1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 #include <asm/system.h> 101 102 #include <linux/kbd_kern.h> 103 #include <linux/vt_kern.h> 104 #include <linux/selection.h> 105 106 #include <linux/kmod.h> 107 #include <linux/nsproxy.h> 108 109 #undef TTY_DEBUG_HANGUP 110 111 #define TTY_PARANOIA_CHECK 1 112 #define CHECK_TTY_COUNT 1 113 114 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 115 .c_iflag = ICRNL | IXON, 116 .c_oflag = OPOST | ONLCR, 117 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 118 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 119 ECHOCTL | ECHOKE | IEXTEN, 120 .c_cc = INIT_C_CC, 121 .c_ispeed = 38400, 122 .c_ospeed = 38400 123 }; 124 125 EXPORT_SYMBOL(tty_std_termios); 126 127 /* This list gets poked at by procfs and various bits of boot up code. This 128 could do with some rationalisation such as pulling the tty proc function 129 into this file */ 130 131 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 132 133 /* Mutex to protect creating and releasing a tty. This is shared with 134 vt.c for deeply disgusting hack reasons */ 135 DEFINE_MUTEX(tty_mutex); 136 EXPORT_SYMBOL(tty_mutex); 137 138 /* Spinlock to protect the tty->tty_files list */ 139 DEFINE_SPINLOCK(tty_files_lock); 140 141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 143 ssize_t redirected_tty_write(struct file *, const char __user *, 144 size_t, loff_t *); 145 static unsigned int tty_poll(struct file *, poll_table *); 146 static int tty_open(struct inode *, struct file *); 147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 148 #ifdef CONFIG_COMPAT 149 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 150 unsigned long arg); 151 #else 152 #define tty_compat_ioctl NULL 153 #endif 154 static int __tty_fasync(int fd, struct file *filp, int on); 155 static int tty_fasync(int fd, struct file *filp, int on); 156 static void release_tty(struct tty_struct *tty, int idx); 157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 159 160 /** 161 * alloc_tty_struct - allocate a tty object 162 * 163 * Return a new empty tty structure. The data fields have not 164 * been initialized in any way but has been zeroed 165 * 166 * Locking: none 167 */ 168 169 struct tty_struct *alloc_tty_struct(void) 170 { 171 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL); 172 } 173 174 /** 175 * free_tty_struct - free a disused tty 176 * @tty: tty struct to free 177 * 178 * Free the write buffers, tty queue and tty memory itself. 179 * 180 * Locking: none. Must be called after tty is definitely unused 181 */ 182 183 void free_tty_struct(struct tty_struct *tty) 184 { 185 if (tty->dev) 186 put_device(tty->dev); 187 kfree(tty->write_buf); 188 tty_buffer_free_all(tty); 189 kfree(tty); 190 } 191 192 static inline struct tty_struct *file_tty(struct file *file) 193 { 194 return ((struct tty_file_private *)file->private_data)->tty; 195 } 196 197 int tty_alloc_file(struct file *file) 198 { 199 struct tty_file_private *priv; 200 201 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 202 if (!priv) 203 return -ENOMEM; 204 205 file->private_data = priv; 206 207 return 0; 208 } 209 210 /* Associate a new file with the tty structure */ 211 void tty_add_file(struct tty_struct *tty, struct file *file) 212 { 213 struct tty_file_private *priv = file->private_data; 214 215 priv->tty = tty; 216 priv->file = file; 217 218 spin_lock(&tty_files_lock); 219 list_add(&priv->list, &tty->tty_files); 220 spin_unlock(&tty_files_lock); 221 } 222 223 /** 224 * tty_free_file - free file->private_data 225 * 226 * This shall be used only for fail path handling when tty_add_file was not 227 * called yet. 228 */ 229 void tty_free_file(struct file *file) 230 { 231 struct tty_file_private *priv = file->private_data; 232 233 file->private_data = NULL; 234 kfree(priv); 235 } 236 237 /* Delete file from its tty */ 238 void tty_del_file(struct file *file) 239 { 240 struct tty_file_private *priv = file->private_data; 241 242 spin_lock(&tty_files_lock); 243 list_del(&priv->list); 244 spin_unlock(&tty_files_lock); 245 tty_free_file(file); 246 } 247 248 249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 250 251 /** 252 * tty_name - return tty naming 253 * @tty: tty structure 254 * @buf: buffer for output 255 * 256 * Convert a tty structure into a name. The name reflects the kernel 257 * naming policy and if udev is in use may not reflect user space 258 * 259 * Locking: none 260 */ 261 262 char *tty_name(struct tty_struct *tty, char *buf) 263 { 264 if (!tty) /* Hmm. NULL pointer. That's fun. */ 265 strcpy(buf, "NULL tty"); 266 else 267 strcpy(buf, tty->name); 268 return buf; 269 } 270 271 EXPORT_SYMBOL(tty_name); 272 273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 274 const char *routine) 275 { 276 #ifdef TTY_PARANOIA_CHECK 277 if (!tty) { 278 printk(KERN_WARNING 279 "null TTY for (%d:%d) in %s\n", 280 imajor(inode), iminor(inode), routine); 281 return 1; 282 } 283 if (tty->magic != TTY_MAGIC) { 284 printk(KERN_WARNING 285 "bad magic number for tty struct (%d:%d) in %s\n", 286 imajor(inode), iminor(inode), routine); 287 return 1; 288 } 289 #endif 290 return 0; 291 } 292 293 static int check_tty_count(struct tty_struct *tty, const char *routine) 294 { 295 #ifdef CHECK_TTY_COUNT 296 struct list_head *p; 297 int count = 0; 298 299 spin_lock(&tty_files_lock); 300 list_for_each(p, &tty->tty_files) { 301 count++; 302 } 303 spin_unlock(&tty_files_lock); 304 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 305 tty->driver->subtype == PTY_TYPE_SLAVE && 306 tty->link && tty->link->count) 307 count++; 308 if (tty->count != count) { 309 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 310 "!= #fd's(%d) in %s\n", 311 tty->name, tty->count, count, routine); 312 return count; 313 } 314 #endif 315 return 0; 316 } 317 318 /** 319 * get_tty_driver - find device of a tty 320 * @dev_t: device identifier 321 * @index: returns the index of the tty 322 * 323 * This routine returns a tty driver structure, given a device number 324 * and also passes back the index number. 325 * 326 * Locking: caller must hold tty_mutex 327 */ 328 329 static struct tty_driver *get_tty_driver(dev_t device, int *index) 330 { 331 struct tty_driver *p; 332 333 list_for_each_entry(p, &tty_drivers, tty_drivers) { 334 dev_t base = MKDEV(p->major, p->minor_start); 335 if (device < base || device >= base + p->num) 336 continue; 337 *index = device - base; 338 return tty_driver_kref_get(p); 339 } 340 return NULL; 341 } 342 343 #ifdef CONFIG_CONSOLE_POLL 344 345 /** 346 * tty_find_polling_driver - find device of a polled tty 347 * @name: name string to match 348 * @line: pointer to resulting tty line nr 349 * 350 * This routine returns a tty driver structure, given a name 351 * and the condition that the tty driver is capable of polled 352 * operation. 353 */ 354 struct tty_driver *tty_find_polling_driver(char *name, int *line) 355 { 356 struct tty_driver *p, *res = NULL; 357 int tty_line = 0; 358 int len; 359 char *str, *stp; 360 361 for (str = name; *str; str++) 362 if ((*str >= '0' && *str <= '9') || *str == ',') 363 break; 364 if (!*str) 365 return NULL; 366 367 len = str - name; 368 tty_line = simple_strtoul(str, &str, 10); 369 370 mutex_lock(&tty_mutex); 371 /* Search through the tty devices to look for a match */ 372 list_for_each_entry(p, &tty_drivers, tty_drivers) { 373 if (strncmp(name, p->name, len) != 0) 374 continue; 375 stp = str; 376 if (*stp == ',') 377 stp++; 378 if (*stp == '\0') 379 stp = NULL; 380 381 if (tty_line >= 0 && tty_line < p->num && p->ops && 382 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 383 res = tty_driver_kref_get(p); 384 *line = tty_line; 385 break; 386 } 387 } 388 mutex_unlock(&tty_mutex); 389 390 return res; 391 } 392 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 393 #endif 394 395 /** 396 * tty_check_change - check for POSIX terminal changes 397 * @tty: tty to check 398 * 399 * If we try to write to, or set the state of, a terminal and we're 400 * not in the foreground, send a SIGTTOU. If the signal is blocked or 401 * ignored, go ahead and perform the operation. (POSIX 7.2) 402 * 403 * Locking: ctrl_lock 404 */ 405 406 int tty_check_change(struct tty_struct *tty) 407 { 408 unsigned long flags; 409 int ret = 0; 410 411 if (current->signal->tty != tty) 412 return 0; 413 414 spin_lock_irqsave(&tty->ctrl_lock, flags); 415 416 if (!tty->pgrp) { 417 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 418 goto out_unlock; 419 } 420 if (task_pgrp(current) == tty->pgrp) 421 goto out_unlock; 422 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 423 if (is_ignored(SIGTTOU)) 424 goto out; 425 if (is_current_pgrp_orphaned()) { 426 ret = -EIO; 427 goto out; 428 } 429 kill_pgrp(task_pgrp(current), SIGTTOU, 1); 430 set_thread_flag(TIF_SIGPENDING); 431 ret = -ERESTARTSYS; 432 out: 433 return ret; 434 out_unlock: 435 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 436 return ret; 437 } 438 439 EXPORT_SYMBOL(tty_check_change); 440 441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 442 size_t count, loff_t *ppos) 443 { 444 return 0; 445 } 446 447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 448 size_t count, loff_t *ppos) 449 { 450 return -EIO; 451 } 452 453 /* No kernel lock held - none needed ;) */ 454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 455 { 456 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 457 } 458 459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 460 unsigned long arg) 461 { 462 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 463 } 464 465 static long hung_up_tty_compat_ioctl(struct file *file, 466 unsigned int cmd, unsigned long arg) 467 { 468 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 469 } 470 471 static const struct file_operations tty_fops = { 472 .llseek = no_llseek, 473 .read = tty_read, 474 .write = tty_write, 475 .poll = tty_poll, 476 .unlocked_ioctl = tty_ioctl, 477 .compat_ioctl = tty_compat_ioctl, 478 .open = tty_open, 479 .release = tty_release, 480 .fasync = tty_fasync, 481 }; 482 483 static const struct file_operations console_fops = { 484 .llseek = no_llseek, 485 .read = tty_read, 486 .write = redirected_tty_write, 487 .poll = tty_poll, 488 .unlocked_ioctl = tty_ioctl, 489 .compat_ioctl = tty_compat_ioctl, 490 .open = tty_open, 491 .release = tty_release, 492 .fasync = tty_fasync, 493 }; 494 495 static const struct file_operations hung_up_tty_fops = { 496 .llseek = no_llseek, 497 .read = hung_up_tty_read, 498 .write = hung_up_tty_write, 499 .poll = hung_up_tty_poll, 500 .unlocked_ioctl = hung_up_tty_ioctl, 501 .compat_ioctl = hung_up_tty_compat_ioctl, 502 .release = tty_release, 503 }; 504 505 static DEFINE_SPINLOCK(redirect_lock); 506 static struct file *redirect; 507 508 /** 509 * tty_wakeup - request more data 510 * @tty: terminal 511 * 512 * Internal and external helper for wakeups of tty. This function 513 * informs the line discipline if present that the driver is ready 514 * to receive more output data. 515 */ 516 517 void tty_wakeup(struct tty_struct *tty) 518 { 519 struct tty_ldisc *ld; 520 521 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 522 ld = tty_ldisc_ref(tty); 523 if (ld) { 524 if (ld->ops->write_wakeup) 525 ld->ops->write_wakeup(tty); 526 tty_ldisc_deref(ld); 527 } 528 } 529 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 530 } 531 532 EXPORT_SYMBOL_GPL(tty_wakeup); 533 534 /** 535 * __tty_hangup - actual handler for hangup events 536 * @work: tty device 537 * 538 * This can be called by the "eventd" kernel thread. That is process 539 * synchronous but doesn't hold any locks, so we need to make sure we 540 * have the appropriate locks for what we're doing. 541 * 542 * The hangup event clears any pending redirections onto the hung up 543 * device. It ensures future writes will error and it does the needed 544 * line discipline hangup and signal delivery. The tty object itself 545 * remains intact. 546 * 547 * Locking: 548 * BTM 549 * redirect lock for undoing redirection 550 * file list lock for manipulating list of ttys 551 * tty_ldisc_lock from called functions 552 * termios_mutex resetting termios data 553 * tasklist_lock to walk task list for hangup event 554 * ->siglock to protect ->signal/->sighand 555 */ 556 void __tty_hangup(struct tty_struct *tty) 557 { 558 struct file *cons_filp = NULL; 559 struct file *filp, *f = NULL; 560 struct task_struct *p; 561 struct tty_file_private *priv; 562 int closecount = 0, n; 563 unsigned long flags; 564 int refs = 0; 565 566 if (!tty) 567 return; 568 569 570 spin_lock(&redirect_lock); 571 if (redirect && file_tty(redirect) == tty) { 572 f = redirect; 573 redirect = NULL; 574 } 575 spin_unlock(&redirect_lock); 576 577 tty_lock(); 578 579 /* some functions below drop BTM, so we need this bit */ 580 set_bit(TTY_HUPPING, &tty->flags); 581 582 /* inuse_filps is protected by the single tty lock, 583 this really needs to change if we want to flush the 584 workqueue with the lock held */ 585 check_tty_count(tty, "tty_hangup"); 586 587 spin_lock(&tty_files_lock); 588 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 589 list_for_each_entry(priv, &tty->tty_files, list) { 590 filp = priv->file; 591 if (filp->f_op->write == redirected_tty_write) 592 cons_filp = filp; 593 if (filp->f_op->write != tty_write) 594 continue; 595 closecount++; 596 __tty_fasync(-1, filp, 0); /* can't block */ 597 filp->f_op = &hung_up_tty_fops; 598 } 599 spin_unlock(&tty_files_lock); 600 601 /* 602 * it drops BTM and thus races with reopen 603 * we protect the race by TTY_HUPPING 604 */ 605 tty_ldisc_hangup(tty); 606 607 read_lock(&tasklist_lock); 608 if (tty->session) { 609 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 610 spin_lock_irq(&p->sighand->siglock); 611 if (p->signal->tty == tty) { 612 p->signal->tty = NULL; 613 /* We defer the dereferences outside fo 614 the tasklist lock */ 615 refs++; 616 } 617 if (!p->signal->leader) { 618 spin_unlock_irq(&p->sighand->siglock); 619 continue; 620 } 621 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 622 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 623 put_pid(p->signal->tty_old_pgrp); /* A noop */ 624 spin_lock_irqsave(&tty->ctrl_lock, flags); 625 if (tty->pgrp) 626 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 627 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 628 spin_unlock_irq(&p->sighand->siglock); 629 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 630 } 631 read_unlock(&tasklist_lock); 632 633 spin_lock_irqsave(&tty->ctrl_lock, flags); 634 clear_bit(TTY_THROTTLED, &tty->flags); 635 clear_bit(TTY_PUSH, &tty->flags); 636 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 637 put_pid(tty->session); 638 put_pid(tty->pgrp); 639 tty->session = NULL; 640 tty->pgrp = NULL; 641 tty->ctrl_status = 0; 642 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 643 644 /* Account for the p->signal references we killed */ 645 while (refs--) 646 tty_kref_put(tty); 647 648 /* 649 * If one of the devices matches a console pointer, we 650 * cannot just call hangup() because that will cause 651 * tty->count and state->count to go out of sync. 652 * So we just call close() the right number of times. 653 */ 654 if (cons_filp) { 655 if (tty->ops->close) 656 for (n = 0; n < closecount; n++) 657 tty->ops->close(tty, cons_filp); 658 } else if (tty->ops->hangup) 659 (tty->ops->hangup)(tty); 660 /* 661 * We don't want to have driver/ldisc interactions beyond 662 * the ones we did here. The driver layer expects no 663 * calls after ->hangup() from the ldisc side. However we 664 * can't yet guarantee all that. 665 */ 666 set_bit(TTY_HUPPED, &tty->flags); 667 clear_bit(TTY_HUPPING, &tty->flags); 668 tty_ldisc_enable(tty); 669 670 tty_unlock(); 671 672 if (f) 673 fput(f); 674 } 675 676 static void do_tty_hangup(struct work_struct *work) 677 { 678 struct tty_struct *tty = 679 container_of(work, struct tty_struct, hangup_work); 680 681 __tty_hangup(tty); 682 } 683 684 /** 685 * tty_hangup - trigger a hangup event 686 * @tty: tty to hangup 687 * 688 * A carrier loss (virtual or otherwise) has occurred on this like 689 * schedule a hangup sequence to run after this event. 690 */ 691 692 void tty_hangup(struct tty_struct *tty) 693 { 694 #ifdef TTY_DEBUG_HANGUP 695 char buf[64]; 696 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf)); 697 #endif 698 schedule_work(&tty->hangup_work); 699 } 700 701 EXPORT_SYMBOL(tty_hangup); 702 703 /** 704 * tty_vhangup - process vhangup 705 * @tty: tty to hangup 706 * 707 * The user has asked via system call for the terminal to be hung up. 708 * We do this synchronously so that when the syscall returns the process 709 * is complete. That guarantee is necessary for security reasons. 710 */ 711 712 void tty_vhangup(struct tty_struct *tty) 713 { 714 #ifdef TTY_DEBUG_HANGUP 715 char buf[64]; 716 717 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf)); 718 #endif 719 __tty_hangup(tty); 720 } 721 722 EXPORT_SYMBOL(tty_vhangup); 723 724 725 /** 726 * tty_vhangup_self - process vhangup for own ctty 727 * 728 * Perform a vhangup on the current controlling tty 729 */ 730 731 void tty_vhangup_self(void) 732 { 733 struct tty_struct *tty; 734 735 tty = get_current_tty(); 736 if (tty) { 737 tty_vhangup(tty); 738 tty_kref_put(tty); 739 } 740 } 741 742 /** 743 * tty_hung_up_p - was tty hung up 744 * @filp: file pointer of tty 745 * 746 * Return true if the tty has been subject to a vhangup or a carrier 747 * loss 748 */ 749 750 int tty_hung_up_p(struct file *filp) 751 { 752 return (filp->f_op == &hung_up_tty_fops); 753 } 754 755 EXPORT_SYMBOL(tty_hung_up_p); 756 757 static void session_clear_tty(struct pid *session) 758 { 759 struct task_struct *p; 760 do_each_pid_task(session, PIDTYPE_SID, p) { 761 proc_clear_tty(p); 762 } while_each_pid_task(session, PIDTYPE_SID, p); 763 } 764 765 /** 766 * disassociate_ctty - disconnect controlling tty 767 * @on_exit: true if exiting so need to "hang up" the session 768 * 769 * This function is typically called only by the session leader, when 770 * it wants to disassociate itself from its controlling tty. 771 * 772 * It performs the following functions: 773 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 774 * (2) Clears the tty from being controlling the session 775 * (3) Clears the controlling tty for all processes in the 776 * session group. 777 * 778 * The argument on_exit is set to 1 if called when a process is 779 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 780 * 781 * Locking: 782 * BTM is taken for hysterical raisins, and held when 783 * called from no_tty(). 784 * tty_mutex is taken to protect tty 785 * ->siglock is taken to protect ->signal/->sighand 786 * tasklist_lock is taken to walk process list for sessions 787 * ->siglock is taken to protect ->signal/->sighand 788 */ 789 790 void disassociate_ctty(int on_exit) 791 { 792 struct tty_struct *tty; 793 794 if (!current->signal->leader) 795 return; 796 797 tty = get_current_tty(); 798 if (tty) { 799 struct pid *tty_pgrp = get_pid(tty->pgrp); 800 if (on_exit) { 801 if (tty->driver->type != TTY_DRIVER_TYPE_PTY) 802 tty_vhangup(tty); 803 } 804 tty_kref_put(tty); 805 if (tty_pgrp) { 806 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 807 if (!on_exit) 808 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 809 put_pid(tty_pgrp); 810 } 811 } else if (on_exit) { 812 struct pid *old_pgrp; 813 spin_lock_irq(¤t->sighand->siglock); 814 old_pgrp = current->signal->tty_old_pgrp; 815 current->signal->tty_old_pgrp = NULL; 816 spin_unlock_irq(¤t->sighand->siglock); 817 if (old_pgrp) { 818 kill_pgrp(old_pgrp, SIGHUP, on_exit); 819 kill_pgrp(old_pgrp, SIGCONT, on_exit); 820 put_pid(old_pgrp); 821 } 822 return; 823 } 824 825 spin_lock_irq(¤t->sighand->siglock); 826 put_pid(current->signal->tty_old_pgrp); 827 current->signal->tty_old_pgrp = NULL; 828 spin_unlock_irq(¤t->sighand->siglock); 829 830 tty = get_current_tty(); 831 if (tty) { 832 unsigned long flags; 833 spin_lock_irqsave(&tty->ctrl_lock, flags); 834 put_pid(tty->session); 835 put_pid(tty->pgrp); 836 tty->session = NULL; 837 tty->pgrp = NULL; 838 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 839 tty_kref_put(tty); 840 } else { 841 #ifdef TTY_DEBUG_HANGUP 842 printk(KERN_DEBUG "error attempted to write to tty [0x%p]" 843 " = NULL", tty); 844 #endif 845 } 846 847 /* Now clear signal->tty under the lock */ 848 read_lock(&tasklist_lock); 849 session_clear_tty(task_session(current)); 850 read_unlock(&tasklist_lock); 851 } 852 853 /** 854 * 855 * no_tty - Ensure the current process does not have a controlling tty 856 */ 857 void no_tty(void) 858 { 859 struct task_struct *tsk = current; 860 tty_lock(); 861 disassociate_ctty(0); 862 tty_unlock(); 863 proc_clear_tty(tsk); 864 } 865 866 867 /** 868 * stop_tty - propagate flow control 869 * @tty: tty to stop 870 * 871 * Perform flow control to the driver. For PTY/TTY pairs we 872 * must also propagate the TIOCKPKT status. May be called 873 * on an already stopped device and will not re-call the driver 874 * method. 875 * 876 * This functionality is used by both the line disciplines for 877 * halting incoming flow and by the driver. It may therefore be 878 * called from any context, may be under the tty atomic_write_lock 879 * but not always. 880 * 881 * Locking: 882 * Uses the tty control lock internally 883 */ 884 885 void stop_tty(struct tty_struct *tty) 886 { 887 unsigned long flags; 888 spin_lock_irqsave(&tty->ctrl_lock, flags); 889 if (tty->stopped) { 890 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 891 return; 892 } 893 tty->stopped = 1; 894 if (tty->link && tty->link->packet) { 895 tty->ctrl_status &= ~TIOCPKT_START; 896 tty->ctrl_status |= TIOCPKT_STOP; 897 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 898 } 899 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 900 if (tty->ops->stop) 901 (tty->ops->stop)(tty); 902 } 903 904 EXPORT_SYMBOL(stop_tty); 905 906 /** 907 * start_tty - propagate flow control 908 * @tty: tty to start 909 * 910 * Start a tty that has been stopped if at all possible. Perform 911 * any necessary wakeups and propagate the TIOCPKT status. If this 912 * is the tty was previous stopped and is being started then the 913 * driver start method is invoked and the line discipline woken. 914 * 915 * Locking: 916 * ctrl_lock 917 */ 918 919 void start_tty(struct tty_struct *tty) 920 { 921 unsigned long flags; 922 spin_lock_irqsave(&tty->ctrl_lock, flags); 923 if (!tty->stopped || tty->flow_stopped) { 924 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 925 return; 926 } 927 tty->stopped = 0; 928 if (tty->link && tty->link->packet) { 929 tty->ctrl_status &= ~TIOCPKT_STOP; 930 tty->ctrl_status |= TIOCPKT_START; 931 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 932 } 933 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 934 if (tty->ops->start) 935 (tty->ops->start)(tty); 936 /* If we have a running line discipline it may need kicking */ 937 tty_wakeup(tty); 938 } 939 940 EXPORT_SYMBOL(start_tty); 941 942 /** 943 * tty_read - read method for tty device files 944 * @file: pointer to tty file 945 * @buf: user buffer 946 * @count: size of user buffer 947 * @ppos: unused 948 * 949 * Perform the read system call function on this terminal device. Checks 950 * for hung up devices before calling the line discipline method. 951 * 952 * Locking: 953 * Locks the line discipline internally while needed. Multiple 954 * read calls may be outstanding in parallel. 955 */ 956 957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 958 loff_t *ppos) 959 { 960 int i; 961 struct inode *inode = file->f_path.dentry->d_inode; 962 struct tty_struct *tty = file_tty(file); 963 struct tty_ldisc *ld; 964 965 if (tty_paranoia_check(tty, inode, "tty_read")) 966 return -EIO; 967 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 968 return -EIO; 969 970 /* We want to wait for the line discipline to sort out in this 971 situation */ 972 ld = tty_ldisc_ref_wait(tty); 973 if (ld->ops->read) 974 i = (ld->ops->read)(tty, file, buf, count); 975 else 976 i = -EIO; 977 tty_ldisc_deref(ld); 978 if (i > 0) 979 inode->i_atime = current_fs_time(inode->i_sb); 980 return i; 981 } 982 983 void tty_write_unlock(struct tty_struct *tty) 984 __releases(&tty->atomic_write_lock) 985 { 986 mutex_unlock(&tty->atomic_write_lock); 987 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 988 } 989 990 int tty_write_lock(struct tty_struct *tty, int ndelay) 991 __acquires(&tty->atomic_write_lock) 992 { 993 if (!mutex_trylock(&tty->atomic_write_lock)) { 994 if (ndelay) 995 return -EAGAIN; 996 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 997 return -ERESTARTSYS; 998 } 999 return 0; 1000 } 1001 1002 /* 1003 * Split writes up in sane blocksizes to avoid 1004 * denial-of-service type attacks 1005 */ 1006 static inline ssize_t do_tty_write( 1007 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1008 struct tty_struct *tty, 1009 struct file *file, 1010 const char __user *buf, 1011 size_t count) 1012 { 1013 ssize_t ret, written = 0; 1014 unsigned int chunk; 1015 1016 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1017 if (ret < 0) 1018 return ret; 1019 1020 /* 1021 * We chunk up writes into a temporary buffer. This 1022 * simplifies low-level drivers immensely, since they 1023 * don't have locking issues and user mode accesses. 1024 * 1025 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1026 * big chunk-size.. 1027 * 1028 * The default chunk-size is 2kB, because the NTTY 1029 * layer has problems with bigger chunks. It will 1030 * claim to be able to handle more characters than 1031 * it actually does. 1032 * 1033 * FIXME: This can probably go away now except that 64K chunks 1034 * are too likely to fail unless switched to vmalloc... 1035 */ 1036 chunk = 2048; 1037 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1038 chunk = 65536; 1039 if (count < chunk) 1040 chunk = count; 1041 1042 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1043 if (tty->write_cnt < chunk) { 1044 unsigned char *buf_chunk; 1045 1046 if (chunk < 1024) 1047 chunk = 1024; 1048 1049 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1050 if (!buf_chunk) { 1051 ret = -ENOMEM; 1052 goto out; 1053 } 1054 kfree(tty->write_buf); 1055 tty->write_cnt = chunk; 1056 tty->write_buf = buf_chunk; 1057 } 1058 1059 /* Do the write .. */ 1060 for (;;) { 1061 size_t size = count; 1062 if (size > chunk) 1063 size = chunk; 1064 ret = -EFAULT; 1065 if (copy_from_user(tty->write_buf, buf, size)) 1066 break; 1067 ret = write(tty, file, tty->write_buf, size); 1068 if (ret <= 0) 1069 break; 1070 written += ret; 1071 buf += ret; 1072 count -= ret; 1073 if (!count) 1074 break; 1075 ret = -ERESTARTSYS; 1076 if (signal_pending(current)) 1077 break; 1078 cond_resched(); 1079 } 1080 if (written) { 1081 struct inode *inode = file->f_path.dentry->d_inode; 1082 inode->i_mtime = current_fs_time(inode->i_sb); 1083 ret = written; 1084 } 1085 out: 1086 tty_write_unlock(tty); 1087 return ret; 1088 } 1089 1090 /** 1091 * tty_write_message - write a message to a certain tty, not just the console. 1092 * @tty: the destination tty_struct 1093 * @msg: the message to write 1094 * 1095 * This is used for messages that need to be redirected to a specific tty. 1096 * We don't put it into the syslog queue right now maybe in the future if 1097 * really needed. 1098 * 1099 * We must still hold the BTM and test the CLOSING flag for the moment. 1100 */ 1101 1102 void tty_write_message(struct tty_struct *tty, char *msg) 1103 { 1104 if (tty) { 1105 mutex_lock(&tty->atomic_write_lock); 1106 tty_lock(); 1107 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) { 1108 tty_unlock(); 1109 tty->ops->write(tty, msg, strlen(msg)); 1110 } else 1111 tty_unlock(); 1112 tty_write_unlock(tty); 1113 } 1114 return; 1115 } 1116 1117 1118 /** 1119 * tty_write - write method for tty device file 1120 * @file: tty file pointer 1121 * @buf: user data to write 1122 * @count: bytes to write 1123 * @ppos: unused 1124 * 1125 * Write data to a tty device via the line discipline. 1126 * 1127 * Locking: 1128 * Locks the line discipline as required 1129 * Writes to the tty driver are serialized by the atomic_write_lock 1130 * and are then processed in chunks to the device. The line discipline 1131 * write method will not be invoked in parallel for each device. 1132 */ 1133 1134 static ssize_t tty_write(struct file *file, const char __user *buf, 1135 size_t count, loff_t *ppos) 1136 { 1137 struct inode *inode = file->f_path.dentry->d_inode; 1138 struct tty_struct *tty = file_tty(file); 1139 struct tty_ldisc *ld; 1140 ssize_t ret; 1141 1142 if (tty_paranoia_check(tty, inode, "tty_write")) 1143 return -EIO; 1144 if (!tty || !tty->ops->write || 1145 (test_bit(TTY_IO_ERROR, &tty->flags))) 1146 return -EIO; 1147 /* Short term debug to catch buggy drivers */ 1148 if (tty->ops->write_room == NULL) 1149 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1150 tty->driver->name); 1151 ld = tty_ldisc_ref_wait(tty); 1152 if (!ld->ops->write) 1153 ret = -EIO; 1154 else 1155 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1156 tty_ldisc_deref(ld); 1157 return ret; 1158 } 1159 1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1161 size_t count, loff_t *ppos) 1162 { 1163 struct file *p = NULL; 1164 1165 spin_lock(&redirect_lock); 1166 if (redirect) { 1167 get_file(redirect); 1168 p = redirect; 1169 } 1170 spin_unlock(&redirect_lock); 1171 1172 if (p) { 1173 ssize_t res; 1174 res = vfs_write(p, buf, count, &p->f_pos); 1175 fput(p); 1176 return res; 1177 } 1178 return tty_write(file, buf, count, ppos); 1179 } 1180 1181 static char ptychar[] = "pqrstuvwxyzabcde"; 1182 1183 /** 1184 * pty_line_name - generate name for a pty 1185 * @driver: the tty driver in use 1186 * @index: the minor number 1187 * @p: output buffer of at least 6 bytes 1188 * 1189 * Generate a name from a driver reference and write it to the output 1190 * buffer. 1191 * 1192 * Locking: None 1193 */ 1194 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1195 { 1196 int i = index + driver->name_base; 1197 /* ->name is initialized to "ttyp", but "tty" is expected */ 1198 sprintf(p, "%s%c%x", 1199 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1200 ptychar[i >> 4 & 0xf], i & 0xf); 1201 } 1202 1203 /** 1204 * tty_line_name - generate name for a tty 1205 * @driver: the tty driver in use 1206 * @index: the minor number 1207 * @p: output buffer of at least 7 bytes 1208 * 1209 * Generate a name from a driver reference and write it to the output 1210 * buffer. 1211 * 1212 * Locking: None 1213 */ 1214 static void tty_line_name(struct tty_driver *driver, int index, char *p) 1215 { 1216 sprintf(p, "%s%d", driver->name, index + driver->name_base); 1217 } 1218 1219 /** 1220 * tty_driver_lookup_tty() - find an existing tty, if any 1221 * @driver: the driver for the tty 1222 * @idx: the minor number 1223 * 1224 * Return the tty, if found or ERR_PTR() otherwise. 1225 * 1226 * Locking: tty_mutex must be held. If tty is found, the mutex must 1227 * be held until the 'fast-open' is also done. Will change once we 1228 * have refcounting in the driver and per driver locking 1229 */ 1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1231 struct inode *inode, int idx) 1232 { 1233 if (driver->ops->lookup) 1234 return driver->ops->lookup(driver, inode, idx); 1235 1236 return driver->ttys[idx]; 1237 } 1238 1239 /** 1240 * tty_init_termios - helper for termios setup 1241 * @tty: the tty to set up 1242 * 1243 * Initialise the termios structures for this tty. Thus runs under 1244 * the tty_mutex currently so we can be relaxed about ordering. 1245 */ 1246 1247 int tty_init_termios(struct tty_struct *tty) 1248 { 1249 struct ktermios *tp; 1250 int idx = tty->index; 1251 1252 tp = tty->driver->termios[idx]; 1253 if (tp == NULL) { 1254 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL); 1255 if (tp == NULL) 1256 return -ENOMEM; 1257 memcpy(tp, &tty->driver->init_termios, 1258 sizeof(struct ktermios)); 1259 tty->driver->termios[idx] = tp; 1260 } 1261 tty->termios = tp; 1262 tty->termios_locked = tp + 1; 1263 1264 /* Compatibility until drivers always set this */ 1265 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios); 1266 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios); 1267 return 0; 1268 } 1269 EXPORT_SYMBOL_GPL(tty_init_termios); 1270 1271 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1272 { 1273 int ret = tty_init_termios(tty); 1274 if (ret) 1275 return ret; 1276 1277 tty_driver_kref_get(driver); 1278 tty->count++; 1279 driver->ttys[tty->index] = tty; 1280 return 0; 1281 } 1282 EXPORT_SYMBOL_GPL(tty_standard_install); 1283 1284 /** 1285 * tty_driver_install_tty() - install a tty entry in the driver 1286 * @driver: the driver for the tty 1287 * @tty: the tty 1288 * 1289 * Install a tty object into the driver tables. The tty->index field 1290 * will be set by the time this is called. This method is responsible 1291 * for ensuring any need additional structures are allocated and 1292 * configured. 1293 * 1294 * Locking: tty_mutex for now 1295 */ 1296 static int tty_driver_install_tty(struct tty_driver *driver, 1297 struct tty_struct *tty) 1298 { 1299 return driver->ops->install ? driver->ops->install(driver, tty) : 1300 tty_standard_install(driver, tty); 1301 } 1302 1303 /** 1304 * tty_driver_remove_tty() - remove a tty from the driver tables 1305 * @driver: the driver for the tty 1306 * @idx: the minor number 1307 * 1308 * Remvoe a tty object from the driver tables. The tty->index field 1309 * will be set by the time this is called. 1310 * 1311 * Locking: tty_mutex for now 1312 */ 1313 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1314 { 1315 if (driver->ops->remove) 1316 driver->ops->remove(driver, tty); 1317 else 1318 driver->ttys[tty->index] = NULL; 1319 } 1320 1321 /* 1322 * tty_reopen() - fast re-open of an open tty 1323 * @tty - the tty to open 1324 * 1325 * Return 0 on success, -errno on error. 1326 * 1327 * Locking: tty_mutex must be held from the time the tty was found 1328 * till this open completes. 1329 */ 1330 static int tty_reopen(struct tty_struct *tty) 1331 { 1332 struct tty_driver *driver = tty->driver; 1333 1334 if (test_bit(TTY_CLOSING, &tty->flags) || 1335 test_bit(TTY_HUPPING, &tty->flags) || 1336 test_bit(TTY_LDISC_CHANGING, &tty->flags)) 1337 return -EIO; 1338 1339 if (driver->type == TTY_DRIVER_TYPE_PTY && 1340 driver->subtype == PTY_TYPE_MASTER) { 1341 /* 1342 * special case for PTY masters: only one open permitted, 1343 * and the slave side open count is incremented as well. 1344 */ 1345 if (tty->count) 1346 return -EIO; 1347 1348 tty->link->count++; 1349 } 1350 tty->count++; 1351 1352 mutex_lock(&tty->ldisc_mutex); 1353 WARN_ON(!test_bit(TTY_LDISC, &tty->flags)); 1354 mutex_unlock(&tty->ldisc_mutex); 1355 1356 return 0; 1357 } 1358 1359 /** 1360 * tty_init_dev - initialise a tty device 1361 * @driver: tty driver we are opening a device on 1362 * @idx: device index 1363 * @ret_tty: returned tty structure 1364 * 1365 * Prepare a tty device. This may not be a "new" clean device but 1366 * could also be an active device. The pty drivers require special 1367 * handling because of this. 1368 * 1369 * Locking: 1370 * The function is called under the tty_mutex, which 1371 * protects us from the tty struct or driver itself going away. 1372 * 1373 * On exit the tty device has the line discipline attached and 1374 * a reference count of 1. If a pair was created for pty/tty use 1375 * and the other was a pty master then it too has a reference count of 1. 1376 * 1377 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1378 * failed open. The new code protects the open with a mutex, so it's 1379 * really quite straightforward. The mutex locking can probably be 1380 * relaxed for the (most common) case of reopening a tty. 1381 */ 1382 1383 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1384 { 1385 struct tty_struct *tty; 1386 int retval; 1387 1388 /* 1389 * First time open is complex, especially for PTY devices. 1390 * This code guarantees that either everything succeeds and the 1391 * TTY is ready for operation, or else the table slots are vacated 1392 * and the allocated memory released. (Except that the termios 1393 * and locked termios may be retained.) 1394 */ 1395 1396 if (!try_module_get(driver->owner)) 1397 return ERR_PTR(-ENODEV); 1398 1399 tty = alloc_tty_struct(); 1400 if (!tty) { 1401 retval = -ENOMEM; 1402 goto err_module_put; 1403 } 1404 initialize_tty_struct(tty, driver, idx); 1405 1406 retval = tty_driver_install_tty(driver, tty); 1407 if (retval < 0) 1408 goto err_deinit_tty; 1409 1410 /* 1411 * Structures all installed ... call the ldisc open routines. 1412 * If we fail here just call release_tty to clean up. No need 1413 * to decrement the use counts, as release_tty doesn't care. 1414 */ 1415 retval = tty_ldisc_setup(tty, tty->link); 1416 if (retval) 1417 goto err_release_tty; 1418 return tty; 1419 1420 err_deinit_tty: 1421 deinitialize_tty_struct(tty); 1422 free_tty_struct(tty); 1423 err_module_put: 1424 module_put(driver->owner); 1425 return ERR_PTR(retval); 1426 1427 /* call the tty release_tty routine to clean out this slot */ 1428 err_release_tty: 1429 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1430 "clearing slot %d\n", idx); 1431 release_tty(tty, idx); 1432 return ERR_PTR(retval); 1433 } 1434 1435 void tty_free_termios(struct tty_struct *tty) 1436 { 1437 struct ktermios *tp; 1438 int idx = tty->index; 1439 /* Kill this flag and push into drivers for locking etc */ 1440 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) { 1441 /* FIXME: Locking on ->termios array */ 1442 tp = tty->termios; 1443 tty->driver->termios[idx] = NULL; 1444 kfree(tp); 1445 } 1446 } 1447 EXPORT_SYMBOL(tty_free_termios); 1448 1449 void tty_shutdown(struct tty_struct *tty) 1450 { 1451 tty_driver_remove_tty(tty->driver, tty); 1452 tty_free_termios(tty); 1453 } 1454 EXPORT_SYMBOL(tty_shutdown); 1455 1456 /** 1457 * release_one_tty - release tty structure memory 1458 * @kref: kref of tty we are obliterating 1459 * 1460 * Releases memory associated with a tty structure, and clears out the 1461 * driver table slots. This function is called when a device is no longer 1462 * in use. It also gets called when setup of a device fails. 1463 * 1464 * Locking: 1465 * tty_mutex - sometimes only 1466 * takes the file list lock internally when working on the list 1467 * of ttys that the driver keeps. 1468 * 1469 * This method gets called from a work queue so that the driver private 1470 * cleanup ops can sleep (needed for USB at least) 1471 */ 1472 static void release_one_tty(struct work_struct *work) 1473 { 1474 struct tty_struct *tty = 1475 container_of(work, struct tty_struct, hangup_work); 1476 struct tty_driver *driver = tty->driver; 1477 1478 if (tty->ops->cleanup) 1479 tty->ops->cleanup(tty); 1480 1481 tty->magic = 0; 1482 tty_driver_kref_put(driver); 1483 module_put(driver->owner); 1484 1485 spin_lock(&tty_files_lock); 1486 list_del_init(&tty->tty_files); 1487 spin_unlock(&tty_files_lock); 1488 1489 put_pid(tty->pgrp); 1490 put_pid(tty->session); 1491 free_tty_struct(tty); 1492 } 1493 1494 static void queue_release_one_tty(struct kref *kref) 1495 { 1496 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1497 1498 if (tty->ops->shutdown) 1499 tty->ops->shutdown(tty); 1500 else 1501 tty_shutdown(tty); 1502 1503 /* The hangup queue is now free so we can reuse it rather than 1504 waste a chunk of memory for each port */ 1505 INIT_WORK(&tty->hangup_work, release_one_tty); 1506 schedule_work(&tty->hangup_work); 1507 } 1508 1509 /** 1510 * tty_kref_put - release a tty kref 1511 * @tty: tty device 1512 * 1513 * Release a reference to a tty device and if need be let the kref 1514 * layer destruct the object for us 1515 */ 1516 1517 void tty_kref_put(struct tty_struct *tty) 1518 { 1519 if (tty) 1520 kref_put(&tty->kref, queue_release_one_tty); 1521 } 1522 EXPORT_SYMBOL(tty_kref_put); 1523 1524 /** 1525 * release_tty - release tty structure memory 1526 * 1527 * Release both @tty and a possible linked partner (think pty pair), 1528 * and decrement the refcount of the backing module. 1529 * 1530 * Locking: 1531 * tty_mutex - sometimes only 1532 * takes the file list lock internally when working on the list 1533 * of ttys that the driver keeps. 1534 * FIXME: should we require tty_mutex is held here ?? 1535 * 1536 */ 1537 static void release_tty(struct tty_struct *tty, int idx) 1538 { 1539 /* This should always be true but check for the moment */ 1540 WARN_ON(tty->index != idx); 1541 1542 if (tty->link) 1543 tty_kref_put(tty->link); 1544 tty_kref_put(tty); 1545 } 1546 1547 /** 1548 * tty_release_checks - check a tty before real release 1549 * @tty: tty to check 1550 * @o_tty: link of @tty (if any) 1551 * @idx: index of the tty 1552 * 1553 * Performs some paranoid checking before true release of the @tty. 1554 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1555 */ 1556 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty, 1557 int idx) 1558 { 1559 #ifdef TTY_PARANOIA_CHECK 1560 if (idx < 0 || idx >= tty->driver->num) { 1561 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n", 1562 __func__, tty->name); 1563 return -1; 1564 } 1565 1566 /* not much to check for devpts */ 1567 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1568 return 0; 1569 1570 if (tty != tty->driver->ttys[idx]) { 1571 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n", 1572 __func__, idx, tty->name); 1573 return -1; 1574 } 1575 if (tty->termios != tty->driver->termios[idx]) { 1576 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n", 1577 __func__, idx, tty->name); 1578 return -1; 1579 } 1580 if (tty->driver->other) { 1581 if (o_tty != tty->driver->other->ttys[idx]) { 1582 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n", 1583 __func__, idx, tty->name); 1584 return -1; 1585 } 1586 if (o_tty->termios != tty->driver->other->termios[idx]) { 1587 printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n", 1588 __func__, idx, tty->name); 1589 return -1; 1590 } 1591 if (o_tty->link != tty) { 1592 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__); 1593 return -1; 1594 } 1595 } 1596 #endif 1597 return 0; 1598 } 1599 1600 /** 1601 * tty_release - vfs callback for close 1602 * @inode: inode of tty 1603 * @filp: file pointer for handle to tty 1604 * 1605 * Called the last time each file handle is closed that references 1606 * this tty. There may however be several such references. 1607 * 1608 * Locking: 1609 * Takes bkl. See tty_release_dev 1610 * 1611 * Even releasing the tty structures is a tricky business.. We have 1612 * to be very careful that the structures are all released at the 1613 * same time, as interrupts might otherwise get the wrong pointers. 1614 * 1615 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1616 * lead to double frees or releasing memory still in use. 1617 */ 1618 1619 int tty_release(struct inode *inode, struct file *filp) 1620 { 1621 struct tty_struct *tty = file_tty(filp); 1622 struct tty_struct *o_tty; 1623 int pty_master, tty_closing, o_tty_closing, do_sleep; 1624 int devpts; 1625 int idx; 1626 char buf[64]; 1627 1628 if (tty_paranoia_check(tty, inode, __func__)) 1629 return 0; 1630 1631 tty_lock(); 1632 check_tty_count(tty, __func__); 1633 1634 __tty_fasync(-1, filp, 0); 1635 1636 idx = tty->index; 1637 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1638 tty->driver->subtype == PTY_TYPE_MASTER); 1639 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0; 1640 o_tty = tty->link; 1641 1642 if (tty_release_checks(tty, o_tty, idx)) { 1643 tty_unlock(); 1644 return 0; 1645 } 1646 1647 #ifdef TTY_DEBUG_HANGUP 1648 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__, 1649 tty_name(tty, buf), tty->count); 1650 #endif 1651 1652 if (tty->ops->close) 1653 tty->ops->close(tty, filp); 1654 1655 tty_unlock(); 1656 /* 1657 * Sanity check: if tty->count is going to zero, there shouldn't be 1658 * any waiters on tty->read_wait or tty->write_wait. We test the 1659 * wait queues and kick everyone out _before_ actually starting to 1660 * close. This ensures that we won't block while releasing the tty 1661 * structure. 1662 * 1663 * The test for the o_tty closing is necessary, since the master and 1664 * slave sides may close in any order. If the slave side closes out 1665 * first, its count will be one, since the master side holds an open. 1666 * Thus this test wouldn't be triggered at the time the slave closes, 1667 * so we do it now. 1668 * 1669 * Note that it's possible for the tty to be opened again while we're 1670 * flushing out waiters. By recalculating the closing flags before 1671 * each iteration we avoid any problems. 1672 */ 1673 while (1) { 1674 /* Guard against races with tty->count changes elsewhere and 1675 opens on /dev/tty */ 1676 1677 mutex_lock(&tty_mutex); 1678 tty_lock(); 1679 tty_closing = tty->count <= 1; 1680 o_tty_closing = o_tty && 1681 (o_tty->count <= (pty_master ? 1 : 0)); 1682 do_sleep = 0; 1683 1684 if (tty_closing) { 1685 if (waitqueue_active(&tty->read_wait)) { 1686 wake_up_poll(&tty->read_wait, POLLIN); 1687 do_sleep++; 1688 } 1689 if (waitqueue_active(&tty->write_wait)) { 1690 wake_up_poll(&tty->write_wait, POLLOUT); 1691 do_sleep++; 1692 } 1693 } 1694 if (o_tty_closing) { 1695 if (waitqueue_active(&o_tty->read_wait)) { 1696 wake_up_poll(&o_tty->read_wait, POLLIN); 1697 do_sleep++; 1698 } 1699 if (waitqueue_active(&o_tty->write_wait)) { 1700 wake_up_poll(&o_tty->write_wait, POLLOUT); 1701 do_sleep++; 1702 } 1703 } 1704 if (!do_sleep) 1705 break; 1706 1707 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1708 __func__, tty_name(tty, buf)); 1709 tty_unlock(); 1710 mutex_unlock(&tty_mutex); 1711 schedule(); 1712 } 1713 1714 /* 1715 * The closing flags are now consistent with the open counts on 1716 * both sides, and we've completed the last operation that could 1717 * block, so it's safe to proceed with closing. 1718 */ 1719 if (pty_master) { 1720 if (--o_tty->count < 0) { 1721 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1722 __func__, o_tty->count, tty_name(o_tty, buf)); 1723 o_tty->count = 0; 1724 } 1725 } 1726 if (--tty->count < 0) { 1727 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1728 __func__, tty->count, tty_name(tty, buf)); 1729 tty->count = 0; 1730 } 1731 1732 /* 1733 * We've decremented tty->count, so we need to remove this file 1734 * descriptor off the tty->tty_files list; this serves two 1735 * purposes: 1736 * - check_tty_count sees the correct number of file descriptors 1737 * associated with this tty. 1738 * - do_tty_hangup no longer sees this file descriptor as 1739 * something that needs to be handled for hangups. 1740 */ 1741 tty_del_file(filp); 1742 1743 /* 1744 * Perform some housekeeping before deciding whether to return. 1745 * 1746 * Set the TTY_CLOSING flag if this was the last open. In the 1747 * case of a pty we may have to wait around for the other side 1748 * to close, and TTY_CLOSING makes sure we can't be reopened. 1749 */ 1750 if (tty_closing) 1751 set_bit(TTY_CLOSING, &tty->flags); 1752 if (o_tty_closing) 1753 set_bit(TTY_CLOSING, &o_tty->flags); 1754 1755 /* 1756 * If _either_ side is closing, make sure there aren't any 1757 * processes that still think tty or o_tty is their controlling 1758 * tty. 1759 */ 1760 if (tty_closing || o_tty_closing) { 1761 read_lock(&tasklist_lock); 1762 session_clear_tty(tty->session); 1763 if (o_tty) 1764 session_clear_tty(o_tty->session); 1765 read_unlock(&tasklist_lock); 1766 } 1767 1768 mutex_unlock(&tty_mutex); 1769 1770 /* check whether both sides are closing ... */ 1771 if (!tty_closing || (o_tty && !o_tty_closing)) { 1772 tty_unlock(); 1773 return 0; 1774 } 1775 1776 #ifdef TTY_DEBUG_HANGUP 1777 printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__); 1778 #endif 1779 /* 1780 * Ask the line discipline code to release its structures 1781 */ 1782 tty_ldisc_release(tty, o_tty); 1783 /* 1784 * The release_tty function takes care of the details of clearing 1785 * the slots and preserving the termios structure. 1786 */ 1787 release_tty(tty, idx); 1788 1789 /* Make this pty number available for reallocation */ 1790 if (devpts) 1791 devpts_kill_index(inode, idx); 1792 tty_unlock(); 1793 return 0; 1794 } 1795 1796 /** 1797 * tty_open_current_tty - get tty of current task for open 1798 * @device: device number 1799 * @filp: file pointer to tty 1800 * @return: tty of the current task iff @device is /dev/tty 1801 * 1802 * We cannot return driver and index like for the other nodes because 1803 * devpts will not work then. It expects inodes to be from devpts FS. 1804 */ 1805 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1806 { 1807 struct tty_struct *tty; 1808 1809 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1810 return NULL; 1811 1812 tty = get_current_tty(); 1813 if (!tty) 1814 return ERR_PTR(-ENXIO); 1815 1816 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1817 /* noctty = 1; */ 1818 tty_kref_put(tty); 1819 /* FIXME: we put a reference and return a TTY! */ 1820 return tty; 1821 } 1822 1823 /** 1824 * tty_lookup_driver - lookup a tty driver for a given device file 1825 * @device: device number 1826 * @filp: file pointer to tty 1827 * @noctty: set if the device should not become a controlling tty 1828 * @index: index for the device in the @return driver 1829 * @return: driver for this inode (with increased refcount) 1830 * 1831 * If @return is not erroneous, the caller is responsible to decrement the 1832 * refcount by tty_driver_kref_put. 1833 * 1834 * Locking: tty_mutex protects get_tty_driver 1835 */ 1836 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1837 int *noctty, int *index) 1838 { 1839 struct tty_driver *driver; 1840 1841 switch (device) { 1842 #ifdef CONFIG_VT 1843 case MKDEV(TTY_MAJOR, 0): { 1844 extern struct tty_driver *console_driver; 1845 driver = tty_driver_kref_get(console_driver); 1846 *index = fg_console; 1847 *noctty = 1; 1848 break; 1849 } 1850 #endif 1851 case MKDEV(TTYAUX_MAJOR, 1): { 1852 struct tty_driver *console_driver = console_device(index); 1853 if (console_driver) { 1854 driver = tty_driver_kref_get(console_driver); 1855 if (driver) { 1856 /* Don't let /dev/console block */ 1857 filp->f_flags |= O_NONBLOCK; 1858 *noctty = 1; 1859 break; 1860 } 1861 } 1862 return ERR_PTR(-ENODEV); 1863 } 1864 default: 1865 driver = get_tty_driver(device, index); 1866 if (!driver) 1867 return ERR_PTR(-ENODEV); 1868 break; 1869 } 1870 return driver; 1871 } 1872 1873 /** 1874 * tty_open - open a tty device 1875 * @inode: inode of device file 1876 * @filp: file pointer to tty 1877 * 1878 * tty_open and tty_release keep up the tty count that contains the 1879 * number of opens done on a tty. We cannot use the inode-count, as 1880 * different inodes might point to the same tty. 1881 * 1882 * Open-counting is needed for pty masters, as well as for keeping 1883 * track of serial lines: DTR is dropped when the last close happens. 1884 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1885 * 1886 * The termios state of a pty is reset on first open so that 1887 * settings don't persist across reuse. 1888 * 1889 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1890 * tty->count should protect the rest. 1891 * ->siglock protects ->signal/->sighand 1892 */ 1893 1894 static int tty_open(struct inode *inode, struct file *filp) 1895 { 1896 struct tty_struct *tty; 1897 int noctty, retval; 1898 struct tty_driver *driver = NULL; 1899 int index; 1900 dev_t device = inode->i_rdev; 1901 unsigned saved_flags = filp->f_flags; 1902 1903 nonseekable_open(inode, filp); 1904 1905 retry_open: 1906 retval = tty_alloc_file(filp); 1907 if (retval) 1908 return -ENOMEM; 1909 1910 noctty = filp->f_flags & O_NOCTTY; 1911 index = -1; 1912 retval = 0; 1913 1914 mutex_lock(&tty_mutex); 1915 tty_lock(); 1916 1917 tty = tty_open_current_tty(device, filp); 1918 if (IS_ERR(tty)) { 1919 retval = PTR_ERR(tty); 1920 goto err_unlock; 1921 } else if (!tty) { 1922 driver = tty_lookup_driver(device, filp, &noctty, &index); 1923 if (IS_ERR(driver)) { 1924 retval = PTR_ERR(driver); 1925 goto err_unlock; 1926 } 1927 1928 /* check whether we're reopening an existing tty */ 1929 tty = tty_driver_lookup_tty(driver, inode, index); 1930 if (IS_ERR(tty)) { 1931 retval = PTR_ERR(tty); 1932 goto err_unlock; 1933 } 1934 } 1935 1936 if (tty) { 1937 retval = tty_reopen(tty); 1938 if (retval) 1939 tty = ERR_PTR(retval); 1940 } else 1941 tty = tty_init_dev(driver, index); 1942 1943 mutex_unlock(&tty_mutex); 1944 if (driver) 1945 tty_driver_kref_put(driver); 1946 if (IS_ERR(tty)) { 1947 tty_unlock(); 1948 retval = PTR_ERR(tty); 1949 goto err_file; 1950 } 1951 1952 tty_add_file(tty, filp); 1953 1954 check_tty_count(tty, __func__); 1955 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1956 tty->driver->subtype == PTY_TYPE_MASTER) 1957 noctty = 1; 1958 #ifdef TTY_DEBUG_HANGUP 1959 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name); 1960 #endif 1961 if (tty->ops->open) 1962 retval = tty->ops->open(tty, filp); 1963 else 1964 retval = -ENODEV; 1965 filp->f_flags = saved_flags; 1966 1967 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && 1968 !capable(CAP_SYS_ADMIN)) 1969 retval = -EBUSY; 1970 1971 if (retval) { 1972 #ifdef TTY_DEBUG_HANGUP 1973 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__, 1974 retval, tty->name); 1975 #endif 1976 tty_unlock(); /* need to call tty_release without BTM */ 1977 tty_release(inode, filp); 1978 if (retval != -ERESTARTSYS) 1979 return retval; 1980 1981 if (signal_pending(current)) 1982 return retval; 1983 1984 schedule(); 1985 /* 1986 * Need to reset f_op in case a hangup happened. 1987 */ 1988 tty_lock(); 1989 if (filp->f_op == &hung_up_tty_fops) 1990 filp->f_op = &tty_fops; 1991 tty_unlock(); 1992 goto retry_open; 1993 } 1994 tty_unlock(); 1995 1996 1997 mutex_lock(&tty_mutex); 1998 tty_lock(); 1999 spin_lock_irq(¤t->sighand->siglock); 2000 if (!noctty && 2001 current->signal->leader && 2002 !current->signal->tty && 2003 tty->session == NULL) 2004 __proc_set_tty(current, tty); 2005 spin_unlock_irq(¤t->sighand->siglock); 2006 tty_unlock(); 2007 mutex_unlock(&tty_mutex); 2008 return 0; 2009 err_unlock: 2010 tty_unlock(); 2011 mutex_unlock(&tty_mutex); 2012 /* after locks to avoid deadlock */ 2013 if (!IS_ERR_OR_NULL(driver)) 2014 tty_driver_kref_put(driver); 2015 err_file: 2016 tty_free_file(filp); 2017 return retval; 2018 } 2019 2020 2021 2022 /** 2023 * tty_poll - check tty status 2024 * @filp: file being polled 2025 * @wait: poll wait structures to update 2026 * 2027 * Call the line discipline polling method to obtain the poll 2028 * status of the device. 2029 * 2030 * Locking: locks called line discipline but ldisc poll method 2031 * may be re-entered freely by other callers. 2032 */ 2033 2034 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2035 { 2036 struct tty_struct *tty = file_tty(filp); 2037 struct tty_ldisc *ld; 2038 int ret = 0; 2039 2040 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll")) 2041 return 0; 2042 2043 ld = tty_ldisc_ref_wait(tty); 2044 if (ld->ops->poll) 2045 ret = (ld->ops->poll)(tty, filp, wait); 2046 tty_ldisc_deref(ld); 2047 return ret; 2048 } 2049 2050 static int __tty_fasync(int fd, struct file *filp, int on) 2051 { 2052 struct tty_struct *tty = file_tty(filp); 2053 unsigned long flags; 2054 int retval = 0; 2055 2056 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync")) 2057 goto out; 2058 2059 retval = fasync_helper(fd, filp, on, &tty->fasync); 2060 if (retval <= 0) 2061 goto out; 2062 2063 if (on) { 2064 enum pid_type type; 2065 struct pid *pid; 2066 if (!waitqueue_active(&tty->read_wait)) 2067 tty->minimum_to_wake = 1; 2068 spin_lock_irqsave(&tty->ctrl_lock, flags); 2069 if (tty->pgrp) { 2070 pid = tty->pgrp; 2071 type = PIDTYPE_PGID; 2072 } else { 2073 pid = task_pid(current); 2074 type = PIDTYPE_PID; 2075 } 2076 get_pid(pid); 2077 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2078 retval = __f_setown(filp, pid, type, 0); 2079 put_pid(pid); 2080 if (retval) 2081 goto out; 2082 } else { 2083 if (!tty->fasync && !waitqueue_active(&tty->read_wait)) 2084 tty->minimum_to_wake = N_TTY_BUF_SIZE; 2085 } 2086 retval = 0; 2087 out: 2088 return retval; 2089 } 2090 2091 static int tty_fasync(int fd, struct file *filp, int on) 2092 { 2093 int retval; 2094 tty_lock(); 2095 retval = __tty_fasync(fd, filp, on); 2096 tty_unlock(); 2097 return retval; 2098 } 2099 2100 /** 2101 * tiocsti - fake input character 2102 * @tty: tty to fake input into 2103 * @p: pointer to character 2104 * 2105 * Fake input to a tty device. Does the necessary locking and 2106 * input management. 2107 * 2108 * FIXME: does not honour flow control ?? 2109 * 2110 * Locking: 2111 * Called functions take tty_ldisc_lock 2112 * current->signal->tty check is safe without locks 2113 * 2114 * FIXME: may race normal receive processing 2115 */ 2116 2117 static int tiocsti(struct tty_struct *tty, char __user *p) 2118 { 2119 char ch, mbz = 0; 2120 struct tty_ldisc *ld; 2121 2122 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2123 return -EPERM; 2124 if (get_user(ch, p)) 2125 return -EFAULT; 2126 tty_audit_tiocsti(tty, ch); 2127 ld = tty_ldisc_ref_wait(tty); 2128 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2129 tty_ldisc_deref(ld); 2130 return 0; 2131 } 2132 2133 /** 2134 * tiocgwinsz - implement window query ioctl 2135 * @tty; tty 2136 * @arg: user buffer for result 2137 * 2138 * Copies the kernel idea of the window size into the user buffer. 2139 * 2140 * Locking: tty->termios_mutex is taken to ensure the winsize data 2141 * is consistent. 2142 */ 2143 2144 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2145 { 2146 int err; 2147 2148 mutex_lock(&tty->termios_mutex); 2149 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2150 mutex_unlock(&tty->termios_mutex); 2151 2152 return err ? -EFAULT: 0; 2153 } 2154 2155 /** 2156 * tty_do_resize - resize event 2157 * @tty: tty being resized 2158 * @rows: rows (character) 2159 * @cols: cols (character) 2160 * 2161 * Update the termios variables and send the necessary signals to 2162 * peform a terminal resize correctly 2163 */ 2164 2165 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2166 { 2167 struct pid *pgrp; 2168 unsigned long flags; 2169 2170 /* Lock the tty */ 2171 mutex_lock(&tty->termios_mutex); 2172 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2173 goto done; 2174 /* Get the PID values and reference them so we can 2175 avoid holding the tty ctrl lock while sending signals */ 2176 spin_lock_irqsave(&tty->ctrl_lock, flags); 2177 pgrp = get_pid(tty->pgrp); 2178 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2179 2180 if (pgrp) 2181 kill_pgrp(pgrp, SIGWINCH, 1); 2182 put_pid(pgrp); 2183 2184 tty->winsize = *ws; 2185 done: 2186 mutex_unlock(&tty->termios_mutex); 2187 return 0; 2188 } 2189 2190 /** 2191 * tiocswinsz - implement window size set ioctl 2192 * @tty; tty side of tty 2193 * @arg: user buffer for result 2194 * 2195 * Copies the user idea of the window size to the kernel. Traditionally 2196 * this is just advisory information but for the Linux console it 2197 * actually has driver level meaning and triggers a VC resize. 2198 * 2199 * Locking: 2200 * Driver dependent. The default do_resize method takes the 2201 * tty termios mutex and ctrl_lock. The console takes its own lock 2202 * then calls into the default method. 2203 */ 2204 2205 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2206 { 2207 struct winsize tmp_ws; 2208 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2209 return -EFAULT; 2210 2211 if (tty->ops->resize) 2212 return tty->ops->resize(tty, &tmp_ws); 2213 else 2214 return tty_do_resize(tty, &tmp_ws); 2215 } 2216 2217 /** 2218 * tioccons - allow admin to move logical console 2219 * @file: the file to become console 2220 * 2221 * Allow the administrator to move the redirected console device 2222 * 2223 * Locking: uses redirect_lock to guard the redirect information 2224 */ 2225 2226 static int tioccons(struct file *file) 2227 { 2228 if (!capable(CAP_SYS_ADMIN)) 2229 return -EPERM; 2230 if (file->f_op->write == redirected_tty_write) { 2231 struct file *f; 2232 spin_lock(&redirect_lock); 2233 f = redirect; 2234 redirect = NULL; 2235 spin_unlock(&redirect_lock); 2236 if (f) 2237 fput(f); 2238 return 0; 2239 } 2240 spin_lock(&redirect_lock); 2241 if (redirect) { 2242 spin_unlock(&redirect_lock); 2243 return -EBUSY; 2244 } 2245 get_file(file); 2246 redirect = file; 2247 spin_unlock(&redirect_lock); 2248 return 0; 2249 } 2250 2251 /** 2252 * fionbio - non blocking ioctl 2253 * @file: file to set blocking value 2254 * @p: user parameter 2255 * 2256 * Historical tty interfaces had a blocking control ioctl before 2257 * the generic functionality existed. This piece of history is preserved 2258 * in the expected tty API of posix OS's. 2259 * 2260 * Locking: none, the open file handle ensures it won't go away. 2261 */ 2262 2263 static int fionbio(struct file *file, int __user *p) 2264 { 2265 int nonblock; 2266 2267 if (get_user(nonblock, p)) 2268 return -EFAULT; 2269 2270 spin_lock(&file->f_lock); 2271 if (nonblock) 2272 file->f_flags |= O_NONBLOCK; 2273 else 2274 file->f_flags &= ~O_NONBLOCK; 2275 spin_unlock(&file->f_lock); 2276 return 0; 2277 } 2278 2279 /** 2280 * tiocsctty - set controlling tty 2281 * @tty: tty structure 2282 * @arg: user argument 2283 * 2284 * This ioctl is used to manage job control. It permits a session 2285 * leader to set this tty as the controlling tty for the session. 2286 * 2287 * Locking: 2288 * Takes tty_mutex() to protect tty instance 2289 * Takes tasklist_lock internally to walk sessions 2290 * Takes ->siglock() when updating signal->tty 2291 */ 2292 2293 static int tiocsctty(struct tty_struct *tty, int arg) 2294 { 2295 int ret = 0; 2296 if (current->signal->leader && (task_session(current) == tty->session)) 2297 return ret; 2298 2299 mutex_lock(&tty_mutex); 2300 /* 2301 * The process must be a session leader and 2302 * not have a controlling tty already. 2303 */ 2304 if (!current->signal->leader || current->signal->tty) { 2305 ret = -EPERM; 2306 goto unlock; 2307 } 2308 2309 if (tty->session) { 2310 /* 2311 * This tty is already the controlling 2312 * tty for another session group! 2313 */ 2314 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2315 /* 2316 * Steal it away 2317 */ 2318 read_lock(&tasklist_lock); 2319 session_clear_tty(tty->session); 2320 read_unlock(&tasklist_lock); 2321 } else { 2322 ret = -EPERM; 2323 goto unlock; 2324 } 2325 } 2326 proc_set_tty(current, tty); 2327 unlock: 2328 mutex_unlock(&tty_mutex); 2329 return ret; 2330 } 2331 2332 /** 2333 * tty_get_pgrp - return a ref counted pgrp pid 2334 * @tty: tty to read 2335 * 2336 * Returns a refcounted instance of the pid struct for the process 2337 * group controlling the tty. 2338 */ 2339 2340 struct pid *tty_get_pgrp(struct tty_struct *tty) 2341 { 2342 unsigned long flags; 2343 struct pid *pgrp; 2344 2345 spin_lock_irqsave(&tty->ctrl_lock, flags); 2346 pgrp = get_pid(tty->pgrp); 2347 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2348 2349 return pgrp; 2350 } 2351 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2352 2353 /** 2354 * tiocgpgrp - get process group 2355 * @tty: tty passed by user 2356 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2357 * @p: returned pid 2358 * 2359 * Obtain the process group of the tty. If there is no process group 2360 * return an error. 2361 * 2362 * Locking: none. Reference to current->signal->tty is safe. 2363 */ 2364 2365 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2366 { 2367 struct pid *pid; 2368 int ret; 2369 /* 2370 * (tty == real_tty) is a cheap way of 2371 * testing if the tty is NOT a master pty. 2372 */ 2373 if (tty == real_tty && current->signal->tty != real_tty) 2374 return -ENOTTY; 2375 pid = tty_get_pgrp(real_tty); 2376 ret = put_user(pid_vnr(pid), p); 2377 put_pid(pid); 2378 return ret; 2379 } 2380 2381 /** 2382 * tiocspgrp - attempt to set process group 2383 * @tty: tty passed by user 2384 * @real_tty: tty side device matching tty passed by user 2385 * @p: pid pointer 2386 * 2387 * Set the process group of the tty to the session passed. Only 2388 * permitted where the tty session is our session. 2389 * 2390 * Locking: RCU, ctrl lock 2391 */ 2392 2393 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2394 { 2395 struct pid *pgrp; 2396 pid_t pgrp_nr; 2397 int retval = tty_check_change(real_tty); 2398 unsigned long flags; 2399 2400 if (retval == -EIO) 2401 return -ENOTTY; 2402 if (retval) 2403 return retval; 2404 if (!current->signal->tty || 2405 (current->signal->tty != real_tty) || 2406 (real_tty->session != task_session(current))) 2407 return -ENOTTY; 2408 if (get_user(pgrp_nr, p)) 2409 return -EFAULT; 2410 if (pgrp_nr < 0) 2411 return -EINVAL; 2412 rcu_read_lock(); 2413 pgrp = find_vpid(pgrp_nr); 2414 retval = -ESRCH; 2415 if (!pgrp) 2416 goto out_unlock; 2417 retval = -EPERM; 2418 if (session_of_pgrp(pgrp) != task_session(current)) 2419 goto out_unlock; 2420 retval = 0; 2421 spin_lock_irqsave(&tty->ctrl_lock, flags); 2422 put_pid(real_tty->pgrp); 2423 real_tty->pgrp = get_pid(pgrp); 2424 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2425 out_unlock: 2426 rcu_read_unlock(); 2427 return retval; 2428 } 2429 2430 /** 2431 * tiocgsid - get session id 2432 * @tty: tty passed by user 2433 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2434 * @p: pointer to returned session id 2435 * 2436 * Obtain the session id of the tty. If there is no session 2437 * return an error. 2438 * 2439 * Locking: none. Reference to current->signal->tty is safe. 2440 */ 2441 2442 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2443 { 2444 /* 2445 * (tty == real_tty) is a cheap way of 2446 * testing if the tty is NOT a master pty. 2447 */ 2448 if (tty == real_tty && current->signal->tty != real_tty) 2449 return -ENOTTY; 2450 if (!real_tty->session) 2451 return -ENOTTY; 2452 return put_user(pid_vnr(real_tty->session), p); 2453 } 2454 2455 /** 2456 * tiocsetd - set line discipline 2457 * @tty: tty device 2458 * @p: pointer to user data 2459 * 2460 * Set the line discipline according to user request. 2461 * 2462 * Locking: see tty_set_ldisc, this function is just a helper 2463 */ 2464 2465 static int tiocsetd(struct tty_struct *tty, int __user *p) 2466 { 2467 int ldisc; 2468 int ret; 2469 2470 if (get_user(ldisc, p)) 2471 return -EFAULT; 2472 2473 ret = tty_set_ldisc(tty, ldisc); 2474 2475 return ret; 2476 } 2477 2478 /** 2479 * send_break - performed time break 2480 * @tty: device to break on 2481 * @duration: timeout in mS 2482 * 2483 * Perform a timed break on hardware that lacks its own driver level 2484 * timed break functionality. 2485 * 2486 * Locking: 2487 * atomic_write_lock serializes 2488 * 2489 */ 2490 2491 static int send_break(struct tty_struct *tty, unsigned int duration) 2492 { 2493 int retval; 2494 2495 if (tty->ops->break_ctl == NULL) 2496 return 0; 2497 2498 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2499 retval = tty->ops->break_ctl(tty, duration); 2500 else { 2501 /* Do the work ourselves */ 2502 if (tty_write_lock(tty, 0) < 0) 2503 return -EINTR; 2504 retval = tty->ops->break_ctl(tty, -1); 2505 if (retval) 2506 goto out; 2507 if (!signal_pending(current)) 2508 msleep_interruptible(duration); 2509 retval = tty->ops->break_ctl(tty, 0); 2510 out: 2511 tty_write_unlock(tty); 2512 if (signal_pending(current)) 2513 retval = -EINTR; 2514 } 2515 return retval; 2516 } 2517 2518 /** 2519 * tty_tiocmget - get modem status 2520 * @tty: tty device 2521 * @file: user file pointer 2522 * @p: pointer to result 2523 * 2524 * Obtain the modem status bits from the tty driver if the feature 2525 * is supported. Return -EINVAL if it is not available. 2526 * 2527 * Locking: none (up to the driver) 2528 */ 2529 2530 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2531 { 2532 int retval = -EINVAL; 2533 2534 if (tty->ops->tiocmget) { 2535 retval = tty->ops->tiocmget(tty); 2536 2537 if (retval >= 0) 2538 retval = put_user(retval, p); 2539 } 2540 return retval; 2541 } 2542 2543 /** 2544 * tty_tiocmset - set modem status 2545 * @tty: tty device 2546 * @cmd: command - clear bits, set bits or set all 2547 * @p: pointer to desired bits 2548 * 2549 * Set the modem status bits from the tty driver if the feature 2550 * is supported. Return -EINVAL if it is not available. 2551 * 2552 * Locking: none (up to the driver) 2553 */ 2554 2555 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2556 unsigned __user *p) 2557 { 2558 int retval; 2559 unsigned int set, clear, val; 2560 2561 if (tty->ops->tiocmset == NULL) 2562 return -EINVAL; 2563 2564 retval = get_user(val, p); 2565 if (retval) 2566 return retval; 2567 set = clear = 0; 2568 switch (cmd) { 2569 case TIOCMBIS: 2570 set = val; 2571 break; 2572 case TIOCMBIC: 2573 clear = val; 2574 break; 2575 case TIOCMSET: 2576 set = val; 2577 clear = ~val; 2578 break; 2579 } 2580 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2581 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2582 return tty->ops->tiocmset(tty, set, clear); 2583 } 2584 2585 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2586 { 2587 int retval = -EINVAL; 2588 struct serial_icounter_struct icount; 2589 memset(&icount, 0, sizeof(icount)); 2590 if (tty->ops->get_icount) 2591 retval = tty->ops->get_icount(tty, &icount); 2592 if (retval != 0) 2593 return retval; 2594 if (copy_to_user(arg, &icount, sizeof(icount))) 2595 return -EFAULT; 2596 return 0; 2597 } 2598 2599 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2600 { 2601 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2602 tty->driver->subtype == PTY_TYPE_MASTER) 2603 tty = tty->link; 2604 return tty; 2605 } 2606 EXPORT_SYMBOL(tty_pair_get_tty); 2607 2608 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty) 2609 { 2610 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2611 tty->driver->subtype == PTY_TYPE_MASTER) 2612 return tty; 2613 return tty->link; 2614 } 2615 EXPORT_SYMBOL(tty_pair_get_pty); 2616 2617 /* 2618 * Split this up, as gcc can choke on it otherwise.. 2619 */ 2620 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2621 { 2622 struct tty_struct *tty = file_tty(file); 2623 struct tty_struct *real_tty; 2624 void __user *p = (void __user *)arg; 2625 int retval; 2626 struct tty_ldisc *ld; 2627 struct inode *inode = file->f_dentry->d_inode; 2628 2629 if (tty_paranoia_check(tty, inode, "tty_ioctl")) 2630 return -EINVAL; 2631 2632 real_tty = tty_pair_get_tty(tty); 2633 2634 /* 2635 * Factor out some common prep work 2636 */ 2637 switch (cmd) { 2638 case TIOCSETD: 2639 case TIOCSBRK: 2640 case TIOCCBRK: 2641 case TCSBRK: 2642 case TCSBRKP: 2643 retval = tty_check_change(tty); 2644 if (retval) 2645 return retval; 2646 if (cmd != TIOCCBRK) { 2647 tty_wait_until_sent(tty, 0); 2648 if (signal_pending(current)) 2649 return -EINTR; 2650 } 2651 break; 2652 } 2653 2654 /* 2655 * Now do the stuff. 2656 */ 2657 switch (cmd) { 2658 case TIOCSTI: 2659 return tiocsti(tty, p); 2660 case TIOCGWINSZ: 2661 return tiocgwinsz(real_tty, p); 2662 case TIOCSWINSZ: 2663 return tiocswinsz(real_tty, p); 2664 case TIOCCONS: 2665 return real_tty != tty ? -EINVAL : tioccons(file); 2666 case FIONBIO: 2667 return fionbio(file, p); 2668 case TIOCEXCL: 2669 set_bit(TTY_EXCLUSIVE, &tty->flags); 2670 return 0; 2671 case TIOCNXCL: 2672 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2673 return 0; 2674 case TIOCNOTTY: 2675 if (current->signal->tty != tty) 2676 return -ENOTTY; 2677 no_tty(); 2678 return 0; 2679 case TIOCSCTTY: 2680 return tiocsctty(tty, arg); 2681 case TIOCGPGRP: 2682 return tiocgpgrp(tty, real_tty, p); 2683 case TIOCSPGRP: 2684 return tiocspgrp(tty, real_tty, p); 2685 case TIOCGSID: 2686 return tiocgsid(tty, real_tty, p); 2687 case TIOCGETD: 2688 return put_user(tty->ldisc->ops->num, (int __user *)p); 2689 case TIOCSETD: 2690 return tiocsetd(tty, p); 2691 case TIOCVHANGUP: 2692 if (!capable(CAP_SYS_ADMIN)) 2693 return -EPERM; 2694 tty_vhangup(tty); 2695 return 0; 2696 case TIOCGDEV: 2697 { 2698 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2699 return put_user(ret, (unsigned int __user *)p); 2700 } 2701 /* 2702 * Break handling 2703 */ 2704 case TIOCSBRK: /* Turn break on, unconditionally */ 2705 if (tty->ops->break_ctl) 2706 return tty->ops->break_ctl(tty, -1); 2707 return 0; 2708 case TIOCCBRK: /* Turn break off, unconditionally */ 2709 if (tty->ops->break_ctl) 2710 return tty->ops->break_ctl(tty, 0); 2711 return 0; 2712 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2713 /* non-zero arg means wait for all output data 2714 * to be sent (performed above) but don't send break. 2715 * This is used by the tcdrain() termios function. 2716 */ 2717 if (!arg) 2718 return send_break(tty, 250); 2719 return 0; 2720 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2721 return send_break(tty, arg ? arg*100 : 250); 2722 2723 case TIOCMGET: 2724 return tty_tiocmget(tty, p); 2725 case TIOCMSET: 2726 case TIOCMBIC: 2727 case TIOCMBIS: 2728 return tty_tiocmset(tty, cmd, p); 2729 case TIOCGICOUNT: 2730 retval = tty_tiocgicount(tty, p); 2731 /* For the moment allow fall through to the old method */ 2732 if (retval != -EINVAL) 2733 return retval; 2734 break; 2735 case TCFLSH: 2736 switch (arg) { 2737 case TCIFLUSH: 2738 case TCIOFLUSH: 2739 /* flush tty buffer and allow ldisc to process ioctl */ 2740 tty_buffer_flush(tty); 2741 break; 2742 } 2743 break; 2744 } 2745 if (tty->ops->ioctl) { 2746 retval = (tty->ops->ioctl)(tty, cmd, arg); 2747 if (retval != -ENOIOCTLCMD) 2748 return retval; 2749 } 2750 ld = tty_ldisc_ref_wait(tty); 2751 retval = -EINVAL; 2752 if (ld->ops->ioctl) { 2753 retval = ld->ops->ioctl(tty, file, cmd, arg); 2754 if (retval == -ENOIOCTLCMD) 2755 retval = -EINVAL; 2756 } 2757 tty_ldisc_deref(ld); 2758 return retval; 2759 } 2760 2761 #ifdef CONFIG_COMPAT 2762 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2763 unsigned long arg) 2764 { 2765 struct inode *inode = file->f_dentry->d_inode; 2766 struct tty_struct *tty = file_tty(file); 2767 struct tty_ldisc *ld; 2768 int retval = -ENOIOCTLCMD; 2769 2770 if (tty_paranoia_check(tty, inode, "tty_ioctl")) 2771 return -EINVAL; 2772 2773 if (tty->ops->compat_ioctl) { 2774 retval = (tty->ops->compat_ioctl)(tty, cmd, arg); 2775 if (retval != -ENOIOCTLCMD) 2776 return retval; 2777 } 2778 2779 ld = tty_ldisc_ref_wait(tty); 2780 if (ld->ops->compat_ioctl) 2781 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2782 else 2783 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2784 tty_ldisc_deref(ld); 2785 2786 return retval; 2787 } 2788 #endif 2789 2790 /* 2791 * This implements the "Secure Attention Key" --- the idea is to 2792 * prevent trojan horses by killing all processes associated with this 2793 * tty when the user hits the "Secure Attention Key". Required for 2794 * super-paranoid applications --- see the Orange Book for more details. 2795 * 2796 * This code could be nicer; ideally it should send a HUP, wait a few 2797 * seconds, then send a INT, and then a KILL signal. But you then 2798 * have to coordinate with the init process, since all processes associated 2799 * with the current tty must be dead before the new getty is allowed 2800 * to spawn. 2801 * 2802 * Now, if it would be correct ;-/ The current code has a nasty hole - 2803 * it doesn't catch files in flight. We may send the descriptor to ourselves 2804 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2805 * 2806 * Nasty bug: do_SAK is being called in interrupt context. This can 2807 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2808 */ 2809 void __do_SAK(struct tty_struct *tty) 2810 { 2811 #ifdef TTY_SOFT_SAK 2812 tty_hangup(tty); 2813 #else 2814 struct task_struct *g, *p; 2815 struct pid *session; 2816 int i; 2817 struct file *filp; 2818 struct fdtable *fdt; 2819 2820 if (!tty) 2821 return; 2822 session = tty->session; 2823 2824 tty_ldisc_flush(tty); 2825 2826 tty_driver_flush_buffer(tty); 2827 2828 read_lock(&tasklist_lock); 2829 /* Kill the entire session */ 2830 do_each_pid_task(session, PIDTYPE_SID, p) { 2831 printk(KERN_NOTICE "SAK: killed process %d" 2832 " (%s): task_session(p)==tty->session\n", 2833 task_pid_nr(p), p->comm); 2834 send_sig(SIGKILL, p, 1); 2835 } while_each_pid_task(session, PIDTYPE_SID, p); 2836 /* Now kill any processes that happen to have the 2837 * tty open. 2838 */ 2839 do_each_thread(g, p) { 2840 if (p->signal->tty == tty) { 2841 printk(KERN_NOTICE "SAK: killed process %d" 2842 " (%s): task_session(p)==tty->session\n", 2843 task_pid_nr(p), p->comm); 2844 send_sig(SIGKILL, p, 1); 2845 continue; 2846 } 2847 task_lock(p); 2848 if (p->files) { 2849 /* 2850 * We don't take a ref to the file, so we must 2851 * hold ->file_lock instead. 2852 */ 2853 spin_lock(&p->files->file_lock); 2854 fdt = files_fdtable(p->files); 2855 for (i = 0; i < fdt->max_fds; i++) { 2856 filp = fcheck_files(p->files, i); 2857 if (!filp) 2858 continue; 2859 if (filp->f_op->read == tty_read && 2860 file_tty(filp) == tty) { 2861 printk(KERN_NOTICE "SAK: killed process %d" 2862 " (%s): fd#%d opened to the tty\n", 2863 task_pid_nr(p), p->comm, i); 2864 force_sig(SIGKILL, p); 2865 break; 2866 } 2867 } 2868 spin_unlock(&p->files->file_lock); 2869 } 2870 task_unlock(p); 2871 } while_each_thread(g, p); 2872 read_unlock(&tasklist_lock); 2873 #endif 2874 } 2875 2876 static void do_SAK_work(struct work_struct *work) 2877 { 2878 struct tty_struct *tty = 2879 container_of(work, struct tty_struct, SAK_work); 2880 __do_SAK(tty); 2881 } 2882 2883 /* 2884 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2885 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2886 * the values which we write to it will be identical to the values which it 2887 * already has. --akpm 2888 */ 2889 void do_SAK(struct tty_struct *tty) 2890 { 2891 if (!tty) 2892 return; 2893 schedule_work(&tty->SAK_work); 2894 } 2895 2896 EXPORT_SYMBOL(do_SAK); 2897 2898 static int dev_match_devt(struct device *dev, void *data) 2899 { 2900 dev_t *devt = data; 2901 return dev->devt == *devt; 2902 } 2903 2904 /* Must put_device() after it's unused! */ 2905 static struct device *tty_get_device(struct tty_struct *tty) 2906 { 2907 dev_t devt = tty_devnum(tty); 2908 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 2909 } 2910 2911 2912 /** 2913 * initialize_tty_struct 2914 * @tty: tty to initialize 2915 * 2916 * This subroutine initializes a tty structure that has been newly 2917 * allocated. 2918 * 2919 * Locking: none - tty in question must not be exposed at this point 2920 */ 2921 2922 void initialize_tty_struct(struct tty_struct *tty, 2923 struct tty_driver *driver, int idx) 2924 { 2925 memset(tty, 0, sizeof(struct tty_struct)); 2926 kref_init(&tty->kref); 2927 tty->magic = TTY_MAGIC; 2928 tty_ldisc_init(tty); 2929 tty->session = NULL; 2930 tty->pgrp = NULL; 2931 tty->overrun_time = jiffies; 2932 tty_buffer_init(tty); 2933 mutex_init(&tty->termios_mutex); 2934 mutex_init(&tty->ldisc_mutex); 2935 init_waitqueue_head(&tty->write_wait); 2936 init_waitqueue_head(&tty->read_wait); 2937 INIT_WORK(&tty->hangup_work, do_tty_hangup); 2938 mutex_init(&tty->atomic_read_lock); 2939 mutex_init(&tty->atomic_write_lock); 2940 mutex_init(&tty->output_lock); 2941 mutex_init(&tty->echo_lock); 2942 spin_lock_init(&tty->read_lock); 2943 spin_lock_init(&tty->ctrl_lock); 2944 INIT_LIST_HEAD(&tty->tty_files); 2945 INIT_WORK(&tty->SAK_work, do_SAK_work); 2946 2947 tty->driver = driver; 2948 tty->ops = driver->ops; 2949 tty->index = idx; 2950 tty_line_name(driver, idx, tty->name); 2951 tty->dev = tty_get_device(tty); 2952 } 2953 2954 /** 2955 * deinitialize_tty_struct 2956 * @tty: tty to deinitialize 2957 * 2958 * This subroutine deinitializes a tty structure that has been newly 2959 * allocated but tty_release cannot be called on that yet. 2960 * 2961 * Locking: none - tty in question must not be exposed at this point 2962 */ 2963 void deinitialize_tty_struct(struct tty_struct *tty) 2964 { 2965 tty_ldisc_deinit(tty); 2966 } 2967 2968 /** 2969 * tty_put_char - write one character to a tty 2970 * @tty: tty 2971 * @ch: character 2972 * 2973 * Write one byte to the tty using the provided put_char method 2974 * if present. Returns the number of characters successfully output. 2975 * 2976 * Note: the specific put_char operation in the driver layer may go 2977 * away soon. Don't call it directly, use this method 2978 */ 2979 2980 int tty_put_char(struct tty_struct *tty, unsigned char ch) 2981 { 2982 if (tty->ops->put_char) 2983 return tty->ops->put_char(tty, ch); 2984 return tty->ops->write(tty, &ch, 1); 2985 } 2986 EXPORT_SYMBOL_GPL(tty_put_char); 2987 2988 struct class *tty_class; 2989 2990 /** 2991 * tty_register_device - register a tty device 2992 * @driver: the tty driver that describes the tty device 2993 * @index: the index in the tty driver for this tty device 2994 * @device: a struct device that is associated with this tty device. 2995 * This field is optional, if there is no known struct device 2996 * for this tty device it can be set to NULL safely. 2997 * 2998 * Returns a pointer to the struct device for this tty device 2999 * (or ERR_PTR(-EFOO) on error). 3000 * 3001 * This call is required to be made to register an individual tty device 3002 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3003 * that bit is not set, this function should not be called by a tty 3004 * driver. 3005 * 3006 * Locking: ?? 3007 */ 3008 3009 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3010 struct device *device) 3011 { 3012 char name[64]; 3013 dev_t dev = MKDEV(driver->major, driver->minor_start) + index; 3014 3015 if (index >= driver->num) { 3016 printk(KERN_ERR "Attempt to register invalid tty line number " 3017 " (%d).\n", index); 3018 return ERR_PTR(-EINVAL); 3019 } 3020 3021 if (driver->type == TTY_DRIVER_TYPE_PTY) 3022 pty_line_name(driver, index, name); 3023 else 3024 tty_line_name(driver, index, name); 3025 3026 return device_create(tty_class, device, dev, NULL, name); 3027 } 3028 EXPORT_SYMBOL(tty_register_device); 3029 3030 /** 3031 * tty_unregister_device - unregister a tty device 3032 * @driver: the tty driver that describes the tty device 3033 * @index: the index in the tty driver for this tty device 3034 * 3035 * If a tty device is registered with a call to tty_register_device() then 3036 * this function must be called when the tty device is gone. 3037 * 3038 * Locking: ?? 3039 */ 3040 3041 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3042 { 3043 device_destroy(tty_class, 3044 MKDEV(driver->major, driver->minor_start) + index); 3045 } 3046 EXPORT_SYMBOL(tty_unregister_device); 3047 3048 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner) 3049 { 3050 struct tty_driver *driver; 3051 3052 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3053 if (driver) { 3054 kref_init(&driver->kref); 3055 driver->magic = TTY_DRIVER_MAGIC; 3056 driver->num = lines; 3057 driver->owner = owner; 3058 /* later we'll move allocation of tables here */ 3059 } 3060 return driver; 3061 } 3062 EXPORT_SYMBOL(__alloc_tty_driver); 3063 3064 static void destruct_tty_driver(struct kref *kref) 3065 { 3066 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3067 int i; 3068 struct ktermios *tp; 3069 void *p; 3070 3071 if (driver->flags & TTY_DRIVER_INSTALLED) { 3072 /* 3073 * Free the termios and termios_locked structures because 3074 * we don't want to get memory leaks when modular tty 3075 * drivers are removed from the kernel. 3076 */ 3077 for (i = 0; i < driver->num; i++) { 3078 tp = driver->termios[i]; 3079 if (tp) { 3080 driver->termios[i] = NULL; 3081 kfree(tp); 3082 } 3083 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3084 tty_unregister_device(driver, i); 3085 } 3086 p = driver->ttys; 3087 proc_tty_unregister_driver(driver); 3088 driver->ttys = NULL; 3089 driver->termios = NULL; 3090 kfree(p); 3091 cdev_del(&driver->cdev); 3092 } 3093 kfree(driver); 3094 } 3095 3096 void tty_driver_kref_put(struct tty_driver *driver) 3097 { 3098 kref_put(&driver->kref, destruct_tty_driver); 3099 } 3100 EXPORT_SYMBOL(tty_driver_kref_put); 3101 3102 void tty_set_operations(struct tty_driver *driver, 3103 const struct tty_operations *op) 3104 { 3105 driver->ops = op; 3106 }; 3107 EXPORT_SYMBOL(tty_set_operations); 3108 3109 void put_tty_driver(struct tty_driver *d) 3110 { 3111 tty_driver_kref_put(d); 3112 } 3113 EXPORT_SYMBOL(put_tty_driver); 3114 3115 /* 3116 * Called by a tty driver to register itself. 3117 */ 3118 int tty_register_driver(struct tty_driver *driver) 3119 { 3120 int error; 3121 int i; 3122 dev_t dev; 3123 void **p = NULL; 3124 struct device *d; 3125 3126 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) { 3127 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL); 3128 if (!p) 3129 return -ENOMEM; 3130 } 3131 3132 if (!driver->major) { 3133 error = alloc_chrdev_region(&dev, driver->minor_start, 3134 driver->num, driver->name); 3135 if (!error) { 3136 driver->major = MAJOR(dev); 3137 driver->minor_start = MINOR(dev); 3138 } 3139 } else { 3140 dev = MKDEV(driver->major, driver->minor_start); 3141 error = register_chrdev_region(dev, driver->num, driver->name); 3142 } 3143 if (error < 0) { 3144 kfree(p); 3145 return error; 3146 } 3147 3148 if (p) { 3149 driver->ttys = (struct tty_struct **)p; 3150 driver->termios = (struct ktermios **)(p + driver->num); 3151 } else { 3152 driver->ttys = NULL; 3153 driver->termios = NULL; 3154 } 3155 3156 cdev_init(&driver->cdev, &tty_fops); 3157 driver->cdev.owner = driver->owner; 3158 error = cdev_add(&driver->cdev, dev, driver->num); 3159 if (error) { 3160 unregister_chrdev_region(dev, driver->num); 3161 driver->ttys = NULL; 3162 driver->termios = NULL; 3163 kfree(p); 3164 return error; 3165 } 3166 3167 mutex_lock(&tty_mutex); 3168 list_add(&driver->tty_drivers, &tty_drivers); 3169 mutex_unlock(&tty_mutex); 3170 3171 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3172 for (i = 0; i < driver->num; i++) { 3173 d = tty_register_device(driver, i, NULL); 3174 if (IS_ERR(d)) { 3175 error = PTR_ERR(d); 3176 goto err; 3177 } 3178 } 3179 } 3180 proc_tty_register_driver(driver); 3181 driver->flags |= TTY_DRIVER_INSTALLED; 3182 return 0; 3183 3184 err: 3185 for (i--; i >= 0; i--) 3186 tty_unregister_device(driver, i); 3187 3188 mutex_lock(&tty_mutex); 3189 list_del(&driver->tty_drivers); 3190 mutex_unlock(&tty_mutex); 3191 3192 unregister_chrdev_region(dev, driver->num); 3193 driver->ttys = NULL; 3194 driver->termios = NULL; 3195 kfree(p); 3196 return error; 3197 } 3198 3199 EXPORT_SYMBOL(tty_register_driver); 3200 3201 /* 3202 * Called by a tty driver to unregister itself. 3203 */ 3204 int tty_unregister_driver(struct tty_driver *driver) 3205 { 3206 #if 0 3207 /* FIXME */ 3208 if (driver->refcount) 3209 return -EBUSY; 3210 #endif 3211 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3212 driver->num); 3213 mutex_lock(&tty_mutex); 3214 list_del(&driver->tty_drivers); 3215 mutex_unlock(&tty_mutex); 3216 return 0; 3217 } 3218 3219 EXPORT_SYMBOL(tty_unregister_driver); 3220 3221 dev_t tty_devnum(struct tty_struct *tty) 3222 { 3223 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3224 } 3225 EXPORT_SYMBOL(tty_devnum); 3226 3227 void proc_clear_tty(struct task_struct *p) 3228 { 3229 unsigned long flags; 3230 struct tty_struct *tty; 3231 spin_lock_irqsave(&p->sighand->siglock, flags); 3232 tty = p->signal->tty; 3233 p->signal->tty = NULL; 3234 spin_unlock_irqrestore(&p->sighand->siglock, flags); 3235 tty_kref_put(tty); 3236 } 3237 3238 /* Called under the sighand lock */ 3239 3240 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3241 { 3242 if (tty) { 3243 unsigned long flags; 3244 /* We should not have a session or pgrp to put here but.... */ 3245 spin_lock_irqsave(&tty->ctrl_lock, flags); 3246 put_pid(tty->session); 3247 put_pid(tty->pgrp); 3248 tty->pgrp = get_pid(task_pgrp(tsk)); 3249 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3250 tty->session = get_pid(task_session(tsk)); 3251 if (tsk->signal->tty) { 3252 printk(KERN_DEBUG "tty not NULL!!\n"); 3253 tty_kref_put(tsk->signal->tty); 3254 } 3255 } 3256 put_pid(tsk->signal->tty_old_pgrp); 3257 tsk->signal->tty = tty_kref_get(tty); 3258 tsk->signal->tty_old_pgrp = NULL; 3259 } 3260 3261 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3262 { 3263 spin_lock_irq(&tsk->sighand->siglock); 3264 __proc_set_tty(tsk, tty); 3265 spin_unlock_irq(&tsk->sighand->siglock); 3266 } 3267 3268 struct tty_struct *get_current_tty(void) 3269 { 3270 struct tty_struct *tty; 3271 unsigned long flags; 3272 3273 spin_lock_irqsave(¤t->sighand->siglock, flags); 3274 tty = tty_kref_get(current->signal->tty); 3275 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 3276 return tty; 3277 } 3278 EXPORT_SYMBOL_GPL(get_current_tty); 3279 3280 void tty_default_fops(struct file_operations *fops) 3281 { 3282 *fops = tty_fops; 3283 } 3284 3285 /* 3286 * Initialize the console device. This is called *early*, so 3287 * we can't necessarily depend on lots of kernel help here. 3288 * Just do some early initializations, and do the complex setup 3289 * later. 3290 */ 3291 void __init console_init(void) 3292 { 3293 initcall_t *call; 3294 3295 /* Setup the default TTY line discipline. */ 3296 tty_ldisc_begin(); 3297 3298 /* 3299 * set up the console device so that later boot sequences can 3300 * inform about problems etc.. 3301 */ 3302 call = __con_initcall_start; 3303 while (call < __con_initcall_end) { 3304 (*call)(); 3305 call++; 3306 } 3307 } 3308 3309 static char *tty_devnode(struct device *dev, umode_t *mode) 3310 { 3311 if (!mode) 3312 return NULL; 3313 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3314 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3315 *mode = 0666; 3316 return NULL; 3317 } 3318 3319 static int __init tty_class_init(void) 3320 { 3321 tty_class = class_create(THIS_MODULE, "tty"); 3322 if (IS_ERR(tty_class)) 3323 return PTR_ERR(tty_class); 3324 tty_class->devnode = tty_devnode; 3325 return 0; 3326 } 3327 3328 postcore_initcall(tty_class_init); 3329 3330 /* 3/2004 jmc: why do these devices exist? */ 3331 static struct cdev tty_cdev, console_cdev; 3332 3333 static ssize_t show_cons_active(struct device *dev, 3334 struct device_attribute *attr, char *buf) 3335 { 3336 struct console *cs[16]; 3337 int i = 0; 3338 struct console *c; 3339 ssize_t count = 0; 3340 3341 console_lock(); 3342 for_each_console(c) { 3343 if (!c->device) 3344 continue; 3345 if (!c->write) 3346 continue; 3347 if ((c->flags & CON_ENABLED) == 0) 3348 continue; 3349 cs[i++] = c; 3350 if (i >= ARRAY_SIZE(cs)) 3351 break; 3352 } 3353 while (i--) 3354 count += sprintf(buf + count, "%s%d%c", 3355 cs[i]->name, cs[i]->index, i ? ' ':'\n'); 3356 console_unlock(); 3357 3358 return count; 3359 } 3360 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3361 3362 static struct device *consdev; 3363 3364 void console_sysfs_notify(void) 3365 { 3366 if (consdev) 3367 sysfs_notify(&consdev->kobj, NULL, "active"); 3368 } 3369 3370 /* 3371 * Ok, now we can initialize the rest of the tty devices and can count 3372 * on memory allocations, interrupts etc.. 3373 */ 3374 int __init tty_init(void) 3375 { 3376 cdev_init(&tty_cdev, &tty_fops); 3377 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3378 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3379 panic("Couldn't register /dev/tty driver\n"); 3380 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3381 3382 cdev_init(&console_cdev, &console_fops); 3383 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3384 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3385 panic("Couldn't register /dev/console driver\n"); 3386 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, 3387 "console"); 3388 if (IS_ERR(consdev)) 3389 consdev = NULL; 3390 else 3391 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0); 3392 3393 #ifdef CONFIG_VT 3394 vty_init(&console_fops); 3395 #endif 3396 return 0; 3397 } 3398 3399