock(tty); 2463 read_lock(&tasklist_lock); 2464 2465 if (current->signal->leader && (task_session(current) == tty->session)) 2466 goto unlock; 2467 2468 /* 2469 * The process must be a session leader and 2470 * not have a controlling tty already. 2471 */ 2472 if (!current->signal->leader || current->signal->tty) { 2473 ret = -EPERM; 2474 goto unlock; 2475 } 2476 2477 if (tty->session) { 2478 /* 2479 * This tty is already the controlling 2480 * tty for another session group! 2481 */ 2482 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2483 /* 2484 * Steal it away 2485 */ 2486 session_clear_tty(tty->session); 2487 } else { 2488 ret = -EPERM; 2489 goto unlock; 2490 } 2491 } 2492 2493 /* See the comment in tty_open(). */ 2494 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) { 2495 ret = -EPERM; 2496 goto unlock; 2497 } 2498 2499 proc_set_tty(tty); 2500 unlock: 2501 read_unlock(&tasklist_lock); 2502 tty_unlock(tty); 2503 return ret; 2504 } 2505 2506 /** 2507 * tty_get_pgrp - return a ref counted pgrp pid 2508 * @tty: tty to read 2509 * 2510 * Returns a refcounted instance of the pid struct for the process 2511 * group controlling the tty. 2512 */ 2513 2514 struct pid *tty_get_pgrp(struct tty_struct *tty) 2515 { 2516 unsigned long flags; 2517 struct pid *pgrp; 2518 2519 spin_lock_irqsave(&tty->ctrl_lock, flags); 2520 pgrp = get_pid(tty->pgrp); 2521 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2522 2523 return pgrp; 2524 } 2525 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2526 2527 /* 2528 * This checks not only the pgrp, but falls back on the pid if no 2529 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 2530 * without this... 2531 * 2532 * The caller must hold rcu lock or the tasklist lock. 2533 */ 2534 static struct pid *session_of_pgrp(struct pid *pgrp) 2535 { 2536 struct task_struct *p; 2537 struct pid *sid = NULL; 2538 2539 p = pid_task(pgrp, PIDTYPE_PGID); 2540 if (p == NULL) 2541 p = pid_task(pgrp, PIDTYPE_PID); 2542 if (p != NULL) 2543 sid = task_session(p); 2544 2545 return sid; 2546 } 2547 2548 /** 2549 * tiocgpgrp - get process group 2550 * @tty: tty passed by user 2551 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2552 * @p: returned pid 2553 * 2554 * Obtain the process group of the tty. If there is no process group 2555 * return an error. 2556 * 2557 * Locking: none. Reference to current->signal->tty is safe. 2558 */ 2559 2560 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2561 { 2562 struct pid *pid; 2563 int ret; 2564 /* 2565 * (tty == real_tty) is a cheap way of 2566 * testing if the tty is NOT a master pty. 2567 */ 2568 if (tty == real_tty && current->signal->tty != real_tty) 2569 return -ENOTTY; 2570 pid = tty_get_pgrp(real_tty); 2571 ret = put_user(pid_vnr(pid), p); 2572 put_pid(pid); 2573 return ret; 2574 } 2575 2576 /** 2577 * tiocspgrp - attempt to set process group 2578 * @tty: tty passed by user 2579 * @real_tty: tty side device matching tty passed by user 2580 * @p: pid pointer 2581 * 2582 * Set the process group of the tty to the session passed. Only 2583 * permitted where the tty session is our session. 2584 * 2585 * Locking: RCU, ctrl lock 2586 */ 2587 2588 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2589 { 2590 struct pid *pgrp; 2591 pid_t pgrp_nr; 2592 int retval = tty_check_change(real_tty); 2593 2594 if (retval == -EIO) 2595 return -ENOTTY; 2596 if (retval) 2597 return retval; 2598 if (!current->signal->tty || 2599 (current->signal->tty != real_tty) || 2600 (real_tty->session != task_session(current))) 2601 return -ENOTTY; 2602 if (get_user(pgrp_nr, p)) 2603 return -EFAULT; 2604 if (pgrp_nr < 0) 2605 return -EINVAL; 2606 rcu_read_lock(); 2607 pgrp = find_vpid(pgrp_nr); 2608 retval = -ESRCH; 2609 if (!pgrp) 2610 goto out_unlock; 2611 retval = -EPERM; 2612 if (session_of_pgrp(pgrp) != task_session(current)) 2613 goto out_unlock; 2614 retval = 0; 2615 spin_lock_irq(&tty->ctrl_lock); 2616 put_pid(real_tty->pgrp); 2617 real_tty->pgrp = get_pid(pgrp); 2618 spin_unlock_irq(&tty->ctrl_lock); 2619 out_unlock: 2620 rcu_read_unlock(); 2621 return retval; 2622 } 2623 2624 /** 2625 * tiocgsid - get session id 2626 * @tty: tty passed by user 2627 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2628 * @p: pointer to returned session id 2629 * 2630 * Obtain the session id of the tty. If there is no session 2631 * return an error. 2632 * 2633 * Locking: none. Reference to current->signal->tty is safe. 2634 */ 2635 2636 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2637 { 2638 /* 2639 * (tty == real_tty) is a cheap way of 2640 * testing if the tty is NOT a master pty. 2641 */ 2642 if (tty == real_tty && current->signal->tty != real_tty) 2643 return -ENOTTY; 2644 if (!real_tty->session) 2645 return -ENOTTY; 2646 return put_user(pid_vnr(real_tty->session), p); 2647 } 2648 2649 /** 2650 * tiocsetd - set line discipline 2651 * @tty: tty device 2652 * @p: pointer to user data 2653 * 2654 * Set the line discipline according to user request. 2655 * 2656 * Locking: see tty_set_ldisc, this function is just a helper 2657 */ 2658 2659 static int tiocsetd(struct tty_struct *tty, int __user *p) 2660 { 2661 int disc; 2662 int ret; 2663 2664 if (get_user(disc, p)) 2665 return -EFAULT; 2666 2667 ret = tty_set_ldisc(tty, disc); 2668 2669 return ret; 2670 } 2671 2672 /** 2673 * tiocgetd - get line discipline 2674 * @tty: tty device 2675 * @p: pointer to user data 2676 * 2677 * Retrieves the line discipline id directly from the ldisc. 2678 * 2679 * Locking: waits for ldisc reference (in case the line discipline 2680 * is changing or the tty is being hungup) 2681 */ 2682 2683 static int tiocgetd(struct tty_struct *tty, int __user *p) 2684 { 2685 struct tty_ldisc *ld; 2686 int ret; 2687 2688 ld = tty_ldisc_ref_wait(tty); 2689 if (!ld) 2690 return -EIO; 2691 ret = put_user(ld->ops->num, p); 2692 tty_ldisc_deref(ld); 2693 return ret; 2694 } 2695 2696 /** 2697 * send_break - performed time break 2698 * @tty: device to break on 2699 * @duration: timeout in mS 2700 * 2701 * Perform a timed break on hardware that lacks its own driver level 2702 * timed break functionality. 2703 * 2704 * Locking: 2705 * atomic_write_lock serializes 2706 * 2707 */ 2708 2709 static int send_break(struct tty_struct *tty, unsigned int duration) 2710 { 2711 int retval; 2712 2713 if (tty->ops->break_ctl == NULL) 2714 return 0; 2715 2716 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2717 retval = tty->ops->break_ctl(tty, duration); 2718 else { 2719 /* Do the work ourselves */ 2720 if (tty_write_lock(tty, 0) < 0) 2721 return -EINTR; 2722 retval = tty->ops->break_ctl(tty, -1); 2723 if (retval) 2724 goto out; 2725 if (!signal_pending(current)) 2726 msleep_interruptible(duration); 2727 retval = tty->ops->break_ctl(tty, 0); 2728 out: 2729 tty_write_unlock(tty); 2730 if (signal_pending(current)) 2731 retval = -EINTR; 2732 } 2733 return retval; 2734 } 2735 2736 /** 2737 * tty_tiocmget - get modem status 2738 * @tty: tty device 2739 * @file: user file pointer 2740 * @p: pointer to result 2741 * 2742 * Obtain the modem status bits from the tty driver if the feature 2743 * is supported. Return -EINVAL if it is not available. 2744 * 2745 * Locking: none (up to the driver) 2746 */ 2747 2748 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2749 { 2750 int retval = -EINVAL; 2751 2752 if (tty->ops->tiocmget) { 2753 retval = tty->ops->tiocmget(tty); 2754 2755 if (retval >= 0) 2756 retval = put_user(retval, p); 2757 } 2758 return retval; 2759 } 2760 2761 /** 2762 * tty_tiocmset - set modem status 2763 * @tty: tty device 2764 * @cmd: command - clear bits, set bits or set all 2765 * @p: pointer to desired bits 2766 * 2767 * Set the modem status bits from the tty driver if the feature 2768 * is supported. Return -EINVAL if it is not available. 2769 * 2770 * Locking: none (up to the driver) 2771 */ 2772 2773 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2774 unsigned __user *p) 2775 { 2776 int retval; 2777 unsigned int set, clear, val; 2778 2779 if (tty->ops->tiocmset == NULL) 2780 return -EINVAL; 2781 2782 retval = get_user(val, p); 2783 if (retval) 2784 return retval; 2785 set = clear = 0; 2786 switch (cmd) { 2787 case TIOCMBIS: 2788 set = val; 2789 break; 2790 case TIOCMBIC: 2791 clear = val; 2792 break; 2793 case TIOCMSET: 2794 set = val; 2795 clear = ~val; 2796 break; 2797 } 2798 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2799 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2800 return tty->ops->tiocmset(tty, set, clear); 2801 } 2802 2803 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2804 { 2805 int retval = -EINVAL; 2806 struct serial_icounter_struct icount; 2807 memset(&icount, 0, sizeof(icount)); 2808 if (tty->ops->get_icount) 2809 retval = tty->ops->get_icount(tty, &icount); 2810 if (retval != 0) 2811 return retval; 2812 if (copy_to_user(arg, &icount, sizeof(icount))) 2813 return -EFAULT; 2814 return 0; 2815 } 2816 2817 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2818 { 2819 static DEFINE_RATELIMIT_STATE(depr_flags, 2820 DEFAULT_RATELIMIT_INTERVAL, 2821 DEFAULT_RATELIMIT_BURST); 2822 char comm[TASK_COMM_LEN]; 2823 int flags; 2824 2825 if (get_user(flags, &ss->flags)) 2826 return; 2827 2828 flags &= ASYNC_DEPRECATED; 2829 2830 if (flags && __ratelimit(&depr_flags)) 2831 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2832 __func__, get_task_comm(comm, current), flags); 2833 } 2834 2835 /* 2836 * if pty, return the slave side (real_tty) 2837 * otherwise, return self 2838 */ 2839 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2840 { 2841 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2842 tty->driver->subtype == PTY_TYPE_MASTER) 2843 tty = tty->link; 2844 return tty; 2845 } 2846 2847 /* 2848 * Split this up, as gcc can choke on it otherwise.. 2849 */ 2850 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2851 { 2852 struct tty_struct *tty = file_tty(file); 2853 struct tty_struct *real_tty; 2854 void __user *p = (void __user *)arg; 2855 int retval; 2856 struct tty_ldisc *ld; 2857 2858 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2859 return -EINVAL; 2860 2861 real_tty = tty_pair_get_tty(tty); 2862 2863 /* 2864 * Factor out some common prep work 2865 */ 2866 switch (cmd) { 2867 case TIOCSETD: 2868 case TIOCSBRK: 2869 case TIOCCBRK: 2870 case TCSBRK: 2871 case TCSBRKP: 2872 retval = tty_check_change(tty); 2873 if (retval) 2874 return retval; 2875 if (cmd != TIOCCBRK) { 2876 tty_wait_until_sent(tty, 0); 2877 if (signal_pending(current)) 2878 return -EINTR; 2879 } 2880 break; 2881 } 2882 2883 /* 2884 * Now do the stuff. 2885 */ 2886 switch (cmd) { 2887 case TIOCSTI: 2888 return tiocsti(tty, p); 2889 case TIOCGWINSZ: 2890 return tiocgwinsz(real_tty, p); 2891 case TIOCSWINSZ: 2892 return tiocswinsz(real_tty, p); 2893 case TIOCCONS: 2894 return real_tty != tty ? -EINVAL : tioccons(file); 2895 case FIONBIO: 2896 return fionbio(file, p); 2897 case TIOCEXCL: 2898 set_bit(TTY_EXCLUSIVE, &tty->flags); 2899 return 0; 2900 case TIOCNXCL: 2901 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2902 return 0; 2903 case TIOCGEXCL: 2904 { 2905 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2906 return put_user(excl, (int __user *)p); 2907 } 2908 case TIOCNOTTY: 2909 if (current->signal->tty != tty) 2910 return -ENOTTY; 2911 no_tty(); 2912 return 0; 2913 case TIOCSCTTY: 2914 return tiocsctty(real_tty, file, arg); 2915 case TIOCGPGRP: 2916 return tiocgpgrp(tty, real_tty, p); 2917 case TIOCSPGRP: 2918 return tiocspgrp(tty, real_tty, p); 2919 case TIOCGSID: 2920 return tiocgsid(tty, real_tty, p); 2921 case TIOCGETD: 2922 return tiocgetd(tty, p); 2923 case TIOCSETD: 2924 return tiocsetd(tty, p); 2925 case TIOCVHANGUP: 2926 if (!capable(CAP_SYS_ADMIN)) 2927 return -EPERM; 2928 tty_vhangup(tty); 2929 return 0; 2930 case TIOCGDEV: 2931 { 2932 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2933 return put_user(ret, (unsigned int __user *)p); 2934 } 2935 /* 2936 * Break handling 2937 */ 2938 case TIOCSBRK: /* Turn break on, unconditionally */ 2939 if (tty->ops->break_ctl) 2940 return tty->ops->break_ctl(tty, -1); 2941 return 0; 2942 case TIOCCBRK: /* Turn break off, unconditionally */ 2943 if (tty->ops->break_ctl) 2944 return tty->ops->break_ctl(tty, 0); 2945 return 0; 2946 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2947 /* non-zero arg means wait for all output data 2948 * to be sent (performed above) but don't send break. 2949 * This is used by the tcdrain() termios function. 2950 */ 2951 if (!arg) 2952 return send_break(tty, 250); 2953 return 0; 2954 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2955 return send_break(tty, arg ? arg*100 : 250); 2956 2957 case TIOCMGET: 2958 return tty_tiocmget(tty, p); 2959 case TIOCMSET: 2960 case TIOCMBIC: 2961 case TIOCMBIS: 2962 return tty_tiocmset(tty, cmd, p); 2963 case TIOCGICOUNT: 2964 retval = tty_tiocgicount(tty, p); 2965 /* For the moment allow fall through to the old method */ 2966 if (retval != -EINVAL) 2967 return retval; 2968 break; 2969 case TCFLSH: 2970 switch (arg) { 2971 case TCIFLUSH: 2972 case TCIOFLUSH: 2973 /* flush tty buffer and allow ldisc to process ioctl */ 2974 tty_buffer_flush(tty, NULL); 2975 break; 2976 } 2977 break; 2978 case TIOCSSERIAL: 2979 tty_warn_deprecated_flags(p); 2980 break; 2981 } 2982 if (tty->ops->ioctl) { 2983 retval = tty->ops->ioctl(tty, cmd, arg); 2984 if (retval != -ENOIOCTLCMD) 2985 return retval; 2986 } 2987 ld = tty_ldisc_ref_wait(tty); 2988 if (!ld) 2989 return hung_up_tty_ioctl(file, cmd, arg); 2990 retval = -EINVAL; 2991 if (ld->ops->ioctl) { 2992 retval = ld->ops->ioctl(tty, file, cmd, arg); 2993 if (retval == -ENOIOCTLCMD) 2994 retval = -ENOTTY; 2995 } 2996 tty_ldisc_deref(ld); 2997 return retval; 2998 } 2999 3000 #ifdef CONFIG_COMPAT 3001 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 3002 unsigned long arg) 3003 { 3004 struct tty_struct *tty = file_tty(file); 3005 struct tty_ldisc *ld; 3006 int retval = -ENOIOCTLCMD; 3007 3008 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 3009 return -EINVAL; 3010 3011 if (tty->ops->compat_ioctl) { 3012 retval = tty->ops->compat_ioctl(tty, cmd, arg); 3013 if (retval != -ENOIOCTLCMD) 3014 return retval; 3015 } 3016 3017 ld = tty_ldisc_ref_wait(tty); 3018 if (!ld) 3019 return hung_up_tty_compat_ioctl(file, cmd, arg); 3020 if (ld->ops->compat_ioctl) 3021 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 3022 else 3023 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 3024 tty_ldisc_deref(ld); 3025 3026 return retval; 3027 } 3028 #endif 3029 3030 static int this_tty(const void *t, struct file *file, unsigned fd) 3031 { 3032 if (likely(file->f_op->read != tty_read)) 3033 return 0; 3034 return file_tty(file) != t ? 0 : fd + 1; 3035 } 3036 3037 /* 3038 * This implements the "Secure Attention Key" --- the idea is to 3039 * prevent trojan horses by killing all processes associated with this 3040 * tty when the user hits the "Secure Attention Key". Required for 3041 * super-paranoid applications --- see the Orange Book for more details. 3042 * 3043 * This code could be nicer; ideally it should send a HUP, wait a few 3044 * seconds, then send a INT, and then a KILL signal. But you then 3045 * have to coordinate with the init process, since all processes associated 3046 * with the current tty must be dead before the new getty is allowed 3047 * to spawn. 3048 * 3049 * Now, if it would be correct ;-/ The current code has a nasty hole - 3050 * it doesn't catch files in flight. We may send the descriptor to ourselves 3051 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 3052 * 3053 * Nasty bug: do_SAK is being called in interrupt context. This can 3054 * deadlock. We punt it up to process context. AKPM - 16Mar2001 3055 */ 3056 void __do_SAK(struct tty_struct *tty) 3057 { 3058 #ifdef TTY_SOFT_SAK 3059 tty_hangup(tty); 3060 #else 3061 struct task_struct *g, *p; 3062 struct pid *session; 3063 int i; 3064 3065 if (!tty) 3066 return; 3067 session = tty->session; 3068 3069 tty_ldisc_flush(tty); 3070 3071 tty_driver_flush_buffer(tty); 3072 3073 read_lock(&tasklist_lock); 3074 /* Kill the entire session */ 3075 do_each_pid_task(session, PIDTYPE_SID, p) { 3076 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 3077 task_pid_nr(p), p->comm); 3078 send_sig(SIGKILL, p, 1); 3079 } while_each_pid_task(session, PIDTYPE_SID, p); 3080 3081 /* Now kill any processes that happen to have the tty open */ 3082 do_each_thread(g, p) { 3083 if (p->signal->tty == tty) { 3084 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 3085 task_pid_nr(p), p->comm); 3086 send_sig(SIGKILL, p, 1); 3087 continue; 3088 } 3089 task_lock(p); 3090 i = iterate_fd(p->files, 0, this_tty, tty); 3091 if (i != 0) { 3092 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 3093 task_pid_nr(p), p->comm, i - 1); 3094 force_sig(SIGKILL, p); 3095 } 3096 task_unlock(p); 3097 } while_each_thread(g, p); 3098 read_unlock(&tasklist_lock); 3099 #endif 3100 } 3101 3102 static void do_SAK_work(struct work_struct *work) 3103 { 3104 struct tty_struct *tty = 3105 container_of(work, struct tty_struct, SAK_work); 3106 __do_SAK(tty); 3107 } 3108 3109 /* 3110 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3111 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3112 * the values which we write to it will be identical to the values which it 3113 * already has. --akpm 3114 */ 3115 void do_SAK(struct tty_struct *tty) 3116 { 3117 if (!tty) 3118 return; 3119 schedule_work(&tty->SAK_work); 3120 } 3121 3122 EXPORT_SYMBOL(do_SAK); 3123 3124 static int dev_match_devt(struct device *dev, const void *data) 3125 { 3126 const dev_t *devt = data; 3127 return dev->devt == *devt; 3128 } 3129 3130 /* Must put_device() after it's unused! */ 3131 static struct device *tty_get_device(struct tty_struct *tty) 3132 { 3133 dev_t devt = tty_devnum(tty); 3134 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3135 } 3136 3137 3138 /** 3139 * alloc_tty_struct 3140 * 3141 * This subroutine allocates and initializes a tty structure. 3142 * 3143 * Locking: none - tty in question is not exposed at this point 3144 */ 3145 3146 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3147 { 3148 struct tty_struct *tty; 3149 3150 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3151 if (!tty) 3152 return NULL; 3153 3154 kref_init(&tty->kref); 3155 tty->magic = TTY_MAGIC; 3156 tty_ldisc_init(tty); 3157 tty->session = NULL; 3158 tty->pgrp = NULL; 3159 mutex_init(&tty->legacy_mutex); 3160 mutex_init(&tty->throttle_mutex); 3161 init_rwsem(&tty->termios_rwsem); 3162 mutex_init(&tty->winsize_mutex); 3163 init_ldsem(&tty->ldisc_sem); 3164 init_waitqueue_head(&tty->write_wait); 3165 init_waitqueue_head(&tty->read_wait); 3166 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3167 mutex_init(&tty->atomic_write_lock); 3168 spin_lock_init(&tty->ctrl_lock); 3169 spin_lock_init(&tty->flow_lock); 3170 spin_lock_init(&tty->files_lock); 3171 INIT_LIST_HEAD(&tty->tty_files); 3172 INIT_WORK(&tty->SAK_work, do_SAK_work); 3173 3174 tty->driver = driver; 3175 tty->ops = driver->ops; 3176 tty->index = idx; 3177 tty_line_name(driver, idx, tty->name); 3178 tty->dev = tty_get_device(tty); 3179 3180 return tty; 3181 } 3182 3183 /** 3184 * tty_put_char - write one character to a tty 3185 * @tty: tty 3186 * @ch: character 3187 * 3188 * Write one byte to the tty using the provided put_char method 3189 * if present. Returns the number of characters successfully output. 3190 * 3191 * Note: the specific put_char operation in the driver layer may go 3192 * away soon. Don't call it directly, use this method 3193 */ 3194 3195 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3196 { 3197 if (tty->ops->put_char) 3198 return tty->ops->put_char(tty, ch); 3199 return tty->ops->write(tty, &ch, 1); 3200 } 3201 EXPORT_SYMBOL_GPL(tty_put_char); 3202 3203 struct class *tty_class; 3204 3205 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3206 unsigned int index, unsigned int count) 3207 { 3208 int err; 3209 3210 /* init here, since reused cdevs cause crashes */ 3211 driver->cdevs[index] = cdev_alloc(); 3212 if (!driver->cdevs[index]) 3213 return -ENOMEM; 3214 driver->cdevs[index]->ops = &tty_fops; 3215 driver->cdevs[index]->owner = driver->owner; 3216 err = cdev_add(driver->cdevs[index], dev, count); 3217 if (err) 3218 kobject_put(&driver->cdevs[index]->kobj); 3219 return err; 3220 } 3221 3222 /** 3223 * tty_register_device - register a tty device 3224 * @driver: the tty driver that describes the tty device 3225 * @index: the index in the tty driver for this tty device 3226 * @device: a struct device that is associated with this tty device. 3227 * This field is optional, if there is no known struct device 3228 * for this tty device it can be set to NULL safely. 3229 * 3230 * Returns a pointer to the struct device for this tty device 3231 * (or ERR_PTR(-EFOO) on error). 3232 * 3233 * This call is required to be made to register an individual tty device 3234 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3235 * that bit is not set, this function should not be called by a tty 3236 * driver. 3237 * 3238 * Locking: ?? 3239 */ 3240 3241 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3242 struct device *device) 3243 { 3244 return tty_register_device_attr(driver, index, device, NULL, NULL); 3245 } 3246 EXPORT_SYMBOL(tty_register_device); 3247 3248 static void tty_device_create_release(struct device *dev) 3249 { 3250 dev_dbg(dev, "releasing...\n"); 3251 kfree(dev); 3252 } 3253 3254 /** 3255 * tty_register_device_attr - register a tty device 3256 * @driver: the tty driver that describes the tty device 3257 * @index: the index in the tty driver for this tty device 3258 * @device: a struct device that is associated with this tty device. 3259 * This field is optional, if there is no known struct device 3260 * for this tty device it can be set to NULL safely. 3261 * @drvdata: Driver data to be set to device. 3262 * @attr_grp: Attribute group to be set on device. 3263 * 3264 * Returns a pointer to the struct device for this tty device 3265 * (or ERR_PTR(-EFOO) on error). 3266 * 3267 * This call is required to be made to register an individual tty device 3268 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3269 * that bit is not set, this function should not be called by a tty 3270 * driver. 3271 * 3272 * Locking: ?? 3273 */ 3274 struct device *tty_register_device_attr(struct tty_driver *driver, 3275 unsigned index, struct device *device, 3276 void *drvdata, 3277 const struct attribute_group **attr_grp) 3278 { 3279 char name[64]; 3280 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3281 struct device *dev = NULL; 3282 int retval = -ENODEV; 3283 bool cdev = false; 3284 3285 if (index >= driver->num) { 3286 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 3287 driver->name, index); 3288 return ERR_PTR(-EINVAL); 3289 } 3290 3291 if (driver->type == TTY_DRIVER_TYPE_PTY) 3292 pty_line_name(driver, index, name); 3293 else 3294 tty_line_name(driver, index, name); 3295 3296 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3297 retval = tty_cdev_add(driver, devt, index, 1); 3298 if (retval) 3299 goto error; 3300 cdev = true; 3301 } 3302 3303 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3304 if (!dev) { 3305 retval = -ENOMEM; 3306 goto error; 3307 } 3308 3309 dev->devt = devt; 3310 dev->class = tty_class; 3311 dev->parent = device; 3312 dev->release = tty_device_create_release; 3313 dev_set_name(dev, "%s", name); 3314 dev->groups = attr_grp; 3315 dev_set_drvdata(dev, drvdata); 3316 3317 retval = device_register(dev); 3318 if (retval) 3319 goto error; 3320 3321 return dev; 3322 3323 error: 3324 put_device(dev); 3325 if (cdev) { 3326 cdev_del(driver->cdevs[index]); 3327 driver->cdevs[index] = NULL; 3328 } 3329 return ERR_PTR(retval); 3330 } 3331 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3332 3333 /** 3334 * tty_unregister_device - unregister a tty device 3335 * @driver: the tty driver that describes the tty device 3336 * @index: the index in the tty driver for this tty device 3337 * 3338 * If a tty device is registered with a call to tty_register_device() then 3339 * this function must be called when the tty device is gone. 3340 * 3341 * Locking: ?? 3342 */ 3343 3344 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3345 { 3346 device_destroy(tty_class, 3347 MKDEV(driver->major, driver->minor_start) + index); 3348 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3349 cdev_del(driver->cdevs[index]); 3350 driver->cdevs[index] = NULL; 3351 } 3352 } 3353 EXPORT_SYMBOL(tty_unregister_device); 3354 3355 /** 3356 * __tty_alloc_driver -- allocate tty driver 3357 * @lines: count of lines this driver can handle at most 3358 * @owner: module which is repsonsible for this driver 3359 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3360 * 3361 * This should not be called directly, some of the provided macros should be 3362 * used instead. Use IS_ERR and friends on @retval. 3363 */ 3364 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3365 unsigned long flags) 3366 { 3367 struct tty_driver *driver; 3368 unsigned int cdevs = 1; 3369 int err; 3370 3371 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3372 return ERR_PTR(-EINVAL); 3373 3374 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3375 if (!driver) 3376 return ERR_PTR(-ENOMEM); 3377 3378 kref_init(&driver->kref); 3379 driver->magic = TTY_DRIVER_MAGIC; 3380 driver->num = lines; 3381 driver->owner = owner; 3382 driver->flags = flags; 3383 3384 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3385 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3386 GFP_KERNEL); 3387 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3388 GFP_KERNEL); 3389 if (!driver->ttys || !driver->termios) { 3390 err = -ENOMEM; 3391 goto err_free_all; 3392 } 3393 } 3394 3395 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3396 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3397 GFP_KERNEL); 3398 if (!driver->ports) { 3399 err = -ENOMEM; 3400 goto err_free_all; 3401 } 3402 cdevs = lines; 3403 } 3404 3405 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3406 if (!driver->cdevs) { 3407 err = -ENOMEM; 3408 goto err_free_all; 3409 } 3410 3411 return driver; 3412 err_free_all: 3413 kfree(driver->ports); 3414 kfree(driver->ttys); 3415 kfree(driver->termios); 3416 kfree(driver->cdevs); 3417 kfree(driver); 3418 return ERR_PTR(err); 3419 } 3420 EXPORT_SYMBOL(__tty_alloc_driver); 3421 3422 static void destruct_tty_driver(struct kref *kref) 3423 { 3424 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3425 int i; 3426 struct ktermios *tp; 3427 3428 if (driver->flags & TTY_DRIVER_INSTALLED) { 3429 /* 3430 * Free the termios and termios_locked structures because 3431 * we don't want to get memory leaks when modular tty 3432 * drivers are removed from the kernel. 3433 */ 3434 for (i = 0; i < driver->num; i++) { 3435 tp = driver->termios[i]; 3436 if (tp) { 3437 driver->termios[i] = NULL; 3438 kfree(tp); 3439 } 3440 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3441 tty_unregister_device(driver, i); 3442 } 3443 proc_tty_unregister_driver(driver); 3444 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3445 cdev_del(driver->cdevs[0]); 3446 } 3447 kfree(driver->cdevs); 3448 kfree(driver->ports); 3449 kfree(driver->termios); 3450 kfree(driver->ttys); 3451 kfree(driver); 3452 } 3453 3454 void tty_driver_kref_put(struct tty_driver *driver) 3455 { 3456 kref_put(&driver->kref, destruct_tty_driver); 3457 } 3458 EXPORT_SYMBOL(tty_driver_kref_put); 3459 3460 void tty_set_operations(struct tty_driver *driver, 3461 const struct tty_operations *op) 3462 { 3463 driver->ops = op; 3464 }; 3465 EXPORT_SYMBOL(tty_set_operations); 3466 3467 void put_tty_driver(struct tty_driver *d) 3468 { 3469 tty_driver_kref_put(d); 3470 } 3471 EXPORT_SYMBOL(put_tty_driver); 3472 3473 /* 3474 * Called by a tty driver to register itself. 3475 */ 3476 int tty_register_driver(struct tty_driver *driver) 3477 { 3478 int error; 3479 int i; 3480 dev_t dev; 3481 struct device *d; 3482 3483 if (!driver->major) { 3484 error = alloc_chrdev_region(&dev, driver->minor_start, 3485 driver->num, driver->name); 3486 if (!error) { 3487 driver->major = MAJOR(dev); 3488 driver->minor_start = MINOR(dev); 3489 } 3490 } else { 3491 dev = MKDEV(driver->major, driver->minor_start); 3492 error = register_chrdev_region(dev, driver->num, driver->name); 3493 } 3494 if (error < 0) 3495 goto err; 3496 3497 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3498 error = tty_cdev_add(driver, dev, 0, driver->num); 3499 if (error) 3500 goto err_unreg_char; 3501 } 3502 3503 mutex_lock(&tty_mutex); 3504 list_add(&driver->tty_drivers, &tty_drivers); 3505 mutex_unlock(&tty_mutex); 3506 3507 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3508 for (i = 0; i < driver->num; i++) { 3509 d = tty_register_device(driver, i, NULL); 3510 if (IS_ERR(d)) { 3511 error = PTR_ERR(d); 3512 goto err_unreg_devs; 3513 } 3514 } 3515 } 3516 proc_tty_register_driver(driver); 3517 driver->flags |= TTY_DRIVER_INSTALLED; 3518 return 0; 3519 3520 err_unreg_devs: 3521 for (i--; i >= 0; i--) 3522 tty_unregister_device(driver, i); 3523 3524 mutex_lock(&tty_mutex); 3525 list_del(&driver->tty_drivers); 3526 mutex_unlock(&tty_mutex); 3527 3528 err_unreg_char: 3529 unregister_chrdev_region(dev, driver->num); 3530 err: 3531 return error; 3532 } 3533 EXPORT_SYMBOL(tty_register_driver); 3534 3535 /* 3536 * Called by a tty driver to unregister itself. 3537 */ 3538 int tty_unregister_driver(struct tty_driver *driver) 3539 { 3540 #if 0 3541 /* FIXME */ 3542 if (driver->refcount) 3543 return -EBUSY; 3544 #endif 3545 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3546 driver->num); 3547 mutex_lock(&tty_mutex); 3548 list_del(&driver->tty_drivers); 3549 mutex_unlock(&tty_mutex); 3550 return 0; 3551 } 3552 3553 EXPORT_SYMBOL(tty_unregister_driver); 3554 3555 dev_t tty_devnum(struct tty_struct *tty) 3556 { 3557 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3558 } 3559 EXPORT_SYMBOL(tty_devnum); 3560 3561 void tty_default_fops(struct file_operations *fops) 3562 { 3563 *fops = tty_fops; 3564 } 3565 3566 /* 3567 * Initialize the console device. This is called *early*, so 3568 * we can't necessarily depend on lots of kernel help here. 3569 * Just do some early initializations, and do the complex setup 3570 * later. 3571 */ 3572 void __init console_init(void) 3573 { 3574 initcall_t *call; 3575 3576 /* Setup the default TTY line discipline. */ 3577 n_tty_init(); 3578 3579 /* 3580 * set up the console device so that later boot sequences can 3581 * inform about problems etc.. 3582 */ 3583 call = __con_initcall_start; 3584 while (call < __con_initcall_end) { 3585 (*call)(); 3586 call++; 3587 } 3588 } 3589 3590 static char *tty_devnode(struct device *dev, umode_t *mode) 3591 { 3592 if (!mode) 3593 return NULL; 3594 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3595 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3596 *mode = 0666; 3597 return NULL; 3598 } 3599 3600 static int __init tty_class_init(void) 3601 { 3602 tty_class = class_create(THIS_MODULE, "tty"); 3603 if (IS_ERR(tty_class)) 3604 return PTR_ERR(tty_class); 3605 tty_class->devnode = tty_devnode; 3606 return 0; 3607 } 3608 3609 postcore_initcall(tty_class_init); 3610 3611 /* 3/2004 jmc: why do these devices exist? */ 3612 static struct cdev tty_cdev, console_cdev; 3613 3614 static ssize_t show_cons_active(struct device *dev, 3615 struct device_attribute *attr, char *buf) 3616 { 3617 struct console *cs[16]; 3618 int i = 0; 3619 struct console *c; 3620 ssize_t count = 0; 3621 3622 console_lock(); 3623 for_each_console(c) { 3624 if (!c->device) 3625 continue; 3626 if (!c->write) 3627 continue; 3628 if ((c->flags & CON_ENABLED) == 0) 3629 continue; 3630 cs[i++] = c; 3631 if (i >= ARRAY_SIZE(cs)) 3632 break; 3633 } 3634 while (i--) { 3635 int index = cs[i]->index; 3636 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3637 3638 /* don't resolve tty0 as some programs depend on it */ 3639 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3640 count += tty_line_name(drv, index, buf + count); 3641 else 3642 count += sprintf(buf + count, "%s%d", 3643 cs[i]->name, cs[i]->index); 3644 3645 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3646 } 3647 console_unlock(); 3648 3649 return count; 3650 } 3651 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3652 3653 static struct attribute *cons_dev_attrs[] = { 3654 &dev_attr_active.attr, 3655 NULL 3656 }; 3657 3658 ATTRIBUTE_GROUPS(cons_dev); 3659 3660 static struct device *consdev; 3661 3662 void console_sysfs_notify(void) 3663 { 3664 if (consdev) 3665 sysfs_notify(&consdev->kobj, NULL, "active"); 3666 } 3667 3668 /* 3669 * Ok, now we can initialize the rest of the tty devices and can count 3670 * on memory allocations, interrupts etc.. 3671 */ 3672 int __init tty_init(void) 3673 { 3674 cdev_init(&tty_cdev, &tty_fops); 3675 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3676 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3677 panic("Couldn't register /dev/tty driver\n"); 3678 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3679 3680 cdev_init(&console_cdev, &console_fops); 3681 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3682 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3683 panic("Couldn't register /dev/console driver\n"); 3684 consdev = device_create_with_groups(tty_class, NULL, 3685 MKDEV(TTYAUX_MAJOR, 1), NULL, 3686 cons_dev_groups, "console"); 3687 if (IS_ERR(consdev)) 3688 consdev = NULL; 3689 3690 #ifdef CONFIG_VT 3691 vty_init(&console_fops); 3692 #endif 3693 return 0; 3694 } 3695 3696