xref: /linux/drivers/tty/tty_io.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101 
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105 
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108 
109 #undef TTY_DEBUG_HANGUP
110 
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113 
114 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
115 	.c_iflag = ICRNL | IXON,
116 	.c_oflag = OPOST | ONLCR,
117 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
118 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119 		   ECHOCTL | ECHOKE | IEXTEN,
120 	.c_cc = INIT_C_CC,
121 	.c_ispeed = 38400,
122 	.c_ospeed = 38400
123 };
124 
125 EXPORT_SYMBOL(tty_std_termios);
126 
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130 
131 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
132 
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137 
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140 
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 							size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 				unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 
160 /**
161  *	alloc_tty_struct	-	allocate a tty object
162  *
163  *	Return a new empty tty structure. The data fields have not
164  *	been initialized in any way but has been zeroed
165  *
166  *	Locking: none
167  */
168 
169 struct tty_struct *alloc_tty_struct(void)
170 {
171 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173 
174 /**
175  *	free_tty_struct		-	free a disused tty
176  *	@tty: tty struct to free
177  *
178  *	Free the write buffers, tty queue and tty memory itself.
179  *
180  *	Locking: none. Must be called after tty is definitely unused
181  */
182 
183 void free_tty_struct(struct tty_struct *tty)
184 {
185 	if (tty->dev)
186 		put_device(tty->dev);
187 	kfree(tty->write_buf);
188 	tty_buffer_free_all(tty);
189 	kfree(tty);
190 }
191 
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194 	return ((struct tty_file_private *)file->private_data)->tty;
195 }
196 
197 int tty_alloc_file(struct file *file)
198 {
199 	struct tty_file_private *priv;
200 
201 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202 	if (!priv)
203 		return -ENOMEM;
204 
205 	file->private_data = priv;
206 
207 	return 0;
208 }
209 
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213 	struct tty_file_private *priv = file->private_data;
214 
215 	priv->tty = tty;
216 	priv->file = file;
217 
218 	spin_lock(&tty_files_lock);
219 	list_add(&priv->list, &tty->tty_files);
220 	spin_unlock(&tty_files_lock);
221 }
222 
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231 	struct tty_file_private *priv = file->private_data;
232 
233 	file->private_data = NULL;
234 	kfree(priv);
235 }
236 
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240 	struct tty_file_private *priv = file->private_data;
241 
242 	spin_lock(&tty_files_lock);
243 	list_del(&priv->list);
244 	spin_unlock(&tty_files_lock);
245 	tty_free_file(file);
246 }
247 
248 
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250 
251 /**
252  *	tty_name	-	return tty naming
253  *	@tty: tty structure
254  *	@buf: buffer for output
255  *
256  *	Convert a tty structure into a name. The name reflects the kernel
257  *	naming policy and if udev is in use may not reflect user space
258  *
259  *	Locking: none
260  */
261 
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265 		strcpy(buf, "NULL tty");
266 	else
267 		strcpy(buf, tty->name);
268 	return buf;
269 }
270 
271 EXPORT_SYMBOL(tty_name);
272 
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274 			      const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277 	if (!tty) {
278 		printk(KERN_WARNING
279 			"null TTY for (%d:%d) in %s\n",
280 			imajor(inode), iminor(inode), routine);
281 		return 1;
282 	}
283 	if (tty->magic != TTY_MAGIC) {
284 		printk(KERN_WARNING
285 			"bad magic number for tty struct (%d:%d) in %s\n",
286 			imajor(inode), iminor(inode), routine);
287 		return 1;
288 	}
289 #endif
290 	return 0;
291 }
292 
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296 	struct list_head *p;
297 	int count = 0;
298 
299 	spin_lock(&tty_files_lock);
300 	list_for_each(p, &tty->tty_files) {
301 		count++;
302 	}
303 	spin_unlock(&tty_files_lock);
304 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
306 	    tty->link && tty->link->count)
307 		count++;
308 	if (tty->count != count) {
309 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310 				    "!= #fd's(%d) in %s\n",
311 		       tty->name, tty->count, count, routine);
312 		return count;
313 	}
314 #endif
315 	return 0;
316 }
317 
318 /**
319  *	get_tty_driver		-	find device of a tty
320  *	@dev_t: device identifier
321  *	@index: returns the index of the tty
322  *
323  *	This routine returns a tty driver structure, given a device number
324  *	and also passes back the index number.
325  *
326  *	Locking: caller must hold tty_mutex
327  */
328 
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331 	struct tty_driver *p;
332 
333 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
334 		dev_t base = MKDEV(p->major, p->minor_start);
335 		if (device < base || device >= base + p->num)
336 			continue;
337 		*index = device - base;
338 		return tty_driver_kref_get(p);
339 	}
340 	return NULL;
341 }
342 
343 #ifdef CONFIG_CONSOLE_POLL
344 
345 /**
346  *	tty_find_polling_driver	-	find device of a polled tty
347  *	@name: name string to match
348  *	@line: pointer to resulting tty line nr
349  *
350  *	This routine returns a tty driver structure, given a name
351  *	and the condition that the tty driver is capable of polled
352  *	operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356 	struct tty_driver *p, *res = NULL;
357 	int tty_line = 0;
358 	int len;
359 	char *str, *stp;
360 
361 	for (str = name; *str; str++)
362 		if ((*str >= '0' && *str <= '9') || *str == ',')
363 			break;
364 	if (!*str)
365 		return NULL;
366 
367 	len = str - name;
368 	tty_line = simple_strtoul(str, &str, 10);
369 
370 	mutex_lock(&tty_mutex);
371 	/* Search through the tty devices to look for a match */
372 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
373 		if (strncmp(name, p->name, len) != 0)
374 			continue;
375 		stp = str;
376 		if (*stp == ',')
377 			stp++;
378 		if (*stp == '\0')
379 			stp = NULL;
380 
381 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
382 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383 			res = tty_driver_kref_get(p);
384 			*line = tty_line;
385 			break;
386 		}
387 	}
388 	mutex_unlock(&tty_mutex);
389 
390 	return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394 
395 /**
396  *	tty_check_change	-	check for POSIX terminal changes
397  *	@tty: tty to check
398  *
399  *	If we try to write to, or set the state of, a terminal and we're
400  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *	Locking: ctrl_lock
404  */
405 
406 int tty_check_change(struct tty_struct *tty)
407 {
408 	unsigned long flags;
409 	int ret = 0;
410 
411 	if (current->signal->tty != tty)
412 		return 0;
413 
414 	spin_lock_irqsave(&tty->ctrl_lock, flags);
415 
416 	if (!tty->pgrp) {
417 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418 		goto out_unlock;
419 	}
420 	if (task_pgrp(current) == tty->pgrp)
421 		goto out_unlock;
422 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 	if (is_ignored(SIGTTOU))
424 		goto out;
425 	if (is_current_pgrp_orphaned()) {
426 		ret = -EIO;
427 		goto out;
428 	}
429 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430 	set_thread_flag(TIF_SIGPENDING);
431 	ret = -ERESTARTSYS;
432 out:
433 	return ret;
434 out_unlock:
435 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436 	return ret;
437 }
438 
439 EXPORT_SYMBOL(tty_check_change);
440 
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442 				size_t count, loff_t *ppos)
443 {
444 	return 0;
445 }
446 
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448 				 size_t count, loff_t *ppos)
449 {
450 	return -EIO;
451 }
452 
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458 
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460 		unsigned long arg)
461 {
462 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464 
465 static long hung_up_tty_compat_ioctl(struct file *file,
466 				     unsigned int cmd, unsigned long arg)
467 {
468 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470 
471 static const struct file_operations tty_fops = {
472 	.llseek		= no_llseek,
473 	.read		= tty_read,
474 	.write		= tty_write,
475 	.poll		= tty_poll,
476 	.unlocked_ioctl	= tty_ioctl,
477 	.compat_ioctl	= tty_compat_ioctl,
478 	.open		= tty_open,
479 	.release	= tty_release,
480 	.fasync		= tty_fasync,
481 };
482 
483 static const struct file_operations console_fops = {
484 	.llseek		= no_llseek,
485 	.read		= tty_read,
486 	.write		= redirected_tty_write,
487 	.poll		= tty_poll,
488 	.unlocked_ioctl	= tty_ioctl,
489 	.compat_ioctl	= tty_compat_ioctl,
490 	.open		= tty_open,
491 	.release	= tty_release,
492 	.fasync		= tty_fasync,
493 };
494 
495 static const struct file_operations hung_up_tty_fops = {
496 	.llseek		= no_llseek,
497 	.read		= hung_up_tty_read,
498 	.write		= hung_up_tty_write,
499 	.poll		= hung_up_tty_poll,
500 	.unlocked_ioctl	= hung_up_tty_ioctl,
501 	.compat_ioctl	= hung_up_tty_compat_ioctl,
502 	.release	= tty_release,
503 };
504 
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507 
508 /**
509  *	tty_wakeup	-	request more data
510  *	@tty: terminal
511  *
512  *	Internal and external helper for wakeups of tty. This function
513  *	informs the line discipline if present that the driver is ready
514  *	to receive more output data.
515  */
516 
517 void tty_wakeup(struct tty_struct *tty)
518 {
519 	struct tty_ldisc *ld;
520 
521 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522 		ld = tty_ldisc_ref(tty);
523 		if (ld) {
524 			if (ld->ops->write_wakeup)
525 				ld->ops->write_wakeup(tty);
526 			tty_ldisc_deref(ld);
527 		}
528 	}
529 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531 
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533 
534 /**
535  *	__tty_hangup		-	actual handler for hangup events
536  *	@work: tty device
537  *
538  *	This can be called by the "eventd" kernel thread.  That is process
539  *	synchronous but doesn't hold any locks, so we need to make sure we
540  *	have the appropriate locks for what we're doing.
541  *
542  *	The hangup event clears any pending redirections onto the hung up
543  *	device. It ensures future writes will error and it does the needed
544  *	line discipline hangup and signal delivery. The tty object itself
545  *	remains intact.
546  *
547  *	Locking:
548  *		BTM
549  *		  redirect lock for undoing redirection
550  *		  file list lock for manipulating list of ttys
551  *		  tty_ldisc_lock from called functions
552  *		  termios_mutex resetting termios data
553  *		  tasklist_lock to walk task list for hangup event
554  *		    ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558 	struct file *cons_filp = NULL;
559 	struct file *filp, *f = NULL;
560 	struct task_struct *p;
561 	struct tty_file_private *priv;
562 	int    closecount = 0, n;
563 	unsigned long flags;
564 	int refs = 0;
565 
566 	if (!tty)
567 		return;
568 
569 
570 	spin_lock(&redirect_lock);
571 	if (redirect && file_tty(redirect) == tty) {
572 		f = redirect;
573 		redirect = NULL;
574 	}
575 	spin_unlock(&redirect_lock);
576 
577 	tty_lock();
578 
579 	/* some functions below drop BTM, so we need this bit */
580 	set_bit(TTY_HUPPING, &tty->flags);
581 
582 	/* inuse_filps is protected by the single tty lock,
583 	   this really needs to change if we want to flush the
584 	   workqueue with the lock held */
585 	check_tty_count(tty, "tty_hangup");
586 
587 	spin_lock(&tty_files_lock);
588 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
589 	list_for_each_entry(priv, &tty->tty_files, list) {
590 		filp = priv->file;
591 		if (filp->f_op->write == redirected_tty_write)
592 			cons_filp = filp;
593 		if (filp->f_op->write != tty_write)
594 			continue;
595 		closecount++;
596 		__tty_fasync(-1, filp, 0);	/* can't block */
597 		filp->f_op = &hung_up_tty_fops;
598 	}
599 	spin_unlock(&tty_files_lock);
600 
601 	/*
602 	 * it drops BTM and thus races with reopen
603 	 * we protect the race by TTY_HUPPING
604 	 */
605 	tty_ldisc_hangup(tty);
606 
607 	read_lock(&tasklist_lock);
608 	if (tty->session) {
609 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610 			spin_lock_irq(&p->sighand->siglock);
611 			if (p->signal->tty == tty) {
612 				p->signal->tty = NULL;
613 				/* We defer the dereferences outside fo
614 				   the tasklist lock */
615 				refs++;
616 			}
617 			if (!p->signal->leader) {
618 				spin_unlock_irq(&p->sighand->siglock);
619 				continue;
620 			}
621 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
624 			spin_lock_irqsave(&tty->ctrl_lock, flags);
625 			if (tty->pgrp)
626 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628 			spin_unlock_irq(&p->sighand->siglock);
629 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
630 	}
631 	read_unlock(&tasklist_lock);
632 
633 	spin_lock_irqsave(&tty->ctrl_lock, flags);
634 	clear_bit(TTY_THROTTLED, &tty->flags);
635 	clear_bit(TTY_PUSH, &tty->flags);
636 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637 	put_pid(tty->session);
638 	put_pid(tty->pgrp);
639 	tty->session = NULL;
640 	tty->pgrp = NULL;
641 	tty->ctrl_status = 0;
642 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643 
644 	/* Account for the p->signal references we killed */
645 	while (refs--)
646 		tty_kref_put(tty);
647 
648 	/*
649 	 * If one of the devices matches a console pointer, we
650 	 * cannot just call hangup() because that will cause
651 	 * tty->count and state->count to go out of sync.
652 	 * So we just call close() the right number of times.
653 	 */
654 	if (cons_filp) {
655 		if (tty->ops->close)
656 			for (n = 0; n < closecount; n++)
657 				tty->ops->close(tty, cons_filp);
658 	} else if (tty->ops->hangup)
659 		(tty->ops->hangup)(tty);
660 	/*
661 	 * We don't want to have driver/ldisc interactions beyond
662 	 * the ones we did here. The driver layer expects no
663 	 * calls after ->hangup() from the ldisc side. However we
664 	 * can't yet guarantee all that.
665 	 */
666 	set_bit(TTY_HUPPED, &tty->flags);
667 	clear_bit(TTY_HUPPING, &tty->flags);
668 	tty_ldisc_enable(tty);
669 
670 	tty_unlock();
671 
672 	if (f)
673 		fput(f);
674 }
675 
676 static void do_tty_hangup(struct work_struct *work)
677 {
678 	struct tty_struct *tty =
679 		container_of(work, struct tty_struct, hangup_work);
680 
681 	__tty_hangup(tty);
682 }
683 
684 /**
685  *	tty_hangup		-	trigger a hangup event
686  *	@tty: tty to hangup
687  *
688  *	A carrier loss (virtual or otherwise) has occurred on this like
689  *	schedule a hangup sequence to run after this event.
690  */
691 
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695 	char	buf[64];
696 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698 	schedule_work(&tty->hangup_work);
699 }
700 
701 EXPORT_SYMBOL(tty_hangup);
702 
703 /**
704  *	tty_vhangup		-	process vhangup
705  *	@tty: tty to hangup
706  *
707  *	The user has asked via system call for the terminal to be hung up.
708  *	We do this synchronously so that when the syscall returns the process
709  *	is complete. That guarantee is necessary for security reasons.
710  */
711 
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715 	char	buf[64];
716 
717 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719 	__tty_hangup(tty);
720 }
721 
722 EXPORT_SYMBOL(tty_vhangup);
723 
724 
725 /**
726  *	tty_vhangup_self	-	process vhangup for own ctty
727  *
728  *	Perform a vhangup on the current controlling tty
729  */
730 
731 void tty_vhangup_self(void)
732 {
733 	struct tty_struct *tty;
734 
735 	tty = get_current_tty();
736 	if (tty) {
737 		tty_vhangup(tty);
738 		tty_kref_put(tty);
739 	}
740 }
741 
742 /**
743  *	tty_hung_up_p		-	was tty hung up
744  *	@filp: file pointer of tty
745  *
746  *	Return true if the tty has been subject to a vhangup or a carrier
747  *	loss
748  */
749 
750 int tty_hung_up_p(struct file *filp)
751 {
752 	return (filp->f_op == &hung_up_tty_fops);
753 }
754 
755 EXPORT_SYMBOL(tty_hung_up_p);
756 
757 static void session_clear_tty(struct pid *session)
758 {
759 	struct task_struct *p;
760 	do_each_pid_task(session, PIDTYPE_SID, p) {
761 		proc_clear_tty(p);
762 	} while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764 
765 /**
766  *	disassociate_ctty	-	disconnect controlling tty
767  *	@on_exit: true if exiting so need to "hang up" the session
768  *
769  *	This function is typically called only by the session leader, when
770  *	it wants to disassociate itself from its controlling tty.
771  *
772  *	It performs the following functions:
773  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  * 	(2)  Clears the tty from being controlling the session
775  * 	(3)  Clears the controlling tty for all processes in the
776  * 		session group.
777  *
778  *	The argument on_exit is set to 1 if called when a process is
779  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *	Locking:
782  *		BTM is taken for hysterical raisins, and held when
783  *		  called from no_tty().
784  *		  tty_mutex is taken to protect tty
785  *		  ->siglock is taken to protect ->signal/->sighand
786  *		  tasklist_lock is taken to walk process list for sessions
787  *		    ->siglock is taken to protect ->signal/->sighand
788  */
789 
790 void disassociate_ctty(int on_exit)
791 {
792 	struct tty_struct *tty;
793 	struct pid *tty_pgrp = NULL;
794 
795 	if (!current->signal->leader)
796 		return;
797 
798 	tty = get_current_tty();
799 	if (tty) {
800 		tty_pgrp = get_pid(tty->pgrp);
801 		if (on_exit) {
802 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803 				tty_vhangup(tty);
804 		}
805 		tty_kref_put(tty);
806 	} else if (on_exit) {
807 		struct pid *old_pgrp;
808 		spin_lock_irq(&current->sighand->siglock);
809 		old_pgrp = current->signal->tty_old_pgrp;
810 		current->signal->tty_old_pgrp = NULL;
811 		spin_unlock_irq(&current->sighand->siglock);
812 		if (old_pgrp) {
813 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
814 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
815 			put_pid(old_pgrp);
816 		}
817 		return;
818 	}
819 	if (tty_pgrp) {
820 		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
821 		if (!on_exit)
822 			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
823 		put_pid(tty_pgrp);
824 	}
825 
826 	spin_lock_irq(&current->sighand->siglock);
827 	put_pid(current->signal->tty_old_pgrp);
828 	current->signal->tty_old_pgrp = NULL;
829 	spin_unlock_irq(&current->sighand->siglock);
830 
831 	tty = get_current_tty();
832 	if (tty) {
833 		unsigned long flags;
834 		spin_lock_irqsave(&tty->ctrl_lock, flags);
835 		put_pid(tty->session);
836 		put_pid(tty->pgrp);
837 		tty->session = NULL;
838 		tty->pgrp = NULL;
839 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840 		tty_kref_put(tty);
841 	} else {
842 #ifdef TTY_DEBUG_HANGUP
843 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844 		       " = NULL", tty);
845 #endif
846 	}
847 
848 	/* Now clear signal->tty under the lock */
849 	read_lock(&tasklist_lock);
850 	session_clear_tty(task_session(current));
851 	read_unlock(&tasklist_lock);
852 }
853 
854 /**
855  *
856  *	no_tty	- Ensure the current process does not have a controlling tty
857  */
858 void no_tty(void)
859 {
860 	struct task_struct *tsk = current;
861 	tty_lock();
862 	disassociate_ctty(0);
863 	tty_unlock();
864 	proc_clear_tty(tsk);
865 }
866 
867 
868 /**
869  *	stop_tty	-	propagate flow control
870  *	@tty: tty to stop
871  *
872  *	Perform flow control to the driver. For PTY/TTY pairs we
873  *	must also propagate the TIOCKPKT status. May be called
874  *	on an already stopped device and will not re-call the driver
875  *	method.
876  *
877  *	This functionality is used by both the line disciplines for
878  *	halting incoming flow and by the driver. It may therefore be
879  *	called from any context, may be under the tty atomic_write_lock
880  *	but not always.
881  *
882  *	Locking:
883  *		Uses the tty control lock internally
884  */
885 
886 void stop_tty(struct tty_struct *tty)
887 {
888 	unsigned long flags;
889 	spin_lock_irqsave(&tty->ctrl_lock, flags);
890 	if (tty->stopped) {
891 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892 		return;
893 	}
894 	tty->stopped = 1;
895 	if (tty->link && tty->link->packet) {
896 		tty->ctrl_status &= ~TIOCPKT_START;
897 		tty->ctrl_status |= TIOCPKT_STOP;
898 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
899 	}
900 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
901 	if (tty->ops->stop)
902 		(tty->ops->stop)(tty);
903 }
904 
905 EXPORT_SYMBOL(stop_tty);
906 
907 /**
908  *	start_tty	-	propagate flow control
909  *	@tty: tty to start
910  *
911  *	Start a tty that has been stopped if at all possible. Perform
912  *	any necessary wakeups and propagate the TIOCPKT status. If this
913  *	is the tty was previous stopped and is being started then the
914  *	driver start method is invoked and the line discipline woken.
915  *
916  *	Locking:
917  *		ctrl_lock
918  */
919 
920 void start_tty(struct tty_struct *tty)
921 {
922 	unsigned long flags;
923 	spin_lock_irqsave(&tty->ctrl_lock, flags);
924 	if (!tty->stopped || tty->flow_stopped) {
925 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
926 		return;
927 	}
928 	tty->stopped = 0;
929 	if (tty->link && tty->link->packet) {
930 		tty->ctrl_status &= ~TIOCPKT_STOP;
931 		tty->ctrl_status |= TIOCPKT_START;
932 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
933 	}
934 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935 	if (tty->ops->start)
936 		(tty->ops->start)(tty);
937 	/* If we have a running line discipline it may need kicking */
938 	tty_wakeup(tty);
939 }
940 
941 EXPORT_SYMBOL(start_tty);
942 
943 /**
944  *	tty_read	-	read method for tty device files
945  *	@file: pointer to tty file
946  *	@buf: user buffer
947  *	@count: size of user buffer
948  *	@ppos: unused
949  *
950  *	Perform the read system call function on this terminal device. Checks
951  *	for hung up devices before calling the line discipline method.
952  *
953  *	Locking:
954  *		Locks the line discipline internally while needed. Multiple
955  *	read calls may be outstanding in parallel.
956  */
957 
958 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
959 			loff_t *ppos)
960 {
961 	int i;
962 	struct inode *inode = file->f_path.dentry->d_inode;
963 	struct tty_struct *tty = file_tty(file);
964 	struct tty_ldisc *ld;
965 
966 	if (tty_paranoia_check(tty, inode, "tty_read"))
967 		return -EIO;
968 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
969 		return -EIO;
970 
971 	/* We want to wait for the line discipline to sort out in this
972 	   situation */
973 	ld = tty_ldisc_ref_wait(tty);
974 	if (ld->ops->read)
975 		i = (ld->ops->read)(tty, file, buf, count);
976 	else
977 		i = -EIO;
978 	tty_ldisc_deref(ld);
979 	if (i > 0)
980 		inode->i_atime = current_fs_time(inode->i_sb);
981 	return i;
982 }
983 
984 void tty_write_unlock(struct tty_struct *tty)
985 	__releases(&tty->atomic_write_lock)
986 {
987 	mutex_unlock(&tty->atomic_write_lock);
988 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
989 }
990 
991 int tty_write_lock(struct tty_struct *tty, int ndelay)
992 	__acquires(&tty->atomic_write_lock)
993 {
994 	if (!mutex_trylock(&tty->atomic_write_lock)) {
995 		if (ndelay)
996 			return -EAGAIN;
997 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
998 			return -ERESTARTSYS;
999 	}
1000 	return 0;
1001 }
1002 
1003 /*
1004  * Split writes up in sane blocksizes to avoid
1005  * denial-of-service type attacks
1006  */
1007 static inline ssize_t do_tty_write(
1008 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1009 	struct tty_struct *tty,
1010 	struct file *file,
1011 	const char __user *buf,
1012 	size_t count)
1013 {
1014 	ssize_t ret, written = 0;
1015 	unsigned int chunk;
1016 
1017 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1018 	if (ret < 0)
1019 		return ret;
1020 
1021 	/*
1022 	 * We chunk up writes into a temporary buffer. This
1023 	 * simplifies low-level drivers immensely, since they
1024 	 * don't have locking issues and user mode accesses.
1025 	 *
1026 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1027 	 * big chunk-size..
1028 	 *
1029 	 * The default chunk-size is 2kB, because the NTTY
1030 	 * layer has problems with bigger chunks. It will
1031 	 * claim to be able to handle more characters than
1032 	 * it actually does.
1033 	 *
1034 	 * FIXME: This can probably go away now except that 64K chunks
1035 	 * are too likely to fail unless switched to vmalloc...
1036 	 */
1037 	chunk = 2048;
1038 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1039 		chunk = 65536;
1040 	if (count < chunk)
1041 		chunk = count;
1042 
1043 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1044 	if (tty->write_cnt < chunk) {
1045 		unsigned char *buf_chunk;
1046 
1047 		if (chunk < 1024)
1048 			chunk = 1024;
1049 
1050 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1051 		if (!buf_chunk) {
1052 			ret = -ENOMEM;
1053 			goto out;
1054 		}
1055 		kfree(tty->write_buf);
1056 		tty->write_cnt = chunk;
1057 		tty->write_buf = buf_chunk;
1058 	}
1059 
1060 	/* Do the write .. */
1061 	for (;;) {
1062 		size_t size = count;
1063 		if (size > chunk)
1064 			size = chunk;
1065 		ret = -EFAULT;
1066 		if (copy_from_user(tty->write_buf, buf, size))
1067 			break;
1068 		ret = write(tty, file, tty->write_buf, size);
1069 		if (ret <= 0)
1070 			break;
1071 		written += ret;
1072 		buf += ret;
1073 		count -= ret;
1074 		if (!count)
1075 			break;
1076 		ret = -ERESTARTSYS;
1077 		if (signal_pending(current))
1078 			break;
1079 		cond_resched();
1080 	}
1081 	if (written) {
1082 		struct inode *inode = file->f_path.dentry->d_inode;
1083 		inode->i_mtime = current_fs_time(inode->i_sb);
1084 		ret = written;
1085 	}
1086 out:
1087 	tty_write_unlock(tty);
1088 	return ret;
1089 }
1090 
1091 /**
1092  * tty_write_message - write a message to a certain tty, not just the console.
1093  * @tty: the destination tty_struct
1094  * @msg: the message to write
1095  *
1096  * This is used for messages that need to be redirected to a specific tty.
1097  * We don't put it into the syslog queue right now maybe in the future if
1098  * really needed.
1099  *
1100  * We must still hold the BTM and test the CLOSING flag for the moment.
1101  */
1102 
1103 void tty_write_message(struct tty_struct *tty, char *msg)
1104 {
1105 	if (tty) {
1106 		mutex_lock(&tty->atomic_write_lock);
1107 		tty_lock();
1108 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1109 			tty_unlock();
1110 			tty->ops->write(tty, msg, strlen(msg));
1111 		} else
1112 			tty_unlock();
1113 		tty_write_unlock(tty);
1114 	}
1115 	return;
1116 }
1117 
1118 
1119 /**
1120  *	tty_write		-	write method for tty device file
1121  *	@file: tty file pointer
1122  *	@buf: user data to write
1123  *	@count: bytes to write
1124  *	@ppos: unused
1125  *
1126  *	Write data to a tty device via the line discipline.
1127  *
1128  *	Locking:
1129  *		Locks the line discipline as required
1130  *		Writes to the tty driver are serialized by the atomic_write_lock
1131  *	and are then processed in chunks to the device. The line discipline
1132  *	write method will not be invoked in parallel for each device.
1133  */
1134 
1135 static ssize_t tty_write(struct file *file, const char __user *buf,
1136 						size_t count, loff_t *ppos)
1137 {
1138 	struct inode *inode = file->f_path.dentry->d_inode;
1139 	struct tty_struct *tty = file_tty(file);
1140  	struct tty_ldisc *ld;
1141 	ssize_t ret;
1142 
1143 	if (tty_paranoia_check(tty, inode, "tty_write"))
1144 		return -EIO;
1145 	if (!tty || !tty->ops->write ||
1146 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1147 			return -EIO;
1148 	/* Short term debug to catch buggy drivers */
1149 	if (tty->ops->write_room == NULL)
1150 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1151 			tty->driver->name);
1152 	ld = tty_ldisc_ref_wait(tty);
1153 	if (!ld->ops->write)
1154 		ret = -EIO;
1155 	else
1156 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1157 	tty_ldisc_deref(ld);
1158 	return ret;
1159 }
1160 
1161 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1162 						size_t count, loff_t *ppos)
1163 {
1164 	struct file *p = NULL;
1165 
1166 	spin_lock(&redirect_lock);
1167 	if (redirect) {
1168 		get_file(redirect);
1169 		p = redirect;
1170 	}
1171 	spin_unlock(&redirect_lock);
1172 
1173 	if (p) {
1174 		ssize_t res;
1175 		res = vfs_write(p, buf, count, &p->f_pos);
1176 		fput(p);
1177 		return res;
1178 	}
1179 	return tty_write(file, buf, count, ppos);
1180 }
1181 
1182 static char ptychar[] = "pqrstuvwxyzabcde";
1183 
1184 /**
1185  *	pty_line_name	-	generate name for a pty
1186  *	@driver: the tty driver in use
1187  *	@index: the minor number
1188  *	@p: output buffer of at least 6 bytes
1189  *
1190  *	Generate a name from a driver reference and write it to the output
1191  *	buffer.
1192  *
1193  *	Locking: None
1194  */
1195 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1196 {
1197 	int i = index + driver->name_base;
1198 	/* ->name is initialized to "ttyp", but "tty" is expected */
1199 	sprintf(p, "%s%c%x",
1200 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1201 		ptychar[i >> 4 & 0xf], i & 0xf);
1202 }
1203 
1204 /**
1205  *	tty_line_name	-	generate name for a tty
1206  *	@driver: the tty driver in use
1207  *	@index: the minor number
1208  *	@p: output buffer of at least 7 bytes
1209  *
1210  *	Generate a name from a driver reference and write it to the output
1211  *	buffer.
1212  *
1213  *	Locking: None
1214  */
1215 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1216 {
1217 	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1218 }
1219 
1220 /**
1221  *	tty_driver_lookup_tty() - find an existing tty, if any
1222  *	@driver: the driver for the tty
1223  *	@idx:	 the minor number
1224  *
1225  *	Return the tty, if found or ERR_PTR() otherwise.
1226  *
1227  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1228  *	be held until the 'fast-open' is also done. Will change once we
1229  *	have refcounting in the driver and per driver locking
1230  */
1231 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1232 		struct inode *inode, int idx)
1233 {
1234 	struct tty_struct *tty;
1235 
1236 	if (driver->ops->lookup)
1237 		return driver->ops->lookup(driver, inode, idx);
1238 
1239 	tty = driver->ttys[idx];
1240 	return tty;
1241 }
1242 
1243 /**
1244  *	tty_init_termios	-  helper for termios setup
1245  *	@tty: the tty to set up
1246  *
1247  *	Initialise the termios structures for this tty. Thus runs under
1248  *	the tty_mutex currently so we can be relaxed about ordering.
1249  */
1250 
1251 int tty_init_termios(struct tty_struct *tty)
1252 {
1253 	struct ktermios *tp;
1254 	int idx = tty->index;
1255 
1256 	tp = tty->driver->termios[idx];
1257 	if (tp == NULL) {
1258 		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1259 		if (tp == NULL)
1260 			return -ENOMEM;
1261 		memcpy(tp, &tty->driver->init_termios,
1262 						sizeof(struct ktermios));
1263 		tty->driver->termios[idx] = tp;
1264 	}
1265 	tty->termios = tp;
1266 	tty->termios_locked = tp + 1;
1267 
1268 	/* Compatibility until drivers always set this */
1269 	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1270 	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL_GPL(tty_init_termios);
1274 
1275 /**
1276  *	tty_driver_install_tty() - install a tty entry in the driver
1277  *	@driver: the driver for the tty
1278  *	@tty: the tty
1279  *
1280  *	Install a tty object into the driver tables. The tty->index field
1281  *	will be set by the time this is called. This method is responsible
1282  *	for ensuring any need additional structures are allocated and
1283  *	configured.
1284  *
1285  *	Locking: tty_mutex for now
1286  */
1287 static int tty_driver_install_tty(struct tty_driver *driver,
1288 						struct tty_struct *tty)
1289 {
1290 	int idx = tty->index;
1291 	int ret;
1292 
1293 	if (driver->ops->install) {
1294 		ret = driver->ops->install(driver, tty);
1295 		return ret;
1296 	}
1297 
1298 	if (tty_init_termios(tty) == 0) {
1299 		tty_driver_kref_get(driver);
1300 		tty->count++;
1301 		driver->ttys[idx] = tty;
1302 		return 0;
1303 	}
1304 	return -ENOMEM;
1305 }
1306 
1307 /**
1308  *	tty_driver_remove_tty() - remove a tty from the driver tables
1309  *	@driver: the driver for the tty
1310  *	@idx:	 the minor number
1311  *
1312  *	Remvoe a tty object from the driver tables. The tty->index field
1313  *	will be set by the time this is called.
1314  *
1315  *	Locking: tty_mutex for now
1316  */
1317 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1318 {
1319 	if (driver->ops->remove)
1320 		driver->ops->remove(driver, tty);
1321 	else
1322 		driver->ttys[tty->index] = NULL;
1323 }
1324 
1325 /*
1326  * 	tty_reopen()	- fast re-open of an open tty
1327  * 	@tty	- the tty to open
1328  *
1329  *	Return 0 on success, -errno on error.
1330  *
1331  *	Locking: tty_mutex must be held from the time the tty was found
1332  *		 till this open completes.
1333  */
1334 static int tty_reopen(struct tty_struct *tty)
1335 {
1336 	struct tty_driver *driver = tty->driver;
1337 
1338 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1339 			test_bit(TTY_HUPPING, &tty->flags) ||
1340 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1341 		return -EIO;
1342 
1343 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1344 	    driver->subtype == PTY_TYPE_MASTER) {
1345 		/*
1346 		 * special case for PTY masters: only one open permitted,
1347 		 * and the slave side open count is incremented as well.
1348 		 */
1349 		if (tty->count)
1350 			return -EIO;
1351 
1352 		tty->link->count++;
1353 	}
1354 	tty->count++;
1355 	tty->driver = driver; /* N.B. why do this every time?? */
1356 
1357 	mutex_lock(&tty->ldisc_mutex);
1358 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1359 	mutex_unlock(&tty->ldisc_mutex);
1360 
1361 	return 0;
1362 }
1363 
1364 /**
1365  *	tty_init_dev		-	initialise a tty device
1366  *	@driver: tty driver we are opening a device on
1367  *	@idx: device index
1368  *	@ret_tty: returned tty structure
1369  *	@first_ok: ok to open a new device (used by ptmx)
1370  *
1371  *	Prepare a tty device. This may not be a "new" clean device but
1372  *	could also be an active device. The pty drivers require special
1373  *	handling because of this.
1374  *
1375  *	Locking:
1376  *		The function is called under the tty_mutex, which
1377  *	protects us from the tty struct or driver itself going away.
1378  *
1379  *	On exit the tty device has the line discipline attached and
1380  *	a reference count of 1. If a pair was created for pty/tty use
1381  *	and the other was a pty master then it too has a reference count of 1.
1382  *
1383  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1384  * failed open.  The new code protects the open with a mutex, so it's
1385  * really quite straightforward.  The mutex locking can probably be
1386  * relaxed for the (most common) case of reopening a tty.
1387  */
1388 
1389 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1390 								int first_ok)
1391 {
1392 	struct tty_struct *tty;
1393 	int retval;
1394 
1395 	/* Check if pty master is being opened multiple times */
1396 	if (driver->subtype == PTY_TYPE_MASTER &&
1397 		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1398 		return ERR_PTR(-EIO);
1399 	}
1400 
1401 	/*
1402 	 * First time open is complex, especially for PTY devices.
1403 	 * This code guarantees that either everything succeeds and the
1404 	 * TTY is ready for operation, or else the table slots are vacated
1405 	 * and the allocated memory released.  (Except that the termios
1406 	 * and locked termios may be retained.)
1407 	 */
1408 
1409 	if (!try_module_get(driver->owner))
1410 		return ERR_PTR(-ENODEV);
1411 
1412 	tty = alloc_tty_struct();
1413 	if (!tty) {
1414 		retval = -ENOMEM;
1415 		goto err_module_put;
1416 	}
1417 	initialize_tty_struct(tty, driver, idx);
1418 
1419 	retval = tty_driver_install_tty(driver, tty);
1420 	if (retval < 0)
1421 		goto err_deinit_tty;
1422 
1423 	/*
1424 	 * Structures all installed ... call the ldisc open routines.
1425 	 * If we fail here just call release_tty to clean up.  No need
1426 	 * to decrement the use counts, as release_tty doesn't care.
1427 	 */
1428 	retval = tty_ldisc_setup(tty, tty->link);
1429 	if (retval)
1430 		goto err_release_tty;
1431 	return tty;
1432 
1433 err_deinit_tty:
1434 	deinitialize_tty_struct(tty);
1435 	free_tty_struct(tty);
1436 err_module_put:
1437 	module_put(driver->owner);
1438 	return ERR_PTR(retval);
1439 
1440 	/* call the tty release_tty routine to clean out this slot */
1441 err_release_tty:
1442 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1443 				 "clearing slot %d\n", idx);
1444 	release_tty(tty, idx);
1445 	return ERR_PTR(retval);
1446 }
1447 
1448 void tty_free_termios(struct tty_struct *tty)
1449 {
1450 	struct ktermios *tp;
1451 	int idx = tty->index;
1452 	/* Kill this flag and push into drivers for locking etc */
1453 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1454 		/* FIXME: Locking on ->termios array */
1455 		tp = tty->termios;
1456 		tty->driver->termios[idx] = NULL;
1457 		kfree(tp);
1458 	}
1459 }
1460 EXPORT_SYMBOL(tty_free_termios);
1461 
1462 void tty_shutdown(struct tty_struct *tty)
1463 {
1464 	tty_driver_remove_tty(tty->driver, tty);
1465 	tty_free_termios(tty);
1466 }
1467 EXPORT_SYMBOL(tty_shutdown);
1468 
1469 /**
1470  *	release_one_tty		-	release tty structure memory
1471  *	@kref: kref of tty we are obliterating
1472  *
1473  *	Releases memory associated with a tty structure, and clears out the
1474  *	driver table slots. This function is called when a device is no longer
1475  *	in use. It also gets called when setup of a device fails.
1476  *
1477  *	Locking:
1478  *		tty_mutex - sometimes only
1479  *		takes the file list lock internally when working on the list
1480  *	of ttys that the driver keeps.
1481  *
1482  *	This method gets called from a work queue so that the driver private
1483  *	cleanup ops can sleep (needed for USB at least)
1484  */
1485 static void release_one_tty(struct work_struct *work)
1486 {
1487 	struct tty_struct *tty =
1488 		container_of(work, struct tty_struct, hangup_work);
1489 	struct tty_driver *driver = tty->driver;
1490 
1491 	if (tty->ops->cleanup)
1492 		tty->ops->cleanup(tty);
1493 
1494 	tty->magic = 0;
1495 	tty_driver_kref_put(driver);
1496 	module_put(driver->owner);
1497 
1498 	spin_lock(&tty_files_lock);
1499 	list_del_init(&tty->tty_files);
1500 	spin_unlock(&tty_files_lock);
1501 
1502 	put_pid(tty->pgrp);
1503 	put_pid(tty->session);
1504 	free_tty_struct(tty);
1505 }
1506 
1507 static void queue_release_one_tty(struct kref *kref)
1508 {
1509 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1510 
1511 	if (tty->ops->shutdown)
1512 		tty->ops->shutdown(tty);
1513 	else
1514 		tty_shutdown(tty);
1515 
1516 	/* The hangup queue is now free so we can reuse it rather than
1517 	   waste a chunk of memory for each port */
1518 	INIT_WORK(&tty->hangup_work, release_one_tty);
1519 	schedule_work(&tty->hangup_work);
1520 }
1521 
1522 /**
1523  *	tty_kref_put		-	release a tty kref
1524  *	@tty: tty device
1525  *
1526  *	Release a reference to a tty device and if need be let the kref
1527  *	layer destruct the object for us
1528  */
1529 
1530 void tty_kref_put(struct tty_struct *tty)
1531 {
1532 	if (tty)
1533 		kref_put(&tty->kref, queue_release_one_tty);
1534 }
1535 EXPORT_SYMBOL(tty_kref_put);
1536 
1537 /**
1538  *	release_tty		-	release tty structure memory
1539  *
1540  *	Release both @tty and a possible linked partner (think pty pair),
1541  *	and decrement the refcount of the backing module.
1542  *
1543  *	Locking:
1544  *		tty_mutex - sometimes only
1545  *		takes the file list lock internally when working on the list
1546  *	of ttys that the driver keeps.
1547  *		FIXME: should we require tty_mutex is held here ??
1548  *
1549  */
1550 static void release_tty(struct tty_struct *tty, int idx)
1551 {
1552 	/* This should always be true but check for the moment */
1553 	WARN_ON(tty->index != idx);
1554 
1555 	if (tty->link)
1556 		tty_kref_put(tty->link);
1557 	tty_kref_put(tty);
1558 }
1559 
1560 /**
1561  *	tty_release		-	vfs callback for close
1562  *	@inode: inode of tty
1563  *	@filp: file pointer for handle to tty
1564  *
1565  *	Called the last time each file handle is closed that references
1566  *	this tty. There may however be several such references.
1567  *
1568  *	Locking:
1569  *		Takes bkl. See tty_release_dev
1570  *
1571  * Even releasing the tty structures is a tricky business.. We have
1572  * to be very careful that the structures are all released at the
1573  * same time, as interrupts might otherwise get the wrong pointers.
1574  *
1575  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1576  * lead to double frees or releasing memory still in use.
1577  */
1578 
1579 int tty_release(struct inode *inode, struct file *filp)
1580 {
1581 	struct tty_struct *tty = file_tty(filp);
1582 	struct tty_struct *o_tty;
1583 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1584 	int	devpts;
1585 	int	idx;
1586 	char	buf[64];
1587 
1588 	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1589 		return 0;
1590 
1591 	tty_lock();
1592 	check_tty_count(tty, "tty_release_dev");
1593 
1594 	__tty_fasync(-1, filp, 0);
1595 
1596 	idx = tty->index;
1597 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1598 		      tty->driver->subtype == PTY_TYPE_MASTER);
1599 	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1600 	o_tty = tty->link;
1601 
1602 #ifdef TTY_PARANOIA_CHECK
1603 	if (idx < 0 || idx >= tty->driver->num) {
1604 		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1605 				  "free (%s)\n", tty->name);
1606 		tty_unlock();
1607 		return 0;
1608 	}
1609 	if (!devpts) {
1610 		if (tty != tty->driver->ttys[idx]) {
1611 			tty_unlock();
1612 			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1613 			       "for (%s)\n", idx, tty->name);
1614 			return 0;
1615 		}
1616 		if (tty->termios != tty->driver->termios[idx]) {
1617 			tty_unlock();
1618 			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1619 			       "for (%s)\n",
1620 			       idx, tty->name);
1621 			return 0;
1622 		}
1623 	}
1624 #endif
1625 
1626 #ifdef TTY_DEBUG_HANGUP
1627 	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1628 	       tty_name(tty, buf), tty->count);
1629 #endif
1630 
1631 #ifdef TTY_PARANOIA_CHECK
1632 	if (tty->driver->other &&
1633 	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1634 		if (o_tty != tty->driver->other->ttys[idx]) {
1635 			tty_unlock();
1636 			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1637 					  "not o_tty for (%s)\n",
1638 			       idx, tty->name);
1639 			return 0 ;
1640 		}
1641 		if (o_tty->termios != tty->driver->other->termios[idx]) {
1642 			tty_unlock();
1643 			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1644 					  "not o_termios for (%s)\n",
1645 			       idx, tty->name);
1646 			return 0;
1647 		}
1648 		if (o_tty->link != tty) {
1649 			tty_unlock();
1650 			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1651 			return 0;
1652 		}
1653 	}
1654 #endif
1655 	if (tty->ops->close)
1656 		tty->ops->close(tty, filp);
1657 
1658 	tty_unlock();
1659 	/*
1660 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1661 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1662 	 * wait queues and kick everyone out _before_ actually starting to
1663 	 * close.  This ensures that we won't block while releasing the tty
1664 	 * structure.
1665 	 *
1666 	 * The test for the o_tty closing is necessary, since the master and
1667 	 * slave sides may close in any order.  If the slave side closes out
1668 	 * first, its count will be one, since the master side holds an open.
1669 	 * Thus this test wouldn't be triggered at the time the slave closes,
1670 	 * so we do it now.
1671 	 *
1672 	 * Note that it's possible for the tty to be opened again while we're
1673 	 * flushing out waiters.  By recalculating the closing flags before
1674 	 * each iteration we avoid any problems.
1675 	 */
1676 	while (1) {
1677 		/* Guard against races with tty->count changes elsewhere and
1678 		   opens on /dev/tty */
1679 
1680 		mutex_lock(&tty_mutex);
1681 		tty_lock();
1682 		tty_closing = tty->count <= 1;
1683 		o_tty_closing = o_tty &&
1684 			(o_tty->count <= (pty_master ? 1 : 0));
1685 		do_sleep = 0;
1686 
1687 		if (tty_closing) {
1688 			if (waitqueue_active(&tty->read_wait)) {
1689 				wake_up_poll(&tty->read_wait, POLLIN);
1690 				do_sleep++;
1691 			}
1692 			if (waitqueue_active(&tty->write_wait)) {
1693 				wake_up_poll(&tty->write_wait, POLLOUT);
1694 				do_sleep++;
1695 			}
1696 		}
1697 		if (o_tty_closing) {
1698 			if (waitqueue_active(&o_tty->read_wait)) {
1699 				wake_up_poll(&o_tty->read_wait, POLLIN);
1700 				do_sleep++;
1701 			}
1702 			if (waitqueue_active(&o_tty->write_wait)) {
1703 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1704 				do_sleep++;
1705 			}
1706 		}
1707 		if (!do_sleep)
1708 			break;
1709 
1710 		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1711 				    "active!\n", tty_name(tty, buf));
1712 		tty_unlock();
1713 		mutex_unlock(&tty_mutex);
1714 		schedule();
1715 	}
1716 
1717 	/*
1718 	 * The closing flags are now consistent with the open counts on
1719 	 * both sides, and we've completed the last operation that could
1720 	 * block, so it's safe to proceed with closing.
1721 	 */
1722 	if (pty_master) {
1723 		if (--o_tty->count < 0) {
1724 			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1725 					    "(%d) for %s\n",
1726 			       o_tty->count, tty_name(o_tty, buf));
1727 			o_tty->count = 0;
1728 		}
1729 	}
1730 	if (--tty->count < 0) {
1731 		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1732 		       tty->count, tty_name(tty, buf));
1733 		tty->count = 0;
1734 	}
1735 
1736 	/*
1737 	 * We've decremented tty->count, so we need to remove this file
1738 	 * descriptor off the tty->tty_files list; this serves two
1739 	 * purposes:
1740 	 *  - check_tty_count sees the correct number of file descriptors
1741 	 *    associated with this tty.
1742 	 *  - do_tty_hangup no longer sees this file descriptor as
1743 	 *    something that needs to be handled for hangups.
1744 	 */
1745 	tty_del_file(filp);
1746 
1747 	/*
1748 	 * Perform some housekeeping before deciding whether to return.
1749 	 *
1750 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1751 	 * case of a pty we may have to wait around for the other side
1752 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1753 	 */
1754 	if (tty_closing)
1755 		set_bit(TTY_CLOSING, &tty->flags);
1756 	if (o_tty_closing)
1757 		set_bit(TTY_CLOSING, &o_tty->flags);
1758 
1759 	/*
1760 	 * If _either_ side is closing, make sure there aren't any
1761 	 * processes that still think tty or o_tty is their controlling
1762 	 * tty.
1763 	 */
1764 	if (tty_closing || o_tty_closing) {
1765 		read_lock(&tasklist_lock);
1766 		session_clear_tty(tty->session);
1767 		if (o_tty)
1768 			session_clear_tty(o_tty->session);
1769 		read_unlock(&tasklist_lock);
1770 	}
1771 
1772 	mutex_unlock(&tty_mutex);
1773 
1774 	/* check whether both sides are closing ... */
1775 	if (!tty_closing || (o_tty && !o_tty_closing)) {
1776 		tty_unlock();
1777 		return 0;
1778 	}
1779 
1780 #ifdef TTY_DEBUG_HANGUP
1781 	printk(KERN_DEBUG "freeing tty structure...");
1782 #endif
1783 	/*
1784 	 * Ask the line discipline code to release its structures
1785 	 */
1786 	tty_ldisc_release(tty, o_tty);
1787 	/*
1788 	 * The release_tty function takes care of the details of clearing
1789 	 * the slots and preserving the termios structure.
1790 	 */
1791 	release_tty(tty, idx);
1792 
1793 	/* Make this pty number available for reallocation */
1794 	if (devpts)
1795 		devpts_kill_index(inode, idx);
1796 	tty_unlock();
1797 	return 0;
1798 }
1799 
1800 /**
1801  *	tty_open		-	open a tty device
1802  *	@inode: inode of device file
1803  *	@filp: file pointer to tty
1804  *
1805  *	tty_open and tty_release keep up the tty count that contains the
1806  *	number of opens done on a tty. We cannot use the inode-count, as
1807  *	different inodes might point to the same tty.
1808  *
1809  *	Open-counting is needed for pty masters, as well as for keeping
1810  *	track of serial lines: DTR is dropped when the last close happens.
1811  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1812  *
1813  *	The termios state of a pty is reset on first open so that
1814  *	settings don't persist across reuse.
1815  *
1816  *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1817  *		 tty->count should protect the rest.
1818  *		 ->siglock protects ->signal/->sighand
1819  */
1820 
1821 static int tty_open(struct inode *inode, struct file *filp)
1822 {
1823 	struct tty_struct *tty = NULL;
1824 	int noctty, retval;
1825 	struct tty_driver *driver;
1826 	int index;
1827 	dev_t device = inode->i_rdev;
1828 	unsigned saved_flags = filp->f_flags;
1829 
1830 	nonseekable_open(inode, filp);
1831 
1832 retry_open:
1833 	retval = tty_alloc_file(filp);
1834 	if (retval)
1835 		return -ENOMEM;
1836 
1837 	noctty = filp->f_flags & O_NOCTTY;
1838 	index  = -1;
1839 	retval = 0;
1840 
1841 	mutex_lock(&tty_mutex);
1842 	tty_lock();
1843 
1844 	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1845 		tty = get_current_tty();
1846 		if (!tty) {
1847 			tty_unlock();
1848 			mutex_unlock(&tty_mutex);
1849 			tty_free_file(filp);
1850 			return -ENXIO;
1851 		}
1852 		driver = tty_driver_kref_get(tty->driver);
1853 		index = tty->index;
1854 		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1855 		/* noctty = 1; */
1856 		/* FIXME: Should we take a driver reference ? */
1857 		tty_kref_put(tty);
1858 		goto got_driver;
1859 	}
1860 #ifdef CONFIG_VT
1861 	if (device == MKDEV(TTY_MAJOR, 0)) {
1862 		extern struct tty_driver *console_driver;
1863 		driver = tty_driver_kref_get(console_driver);
1864 		index = fg_console;
1865 		noctty = 1;
1866 		goto got_driver;
1867 	}
1868 #endif
1869 	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1870 		struct tty_driver *console_driver = console_device(&index);
1871 		if (console_driver) {
1872 			driver = tty_driver_kref_get(console_driver);
1873 			if (driver) {
1874 				/* Don't let /dev/console block */
1875 				filp->f_flags |= O_NONBLOCK;
1876 				noctty = 1;
1877 				goto got_driver;
1878 			}
1879 		}
1880 		tty_unlock();
1881 		mutex_unlock(&tty_mutex);
1882 		tty_free_file(filp);
1883 		return -ENODEV;
1884 	}
1885 
1886 	driver = get_tty_driver(device, &index);
1887 	if (!driver) {
1888 		tty_unlock();
1889 		mutex_unlock(&tty_mutex);
1890 		tty_free_file(filp);
1891 		return -ENODEV;
1892 	}
1893 got_driver:
1894 	if (!tty) {
1895 		/* check whether we're reopening an existing tty */
1896 		tty = tty_driver_lookup_tty(driver, inode, index);
1897 
1898 		if (IS_ERR(tty)) {
1899 			tty_unlock();
1900 			mutex_unlock(&tty_mutex);
1901 			tty_driver_kref_put(driver);
1902 			tty_free_file(filp);
1903 			return PTR_ERR(tty);
1904 		}
1905 	}
1906 
1907 	if (tty) {
1908 		retval = tty_reopen(tty);
1909 		if (retval)
1910 			tty = ERR_PTR(retval);
1911 	} else
1912 		tty = tty_init_dev(driver, index, 0);
1913 
1914 	mutex_unlock(&tty_mutex);
1915 	tty_driver_kref_put(driver);
1916 	if (IS_ERR(tty)) {
1917 		tty_unlock();
1918 		tty_free_file(filp);
1919 		return PTR_ERR(tty);
1920 	}
1921 
1922 	tty_add_file(tty, filp);
1923 
1924 	check_tty_count(tty, "tty_open");
1925 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1926 	    tty->driver->subtype == PTY_TYPE_MASTER)
1927 		noctty = 1;
1928 #ifdef TTY_DEBUG_HANGUP
1929 	printk(KERN_DEBUG "opening %s...", tty->name);
1930 #endif
1931 	if (tty->ops->open)
1932 		retval = tty->ops->open(tty, filp);
1933 	else
1934 		retval = -ENODEV;
1935 	filp->f_flags = saved_flags;
1936 
1937 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1938 						!capable(CAP_SYS_ADMIN))
1939 		retval = -EBUSY;
1940 
1941 	if (retval) {
1942 #ifdef TTY_DEBUG_HANGUP
1943 		printk(KERN_DEBUG "error %d in opening %s...", retval,
1944 		       tty->name);
1945 #endif
1946 		tty_unlock(); /* need to call tty_release without BTM */
1947 		tty_release(inode, filp);
1948 		if (retval != -ERESTARTSYS)
1949 			return retval;
1950 
1951 		if (signal_pending(current))
1952 			return retval;
1953 
1954 		schedule();
1955 		/*
1956 		 * Need to reset f_op in case a hangup happened.
1957 		 */
1958 		tty_lock();
1959 		if (filp->f_op == &hung_up_tty_fops)
1960 			filp->f_op = &tty_fops;
1961 		tty_unlock();
1962 		goto retry_open;
1963 	}
1964 	tty_unlock();
1965 
1966 
1967 	mutex_lock(&tty_mutex);
1968 	tty_lock();
1969 	spin_lock_irq(&current->sighand->siglock);
1970 	if (!noctty &&
1971 	    current->signal->leader &&
1972 	    !current->signal->tty &&
1973 	    tty->session == NULL)
1974 		__proc_set_tty(current, tty);
1975 	spin_unlock_irq(&current->sighand->siglock);
1976 	tty_unlock();
1977 	mutex_unlock(&tty_mutex);
1978 	return 0;
1979 }
1980 
1981 
1982 
1983 /**
1984  *	tty_poll	-	check tty status
1985  *	@filp: file being polled
1986  *	@wait: poll wait structures to update
1987  *
1988  *	Call the line discipline polling method to obtain the poll
1989  *	status of the device.
1990  *
1991  *	Locking: locks called line discipline but ldisc poll method
1992  *	may be re-entered freely by other callers.
1993  */
1994 
1995 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1996 {
1997 	struct tty_struct *tty = file_tty(filp);
1998 	struct tty_ldisc *ld;
1999 	int ret = 0;
2000 
2001 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2002 		return 0;
2003 
2004 	ld = tty_ldisc_ref_wait(tty);
2005 	if (ld->ops->poll)
2006 		ret = (ld->ops->poll)(tty, filp, wait);
2007 	tty_ldisc_deref(ld);
2008 	return ret;
2009 }
2010 
2011 static int __tty_fasync(int fd, struct file *filp, int on)
2012 {
2013 	struct tty_struct *tty = file_tty(filp);
2014 	unsigned long flags;
2015 	int retval = 0;
2016 
2017 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2018 		goto out;
2019 
2020 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2021 	if (retval <= 0)
2022 		goto out;
2023 
2024 	if (on) {
2025 		enum pid_type type;
2026 		struct pid *pid;
2027 		if (!waitqueue_active(&tty->read_wait))
2028 			tty->minimum_to_wake = 1;
2029 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2030 		if (tty->pgrp) {
2031 			pid = tty->pgrp;
2032 			type = PIDTYPE_PGID;
2033 		} else {
2034 			pid = task_pid(current);
2035 			type = PIDTYPE_PID;
2036 		}
2037 		get_pid(pid);
2038 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2039 		retval = __f_setown(filp, pid, type, 0);
2040 		put_pid(pid);
2041 		if (retval)
2042 			goto out;
2043 	} else {
2044 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2045 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2046 	}
2047 	retval = 0;
2048 out:
2049 	return retval;
2050 }
2051 
2052 static int tty_fasync(int fd, struct file *filp, int on)
2053 {
2054 	int retval;
2055 	tty_lock();
2056 	retval = __tty_fasync(fd, filp, on);
2057 	tty_unlock();
2058 	return retval;
2059 }
2060 
2061 /**
2062  *	tiocsti			-	fake input character
2063  *	@tty: tty to fake input into
2064  *	@p: pointer to character
2065  *
2066  *	Fake input to a tty device. Does the necessary locking and
2067  *	input management.
2068  *
2069  *	FIXME: does not honour flow control ??
2070  *
2071  *	Locking:
2072  *		Called functions take tty_ldisc_lock
2073  *		current->signal->tty check is safe without locks
2074  *
2075  *	FIXME: may race normal receive processing
2076  */
2077 
2078 static int tiocsti(struct tty_struct *tty, char __user *p)
2079 {
2080 	char ch, mbz = 0;
2081 	struct tty_ldisc *ld;
2082 
2083 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2084 		return -EPERM;
2085 	if (get_user(ch, p))
2086 		return -EFAULT;
2087 	tty_audit_tiocsti(tty, ch);
2088 	ld = tty_ldisc_ref_wait(tty);
2089 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2090 	tty_ldisc_deref(ld);
2091 	return 0;
2092 }
2093 
2094 /**
2095  *	tiocgwinsz		-	implement window query ioctl
2096  *	@tty; tty
2097  *	@arg: user buffer for result
2098  *
2099  *	Copies the kernel idea of the window size into the user buffer.
2100  *
2101  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2102  *		is consistent.
2103  */
2104 
2105 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2106 {
2107 	int err;
2108 
2109 	mutex_lock(&tty->termios_mutex);
2110 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2111 	mutex_unlock(&tty->termios_mutex);
2112 
2113 	return err ? -EFAULT: 0;
2114 }
2115 
2116 /**
2117  *	tty_do_resize		-	resize event
2118  *	@tty: tty being resized
2119  *	@rows: rows (character)
2120  *	@cols: cols (character)
2121  *
2122  *	Update the termios variables and send the necessary signals to
2123  *	peform a terminal resize correctly
2124  */
2125 
2126 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2127 {
2128 	struct pid *pgrp;
2129 	unsigned long flags;
2130 
2131 	/* Lock the tty */
2132 	mutex_lock(&tty->termios_mutex);
2133 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2134 		goto done;
2135 	/* Get the PID values and reference them so we can
2136 	   avoid holding the tty ctrl lock while sending signals */
2137 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2138 	pgrp = get_pid(tty->pgrp);
2139 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2140 
2141 	if (pgrp)
2142 		kill_pgrp(pgrp, SIGWINCH, 1);
2143 	put_pid(pgrp);
2144 
2145 	tty->winsize = *ws;
2146 done:
2147 	mutex_unlock(&tty->termios_mutex);
2148 	return 0;
2149 }
2150 
2151 /**
2152  *	tiocswinsz		-	implement window size set ioctl
2153  *	@tty; tty side of tty
2154  *	@arg: user buffer for result
2155  *
2156  *	Copies the user idea of the window size to the kernel. Traditionally
2157  *	this is just advisory information but for the Linux console it
2158  *	actually has driver level meaning and triggers a VC resize.
2159  *
2160  *	Locking:
2161  *		Driver dependent. The default do_resize method takes the
2162  *	tty termios mutex and ctrl_lock. The console takes its own lock
2163  *	then calls into the default method.
2164  */
2165 
2166 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2167 {
2168 	struct winsize tmp_ws;
2169 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2170 		return -EFAULT;
2171 
2172 	if (tty->ops->resize)
2173 		return tty->ops->resize(tty, &tmp_ws);
2174 	else
2175 		return tty_do_resize(tty, &tmp_ws);
2176 }
2177 
2178 /**
2179  *	tioccons	-	allow admin to move logical console
2180  *	@file: the file to become console
2181  *
2182  *	Allow the administrator to move the redirected console device
2183  *
2184  *	Locking: uses redirect_lock to guard the redirect information
2185  */
2186 
2187 static int tioccons(struct file *file)
2188 {
2189 	if (!capable(CAP_SYS_ADMIN))
2190 		return -EPERM;
2191 	if (file->f_op->write == redirected_tty_write) {
2192 		struct file *f;
2193 		spin_lock(&redirect_lock);
2194 		f = redirect;
2195 		redirect = NULL;
2196 		spin_unlock(&redirect_lock);
2197 		if (f)
2198 			fput(f);
2199 		return 0;
2200 	}
2201 	spin_lock(&redirect_lock);
2202 	if (redirect) {
2203 		spin_unlock(&redirect_lock);
2204 		return -EBUSY;
2205 	}
2206 	get_file(file);
2207 	redirect = file;
2208 	spin_unlock(&redirect_lock);
2209 	return 0;
2210 }
2211 
2212 /**
2213  *	fionbio		-	non blocking ioctl
2214  *	@file: file to set blocking value
2215  *	@p: user parameter
2216  *
2217  *	Historical tty interfaces had a blocking control ioctl before
2218  *	the generic functionality existed. This piece of history is preserved
2219  *	in the expected tty API of posix OS's.
2220  *
2221  *	Locking: none, the open file handle ensures it won't go away.
2222  */
2223 
2224 static int fionbio(struct file *file, int __user *p)
2225 {
2226 	int nonblock;
2227 
2228 	if (get_user(nonblock, p))
2229 		return -EFAULT;
2230 
2231 	spin_lock(&file->f_lock);
2232 	if (nonblock)
2233 		file->f_flags |= O_NONBLOCK;
2234 	else
2235 		file->f_flags &= ~O_NONBLOCK;
2236 	spin_unlock(&file->f_lock);
2237 	return 0;
2238 }
2239 
2240 /**
2241  *	tiocsctty	-	set controlling tty
2242  *	@tty: tty structure
2243  *	@arg: user argument
2244  *
2245  *	This ioctl is used to manage job control. It permits a session
2246  *	leader to set this tty as the controlling tty for the session.
2247  *
2248  *	Locking:
2249  *		Takes tty_mutex() to protect tty instance
2250  *		Takes tasklist_lock internally to walk sessions
2251  *		Takes ->siglock() when updating signal->tty
2252  */
2253 
2254 static int tiocsctty(struct tty_struct *tty, int arg)
2255 {
2256 	int ret = 0;
2257 	if (current->signal->leader && (task_session(current) == tty->session))
2258 		return ret;
2259 
2260 	mutex_lock(&tty_mutex);
2261 	/*
2262 	 * The process must be a session leader and
2263 	 * not have a controlling tty already.
2264 	 */
2265 	if (!current->signal->leader || current->signal->tty) {
2266 		ret = -EPERM;
2267 		goto unlock;
2268 	}
2269 
2270 	if (tty->session) {
2271 		/*
2272 		 * This tty is already the controlling
2273 		 * tty for another session group!
2274 		 */
2275 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2276 			/*
2277 			 * Steal it away
2278 			 */
2279 			read_lock(&tasklist_lock);
2280 			session_clear_tty(tty->session);
2281 			read_unlock(&tasklist_lock);
2282 		} else {
2283 			ret = -EPERM;
2284 			goto unlock;
2285 		}
2286 	}
2287 	proc_set_tty(current, tty);
2288 unlock:
2289 	mutex_unlock(&tty_mutex);
2290 	return ret;
2291 }
2292 
2293 /**
2294  *	tty_get_pgrp	-	return a ref counted pgrp pid
2295  *	@tty: tty to read
2296  *
2297  *	Returns a refcounted instance of the pid struct for the process
2298  *	group controlling the tty.
2299  */
2300 
2301 struct pid *tty_get_pgrp(struct tty_struct *tty)
2302 {
2303 	unsigned long flags;
2304 	struct pid *pgrp;
2305 
2306 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2307 	pgrp = get_pid(tty->pgrp);
2308 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2309 
2310 	return pgrp;
2311 }
2312 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2313 
2314 /**
2315  *	tiocgpgrp		-	get process group
2316  *	@tty: tty passed by user
2317  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2318  *	@p: returned pid
2319  *
2320  *	Obtain the process group of the tty. If there is no process group
2321  *	return an error.
2322  *
2323  *	Locking: none. Reference to current->signal->tty is safe.
2324  */
2325 
2326 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2327 {
2328 	struct pid *pid;
2329 	int ret;
2330 	/*
2331 	 * (tty == real_tty) is a cheap way of
2332 	 * testing if the tty is NOT a master pty.
2333 	 */
2334 	if (tty == real_tty && current->signal->tty != real_tty)
2335 		return -ENOTTY;
2336 	pid = tty_get_pgrp(real_tty);
2337 	ret =  put_user(pid_vnr(pid), p);
2338 	put_pid(pid);
2339 	return ret;
2340 }
2341 
2342 /**
2343  *	tiocspgrp		-	attempt to set process group
2344  *	@tty: tty passed by user
2345  *	@real_tty: tty side device matching tty passed by user
2346  *	@p: pid pointer
2347  *
2348  *	Set the process group of the tty to the session passed. Only
2349  *	permitted where the tty session is our session.
2350  *
2351  *	Locking: RCU, ctrl lock
2352  */
2353 
2354 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2355 {
2356 	struct pid *pgrp;
2357 	pid_t pgrp_nr;
2358 	int retval = tty_check_change(real_tty);
2359 	unsigned long flags;
2360 
2361 	if (retval == -EIO)
2362 		return -ENOTTY;
2363 	if (retval)
2364 		return retval;
2365 	if (!current->signal->tty ||
2366 	    (current->signal->tty != real_tty) ||
2367 	    (real_tty->session != task_session(current)))
2368 		return -ENOTTY;
2369 	if (get_user(pgrp_nr, p))
2370 		return -EFAULT;
2371 	if (pgrp_nr < 0)
2372 		return -EINVAL;
2373 	rcu_read_lock();
2374 	pgrp = find_vpid(pgrp_nr);
2375 	retval = -ESRCH;
2376 	if (!pgrp)
2377 		goto out_unlock;
2378 	retval = -EPERM;
2379 	if (session_of_pgrp(pgrp) != task_session(current))
2380 		goto out_unlock;
2381 	retval = 0;
2382 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2383 	put_pid(real_tty->pgrp);
2384 	real_tty->pgrp = get_pid(pgrp);
2385 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2386 out_unlock:
2387 	rcu_read_unlock();
2388 	return retval;
2389 }
2390 
2391 /**
2392  *	tiocgsid		-	get session id
2393  *	@tty: tty passed by user
2394  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2395  *	@p: pointer to returned session id
2396  *
2397  *	Obtain the session id of the tty. If there is no session
2398  *	return an error.
2399  *
2400  *	Locking: none. Reference to current->signal->tty is safe.
2401  */
2402 
2403 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2404 {
2405 	/*
2406 	 * (tty == real_tty) is a cheap way of
2407 	 * testing if the tty is NOT a master pty.
2408 	*/
2409 	if (tty == real_tty && current->signal->tty != real_tty)
2410 		return -ENOTTY;
2411 	if (!real_tty->session)
2412 		return -ENOTTY;
2413 	return put_user(pid_vnr(real_tty->session), p);
2414 }
2415 
2416 /**
2417  *	tiocsetd	-	set line discipline
2418  *	@tty: tty device
2419  *	@p: pointer to user data
2420  *
2421  *	Set the line discipline according to user request.
2422  *
2423  *	Locking: see tty_set_ldisc, this function is just a helper
2424  */
2425 
2426 static int tiocsetd(struct tty_struct *tty, int __user *p)
2427 {
2428 	int ldisc;
2429 	int ret;
2430 
2431 	if (get_user(ldisc, p))
2432 		return -EFAULT;
2433 
2434 	ret = tty_set_ldisc(tty, ldisc);
2435 
2436 	return ret;
2437 }
2438 
2439 /**
2440  *	send_break	-	performed time break
2441  *	@tty: device to break on
2442  *	@duration: timeout in mS
2443  *
2444  *	Perform a timed break on hardware that lacks its own driver level
2445  *	timed break functionality.
2446  *
2447  *	Locking:
2448  *		atomic_write_lock serializes
2449  *
2450  */
2451 
2452 static int send_break(struct tty_struct *tty, unsigned int duration)
2453 {
2454 	int retval;
2455 
2456 	if (tty->ops->break_ctl == NULL)
2457 		return 0;
2458 
2459 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2460 		retval = tty->ops->break_ctl(tty, duration);
2461 	else {
2462 		/* Do the work ourselves */
2463 		if (tty_write_lock(tty, 0) < 0)
2464 			return -EINTR;
2465 		retval = tty->ops->break_ctl(tty, -1);
2466 		if (retval)
2467 			goto out;
2468 		if (!signal_pending(current))
2469 			msleep_interruptible(duration);
2470 		retval = tty->ops->break_ctl(tty, 0);
2471 out:
2472 		tty_write_unlock(tty);
2473 		if (signal_pending(current))
2474 			retval = -EINTR;
2475 	}
2476 	return retval;
2477 }
2478 
2479 /**
2480  *	tty_tiocmget		-	get modem status
2481  *	@tty: tty device
2482  *	@file: user file pointer
2483  *	@p: pointer to result
2484  *
2485  *	Obtain the modem status bits from the tty driver if the feature
2486  *	is supported. Return -EINVAL if it is not available.
2487  *
2488  *	Locking: none (up to the driver)
2489  */
2490 
2491 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2492 {
2493 	int retval = -EINVAL;
2494 
2495 	if (tty->ops->tiocmget) {
2496 		retval = tty->ops->tiocmget(tty);
2497 
2498 		if (retval >= 0)
2499 			retval = put_user(retval, p);
2500 	}
2501 	return retval;
2502 }
2503 
2504 /**
2505  *	tty_tiocmset		-	set modem status
2506  *	@tty: tty device
2507  *	@cmd: command - clear bits, set bits or set all
2508  *	@p: pointer to desired bits
2509  *
2510  *	Set the modem status bits from the tty driver if the feature
2511  *	is supported. Return -EINVAL if it is not available.
2512  *
2513  *	Locking: none (up to the driver)
2514  */
2515 
2516 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2517 	     unsigned __user *p)
2518 {
2519 	int retval;
2520 	unsigned int set, clear, val;
2521 
2522 	if (tty->ops->tiocmset == NULL)
2523 		return -EINVAL;
2524 
2525 	retval = get_user(val, p);
2526 	if (retval)
2527 		return retval;
2528 	set = clear = 0;
2529 	switch (cmd) {
2530 	case TIOCMBIS:
2531 		set = val;
2532 		break;
2533 	case TIOCMBIC:
2534 		clear = val;
2535 		break;
2536 	case TIOCMSET:
2537 		set = val;
2538 		clear = ~val;
2539 		break;
2540 	}
2541 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2542 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2543 	return tty->ops->tiocmset(tty, set, clear);
2544 }
2545 
2546 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2547 {
2548 	int retval = -EINVAL;
2549 	struct serial_icounter_struct icount;
2550 	memset(&icount, 0, sizeof(icount));
2551 	if (tty->ops->get_icount)
2552 		retval = tty->ops->get_icount(tty, &icount);
2553 	if (retval != 0)
2554 		return retval;
2555 	if (copy_to_user(arg, &icount, sizeof(icount)))
2556 		return -EFAULT;
2557 	return 0;
2558 }
2559 
2560 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2561 {
2562 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2563 	    tty->driver->subtype == PTY_TYPE_MASTER)
2564 		tty = tty->link;
2565 	return tty;
2566 }
2567 EXPORT_SYMBOL(tty_pair_get_tty);
2568 
2569 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2570 {
2571 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2572 	    tty->driver->subtype == PTY_TYPE_MASTER)
2573 	    return tty;
2574 	return tty->link;
2575 }
2576 EXPORT_SYMBOL(tty_pair_get_pty);
2577 
2578 /*
2579  * Split this up, as gcc can choke on it otherwise..
2580  */
2581 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2582 {
2583 	struct tty_struct *tty = file_tty(file);
2584 	struct tty_struct *real_tty;
2585 	void __user *p = (void __user *)arg;
2586 	int retval;
2587 	struct tty_ldisc *ld;
2588 	struct inode *inode = file->f_dentry->d_inode;
2589 
2590 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2591 		return -EINVAL;
2592 
2593 	real_tty = tty_pair_get_tty(tty);
2594 
2595 	/*
2596 	 * Factor out some common prep work
2597 	 */
2598 	switch (cmd) {
2599 	case TIOCSETD:
2600 	case TIOCSBRK:
2601 	case TIOCCBRK:
2602 	case TCSBRK:
2603 	case TCSBRKP:
2604 		retval = tty_check_change(tty);
2605 		if (retval)
2606 			return retval;
2607 		if (cmd != TIOCCBRK) {
2608 			tty_wait_until_sent(tty, 0);
2609 			if (signal_pending(current))
2610 				return -EINTR;
2611 		}
2612 		break;
2613 	}
2614 
2615 	/*
2616 	 *	Now do the stuff.
2617 	 */
2618 	switch (cmd) {
2619 	case TIOCSTI:
2620 		return tiocsti(tty, p);
2621 	case TIOCGWINSZ:
2622 		return tiocgwinsz(real_tty, p);
2623 	case TIOCSWINSZ:
2624 		return tiocswinsz(real_tty, p);
2625 	case TIOCCONS:
2626 		return real_tty != tty ? -EINVAL : tioccons(file);
2627 	case FIONBIO:
2628 		return fionbio(file, p);
2629 	case TIOCEXCL:
2630 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2631 		return 0;
2632 	case TIOCNXCL:
2633 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2634 		return 0;
2635 	case TIOCNOTTY:
2636 		if (current->signal->tty != tty)
2637 			return -ENOTTY;
2638 		no_tty();
2639 		return 0;
2640 	case TIOCSCTTY:
2641 		return tiocsctty(tty, arg);
2642 	case TIOCGPGRP:
2643 		return tiocgpgrp(tty, real_tty, p);
2644 	case TIOCSPGRP:
2645 		return tiocspgrp(tty, real_tty, p);
2646 	case TIOCGSID:
2647 		return tiocgsid(tty, real_tty, p);
2648 	case TIOCGETD:
2649 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2650 	case TIOCSETD:
2651 		return tiocsetd(tty, p);
2652 	case TIOCVHANGUP:
2653 		if (!capable(CAP_SYS_ADMIN))
2654 			return -EPERM;
2655 		tty_vhangup(tty);
2656 		return 0;
2657 	case TIOCGDEV:
2658 	{
2659 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2660 		return put_user(ret, (unsigned int __user *)p);
2661 	}
2662 	/*
2663 	 * Break handling
2664 	 */
2665 	case TIOCSBRK:	/* Turn break on, unconditionally */
2666 		if (tty->ops->break_ctl)
2667 			return tty->ops->break_ctl(tty, -1);
2668 		return 0;
2669 	case TIOCCBRK:	/* Turn break off, unconditionally */
2670 		if (tty->ops->break_ctl)
2671 			return tty->ops->break_ctl(tty, 0);
2672 		return 0;
2673 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2674 		/* non-zero arg means wait for all output data
2675 		 * to be sent (performed above) but don't send break.
2676 		 * This is used by the tcdrain() termios function.
2677 		 */
2678 		if (!arg)
2679 			return send_break(tty, 250);
2680 		return 0;
2681 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2682 		return send_break(tty, arg ? arg*100 : 250);
2683 
2684 	case TIOCMGET:
2685 		return tty_tiocmget(tty, p);
2686 	case TIOCMSET:
2687 	case TIOCMBIC:
2688 	case TIOCMBIS:
2689 		return tty_tiocmset(tty, cmd, p);
2690 	case TIOCGICOUNT:
2691 		retval = tty_tiocgicount(tty, p);
2692 		/* For the moment allow fall through to the old method */
2693         	if (retval != -EINVAL)
2694 			return retval;
2695 		break;
2696 	case TCFLSH:
2697 		switch (arg) {
2698 		case TCIFLUSH:
2699 		case TCIOFLUSH:
2700 		/* flush tty buffer and allow ldisc to process ioctl */
2701 			tty_buffer_flush(tty);
2702 			break;
2703 		}
2704 		break;
2705 	}
2706 	if (tty->ops->ioctl) {
2707 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2708 		if (retval != -ENOIOCTLCMD)
2709 			return retval;
2710 	}
2711 	ld = tty_ldisc_ref_wait(tty);
2712 	retval = -EINVAL;
2713 	if (ld->ops->ioctl) {
2714 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2715 		if (retval == -ENOIOCTLCMD)
2716 			retval = -EINVAL;
2717 	}
2718 	tty_ldisc_deref(ld);
2719 	return retval;
2720 }
2721 
2722 #ifdef CONFIG_COMPAT
2723 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2724 				unsigned long arg)
2725 {
2726 	struct inode *inode = file->f_dentry->d_inode;
2727 	struct tty_struct *tty = file_tty(file);
2728 	struct tty_ldisc *ld;
2729 	int retval = -ENOIOCTLCMD;
2730 
2731 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2732 		return -EINVAL;
2733 
2734 	if (tty->ops->compat_ioctl) {
2735 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2736 		if (retval != -ENOIOCTLCMD)
2737 			return retval;
2738 	}
2739 
2740 	ld = tty_ldisc_ref_wait(tty);
2741 	if (ld->ops->compat_ioctl)
2742 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2743 	else
2744 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2745 	tty_ldisc_deref(ld);
2746 
2747 	return retval;
2748 }
2749 #endif
2750 
2751 /*
2752  * This implements the "Secure Attention Key" ---  the idea is to
2753  * prevent trojan horses by killing all processes associated with this
2754  * tty when the user hits the "Secure Attention Key".  Required for
2755  * super-paranoid applications --- see the Orange Book for more details.
2756  *
2757  * This code could be nicer; ideally it should send a HUP, wait a few
2758  * seconds, then send a INT, and then a KILL signal.  But you then
2759  * have to coordinate with the init process, since all processes associated
2760  * with the current tty must be dead before the new getty is allowed
2761  * to spawn.
2762  *
2763  * Now, if it would be correct ;-/ The current code has a nasty hole -
2764  * it doesn't catch files in flight. We may send the descriptor to ourselves
2765  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2766  *
2767  * Nasty bug: do_SAK is being called in interrupt context.  This can
2768  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2769  */
2770 void __do_SAK(struct tty_struct *tty)
2771 {
2772 #ifdef TTY_SOFT_SAK
2773 	tty_hangup(tty);
2774 #else
2775 	struct task_struct *g, *p;
2776 	struct pid *session;
2777 	int		i;
2778 	struct file	*filp;
2779 	struct fdtable *fdt;
2780 
2781 	if (!tty)
2782 		return;
2783 	session = tty->session;
2784 
2785 	tty_ldisc_flush(tty);
2786 
2787 	tty_driver_flush_buffer(tty);
2788 
2789 	read_lock(&tasklist_lock);
2790 	/* Kill the entire session */
2791 	do_each_pid_task(session, PIDTYPE_SID, p) {
2792 		printk(KERN_NOTICE "SAK: killed process %d"
2793 			" (%s): task_session(p)==tty->session\n",
2794 			task_pid_nr(p), p->comm);
2795 		send_sig(SIGKILL, p, 1);
2796 	} while_each_pid_task(session, PIDTYPE_SID, p);
2797 	/* Now kill any processes that happen to have the
2798 	 * tty open.
2799 	 */
2800 	do_each_thread(g, p) {
2801 		if (p->signal->tty == tty) {
2802 			printk(KERN_NOTICE "SAK: killed process %d"
2803 			    " (%s): task_session(p)==tty->session\n",
2804 			    task_pid_nr(p), p->comm);
2805 			send_sig(SIGKILL, p, 1);
2806 			continue;
2807 		}
2808 		task_lock(p);
2809 		if (p->files) {
2810 			/*
2811 			 * We don't take a ref to the file, so we must
2812 			 * hold ->file_lock instead.
2813 			 */
2814 			spin_lock(&p->files->file_lock);
2815 			fdt = files_fdtable(p->files);
2816 			for (i = 0; i < fdt->max_fds; i++) {
2817 				filp = fcheck_files(p->files, i);
2818 				if (!filp)
2819 					continue;
2820 				if (filp->f_op->read == tty_read &&
2821 				    file_tty(filp) == tty) {
2822 					printk(KERN_NOTICE "SAK: killed process %d"
2823 					    " (%s): fd#%d opened to the tty\n",
2824 					    task_pid_nr(p), p->comm, i);
2825 					force_sig(SIGKILL, p);
2826 					break;
2827 				}
2828 			}
2829 			spin_unlock(&p->files->file_lock);
2830 		}
2831 		task_unlock(p);
2832 	} while_each_thread(g, p);
2833 	read_unlock(&tasklist_lock);
2834 #endif
2835 }
2836 
2837 static void do_SAK_work(struct work_struct *work)
2838 {
2839 	struct tty_struct *tty =
2840 		container_of(work, struct tty_struct, SAK_work);
2841 	__do_SAK(tty);
2842 }
2843 
2844 /*
2845  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2846  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2847  * the values which we write to it will be identical to the values which it
2848  * already has. --akpm
2849  */
2850 void do_SAK(struct tty_struct *tty)
2851 {
2852 	if (!tty)
2853 		return;
2854 	schedule_work(&tty->SAK_work);
2855 }
2856 
2857 EXPORT_SYMBOL(do_SAK);
2858 
2859 static int dev_match_devt(struct device *dev, void *data)
2860 {
2861 	dev_t *devt = data;
2862 	return dev->devt == *devt;
2863 }
2864 
2865 /* Must put_device() after it's unused! */
2866 static struct device *tty_get_device(struct tty_struct *tty)
2867 {
2868 	dev_t devt = tty_devnum(tty);
2869 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2870 }
2871 
2872 
2873 /**
2874  *	initialize_tty_struct
2875  *	@tty: tty to initialize
2876  *
2877  *	This subroutine initializes a tty structure that has been newly
2878  *	allocated.
2879  *
2880  *	Locking: none - tty in question must not be exposed at this point
2881  */
2882 
2883 void initialize_tty_struct(struct tty_struct *tty,
2884 		struct tty_driver *driver, int idx)
2885 {
2886 	memset(tty, 0, sizeof(struct tty_struct));
2887 	kref_init(&tty->kref);
2888 	tty->magic = TTY_MAGIC;
2889 	tty_ldisc_init(tty);
2890 	tty->session = NULL;
2891 	tty->pgrp = NULL;
2892 	tty->overrun_time = jiffies;
2893 	tty->buf.head = tty->buf.tail = NULL;
2894 	tty_buffer_init(tty);
2895 	mutex_init(&tty->termios_mutex);
2896 	mutex_init(&tty->ldisc_mutex);
2897 	init_waitqueue_head(&tty->write_wait);
2898 	init_waitqueue_head(&tty->read_wait);
2899 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2900 	mutex_init(&tty->atomic_read_lock);
2901 	mutex_init(&tty->atomic_write_lock);
2902 	mutex_init(&tty->output_lock);
2903 	mutex_init(&tty->echo_lock);
2904 	spin_lock_init(&tty->read_lock);
2905 	spin_lock_init(&tty->ctrl_lock);
2906 	INIT_LIST_HEAD(&tty->tty_files);
2907 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2908 
2909 	tty->driver = driver;
2910 	tty->ops = driver->ops;
2911 	tty->index = idx;
2912 	tty_line_name(driver, idx, tty->name);
2913 	tty->dev = tty_get_device(tty);
2914 }
2915 
2916 /**
2917  *	deinitialize_tty_struct
2918  *	@tty: tty to deinitialize
2919  *
2920  *	This subroutine deinitializes a tty structure that has been newly
2921  *	allocated but tty_release cannot be called on that yet.
2922  *
2923  *	Locking: none - tty in question must not be exposed at this point
2924  */
2925 void deinitialize_tty_struct(struct tty_struct *tty)
2926 {
2927 	tty_ldisc_deinit(tty);
2928 }
2929 
2930 /**
2931  *	tty_put_char	-	write one character to a tty
2932  *	@tty: tty
2933  *	@ch: character
2934  *
2935  *	Write one byte to the tty using the provided put_char method
2936  *	if present. Returns the number of characters successfully output.
2937  *
2938  *	Note: the specific put_char operation in the driver layer may go
2939  *	away soon. Don't call it directly, use this method
2940  */
2941 
2942 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2943 {
2944 	if (tty->ops->put_char)
2945 		return tty->ops->put_char(tty, ch);
2946 	return tty->ops->write(tty, &ch, 1);
2947 }
2948 EXPORT_SYMBOL_GPL(tty_put_char);
2949 
2950 struct class *tty_class;
2951 
2952 /**
2953  *	tty_register_device - register a tty device
2954  *	@driver: the tty driver that describes the tty device
2955  *	@index: the index in the tty driver for this tty device
2956  *	@device: a struct device that is associated with this tty device.
2957  *		This field is optional, if there is no known struct device
2958  *		for this tty device it can be set to NULL safely.
2959  *
2960  *	Returns a pointer to the struct device for this tty device
2961  *	(or ERR_PTR(-EFOO) on error).
2962  *
2963  *	This call is required to be made to register an individual tty device
2964  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2965  *	that bit is not set, this function should not be called by a tty
2966  *	driver.
2967  *
2968  *	Locking: ??
2969  */
2970 
2971 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2972 				   struct device *device)
2973 {
2974 	char name[64];
2975 	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2976 
2977 	if (index >= driver->num) {
2978 		printk(KERN_ERR "Attempt to register invalid tty line number "
2979 		       " (%d).\n", index);
2980 		return ERR_PTR(-EINVAL);
2981 	}
2982 
2983 	if (driver->type == TTY_DRIVER_TYPE_PTY)
2984 		pty_line_name(driver, index, name);
2985 	else
2986 		tty_line_name(driver, index, name);
2987 
2988 	return device_create(tty_class, device, dev, NULL, name);
2989 }
2990 EXPORT_SYMBOL(tty_register_device);
2991 
2992 /**
2993  * 	tty_unregister_device - unregister a tty device
2994  * 	@driver: the tty driver that describes the tty device
2995  * 	@index: the index in the tty driver for this tty device
2996  *
2997  * 	If a tty device is registered with a call to tty_register_device() then
2998  *	this function must be called when the tty device is gone.
2999  *
3000  *	Locking: ??
3001  */
3002 
3003 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3004 {
3005 	device_destroy(tty_class,
3006 		MKDEV(driver->major, driver->minor_start) + index);
3007 }
3008 EXPORT_SYMBOL(tty_unregister_device);
3009 
3010 struct tty_driver *alloc_tty_driver(int lines)
3011 {
3012 	struct tty_driver *driver;
3013 
3014 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3015 	if (driver) {
3016 		kref_init(&driver->kref);
3017 		driver->magic = TTY_DRIVER_MAGIC;
3018 		driver->num = lines;
3019 		/* later we'll move allocation of tables here */
3020 	}
3021 	return driver;
3022 }
3023 EXPORT_SYMBOL(alloc_tty_driver);
3024 
3025 static void destruct_tty_driver(struct kref *kref)
3026 {
3027 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3028 	int i;
3029 	struct ktermios *tp;
3030 	void *p;
3031 
3032 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3033 		/*
3034 		 * Free the termios and termios_locked structures because
3035 		 * we don't want to get memory leaks when modular tty
3036 		 * drivers are removed from the kernel.
3037 		 */
3038 		for (i = 0; i < driver->num; i++) {
3039 			tp = driver->termios[i];
3040 			if (tp) {
3041 				driver->termios[i] = NULL;
3042 				kfree(tp);
3043 			}
3044 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3045 				tty_unregister_device(driver, i);
3046 		}
3047 		p = driver->ttys;
3048 		proc_tty_unregister_driver(driver);
3049 		driver->ttys = NULL;
3050 		driver->termios = NULL;
3051 		kfree(p);
3052 		cdev_del(&driver->cdev);
3053 	}
3054 	kfree(driver);
3055 }
3056 
3057 void tty_driver_kref_put(struct tty_driver *driver)
3058 {
3059 	kref_put(&driver->kref, destruct_tty_driver);
3060 }
3061 EXPORT_SYMBOL(tty_driver_kref_put);
3062 
3063 void tty_set_operations(struct tty_driver *driver,
3064 			const struct tty_operations *op)
3065 {
3066 	driver->ops = op;
3067 };
3068 EXPORT_SYMBOL(tty_set_operations);
3069 
3070 void put_tty_driver(struct tty_driver *d)
3071 {
3072 	tty_driver_kref_put(d);
3073 }
3074 EXPORT_SYMBOL(put_tty_driver);
3075 
3076 /*
3077  * Called by a tty driver to register itself.
3078  */
3079 int tty_register_driver(struct tty_driver *driver)
3080 {
3081 	int error;
3082 	int i;
3083 	dev_t dev;
3084 	void **p = NULL;
3085 	struct device *d;
3086 
3087 	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3088 		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3089 		if (!p)
3090 			return -ENOMEM;
3091 	}
3092 
3093 	if (!driver->major) {
3094 		error = alloc_chrdev_region(&dev, driver->minor_start,
3095 						driver->num, driver->name);
3096 		if (!error) {
3097 			driver->major = MAJOR(dev);
3098 			driver->minor_start = MINOR(dev);
3099 		}
3100 	} else {
3101 		dev = MKDEV(driver->major, driver->minor_start);
3102 		error = register_chrdev_region(dev, driver->num, driver->name);
3103 	}
3104 	if (error < 0) {
3105 		kfree(p);
3106 		return error;
3107 	}
3108 
3109 	if (p) {
3110 		driver->ttys = (struct tty_struct **)p;
3111 		driver->termios = (struct ktermios **)(p + driver->num);
3112 	} else {
3113 		driver->ttys = NULL;
3114 		driver->termios = NULL;
3115 	}
3116 
3117 	cdev_init(&driver->cdev, &tty_fops);
3118 	driver->cdev.owner = driver->owner;
3119 	error = cdev_add(&driver->cdev, dev, driver->num);
3120 	if (error) {
3121 		unregister_chrdev_region(dev, driver->num);
3122 		driver->ttys = NULL;
3123 		driver->termios = NULL;
3124 		kfree(p);
3125 		return error;
3126 	}
3127 
3128 	mutex_lock(&tty_mutex);
3129 	list_add(&driver->tty_drivers, &tty_drivers);
3130 	mutex_unlock(&tty_mutex);
3131 
3132 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3133 		for (i = 0; i < driver->num; i++) {
3134 			d = tty_register_device(driver, i, NULL);
3135 			if (IS_ERR(d)) {
3136 				error = PTR_ERR(d);
3137 				goto err;
3138 			}
3139 		}
3140 	}
3141 	proc_tty_register_driver(driver);
3142 	driver->flags |= TTY_DRIVER_INSTALLED;
3143 	return 0;
3144 
3145 err:
3146 	for (i--; i >= 0; i--)
3147 		tty_unregister_device(driver, i);
3148 
3149 	mutex_lock(&tty_mutex);
3150 	list_del(&driver->tty_drivers);
3151 	mutex_unlock(&tty_mutex);
3152 
3153 	unregister_chrdev_region(dev, driver->num);
3154 	driver->ttys = NULL;
3155 	driver->termios = NULL;
3156 	kfree(p);
3157 	return error;
3158 }
3159 
3160 EXPORT_SYMBOL(tty_register_driver);
3161 
3162 /*
3163  * Called by a tty driver to unregister itself.
3164  */
3165 int tty_unregister_driver(struct tty_driver *driver)
3166 {
3167 #if 0
3168 	/* FIXME */
3169 	if (driver->refcount)
3170 		return -EBUSY;
3171 #endif
3172 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3173 				driver->num);
3174 	mutex_lock(&tty_mutex);
3175 	list_del(&driver->tty_drivers);
3176 	mutex_unlock(&tty_mutex);
3177 	return 0;
3178 }
3179 
3180 EXPORT_SYMBOL(tty_unregister_driver);
3181 
3182 dev_t tty_devnum(struct tty_struct *tty)
3183 {
3184 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3185 }
3186 EXPORT_SYMBOL(tty_devnum);
3187 
3188 void proc_clear_tty(struct task_struct *p)
3189 {
3190 	unsigned long flags;
3191 	struct tty_struct *tty;
3192 	spin_lock_irqsave(&p->sighand->siglock, flags);
3193 	tty = p->signal->tty;
3194 	p->signal->tty = NULL;
3195 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3196 	tty_kref_put(tty);
3197 }
3198 
3199 /* Called under the sighand lock */
3200 
3201 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3202 {
3203 	if (tty) {
3204 		unsigned long flags;
3205 		/* We should not have a session or pgrp to put here but.... */
3206 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3207 		put_pid(tty->session);
3208 		put_pid(tty->pgrp);
3209 		tty->pgrp = get_pid(task_pgrp(tsk));
3210 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3211 		tty->session = get_pid(task_session(tsk));
3212 		if (tsk->signal->tty) {
3213 			printk(KERN_DEBUG "tty not NULL!!\n");
3214 			tty_kref_put(tsk->signal->tty);
3215 		}
3216 	}
3217 	put_pid(tsk->signal->tty_old_pgrp);
3218 	tsk->signal->tty = tty_kref_get(tty);
3219 	tsk->signal->tty_old_pgrp = NULL;
3220 }
3221 
3222 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3223 {
3224 	spin_lock_irq(&tsk->sighand->siglock);
3225 	__proc_set_tty(tsk, tty);
3226 	spin_unlock_irq(&tsk->sighand->siglock);
3227 }
3228 
3229 struct tty_struct *get_current_tty(void)
3230 {
3231 	struct tty_struct *tty;
3232 	unsigned long flags;
3233 
3234 	spin_lock_irqsave(&current->sighand->siglock, flags);
3235 	tty = tty_kref_get(current->signal->tty);
3236 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3237 	return tty;
3238 }
3239 EXPORT_SYMBOL_GPL(get_current_tty);
3240 
3241 void tty_default_fops(struct file_operations *fops)
3242 {
3243 	*fops = tty_fops;
3244 }
3245 
3246 /*
3247  * Initialize the console device. This is called *early*, so
3248  * we can't necessarily depend on lots of kernel help here.
3249  * Just do some early initializations, and do the complex setup
3250  * later.
3251  */
3252 void __init console_init(void)
3253 {
3254 	initcall_t *call;
3255 
3256 	/* Setup the default TTY line discipline. */
3257 	tty_ldisc_begin();
3258 
3259 	/*
3260 	 * set up the console device so that later boot sequences can
3261 	 * inform about problems etc..
3262 	 */
3263 	call = __con_initcall_start;
3264 	while (call < __con_initcall_end) {
3265 		(*call)();
3266 		call++;
3267 	}
3268 }
3269 
3270 static char *tty_devnode(struct device *dev, mode_t *mode)
3271 {
3272 	if (!mode)
3273 		return NULL;
3274 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3275 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3276 		*mode = 0666;
3277 	return NULL;
3278 }
3279 
3280 static int __init tty_class_init(void)
3281 {
3282 	tty_class = class_create(THIS_MODULE, "tty");
3283 	if (IS_ERR(tty_class))
3284 		return PTR_ERR(tty_class);
3285 	tty_class->devnode = tty_devnode;
3286 	return 0;
3287 }
3288 
3289 postcore_initcall(tty_class_init);
3290 
3291 /* 3/2004 jmc: why do these devices exist? */
3292 static struct cdev tty_cdev, console_cdev;
3293 
3294 static ssize_t show_cons_active(struct device *dev,
3295 				struct device_attribute *attr, char *buf)
3296 {
3297 	struct console *cs[16];
3298 	int i = 0;
3299 	struct console *c;
3300 	ssize_t count = 0;
3301 
3302 	console_lock();
3303 	for_each_console(c) {
3304 		if (!c->device)
3305 			continue;
3306 		if (!c->write)
3307 			continue;
3308 		if ((c->flags & CON_ENABLED) == 0)
3309 			continue;
3310 		cs[i++] = c;
3311 		if (i >= ARRAY_SIZE(cs))
3312 			break;
3313 	}
3314 	while (i--)
3315 		count += sprintf(buf + count, "%s%d%c",
3316 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3317 	console_unlock();
3318 
3319 	return count;
3320 }
3321 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3322 
3323 static struct device *consdev;
3324 
3325 void console_sysfs_notify(void)
3326 {
3327 	if (consdev)
3328 		sysfs_notify(&consdev->kobj, NULL, "active");
3329 }
3330 
3331 /*
3332  * Ok, now we can initialize the rest of the tty devices and can count
3333  * on memory allocations, interrupts etc..
3334  */
3335 int __init tty_init(void)
3336 {
3337 	cdev_init(&tty_cdev, &tty_fops);
3338 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3339 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3340 		panic("Couldn't register /dev/tty driver\n");
3341 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3342 
3343 	cdev_init(&console_cdev, &console_fops);
3344 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3345 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3346 		panic("Couldn't register /dev/console driver\n");
3347 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3348 			      "console");
3349 	if (IS_ERR(consdev))
3350 		consdev = NULL;
3351 	else
3352 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3353 
3354 #ifdef CONFIG_VT
3355 	vty_init(&console_fops);
3356 #endif
3357 	return 0;
3358 }
3359 
3360