xref: /linux/drivers/tty/tty_io.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101 
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105 
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108 
109 #undef TTY_DEBUG_HANGUP
110 
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113 
114 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
115 	.c_iflag = ICRNL | IXON,
116 	.c_oflag = OPOST | ONLCR,
117 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
118 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119 		   ECHOCTL | ECHOKE | IEXTEN,
120 	.c_cc = INIT_C_CC,
121 	.c_ispeed = 38400,
122 	.c_ospeed = 38400
123 };
124 
125 EXPORT_SYMBOL(tty_std_termios);
126 
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130 
131 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
132 
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137 
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140 
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 							size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 				unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 
160 /**
161  *	alloc_tty_struct	-	allocate a tty object
162  *
163  *	Return a new empty tty structure. The data fields have not
164  *	been initialized in any way but has been zeroed
165  *
166  *	Locking: none
167  */
168 
169 struct tty_struct *alloc_tty_struct(void)
170 {
171 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173 
174 /**
175  *	free_tty_struct		-	free a disused tty
176  *	@tty: tty struct to free
177  *
178  *	Free the write buffers, tty queue and tty memory itself.
179  *
180  *	Locking: none. Must be called after tty is definitely unused
181  */
182 
183 void free_tty_struct(struct tty_struct *tty)
184 {
185 	if (tty->dev)
186 		put_device(tty->dev);
187 	kfree(tty->write_buf);
188 	tty_buffer_free_all(tty);
189 	kfree(tty);
190 }
191 
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194 	return ((struct tty_file_private *)file->private_data)->tty;
195 }
196 
197 int tty_alloc_file(struct file *file)
198 {
199 	struct tty_file_private *priv;
200 
201 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202 	if (!priv)
203 		return -ENOMEM;
204 
205 	file->private_data = priv;
206 
207 	return 0;
208 }
209 
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213 	struct tty_file_private *priv = file->private_data;
214 
215 	priv->tty = tty;
216 	priv->file = file;
217 
218 	spin_lock(&tty_files_lock);
219 	list_add(&priv->list, &tty->tty_files);
220 	spin_unlock(&tty_files_lock);
221 }
222 
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231 	struct tty_file_private *priv = file->private_data;
232 
233 	file->private_data = NULL;
234 	kfree(priv);
235 }
236 
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240 	struct tty_file_private *priv = file->private_data;
241 
242 	spin_lock(&tty_files_lock);
243 	list_del(&priv->list);
244 	spin_unlock(&tty_files_lock);
245 	tty_free_file(file);
246 }
247 
248 
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250 
251 /**
252  *	tty_name	-	return tty naming
253  *	@tty: tty structure
254  *	@buf: buffer for output
255  *
256  *	Convert a tty structure into a name. The name reflects the kernel
257  *	naming policy and if udev is in use may not reflect user space
258  *
259  *	Locking: none
260  */
261 
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265 		strcpy(buf, "NULL tty");
266 	else
267 		strcpy(buf, tty->name);
268 	return buf;
269 }
270 
271 EXPORT_SYMBOL(tty_name);
272 
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274 			      const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277 	if (!tty) {
278 		printk(KERN_WARNING
279 			"null TTY for (%d:%d) in %s\n",
280 			imajor(inode), iminor(inode), routine);
281 		return 1;
282 	}
283 	if (tty->magic != TTY_MAGIC) {
284 		printk(KERN_WARNING
285 			"bad magic number for tty struct (%d:%d) in %s\n",
286 			imajor(inode), iminor(inode), routine);
287 		return 1;
288 	}
289 #endif
290 	return 0;
291 }
292 
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296 	struct list_head *p;
297 	int count = 0;
298 
299 	spin_lock(&tty_files_lock);
300 	list_for_each(p, &tty->tty_files) {
301 		count++;
302 	}
303 	spin_unlock(&tty_files_lock);
304 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
306 	    tty->link && tty->link->count)
307 		count++;
308 	if (tty->count != count) {
309 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310 				    "!= #fd's(%d) in %s\n",
311 		       tty->name, tty->count, count, routine);
312 		return count;
313 	}
314 #endif
315 	return 0;
316 }
317 
318 /**
319  *	get_tty_driver		-	find device of a tty
320  *	@dev_t: device identifier
321  *	@index: returns the index of the tty
322  *
323  *	This routine returns a tty driver structure, given a device number
324  *	and also passes back the index number.
325  *
326  *	Locking: caller must hold tty_mutex
327  */
328 
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331 	struct tty_driver *p;
332 
333 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
334 		dev_t base = MKDEV(p->major, p->minor_start);
335 		if (device < base || device >= base + p->num)
336 			continue;
337 		*index = device - base;
338 		return tty_driver_kref_get(p);
339 	}
340 	return NULL;
341 }
342 
343 #ifdef CONFIG_CONSOLE_POLL
344 
345 /**
346  *	tty_find_polling_driver	-	find device of a polled tty
347  *	@name: name string to match
348  *	@line: pointer to resulting tty line nr
349  *
350  *	This routine returns a tty driver structure, given a name
351  *	and the condition that the tty driver is capable of polled
352  *	operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356 	struct tty_driver *p, *res = NULL;
357 	int tty_line = 0;
358 	int len;
359 	char *str, *stp;
360 
361 	for (str = name; *str; str++)
362 		if ((*str >= '0' && *str <= '9') || *str == ',')
363 			break;
364 	if (!*str)
365 		return NULL;
366 
367 	len = str - name;
368 	tty_line = simple_strtoul(str, &str, 10);
369 
370 	mutex_lock(&tty_mutex);
371 	/* Search through the tty devices to look for a match */
372 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
373 		if (strncmp(name, p->name, len) != 0)
374 			continue;
375 		stp = str;
376 		if (*stp == ',')
377 			stp++;
378 		if (*stp == '\0')
379 			stp = NULL;
380 
381 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
382 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383 			res = tty_driver_kref_get(p);
384 			*line = tty_line;
385 			break;
386 		}
387 	}
388 	mutex_unlock(&tty_mutex);
389 
390 	return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394 
395 /**
396  *	tty_check_change	-	check for POSIX terminal changes
397  *	@tty: tty to check
398  *
399  *	If we try to write to, or set the state of, a terminal and we're
400  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *	Locking: ctrl_lock
404  */
405 
406 int tty_check_change(struct tty_struct *tty)
407 {
408 	unsigned long flags;
409 	int ret = 0;
410 
411 	if (current->signal->tty != tty)
412 		return 0;
413 
414 	spin_lock_irqsave(&tty->ctrl_lock, flags);
415 
416 	if (!tty->pgrp) {
417 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418 		goto out_unlock;
419 	}
420 	if (task_pgrp(current) == tty->pgrp)
421 		goto out_unlock;
422 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 	if (is_ignored(SIGTTOU))
424 		goto out;
425 	if (is_current_pgrp_orphaned()) {
426 		ret = -EIO;
427 		goto out;
428 	}
429 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430 	set_thread_flag(TIF_SIGPENDING);
431 	ret = -ERESTARTSYS;
432 out:
433 	return ret;
434 out_unlock:
435 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436 	return ret;
437 }
438 
439 EXPORT_SYMBOL(tty_check_change);
440 
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442 				size_t count, loff_t *ppos)
443 {
444 	return 0;
445 }
446 
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448 				 size_t count, loff_t *ppos)
449 {
450 	return -EIO;
451 }
452 
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458 
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460 		unsigned long arg)
461 {
462 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464 
465 static long hung_up_tty_compat_ioctl(struct file *file,
466 				     unsigned int cmd, unsigned long arg)
467 {
468 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470 
471 static const struct file_operations tty_fops = {
472 	.llseek		= no_llseek,
473 	.read		= tty_read,
474 	.write		= tty_write,
475 	.poll		= tty_poll,
476 	.unlocked_ioctl	= tty_ioctl,
477 	.compat_ioctl	= tty_compat_ioctl,
478 	.open		= tty_open,
479 	.release	= tty_release,
480 	.fasync		= tty_fasync,
481 };
482 
483 static const struct file_operations console_fops = {
484 	.llseek		= no_llseek,
485 	.read		= tty_read,
486 	.write		= redirected_tty_write,
487 	.poll		= tty_poll,
488 	.unlocked_ioctl	= tty_ioctl,
489 	.compat_ioctl	= tty_compat_ioctl,
490 	.open		= tty_open,
491 	.release	= tty_release,
492 	.fasync		= tty_fasync,
493 };
494 
495 static const struct file_operations hung_up_tty_fops = {
496 	.llseek		= no_llseek,
497 	.read		= hung_up_tty_read,
498 	.write		= hung_up_tty_write,
499 	.poll		= hung_up_tty_poll,
500 	.unlocked_ioctl	= hung_up_tty_ioctl,
501 	.compat_ioctl	= hung_up_tty_compat_ioctl,
502 	.release	= tty_release,
503 };
504 
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507 
508 /**
509  *	tty_wakeup	-	request more data
510  *	@tty: terminal
511  *
512  *	Internal and external helper for wakeups of tty. This function
513  *	informs the line discipline if present that the driver is ready
514  *	to receive more output data.
515  */
516 
517 void tty_wakeup(struct tty_struct *tty)
518 {
519 	struct tty_ldisc *ld;
520 
521 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522 		ld = tty_ldisc_ref(tty);
523 		if (ld) {
524 			if (ld->ops->write_wakeup)
525 				ld->ops->write_wakeup(tty);
526 			tty_ldisc_deref(ld);
527 		}
528 	}
529 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531 
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533 
534 /**
535  *	__tty_hangup		-	actual handler for hangup events
536  *	@work: tty device
537  *
538  *	This can be called by the "eventd" kernel thread.  That is process
539  *	synchronous but doesn't hold any locks, so we need to make sure we
540  *	have the appropriate locks for what we're doing.
541  *
542  *	The hangup event clears any pending redirections onto the hung up
543  *	device. It ensures future writes will error and it does the needed
544  *	line discipline hangup and signal delivery. The tty object itself
545  *	remains intact.
546  *
547  *	Locking:
548  *		BTM
549  *		  redirect lock for undoing redirection
550  *		  file list lock for manipulating list of ttys
551  *		  tty_ldisc_lock from called functions
552  *		  termios_mutex resetting termios data
553  *		  tasklist_lock to walk task list for hangup event
554  *		    ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558 	struct file *cons_filp = NULL;
559 	struct file *filp, *f = NULL;
560 	struct task_struct *p;
561 	struct tty_file_private *priv;
562 	int    closecount = 0, n;
563 	unsigned long flags;
564 	int refs = 0;
565 
566 	if (!tty)
567 		return;
568 
569 
570 	spin_lock(&redirect_lock);
571 	if (redirect && file_tty(redirect) == tty) {
572 		f = redirect;
573 		redirect = NULL;
574 	}
575 	spin_unlock(&redirect_lock);
576 
577 	tty_lock();
578 
579 	/* some functions below drop BTM, so we need this bit */
580 	set_bit(TTY_HUPPING, &tty->flags);
581 
582 	/* inuse_filps is protected by the single tty lock,
583 	   this really needs to change if we want to flush the
584 	   workqueue with the lock held */
585 	check_tty_count(tty, "tty_hangup");
586 
587 	spin_lock(&tty_files_lock);
588 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
589 	list_for_each_entry(priv, &tty->tty_files, list) {
590 		filp = priv->file;
591 		if (filp->f_op->write == redirected_tty_write)
592 			cons_filp = filp;
593 		if (filp->f_op->write != tty_write)
594 			continue;
595 		closecount++;
596 		__tty_fasync(-1, filp, 0);	/* can't block */
597 		filp->f_op = &hung_up_tty_fops;
598 	}
599 	spin_unlock(&tty_files_lock);
600 
601 	/*
602 	 * it drops BTM and thus races with reopen
603 	 * we protect the race by TTY_HUPPING
604 	 */
605 	tty_ldisc_hangup(tty);
606 
607 	read_lock(&tasklist_lock);
608 	if (tty->session) {
609 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610 			spin_lock_irq(&p->sighand->siglock);
611 			if (p->signal->tty == tty) {
612 				p->signal->tty = NULL;
613 				/* We defer the dereferences outside fo
614 				   the tasklist lock */
615 				refs++;
616 			}
617 			if (!p->signal->leader) {
618 				spin_unlock_irq(&p->sighand->siglock);
619 				continue;
620 			}
621 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
624 			spin_lock_irqsave(&tty->ctrl_lock, flags);
625 			if (tty->pgrp)
626 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628 			spin_unlock_irq(&p->sighand->siglock);
629 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
630 	}
631 	read_unlock(&tasklist_lock);
632 
633 	spin_lock_irqsave(&tty->ctrl_lock, flags);
634 	clear_bit(TTY_THROTTLED, &tty->flags);
635 	clear_bit(TTY_PUSH, &tty->flags);
636 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637 	put_pid(tty->session);
638 	put_pid(tty->pgrp);
639 	tty->session = NULL;
640 	tty->pgrp = NULL;
641 	tty->ctrl_status = 0;
642 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643 
644 	/* Account for the p->signal references we killed */
645 	while (refs--)
646 		tty_kref_put(tty);
647 
648 	/*
649 	 * If one of the devices matches a console pointer, we
650 	 * cannot just call hangup() because that will cause
651 	 * tty->count and state->count to go out of sync.
652 	 * So we just call close() the right number of times.
653 	 */
654 	if (cons_filp) {
655 		if (tty->ops->close)
656 			for (n = 0; n < closecount; n++)
657 				tty->ops->close(tty, cons_filp);
658 	} else if (tty->ops->hangup)
659 		(tty->ops->hangup)(tty);
660 	/*
661 	 * We don't want to have driver/ldisc interactions beyond
662 	 * the ones we did here. The driver layer expects no
663 	 * calls after ->hangup() from the ldisc side. However we
664 	 * can't yet guarantee all that.
665 	 */
666 	set_bit(TTY_HUPPED, &tty->flags);
667 	clear_bit(TTY_HUPPING, &tty->flags);
668 	tty_ldisc_enable(tty);
669 
670 	tty_unlock();
671 
672 	if (f)
673 		fput(f);
674 }
675 
676 static void do_tty_hangup(struct work_struct *work)
677 {
678 	struct tty_struct *tty =
679 		container_of(work, struct tty_struct, hangup_work);
680 
681 	__tty_hangup(tty);
682 }
683 
684 /**
685  *	tty_hangup		-	trigger a hangup event
686  *	@tty: tty to hangup
687  *
688  *	A carrier loss (virtual or otherwise) has occurred on this like
689  *	schedule a hangup sequence to run after this event.
690  */
691 
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695 	char	buf[64];
696 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698 	schedule_work(&tty->hangup_work);
699 }
700 
701 EXPORT_SYMBOL(tty_hangup);
702 
703 /**
704  *	tty_vhangup		-	process vhangup
705  *	@tty: tty to hangup
706  *
707  *	The user has asked via system call for the terminal to be hung up.
708  *	We do this synchronously so that when the syscall returns the process
709  *	is complete. That guarantee is necessary for security reasons.
710  */
711 
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715 	char	buf[64];
716 
717 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719 	__tty_hangup(tty);
720 }
721 
722 EXPORT_SYMBOL(tty_vhangup);
723 
724 
725 /**
726  *	tty_vhangup_self	-	process vhangup for own ctty
727  *
728  *	Perform a vhangup on the current controlling tty
729  */
730 
731 void tty_vhangup_self(void)
732 {
733 	struct tty_struct *tty;
734 
735 	tty = get_current_tty();
736 	if (tty) {
737 		tty_vhangup(tty);
738 		tty_kref_put(tty);
739 	}
740 }
741 
742 /**
743  *	tty_hung_up_p		-	was tty hung up
744  *	@filp: file pointer of tty
745  *
746  *	Return true if the tty has been subject to a vhangup or a carrier
747  *	loss
748  */
749 
750 int tty_hung_up_p(struct file *filp)
751 {
752 	return (filp->f_op == &hung_up_tty_fops);
753 }
754 
755 EXPORT_SYMBOL(tty_hung_up_p);
756 
757 static void session_clear_tty(struct pid *session)
758 {
759 	struct task_struct *p;
760 	do_each_pid_task(session, PIDTYPE_SID, p) {
761 		proc_clear_tty(p);
762 	} while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764 
765 /**
766  *	disassociate_ctty	-	disconnect controlling tty
767  *	@on_exit: true if exiting so need to "hang up" the session
768  *
769  *	This function is typically called only by the session leader, when
770  *	it wants to disassociate itself from its controlling tty.
771  *
772  *	It performs the following functions:
773  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  * 	(2)  Clears the tty from being controlling the session
775  * 	(3)  Clears the controlling tty for all processes in the
776  * 		session group.
777  *
778  *	The argument on_exit is set to 1 if called when a process is
779  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *	Locking:
782  *		BTM is taken for hysterical raisins, and held when
783  *		  called from no_tty().
784  *		  tty_mutex is taken to protect tty
785  *		  ->siglock is taken to protect ->signal/->sighand
786  *		  tasklist_lock is taken to walk process list for sessions
787  *		    ->siglock is taken to protect ->signal/->sighand
788  */
789 
790 void disassociate_ctty(int on_exit)
791 {
792 	struct tty_struct *tty;
793 
794 	if (!current->signal->leader)
795 		return;
796 
797 	tty = get_current_tty();
798 	if (tty) {
799 		struct pid *tty_pgrp = get_pid(tty->pgrp);
800 		if (on_exit) {
801 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802 				tty_vhangup(tty);
803 		}
804 		tty_kref_put(tty);
805 		if (tty_pgrp) {
806 			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807 			if (!on_exit)
808 				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809 			put_pid(tty_pgrp);
810 		}
811 	} else if (on_exit) {
812 		struct pid *old_pgrp;
813 		spin_lock_irq(&current->sighand->siglock);
814 		old_pgrp = current->signal->tty_old_pgrp;
815 		current->signal->tty_old_pgrp = NULL;
816 		spin_unlock_irq(&current->sighand->siglock);
817 		if (old_pgrp) {
818 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
819 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
820 			put_pid(old_pgrp);
821 		}
822 		return;
823 	}
824 
825 	spin_lock_irq(&current->sighand->siglock);
826 	put_pid(current->signal->tty_old_pgrp);
827 	current->signal->tty_old_pgrp = NULL;
828 	spin_unlock_irq(&current->sighand->siglock);
829 
830 	tty = get_current_tty();
831 	if (tty) {
832 		unsigned long flags;
833 		spin_lock_irqsave(&tty->ctrl_lock, flags);
834 		put_pid(tty->session);
835 		put_pid(tty->pgrp);
836 		tty->session = NULL;
837 		tty->pgrp = NULL;
838 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839 		tty_kref_put(tty);
840 	} else {
841 #ifdef TTY_DEBUG_HANGUP
842 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843 		       " = NULL", tty);
844 #endif
845 	}
846 
847 	/* Now clear signal->tty under the lock */
848 	read_lock(&tasklist_lock);
849 	session_clear_tty(task_session(current));
850 	read_unlock(&tasklist_lock);
851 }
852 
853 /**
854  *
855  *	no_tty	- Ensure the current process does not have a controlling tty
856  */
857 void no_tty(void)
858 {
859 	struct task_struct *tsk = current;
860 	tty_lock();
861 	disassociate_ctty(0);
862 	tty_unlock();
863 	proc_clear_tty(tsk);
864 }
865 
866 
867 /**
868  *	stop_tty	-	propagate flow control
869  *	@tty: tty to stop
870  *
871  *	Perform flow control to the driver. For PTY/TTY pairs we
872  *	must also propagate the TIOCKPKT status. May be called
873  *	on an already stopped device and will not re-call the driver
874  *	method.
875  *
876  *	This functionality is used by both the line disciplines for
877  *	halting incoming flow and by the driver. It may therefore be
878  *	called from any context, may be under the tty atomic_write_lock
879  *	but not always.
880  *
881  *	Locking:
882  *		Uses the tty control lock internally
883  */
884 
885 void stop_tty(struct tty_struct *tty)
886 {
887 	unsigned long flags;
888 	spin_lock_irqsave(&tty->ctrl_lock, flags);
889 	if (tty->stopped) {
890 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891 		return;
892 	}
893 	tty->stopped = 1;
894 	if (tty->link && tty->link->packet) {
895 		tty->ctrl_status &= ~TIOCPKT_START;
896 		tty->ctrl_status |= TIOCPKT_STOP;
897 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898 	}
899 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900 	if (tty->ops->stop)
901 		(tty->ops->stop)(tty);
902 }
903 
904 EXPORT_SYMBOL(stop_tty);
905 
906 /**
907  *	start_tty	-	propagate flow control
908  *	@tty: tty to start
909  *
910  *	Start a tty that has been stopped if at all possible. Perform
911  *	any necessary wakeups and propagate the TIOCPKT status. If this
912  *	is the tty was previous stopped and is being started then the
913  *	driver start method is invoked and the line discipline woken.
914  *
915  *	Locking:
916  *		ctrl_lock
917  */
918 
919 void start_tty(struct tty_struct *tty)
920 {
921 	unsigned long flags;
922 	spin_lock_irqsave(&tty->ctrl_lock, flags);
923 	if (!tty->stopped || tty->flow_stopped) {
924 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925 		return;
926 	}
927 	tty->stopped = 0;
928 	if (tty->link && tty->link->packet) {
929 		tty->ctrl_status &= ~TIOCPKT_STOP;
930 		tty->ctrl_status |= TIOCPKT_START;
931 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932 	}
933 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934 	if (tty->ops->start)
935 		(tty->ops->start)(tty);
936 	/* If we have a running line discipline it may need kicking */
937 	tty_wakeup(tty);
938 }
939 
940 EXPORT_SYMBOL(start_tty);
941 
942 /**
943  *	tty_read	-	read method for tty device files
944  *	@file: pointer to tty file
945  *	@buf: user buffer
946  *	@count: size of user buffer
947  *	@ppos: unused
948  *
949  *	Perform the read system call function on this terminal device. Checks
950  *	for hung up devices before calling the line discipline method.
951  *
952  *	Locking:
953  *		Locks the line discipline internally while needed. Multiple
954  *	read calls may be outstanding in parallel.
955  */
956 
957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958 			loff_t *ppos)
959 {
960 	int i;
961 	struct inode *inode = file->f_path.dentry->d_inode;
962 	struct tty_struct *tty = file_tty(file);
963 	struct tty_ldisc *ld;
964 
965 	if (tty_paranoia_check(tty, inode, "tty_read"))
966 		return -EIO;
967 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968 		return -EIO;
969 
970 	/* We want to wait for the line discipline to sort out in this
971 	   situation */
972 	ld = tty_ldisc_ref_wait(tty);
973 	if (ld->ops->read)
974 		i = (ld->ops->read)(tty, file, buf, count);
975 	else
976 		i = -EIO;
977 	tty_ldisc_deref(ld);
978 	if (i > 0)
979 		inode->i_atime = current_fs_time(inode->i_sb);
980 	return i;
981 }
982 
983 void tty_write_unlock(struct tty_struct *tty)
984 	__releases(&tty->atomic_write_lock)
985 {
986 	mutex_unlock(&tty->atomic_write_lock);
987 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989 
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991 	__acquires(&tty->atomic_write_lock)
992 {
993 	if (!mutex_trylock(&tty->atomic_write_lock)) {
994 		if (ndelay)
995 			return -EAGAIN;
996 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
997 			return -ERESTARTSYS;
998 	}
999 	return 0;
1000 }
1001 
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008 	struct tty_struct *tty,
1009 	struct file *file,
1010 	const char __user *buf,
1011 	size_t count)
1012 {
1013 	ssize_t ret, written = 0;
1014 	unsigned int chunk;
1015 
1016 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017 	if (ret < 0)
1018 		return ret;
1019 
1020 	/*
1021 	 * We chunk up writes into a temporary buffer. This
1022 	 * simplifies low-level drivers immensely, since they
1023 	 * don't have locking issues and user mode accesses.
1024 	 *
1025 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026 	 * big chunk-size..
1027 	 *
1028 	 * The default chunk-size is 2kB, because the NTTY
1029 	 * layer has problems with bigger chunks. It will
1030 	 * claim to be able to handle more characters than
1031 	 * it actually does.
1032 	 *
1033 	 * FIXME: This can probably go away now except that 64K chunks
1034 	 * are too likely to fail unless switched to vmalloc...
1035 	 */
1036 	chunk = 2048;
1037 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038 		chunk = 65536;
1039 	if (count < chunk)
1040 		chunk = count;
1041 
1042 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043 	if (tty->write_cnt < chunk) {
1044 		unsigned char *buf_chunk;
1045 
1046 		if (chunk < 1024)
1047 			chunk = 1024;
1048 
1049 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050 		if (!buf_chunk) {
1051 			ret = -ENOMEM;
1052 			goto out;
1053 		}
1054 		kfree(tty->write_buf);
1055 		tty->write_cnt = chunk;
1056 		tty->write_buf = buf_chunk;
1057 	}
1058 
1059 	/* Do the write .. */
1060 	for (;;) {
1061 		size_t size = count;
1062 		if (size > chunk)
1063 			size = chunk;
1064 		ret = -EFAULT;
1065 		if (copy_from_user(tty->write_buf, buf, size))
1066 			break;
1067 		ret = write(tty, file, tty->write_buf, size);
1068 		if (ret <= 0)
1069 			break;
1070 		written += ret;
1071 		buf += ret;
1072 		count -= ret;
1073 		if (!count)
1074 			break;
1075 		ret = -ERESTARTSYS;
1076 		if (signal_pending(current))
1077 			break;
1078 		cond_resched();
1079 	}
1080 	if (written) {
1081 		struct inode *inode = file->f_path.dentry->d_inode;
1082 		inode->i_mtime = current_fs_time(inode->i_sb);
1083 		ret = written;
1084 	}
1085 out:
1086 	tty_write_unlock(tty);
1087 	return ret;
1088 }
1089 
1090 /**
1091  * tty_write_message - write a message to a certain tty, not just the console.
1092  * @tty: the destination tty_struct
1093  * @msg: the message to write
1094  *
1095  * This is used for messages that need to be redirected to a specific tty.
1096  * We don't put it into the syslog queue right now maybe in the future if
1097  * really needed.
1098  *
1099  * We must still hold the BTM and test the CLOSING flag for the moment.
1100  */
1101 
1102 void tty_write_message(struct tty_struct *tty, char *msg)
1103 {
1104 	if (tty) {
1105 		mutex_lock(&tty->atomic_write_lock);
1106 		tty_lock();
1107 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108 			tty_unlock();
1109 			tty->ops->write(tty, msg, strlen(msg));
1110 		} else
1111 			tty_unlock();
1112 		tty_write_unlock(tty);
1113 	}
1114 	return;
1115 }
1116 
1117 
1118 /**
1119  *	tty_write		-	write method for tty device file
1120  *	@file: tty file pointer
1121  *	@buf: user data to write
1122  *	@count: bytes to write
1123  *	@ppos: unused
1124  *
1125  *	Write data to a tty device via the line discipline.
1126  *
1127  *	Locking:
1128  *		Locks the line discipline as required
1129  *		Writes to the tty driver are serialized by the atomic_write_lock
1130  *	and are then processed in chunks to the device. The line discipline
1131  *	write method will not be invoked in parallel for each device.
1132  */
1133 
1134 static ssize_t tty_write(struct file *file, const char __user *buf,
1135 						size_t count, loff_t *ppos)
1136 {
1137 	struct inode *inode = file->f_path.dentry->d_inode;
1138 	struct tty_struct *tty = file_tty(file);
1139  	struct tty_ldisc *ld;
1140 	ssize_t ret;
1141 
1142 	if (tty_paranoia_check(tty, inode, "tty_write"))
1143 		return -EIO;
1144 	if (!tty || !tty->ops->write ||
1145 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1146 			return -EIO;
1147 	/* Short term debug to catch buggy drivers */
1148 	if (tty->ops->write_room == NULL)
1149 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150 			tty->driver->name);
1151 	ld = tty_ldisc_ref_wait(tty);
1152 	if (!ld->ops->write)
1153 		ret = -EIO;
1154 	else
1155 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156 	tty_ldisc_deref(ld);
1157 	return ret;
1158 }
1159 
1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161 						size_t count, loff_t *ppos)
1162 {
1163 	struct file *p = NULL;
1164 
1165 	spin_lock(&redirect_lock);
1166 	if (redirect) {
1167 		get_file(redirect);
1168 		p = redirect;
1169 	}
1170 	spin_unlock(&redirect_lock);
1171 
1172 	if (p) {
1173 		ssize_t res;
1174 		res = vfs_write(p, buf, count, &p->f_pos);
1175 		fput(p);
1176 		return res;
1177 	}
1178 	return tty_write(file, buf, count, ppos);
1179 }
1180 
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182 
1183 /**
1184  *	pty_line_name	-	generate name for a pty
1185  *	@driver: the tty driver in use
1186  *	@index: the minor number
1187  *	@p: output buffer of at least 6 bytes
1188  *
1189  *	Generate a name from a driver reference and write it to the output
1190  *	buffer.
1191  *
1192  *	Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196 	int i = index + driver->name_base;
1197 	/* ->name is initialized to "ttyp", but "tty" is expected */
1198 	sprintf(p, "%s%c%x",
1199 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200 		ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202 
1203 /**
1204  *	tty_line_name	-	generate name for a tty
1205  *	@driver: the tty driver in use
1206  *	@index: the minor number
1207  *	@p: output buffer of at least 7 bytes
1208  *
1209  *	Generate a name from a driver reference and write it to the output
1210  *	buffer.
1211  *
1212  *	Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216 	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217 }
1218 
1219 /**
1220  *	tty_driver_lookup_tty() - find an existing tty, if any
1221  *	@driver: the driver for the tty
1222  *	@idx:	 the minor number
1223  *
1224  *	Return the tty, if found or ERR_PTR() otherwise.
1225  *
1226  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1227  *	be held until the 'fast-open' is also done. Will change once we
1228  *	have refcounting in the driver and per driver locking
1229  */
1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231 		struct inode *inode, int idx)
1232 {
1233 	if (driver->ops->lookup)
1234 		return driver->ops->lookup(driver, inode, idx);
1235 
1236 	return driver->ttys[idx];
1237 }
1238 
1239 /**
1240  *	tty_init_termios	-  helper for termios setup
1241  *	@tty: the tty to set up
1242  *
1243  *	Initialise the termios structures for this tty. Thus runs under
1244  *	the tty_mutex currently so we can be relaxed about ordering.
1245  */
1246 
1247 int tty_init_termios(struct tty_struct *tty)
1248 {
1249 	struct ktermios *tp;
1250 	int idx = tty->index;
1251 
1252 	tp = tty->driver->termios[idx];
1253 	if (tp == NULL) {
1254 		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255 		if (tp == NULL)
1256 			return -ENOMEM;
1257 		memcpy(tp, &tty->driver->init_termios,
1258 						sizeof(struct ktermios));
1259 		tty->driver->termios[idx] = tp;
1260 	}
1261 	tty->termios = tp;
1262 	tty->termios_locked = tp + 1;
1263 
1264 	/* Compatibility until drivers always set this */
1265 	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266 	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(tty_init_termios);
1270 
1271 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272 {
1273 	int ret = tty_init_termios(tty);
1274 	if (ret)
1275 		return ret;
1276 
1277 	tty_driver_kref_get(driver);
1278 	tty->count++;
1279 	driver->ttys[tty->index] = tty;
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL_GPL(tty_standard_install);
1283 
1284 /**
1285  *	tty_driver_install_tty() - install a tty entry in the driver
1286  *	@driver: the driver for the tty
1287  *	@tty: the tty
1288  *
1289  *	Install a tty object into the driver tables. The tty->index field
1290  *	will be set by the time this is called. This method is responsible
1291  *	for ensuring any need additional structures are allocated and
1292  *	configured.
1293  *
1294  *	Locking: tty_mutex for now
1295  */
1296 static int tty_driver_install_tty(struct tty_driver *driver,
1297 						struct tty_struct *tty)
1298 {
1299 	return driver->ops->install ? driver->ops->install(driver, tty) :
1300 		tty_standard_install(driver, tty);
1301 }
1302 
1303 /**
1304  *	tty_driver_remove_tty() - remove a tty from the driver tables
1305  *	@driver: the driver for the tty
1306  *	@idx:	 the minor number
1307  *
1308  *	Remvoe a tty object from the driver tables. The tty->index field
1309  *	will be set by the time this is called.
1310  *
1311  *	Locking: tty_mutex for now
1312  */
1313 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314 {
1315 	if (driver->ops->remove)
1316 		driver->ops->remove(driver, tty);
1317 	else
1318 		driver->ttys[tty->index] = NULL;
1319 }
1320 
1321 /*
1322  * 	tty_reopen()	- fast re-open of an open tty
1323  * 	@tty	- the tty to open
1324  *
1325  *	Return 0 on success, -errno on error.
1326  *
1327  *	Locking: tty_mutex must be held from the time the tty was found
1328  *		 till this open completes.
1329  */
1330 static int tty_reopen(struct tty_struct *tty)
1331 {
1332 	struct tty_driver *driver = tty->driver;
1333 
1334 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1335 			test_bit(TTY_HUPPING, &tty->flags) ||
1336 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337 		return -EIO;
1338 
1339 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340 	    driver->subtype == PTY_TYPE_MASTER) {
1341 		/*
1342 		 * special case for PTY masters: only one open permitted,
1343 		 * and the slave side open count is incremented as well.
1344 		 */
1345 		if (tty->count)
1346 			return -EIO;
1347 
1348 		tty->link->count++;
1349 	}
1350 	tty->count++;
1351 
1352 	mutex_lock(&tty->ldisc_mutex);
1353 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1354 	mutex_unlock(&tty->ldisc_mutex);
1355 
1356 	return 0;
1357 }
1358 
1359 /**
1360  *	tty_init_dev		-	initialise a tty device
1361  *	@driver: tty driver we are opening a device on
1362  *	@idx: device index
1363  *	@ret_tty: returned tty structure
1364  *
1365  *	Prepare a tty device. This may not be a "new" clean device but
1366  *	could also be an active device. The pty drivers require special
1367  *	handling because of this.
1368  *
1369  *	Locking:
1370  *		The function is called under the tty_mutex, which
1371  *	protects us from the tty struct or driver itself going away.
1372  *
1373  *	On exit the tty device has the line discipline attached and
1374  *	a reference count of 1. If a pair was created for pty/tty use
1375  *	and the other was a pty master then it too has a reference count of 1.
1376  *
1377  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1378  * failed open.  The new code protects the open with a mutex, so it's
1379  * really quite straightforward.  The mutex locking can probably be
1380  * relaxed for the (most common) case of reopening a tty.
1381  */
1382 
1383 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1384 {
1385 	struct tty_struct *tty;
1386 	int retval;
1387 
1388 	/*
1389 	 * First time open is complex, especially for PTY devices.
1390 	 * This code guarantees that either everything succeeds and the
1391 	 * TTY is ready for operation, or else the table slots are vacated
1392 	 * and the allocated memory released.  (Except that the termios
1393 	 * and locked termios may be retained.)
1394 	 */
1395 
1396 	if (!try_module_get(driver->owner))
1397 		return ERR_PTR(-ENODEV);
1398 
1399 	tty = alloc_tty_struct();
1400 	if (!tty) {
1401 		retval = -ENOMEM;
1402 		goto err_module_put;
1403 	}
1404 	initialize_tty_struct(tty, driver, idx);
1405 
1406 	retval = tty_driver_install_tty(driver, tty);
1407 	if (retval < 0)
1408 		goto err_deinit_tty;
1409 
1410 	/*
1411 	 * Structures all installed ... call the ldisc open routines.
1412 	 * If we fail here just call release_tty to clean up.  No need
1413 	 * to decrement the use counts, as release_tty doesn't care.
1414 	 */
1415 	retval = tty_ldisc_setup(tty, tty->link);
1416 	if (retval)
1417 		goto err_release_tty;
1418 	return tty;
1419 
1420 err_deinit_tty:
1421 	deinitialize_tty_struct(tty);
1422 	free_tty_struct(tty);
1423 err_module_put:
1424 	module_put(driver->owner);
1425 	return ERR_PTR(retval);
1426 
1427 	/* call the tty release_tty routine to clean out this slot */
1428 err_release_tty:
1429 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1430 				 "clearing slot %d\n", idx);
1431 	release_tty(tty, idx);
1432 	return ERR_PTR(retval);
1433 }
1434 
1435 void tty_free_termios(struct tty_struct *tty)
1436 {
1437 	struct ktermios *tp;
1438 	int idx = tty->index;
1439 	/* Kill this flag and push into drivers for locking etc */
1440 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1441 		/* FIXME: Locking on ->termios array */
1442 		tp = tty->termios;
1443 		tty->driver->termios[idx] = NULL;
1444 		kfree(tp);
1445 	}
1446 }
1447 EXPORT_SYMBOL(tty_free_termios);
1448 
1449 void tty_shutdown(struct tty_struct *tty)
1450 {
1451 	tty_driver_remove_tty(tty->driver, tty);
1452 	tty_free_termios(tty);
1453 }
1454 EXPORT_SYMBOL(tty_shutdown);
1455 
1456 /**
1457  *	release_one_tty		-	release tty structure memory
1458  *	@kref: kref of tty we are obliterating
1459  *
1460  *	Releases memory associated with a tty structure, and clears out the
1461  *	driver table slots. This function is called when a device is no longer
1462  *	in use. It also gets called when setup of a device fails.
1463  *
1464  *	Locking:
1465  *		tty_mutex - sometimes only
1466  *		takes the file list lock internally when working on the list
1467  *	of ttys that the driver keeps.
1468  *
1469  *	This method gets called from a work queue so that the driver private
1470  *	cleanup ops can sleep (needed for USB at least)
1471  */
1472 static void release_one_tty(struct work_struct *work)
1473 {
1474 	struct tty_struct *tty =
1475 		container_of(work, struct tty_struct, hangup_work);
1476 	struct tty_driver *driver = tty->driver;
1477 
1478 	if (tty->ops->cleanup)
1479 		tty->ops->cleanup(tty);
1480 
1481 	tty->magic = 0;
1482 	tty_driver_kref_put(driver);
1483 	module_put(driver->owner);
1484 
1485 	spin_lock(&tty_files_lock);
1486 	list_del_init(&tty->tty_files);
1487 	spin_unlock(&tty_files_lock);
1488 
1489 	put_pid(tty->pgrp);
1490 	put_pid(tty->session);
1491 	free_tty_struct(tty);
1492 }
1493 
1494 static void queue_release_one_tty(struct kref *kref)
1495 {
1496 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497 
1498 	if (tty->ops->shutdown)
1499 		tty->ops->shutdown(tty);
1500 	else
1501 		tty_shutdown(tty);
1502 
1503 	/* The hangup queue is now free so we can reuse it rather than
1504 	   waste a chunk of memory for each port */
1505 	INIT_WORK(&tty->hangup_work, release_one_tty);
1506 	schedule_work(&tty->hangup_work);
1507 }
1508 
1509 /**
1510  *	tty_kref_put		-	release a tty kref
1511  *	@tty: tty device
1512  *
1513  *	Release a reference to a tty device and if need be let the kref
1514  *	layer destruct the object for us
1515  */
1516 
1517 void tty_kref_put(struct tty_struct *tty)
1518 {
1519 	if (tty)
1520 		kref_put(&tty->kref, queue_release_one_tty);
1521 }
1522 EXPORT_SYMBOL(tty_kref_put);
1523 
1524 /**
1525  *	release_tty		-	release tty structure memory
1526  *
1527  *	Release both @tty and a possible linked partner (think pty pair),
1528  *	and decrement the refcount of the backing module.
1529  *
1530  *	Locking:
1531  *		tty_mutex - sometimes only
1532  *		takes the file list lock internally when working on the list
1533  *	of ttys that the driver keeps.
1534  *		FIXME: should we require tty_mutex is held here ??
1535  *
1536  */
1537 static void release_tty(struct tty_struct *tty, int idx)
1538 {
1539 	/* This should always be true but check for the moment */
1540 	WARN_ON(tty->index != idx);
1541 
1542 	if (tty->link)
1543 		tty_kref_put(tty->link);
1544 	tty_kref_put(tty);
1545 }
1546 
1547 /**
1548  *	tty_release_checks - check a tty before real release
1549  *	@tty: tty to check
1550  *	@o_tty: link of @tty (if any)
1551  *	@idx: index of the tty
1552  *
1553  *	Performs some paranoid checking before true release of the @tty.
1554  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555  */
1556 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1557 		int idx)
1558 {
1559 #ifdef TTY_PARANOIA_CHECK
1560 	if (idx < 0 || idx >= tty->driver->num) {
1561 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1562 				__func__, tty->name);
1563 		return -1;
1564 	}
1565 
1566 	/* not much to check for devpts */
1567 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1568 		return 0;
1569 
1570 	if (tty != tty->driver->ttys[idx]) {
1571 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1572 				__func__, idx, tty->name);
1573 		return -1;
1574 	}
1575 	if (tty->termios != tty->driver->termios[idx]) {
1576 		printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1577 				__func__, idx, tty->name);
1578 		return -1;
1579 	}
1580 	if (tty->driver->other) {
1581 		if (o_tty != tty->driver->other->ttys[idx]) {
1582 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1583 					__func__, idx, tty->name);
1584 			return -1;
1585 		}
1586 		if (o_tty->termios != tty->driver->other->termios[idx]) {
1587 			printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1588 					__func__, idx, tty->name);
1589 			return -1;
1590 		}
1591 		if (o_tty->link != tty) {
1592 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593 			return -1;
1594 		}
1595 	}
1596 #endif
1597 	return 0;
1598 }
1599 
1600 /**
1601  *	tty_release		-	vfs callback for close
1602  *	@inode: inode of tty
1603  *	@filp: file pointer for handle to tty
1604  *
1605  *	Called the last time each file handle is closed that references
1606  *	this tty. There may however be several such references.
1607  *
1608  *	Locking:
1609  *		Takes bkl. See tty_release_dev
1610  *
1611  * Even releasing the tty structures is a tricky business.. We have
1612  * to be very careful that the structures are all released at the
1613  * same time, as interrupts might otherwise get the wrong pointers.
1614  *
1615  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616  * lead to double frees or releasing memory still in use.
1617  */
1618 
1619 int tty_release(struct inode *inode, struct file *filp)
1620 {
1621 	struct tty_struct *tty = file_tty(filp);
1622 	struct tty_struct *o_tty;
1623 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1624 	int	devpts;
1625 	int	idx;
1626 	char	buf[64];
1627 
1628 	if (tty_paranoia_check(tty, inode, __func__))
1629 		return 0;
1630 
1631 	tty_lock();
1632 	check_tty_count(tty, __func__);
1633 
1634 	__tty_fasync(-1, filp, 0);
1635 
1636 	idx = tty->index;
1637 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1638 		      tty->driver->subtype == PTY_TYPE_MASTER);
1639 	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1640 	o_tty = tty->link;
1641 
1642 	if (tty_release_checks(tty, o_tty, idx)) {
1643 		tty_unlock();
1644 		return 0;
1645 	}
1646 
1647 #ifdef TTY_DEBUG_HANGUP
1648 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649 			tty_name(tty, buf), tty->count);
1650 #endif
1651 
1652 	if (tty->ops->close)
1653 		tty->ops->close(tty, filp);
1654 
1655 	tty_unlock();
1656 	/*
1657 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1658 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1659 	 * wait queues and kick everyone out _before_ actually starting to
1660 	 * close.  This ensures that we won't block while releasing the tty
1661 	 * structure.
1662 	 *
1663 	 * The test for the o_tty closing is necessary, since the master and
1664 	 * slave sides may close in any order.  If the slave side closes out
1665 	 * first, its count will be one, since the master side holds an open.
1666 	 * Thus this test wouldn't be triggered at the time the slave closes,
1667 	 * so we do it now.
1668 	 *
1669 	 * Note that it's possible for the tty to be opened again while we're
1670 	 * flushing out waiters.  By recalculating the closing flags before
1671 	 * each iteration we avoid any problems.
1672 	 */
1673 	while (1) {
1674 		/* Guard against races with tty->count changes elsewhere and
1675 		   opens on /dev/tty */
1676 
1677 		mutex_lock(&tty_mutex);
1678 		tty_lock();
1679 		tty_closing = tty->count <= 1;
1680 		o_tty_closing = o_tty &&
1681 			(o_tty->count <= (pty_master ? 1 : 0));
1682 		do_sleep = 0;
1683 
1684 		if (tty_closing) {
1685 			if (waitqueue_active(&tty->read_wait)) {
1686 				wake_up_poll(&tty->read_wait, POLLIN);
1687 				do_sleep++;
1688 			}
1689 			if (waitqueue_active(&tty->write_wait)) {
1690 				wake_up_poll(&tty->write_wait, POLLOUT);
1691 				do_sleep++;
1692 			}
1693 		}
1694 		if (o_tty_closing) {
1695 			if (waitqueue_active(&o_tty->read_wait)) {
1696 				wake_up_poll(&o_tty->read_wait, POLLIN);
1697 				do_sleep++;
1698 			}
1699 			if (waitqueue_active(&o_tty->write_wait)) {
1700 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1701 				do_sleep++;
1702 			}
1703 		}
1704 		if (!do_sleep)
1705 			break;
1706 
1707 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708 				__func__, tty_name(tty, buf));
1709 		tty_unlock();
1710 		mutex_unlock(&tty_mutex);
1711 		schedule();
1712 	}
1713 
1714 	/*
1715 	 * The closing flags are now consistent with the open counts on
1716 	 * both sides, and we've completed the last operation that could
1717 	 * block, so it's safe to proceed with closing.
1718 	 */
1719 	if (pty_master) {
1720 		if (--o_tty->count < 0) {
1721 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1722 				__func__, o_tty->count, tty_name(o_tty, buf));
1723 			o_tty->count = 0;
1724 		}
1725 	}
1726 	if (--tty->count < 0) {
1727 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1728 				__func__, tty->count, tty_name(tty, buf));
1729 		tty->count = 0;
1730 	}
1731 
1732 	/*
1733 	 * We've decremented tty->count, so we need to remove this file
1734 	 * descriptor off the tty->tty_files list; this serves two
1735 	 * purposes:
1736 	 *  - check_tty_count sees the correct number of file descriptors
1737 	 *    associated with this tty.
1738 	 *  - do_tty_hangup no longer sees this file descriptor as
1739 	 *    something that needs to be handled for hangups.
1740 	 */
1741 	tty_del_file(filp);
1742 
1743 	/*
1744 	 * Perform some housekeeping before deciding whether to return.
1745 	 *
1746 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1747 	 * case of a pty we may have to wait around for the other side
1748 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1749 	 */
1750 	if (tty_closing)
1751 		set_bit(TTY_CLOSING, &tty->flags);
1752 	if (o_tty_closing)
1753 		set_bit(TTY_CLOSING, &o_tty->flags);
1754 
1755 	/*
1756 	 * If _either_ side is closing, make sure there aren't any
1757 	 * processes that still think tty or o_tty is their controlling
1758 	 * tty.
1759 	 */
1760 	if (tty_closing || o_tty_closing) {
1761 		read_lock(&tasklist_lock);
1762 		session_clear_tty(tty->session);
1763 		if (o_tty)
1764 			session_clear_tty(o_tty->session);
1765 		read_unlock(&tasklist_lock);
1766 	}
1767 
1768 	mutex_unlock(&tty_mutex);
1769 
1770 	/* check whether both sides are closing ... */
1771 	if (!tty_closing || (o_tty && !o_tty_closing)) {
1772 		tty_unlock();
1773 		return 0;
1774 	}
1775 
1776 #ifdef TTY_DEBUG_HANGUP
1777 	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1778 #endif
1779 	/*
1780 	 * Ask the line discipline code to release its structures
1781 	 */
1782 	tty_ldisc_release(tty, o_tty);
1783 	/*
1784 	 * The release_tty function takes care of the details of clearing
1785 	 * the slots and preserving the termios structure.
1786 	 */
1787 	release_tty(tty, idx);
1788 
1789 	/* Make this pty number available for reallocation */
1790 	if (devpts)
1791 		devpts_kill_index(inode, idx);
1792 	tty_unlock();
1793 	return 0;
1794 }
1795 
1796 /**
1797  *	tty_open_current_tty - get tty of current task for open
1798  *	@device: device number
1799  *	@filp: file pointer to tty
1800  *	@return: tty of the current task iff @device is /dev/tty
1801  *
1802  *	We cannot return driver and index like for the other nodes because
1803  *	devpts will not work then. It expects inodes to be from devpts FS.
1804  */
1805 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1806 {
1807 	struct tty_struct *tty;
1808 
1809 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1810 		return NULL;
1811 
1812 	tty = get_current_tty();
1813 	if (!tty)
1814 		return ERR_PTR(-ENXIO);
1815 
1816 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1817 	/* noctty = 1; */
1818 	tty_kref_put(tty);
1819 	/* FIXME: we put a reference and return a TTY! */
1820 	return tty;
1821 }
1822 
1823 /**
1824  *	tty_lookup_driver - lookup a tty driver for a given device file
1825  *	@device: device number
1826  *	@filp: file pointer to tty
1827  *	@noctty: set if the device should not become a controlling tty
1828  *	@index: index for the device in the @return driver
1829  *	@return: driver for this inode (with increased refcount)
1830  *
1831  * 	If @return is not erroneous, the caller is responsible to decrement the
1832  * 	refcount by tty_driver_kref_put.
1833  *
1834  *	Locking: tty_mutex protects get_tty_driver
1835  */
1836 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1837 		int *noctty, int *index)
1838 {
1839 	struct tty_driver *driver;
1840 
1841 	switch (device) {
1842 #ifdef CONFIG_VT
1843 	case MKDEV(TTY_MAJOR, 0): {
1844 		extern struct tty_driver *console_driver;
1845 		driver = tty_driver_kref_get(console_driver);
1846 		*index = fg_console;
1847 		*noctty = 1;
1848 		break;
1849 	}
1850 #endif
1851 	case MKDEV(TTYAUX_MAJOR, 1): {
1852 		struct tty_driver *console_driver = console_device(index);
1853 		if (console_driver) {
1854 			driver = tty_driver_kref_get(console_driver);
1855 			if (driver) {
1856 				/* Don't let /dev/console block */
1857 				filp->f_flags |= O_NONBLOCK;
1858 				*noctty = 1;
1859 				break;
1860 			}
1861 		}
1862 		return ERR_PTR(-ENODEV);
1863 	}
1864 	default:
1865 		driver = get_tty_driver(device, index);
1866 		if (!driver)
1867 			return ERR_PTR(-ENODEV);
1868 		break;
1869 	}
1870 	return driver;
1871 }
1872 
1873 /**
1874  *	tty_open		-	open a tty device
1875  *	@inode: inode of device file
1876  *	@filp: file pointer to tty
1877  *
1878  *	tty_open and tty_release keep up the tty count that contains the
1879  *	number of opens done on a tty. We cannot use the inode-count, as
1880  *	different inodes might point to the same tty.
1881  *
1882  *	Open-counting is needed for pty masters, as well as for keeping
1883  *	track of serial lines: DTR is dropped when the last close happens.
1884  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1885  *
1886  *	The termios state of a pty is reset on first open so that
1887  *	settings don't persist across reuse.
1888  *
1889  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1890  *		 tty->count should protect the rest.
1891  *		 ->siglock protects ->signal/->sighand
1892  */
1893 
1894 static int tty_open(struct inode *inode, struct file *filp)
1895 {
1896 	struct tty_struct *tty;
1897 	int noctty, retval;
1898 	struct tty_driver *driver = NULL;
1899 	int index;
1900 	dev_t device = inode->i_rdev;
1901 	unsigned saved_flags = filp->f_flags;
1902 
1903 	nonseekable_open(inode, filp);
1904 
1905 retry_open:
1906 	retval = tty_alloc_file(filp);
1907 	if (retval)
1908 		return -ENOMEM;
1909 
1910 	noctty = filp->f_flags & O_NOCTTY;
1911 	index  = -1;
1912 	retval = 0;
1913 
1914 	mutex_lock(&tty_mutex);
1915 	tty_lock();
1916 
1917 	tty = tty_open_current_tty(device, filp);
1918 	if (IS_ERR(tty)) {
1919 		retval = PTR_ERR(tty);
1920 		goto err_unlock;
1921 	} else if (!tty) {
1922 		driver = tty_lookup_driver(device, filp, &noctty, &index);
1923 		if (IS_ERR(driver)) {
1924 			retval = PTR_ERR(driver);
1925 			goto err_unlock;
1926 		}
1927 
1928 		/* check whether we're reopening an existing tty */
1929 		tty = tty_driver_lookup_tty(driver, inode, index);
1930 		if (IS_ERR(tty)) {
1931 			retval = PTR_ERR(tty);
1932 			goto err_unlock;
1933 		}
1934 	}
1935 
1936 	if (tty) {
1937 		retval = tty_reopen(tty);
1938 		if (retval)
1939 			tty = ERR_PTR(retval);
1940 	} else
1941 		tty = tty_init_dev(driver, index);
1942 
1943 	mutex_unlock(&tty_mutex);
1944 	if (driver)
1945 		tty_driver_kref_put(driver);
1946 	if (IS_ERR(tty)) {
1947 		tty_unlock();
1948 		retval = PTR_ERR(tty);
1949 		goto err_file;
1950 	}
1951 
1952 	tty_add_file(tty, filp);
1953 
1954 	check_tty_count(tty, __func__);
1955 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1956 	    tty->driver->subtype == PTY_TYPE_MASTER)
1957 		noctty = 1;
1958 #ifdef TTY_DEBUG_HANGUP
1959 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1960 #endif
1961 	if (tty->ops->open)
1962 		retval = tty->ops->open(tty, filp);
1963 	else
1964 		retval = -ENODEV;
1965 	filp->f_flags = saved_flags;
1966 
1967 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1968 						!capable(CAP_SYS_ADMIN))
1969 		retval = -EBUSY;
1970 
1971 	if (retval) {
1972 #ifdef TTY_DEBUG_HANGUP
1973 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1974 				retval, tty->name);
1975 #endif
1976 		tty_unlock(); /* need to call tty_release without BTM */
1977 		tty_release(inode, filp);
1978 		if (retval != -ERESTARTSYS)
1979 			return retval;
1980 
1981 		if (signal_pending(current))
1982 			return retval;
1983 
1984 		schedule();
1985 		/*
1986 		 * Need to reset f_op in case a hangup happened.
1987 		 */
1988 		tty_lock();
1989 		if (filp->f_op == &hung_up_tty_fops)
1990 			filp->f_op = &tty_fops;
1991 		tty_unlock();
1992 		goto retry_open;
1993 	}
1994 	tty_unlock();
1995 
1996 
1997 	mutex_lock(&tty_mutex);
1998 	tty_lock();
1999 	spin_lock_irq(&current->sighand->siglock);
2000 	if (!noctty &&
2001 	    current->signal->leader &&
2002 	    !current->signal->tty &&
2003 	    tty->session == NULL)
2004 		__proc_set_tty(current, tty);
2005 	spin_unlock_irq(&current->sighand->siglock);
2006 	tty_unlock();
2007 	mutex_unlock(&tty_mutex);
2008 	return 0;
2009 err_unlock:
2010 	tty_unlock();
2011 	mutex_unlock(&tty_mutex);
2012 	/* after locks to avoid deadlock */
2013 	if (!IS_ERR_OR_NULL(driver))
2014 		tty_driver_kref_put(driver);
2015 err_file:
2016 	tty_free_file(filp);
2017 	return retval;
2018 }
2019 
2020 
2021 
2022 /**
2023  *	tty_poll	-	check tty status
2024  *	@filp: file being polled
2025  *	@wait: poll wait structures to update
2026  *
2027  *	Call the line discipline polling method to obtain the poll
2028  *	status of the device.
2029  *
2030  *	Locking: locks called line discipline but ldisc poll method
2031  *	may be re-entered freely by other callers.
2032  */
2033 
2034 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2035 {
2036 	struct tty_struct *tty = file_tty(filp);
2037 	struct tty_ldisc *ld;
2038 	int ret = 0;
2039 
2040 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2041 		return 0;
2042 
2043 	ld = tty_ldisc_ref_wait(tty);
2044 	if (ld->ops->poll)
2045 		ret = (ld->ops->poll)(tty, filp, wait);
2046 	tty_ldisc_deref(ld);
2047 	return ret;
2048 }
2049 
2050 static int __tty_fasync(int fd, struct file *filp, int on)
2051 {
2052 	struct tty_struct *tty = file_tty(filp);
2053 	unsigned long flags;
2054 	int retval = 0;
2055 
2056 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2057 		goto out;
2058 
2059 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2060 	if (retval <= 0)
2061 		goto out;
2062 
2063 	if (on) {
2064 		enum pid_type type;
2065 		struct pid *pid;
2066 		if (!waitqueue_active(&tty->read_wait))
2067 			tty->minimum_to_wake = 1;
2068 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2069 		if (tty->pgrp) {
2070 			pid = tty->pgrp;
2071 			type = PIDTYPE_PGID;
2072 		} else {
2073 			pid = task_pid(current);
2074 			type = PIDTYPE_PID;
2075 		}
2076 		get_pid(pid);
2077 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2078 		retval = __f_setown(filp, pid, type, 0);
2079 		put_pid(pid);
2080 		if (retval)
2081 			goto out;
2082 	} else {
2083 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2084 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2085 	}
2086 	retval = 0;
2087 out:
2088 	return retval;
2089 }
2090 
2091 static int tty_fasync(int fd, struct file *filp, int on)
2092 {
2093 	int retval;
2094 	tty_lock();
2095 	retval = __tty_fasync(fd, filp, on);
2096 	tty_unlock();
2097 	return retval;
2098 }
2099 
2100 /**
2101  *	tiocsti			-	fake input character
2102  *	@tty: tty to fake input into
2103  *	@p: pointer to character
2104  *
2105  *	Fake input to a tty device. Does the necessary locking and
2106  *	input management.
2107  *
2108  *	FIXME: does not honour flow control ??
2109  *
2110  *	Locking:
2111  *		Called functions take tty_ldisc_lock
2112  *		current->signal->tty check is safe without locks
2113  *
2114  *	FIXME: may race normal receive processing
2115  */
2116 
2117 static int tiocsti(struct tty_struct *tty, char __user *p)
2118 {
2119 	char ch, mbz = 0;
2120 	struct tty_ldisc *ld;
2121 
2122 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2123 		return -EPERM;
2124 	if (get_user(ch, p))
2125 		return -EFAULT;
2126 	tty_audit_tiocsti(tty, ch);
2127 	ld = tty_ldisc_ref_wait(tty);
2128 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2129 	tty_ldisc_deref(ld);
2130 	return 0;
2131 }
2132 
2133 /**
2134  *	tiocgwinsz		-	implement window query ioctl
2135  *	@tty; tty
2136  *	@arg: user buffer for result
2137  *
2138  *	Copies the kernel idea of the window size into the user buffer.
2139  *
2140  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2141  *		is consistent.
2142  */
2143 
2144 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2145 {
2146 	int err;
2147 
2148 	mutex_lock(&tty->termios_mutex);
2149 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2150 	mutex_unlock(&tty->termios_mutex);
2151 
2152 	return err ? -EFAULT: 0;
2153 }
2154 
2155 /**
2156  *	tty_do_resize		-	resize event
2157  *	@tty: tty being resized
2158  *	@rows: rows (character)
2159  *	@cols: cols (character)
2160  *
2161  *	Update the termios variables and send the necessary signals to
2162  *	peform a terminal resize correctly
2163  */
2164 
2165 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2166 {
2167 	struct pid *pgrp;
2168 	unsigned long flags;
2169 
2170 	/* Lock the tty */
2171 	mutex_lock(&tty->termios_mutex);
2172 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2173 		goto done;
2174 	/* Get the PID values and reference them so we can
2175 	   avoid holding the tty ctrl lock while sending signals */
2176 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2177 	pgrp = get_pid(tty->pgrp);
2178 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2179 
2180 	if (pgrp)
2181 		kill_pgrp(pgrp, SIGWINCH, 1);
2182 	put_pid(pgrp);
2183 
2184 	tty->winsize = *ws;
2185 done:
2186 	mutex_unlock(&tty->termios_mutex);
2187 	return 0;
2188 }
2189 
2190 /**
2191  *	tiocswinsz		-	implement window size set ioctl
2192  *	@tty; tty side of tty
2193  *	@arg: user buffer for result
2194  *
2195  *	Copies the user idea of the window size to the kernel. Traditionally
2196  *	this is just advisory information but for the Linux console it
2197  *	actually has driver level meaning and triggers a VC resize.
2198  *
2199  *	Locking:
2200  *		Driver dependent. The default do_resize method takes the
2201  *	tty termios mutex and ctrl_lock. The console takes its own lock
2202  *	then calls into the default method.
2203  */
2204 
2205 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2206 {
2207 	struct winsize tmp_ws;
2208 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2209 		return -EFAULT;
2210 
2211 	if (tty->ops->resize)
2212 		return tty->ops->resize(tty, &tmp_ws);
2213 	else
2214 		return tty_do_resize(tty, &tmp_ws);
2215 }
2216 
2217 /**
2218  *	tioccons	-	allow admin to move logical console
2219  *	@file: the file to become console
2220  *
2221  *	Allow the administrator to move the redirected console device
2222  *
2223  *	Locking: uses redirect_lock to guard the redirect information
2224  */
2225 
2226 static int tioccons(struct file *file)
2227 {
2228 	if (!capable(CAP_SYS_ADMIN))
2229 		return -EPERM;
2230 	if (file->f_op->write == redirected_tty_write) {
2231 		struct file *f;
2232 		spin_lock(&redirect_lock);
2233 		f = redirect;
2234 		redirect = NULL;
2235 		spin_unlock(&redirect_lock);
2236 		if (f)
2237 			fput(f);
2238 		return 0;
2239 	}
2240 	spin_lock(&redirect_lock);
2241 	if (redirect) {
2242 		spin_unlock(&redirect_lock);
2243 		return -EBUSY;
2244 	}
2245 	get_file(file);
2246 	redirect = file;
2247 	spin_unlock(&redirect_lock);
2248 	return 0;
2249 }
2250 
2251 /**
2252  *	fionbio		-	non blocking ioctl
2253  *	@file: file to set blocking value
2254  *	@p: user parameter
2255  *
2256  *	Historical tty interfaces had a blocking control ioctl before
2257  *	the generic functionality existed. This piece of history is preserved
2258  *	in the expected tty API of posix OS's.
2259  *
2260  *	Locking: none, the open file handle ensures it won't go away.
2261  */
2262 
2263 static int fionbio(struct file *file, int __user *p)
2264 {
2265 	int nonblock;
2266 
2267 	if (get_user(nonblock, p))
2268 		return -EFAULT;
2269 
2270 	spin_lock(&file->f_lock);
2271 	if (nonblock)
2272 		file->f_flags |= O_NONBLOCK;
2273 	else
2274 		file->f_flags &= ~O_NONBLOCK;
2275 	spin_unlock(&file->f_lock);
2276 	return 0;
2277 }
2278 
2279 /**
2280  *	tiocsctty	-	set controlling tty
2281  *	@tty: tty structure
2282  *	@arg: user argument
2283  *
2284  *	This ioctl is used to manage job control. It permits a session
2285  *	leader to set this tty as the controlling tty for the session.
2286  *
2287  *	Locking:
2288  *		Takes tty_mutex() to protect tty instance
2289  *		Takes tasklist_lock internally to walk sessions
2290  *		Takes ->siglock() when updating signal->tty
2291  */
2292 
2293 static int tiocsctty(struct tty_struct *tty, int arg)
2294 {
2295 	int ret = 0;
2296 	if (current->signal->leader && (task_session(current) == tty->session))
2297 		return ret;
2298 
2299 	mutex_lock(&tty_mutex);
2300 	/*
2301 	 * The process must be a session leader and
2302 	 * not have a controlling tty already.
2303 	 */
2304 	if (!current->signal->leader || current->signal->tty) {
2305 		ret = -EPERM;
2306 		goto unlock;
2307 	}
2308 
2309 	if (tty->session) {
2310 		/*
2311 		 * This tty is already the controlling
2312 		 * tty for another session group!
2313 		 */
2314 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2315 			/*
2316 			 * Steal it away
2317 			 */
2318 			read_lock(&tasklist_lock);
2319 			session_clear_tty(tty->session);
2320 			read_unlock(&tasklist_lock);
2321 		} else {
2322 			ret = -EPERM;
2323 			goto unlock;
2324 		}
2325 	}
2326 	proc_set_tty(current, tty);
2327 unlock:
2328 	mutex_unlock(&tty_mutex);
2329 	return ret;
2330 }
2331 
2332 /**
2333  *	tty_get_pgrp	-	return a ref counted pgrp pid
2334  *	@tty: tty to read
2335  *
2336  *	Returns a refcounted instance of the pid struct for the process
2337  *	group controlling the tty.
2338  */
2339 
2340 struct pid *tty_get_pgrp(struct tty_struct *tty)
2341 {
2342 	unsigned long flags;
2343 	struct pid *pgrp;
2344 
2345 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2346 	pgrp = get_pid(tty->pgrp);
2347 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2348 
2349 	return pgrp;
2350 }
2351 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2352 
2353 /**
2354  *	tiocgpgrp		-	get process group
2355  *	@tty: tty passed by user
2356  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2357  *	@p: returned pid
2358  *
2359  *	Obtain the process group of the tty. If there is no process group
2360  *	return an error.
2361  *
2362  *	Locking: none. Reference to current->signal->tty is safe.
2363  */
2364 
2365 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2366 {
2367 	struct pid *pid;
2368 	int ret;
2369 	/*
2370 	 * (tty == real_tty) is a cheap way of
2371 	 * testing if the tty is NOT a master pty.
2372 	 */
2373 	if (tty == real_tty && current->signal->tty != real_tty)
2374 		return -ENOTTY;
2375 	pid = tty_get_pgrp(real_tty);
2376 	ret =  put_user(pid_vnr(pid), p);
2377 	put_pid(pid);
2378 	return ret;
2379 }
2380 
2381 /**
2382  *	tiocspgrp		-	attempt to set process group
2383  *	@tty: tty passed by user
2384  *	@real_tty: tty side device matching tty passed by user
2385  *	@p: pid pointer
2386  *
2387  *	Set the process group of the tty to the session passed. Only
2388  *	permitted where the tty session is our session.
2389  *
2390  *	Locking: RCU, ctrl lock
2391  */
2392 
2393 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2394 {
2395 	struct pid *pgrp;
2396 	pid_t pgrp_nr;
2397 	int retval = tty_check_change(real_tty);
2398 	unsigned long flags;
2399 
2400 	if (retval == -EIO)
2401 		return -ENOTTY;
2402 	if (retval)
2403 		return retval;
2404 	if (!current->signal->tty ||
2405 	    (current->signal->tty != real_tty) ||
2406 	    (real_tty->session != task_session(current)))
2407 		return -ENOTTY;
2408 	if (get_user(pgrp_nr, p))
2409 		return -EFAULT;
2410 	if (pgrp_nr < 0)
2411 		return -EINVAL;
2412 	rcu_read_lock();
2413 	pgrp = find_vpid(pgrp_nr);
2414 	retval = -ESRCH;
2415 	if (!pgrp)
2416 		goto out_unlock;
2417 	retval = -EPERM;
2418 	if (session_of_pgrp(pgrp) != task_session(current))
2419 		goto out_unlock;
2420 	retval = 0;
2421 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2422 	put_pid(real_tty->pgrp);
2423 	real_tty->pgrp = get_pid(pgrp);
2424 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2425 out_unlock:
2426 	rcu_read_unlock();
2427 	return retval;
2428 }
2429 
2430 /**
2431  *	tiocgsid		-	get session id
2432  *	@tty: tty passed by user
2433  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2434  *	@p: pointer to returned session id
2435  *
2436  *	Obtain the session id of the tty. If there is no session
2437  *	return an error.
2438  *
2439  *	Locking: none. Reference to current->signal->tty is safe.
2440  */
2441 
2442 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2443 {
2444 	/*
2445 	 * (tty == real_tty) is a cheap way of
2446 	 * testing if the tty is NOT a master pty.
2447 	*/
2448 	if (tty == real_tty && current->signal->tty != real_tty)
2449 		return -ENOTTY;
2450 	if (!real_tty->session)
2451 		return -ENOTTY;
2452 	return put_user(pid_vnr(real_tty->session), p);
2453 }
2454 
2455 /**
2456  *	tiocsetd	-	set line discipline
2457  *	@tty: tty device
2458  *	@p: pointer to user data
2459  *
2460  *	Set the line discipline according to user request.
2461  *
2462  *	Locking: see tty_set_ldisc, this function is just a helper
2463  */
2464 
2465 static int tiocsetd(struct tty_struct *tty, int __user *p)
2466 {
2467 	int ldisc;
2468 	int ret;
2469 
2470 	if (get_user(ldisc, p))
2471 		return -EFAULT;
2472 
2473 	ret = tty_set_ldisc(tty, ldisc);
2474 
2475 	return ret;
2476 }
2477 
2478 /**
2479  *	send_break	-	performed time break
2480  *	@tty: device to break on
2481  *	@duration: timeout in mS
2482  *
2483  *	Perform a timed break on hardware that lacks its own driver level
2484  *	timed break functionality.
2485  *
2486  *	Locking:
2487  *		atomic_write_lock serializes
2488  *
2489  */
2490 
2491 static int send_break(struct tty_struct *tty, unsigned int duration)
2492 {
2493 	int retval;
2494 
2495 	if (tty->ops->break_ctl == NULL)
2496 		return 0;
2497 
2498 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2499 		retval = tty->ops->break_ctl(tty, duration);
2500 	else {
2501 		/* Do the work ourselves */
2502 		if (tty_write_lock(tty, 0) < 0)
2503 			return -EINTR;
2504 		retval = tty->ops->break_ctl(tty, -1);
2505 		if (retval)
2506 			goto out;
2507 		if (!signal_pending(current))
2508 			msleep_interruptible(duration);
2509 		retval = tty->ops->break_ctl(tty, 0);
2510 out:
2511 		tty_write_unlock(tty);
2512 		if (signal_pending(current))
2513 			retval = -EINTR;
2514 	}
2515 	return retval;
2516 }
2517 
2518 /**
2519  *	tty_tiocmget		-	get modem status
2520  *	@tty: tty device
2521  *	@file: user file pointer
2522  *	@p: pointer to result
2523  *
2524  *	Obtain the modem status bits from the tty driver if the feature
2525  *	is supported. Return -EINVAL if it is not available.
2526  *
2527  *	Locking: none (up to the driver)
2528  */
2529 
2530 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2531 {
2532 	int retval = -EINVAL;
2533 
2534 	if (tty->ops->tiocmget) {
2535 		retval = tty->ops->tiocmget(tty);
2536 
2537 		if (retval >= 0)
2538 			retval = put_user(retval, p);
2539 	}
2540 	return retval;
2541 }
2542 
2543 /**
2544  *	tty_tiocmset		-	set modem status
2545  *	@tty: tty device
2546  *	@cmd: command - clear bits, set bits or set all
2547  *	@p: pointer to desired bits
2548  *
2549  *	Set the modem status bits from the tty driver if the feature
2550  *	is supported. Return -EINVAL if it is not available.
2551  *
2552  *	Locking: none (up to the driver)
2553  */
2554 
2555 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2556 	     unsigned __user *p)
2557 {
2558 	int retval;
2559 	unsigned int set, clear, val;
2560 
2561 	if (tty->ops->tiocmset == NULL)
2562 		return -EINVAL;
2563 
2564 	retval = get_user(val, p);
2565 	if (retval)
2566 		return retval;
2567 	set = clear = 0;
2568 	switch (cmd) {
2569 	case TIOCMBIS:
2570 		set = val;
2571 		break;
2572 	case TIOCMBIC:
2573 		clear = val;
2574 		break;
2575 	case TIOCMSET:
2576 		set = val;
2577 		clear = ~val;
2578 		break;
2579 	}
2580 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2581 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2582 	return tty->ops->tiocmset(tty, set, clear);
2583 }
2584 
2585 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2586 {
2587 	int retval = -EINVAL;
2588 	struct serial_icounter_struct icount;
2589 	memset(&icount, 0, sizeof(icount));
2590 	if (tty->ops->get_icount)
2591 		retval = tty->ops->get_icount(tty, &icount);
2592 	if (retval != 0)
2593 		return retval;
2594 	if (copy_to_user(arg, &icount, sizeof(icount)))
2595 		return -EFAULT;
2596 	return 0;
2597 }
2598 
2599 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2600 {
2601 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2602 	    tty->driver->subtype == PTY_TYPE_MASTER)
2603 		tty = tty->link;
2604 	return tty;
2605 }
2606 EXPORT_SYMBOL(tty_pair_get_tty);
2607 
2608 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2609 {
2610 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2611 	    tty->driver->subtype == PTY_TYPE_MASTER)
2612 	    return tty;
2613 	return tty->link;
2614 }
2615 EXPORT_SYMBOL(tty_pair_get_pty);
2616 
2617 /*
2618  * Split this up, as gcc can choke on it otherwise..
2619  */
2620 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2621 {
2622 	struct tty_struct *tty = file_tty(file);
2623 	struct tty_struct *real_tty;
2624 	void __user *p = (void __user *)arg;
2625 	int retval;
2626 	struct tty_ldisc *ld;
2627 	struct inode *inode = file->f_dentry->d_inode;
2628 
2629 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2630 		return -EINVAL;
2631 
2632 	real_tty = tty_pair_get_tty(tty);
2633 
2634 	/*
2635 	 * Factor out some common prep work
2636 	 */
2637 	switch (cmd) {
2638 	case TIOCSETD:
2639 	case TIOCSBRK:
2640 	case TIOCCBRK:
2641 	case TCSBRK:
2642 	case TCSBRKP:
2643 		retval = tty_check_change(tty);
2644 		if (retval)
2645 			return retval;
2646 		if (cmd != TIOCCBRK) {
2647 			tty_wait_until_sent(tty, 0);
2648 			if (signal_pending(current))
2649 				return -EINTR;
2650 		}
2651 		break;
2652 	}
2653 
2654 	/*
2655 	 *	Now do the stuff.
2656 	 */
2657 	switch (cmd) {
2658 	case TIOCSTI:
2659 		return tiocsti(tty, p);
2660 	case TIOCGWINSZ:
2661 		return tiocgwinsz(real_tty, p);
2662 	case TIOCSWINSZ:
2663 		return tiocswinsz(real_tty, p);
2664 	case TIOCCONS:
2665 		return real_tty != tty ? -EINVAL : tioccons(file);
2666 	case FIONBIO:
2667 		return fionbio(file, p);
2668 	case TIOCEXCL:
2669 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2670 		return 0;
2671 	case TIOCNXCL:
2672 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2673 		return 0;
2674 	case TIOCNOTTY:
2675 		if (current->signal->tty != tty)
2676 			return -ENOTTY;
2677 		no_tty();
2678 		return 0;
2679 	case TIOCSCTTY:
2680 		return tiocsctty(tty, arg);
2681 	case TIOCGPGRP:
2682 		return tiocgpgrp(tty, real_tty, p);
2683 	case TIOCSPGRP:
2684 		return tiocspgrp(tty, real_tty, p);
2685 	case TIOCGSID:
2686 		return tiocgsid(tty, real_tty, p);
2687 	case TIOCGETD:
2688 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2689 	case TIOCSETD:
2690 		return tiocsetd(tty, p);
2691 	case TIOCVHANGUP:
2692 		if (!capable(CAP_SYS_ADMIN))
2693 			return -EPERM;
2694 		tty_vhangup(tty);
2695 		return 0;
2696 	case TIOCGDEV:
2697 	{
2698 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2699 		return put_user(ret, (unsigned int __user *)p);
2700 	}
2701 	/*
2702 	 * Break handling
2703 	 */
2704 	case TIOCSBRK:	/* Turn break on, unconditionally */
2705 		if (tty->ops->break_ctl)
2706 			return tty->ops->break_ctl(tty, -1);
2707 		return 0;
2708 	case TIOCCBRK:	/* Turn break off, unconditionally */
2709 		if (tty->ops->break_ctl)
2710 			return tty->ops->break_ctl(tty, 0);
2711 		return 0;
2712 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2713 		/* non-zero arg means wait for all output data
2714 		 * to be sent (performed above) but don't send break.
2715 		 * This is used by the tcdrain() termios function.
2716 		 */
2717 		if (!arg)
2718 			return send_break(tty, 250);
2719 		return 0;
2720 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2721 		return send_break(tty, arg ? arg*100 : 250);
2722 
2723 	case TIOCMGET:
2724 		return tty_tiocmget(tty, p);
2725 	case TIOCMSET:
2726 	case TIOCMBIC:
2727 	case TIOCMBIS:
2728 		return tty_tiocmset(tty, cmd, p);
2729 	case TIOCGICOUNT:
2730 		retval = tty_tiocgicount(tty, p);
2731 		/* For the moment allow fall through to the old method */
2732         	if (retval != -EINVAL)
2733 			return retval;
2734 		break;
2735 	case TCFLSH:
2736 		switch (arg) {
2737 		case TCIFLUSH:
2738 		case TCIOFLUSH:
2739 		/* flush tty buffer and allow ldisc to process ioctl */
2740 			tty_buffer_flush(tty);
2741 			break;
2742 		}
2743 		break;
2744 	}
2745 	if (tty->ops->ioctl) {
2746 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2747 		if (retval != -ENOIOCTLCMD)
2748 			return retval;
2749 	}
2750 	ld = tty_ldisc_ref_wait(tty);
2751 	retval = -EINVAL;
2752 	if (ld->ops->ioctl) {
2753 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2754 		if (retval == -ENOIOCTLCMD)
2755 			retval = -EINVAL;
2756 	}
2757 	tty_ldisc_deref(ld);
2758 	return retval;
2759 }
2760 
2761 #ifdef CONFIG_COMPAT
2762 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2763 				unsigned long arg)
2764 {
2765 	struct inode *inode = file->f_dentry->d_inode;
2766 	struct tty_struct *tty = file_tty(file);
2767 	struct tty_ldisc *ld;
2768 	int retval = -ENOIOCTLCMD;
2769 
2770 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2771 		return -EINVAL;
2772 
2773 	if (tty->ops->compat_ioctl) {
2774 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2775 		if (retval != -ENOIOCTLCMD)
2776 			return retval;
2777 	}
2778 
2779 	ld = tty_ldisc_ref_wait(tty);
2780 	if (ld->ops->compat_ioctl)
2781 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2782 	else
2783 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2784 	tty_ldisc_deref(ld);
2785 
2786 	return retval;
2787 }
2788 #endif
2789 
2790 /*
2791  * This implements the "Secure Attention Key" ---  the idea is to
2792  * prevent trojan horses by killing all processes associated with this
2793  * tty when the user hits the "Secure Attention Key".  Required for
2794  * super-paranoid applications --- see the Orange Book for more details.
2795  *
2796  * This code could be nicer; ideally it should send a HUP, wait a few
2797  * seconds, then send a INT, and then a KILL signal.  But you then
2798  * have to coordinate with the init process, since all processes associated
2799  * with the current tty must be dead before the new getty is allowed
2800  * to spawn.
2801  *
2802  * Now, if it would be correct ;-/ The current code has a nasty hole -
2803  * it doesn't catch files in flight. We may send the descriptor to ourselves
2804  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2805  *
2806  * Nasty bug: do_SAK is being called in interrupt context.  This can
2807  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2808  */
2809 void __do_SAK(struct tty_struct *tty)
2810 {
2811 #ifdef TTY_SOFT_SAK
2812 	tty_hangup(tty);
2813 #else
2814 	struct task_struct *g, *p;
2815 	struct pid *session;
2816 	int		i;
2817 	struct file	*filp;
2818 	struct fdtable *fdt;
2819 
2820 	if (!tty)
2821 		return;
2822 	session = tty->session;
2823 
2824 	tty_ldisc_flush(tty);
2825 
2826 	tty_driver_flush_buffer(tty);
2827 
2828 	read_lock(&tasklist_lock);
2829 	/* Kill the entire session */
2830 	do_each_pid_task(session, PIDTYPE_SID, p) {
2831 		printk(KERN_NOTICE "SAK: killed process %d"
2832 			" (%s): task_session(p)==tty->session\n",
2833 			task_pid_nr(p), p->comm);
2834 		send_sig(SIGKILL, p, 1);
2835 	} while_each_pid_task(session, PIDTYPE_SID, p);
2836 	/* Now kill any processes that happen to have the
2837 	 * tty open.
2838 	 */
2839 	do_each_thread(g, p) {
2840 		if (p->signal->tty == tty) {
2841 			printk(KERN_NOTICE "SAK: killed process %d"
2842 			    " (%s): task_session(p)==tty->session\n",
2843 			    task_pid_nr(p), p->comm);
2844 			send_sig(SIGKILL, p, 1);
2845 			continue;
2846 		}
2847 		task_lock(p);
2848 		if (p->files) {
2849 			/*
2850 			 * We don't take a ref to the file, so we must
2851 			 * hold ->file_lock instead.
2852 			 */
2853 			spin_lock(&p->files->file_lock);
2854 			fdt = files_fdtable(p->files);
2855 			for (i = 0; i < fdt->max_fds; i++) {
2856 				filp = fcheck_files(p->files, i);
2857 				if (!filp)
2858 					continue;
2859 				if (filp->f_op->read == tty_read &&
2860 				    file_tty(filp) == tty) {
2861 					printk(KERN_NOTICE "SAK: killed process %d"
2862 					    " (%s): fd#%d opened to the tty\n",
2863 					    task_pid_nr(p), p->comm, i);
2864 					force_sig(SIGKILL, p);
2865 					break;
2866 				}
2867 			}
2868 			spin_unlock(&p->files->file_lock);
2869 		}
2870 		task_unlock(p);
2871 	} while_each_thread(g, p);
2872 	read_unlock(&tasklist_lock);
2873 #endif
2874 }
2875 
2876 static void do_SAK_work(struct work_struct *work)
2877 {
2878 	struct tty_struct *tty =
2879 		container_of(work, struct tty_struct, SAK_work);
2880 	__do_SAK(tty);
2881 }
2882 
2883 /*
2884  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2885  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2886  * the values which we write to it will be identical to the values which it
2887  * already has. --akpm
2888  */
2889 void do_SAK(struct tty_struct *tty)
2890 {
2891 	if (!tty)
2892 		return;
2893 	schedule_work(&tty->SAK_work);
2894 }
2895 
2896 EXPORT_SYMBOL(do_SAK);
2897 
2898 static int dev_match_devt(struct device *dev, void *data)
2899 {
2900 	dev_t *devt = data;
2901 	return dev->devt == *devt;
2902 }
2903 
2904 /* Must put_device() after it's unused! */
2905 static struct device *tty_get_device(struct tty_struct *tty)
2906 {
2907 	dev_t devt = tty_devnum(tty);
2908 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2909 }
2910 
2911 
2912 /**
2913  *	initialize_tty_struct
2914  *	@tty: tty to initialize
2915  *
2916  *	This subroutine initializes a tty structure that has been newly
2917  *	allocated.
2918  *
2919  *	Locking: none - tty in question must not be exposed at this point
2920  */
2921 
2922 void initialize_tty_struct(struct tty_struct *tty,
2923 		struct tty_driver *driver, int idx)
2924 {
2925 	memset(tty, 0, sizeof(struct tty_struct));
2926 	kref_init(&tty->kref);
2927 	tty->magic = TTY_MAGIC;
2928 	tty_ldisc_init(tty);
2929 	tty->session = NULL;
2930 	tty->pgrp = NULL;
2931 	tty->overrun_time = jiffies;
2932 	tty_buffer_init(tty);
2933 	mutex_init(&tty->termios_mutex);
2934 	mutex_init(&tty->ldisc_mutex);
2935 	init_waitqueue_head(&tty->write_wait);
2936 	init_waitqueue_head(&tty->read_wait);
2937 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2938 	mutex_init(&tty->atomic_read_lock);
2939 	mutex_init(&tty->atomic_write_lock);
2940 	mutex_init(&tty->output_lock);
2941 	mutex_init(&tty->echo_lock);
2942 	spin_lock_init(&tty->read_lock);
2943 	spin_lock_init(&tty->ctrl_lock);
2944 	INIT_LIST_HEAD(&tty->tty_files);
2945 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2946 
2947 	tty->driver = driver;
2948 	tty->ops = driver->ops;
2949 	tty->index = idx;
2950 	tty_line_name(driver, idx, tty->name);
2951 	tty->dev = tty_get_device(tty);
2952 }
2953 
2954 /**
2955  *	deinitialize_tty_struct
2956  *	@tty: tty to deinitialize
2957  *
2958  *	This subroutine deinitializes a tty structure that has been newly
2959  *	allocated but tty_release cannot be called on that yet.
2960  *
2961  *	Locking: none - tty in question must not be exposed at this point
2962  */
2963 void deinitialize_tty_struct(struct tty_struct *tty)
2964 {
2965 	tty_ldisc_deinit(tty);
2966 }
2967 
2968 /**
2969  *	tty_put_char	-	write one character to a tty
2970  *	@tty: tty
2971  *	@ch: character
2972  *
2973  *	Write one byte to the tty using the provided put_char method
2974  *	if present. Returns the number of characters successfully output.
2975  *
2976  *	Note: the specific put_char operation in the driver layer may go
2977  *	away soon. Don't call it directly, use this method
2978  */
2979 
2980 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2981 {
2982 	if (tty->ops->put_char)
2983 		return tty->ops->put_char(tty, ch);
2984 	return tty->ops->write(tty, &ch, 1);
2985 }
2986 EXPORT_SYMBOL_GPL(tty_put_char);
2987 
2988 struct class *tty_class;
2989 
2990 /**
2991  *	tty_register_device - register a tty device
2992  *	@driver: the tty driver that describes the tty device
2993  *	@index: the index in the tty driver for this tty device
2994  *	@device: a struct device that is associated with this tty device.
2995  *		This field is optional, if there is no known struct device
2996  *		for this tty device it can be set to NULL safely.
2997  *
2998  *	Returns a pointer to the struct device for this tty device
2999  *	(or ERR_PTR(-EFOO) on error).
3000  *
3001  *	This call is required to be made to register an individual tty device
3002  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3003  *	that bit is not set, this function should not be called by a tty
3004  *	driver.
3005  *
3006  *	Locking: ??
3007  */
3008 
3009 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3010 				   struct device *device)
3011 {
3012 	char name[64];
3013 	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3014 
3015 	if (index >= driver->num) {
3016 		printk(KERN_ERR "Attempt to register invalid tty line number "
3017 		       " (%d).\n", index);
3018 		return ERR_PTR(-EINVAL);
3019 	}
3020 
3021 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3022 		pty_line_name(driver, index, name);
3023 	else
3024 		tty_line_name(driver, index, name);
3025 
3026 	return device_create(tty_class, device, dev, NULL, name);
3027 }
3028 EXPORT_SYMBOL(tty_register_device);
3029 
3030 /**
3031  * 	tty_unregister_device - unregister a tty device
3032  * 	@driver: the tty driver that describes the tty device
3033  * 	@index: the index in the tty driver for this tty device
3034  *
3035  * 	If a tty device is registered with a call to tty_register_device() then
3036  *	this function must be called when the tty device is gone.
3037  *
3038  *	Locking: ??
3039  */
3040 
3041 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3042 {
3043 	device_destroy(tty_class,
3044 		MKDEV(driver->major, driver->minor_start) + index);
3045 }
3046 EXPORT_SYMBOL(tty_unregister_device);
3047 
3048 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3049 {
3050 	struct tty_driver *driver;
3051 
3052 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3053 	if (driver) {
3054 		kref_init(&driver->kref);
3055 		driver->magic = TTY_DRIVER_MAGIC;
3056 		driver->num = lines;
3057 		driver->owner = owner;
3058 		/* later we'll move allocation of tables here */
3059 	}
3060 	return driver;
3061 }
3062 EXPORT_SYMBOL(__alloc_tty_driver);
3063 
3064 static void destruct_tty_driver(struct kref *kref)
3065 {
3066 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3067 	int i;
3068 	struct ktermios *tp;
3069 	void *p;
3070 
3071 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3072 		/*
3073 		 * Free the termios and termios_locked structures because
3074 		 * we don't want to get memory leaks when modular tty
3075 		 * drivers are removed from the kernel.
3076 		 */
3077 		for (i = 0; i < driver->num; i++) {
3078 			tp = driver->termios[i];
3079 			if (tp) {
3080 				driver->termios[i] = NULL;
3081 				kfree(tp);
3082 			}
3083 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3084 				tty_unregister_device(driver, i);
3085 		}
3086 		p = driver->ttys;
3087 		proc_tty_unregister_driver(driver);
3088 		driver->ttys = NULL;
3089 		driver->termios = NULL;
3090 		kfree(p);
3091 		cdev_del(&driver->cdev);
3092 	}
3093 	kfree(driver);
3094 }
3095 
3096 void tty_driver_kref_put(struct tty_driver *driver)
3097 {
3098 	kref_put(&driver->kref, destruct_tty_driver);
3099 }
3100 EXPORT_SYMBOL(tty_driver_kref_put);
3101 
3102 void tty_set_operations(struct tty_driver *driver,
3103 			const struct tty_operations *op)
3104 {
3105 	driver->ops = op;
3106 };
3107 EXPORT_SYMBOL(tty_set_operations);
3108 
3109 void put_tty_driver(struct tty_driver *d)
3110 {
3111 	tty_driver_kref_put(d);
3112 }
3113 EXPORT_SYMBOL(put_tty_driver);
3114 
3115 /*
3116  * Called by a tty driver to register itself.
3117  */
3118 int tty_register_driver(struct tty_driver *driver)
3119 {
3120 	int error;
3121 	int i;
3122 	dev_t dev;
3123 	void **p = NULL;
3124 	struct device *d;
3125 
3126 	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3127 		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3128 		if (!p)
3129 			return -ENOMEM;
3130 	}
3131 
3132 	if (!driver->major) {
3133 		error = alloc_chrdev_region(&dev, driver->minor_start,
3134 						driver->num, driver->name);
3135 		if (!error) {
3136 			driver->major = MAJOR(dev);
3137 			driver->minor_start = MINOR(dev);
3138 		}
3139 	} else {
3140 		dev = MKDEV(driver->major, driver->minor_start);
3141 		error = register_chrdev_region(dev, driver->num, driver->name);
3142 	}
3143 	if (error < 0) {
3144 		kfree(p);
3145 		return error;
3146 	}
3147 
3148 	if (p) {
3149 		driver->ttys = (struct tty_struct **)p;
3150 		driver->termios = (struct ktermios **)(p + driver->num);
3151 	} else {
3152 		driver->ttys = NULL;
3153 		driver->termios = NULL;
3154 	}
3155 
3156 	cdev_init(&driver->cdev, &tty_fops);
3157 	driver->cdev.owner = driver->owner;
3158 	error = cdev_add(&driver->cdev, dev, driver->num);
3159 	if (error) {
3160 		unregister_chrdev_region(dev, driver->num);
3161 		driver->ttys = NULL;
3162 		driver->termios = NULL;
3163 		kfree(p);
3164 		return error;
3165 	}
3166 
3167 	mutex_lock(&tty_mutex);
3168 	list_add(&driver->tty_drivers, &tty_drivers);
3169 	mutex_unlock(&tty_mutex);
3170 
3171 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3172 		for (i = 0; i < driver->num; i++) {
3173 			d = tty_register_device(driver, i, NULL);
3174 			if (IS_ERR(d)) {
3175 				error = PTR_ERR(d);
3176 				goto err;
3177 			}
3178 		}
3179 	}
3180 	proc_tty_register_driver(driver);
3181 	driver->flags |= TTY_DRIVER_INSTALLED;
3182 	return 0;
3183 
3184 err:
3185 	for (i--; i >= 0; i--)
3186 		tty_unregister_device(driver, i);
3187 
3188 	mutex_lock(&tty_mutex);
3189 	list_del(&driver->tty_drivers);
3190 	mutex_unlock(&tty_mutex);
3191 
3192 	unregister_chrdev_region(dev, driver->num);
3193 	driver->ttys = NULL;
3194 	driver->termios = NULL;
3195 	kfree(p);
3196 	return error;
3197 }
3198 
3199 EXPORT_SYMBOL(tty_register_driver);
3200 
3201 /*
3202  * Called by a tty driver to unregister itself.
3203  */
3204 int tty_unregister_driver(struct tty_driver *driver)
3205 {
3206 #if 0
3207 	/* FIXME */
3208 	if (driver->refcount)
3209 		return -EBUSY;
3210 #endif
3211 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3212 				driver->num);
3213 	mutex_lock(&tty_mutex);
3214 	list_del(&driver->tty_drivers);
3215 	mutex_unlock(&tty_mutex);
3216 	return 0;
3217 }
3218 
3219 EXPORT_SYMBOL(tty_unregister_driver);
3220 
3221 dev_t tty_devnum(struct tty_struct *tty)
3222 {
3223 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3224 }
3225 EXPORT_SYMBOL(tty_devnum);
3226 
3227 void proc_clear_tty(struct task_struct *p)
3228 {
3229 	unsigned long flags;
3230 	struct tty_struct *tty;
3231 	spin_lock_irqsave(&p->sighand->siglock, flags);
3232 	tty = p->signal->tty;
3233 	p->signal->tty = NULL;
3234 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3235 	tty_kref_put(tty);
3236 }
3237 
3238 /* Called under the sighand lock */
3239 
3240 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3241 {
3242 	if (tty) {
3243 		unsigned long flags;
3244 		/* We should not have a session or pgrp to put here but.... */
3245 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3246 		put_pid(tty->session);
3247 		put_pid(tty->pgrp);
3248 		tty->pgrp = get_pid(task_pgrp(tsk));
3249 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3250 		tty->session = get_pid(task_session(tsk));
3251 		if (tsk->signal->tty) {
3252 			printk(KERN_DEBUG "tty not NULL!!\n");
3253 			tty_kref_put(tsk->signal->tty);
3254 		}
3255 	}
3256 	put_pid(tsk->signal->tty_old_pgrp);
3257 	tsk->signal->tty = tty_kref_get(tty);
3258 	tsk->signal->tty_old_pgrp = NULL;
3259 }
3260 
3261 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3262 {
3263 	spin_lock_irq(&tsk->sighand->siglock);
3264 	__proc_set_tty(tsk, tty);
3265 	spin_unlock_irq(&tsk->sighand->siglock);
3266 }
3267 
3268 struct tty_struct *get_current_tty(void)
3269 {
3270 	struct tty_struct *tty;
3271 	unsigned long flags;
3272 
3273 	spin_lock_irqsave(&current->sighand->siglock, flags);
3274 	tty = tty_kref_get(current->signal->tty);
3275 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3276 	return tty;
3277 }
3278 EXPORT_SYMBOL_GPL(get_current_tty);
3279 
3280 void tty_default_fops(struct file_operations *fops)
3281 {
3282 	*fops = tty_fops;
3283 }
3284 
3285 /*
3286  * Initialize the console device. This is called *early*, so
3287  * we can't necessarily depend on lots of kernel help here.
3288  * Just do some early initializations, and do the complex setup
3289  * later.
3290  */
3291 void __init console_init(void)
3292 {
3293 	initcall_t *call;
3294 
3295 	/* Setup the default TTY line discipline. */
3296 	tty_ldisc_begin();
3297 
3298 	/*
3299 	 * set up the console device so that later boot sequences can
3300 	 * inform about problems etc..
3301 	 */
3302 	call = __con_initcall_start;
3303 	while (call < __con_initcall_end) {
3304 		(*call)();
3305 		call++;
3306 	}
3307 }
3308 
3309 static char *tty_devnode(struct device *dev, umode_t *mode)
3310 {
3311 	if (!mode)
3312 		return NULL;
3313 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3314 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3315 		*mode = 0666;
3316 	return NULL;
3317 }
3318 
3319 static int __init tty_class_init(void)
3320 {
3321 	tty_class = class_create(THIS_MODULE, "tty");
3322 	if (IS_ERR(tty_class))
3323 		return PTR_ERR(tty_class);
3324 	tty_class->devnode = tty_devnode;
3325 	return 0;
3326 }
3327 
3328 postcore_initcall(tty_class_init);
3329 
3330 /* 3/2004 jmc: why do these devices exist? */
3331 static struct cdev tty_cdev, console_cdev;
3332 
3333 static ssize_t show_cons_active(struct device *dev,
3334 				struct device_attribute *attr, char *buf)
3335 {
3336 	struct console *cs[16];
3337 	int i = 0;
3338 	struct console *c;
3339 	ssize_t count = 0;
3340 
3341 	console_lock();
3342 	for_each_console(c) {
3343 		if (!c->device)
3344 			continue;
3345 		if (!c->write)
3346 			continue;
3347 		if ((c->flags & CON_ENABLED) == 0)
3348 			continue;
3349 		cs[i++] = c;
3350 		if (i >= ARRAY_SIZE(cs))
3351 			break;
3352 	}
3353 	while (i--)
3354 		count += sprintf(buf + count, "%s%d%c",
3355 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3356 	console_unlock();
3357 
3358 	return count;
3359 }
3360 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3361 
3362 static struct device *consdev;
3363 
3364 void console_sysfs_notify(void)
3365 {
3366 	if (consdev)
3367 		sysfs_notify(&consdev->kobj, NULL, "active");
3368 }
3369 
3370 /*
3371  * Ok, now we can initialize the rest of the tty devices and can count
3372  * on memory allocations, interrupts etc..
3373  */
3374 int __init tty_init(void)
3375 {
3376 	cdev_init(&tty_cdev, &tty_fops);
3377 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3378 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3379 		panic("Couldn't register /dev/tty driver\n");
3380 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3381 
3382 	cdev_init(&console_cdev, &console_fops);
3383 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3384 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3385 		panic("Couldn't register /dev/console driver\n");
3386 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3387 			      "console");
3388 	if (IS_ERR(consdev))
3389 		consdev = NULL;
3390 	else
3391 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3392 
3393 #ifdef CONFIG_VT
3394 	vty_init(&console_fops);
3395 #endif
3396 	return 0;
3397 }
3398 
3399