xref: /linux/drivers/tty/tty_io.c (revision d97b46a64674a267bc41c9e16132ee2a98c3347d)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	alloc_tty_struct	-	allocate a tty object
161  *
162  *	Return a new empty tty structure. The data fields have not
163  *	been initialized in any way but has been zeroed
164  *
165  *	Locking: none
166  */
167 
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172 
173 /**
174  *	free_tty_struct		-	free a disused tty
175  *	@tty: tty struct to free
176  *
177  *	Free the write buffers, tty queue and tty memory itself.
178  *
179  *	Locking: none. Must be called after tty is definitely unused
180  */
181 
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 	if (tty->dev)
185 		put_device(tty->dev);
186 	kfree(tty->write_buf);
187 	tty_buffer_free_all(tty);
188 	tty->magic = 0xDEADDEAD;
189 	kfree(tty);
190 }
191 
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194 	return ((struct tty_file_private *)file->private_data)->tty;
195 }
196 
197 int tty_alloc_file(struct file *file)
198 {
199 	struct tty_file_private *priv;
200 
201 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202 	if (!priv)
203 		return -ENOMEM;
204 
205 	file->private_data = priv;
206 
207 	return 0;
208 }
209 
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213 	struct tty_file_private *priv = file->private_data;
214 
215 	priv->tty = tty;
216 	priv->file = file;
217 
218 	spin_lock(&tty_files_lock);
219 	list_add(&priv->list, &tty->tty_files);
220 	spin_unlock(&tty_files_lock);
221 }
222 
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231 	struct tty_file_private *priv = file->private_data;
232 
233 	file->private_data = NULL;
234 	kfree(priv);
235 }
236 
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240 	struct tty_file_private *priv = file->private_data;
241 
242 	spin_lock(&tty_files_lock);
243 	list_del(&priv->list);
244 	spin_unlock(&tty_files_lock);
245 	tty_free_file(file);
246 }
247 
248 
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250 
251 /**
252  *	tty_name	-	return tty naming
253  *	@tty: tty structure
254  *	@buf: buffer for output
255  *
256  *	Convert a tty structure into a name. The name reflects the kernel
257  *	naming policy and if udev is in use may not reflect user space
258  *
259  *	Locking: none
260  */
261 
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265 		strcpy(buf, "NULL tty");
266 	else
267 		strcpy(buf, tty->name);
268 	return buf;
269 }
270 
271 EXPORT_SYMBOL(tty_name);
272 
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274 			      const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277 	if (!tty) {
278 		printk(KERN_WARNING
279 			"null TTY for (%d:%d) in %s\n",
280 			imajor(inode), iminor(inode), routine);
281 		return 1;
282 	}
283 	if (tty->magic != TTY_MAGIC) {
284 		printk(KERN_WARNING
285 			"bad magic number for tty struct (%d:%d) in %s\n",
286 			imajor(inode), iminor(inode), routine);
287 		return 1;
288 	}
289 #endif
290 	return 0;
291 }
292 
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296 	struct list_head *p;
297 	int count = 0;
298 
299 	spin_lock(&tty_files_lock);
300 	list_for_each(p, &tty->tty_files) {
301 		count++;
302 	}
303 	spin_unlock(&tty_files_lock);
304 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
306 	    tty->link && tty->link->count)
307 		count++;
308 	if (tty->count != count) {
309 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310 				    "!= #fd's(%d) in %s\n",
311 		       tty->name, tty->count, count, routine);
312 		return count;
313 	}
314 #endif
315 	return 0;
316 }
317 
318 /**
319  *	get_tty_driver		-	find device of a tty
320  *	@dev_t: device identifier
321  *	@index: returns the index of the tty
322  *
323  *	This routine returns a tty driver structure, given a device number
324  *	and also passes back the index number.
325  *
326  *	Locking: caller must hold tty_mutex
327  */
328 
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331 	struct tty_driver *p;
332 
333 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
334 		dev_t base = MKDEV(p->major, p->minor_start);
335 		if (device < base || device >= base + p->num)
336 			continue;
337 		*index = device - base;
338 		return tty_driver_kref_get(p);
339 	}
340 	return NULL;
341 }
342 
343 #ifdef CONFIG_CONSOLE_POLL
344 
345 /**
346  *	tty_find_polling_driver	-	find device of a polled tty
347  *	@name: name string to match
348  *	@line: pointer to resulting tty line nr
349  *
350  *	This routine returns a tty driver structure, given a name
351  *	and the condition that the tty driver is capable of polled
352  *	operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356 	struct tty_driver *p, *res = NULL;
357 	int tty_line = 0;
358 	int len;
359 	char *str, *stp;
360 
361 	for (str = name; *str; str++)
362 		if ((*str >= '0' && *str <= '9') || *str == ',')
363 			break;
364 	if (!*str)
365 		return NULL;
366 
367 	len = str - name;
368 	tty_line = simple_strtoul(str, &str, 10);
369 
370 	mutex_lock(&tty_mutex);
371 	/* Search through the tty devices to look for a match */
372 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
373 		if (strncmp(name, p->name, len) != 0)
374 			continue;
375 		stp = str;
376 		if (*stp == ',')
377 			stp++;
378 		if (*stp == '\0')
379 			stp = NULL;
380 
381 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
382 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383 			res = tty_driver_kref_get(p);
384 			*line = tty_line;
385 			break;
386 		}
387 	}
388 	mutex_unlock(&tty_mutex);
389 
390 	return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394 
395 /**
396  *	tty_check_change	-	check for POSIX terminal changes
397  *	@tty: tty to check
398  *
399  *	If we try to write to, or set the state of, a terminal and we're
400  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *	Locking: ctrl_lock
404  */
405 
406 int tty_check_change(struct tty_struct *tty)
407 {
408 	unsigned long flags;
409 	int ret = 0;
410 
411 	if (current->signal->tty != tty)
412 		return 0;
413 
414 	spin_lock_irqsave(&tty->ctrl_lock, flags);
415 
416 	if (!tty->pgrp) {
417 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418 		goto out_unlock;
419 	}
420 	if (task_pgrp(current) == tty->pgrp)
421 		goto out_unlock;
422 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 	if (is_ignored(SIGTTOU))
424 		goto out;
425 	if (is_current_pgrp_orphaned()) {
426 		ret = -EIO;
427 		goto out;
428 	}
429 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430 	set_thread_flag(TIF_SIGPENDING);
431 	ret = -ERESTARTSYS;
432 out:
433 	return ret;
434 out_unlock:
435 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436 	return ret;
437 }
438 
439 EXPORT_SYMBOL(tty_check_change);
440 
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442 				size_t count, loff_t *ppos)
443 {
444 	return 0;
445 }
446 
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448 				 size_t count, loff_t *ppos)
449 {
450 	return -EIO;
451 }
452 
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458 
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460 		unsigned long arg)
461 {
462 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464 
465 static long hung_up_tty_compat_ioctl(struct file *file,
466 				     unsigned int cmd, unsigned long arg)
467 {
468 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470 
471 static const struct file_operations tty_fops = {
472 	.llseek		= no_llseek,
473 	.read		= tty_read,
474 	.write		= tty_write,
475 	.poll		= tty_poll,
476 	.unlocked_ioctl	= tty_ioctl,
477 	.compat_ioctl	= tty_compat_ioctl,
478 	.open		= tty_open,
479 	.release	= tty_release,
480 	.fasync		= tty_fasync,
481 };
482 
483 static const struct file_operations console_fops = {
484 	.llseek		= no_llseek,
485 	.read		= tty_read,
486 	.write		= redirected_tty_write,
487 	.poll		= tty_poll,
488 	.unlocked_ioctl	= tty_ioctl,
489 	.compat_ioctl	= tty_compat_ioctl,
490 	.open		= tty_open,
491 	.release	= tty_release,
492 	.fasync		= tty_fasync,
493 };
494 
495 static const struct file_operations hung_up_tty_fops = {
496 	.llseek		= no_llseek,
497 	.read		= hung_up_tty_read,
498 	.write		= hung_up_tty_write,
499 	.poll		= hung_up_tty_poll,
500 	.unlocked_ioctl	= hung_up_tty_ioctl,
501 	.compat_ioctl	= hung_up_tty_compat_ioctl,
502 	.release	= tty_release,
503 };
504 
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507 
508 /**
509  *	tty_wakeup	-	request more data
510  *	@tty: terminal
511  *
512  *	Internal and external helper for wakeups of tty. This function
513  *	informs the line discipline if present that the driver is ready
514  *	to receive more output data.
515  */
516 
517 void tty_wakeup(struct tty_struct *tty)
518 {
519 	struct tty_ldisc *ld;
520 
521 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522 		ld = tty_ldisc_ref(tty);
523 		if (ld) {
524 			if (ld->ops->write_wakeup)
525 				ld->ops->write_wakeup(tty);
526 			tty_ldisc_deref(ld);
527 		}
528 	}
529 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531 
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533 
534 /**
535  *	__tty_hangup		-	actual handler for hangup events
536  *	@work: tty device
537  *
538  *	This can be called by the "eventd" kernel thread.  That is process
539  *	synchronous but doesn't hold any locks, so we need to make sure we
540  *	have the appropriate locks for what we're doing.
541  *
542  *	The hangup event clears any pending redirections onto the hung up
543  *	device. It ensures future writes will error and it does the needed
544  *	line discipline hangup and signal delivery. The tty object itself
545  *	remains intact.
546  *
547  *	Locking:
548  *		BTM
549  *		  redirect lock for undoing redirection
550  *		  file list lock for manipulating list of ttys
551  *		  tty_ldisc_lock from called functions
552  *		  termios_mutex resetting termios data
553  *		  tasklist_lock to walk task list for hangup event
554  *		    ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558 	struct file *cons_filp = NULL;
559 	struct file *filp, *f = NULL;
560 	struct task_struct *p;
561 	struct tty_file_private *priv;
562 	int    closecount = 0, n;
563 	unsigned long flags;
564 	int refs = 0;
565 
566 	if (!tty)
567 		return;
568 
569 
570 	spin_lock(&redirect_lock);
571 	if (redirect && file_tty(redirect) == tty) {
572 		f = redirect;
573 		redirect = NULL;
574 	}
575 	spin_unlock(&redirect_lock);
576 
577 	tty_lock(tty);
578 
579 	/* some functions below drop BTM, so we need this bit */
580 	set_bit(TTY_HUPPING, &tty->flags);
581 
582 	/* inuse_filps is protected by the single tty lock,
583 	   this really needs to change if we want to flush the
584 	   workqueue with the lock held */
585 	check_tty_count(tty, "tty_hangup");
586 
587 	spin_lock(&tty_files_lock);
588 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
589 	list_for_each_entry(priv, &tty->tty_files, list) {
590 		filp = priv->file;
591 		if (filp->f_op->write == redirected_tty_write)
592 			cons_filp = filp;
593 		if (filp->f_op->write != tty_write)
594 			continue;
595 		closecount++;
596 		__tty_fasync(-1, filp, 0);	/* can't block */
597 		filp->f_op = &hung_up_tty_fops;
598 	}
599 	spin_unlock(&tty_files_lock);
600 
601 	/*
602 	 * it drops BTM and thus races with reopen
603 	 * we protect the race by TTY_HUPPING
604 	 */
605 	tty_ldisc_hangup(tty);
606 
607 	read_lock(&tasklist_lock);
608 	if (tty->session) {
609 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610 			spin_lock_irq(&p->sighand->siglock);
611 			if (p->signal->tty == tty) {
612 				p->signal->tty = NULL;
613 				/* We defer the dereferences outside fo
614 				   the tasklist lock */
615 				refs++;
616 			}
617 			if (!p->signal->leader) {
618 				spin_unlock_irq(&p->sighand->siglock);
619 				continue;
620 			}
621 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
624 			spin_lock_irqsave(&tty->ctrl_lock, flags);
625 			if (tty->pgrp)
626 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628 			spin_unlock_irq(&p->sighand->siglock);
629 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
630 	}
631 	read_unlock(&tasklist_lock);
632 
633 	spin_lock_irqsave(&tty->ctrl_lock, flags);
634 	clear_bit(TTY_THROTTLED, &tty->flags);
635 	clear_bit(TTY_PUSH, &tty->flags);
636 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637 	put_pid(tty->session);
638 	put_pid(tty->pgrp);
639 	tty->session = NULL;
640 	tty->pgrp = NULL;
641 	tty->ctrl_status = 0;
642 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643 
644 	/* Account for the p->signal references we killed */
645 	while (refs--)
646 		tty_kref_put(tty);
647 
648 	/*
649 	 * If one of the devices matches a console pointer, we
650 	 * cannot just call hangup() because that will cause
651 	 * tty->count and state->count to go out of sync.
652 	 * So we just call close() the right number of times.
653 	 */
654 	if (cons_filp) {
655 		if (tty->ops->close)
656 			for (n = 0; n < closecount; n++)
657 				tty->ops->close(tty, cons_filp);
658 	} else if (tty->ops->hangup)
659 		(tty->ops->hangup)(tty);
660 	/*
661 	 * We don't want to have driver/ldisc interactions beyond
662 	 * the ones we did here. The driver layer expects no
663 	 * calls after ->hangup() from the ldisc side. However we
664 	 * can't yet guarantee all that.
665 	 */
666 	set_bit(TTY_HUPPED, &tty->flags);
667 	clear_bit(TTY_HUPPING, &tty->flags);
668 	tty_ldisc_enable(tty);
669 
670 	tty_unlock(tty);
671 
672 	if (f)
673 		fput(f);
674 }
675 
676 static void do_tty_hangup(struct work_struct *work)
677 {
678 	struct tty_struct *tty =
679 		container_of(work, struct tty_struct, hangup_work);
680 
681 	__tty_hangup(tty);
682 }
683 
684 /**
685  *	tty_hangup		-	trigger a hangup event
686  *	@tty: tty to hangup
687  *
688  *	A carrier loss (virtual or otherwise) has occurred on this like
689  *	schedule a hangup sequence to run after this event.
690  */
691 
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695 	char	buf[64];
696 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698 	schedule_work(&tty->hangup_work);
699 }
700 
701 EXPORT_SYMBOL(tty_hangup);
702 
703 /**
704  *	tty_vhangup		-	process vhangup
705  *	@tty: tty to hangup
706  *
707  *	The user has asked via system call for the terminal to be hung up.
708  *	We do this synchronously so that when the syscall returns the process
709  *	is complete. That guarantee is necessary for security reasons.
710  */
711 
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715 	char	buf[64];
716 
717 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719 	__tty_hangup(tty);
720 }
721 
722 EXPORT_SYMBOL(tty_vhangup);
723 
724 
725 /**
726  *	tty_vhangup_self	-	process vhangup for own ctty
727  *
728  *	Perform a vhangup on the current controlling tty
729  */
730 
731 void tty_vhangup_self(void)
732 {
733 	struct tty_struct *tty;
734 
735 	tty = get_current_tty();
736 	if (tty) {
737 		tty_vhangup(tty);
738 		tty_kref_put(tty);
739 	}
740 }
741 
742 /**
743  *	tty_hung_up_p		-	was tty hung up
744  *	@filp: file pointer of tty
745  *
746  *	Return true if the tty has been subject to a vhangup or a carrier
747  *	loss
748  */
749 
750 int tty_hung_up_p(struct file *filp)
751 {
752 	return (filp->f_op == &hung_up_tty_fops);
753 }
754 
755 EXPORT_SYMBOL(tty_hung_up_p);
756 
757 static void session_clear_tty(struct pid *session)
758 {
759 	struct task_struct *p;
760 	do_each_pid_task(session, PIDTYPE_SID, p) {
761 		proc_clear_tty(p);
762 	} while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764 
765 /**
766  *	disassociate_ctty	-	disconnect controlling tty
767  *	@on_exit: true if exiting so need to "hang up" the session
768  *
769  *	This function is typically called only by the session leader, when
770  *	it wants to disassociate itself from its controlling tty.
771  *
772  *	It performs the following functions:
773  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  * 	(2)  Clears the tty from being controlling the session
775  * 	(3)  Clears the controlling tty for all processes in the
776  * 		session group.
777  *
778  *	The argument on_exit is set to 1 if called when a process is
779  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *	Locking:
782  *		BTM is taken for hysterical raisins, and held when
783  *		  called from no_tty().
784  *		  tty_mutex is taken to protect tty
785  *		  ->siglock is taken to protect ->signal/->sighand
786  *		  tasklist_lock is taken to walk process list for sessions
787  *		    ->siglock is taken to protect ->signal/->sighand
788  */
789 
790 void disassociate_ctty(int on_exit)
791 {
792 	struct tty_struct *tty;
793 
794 	if (!current->signal->leader)
795 		return;
796 
797 	tty = get_current_tty();
798 	if (tty) {
799 		struct pid *tty_pgrp = get_pid(tty->pgrp);
800 		if (on_exit) {
801 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802 				tty_vhangup(tty);
803 		}
804 		tty_kref_put(tty);
805 		if (tty_pgrp) {
806 			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807 			if (!on_exit)
808 				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809 			put_pid(tty_pgrp);
810 		}
811 	} else if (on_exit) {
812 		struct pid *old_pgrp;
813 		spin_lock_irq(&current->sighand->siglock);
814 		old_pgrp = current->signal->tty_old_pgrp;
815 		current->signal->tty_old_pgrp = NULL;
816 		spin_unlock_irq(&current->sighand->siglock);
817 		if (old_pgrp) {
818 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
819 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
820 			put_pid(old_pgrp);
821 		}
822 		return;
823 	}
824 
825 	spin_lock_irq(&current->sighand->siglock);
826 	put_pid(current->signal->tty_old_pgrp);
827 	current->signal->tty_old_pgrp = NULL;
828 	spin_unlock_irq(&current->sighand->siglock);
829 
830 	tty = get_current_tty();
831 	if (tty) {
832 		unsigned long flags;
833 		spin_lock_irqsave(&tty->ctrl_lock, flags);
834 		put_pid(tty->session);
835 		put_pid(tty->pgrp);
836 		tty->session = NULL;
837 		tty->pgrp = NULL;
838 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839 		tty_kref_put(tty);
840 	} else {
841 #ifdef TTY_DEBUG_HANGUP
842 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843 		       " = NULL", tty);
844 #endif
845 	}
846 
847 	/* Now clear signal->tty under the lock */
848 	read_lock(&tasklist_lock);
849 	session_clear_tty(task_session(current));
850 	read_unlock(&tasklist_lock);
851 }
852 
853 /**
854  *
855  *	no_tty	- Ensure the current process does not have a controlling tty
856  */
857 void no_tty(void)
858 {
859 	/* FIXME: Review locking here. The tty_lock never covered any race
860 	   between a new association and proc_clear_tty but possible we need
861 	   to protect against this anyway */
862 	struct task_struct *tsk = current;
863 	disassociate_ctty(0);
864 	proc_clear_tty(tsk);
865 }
866 
867 
868 /**
869  *	stop_tty	-	propagate flow control
870  *	@tty: tty to stop
871  *
872  *	Perform flow control to the driver. For PTY/TTY pairs we
873  *	must also propagate the TIOCKPKT status. May be called
874  *	on an already stopped device and will not re-call the driver
875  *	method.
876  *
877  *	This functionality is used by both the line disciplines for
878  *	halting incoming flow and by the driver. It may therefore be
879  *	called from any context, may be under the tty atomic_write_lock
880  *	but not always.
881  *
882  *	Locking:
883  *		Uses the tty control lock internally
884  */
885 
886 void stop_tty(struct tty_struct *tty)
887 {
888 	unsigned long flags;
889 	spin_lock_irqsave(&tty->ctrl_lock, flags);
890 	if (tty->stopped) {
891 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892 		return;
893 	}
894 	tty->stopped = 1;
895 	if (tty->link && tty->link->packet) {
896 		tty->ctrl_status &= ~TIOCPKT_START;
897 		tty->ctrl_status |= TIOCPKT_STOP;
898 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
899 	}
900 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
901 	if (tty->ops->stop)
902 		(tty->ops->stop)(tty);
903 }
904 
905 EXPORT_SYMBOL(stop_tty);
906 
907 /**
908  *	start_tty	-	propagate flow control
909  *	@tty: tty to start
910  *
911  *	Start a tty that has been stopped if at all possible. Perform
912  *	any necessary wakeups and propagate the TIOCPKT status. If this
913  *	is the tty was previous stopped and is being started then the
914  *	driver start method is invoked and the line discipline woken.
915  *
916  *	Locking:
917  *		ctrl_lock
918  */
919 
920 void start_tty(struct tty_struct *tty)
921 {
922 	unsigned long flags;
923 	spin_lock_irqsave(&tty->ctrl_lock, flags);
924 	if (!tty->stopped || tty->flow_stopped) {
925 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
926 		return;
927 	}
928 	tty->stopped = 0;
929 	if (tty->link && tty->link->packet) {
930 		tty->ctrl_status &= ~TIOCPKT_STOP;
931 		tty->ctrl_status |= TIOCPKT_START;
932 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
933 	}
934 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935 	if (tty->ops->start)
936 		(tty->ops->start)(tty);
937 	/* If we have a running line discipline it may need kicking */
938 	tty_wakeup(tty);
939 }
940 
941 EXPORT_SYMBOL(start_tty);
942 
943 /**
944  *	tty_read	-	read method for tty device files
945  *	@file: pointer to tty file
946  *	@buf: user buffer
947  *	@count: size of user buffer
948  *	@ppos: unused
949  *
950  *	Perform the read system call function on this terminal device. Checks
951  *	for hung up devices before calling the line discipline method.
952  *
953  *	Locking:
954  *		Locks the line discipline internally while needed. Multiple
955  *	read calls may be outstanding in parallel.
956  */
957 
958 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
959 			loff_t *ppos)
960 {
961 	int i;
962 	struct inode *inode = file->f_path.dentry->d_inode;
963 	struct tty_struct *tty = file_tty(file);
964 	struct tty_ldisc *ld;
965 
966 	if (tty_paranoia_check(tty, inode, "tty_read"))
967 		return -EIO;
968 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
969 		return -EIO;
970 
971 	/* We want to wait for the line discipline to sort out in this
972 	   situation */
973 	ld = tty_ldisc_ref_wait(tty);
974 	if (ld->ops->read)
975 		i = (ld->ops->read)(tty, file, buf, count);
976 	else
977 		i = -EIO;
978 	tty_ldisc_deref(ld);
979 	if (i > 0)
980 		inode->i_atime = current_fs_time(inode->i_sb);
981 	return i;
982 }
983 
984 void tty_write_unlock(struct tty_struct *tty)
985 	__releases(&tty->atomic_write_lock)
986 {
987 	mutex_unlock(&tty->atomic_write_lock);
988 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
989 }
990 
991 int tty_write_lock(struct tty_struct *tty, int ndelay)
992 	__acquires(&tty->atomic_write_lock)
993 {
994 	if (!mutex_trylock(&tty->atomic_write_lock)) {
995 		if (ndelay)
996 			return -EAGAIN;
997 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
998 			return -ERESTARTSYS;
999 	}
1000 	return 0;
1001 }
1002 
1003 /*
1004  * Split writes up in sane blocksizes to avoid
1005  * denial-of-service type attacks
1006  */
1007 static inline ssize_t do_tty_write(
1008 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1009 	struct tty_struct *tty,
1010 	struct file *file,
1011 	const char __user *buf,
1012 	size_t count)
1013 {
1014 	ssize_t ret, written = 0;
1015 	unsigned int chunk;
1016 
1017 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1018 	if (ret < 0)
1019 		return ret;
1020 
1021 	/*
1022 	 * We chunk up writes into a temporary buffer. This
1023 	 * simplifies low-level drivers immensely, since they
1024 	 * don't have locking issues and user mode accesses.
1025 	 *
1026 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1027 	 * big chunk-size..
1028 	 *
1029 	 * The default chunk-size is 2kB, because the NTTY
1030 	 * layer has problems with bigger chunks. It will
1031 	 * claim to be able to handle more characters than
1032 	 * it actually does.
1033 	 *
1034 	 * FIXME: This can probably go away now except that 64K chunks
1035 	 * are too likely to fail unless switched to vmalloc...
1036 	 */
1037 	chunk = 2048;
1038 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1039 		chunk = 65536;
1040 	if (count < chunk)
1041 		chunk = count;
1042 
1043 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1044 	if (tty->write_cnt < chunk) {
1045 		unsigned char *buf_chunk;
1046 
1047 		if (chunk < 1024)
1048 			chunk = 1024;
1049 
1050 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1051 		if (!buf_chunk) {
1052 			ret = -ENOMEM;
1053 			goto out;
1054 		}
1055 		kfree(tty->write_buf);
1056 		tty->write_cnt = chunk;
1057 		tty->write_buf = buf_chunk;
1058 	}
1059 
1060 	/* Do the write .. */
1061 	for (;;) {
1062 		size_t size = count;
1063 		if (size > chunk)
1064 			size = chunk;
1065 		ret = -EFAULT;
1066 		if (copy_from_user(tty->write_buf, buf, size))
1067 			break;
1068 		ret = write(tty, file, tty->write_buf, size);
1069 		if (ret <= 0)
1070 			break;
1071 		written += ret;
1072 		buf += ret;
1073 		count -= ret;
1074 		if (!count)
1075 			break;
1076 		ret = -ERESTARTSYS;
1077 		if (signal_pending(current))
1078 			break;
1079 		cond_resched();
1080 	}
1081 	if (written) {
1082 		struct inode *inode = file->f_path.dentry->d_inode;
1083 		inode->i_mtime = current_fs_time(inode->i_sb);
1084 		ret = written;
1085 	}
1086 out:
1087 	tty_write_unlock(tty);
1088 	return ret;
1089 }
1090 
1091 /**
1092  * tty_write_message - write a message to a certain tty, not just the console.
1093  * @tty: the destination tty_struct
1094  * @msg: the message to write
1095  *
1096  * This is used for messages that need to be redirected to a specific tty.
1097  * We don't put it into the syslog queue right now maybe in the future if
1098  * really needed.
1099  *
1100  * We must still hold the BTM and test the CLOSING flag for the moment.
1101  */
1102 
1103 void tty_write_message(struct tty_struct *tty, char *msg)
1104 {
1105 	if (tty) {
1106 		mutex_lock(&tty->atomic_write_lock);
1107 		tty_lock(tty);
1108 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1109 			tty_unlock(tty);
1110 			tty->ops->write(tty, msg, strlen(msg));
1111 		} else
1112 			tty_unlock(tty);
1113 		tty_write_unlock(tty);
1114 	}
1115 	return;
1116 }
1117 
1118 
1119 /**
1120  *	tty_write		-	write method for tty device file
1121  *	@file: tty file pointer
1122  *	@buf: user data to write
1123  *	@count: bytes to write
1124  *	@ppos: unused
1125  *
1126  *	Write data to a tty device via the line discipline.
1127  *
1128  *	Locking:
1129  *		Locks the line discipline as required
1130  *		Writes to the tty driver are serialized by the atomic_write_lock
1131  *	and are then processed in chunks to the device. The line discipline
1132  *	write method will not be invoked in parallel for each device.
1133  */
1134 
1135 static ssize_t tty_write(struct file *file, const char __user *buf,
1136 						size_t count, loff_t *ppos)
1137 {
1138 	struct inode *inode = file->f_path.dentry->d_inode;
1139 	struct tty_struct *tty = file_tty(file);
1140  	struct tty_ldisc *ld;
1141 	ssize_t ret;
1142 
1143 	if (tty_paranoia_check(tty, inode, "tty_write"))
1144 		return -EIO;
1145 	if (!tty || !tty->ops->write ||
1146 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1147 			return -EIO;
1148 	/* Short term debug to catch buggy drivers */
1149 	if (tty->ops->write_room == NULL)
1150 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1151 			tty->driver->name);
1152 	ld = tty_ldisc_ref_wait(tty);
1153 	if (!ld->ops->write)
1154 		ret = -EIO;
1155 	else
1156 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1157 	tty_ldisc_deref(ld);
1158 	return ret;
1159 }
1160 
1161 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1162 						size_t count, loff_t *ppos)
1163 {
1164 	struct file *p = NULL;
1165 
1166 	spin_lock(&redirect_lock);
1167 	if (redirect) {
1168 		get_file(redirect);
1169 		p = redirect;
1170 	}
1171 	spin_unlock(&redirect_lock);
1172 
1173 	if (p) {
1174 		ssize_t res;
1175 		res = vfs_write(p, buf, count, &p->f_pos);
1176 		fput(p);
1177 		return res;
1178 	}
1179 	return tty_write(file, buf, count, ppos);
1180 }
1181 
1182 static char ptychar[] = "pqrstuvwxyzabcde";
1183 
1184 /**
1185  *	pty_line_name	-	generate name for a pty
1186  *	@driver: the tty driver in use
1187  *	@index: the minor number
1188  *	@p: output buffer of at least 6 bytes
1189  *
1190  *	Generate a name from a driver reference and write it to the output
1191  *	buffer.
1192  *
1193  *	Locking: None
1194  */
1195 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1196 {
1197 	int i = index + driver->name_base;
1198 	/* ->name is initialized to "ttyp", but "tty" is expected */
1199 	sprintf(p, "%s%c%x",
1200 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1201 		ptychar[i >> 4 & 0xf], i & 0xf);
1202 }
1203 
1204 /**
1205  *	tty_line_name	-	generate name for a tty
1206  *	@driver: the tty driver in use
1207  *	@index: the minor number
1208  *	@p: output buffer of at least 7 bytes
1209  *
1210  *	Generate a name from a driver reference and write it to the output
1211  *	buffer.
1212  *
1213  *	Locking: None
1214  */
1215 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1216 {
1217 	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1218 }
1219 
1220 /**
1221  *	tty_driver_lookup_tty() - find an existing tty, if any
1222  *	@driver: the driver for the tty
1223  *	@idx:	 the minor number
1224  *
1225  *	Return the tty, if found or ERR_PTR() otherwise.
1226  *
1227  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1228  *	be held until the 'fast-open' is also done. Will change once we
1229  *	have refcounting in the driver and per driver locking
1230  */
1231 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1232 		struct inode *inode, int idx)
1233 {
1234 	if (driver->ops->lookup)
1235 		return driver->ops->lookup(driver, inode, idx);
1236 
1237 	return driver->ttys[idx];
1238 }
1239 
1240 /**
1241  *	tty_init_termios	-  helper for termios setup
1242  *	@tty: the tty to set up
1243  *
1244  *	Initialise the termios structures for this tty. Thus runs under
1245  *	the tty_mutex currently so we can be relaxed about ordering.
1246  */
1247 
1248 int tty_init_termios(struct tty_struct *tty)
1249 {
1250 	struct ktermios *tp;
1251 	int idx = tty->index;
1252 
1253 	tp = tty->driver->termios[idx];
1254 	if (tp == NULL) {
1255 		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1256 		if (tp == NULL)
1257 			return -ENOMEM;
1258 		memcpy(tp, &tty->driver->init_termios,
1259 						sizeof(struct ktermios));
1260 		tty->driver->termios[idx] = tp;
1261 	}
1262 	tty->termios = tp;
1263 	tty->termios_locked = tp + 1;
1264 
1265 	/* Compatibility until drivers always set this */
1266 	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1267 	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1268 	return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(tty_init_termios);
1271 
1272 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1273 {
1274 	int ret = tty_init_termios(tty);
1275 	if (ret)
1276 		return ret;
1277 
1278 	tty_driver_kref_get(driver);
1279 	tty->count++;
1280 	driver->ttys[tty->index] = tty;
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(tty_standard_install);
1284 
1285 /**
1286  *	tty_driver_install_tty() - install a tty entry in the driver
1287  *	@driver: the driver for the tty
1288  *	@tty: the tty
1289  *
1290  *	Install a tty object into the driver tables. The tty->index field
1291  *	will be set by the time this is called. This method is responsible
1292  *	for ensuring any need additional structures are allocated and
1293  *	configured.
1294  *
1295  *	Locking: tty_mutex for now
1296  */
1297 static int tty_driver_install_tty(struct tty_driver *driver,
1298 						struct tty_struct *tty)
1299 {
1300 	return driver->ops->install ? driver->ops->install(driver, tty) :
1301 		tty_standard_install(driver, tty);
1302 }
1303 
1304 /**
1305  *	tty_driver_remove_tty() - remove a tty from the driver tables
1306  *	@driver: the driver for the tty
1307  *	@idx:	 the minor number
1308  *
1309  *	Remvoe a tty object from the driver tables. The tty->index field
1310  *	will be set by the time this is called.
1311  *
1312  *	Locking: tty_mutex for now
1313  */
1314 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1315 {
1316 	if (driver->ops->remove)
1317 		driver->ops->remove(driver, tty);
1318 	else
1319 		driver->ttys[tty->index] = NULL;
1320 }
1321 
1322 /*
1323  * 	tty_reopen()	- fast re-open of an open tty
1324  * 	@tty	- the tty to open
1325  *
1326  *	Return 0 on success, -errno on error.
1327  *
1328  *	Locking: tty_mutex must be held from the time the tty was found
1329  *		 till this open completes.
1330  */
1331 static int tty_reopen(struct tty_struct *tty)
1332 {
1333 	struct tty_driver *driver = tty->driver;
1334 
1335 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1336 			test_bit(TTY_HUPPING, &tty->flags) ||
1337 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1338 		return -EIO;
1339 
1340 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1341 	    driver->subtype == PTY_TYPE_MASTER) {
1342 		/*
1343 		 * special case for PTY masters: only one open permitted,
1344 		 * and the slave side open count is incremented as well.
1345 		 */
1346 		if (tty->count)
1347 			return -EIO;
1348 
1349 		tty->link->count++;
1350 	}
1351 	tty->count++;
1352 
1353 	mutex_lock(&tty->ldisc_mutex);
1354 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1355 	mutex_unlock(&tty->ldisc_mutex);
1356 
1357 	return 0;
1358 }
1359 
1360 /**
1361  *	tty_init_dev		-	initialise a tty device
1362  *	@driver: tty driver we are opening a device on
1363  *	@idx: device index
1364  *	@ret_tty: returned tty structure
1365  *
1366  *	Prepare a tty device. This may not be a "new" clean device but
1367  *	could also be an active device. The pty drivers require special
1368  *	handling because of this.
1369  *
1370  *	Locking:
1371  *		The function is called under the tty_mutex, which
1372  *	protects us from the tty struct or driver itself going away.
1373  *
1374  *	On exit the tty device has the line discipline attached and
1375  *	a reference count of 1. If a pair was created for pty/tty use
1376  *	and the other was a pty master then it too has a reference count of 1.
1377  *
1378  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1379  * failed open.  The new code protects the open with a mutex, so it's
1380  * really quite straightforward.  The mutex locking can probably be
1381  * relaxed for the (most common) case of reopening a tty.
1382  */
1383 
1384 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1385 {
1386 	struct tty_struct *tty;
1387 	int retval;
1388 
1389 	/*
1390 	 * First time open is complex, especially for PTY devices.
1391 	 * This code guarantees that either everything succeeds and the
1392 	 * TTY is ready for operation, or else the table slots are vacated
1393 	 * and the allocated memory released.  (Except that the termios
1394 	 * and locked termios may be retained.)
1395 	 */
1396 
1397 	if (!try_module_get(driver->owner))
1398 		return ERR_PTR(-ENODEV);
1399 
1400 	tty = alloc_tty_struct();
1401 	if (!tty) {
1402 		retval = -ENOMEM;
1403 		goto err_module_put;
1404 	}
1405 	initialize_tty_struct(tty, driver, idx);
1406 
1407 	tty_lock(tty);
1408 	retval = tty_driver_install_tty(driver, tty);
1409 	if (retval < 0)
1410 		goto err_deinit_tty;
1411 
1412 	/*
1413 	 * Structures all installed ... call the ldisc open routines.
1414 	 * If we fail here just call release_tty to clean up.  No need
1415 	 * to decrement the use counts, as release_tty doesn't care.
1416 	 */
1417 	retval = tty_ldisc_setup(tty, tty->link);
1418 	if (retval)
1419 		goto err_release_tty;
1420 	/* Return the tty locked so that it cannot vanish under the caller */
1421 	return tty;
1422 
1423 err_deinit_tty:
1424 	tty_unlock(tty);
1425 	deinitialize_tty_struct(tty);
1426 	free_tty_struct(tty);
1427 err_module_put:
1428 	module_put(driver->owner);
1429 	return ERR_PTR(retval);
1430 
1431 	/* call the tty release_tty routine to clean out this slot */
1432 err_release_tty:
1433 	tty_unlock(tty);
1434 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1435 				 "clearing slot %d\n", idx);
1436 	release_tty(tty, idx);
1437 	return ERR_PTR(retval);
1438 }
1439 
1440 void tty_free_termios(struct tty_struct *tty)
1441 {
1442 	struct ktermios *tp;
1443 	int idx = tty->index;
1444 	/* Kill this flag and push into drivers for locking etc */
1445 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1446 		/* FIXME: Locking on ->termios array */
1447 		tp = tty->termios;
1448 		tty->driver->termios[idx] = NULL;
1449 		kfree(tp);
1450 	}
1451 }
1452 EXPORT_SYMBOL(tty_free_termios);
1453 
1454 void tty_shutdown(struct tty_struct *tty)
1455 {
1456 	tty_driver_remove_tty(tty->driver, tty);
1457 	tty_free_termios(tty);
1458 }
1459 EXPORT_SYMBOL(tty_shutdown);
1460 
1461 /**
1462  *	release_one_tty		-	release tty structure memory
1463  *	@kref: kref of tty we are obliterating
1464  *
1465  *	Releases memory associated with a tty structure, and clears out the
1466  *	driver table slots. This function is called when a device is no longer
1467  *	in use. It also gets called when setup of a device fails.
1468  *
1469  *	Locking:
1470  *		tty_mutex - sometimes only
1471  *		takes the file list lock internally when working on the list
1472  *	of ttys that the driver keeps.
1473  *
1474  *	This method gets called from a work queue so that the driver private
1475  *	cleanup ops can sleep (needed for USB at least)
1476  */
1477 static void release_one_tty(struct work_struct *work)
1478 {
1479 	struct tty_struct *tty =
1480 		container_of(work, struct tty_struct, hangup_work);
1481 	struct tty_driver *driver = tty->driver;
1482 
1483 	if (tty->ops->cleanup)
1484 		tty->ops->cleanup(tty);
1485 
1486 	tty->magic = 0;
1487 	tty_driver_kref_put(driver);
1488 	module_put(driver->owner);
1489 
1490 	spin_lock(&tty_files_lock);
1491 	list_del_init(&tty->tty_files);
1492 	spin_unlock(&tty_files_lock);
1493 
1494 	put_pid(tty->pgrp);
1495 	put_pid(tty->session);
1496 	free_tty_struct(tty);
1497 }
1498 
1499 static void queue_release_one_tty(struct kref *kref)
1500 {
1501 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1502 
1503 	if (tty->ops->shutdown)
1504 		tty->ops->shutdown(tty);
1505 	else
1506 		tty_shutdown(tty);
1507 
1508 	/* The hangup queue is now free so we can reuse it rather than
1509 	   waste a chunk of memory for each port */
1510 	INIT_WORK(&tty->hangup_work, release_one_tty);
1511 	schedule_work(&tty->hangup_work);
1512 }
1513 
1514 /**
1515  *	tty_kref_put		-	release a tty kref
1516  *	@tty: tty device
1517  *
1518  *	Release a reference to a tty device and if need be let the kref
1519  *	layer destruct the object for us
1520  */
1521 
1522 void tty_kref_put(struct tty_struct *tty)
1523 {
1524 	if (tty)
1525 		kref_put(&tty->kref, queue_release_one_tty);
1526 }
1527 EXPORT_SYMBOL(tty_kref_put);
1528 
1529 /**
1530  *	release_tty		-	release tty structure memory
1531  *
1532  *	Release both @tty and a possible linked partner (think pty pair),
1533  *	and decrement the refcount of the backing module.
1534  *
1535  *	Locking:
1536  *		tty_mutex - sometimes only
1537  *		takes the file list lock internally when working on the list
1538  *	of ttys that the driver keeps.
1539  *		FIXME: should we require tty_mutex is held here ??
1540  *
1541  */
1542 static void release_tty(struct tty_struct *tty, int idx)
1543 {
1544 	/* This should always be true but check for the moment */
1545 	WARN_ON(tty->index != idx);
1546 
1547 	if (tty->link)
1548 		tty_kref_put(tty->link);
1549 	tty_kref_put(tty);
1550 }
1551 
1552 /**
1553  *	tty_release_checks - check a tty before real release
1554  *	@tty: tty to check
1555  *	@o_tty: link of @tty (if any)
1556  *	@idx: index of the tty
1557  *
1558  *	Performs some paranoid checking before true release of the @tty.
1559  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1560  */
1561 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1562 		int idx)
1563 {
1564 #ifdef TTY_PARANOIA_CHECK
1565 	if (idx < 0 || idx >= tty->driver->num) {
1566 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1567 				__func__, tty->name);
1568 		return -1;
1569 	}
1570 
1571 	/* not much to check for devpts */
1572 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1573 		return 0;
1574 
1575 	if (tty != tty->driver->ttys[idx]) {
1576 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1577 				__func__, idx, tty->name);
1578 		return -1;
1579 	}
1580 	if (tty->termios != tty->driver->termios[idx]) {
1581 		printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1582 				__func__, idx, tty->name);
1583 		return -1;
1584 	}
1585 	if (tty->driver->other) {
1586 		if (o_tty != tty->driver->other->ttys[idx]) {
1587 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1588 					__func__, idx, tty->name);
1589 			return -1;
1590 		}
1591 		if (o_tty->termios != tty->driver->other->termios[idx]) {
1592 			printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1593 					__func__, idx, tty->name);
1594 			return -1;
1595 		}
1596 		if (o_tty->link != tty) {
1597 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1598 			return -1;
1599 		}
1600 	}
1601 #endif
1602 	return 0;
1603 }
1604 
1605 /**
1606  *	tty_release		-	vfs callback for close
1607  *	@inode: inode of tty
1608  *	@filp: file pointer for handle to tty
1609  *
1610  *	Called the last time each file handle is closed that references
1611  *	this tty. There may however be several such references.
1612  *
1613  *	Locking:
1614  *		Takes bkl. See tty_release_dev
1615  *
1616  * Even releasing the tty structures is a tricky business.. We have
1617  * to be very careful that the structures are all released at the
1618  * same time, as interrupts might otherwise get the wrong pointers.
1619  *
1620  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1621  * lead to double frees or releasing memory still in use.
1622  */
1623 
1624 int tty_release(struct inode *inode, struct file *filp)
1625 {
1626 	struct tty_struct *tty = file_tty(filp);
1627 	struct tty_struct *o_tty;
1628 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1629 	int	devpts;
1630 	int	idx;
1631 	char	buf[64];
1632 
1633 	if (tty_paranoia_check(tty, inode, __func__))
1634 		return 0;
1635 
1636 	tty_lock(tty);
1637 	check_tty_count(tty, __func__);
1638 
1639 	__tty_fasync(-1, filp, 0);
1640 
1641 	idx = tty->index;
1642 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1643 		      tty->driver->subtype == PTY_TYPE_MASTER);
1644 	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1645 	/* Review: parallel close */
1646 	o_tty = tty->link;
1647 
1648 	if (tty_release_checks(tty, o_tty, idx)) {
1649 		tty_unlock(tty);
1650 		return 0;
1651 	}
1652 
1653 #ifdef TTY_DEBUG_HANGUP
1654 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1655 			tty_name(tty, buf), tty->count);
1656 #endif
1657 
1658 	if (tty->ops->close)
1659 		tty->ops->close(tty, filp);
1660 
1661 	tty_unlock(tty);
1662 	/*
1663 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1664 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1665 	 * wait queues and kick everyone out _before_ actually starting to
1666 	 * close.  This ensures that we won't block while releasing the tty
1667 	 * structure.
1668 	 *
1669 	 * The test for the o_tty closing is necessary, since the master and
1670 	 * slave sides may close in any order.  If the slave side closes out
1671 	 * first, its count will be one, since the master side holds an open.
1672 	 * Thus this test wouldn't be triggered at the time the slave closes,
1673 	 * so we do it now.
1674 	 *
1675 	 * Note that it's possible for the tty to be opened again while we're
1676 	 * flushing out waiters.  By recalculating the closing flags before
1677 	 * each iteration we avoid any problems.
1678 	 */
1679 	while (1) {
1680 		/* Guard against races with tty->count changes elsewhere and
1681 		   opens on /dev/tty */
1682 
1683 		mutex_lock(&tty_mutex);
1684 		tty_lock_pair(tty, o_tty);
1685 		tty_closing = tty->count <= 1;
1686 		o_tty_closing = o_tty &&
1687 			(o_tty->count <= (pty_master ? 1 : 0));
1688 		do_sleep = 0;
1689 
1690 		if (tty_closing) {
1691 			if (waitqueue_active(&tty->read_wait)) {
1692 				wake_up_poll(&tty->read_wait, POLLIN);
1693 				do_sleep++;
1694 			}
1695 			if (waitqueue_active(&tty->write_wait)) {
1696 				wake_up_poll(&tty->write_wait, POLLOUT);
1697 				do_sleep++;
1698 			}
1699 		}
1700 		if (o_tty_closing) {
1701 			if (waitqueue_active(&o_tty->read_wait)) {
1702 				wake_up_poll(&o_tty->read_wait, POLLIN);
1703 				do_sleep++;
1704 			}
1705 			if (waitqueue_active(&o_tty->write_wait)) {
1706 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1707 				do_sleep++;
1708 			}
1709 		}
1710 		if (!do_sleep)
1711 			break;
1712 
1713 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1714 				__func__, tty_name(tty, buf));
1715 		tty_unlock_pair(tty, o_tty);
1716 		mutex_unlock(&tty_mutex);
1717 		schedule();
1718 	}
1719 
1720 	/*
1721 	 * The closing flags are now consistent with the open counts on
1722 	 * both sides, and we've completed the last operation that could
1723 	 * block, so it's safe to proceed with closing.
1724 	 */
1725 	if (pty_master) {
1726 		if (--o_tty->count < 0) {
1727 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1728 				__func__, o_tty->count, tty_name(o_tty, buf));
1729 			o_tty->count = 0;
1730 		}
1731 	}
1732 	if (--tty->count < 0) {
1733 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1734 				__func__, tty->count, tty_name(tty, buf));
1735 		tty->count = 0;
1736 	}
1737 
1738 	/*
1739 	 * We've decremented tty->count, so we need to remove this file
1740 	 * descriptor off the tty->tty_files list; this serves two
1741 	 * purposes:
1742 	 *  - check_tty_count sees the correct number of file descriptors
1743 	 *    associated with this tty.
1744 	 *  - do_tty_hangup no longer sees this file descriptor as
1745 	 *    something that needs to be handled for hangups.
1746 	 */
1747 	tty_del_file(filp);
1748 
1749 	/*
1750 	 * Perform some housekeeping before deciding whether to return.
1751 	 *
1752 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1753 	 * case of a pty we may have to wait around for the other side
1754 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1755 	 */
1756 	if (tty_closing)
1757 		set_bit(TTY_CLOSING, &tty->flags);
1758 	if (o_tty_closing)
1759 		set_bit(TTY_CLOSING, &o_tty->flags);
1760 
1761 	/*
1762 	 * If _either_ side is closing, make sure there aren't any
1763 	 * processes that still think tty or o_tty is their controlling
1764 	 * tty.
1765 	 */
1766 	if (tty_closing || o_tty_closing) {
1767 		read_lock(&tasklist_lock);
1768 		session_clear_tty(tty->session);
1769 		if (o_tty)
1770 			session_clear_tty(o_tty->session);
1771 		read_unlock(&tasklist_lock);
1772 	}
1773 
1774 	mutex_unlock(&tty_mutex);
1775 
1776 	/* check whether both sides are closing ... */
1777 	if (!tty_closing || (o_tty && !o_tty_closing)) {
1778 		tty_unlock_pair(tty, o_tty);
1779 		return 0;
1780 	}
1781 
1782 #ifdef TTY_DEBUG_HANGUP
1783 	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1784 #endif
1785 	/*
1786 	 * Ask the line discipline code to release its structures
1787 	 */
1788 	tty_ldisc_release(tty, o_tty);
1789 	/*
1790 	 * The release_tty function takes care of the details of clearing
1791 	 * the slots and preserving the termios structure. The tty_unlock_pair
1792 	 * should be safe as we keep a kref while the tty is locked (so the
1793 	 * unlock never unlocks a freed tty).
1794 	 */
1795 	release_tty(tty, idx);
1796 	tty_unlock_pair(tty, o_tty);
1797 
1798 	/* Make this pty number available for reallocation */
1799 	if (devpts)
1800 		devpts_kill_index(inode, idx);
1801 	return 0;
1802 }
1803 
1804 /**
1805  *	tty_open_current_tty - get tty of current task for open
1806  *	@device: device number
1807  *	@filp: file pointer to tty
1808  *	@return: tty of the current task iff @device is /dev/tty
1809  *
1810  *	We cannot return driver and index like for the other nodes because
1811  *	devpts will not work then. It expects inodes to be from devpts FS.
1812  *
1813  *	We need to move to returning a refcounted object from all the lookup
1814  *	paths including this one.
1815  */
1816 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1817 {
1818 	struct tty_struct *tty;
1819 
1820 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1821 		return NULL;
1822 
1823 	tty = get_current_tty();
1824 	if (!tty)
1825 		return ERR_PTR(-ENXIO);
1826 
1827 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1828 	/* noctty = 1; */
1829 	tty_kref_put(tty);
1830 	/* FIXME: we put a reference and return a TTY! */
1831 	/* This is only safe because the caller holds tty_mutex */
1832 	return tty;
1833 }
1834 
1835 /**
1836  *	tty_lookup_driver - lookup a tty driver for a given device file
1837  *	@device: device number
1838  *	@filp: file pointer to tty
1839  *	@noctty: set if the device should not become a controlling tty
1840  *	@index: index for the device in the @return driver
1841  *	@return: driver for this inode (with increased refcount)
1842  *
1843  * 	If @return is not erroneous, the caller is responsible to decrement the
1844  * 	refcount by tty_driver_kref_put.
1845  *
1846  *	Locking: tty_mutex protects get_tty_driver
1847  */
1848 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1849 		int *noctty, int *index)
1850 {
1851 	struct tty_driver *driver;
1852 
1853 	switch (device) {
1854 #ifdef CONFIG_VT
1855 	case MKDEV(TTY_MAJOR, 0): {
1856 		extern struct tty_driver *console_driver;
1857 		driver = tty_driver_kref_get(console_driver);
1858 		*index = fg_console;
1859 		*noctty = 1;
1860 		break;
1861 	}
1862 #endif
1863 	case MKDEV(TTYAUX_MAJOR, 1): {
1864 		struct tty_driver *console_driver = console_device(index);
1865 		if (console_driver) {
1866 			driver = tty_driver_kref_get(console_driver);
1867 			if (driver) {
1868 				/* Don't let /dev/console block */
1869 				filp->f_flags |= O_NONBLOCK;
1870 				*noctty = 1;
1871 				break;
1872 			}
1873 		}
1874 		return ERR_PTR(-ENODEV);
1875 	}
1876 	default:
1877 		driver = get_tty_driver(device, index);
1878 		if (!driver)
1879 			return ERR_PTR(-ENODEV);
1880 		break;
1881 	}
1882 	return driver;
1883 }
1884 
1885 /**
1886  *	tty_open		-	open a tty device
1887  *	@inode: inode of device file
1888  *	@filp: file pointer to tty
1889  *
1890  *	tty_open and tty_release keep up the tty count that contains the
1891  *	number of opens done on a tty. We cannot use the inode-count, as
1892  *	different inodes might point to the same tty.
1893  *
1894  *	Open-counting is needed for pty masters, as well as for keeping
1895  *	track of serial lines: DTR is dropped when the last close happens.
1896  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1897  *
1898  *	The termios state of a pty is reset on first open so that
1899  *	settings don't persist across reuse.
1900  *
1901  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1902  *		 tty->count should protect the rest.
1903  *		 ->siglock protects ->signal/->sighand
1904  *
1905  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1906  *	tty_mutex
1907  */
1908 
1909 static int tty_open(struct inode *inode, struct file *filp)
1910 {
1911 	struct tty_struct *tty;
1912 	int noctty, retval;
1913 	struct tty_driver *driver = NULL;
1914 	int index;
1915 	dev_t device = inode->i_rdev;
1916 	unsigned saved_flags = filp->f_flags;
1917 
1918 	nonseekable_open(inode, filp);
1919 
1920 retry_open:
1921 	retval = tty_alloc_file(filp);
1922 	if (retval)
1923 		return -ENOMEM;
1924 
1925 	noctty = filp->f_flags & O_NOCTTY;
1926 	index  = -1;
1927 	retval = 0;
1928 
1929 	mutex_lock(&tty_mutex);
1930 	/* This is protected by the tty_mutex */
1931 	tty = tty_open_current_tty(device, filp);
1932 	if (IS_ERR(tty)) {
1933 		retval = PTR_ERR(tty);
1934 		goto err_unlock;
1935 	} else if (!tty) {
1936 		driver = tty_lookup_driver(device, filp, &noctty, &index);
1937 		if (IS_ERR(driver)) {
1938 			retval = PTR_ERR(driver);
1939 			goto err_unlock;
1940 		}
1941 
1942 		/* check whether we're reopening an existing tty */
1943 		tty = tty_driver_lookup_tty(driver, inode, index);
1944 		if (IS_ERR(tty)) {
1945 			retval = PTR_ERR(tty);
1946 			goto err_unlock;
1947 		}
1948 	}
1949 
1950 	if (tty) {
1951 		tty_lock(tty);
1952 		retval = tty_reopen(tty);
1953 		if (retval < 0) {
1954 			tty_unlock(tty);
1955 			tty = ERR_PTR(retval);
1956 		}
1957 	} else	/* Returns with the tty_lock held for now */
1958 		tty = tty_init_dev(driver, index);
1959 
1960 	mutex_unlock(&tty_mutex);
1961 	if (driver)
1962 		tty_driver_kref_put(driver);
1963 	if (IS_ERR(tty)) {
1964 		retval = PTR_ERR(tty);
1965 		goto err_file;
1966 	}
1967 
1968 	tty_add_file(tty, filp);
1969 
1970 	check_tty_count(tty, __func__);
1971 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1972 	    tty->driver->subtype == PTY_TYPE_MASTER)
1973 		noctty = 1;
1974 #ifdef TTY_DEBUG_HANGUP
1975 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1976 #endif
1977 	if (tty->ops->open)
1978 		retval = tty->ops->open(tty, filp);
1979 	else
1980 		retval = -ENODEV;
1981 	filp->f_flags = saved_flags;
1982 
1983 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1984 						!capable(CAP_SYS_ADMIN))
1985 		retval = -EBUSY;
1986 
1987 	if (retval) {
1988 #ifdef TTY_DEBUG_HANGUP
1989 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1990 				retval, tty->name);
1991 #endif
1992 		tty_unlock(tty); /* need to call tty_release without BTM */
1993 		tty_release(inode, filp);
1994 		if (retval != -ERESTARTSYS)
1995 			return retval;
1996 
1997 		if (signal_pending(current))
1998 			return retval;
1999 
2000 		schedule();
2001 		/*
2002 		 * Need to reset f_op in case a hangup happened.
2003 		 */
2004 		if (filp->f_op == &hung_up_tty_fops)
2005 			filp->f_op = &tty_fops;
2006 		goto retry_open;
2007 	}
2008 	tty_unlock(tty);
2009 
2010 
2011 	mutex_lock(&tty_mutex);
2012 	tty_lock(tty);
2013 	spin_lock_irq(&current->sighand->siglock);
2014 	if (!noctty &&
2015 	    current->signal->leader &&
2016 	    !current->signal->tty &&
2017 	    tty->session == NULL)
2018 		__proc_set_tty(current, tty);
2019 	spin_unlock_irq(&current->sighand->siglock);
2020 	tty_unlock(tty);
2021 	mutex_unlock(&tty_mutex);
2022 	return 0;
2023 err_unlock:
2024 	mutex_unlock(&tty_mutex);
2025 	/* after locks to avoid deadlock */
2026 	if (!IS_ERR_OR_NULL(driver))
2027 		tty_driver_kref_put(driver);
2028 err_file:
2029 	tty_free_file(filp);
2030 	return retval;
2031 }
2032 
2033 
2034 
2035 /**
2036  *	tty_poll	-	check tty status
2037  *	@filp: file being polled
2038  *	@wait: poll wait structures to update
2039  *
2040  *	Call the line discipline polling method to obtain the poll
2041  *	status of the device.
2042  *
2043  *	Locking: locks called line discipline but ldisc poll method
2044  *	may be re-entered freely by other callers.
2045  */
2046 
2047 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2048 {
2049 	struct tty_struct *tty = file_tty(filp);
2050 	struct tty_ldisc *ld;
2051 	int ret = 0;
2052 
2053 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2054 		return 0;
2055 
2056 	ld = tty_ldisc_ref_wait(tty);
2057 	if (ld->ops->poll)
2058 		ret = (ld->ops->poll)(tty, filp, wait);
2059 	tty_ldisc_deref(ld);
2060 	return ret;
2061 }
2062 
2063 static int __tty_fasync(int fd, struct file *filp, int on)
2064 {
2065 	struct tty_struct *tty = file_tty(filp);
2066 	unsigned long flags;
2067 	int retval = 0;
2068 
2069 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2070 		goto out;
2071 
2072 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2073 	if (retval <= 0)
2074 		goto out;
2075 
2076 	if (on) {
2077 		enum pid_type type;
2078 		struct pid *pid;
2079 		if (!waitqueue_active(&tty->read_wait))
2080 			tty->minimum_to_wake = 1;
2081 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2082 		if (tty->pgrp) {
2083 			pid = tty->pgrp;
2084 			type = PIDTYPE_PGID;
2085 		} else {
2086 			pid = task_pid(current);
2087 			type = PIDTYPE_PID;
2088 		}
2089 		get_pid(pid);
2090 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2091 		retval = __f_setown(filp, pid, type, 0);
2092 		put_pid(pid);
2093 		if (retval)
2094 			goto out;
2095 	} else {
2096 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2097 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2098 	}
2099 	retval = 0;
2100 out:
2101 	return retval;
2102 }
2103 
2104 static int tty_fasync(int fd, struct file *filp, int on)
2105 {
2106 	struct tty_struct *tty = file_tty(filp);
2107 	int retval;
2108 
2109 	tty_lock(tty);
2110 	retval = __tty_fasync(fd, filp, on);
2111 	tty_unlock(tty);
2112 
2113 	return retval;
2114 }
2115 
2116 /**
2117  *	tiocsti			-	fake input character
2118  *	@tty: tty to fake input into
2119  *	@p: pointer to character
2120  *
2121  *	Fake input to a tty device. Does the necessary locking and
2122  *	input management.
2123  *
2124  *	FIXME: does not honour flow control ??
2125  *
2126  *	Locking:
2127  *		Called functions take tty_ldisc_lock
2128  *		current->signal->tty check is safe without locks
2129  *
2130  *	FIXME: may race normal receive processing
2131  */
2132 
2133 static int tiocsti(struct tty_struct *tty, char __user *p)
2134 {
2135 	char ch, mbz = 0;
2136 	struct tty_ldisc *ld;
2137 
2138 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2139 		return -EPERM;
2140 	if (get_user(ch, p))
2141 		return -EFAULT;
2142 	tty_audit_tiocsti(tty, ch);
2143 	ld = tty_ldisc_ref_wait(tty);
2144 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2145 	tty_ldisc_deref(ld);
2146 	return 0;
2147 }
2148 
2149 /**
2150  *	tiocgwinsz		-	implement window query ioctl
2151  *	@tty; tty
2152  *	@arg: user buffer for result
2153  *
2154  *	Copies the kernel idea of the window size into the user buffer.
2155  *
2156  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2157  *		is consistent.
2158  */
2159 
2160 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2161 {
2162 	int err;
2163 
2164 	mutex_lock(&tty->termios_mutex);
2165 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2166 	mutex_unlock(&tty->termios_mutex);
2167 
2168 	return err ? -EFAULT: 0;
2169 }
2170 
2171 /**
2172  *	tty_do_resize		-	resize event
2173  *	@tty: tty being resized
2174  *	@rows: rows (character)
2175  *	@cols: cols (character)
2176  *
2177  *	Update the termios variables and send the necessary signals to
2178  *	peform a terminal resize correctly
2179  */
2180 
2181 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2182 {
2183 	struct pid *pgrp;
2184 	unsigned long flags;
2185 
2186 	/* Lock the tty */
2187 	mutex_lock(&tty->termios_mutex);
2188 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2189 		goto done;
2190 	/* Get the PID values and reference them so we can
2191 	   avoid holding the tty ctrl lock while sending signals */
2192 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2193 	pgrp = get_pid(tty->pgrp);
2194 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2195 
2196 	if (pgrp)
2197 		kill_pgrp(pgrp, SIGWINCH, 1);
2198 	put_pid(pgrp);
2199 
2200 	tty->winsize = *ws;
2201 done:
2202 	mutex_unlock(&tty->termios_mutex);
2203 	return 0;
2204 }
2205 
2206 /**
2207  *	tiocswinsz		-	implement window size set ioctl
2208  *	@tty; tty side of tty
2209  *	@arg: user buffer for result
2210  *
2211  *	Copies the user idea of the window size to the kernel. Traditionally
2212  *	this is just advisory information but for the Linux console it
2213  *	actually has driver level meaning and triggers a VC resize.
2214  *
2215  *	Locking:
2216  *		Driver dependent. The default do_resize method takes the
2217  *	tty termios mutex and ctrl_lock. The console takes its own lock
2218  *	then calls into the default method.
2219  */
2220 
2221 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2222 {
2223 	struct winsize tmp_ws;
2224 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2225 		return -EFAULT;
2226 
2227 	if (tty->ops->resize)
2228 		return tty->ops->resize(tty, &tmp_ws);
2229 	else
2230 		return tty_do_resize(tty, &tmp_ws);
2231 }
2232 
2233 /**
2234  *	tioccons	-	allow admin to move logical console
2235  *	@file: the file to become console
2236  *
2237  *	Allow the administrator to move the redirected console device
2238  *
2239  *	Locking: uses redirect_lock to guard the redirect information
2240  */
2241 
2242 static int tioccons(struct file *file)
2243 {
2244 	if (!capable(CAP_SYS_ADMIN))
2245 		return -EPERM;
2246 	if (file->f_op->write == redirected_tty_write) {
2247 		struct file *f;
2248 		spin_lock(&redirect_lock);
2249 		f = redirect;
2250 		redirect = NULL;
2251 		spin_unlock(&redirect_lock);
2252 		if (f)
2253 			fput(f);
2254 		return 0;
2255 	}
2256 	spin_lock(&redirect_lock);
2257 	if (redirect) {
2258 		spin_unlock(&redirect_lock);
2259 		return -EBUSY;
2260 	}
2261 	get_file(file);
2262 	redirect = file;
2263 	spin_unlock(&redirect_lock);
2264 	return 0;
2265 }
2266 
2267 /**
2268  *	fionbio		-	non blocking ioctl
2269  *	@file: file to set blocking value
2270  *	@p: user parameter
2271  *
2272  *	Historical tty interfaces had a blocking control ioctl before
2273  *	the generic functionality existed. This piece of history is preserved
2274  *	in the expected tty API of posix OS's.
2275  *
2276  *	Locking: none, the open file handle ensures it won't go away.
2277  */
2278 
2279 static int fionbio(struct file *file, int __user *p)
2280 {
2281 	int nonblock;
2282 
2283 	if (get_user(nonblock, p))
2284 		return -EFAULT;
2285 
2286 	spin_lock(&file->f_lock);
2287 	if (nonblock)
2288 		file->f_flags |= O_NONBLOCK;
2289 	else
2290 		file->f_flags &= ~O_NONBLOCK;
2291 	spin_unlock(&file->f_lock);
2292 	return 0;
2293 }
2294 
2295 /**
2296  *	tiocsctty	-	set controlling tty
2297  *	@tty: tty structure
2298  *	@arg: user argument
2299  *
2300  *	This ioctl is used to manage job control. It permits a session
2301  *	leader to set this tty as the controlling tty for the session.
2302  *
2303  *	Locking:
2304  *		Takes tty_mutex() to protect tty instance
2305  *		Takes tasklist_lock internally to walk sessions
2306  *		Takes ->siglock() when updating signal->tty
2307  */
2308 
2309 static int tiocsctty(struct tty_struct *tty, int arg)
2310 {
2311 	int ret = 0;
2312 	if (current->signal->leader && (task_session(current) == tty->session))
2313 		return ret;
2314 
2315 	mutex_lock(&tty_mutex);
2316 	/*
2317 	 * The process must be a session leader and
2318 	 * not have a controlling tty already.
2319 	 */
2320 	if (!current->signal->leader || current->signal->tty) {
2321 		ret = -EPERM;
2322 		goto unlock;
2323 	}
2324 
2325 	if (tty->session) {
2326 		/*
2327 		 * This tty is already the controlling
2328 		 * tty for another session group!
2329 		 */
2330 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2331 			/*
2332 			 * Steal it away
2333 			 */
2334 			read_lock(&tasklist_lock);
2335 			session_clear_tty(tty->session);
2336 			read_unlock(&tasklist_lock);
2337 		} else {
2338 			ret = -EPERM;
2339 			goto unlock;
2340 		}
2341 	}
2342 	proc_set_tty(current, tty);
2343 unlock:
2344 	mutex_unlock(&tty_mutex);
2345 	return ret;
2346 }
2347 
2348 /**
2349  *	tty_get_pgrp	-	return a ref counted pgrp pid
2350  *	@tty: tty to read
2351  *
2352  *	Returns a refcounted instance of the pid struct for the process
2353  *	group controlling the tty.
2354  */
2355 
2356 struct pid *tty_get_pgrp(struct tty_struct *tty)
2357 {
2358 	unsigned long flags;
2359 	struct pid *pgrp;
2360 
2361 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2362 	pgrp = get_pid(tty->pgrp);
2363 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2364 
2365 	return pgrp;
2366 }
2367 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2368 
2369 /**
2370  *	tiocgpgrp		-	get process group
2371  *	@tty: tty passed by user
2372  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2373  *	@p: returned pid
2374  *
2375  *	Obtain the process group of the tty. If there is no process group
2376  *	return an error.
2377  *
2378  *	Locking: none. Reference to current->signal->tty is safe.
2379  */
2380 
2381 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2382 {
2383 	struct pid *pid;
2384 	int ret;
2385 	/*
2386 	 * (tty == real_tty) is a cheap way of
2387 	 * testing if the tty is NOT a master pty.
2388 	 */
2389 	if (tty == real_tty && current->signal->tty != real_tty)
2390 		return -ENOTTY;
2391 	pid = tty_get_pgrp(real_tty);
2392 	ret =  put_user(pid_vnr(pid), p);
2393 	put_pid(pid);
2394 	return ret;
2395 }
2396 
2397 /**
2398  *	tiocspgrp		-	attempt to set process group
2399  *	@tty: tty passed by user
2400  *	@real_tty: tty side device matching tty passed by user
2401  *	@p: pid pointer
2402  *
2403  *	Set the process group of the tty to the session passed. Only
2404  *	permitted where the tty session is our session.
2405  *
2406  *	Locking: RCU, ctrl lock
2407  */
2408 
2409 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2410 {
2411 	struct pid *pgrp;
2412 	pid_t pgrp_nr;
2413 	int retval = tty_check_change(real_tty);
2414 	unsigned long flags;
2415 
2416 	if (retval == -EIO)
2417 		return -ENOTTY;
2418 	if (retval)
2419 		return retval;
2420 	if (!current->signal->tty ||
2421 	    (current->signal->tty != real_tty) ||
2422 	    (real_tty->session != task_session(current)))
2423 		return -ENOTTY;
2424 	if (get_user(pgrp_nr, p))
2425 		return -EFAULT;
2426 	if (pgrp_nr < 0)
2427 		return -EINVAL;
2428 	rcu_read_lock();
2429 	pgrp = find_vpid(pgrp_nr);
2430 	retval = -ESRCH;
2431 	if (!pgrp)
2432 		goto out_unlock;
2433 	retval = -EPERM;
2434 	if (session_of_pgrp(pgrp) != task_session(current))
2435 		goto out_unlock;
2436 	retval = 0;
2437 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2438 	put_pid(real_tty->pgrp);
2439 	real_tty->pgrp = get_pid(pgrp);
2440 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2441 out_unlock:
2442 	rcu_read_unlock();
2443 	return retval;
2444 }
2445 
2446 /**
2447  *	tiocgsid		-	get session id
2448  *	@tty: tty passed by user
2449  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2450  *	@p: pointer to returned session id
2451  *
2452  *	Obtain the session id of the tty. If there is no session
2453  *	return an error.
2454  *
2455  *	Locking: none. Reference to current->signal->tty is safe.
2456  */
2457 
2458 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2459 {
2460 	/*
2461 	 * (tty == real_tty) is a cheap way of
2462 	 * testing if the tty is NOT a master pty.
2463 	*/
2464 	if (tty == real_tty && current->signal->tty != real_tty)
2465 		return -ENOTTY;
2466 	if (!real_tty->session)
2467 		return -ENOTTY;
2468 	return put_user(pid_vnr(real_tty->session), p);
2469 }
2470 
2471 /**
2472  *	tiocsetd	-	set line discipline
2473  *	@tty: tty device
2474  *	@p: pointer to user data
2475  *
2476  *	Set the line discipline according to user request.
2477  *
2478  *	Locking: see tty_set_ldisc, this function is just a helper
2479  */
2480 
2481 static int tiocsetd(struct tty_struct *tty, int __user *p)
2482 {
2483 	int ldisc;
2484 	int ret;
2485 
2486 	if (get_user(ldisc, p))
2487 		return -EFAULT;
2488 
2489 	ret = tty_set_ldisc(tty, ldisc);
2490 
2491 	return ret;
2492 }
2493 
2494 /**
2495  *	send_break	-	performed time break
2496  *	@tty: device to break on
2497  *	@duration: timeout in mS
2498  *
2499  *	Perform a timed break on hardware that lacks its own driver level
2500  *	timed break functionality.
2501  *
2502  *	Locking:
2503  *		atomic_write_lock serializes
2504  *
2505  */
2506 
2507 static int send_break(struct tty_struct *tty, unsigned int duration)
2508 {
2509 	int retval;
2510 
2511 	if (tty->ops->break_ctl == NULL)
2512 		return 0;
2513 
2514 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2515 		retval = tty->ops->break_ctl(tty, duration);
2516 	else {
2517 		/* Do the work ourselves */
2518 		if (tty_write_lock(tty, 0) < 0)
2519 			return -EINTR;
2520 		retval = tty->ops->break_ctl(tty, -1);
2521 		if (retval)
2522 			goto out;
2523 		if (!signal_pending(current))
2524 			msleep_interruptible(duration);
2525 		retval = tty->ops->break_ctl(tty, 0);
2526 out:
2527 		tty_write_unlock(tty);
2528 		if (signal_pending(current))
2529 			retval = -EINTR;
2530 	}
2531 	return retval;
2532 }
2533 
2534 /**
2535  *	tty_tiocmget		-	get modem status
2536  *	@tty: tty device
2537  *	@file: user file pointer
2538  *	@p: pointer to result
2539  *
2540  *	Obtain the modem status bits from the tty driver if the feature
2541  *	is supported. Return -EINVAL if it is not available.
2542  *
2543  *	Locking: none (up to the driver)
2544  */
2545 
2546 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2547 {
2548 	int retval = -EINVAL;
2549 
2550 	if (tty->ops->tiocmget) {
2551 		retval = tty->ops->tiocmget(tty);
2552 
2553 		if (retval >= 0)
2554 			retval = put_user(retval, p);
2555 	}
2556 	return retval;
2557 }
2558 
2559 /**
2560  *	tty_tiocmset		-	set modem status
2561  *	@tty: tty device
2562  *	@cmd: command - clear bits, set bits or set all
2563  *	@p: pointer to desired bits
2564  *
2565  *	Set the modem status bits from the tty driver if the feature
2566  *	is supported. Return -EINVAL if it is not available.
2567  *
2568  *	Locking: none (up to the driver)
2569  */
2570 
2571 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2572 	     unsigned __user *p)
2573 {
2574 	int retval;
2575 	unsigned int set, clear, val;
2576 
2577 	if (tty->ops->tiocmset == NULL)
2578 		return -EINVAL;
2579 
2580 	retval = get_user(val, p);
2581 	if (retval)
2582 		return retval;
2583 	set = clear = 0;
2584 	switch (cmd) {
2585 	case TIOCMBIS:
2586 		set = val;
2587 		break;
2588 	case TIOCMBIC:
2589 		clear = val;
2590 		break;
2591 	case TIOCMSET:
2592 		set = val;
2593 		clear = ~val;
2594 		break;
2595 	}
2596 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2597 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2598 	return tty->ops->tiocmset(tty, set, clear);
2599 }
2600 
2601 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2602 {
2603 	int retval = -EINVAL;
2604 	struct serial_icounter_struct icount;
2605 	memset(&icount, 0, sizeof(icount));
2606 	if (tty->ops->get_icount)
2607 		retval = tty->ops->get_icount(tty, &icount);
2608 	if (retval != 0)
2609 		return retval;
2610 	if (copy_to_user(arg, &icount, sizeof(icount)))
2611 		return -EFAULT;
2612 	return 0;
2613 }
2614 
2615 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2616 {
2617 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2618 	    tty->driver->subtype == PTY_TYPE_MASTER)
2619 		tty = tty->link;
2620 	return tty;
2621 }
2622 EXPORT_SYMBOL(tty_pair_get_tty);
2623 
2624 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2625 {
2626 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2627 	    tty->driver->subtype == PTY_TYPE_MASTER)
2628 	    return tty;
2629 	return tty->link;
2630 }
2631 EXPORT_SYMBOL(tty_pair_get_pty);
2632 
2633 /*
2634  * Split this up, as gcc can choke on it otherwise..
2635  */
2636 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2637 {
2638 	struct tty_struct *tty = file_tty(file);
2639 	struct tty_struct *real_tty;
2640 	void __user *p = (void __user *)arg;
2641 	int retval;
2642 	struct tty_ldisc *ld;
2643 	struct inode *inode = file->f_dentry->d_inode;
2644 
2645 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2646 		return -EINVAL;
2647 
2648 	real_tty = tty_pair_get_tty(tty);
2649 
2650 	/*
2651 	 * Factor out some common prep work
2652 	 */
2653 	switch (cmd) {
2654 	case TIOCSETD:
2655 	case TIOCSBRK:
2656 	case TIOCCBRK:
2657 	case TCSBRK:
2658 	case TCSBRKP:
2659 		retval = tty_check_change(tty);
2660 		if (retval)
2661 			return retval;
2662 		if (cmd != TIOCCBRK) {
2663 			tty_wait_until_sent(tty, 0);
2664 			if (signal_pending(current))
2665 				return -EINTR;
2666 		}
2667 		break;
2668 	}
2669 
2670 	/*
2671 	 *	Now do the stuff.
2672 	 */
2673 	switch (cmd) {
2674 	case TIOCSTI:
2675 		return tiocsti(tty, p);
2676 	case TIOCGWINSZ:
2677 		return tiocgwinsz(real_tty, p);
2678 	case TIOCSWINSZ:
2679 		return tiocswinsz(real_tty, p);
2680 	case TIOCCONS:
2681 		return real_tty != tty ? -EINVAL : tioccons(file);
2682 	case FIONBIO:
2683 		return fionbio(file, p);
2684 	case TIOCEXCL:
2685 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2686 		return 0;
2687 	case TIOCNXCL:
2688 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2689 		return 0;
2690 	case TIOCNOTTY:
2691 		if (current->signal->tty != tty)
2692 			return -ENOTTY;
2693 		no_tty();
2694 		return 0;
2695 	case TIOCSCTTY:
2696 		return tiocsctty(tty, arg);
2697 	case TIOCGPGRP:
2698 		return tiocgpgrp(tty, real_tty, p);
2699 	case TIOCSPGRP:
2700 		return tiocspgrp(tty, real_tty, p);
2701 	case TIOCGSID:
2702 		return tiocgsid(tty, real_tty, p);
2703 	case TIOCGETD:
2704 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2705 	case TIOCSETD:
2706 		return tiocsetd(tty, p);
2707 	case TIOCVHANGUP:
2708 		if (!capable(CAP_SYS_ADMIN))
2709 			return -EPERM;
2710 		tty_vhangup(tty);
2711 		return 0;
2712 	case TIOCGDEV:
2713 	{
2714 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2715 		return put_user(ret, (unsigned int __user *)p);
2716 	}
2717 	/*
2718 	 * Break handling
2719 	 */
2720 	case TIOCSBRK:	/* Turn break on, unconditionally */
2721 		if (tty->ops->break_ctl)
2722 			return tty->ops->break_ctl(tty, -1);
2723 		return 0;
2724 	case TIOCCBRK:	/* Turn break off, unconditionally */
2725 		if (tty->ops->break_ctl)
2726 			return tty->ops->break_ctl(tty, 0);
2727 		return 0;
2728 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2729 		/* non-zero arg means wait for all output data
2730 		 * to be sent (performed above) but don't send break.
2731 		 * This is used by the tcdrain() termios function.
2732 		 */
2733 		if (!arg)
2734 			return send_break(tty, 250);
2735 		return 0;
2736 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2737 		return send_break(tty, arg ? arg*100 : 250);
2738 
2739 	case TIOCMGET:
2740 		return tty_tiocmget(tty, p);
2741 	case TIOCMSET:
2742 	case TIOCMBIC:
2743 	case TIOCMBIS:
2744 		return tty_tiocmset(tty, cmd, p);
2745 	case TIOCGICOUNT:
2746 		retval = tty_tiocgicount(tty, p);
2747 		/* For the moment allow fall through to the old method */
2748         	if (retval != -EINVAL)
2749 			return retval;
2750 		break;
2751 	case TCFLSH:
2752 		switch (arg) {
2753 		case TCIFLUSH:
2754 		case TCIOFLUSH:
2755 		/* flush tty buffer and allow ldisc to process ioctl */
2756 			tty_buffer_flush(tty);
2757 			break;
2758 		}
2759 		break;
2760 	}
2761 	if (tty->ops->ioctl) {
2762 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2763 		if (retval != -ENOIOCTLCMD)
2764 			return retval;
2765 	}
2766 	ld = tty_ldisc_ref_wait(tty);
2767 	retval = -EINVAL;
2768 	if (ld->ops->ioctl) {
2769 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2770 		if (retval == -ENOIOCTLCMD)
2771 			retval = -EINVAL;
2772 	}
2773 	tty_ldisc_deref(ld);
2774 	return retval;
2775 }
2776 
2777 #ifdef CONFIG_COMPAT
2778 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2779 				unsigned long arg)
2780 {
2781 	struct inode *inode = file->f_dentry->d_inode;
2782 	struct tty_struct *tty = file_tty(file);
2783 	struct tty_ldisc *ld;
2784 	int retval = -ENOIOCTLCMD;
2785 
2786 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2787 		return -EINVAL;
2788 
2789 	if (tty->ops->compat_ioctl) {
2790 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2791 		if (retval != -ENOIOCTLCMD)
2792 			return retval;
2793 	}
2794 
2795 	ld = tty_ldisc_ref_wait(tty);
2796 	if (ld->ops->compat_ioctl)
2797 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2798 	else
2799 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2800 	tty_ldisc_deref(ld);
2801 
2802 	return retval;
2803 }
2804 #endif
2805 
2806 /*
2807  * This implements the "Secure Attention Key" ---  the idea is to
2808  * prevent trojan horses by killing all processes associated with this
2809  * tty when the user hits the "Secure Attention Key".  Required for
2810  * super-paranoid applications --- see the Orange Book for more details.
2811  *
2812  * This code could be nicer; ideally it should send a HUP, wait a few
2813  * seconds, then send a INT, and then a KILL signal.  But you then
2814  * have to coordinate with the init process, since all processes associated
2815  * with the current tty must be dead before the new getty is allowed
2816  * to spawn.
2817  *
2818  * Now, if it would be correct ;-/ The current code has a nasty hole -
2819  * it doesn't catch files in flight. We may send the descriptor to ourselves
2820  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2821  *
2822  * Nasty bug: do_SAK is being called in interrupt context.  This can
2823  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2824  */
2825 void __do_SAK(struct tty_struct *tty)
2826 {
2827 #ifdef TTY_SOFT_SAK
2828 	tty_hangup(tty);
2829 #else
2830 	struct task_struct *g, *p;
2831 	struct pid *session;
2832 	int		i;
2833 	struct file	*filp;
2834 	struct fdtable *fdt;
2835 
2836 	if (!tty)
2837 		return;
2838 	session = tty->session;
2839 
2840 	tty_ldisc_flush(tty);
2841 
2842 	tty_driver_flush_buffer(tty);
2843 
2844 	read_lock(&tasklist_lock);
2845 	/* Kill the entire session */
2846 	do_each_pid_task(session, PIDTYPE_SID, p) {
2847 		printk(KERN_NOTICE "SAK: killed process %d"
2848 			" (%s): task_session(p)==tty->session\n",
2849 			task_pid_nr(p), p->comm);
2850 		send_sig(SIGKILL, p, 1);
2851 	} while_each_pid_task(session, PIDTYPE_SID, p);
2852 	/* Now kill any processes that happen to have the
2853 	 * tty open.
2854 	 */
2855 	do_each_thread(g, p) {
2856 		if (p->signal->tty == tty) {
2857 			printk(KERN_NOTICE "SAK: killed process %d"
2858 			    " (%s): task_session(p)==tty->session\n",
2859 			    task_pid_nr(p), p->comm);
2860 			send_sig(SIGKILL, p, 1);
2861 			continue;
2862 		}
2863 		task_lock(p);
2864 		if (p->files) {
2865 			/*
2866 			 * We don't take a ref to the file, so we must
2867 			 * hold ->file_lock instead.
2868 			 */
2869 			spin_lock(&p->files->file_lock);
2870 			fdt = files_fdtable(p->files);
2871 			for (i = 0; i < fdt->max_fds; i++) {
2872 				filp = fcheck_files(p->files, i);
2873 				if (!filp)
2874 					continue;
2875 				if (filp->f_op->read == tty_read &&
2876 				    file_tty(filp) == tty) {
2877 					printk(KERN_NOTICE "SAK: killed process %d"
2878 					    " (%s): fd#%d opened to the tty\n",
2879 					    task_pid_nr(p), p->comm, i);
2880 					force_sig(SIGKILL, p);
2881 					break;
2882 				}
2883 			}
2884 			spin_unlock(&p->files->file_lock);
2885 		}
2886 		task_unlock(p);
2887 	} while_each_thread(g, p);
2888 	read_unlock(&tasklist_lock);
2889 #endif
2890 }
2891 
2892 static void do_SAK_work(struct work_struct *work)
2893 {
2894 	struct tty_struct *tty =
2895 		container_of(work, struct tty_struct, SAK_work);
2896 	__do_SAK(tty);
2897 }
2898 
2899 /*
2900  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2901  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2902  * the values which we write to it will be identical to the values which it
2903  * already has. --akpm
2904  */
2905 void do_SAK(struct tty_struct *tty)
2906 {
2907 	if (!tty)
2908 		return;
2909 	schedule_work(&tty->SAK_work);
2910 }
2911 
2912 EXPORT_SYMBOL(do_SAK);
2913 
2914 static int dev_match_devt(struct device *dev, void *data)
2915 {
2916 	dev_t *devt = data;
2917 	return dev->devt == *devt;
2918 }
2919 
2920 /* Must put_device() after it's unused! */
2921 static struct device *tty_get_device(struct tty_struct *tty)
2922 {
2923 	dev_t devt = tty_devnum(tty);
2924 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2925 }
2926 
2927 
2928 /**
2929  *	initialize_tty_struct
2930  *	@tty: tty to initialize
2931  *
2932  *	This subroutine initializes a tty structure that has been newly
2933  *	allocated.
2934  *
2935  *	Locking: none - tty in question must not be exposed at this point
2936  */
2937 
2938 void initialize_tty_struct(struct tty_struct *tty,
2939 		struct tty_driver *driver, int idx)
2940 {
2941 	memset(tty, 0, sizeof(struct tty_struct));
2942 	kref_init(&tty->kref);
2943 	tty->magic = TTY_MAGIC;
2944 	tty_ldisc_init(tty);
2945 	tty->session = NULL;
2946 	tty->pgrp = NULL;
2947 	tty->overrun_time = jiffies;
2948 	tty_buffer_init(tty);
2949 	mutex_init(&tty->legacy_mutex);
2950 	mutex_init(&tty->termios_mutex);
2951 	mutex_init(&tty->ldisc_mutex);
2952 	init_waitqueue_head(&tty->write_wait);
2953 	init_waitqueue_head(&tty->read_wait);
2954 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2955 	mutex_init(&tty->atomic_read_lock);
2956 	mutex_init(&tty->atomic_write_lock);
2957 	mutex_init(&tty->output_lock);
2958 	mutex_init(&tty->echo_lock);
2959 	spin_lock_init(&tty->read_lock);
2960 	spin_lock_init(&tty->ctrl_lock);
2961 	INIT_LIST_HEAD(&tty->tty_files);
2962 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2963 
2964 	tty->driver = driver;
2965 	tty->ops = driver->ops;
2966 	tty->index = idx;
2967 	tty_line_name(driver, idx, tty->name);
2968 	tty->dev = tty_get_device(tty);
2969 }
2970 
2971 /**
2972  *	deinitialize_tty_struct
2973  *	@tty: tty to deinitialize
2974  *
2975  *	This subroutine deinitializes a tty structure that has been newly
2976  *	allocated but tty_release cannot be called on that yet.
2977  *
2978  *	Locking: none - tty in question must not be exposed at this point
2979  */
2980 void deinitialize_tty_struct(struct tty_struct *tty)
2981 {
2982 	tty_ldisc_deinit(tty);
2983 }
2984 
2985 /**
2986  *	tty_put_char	-	write one character to a tty
2987  *	@tty: tty
2988  *	@ch: character
2989  *
2990  *	Write one byte to the tty using the provided put_char method
2991  *	if present. Returns the number of characters successfully output.
2992  *
2993  *	Note: the specific put_char operation in the driver layer may go
2994  *	away soon. Don't call it directly, use this method
2995  */
2996 
2997 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2998 {
2999 	if (tty->ops->put_char)
3000 		return tty->ops->put_char(tty, ch);
3001 	return tty->ops->write(tty, &ch, 1);
3002 }
3003 EXPORT_SYMBOL_GPL(tty_put_char);
3004 
3005 struct class *tty_class;
3006 
3007 /**
3008  *	tty_register_device - register a tty device
3009  *	@driver: the tty driver that describes the tty device
3010  *	@index: the index in the tty driver for this tty device
3011  *	@device: a struct device that is associated with this tty device.
3012  *		This field is optional, if there is no known struct device
3013  *		for this tty device it can be set to NULL safely.
3014  *
3015  *	Returns a pointer to the struct device for this tty device
3016  *	(or ERR_PTR(-EFOO) on error).
3017  *
3018  *	This call is required to be made to register an individual tty device
3019  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3020  *	that bit is not set, this function should not be called by a tty
3021  *	driver.
3022  *
3023  *	Locking: ??
3024  */
3025 
3026 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3027 				   struct device *device)
3028 {
3029 	char name[64];
3030 	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3031 
3032 	if (index >= driver->num) {
3033 		printk(KERN_ERR "Attempt to register invalid tty line number "
3034 		       " (%d).\n", index);
3035 		return ERR_PTR(-EINVAL);
3036 	}
3037 
3038 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3039 		pty_line_name(driver, index, name);
3040 	else
3041 		tty_line_name(driver, index, name);
3042 
3043 	return device_create(tty_class, device, dev, NULL, name);
3044 }
3045 EXPORT_SYMBOL(tty_register_device);
3046 
3047 /**
3048  * 	tty_unregister_device - unregister a tty device
3049  * 	@driver: the tty driver that describes the tty device
3050  * 	@index: the index in the tty driver for this tty device
3051  *
3052  * 	If a tty device is registered with a call to tty_register_device() then
3053  *	this function must be called when the tty device is gone.
3054  *
3055  *	Locking: ??
3056  */
3057 
3058 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3059 {
3060 	device_destroy(tty_class,
3061 		MKDEV(driver->major, driver->minor_start) + index);
3062 }
3063 EXPORT_SYMBOL(tty_unregister_device);
3064 
3065 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3066 {
3067 	struct tty_driver *driver;
3068 
3069 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3070 	if (driver) {
3071 		kref_init(&driver->kref);
3072 		driver->magic = TTY_DRIVER_MAGIC;
3073 		driver->num = lines;
3074 		driver->owner = owner;
3075 		/* later we'll move allocation of tables here */
3076 	}
3077 	return driver;
3078 }
3079 EXPORT_SYMBOL(__alloc_tty_driver);
3080 
3081 static void destruct_tty_driver(struct kref *kref)
3082 {
3083 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3084 	int i;
3085 	struct ktermios *tp;
3086 	void *p;
3087 
3088 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3089 		/*
3090 		 * Free the termios and termios_locked structures because
3091 		 * we don't want to get memory leaks when modular tty
3092 		 * drivers are removed from the kernel.
3093 		 */
3094 		for (i = 0; i < driver->num; i++) {
3095 			tp = driver->termios[i];
3096 			if (tp) {
3097 				driver->termios[i] = NULL;
3098 				kfree(tp);
3099 			}
3100 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3101 				tty_unregister_device(driver, i);
3102 		}
3103 		p = driver->ttys;
3104 		proc_tty_unregister_driver(driver);
3105 		driver->ttys = NULL;
3106 		driver->termios = NULL;
3107 		kfree(p);
3108 		cdev_del(&driver->cdev);
3109 	}
3110 	kfree(driver);
3111 }
3112 
3113 void tty_driver_kref_put(struct tty_driver *driver)
3114 {
3115 	kref_put(&driver->kref, destruct_tty_driver);
3116 }
3117 EXPORT_SYMBOL(tty_driver_kref_put);
3118 
3119 void tty_set_operations(struct tty_driver *driver,
3120 			const struct tty_operations *op)
3121 {
3122 	driver->ops = op;
3123 };
3124 EXPORT_SYMBOL(tty_set_operations);
3125 
3126 void put_tty_driver(struct tty_driver *d)
3127 {
3128 	tty_driver_kref_put(d);
3129 }
3130 EXPORT_SYMBOL(put_tty_driver);
3131 
3132 /*
3133  * Called by a tty driver to register itself.
3134  */
3135 int tty_register_driver(struct tty_driver *driver)
3136 {
3137 	int error;
3138 	int i;
3139 	dev_t dev;
3140 	void **p = NULL;
3141 	struct device *d;
3142 
3143 	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3144 		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3145 		if (!p)
3146 			return -ENOMEM;
3147 	}
3148 
3149 	if (!driver->major) {
3150 		error = alloc_chrdev_region(&dev, driver->minor_start,
3151 						driver->num, driver->name);
3152 		if (!error) {
3153 			driver->major = MAJOR(dev);
3154 			driver->minor_start = MINOR(dev);
3155 		}
3156 	} else {
3157 		dev = MKDEV(driver->major, driver->minor_start);
3158 		error = register_chrdev_region(dev, driver->num, driver->name);
3159 	}
3160 	if (error < 0) {
3161 		kfree(p);
3162 		return error;
3163 	}
3164 
3165 	if (p) {
3166 		driver->ttys = (struct tty_struct **)p;
3167 		driver->termios = (struct ktermios **)(p + driver->num);
3168 	} else {
3169 		driver->ttys = NULL;
3170 		driver->termios = NULL;
3171 	}
3172 
3173 	cdev_init(&driver->cdev, &tty_fops);
3174 	driver->cdev.owner = driver->owner;
3175 	error = cdev_add(&driver->cdev, dev, driver->num);
3176 	if (error) {
3177 		unregister_chrdev_region(dev, driver->num);
3178 		driver->ttys = NULL;
3179 		driver->termios = NULL;
3180 		kfree(p);
3181 		return error;
3182 	}
3183 
3184 	mutex_lock(&tty_mutex);
3185 	list_add(&driver->tty_drivers, &tty_drivers);
3186 	mutex_unlock(&tty_mutex);
3187 
3188 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3189 		for (i = 0; i < driver->num; i++) {
3190 			d = tty_register_device(driver, i, NULL);
3191 			if (IS_ERR(d)) {
3192 				error = PTR_ERR(d);
3193 				goto err;
3194 			}
3195 		}
3196 	}
3197 	proc_tty_register_driver(driver);
3198 	driver->flags |= TTY_DRIVER_INSTALLED;
3199 	return 0;
3200 
3201 err:
3202 	for (i--; i >= 0; i--)
3203 		tty_unregister_device(driver, i);
3204 
3205 	mutex_lock(&tty_mutex);
3206 	list_del(&driver->tty_drivers);
3207 	mutex_unlock(&tty_mutex);
3208 
3209 	unregister_chrdev_region(dev, driver->num);
3210 	driver->ttys = NULL;
3211 	driver->termios = NULL;
3212 	kfree(p);
3213 	return error;
3214 }
3215 
3216 EXPORT_SYMBOL(tty_register_driver);
3217 
3218 /*
3219  * Called by a tty driver to unregister itself.
3220  */
3221 int tty_unregister_driver(struct tty_driver *driver)
3222 {
3223 #if 0
3224 	/* FIXME */
3225 	if (driver->refcount)
3226 		return -EBUSY;
3227 #endif
3228 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3229 				driver->num);
3230 	mutex_lock(&tty_mutex);
3231 	list_del(&driver->tty_drivers);
3232 	mutex_unlock(&tty_mutex);
3233 	return 0;
3234 }
3235 
3236 EXPORT_SYMBOL(tty_unregister_driver);
3237 
3238 dev_t tty_devnum(struct tty_struct *tty)
3239 {
3240 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3241 }
3242 EXPORT_SYMBOL(tty_devnum);
3243 
3244 void proc_clear_tty(struct task_struct *p)
3245 {
3246 	unsigned long flags;
3247 	struct tty_struct *tty;
3248 	spin_lock_irqsave(&p->sighand->siglock, flags);
3249 	tty = p->signal->tty;
3250 	p->signal->tty = NULL;
3251 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3252 	tty_kref_put(tty);
3253 }
3254 
3255 /* Called under the sighand lock */
3256 
3257 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3258 {
3259 	if (tty) {
3260 		unsigned long flags;
3261 		/* We should not have a session or pgrp to put here but.... */
3262 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3263 		put_pid(tty->session);
3264 		put_pid(tty->pgrp);
3265 		tty->pgrp = get_pid(task_pgrp(tsk));
3266 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3267 		tty->session = get_pid(task_session(tsk));
3268 		if (tsk->signal->tty) {
3269 			printk(KERN_DEBUG "tty not NULL!!\n");
3270 			tty_kref_put(tsk->signal->tty);
3271 		}
3272 	}
3273 	put_pid(tsk->signal->tty_old_pgrp);
3274 	tsk->signal->tty = tty_kref_get(tty);
3275 	tsk->signal->tty_old_pgrp = NULL;
3276 }
3277 
3278 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3279 {
3280 	spin_lock_irq(&tsk->sighand->siglock);
3281 	__proc_set_tty(tsk, tty);
3282 	spin_unlock_irq(&tsk->sighand->siglock);
3283 }
3284 
3285 struct tty_struct *get_current_tty(void)
3286 {
3287 	struct tty_struct *tty;
3288 	unsigned long flags;
3289 
3290 	spin_lock_irqsave(&current->sighand->siglock, flags);
3291 	tty = tty_kref_get(current->signal->tty);
3292 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3293 	return tty;
3294 }
3295 EXPORT_SYMBOL_GPL(get_current_tty);
3296 
3297 void tty_default_fops(struct file_operations *fops)
3298 {
3299 	*fops = tty_fops;
3300 }
3301 
3302 /*
3303  * Initialize the console device. This is called *early*, so
3304  * we can't necessarily depend on lots of kernel help here.
3305  * Just do some early initializations, and do the complex setup
3306  * later.
3307  */
3308 void __init console_init(void)
3309 {
3310 	initcall_t *call;
3311 
3312 	/* Setup the default TTY line discipline. */
3313 	tty_ldisc_begin();
3314 
3315 	/*
3316 	 * set up the console device so that later boot sequences can
3317 	 * inform about problems etc..
3318 	 */
3319 	call = __con_initcall_start;
3320 	while (call < __con_initcall_end) {
3321 		(*call)();
3322 		call++;
3323 	}
3324 }
3325 
3326 static char *tty_devnode(struct device *dev, umode_t *mode)
3327 {
3328 	if (!mode)
3329 		return NULL;
3330 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3331 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3332 		*mode = 0666;
3333 	return NULL;
3334 }
3335 
3336 static int __init tty_class_init(void)
3337 {
3338 	tty_class = class_create(THIS_MODULE, "tty");
3339 	if (IS_ERR(tty_class))
3340 		return PTR_ERR(tty_class);
3341 	tty_class->devnode = tty_devnode;
3342 	return 0;
3343 }
3344 
3345 postcore_initcall(tty_class_init);
3346 
3347 /* 3/2004 jmc: why do these devices exist? */
3348 static struct cdev tty_cdev, console_cdev;
3349 
3350 static ssize_t show_cons_active(struct device *dev,
3351 				struct device_attribute *attr, char *buf)
3352 {
3353 	struct console *cs[16];
3354 	int i = 0;
3355 	struct console *c;
3356 	ssize_t count = 0;
3357 
3358 	console_lock();
3359 	for_each_console(c) {
3360 		if (!c->device)
3361 			continue;
3362 		if (!c->write)
3363 			continue;
3364 		if ((c->flags & CON_ENABLED) == 0)
3365 			continue;
3366 		cs[i++] = c;
3367 		if (i >= ARRAY_SIZE(cs))
3368 			break;
3369 	}
3370 	while (i--)
3371 		count += sprintf(buf + count, "%s%d%c",
3372 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3373 	console_unlock();
3374 
3375 	return count;
3376 }
3377 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3378 
3379 static struct device *consdev;
3380 
3381 void console_sysfs_notify(void)
3382 {
3383 	if (consdev)
3384 		sysfs_notify(&consdev->kobj, NULL, "active");
3385 }
3386 
3387 /*
3388  * Ok, now we can initialize the rest of the tty devices and can count
3389  * on memory allocations, interrupts etc..
3390  */
3391 int __init tty_init(void)
3392 {
3393 	cdev_init(&tty_cdev, &tty_fops);
3394 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3395 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3396 		panic("Couldn't register /dev/tty driver\n");
3397 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3398 
3399 	cdev_init(&console_cdev, &console_fops);
3400 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3401 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3402 		panic("Couldn't register /dev/console driver\n");
3403 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3404 			      "console");
3405 	if (IS_ERR(consdev))
3406 		consdev = NULL;
3407 	else
3408 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3409 
3410 #ifdef CONFIG_VT
3411 	vty_init(&console_fops);
3412 #endif
3413 	return 0;
3414 }
3415 
3416