xref: /linux/drivers/tty/tty_io.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	alloc_tty_struct	-	allocate a tty object
161  *
162  *	Return a new empty tty structure. The data fields have not
163  *	been initialized in any way but has been zeroed
164  *
165  *	Locking: none
166  */
167 
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172 
173 /**
174  *	free_tty_struct		-	free a disused tty
175  *	@tty: tty struct to free
176  *
177  *	Free the write buffers, tty queue and tty memory itself.
178  *
179  *	Locking: none. Must be called after tty is definitely unused
180  */
181 
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 	if (tty->dev)
185 		put_device(tty->dev);
186 	kfree(tty->write_buf);
187 	tty_buffer_free_all(tty);
188 	kfree(tty);
189 }
190 
191 static inline struct tty_struct *file_tty(struct file *file)
192 {
193 	return ((struct tty_file_private *)file->private_data)->tty;
194 }
195 
196 int tty_alloc_file(struct file *file)
197 {
198 	struct tty_file_private *priv;
199 
200 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
201 	if (!priv)
202 		return -ENOMEM;
203 
204 	file->private_data = priv;
205 
206 	return 0;
207 }
208 
209 /* Associate a new file with the tty structure */
210 void tty_add_file(struct tty_struct *tty, struct file *file)
211 {
212 	struct tty_file_private *priv = file->private_data;
213 
214 	priv->tty = tty;
215 	priv->file = file;
216 
217 	spin_lock(&tty_files_lock);
218 	list_add(&priv->list, &tty->tty_files);
219 	spin_unlock(&tty_files_lock);
220 }
221 
222 /**
223  * tty_free_file - free file->private_data
224  *
225  * This shall be used only for fail path handling when tty_add_file was not
226  * called yet.
227  */
228 void tty_free_file(struct file *file)
229 {
230 	struct tty_file_private *priv = file->private_data;
231 
232 	file->private_data = NULL;
233 	kfree(priv);
234 }
235 
236 /* Delete file from its tty */
237 void tty_del_file(struct file *file)
238 {
239 	struct tty_file_private *priv = file->private_data;
240 
241 	spin_lock(&tty_files_lock);
242 	list_del(&priv->list);
243 	spin_unlock(&tty_files_lock);
244 	tty_free_file(file);
245 }
246 
247 
248 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
249 
250 /**
251  *	tty_name	-	return tty naming
252  *	@tty: tty structure
253  *	@buf: buffer for output
254  *
255  *	Convert a tty structure into a name. The name reflects the kernel
256  *	naming policy and if udev is in use may not reflect user space
257  *
258  *	Locking: none
259  */
260 
261 char *tty_name(struct tty_struct *tty, char *buf)
262 {
263 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
264 		strcpy(buf, "NULL tty");
265 	else
266 		strcpy(buf, tty->name);
267 	return buf;
268 }
269 
270 EXPORT_SYMBOL(tty_name);
271 
272 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
273 			      const char *routine)
274 {
275 #ifdef TTY_PARANOIA_CHECK
276 	if (!tty) {
277 		printk(KERN_WARNING
278 			"null TTY for (%d:%d) in %s\n",
279 			imajor(inode), iminor(inode), routine);
280 		return 1;
281 	}
282 	if (tty->magic != TTY_MAGIC) {
283 		printk(KERN_WARNING
284 			"bad magic number for tty struct (%d:%d) in %s\n",
285 			imajor(inode), iminor(inode), routine);
286 		return 1;
287 	}
288 #endif
289 	return 0;
290 }
291 
292 static int check_tty_count(struct tty_struct *tty, const char *routine)
293 {
294 #ifdef CHECK_TTY_COUNT
295 	struct list_head *p;
296 	int count = 0;
297 
298 	spin_lock(&tty_files_lock);
299 	list_for_each(p, &tty->tty_files) {
300 		count++;
301 	}
302 	spin_unlock(&tty_files_lock);
303 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
304 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
305 	    tty->link && tty->link->count)
306 		count++;
307 	if (tty->count != count) {
308 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
309 				    "!= #fd's(%d) in %s\n",
310 		       tty->name, tty->count, count, routine);
311 		return count;
312 	}
313 #endif
314 	return 0;
315 }
316 
317 /**
318  *	get_tty_driver		-	find device of a tty
319  *	@dev_t: device identifier
320  *	@index: returns the index of the tty
321  *
322  *	This routine returns a tty driver structure, given a device number
323  *	and also passes back the index number.
324  *
325  *	Locking: caller must hold tty_mutex
326  */
327 
328 static struct tty_driver *get_tty_driver(dev_t device, int *index)
329 {
330 	struct tty_driver *p;
331 
332 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
333 		dev_t base = MKDEV(p->major, p->minor_start);
334 		if (device < base || device >= base + p->num)
335 			continue;
336 		*index = device - base;
337 		return tty_driver_kref_get(p);
338 	}
339 	return NULL;
340 }
341 
342 #ifdef CONFIG_CONSOLE_POLL
343 
344 /**
345  *	tty_find_polling_driver	-	find device of a polled tty
346  *	@name: name string to match
347  *	@line: pointer to resulting tty line nr
348  *
349  *	This routine returns a tty driver structure, given a name
350  *	and the condition that the tty driver is capable of polled
351  *	operation.
352  */
353 struct tty_driver *tty_find_polling_driver(char *name, int *line)
354 {
355 	struct tty_driver *p, *res = NULL;
356 	int tty_line = 0;
357 	int len;
358 	char *str, *stp;
359 
360 	for (str = name; *str; str++)
361 		if ((*str >= '0' && *str <= '9') || *str == ',')
362 			break;
363 	if (!*str)
364 		return NULL;
365 
366 	len = str - name;
367 	tty_line = simple_strtoul(str, &str, 10);
368 
369 	mutex_lock(&tty_mutex);
370 	/* Search through the tty devices to look for a match */
371 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
372 		if (strncmp(name, p->name, len) != 0)
373 			continue;
374 		stp = str;
375 		if (*stp == ',')
376 			stp++;
377 		if (*stp == '\0')
378 			stp = NULL;
379 
380 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
381 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
382 			res = tty_driver_kref_get(p);
383 			*line = tty_line;
384 			break;
385 		}
386 	}
387 	mutex_unlock(&tty_mutex);
388 
389 	return res;
390 }
391 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
392 #endif
393 
394 /**
395  *	tty_check_change	-	check for POSIX terminal changes
396  *	@tty: tty to check
397  *
398  *	If we try to write to, or set the state of, a terminal and we're
399  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
400  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
401  *
402  *	Locking: ctrl_lock
403  */
404 
405 int tty_check_change(struct tty_struct *tty)
406 {
407 	unsigned long flags;
408 	int ret = 0;
409 
410 	if (current->signal->tty != tty)
411 		return 0;
412 
413 	spin_lock_irqsave(&tty->ctrl_lock, flags);
414 
415 	if (!tty->pgrp) {
416 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
417 		goto out_unlock;
418 	}
419 	if (task_pgrp(current) == tty->pgrp)
420 		goto out_unlock;
421 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
422 	if (is_ignored(SIGTTOU))
423 		goto out;
424 	if (is_current_pgrp_orphaned()) {
425 		ret = -EIO;
426 		goto out;
427 	}
428 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
429 	set_thread_flag(TIF_SIGPENDING);
430 	ret = -ERESTARTSYS;
431 out:
432 	return ret;
433 out_unlock:
434 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
435 	return ret;
436 }
437 
438 EXPORT_SYMBOL(tty_check_change);
439 
440 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
441 				size_t count, loff_t *ppos)
442 {
443 	return 0;
444 }
445 
446 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
447 				 size_t count, loff_t *ppos)
448 {
449 	return -EIO;
450 }
451 
452 /* No kernel lock held - none needed ;) */
453 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
454 {
455 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
456 }
457 
458 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
459 		unsigned long arg)
460 {
461 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
462 }
463 
464 static long hung_up_tty_compat_ioctl(struct file *file,
465 				     unsigned int cmd, unsigned long arg)
466 {
467 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
468 }
469 
470 static const struct file_operations tty_fops = {
471 	.llseek		= no_llseek,
472 	.read		= tty_read,
473 	.write		= tty_write,
474 	.poll		= tty_poll,
475 	.unlocked_ioctl	= tty_ioctl,
476 	.compat_ioctl	= tty_compat_ioctl,
477 	.open		= tty_open,
478 	.release	= tty_release,
479 	.fasync		= tty_fasync,
480 };
481 
482 static const struct file_operations console_fops = {
483 	.llseek		= no_llseek,
484 	.read		= tty_read,
485 	.write		= redirected_tty_write,
486 	.poll		= tty_poll,
487 	.unlocked_ioctl	= tty_ioctl,
488 	.compat_ioctl	= tty_compat_ioctl,
489 	.open		= tty_open,
490 	.release	= tty_release,
491 	.fasync		= tty_fasync,
492 };
493 
494 static const struct file_operations hung_up_tty_fops = {
495 	.llseek		= no_llseek,
496 	.read		= hung_up_tty_read,
497 	.write		= hung_up_tty_write,
498 	.poll		= hung_up_tty_poll,
499 	.unlocked_ioctl	= hung_up_tty_ioctl,
500 	.compat_ioctl	= hung_up_tty_compat_ioctl,
501 	.release	= tty_release,
502 };
503 
504 static DEFINE_SPINLOCK(redirect_lock);
505 static struct file *redirect;
506 
507 /**
508  *	tty_wakeup	-	request more data
509  *	@tty: terminal
510  *
511  *	Internal and external helper for wakeups of tty. This function
512  *	informs the line discipline if present that the driver is ready
513  *	to receive more output data.
514  */
515 
516 void tty_wakeup(struct tty_struct *tty)
517 {
518 	struct tty_ldisc *ld;
519 
520 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521 		ld = tty_ldisc_ref(tty);
522 		if (ld) {
523 			if (ld->ops->write_wakeup)
524 				ld->ops->write_wakeup(tty);
525 			tty_ldisc_deref(ld);
526 		}
527 	}
528 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
529 }
530 
531 EXPORT_SYMBOL_GPL(tty_wakeup);
532 
533 /**
534  *	__tty_hangup		-	actual handler for hangup events
535  *	@work: tty device
536  *
537  *	This can be called by the "eventd" kernel thread.  That is process
538  *	synchronous but doesn't hold any locks, so we need to make sure we
539  *	have the appropriate locks for what we're doing.
540  *
541  *	The hangup event clears any pending redirections onto the hung up
542  *	device. It ensures future writes will error and it does the needed
543  *	line discipline hangup and signal delivery. The tty object itself
544  *	remains intact.
545  *
546  *	Locking:
547  *		BTM
548  *		  redirect lock for undoing redirection
549  *		  file list lock for manipulating list of ttys
550  *		  tty_ldisc_lock from called functions
551  *		  termios_mutex resetting termios data
552  *		  tasklist_lock to walk task list for hangup event
553  *		    ->siglock to protect ->signal/->sighand
554  */
555 void __tty_hangup(struct tty_struct *tty)
556 {
557 	struct file *cons_filp = NULL;
558 	struct file *filp, *f = NULL;
559 	struct task_struct *p;
560 	struct tty_file_private *priv;
561 	int    closecount = 0, n;
562 	unsigned long flags;
563 	int refs = 0;
564 
565 	if (!tty)
566 		return;
567 
568 
569 	spin_lock(&redirect_lock);
570 	if (redirect && file_tty(redirect) == tty) {
571 		f = redirect;
572 		redirect = NULL;
573 	}
574 	spin_unlock(&redirect_lock);
575 
576 	tty_lock();
577 
578 	/* some functions below drop BTM, so we need this bit */
579 	set_bit(TTY_HUPPING, &tty->flags);
580 
581 	/* inuse_filps is protected by the single tty lock,
582 	   this really needs to change if we want to flush the
583 	   workqueue with the lock held */
584 	check_tty_count(tty, "tty_hangup");
585 
586 	spin_lock(&tty_files_lock);
587 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
588 	list_for_each_entry(priv, &tty->tty_files, list) {
589 		filp = priv->file;
590 		if (filp->f_op->write == redirected_tty_write)
591 			cons_filp = filp;
592 		if (filp->f_op->write != tty_write)
593 			continue;
594 		closecount++;
595 		__tty_fasync(-1, filp, 0);	/* can't block */
596 		filp->f_op = &hung_up_tty_fops;
597 	}
598 	spin_unlock(&tty_files_lock);
599 
600 	/*
601 	 * it drops BTM and thus races with reopen
602 	 * we protect the race by TTY_HUPPING
603 	 */
604 	tty_ldisc_hangup(tty);
605 
606 	read_lock(&tasklist_lock);
607 	if (tty->session) {
608 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609 			spin_lock_irq(&p->sighand->siglock);
610 			if (p->signal->tty == tty) {
611 				p->signal->tty = NULL;
612 				/* We defer the dereferences outside fo
613 				   the tasklist lock */
614 				refs++;
615 			}
616 			if (!p->signal->leader) {
617 				spin_unlock_irq(&p->sighand->siglock);
618 				continue;
619 			}
620 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
623 			spin_lock_irqsave(&tty->ctrl_lock, flags);
624 			if (tty->pgrp)
625 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627 			spin_unlock_irq(&p->sighand->siglock);
628 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
629 	}
630 	read_unlock(&tasklist_lock);
631 
632 	spin_lock_irqsave(&tty->ctrl_lock, flags);
633 	clear_bit(TTY_THROTTLED, &tty->flags);
634 	clear_bit(TTY_PUSH, &tty->flags);
635 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636 	put_pid(tty->session);
637 	put_pid(tty->pgrp);
638 	tty->session = NULL;
639 	tty->pgrp = NULL;
640 	tty->ctrl_status = 0;
641 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
642 
643 	/* Account for the p->signal references we killed */
644 	while (refs--)
645 		tty_kref_put(tty);
646 
647 	/*
648 	 * If one of the devices matches a console pointer, we
649 	 * cannot just call hangup() because that will cause
650 	 * tty->count and state->count to go out of sync.
651 	 * So we just call close() the right number of times.
652 	 */
653 	if (cons_filp) {
654 		if (tty->ops->close)
655 			for (n = 0; n < closecount; n++)
656 				tty->ops->close(tty, cons_filp);
657 	} else if (tty->ops->hangup)
658 		(tty->ops->hangup)(tty);
659 	/*
660 	 * We don't want to have driver/ldisc interactions beyond
661 	 * the ones we did here. The driver layer expects no
662 	 * calls after ->hangup() from the ldisc side. However we
663 	 * can't yet guarantee all that.
664 	 */
665 	set_bit(TTY_HUPPED, &tty->flags);
666 	clear_bit(TTY_HUPPING, &tty->flags);
667 	tty_ldisc_enable(tty);
668 
669 	tty_unlock();
670 
671 	if (f)
672 		fput(f);
673 }
674 
675 static void do_tty_hangup(struct work_struct *work)
676 {
677 	struct tty_struct *tty =
678 		container_of(work, struct tty_struct, hangup_work);
679 
680 	__tty_hangup(tty);
681 }
682 
683 /**
684  *	tty_hangup		-	trigger a hangup event
685  *	@tty: tty to hangup
686  *
687  *	A carrier loss (virtual or otherwise) has occurred on this like
688  *	schedule a hangup sequence to run after this event.
689  */
690 
691 void tty_hangup(struct tty_struct *tty)
692 {
693 #ifdef TTY_DEBUG_HANGUP
694 	char	buf[64];
695 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
696 #endif
697 	schedule_work(&tty->hangup_work);
698 }
699 
700 EXPORT_SYMBOL(tty_hangup);
701 
702 /**
703  *	tty_vhangup		-	process vhangup
704  *	@tty: tty to hangup
705  *
706  *	The user has asked via system call for the terminal to be hung up.
707  *	We do this synchronously so that when the syscall returns the process
708  *	is complete. That guarantee is necessary for security reasons.
709  */
710 
711 void tty_vhangup(struct tty_struct *tty)
712 {
713 #ifdef TTY_DEBUG_HANGUP
714 	char	buf[64];
715 
716 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
717 #endif
718 	__tty_hangup(tty);
719 }
720 
721 EXPORT_SYMBOL(tty_vhangup);
722 
723 
724 /**
725  *	tty_vhangup_self	-	process vhangup for own ctty
726  *
727  *	Perform a vhangup on the current controlling tty
728  */
729 
730 void tty_vhangup_self(void)
731 {
732 	struct tty_struct *tty;
733 
734 	tty = get_current_tty();
735 	if (tty) {
736 		tty_vhangup(tty);
737 		tty_kref_put(tty);
738 	}
739 }
740 
741 /**
742  *	tty_hung_up_p		-	was tty hung up
743  *	@filp: file pointer of tty
744  *
745  *	Return true if the tty has been subject to a vhangup or a carrier
746  *	loss
747  */
748 
749 int tty_hung_up_p(struct file *filp)
750 {
751 	return (filp->f_op == &hung_up_tty_fops);
752 }
753 
754 EXPORT_SYMBOL(tty_hung_up_p);
755 
756 static void session_clear_tty(struct pid *session)
757 {
758 	struct task_struct *p;
759 	do_each_pid_task(session, PIDTYPE_SID, p) {
760 		proc_clear_tty(p);
761 	} while_each_pid_task(session, PIDTYPE_SID, p);
762 }
763 
764 /**
765  *	disassociate_ctty	-	disconnect controlling tty
766  *	@on_exit: true if exiting so need to "hang up" the session
767  *
768  *	This function is typically called only by the session leader, when
769  *	it wants to disassociate itself from its controlling tty.
770  *
771  *	It performs the following functions:
772  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
773  * 	(2)  Clears the tty from being controlling the session
774  * 	(3)  Clears the controlling tty for all processes in the
775  * 		session group.
776  *
777  *	The argument on_exit is set to 1 if called when a process is
778  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
779  *
780  *	Locking:
781  *		BTM is taken for hysterical raisins, and held when
782  *		  called from no_tty().
783  *		  tty_mutex is taken to protect tty
784  *		  ->siglock is taken to protect ->signal/->sighand
785  *		  tasklist_lock is taken to walk process list for sessions
786  *		    ->siglock is taken to protect ->signal/->sighand
787  */
788 
789 void disassociate_ctty(int on_exit)
790 {
791 	struct tty_struct *tty;
792 
793 	if (!current->signal->leader)
794 		return;
795 
796 	tty = get_current_tty();
797 	if (tty) {
798 		struct pid *tty_pgrp = get_pid(tty->pgrp);
799 		if (on_exit) {
800 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
801 				tty_vhangup(tty);
802 		}
803 		tty_kref_put(tty);
804 		if (tty_pgrp) {
805 			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
806 			if (!on_exit)
807 				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
808 			put_pid(tty_pgrp);
809 		}
810 	} else if (on_exit) {
811 		struct pid *old_pgrp;
812 		spin_lock_irq(&current->sighand->siglock);
813 		old_pgrp = current->signal->tty_old_pgrp;
814 		current->signal->tty_old_pgrp = NULL;
815 		spin_unlock_irq(&current->sighand->siglock);
816 		if (old_pgrp) {
817 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
818 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
819 			put_pid(old_pgrp);
820 		}
821 		return;
822 	}
823 
824 	spin_lock_irq(&current->sighand->siglock);
825 	put_pid(current->signal->tty_old_pgrp);
826 	current->signal->tty_old_pgrp = NULL;
827 	spin_unlock_irq(&current->sighand->siglock);
828 
829 	tty = get_current_tty();
830 	if (tty) {
831 		unsigned long flags;
832 		spin_lock_irqsave(&tty->ctrl_lock, flags);
833 		put_pid(tty->session);
834 		put_pid(tty->pgrp);
835 		tty->session = NULL;
836 		tty->pgrp = NULL;
837 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
838 		tty_kref_put(tty);
839 	} else {
840 #ifdef TTY_DEBUG_HANGUP
841 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
842 		       " = NULL", tty);
843 #endif
844 	}
845 
846 	/* Now clear signal->tty under the lock */
847 	read_lock(&tasklist_lock);
848 	session_clear_tty(task_session(current));
849 	read_unlock(&tasklist_lock);
850 }
851 
852 /**
853  *
854  *	no_tty	- Ensure the current process does not have a controlling tty
855  */
856 void no_tty(void)
857 {
858 	/* FIXME: Review locking here. The tty_lock never covered any race
859 	   between a new association and proc_clear_tty but possible we need
860 	   to protect against this anyway */
861 	struct task_struct *tsk = current;
862 	disassociate_ctty(0);
863 	proc_clear_tty(tsk);
864 }
865 
866 
867 /**
868  *	stop_tty	-	propagate flow control
869  *	@tty: tty to stop
870  *
871  *	Perform flow control to the driver. For PTY/TTY pairs we
872  *	must also propagate the TIOCKPKT status. May be called
873  *	on an already stopped device and will not re-call the driver
874  *	method.
875  *
876  *	This functionality is used by both the line disciplines for
877  *	halting incoming flow and by the driver. It may therefore be
878  *	called from any context, may be under the tty atomic_write_lock
879  *	but not always.
880  *
881  *	Locking:
882  *		Uses the tty control lock internally
883  */
884 
885 void stop_tty(struct tty_struct *tty)
886 {
887 	unsigned long flags;
888 	spin_lock_irqsave(&tty->ctrl_lock, flags);
889 	if (tty->stopped) {
890 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891 		return;
892 	}
893 	tty->stopped = 1;
894 	if (tty->link && tty->link->packet) {
895 		tty->ctrl_status &= ~TIOCPKT_START;
896 		tty->ctrl_status |= TIOCPKT_STOP;
897 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898 	}
899 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900 	if (tty->ops->stop)
901 		(tty->ops->stop)(tty);
902 }
903 
904 EXPORT_SYMBOL(stop_tty);
905 
906 /**
907  *	start_tty	-	propagate flow control
908  *	@tty: tty to start
909  *
910  *	Start a tty that has been stopped if at all possible. Perform
911  *	any necessary wakeups and propagate the TIOCPKT status. If this
912  *	is the tty was previous stopped and is being started then the
913  *	driver start method is invoked and the line discipline woken.
914  *
915  *	Locking:
916  *		ctrl_lock
917  */
918 
919 void start_tty(struct tty_struct *tty)
920 {
921 	unsigned long flags;
922 	spin_lock_irqsave(&tty->ctrl_lock, flags);
923 	if (!tty->stopped || tty->flow_stopped) {
924 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925 		return;
926 	}
927 	tty->stopped = 0;
928 	if (tty->link && tty->link->packet) {
929 		tty->ctrl_status &= ~TIOCPKT_STOP;
930 		tty->ctrl_status |= TIOCPKT_START;
931 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932 	}
933 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934 	if (tty->ops->start)
935 		(tty->ops->start)(tty);
936 	/* If we have a running line discipline it may need kicking */
937 	tty_wakeup(tty);
938 }
939 
940 EXPORT_SYMBOL(start_tty);
941 
942 /**
943  *	tty_read	-	read method for tty device files
944  *	@file: pointer to tty file
945  *	@buf: user buffer
946  *	@count: size of user buffer
947  *	@ppos: unused
948  *
949  *	Perform the read system call function on this terminal device. Checks
950  *	for hung up devices before calling the line discipline method.
951  *
952  *	Locking:
953  *		Locks the line discipline internally while needed. Multiple
954  *	read calls may be outstanding in parallel.
955  */
956 
957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958 			loff_t *ppos)
959 {
960 	int i;
961 	struct inode *inode = file->f_path.dentry->d_inode;
962 	struct tty_struct *tty = file_tty(file);
963 	struct tty_ldisc *ld;
964 
965 	if (tty_paranoia_check(tty, inode, "tty_read"))
966 		return -EIO;
967 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968 		return -EIO;
969 
970 	/* We want to wait for the line discipline to sort out in this
971 	   situation */
972 	ld = tty_ldisc_ref_wait(tty);
973 	if (ld->ops->read)
974 		i = (ld->ops->read)(tty, file, buf, count);
975 	else
976 		i = -EIO;
977 	tty_ldisc_deref(ld);
978 	if (i > 0)
979 		inode->i_atime = current_fs_time(inode->i_sb);
980 	return i;
981 }
982 
983 void tty_write_unlock(struct tty_struct *tty)
984 	__releases(&tty->atomic_write_lock)
985 {
986 	mutex_unlock(&tty->atomic_write_lock);
987 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989 
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991 	__acquires(&tty->atomic_write_lock)
992 {
993 	if (!mutex_trylock(&tty->atomic_write_lock)) {
994 		if (ndelay)
995 			return -EAGAIN;
996 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
997 			return -ERESTARTSYS;
998 	}
999 	return 0;
1000 }
1001 
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008 	struct tty_struct *tty,
1009 	struct file *file,
1010 	const char __user *buf,
1011 	size_t count)
1012 {
1013 	ssize_t ret, written = 0;
1014 	unsigned int chunk;
1015 
1016 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017 	if (ret < 0)
1018 		return ret;
1019 
1020 	/*
1021 	 * We chunk up writes into a temporary buffer. This
1022 	 * simplifies low-level drivers immensely, since they
1023 	 * don't have locking issues and user mode accesses.
1024 	 *
1025 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026 	 * big chunk-size..
1027 	 *
1028 	 * The default chunk-size is 2kB, because the NTTY
1029 	 * layer has problems with bigger chunks. It will
1030 	 * claim to be able to handle more characters than
1031 	 * it actually does.
1032 	 *
1033 	 * FIXME: This can probably go away now except that 64K chunks
1034 	 * are too likely to fail unless switched to vmalloc...
1035 	 */
1036 	chunk = 2048;
1037 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038 		chunk = 65536;
1039 	if (count < chunk)
1040 		chunk = count;
1041 
1042 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043 	if (tty->write_cnt < chunk) {
1044 		unsigned char *buf_chunk;
1045 
1046 		if (chunk < 1024)
1047 			chunk = 1024;
1048 
1049 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050 		if (!buf_chunk) {
1051 			ret = -ENOMEM;
1052 			goto out;
1053 		}
1054 		kfree(tty->write_buf);
1055 		tty->write_cnt = chunk;
1056 		tty->write_buf = buf_chunk;
1057 	}
1058 
1059 	/* Do the write .. */
1060 	for (;;) {
1061 		size_t size = count;
1062 		if (size > chunk)
1063 			size = chunk;
1064 		ret = -EFAULT;
1065 		if (copy_from_user(tty->write_buf, buf, size))
1066 			break;
1067 		ret = write(tty, file, tty->write_buf, size);
1068 		if (ret <= 0)
1069 			break;
1070 		written += ret;
1071 		buf += ret;
1072 		count -= ret;
1073 		if (!count)
1074 			break;
1075 		ret = -ERESTARTSYS;
1076 		if (signal_pending(current))
1077 			break;
1078 		cond_resched();
1079 	}
1080 	if (written) {
1081 		struct inode *inode = file->f_path.dentry->d_inode;
1082 		inode->i_mtime = current_fs_time(inode->i_sb);
1083 		ret = written;
1084 	}
1085 out:
1086 	tty_write_unlock(tty);
1087 	return ret;
1088 }
1089 
1090 /**
1091  * tty_write_message - write a message to a certain tty, not just the console.
1092  * @tty: the destination tty_struct
1093  * @msg: the message to write
1094  *
1095  * This is used for messages that need to be redirected to a specific tty.
1096  * We don't put it into the syslog queue right now maybe in the future if
1097  * really needed.
1098  *
1099  * We must still hold the BTM and test the CLOSING flag for the moment.
1100  */
1101 
1102 void tty_write_message(struct tty_struct *tty, char *msg)
1103 {
1104 	if (tty) {
1105 		mutex_lock(&tty->atomic_write_lock);
1106 		tty_lock();
1107 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108 			tty_unlock();
1109 			tty->ops->write(tty, msg, strlen(msg));
1110 		} else
1111 			tty_unlock();
1112 		tty_write_unlock(tty);
1113 	}
1114 	return;
1115 }
1116 
1117 
1118 /**
1119  *	tty_write		-	write method for tty device file
1120  *	@file: tty file pointer
1121  *	@buf: user data to write
1122  *	@count: bytes to write
1123  *	@ppos: unused
1124  *
1125  *	Write data to a tty device via the line discipline.
1126  *
1127  *	Locking:
1128  *		Locks the line discipline as required
1129  *		Writes to the tty driver are serialized by the atomic_write_lock
1130  *	and are then processed in chunks to the device. The line discipline
1131  *	write method will not be invoked in parallel for each device.
1132  */
1133 
1134 static ssize_t tty_write(struct file *file, const char __user *buf,
1135 						size_t count, loff_t *ppos)
1136 {
1137 	struct inode *inode = file->f_path.dentry->d_inode;
1138 	struct tty_struct *tty = file_tty(file);
1139  	struct tty_ldisc *ld;
1140 	ssize_t ret;
1141 
1142 	if (tty_paranoia_check(tty, inode, "tty_write"))
1143 		return -EIO;
1144 	if (!tty || !tty->ops->write ||
1145 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1146 			return -EIO;
1147 	/* Short term debug to catch buggy drivers */
1148 	if (tty->ops->write_room == NULL)
1149 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150 			tty->driver->name);
1151 	ld = tty_ldisc_ref_wait(tty);
1152 	if (!ld->ops->write)
1153 		ret = -EIO;
1154 	else
1155 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156 	tty_ldisc_deref(ld);
1157 	return ret;
1158 }
1159 
1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161 						size_t count, loff_t *ppos)
1162 {
1163 	struct file *p = NULL;
1164 
1165 	spin_lock(&redirect_lock);
1166 	if (redirect) {
1167 		get_file(redirect);
1168 		p = redirect;
1169 	}
1170 	spin_unlock(&redirect_lock);
1171 
1172 	if (p) {
1173 		ssize_t res;
1174 		res = vfs_write(p, buf, count, &p->f_pos);
1175 		fput(p);
1176 		return res;
1177 	}
1178 	return tty_write(file, buf, count, ppos);
1179 }
1180 
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182 
1183 /**
1184  *	pty_line_name	-	generate name for a pty
1185  *	@driver: the tty driver in use
1186  *	@index: the minor number
1187  *	@p: output buffer of at least 6 bytes
1188  *
1189  *	Generate a name from a driver reference and write it to the output
1190  *	buffer.
1191  *
1192  *	Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196 	int i = index + driver->name_base;
1197 	/* ->name is initialized to "ttyp", but "tty" is expected */
1198 	sprintf(p, "%s%c%x",
1199 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200 		ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202 
1203 /**
1204  *	tty_line_name	-	generate name for a tty
1205  *	@driver: the tty driver in use
1206  *	@index: the minor number
1207  *	@p: output buffer of at least 7 bytes
1208  *
1209  *	Generate a name from a driver reference and write it to the output
1210  *	buffer.
1211  *
1212  *	Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216 	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217 }
1218 
1219 /**
1220  *	tty_driver_lookup_tty() - find an existing tty, if any
1221  *	@driver: the driver for the tty
1222  *	@idx:	 the minor number
1223  *
1224  *	Return the tty, if found or ERR_PTR() otherwise.
1225  *
1226  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1227  *	be held until the 'fast-open' is also done. Will change once we
1228  *	have refcounting in the driver and per driver locking
1229  */
1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231 		struct inode *inode, int idx)
1232 {
1233 	if (driver->ops->lookup)
1234 		return driver->ops->lookup(driver, inode, idx);
1235 
1236 	return driver->ttys[idx];
1237 }
1238 
1239 /**
1240  *	tty_init_termios	-  helper for termios setup
1241  *	@tty: the tty to set up
1242  *
1243  *	Initialise the termios structures for this tty. Thus runs under
1244  *	the tty_mutex currently so we can be relaxed about ordering.
1245  */
1246 
1247 int tty_init_termios(struct tty_struct *tty)
1248 {
1249 	struct ktermios *tp;
1250 	int idx = tty->index;
1251 
1252 	tp = tty->driver->termios[idx];
1253 	if (tp == NULL) {
1254 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1255 		if (tp == NULL)
1256 			return -ENOMEM;
1257 		*tp = tty->driver->init_termios;
1258 		tty->driver->termios[idx] = tp;
1259 	}
1260 	tty->termios = *tp;
1261 
1262 	/* Compatibility until drivers always set this */
1263 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1264 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1265 	return 0;
1266 }
1267 EXPORT_SYMBOL_GPL(tty_init_termios);
1268 
1269 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1270 {
1271 	int ret = tty_init_termios(tty);
1272 	if (ret)
1273 		return ret;
1274 
1275 	tty_driver_kref_get(driver);
1276 	tty->count++;
1277 	driver->ttys[tty->index] = tty;
1278 	return 0;
1279 }
1280 EXPORT_SYMBOL_GPL(tty_standard_install);
1281 
1282 /**
1283  *	tty_driver_install_tty() - install a tty entry in the driver
1284  *	@driver: the driver for the tty
1285  *	@tty: the tty
1286  *
1287  *	Install a tty object into the driver tables. The tty->index field
1288  *	will be set by the time this is called. This method is responsible
1289  *	for ensuring any need additional structures are allocated and
1290  *	configured.
1291  *
1292  *	Locking: tty_mutex for now
1293  */
1294 static int tty_driver_install_tty(struct tty_driver *driver,
1295 						struct tty_struct *tty)
1296 {
1297 	return driver->ops->install ? driver->ops->install(driver, tty) :
1298 		tty_standard_install(driver, tty);
1299 }
1300 
1301 /**
1302  *	tty_driver_remove_tty() - remove a tty from the driver tables
1303  *	@driver: the driver for the tty
1304  *	@idx:	 the minor number
1305  *
1306  *	Remvoe a tty object from the driver tables. The tty->index field
1307  *	will be set by the time this is called.
1308  *
1309  *	Locking: tty_mutex for now
1310  */
1311 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1312 {
1313 	if (driver->ops->remove)
1314 		driver->ops->remove(driver, tty);
1315 	else
1316 		driver->ttys[tty->index] = NULL;
1317 }
1318 
1319 /*
1320  * 	tty_reopen()	- fast re-open of an open tty
1321  * 	@tty	- the tty to open
1322  *
1323  *	Return 0 on success, -errno on error.
1324  *
1325  *	Locking: tty_mutex must be held from the time the tty was found
1326  *		 till this open completes.
1327  */
1328 static int tty_reopen(struct tty_struct *tty)
1329 {
1330 	struct tty_driver *driver = tty->driver;
1331 
1332 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1333 			test_bit(TTY_HUPPING, &tty->flags) ||
1334 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1335 		return -EIO;
1336 
1337 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1338 	    driver->subtype == PTY_TYPE_MASTER) {
1339 		/*
1340 		 * special case for PTY masters: only one open permitted,
1341 		 * and the slave side open count is incremented as well.
1342 		 */
1343 		if (tty->count)
1344 			return -EIO;
1345 
1346 		tty->link->count++;
1347 	}
1348 	tty->count++;
1349 
1350 	mutex_lock(&tty->ldisc_mutex);
1351 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1352 	mutex_unlock(&tty->ldisc_mutex);
1353 
1354 	return 0;
1355 }
1356 
1357 /**
1358  *	tty_init_dev		-	initialise a tty device
1359  *	@driver: tty driver we are opening a device on
1360  *	@idx: device index
1361  *	@ret_tty: returned tty structure
1362  *
1363  *	Prepare a tty device. This may not be a "new" clean device but
1364  *	could also be an active device. The pty drivers require special
1365  *	handling because of this.
1366  *
1367  *	Locking:
1368  *		The function is called under the tty_mutex, which
1369  *	protects us from the tty struct or driver itself going away.
1370  *
1371  *	On exit the tty device has the line discipline attached and
1372  *	a reference count of 1. If a pair was created for pty/tty use
1373  *	and the other was a pty master then it too has a reference count of 1.
1374  *
1375  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1376  * failed open.  The new code protects the open with a mutex, so it's
1377  * really quite straightforward.  The mutex locking can probably be
1378  * relaxed for the (most common) case of reopening a tty.
1379  */
1380 
1381 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1382 {
1383 	struct tty_struct *tty;
1384 	int retval;
1385 
1386 	/*
1387 	 * First time open is complex, especially for PTY devices.
1388 	 * This code guarantees that either everything succeeds and the
1389 	 * TTY is ready for operation, or else the table slots are vacated
1390 	 * and the allocated memory released.  (Except that the termios
1391 	 * and locked termios may be retained.)
1392 	 */
1393 
1394 	if (!try_module_get(driver->owner))
1395 		return ERR_PTR(-ENODEV);
1396 
1397 	tty = alloc_tty_struct();
1398 	if (!tty) {
1399 		retval = -ENOMEM;
1400 		goto err_module_put;
1401 	}
1402 	initialize_tty_struct(tty, driver, idx);
1403 
1404 	retval = tty_driver_install_tty(driver, tty);
1405 	if (retval < 0)
1406 		goto err_deinit_tty;
1407 
1408 	if (!tty->port)
1409 		tty->port = driver->ports[idx];
1410 
1411 	/*
1412 	 * Structures all installed ... call the ldisc open routines.
1413 	 * If we fail here just call release_tty to clean up.  No need
1414 	 * to decrement the use counts, as release_tty doesn't care.
1415 	 */
1416 	retval = tty_ldisc_setup(tty, tty->link);
1417 	if (retval)
1418 		goto err_release_tty;
1419 	return tty;
1420 
1421 err_deinit_tty:
1422 	deinitialize_tty_struct(tty);
1423 	free_tty_struct(tty);
1424 err_module_put:
1425 	module_put(driver->owner);
1426 	return ERR_PTR(retval);
1427 
1428 	/* call the tty release_tty routine to clean out this slot */
1429 err_release_tty:
1430 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1431 				 "clearing slot %d\n", idx);
1432 	release_tty(tty, idx);
1433 	return ERR_PTR(retval);
1434 }
1435 
1436 void tty_free_termios(struct tty_struct *tty)
1437 {
1438 	struct ktermios *tp;
1439 	int idx = tty->index;
1440 	/* Kill this flag and push into drivers for locking etc */
1441 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1442 		/* FIXME: Locking on ->termios array */
1443 		tp = tty->driver->termios[idx];
1444 		tty->driver->termios[idx] = NULL;
1445 		kfree(tp);
1446 	}
1447 	else
1448 		*tty->driver->termios[idx] = tty->termios;
1449 }
1450 EXPORT_SYMBOL(tty_free_termios);
1451 
1452 void tty_shutdown(struct tty_struct *tty)
1453 {
1454 	tty_driver_remove_tty(tty->driver, tty);
1455 	tty_free_termios(tty);
1456 }
1457 EXPORT_SYMBOL(tty_shutdown);
1458 
1459 /**
1460  *	release_one_tty		-	release tty structure memory
1461  *	@kref: kref of tty we are obliterating
1462  *
1463  *	Releases memory associated with a tty structure, and clears out the
1464  *	driver table slots. This function is called when a device is no longer
1465  *	in use. It also gets called when setup of a device fails.
1466  *
1467  *	Locking:
1468  *		tty_mutex - sometimes only
1469  *		takes the file list lock internally when working on the list
1470  *	of ttys that the driver keeps.
1471  *
1472  *	This method gets called from a work queue so that the driver private
1473  *	cleanup ops can sleep (needed for USB at least)
1474  */
1475 static void release_one_tty(struct work_struct *work)
1476 {
1477 	struct tty_struct *tty =
1478 		container_of(work, struct tty_struct, hangup_work);
1479 	struct tty_driver *driver = tty->driver;
1480 
1481 	if (tty->ops->cleanup)
1482 		tty->ops->cleanup(tty);
1483 
1484 	tty->magic = 0;
1485 	tty_driver_kref_put(driver);
1486 	module_put(driver->owner);
1487 
1488 	spin_lock(&tty_files_lock);
1489 	list_del_init(&tty->tty_files);
1490 	spin_unlock(&tty_files_lock);
1491 
1492 	put_pid(tty->pgrp);
1493 	put_pid(tty->session);
1494 	free_tty_struct(tty);
1495 }
1496 
1497 static void queue_release_one_tty(struct kref *kref)
1498 {
1499 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1500 
1501 	if (tty->ops->shutdown)
1502 		tty->ops->shutdown(tty);
1503 	else
1504 		tty_shutdown(tty);
1505 
1506 	/* The hangup queue is now free so we can reuse it rather than
1507 	   waste a chunk of memory for each port */
1508 	INIT_WORK(&tty->hangup_work, release_one_tty);
1509 	schedule_work(&tty->hangup_work);
1510 }
1511 
1512 /**
1513  *	tty_kref_put		-	release a tty kref
1514  *	@tty: tty device
1515  *
1516  *	Release a reference to a tty device and if need be let the kref
1517  *	layer destruct the object for us
1518  */
1519 
1520 void tty_kref_put(struct tty_struct *tty)
1521 {
1522 	if (tty)
1523 		kref_put(&tty->kref, queue_release_one_tty);
1524 }
1525 EXPORT_SYMBOL(tty_kref_put);
1526 
1527 /**
1528  *	release_tty		-	release tty structure memory
1529  *
1530  *	Release both @tty and a possible linked partner (think pty pair),
1531  *	and decrement the refcount of the backing module.
1532  *
1533  *	Locking:
1534  *		tty_mutex - sometimes only
1535  *		takes the file list lock internally when working on the list
1536  *	of ttys that the driver keeps.
1537  *		FIXME: should we require tty_mutex is held here ??
1538  *
1539  */
1540 static void release_tty(struct tty_struct *tty, int idx)
1541 {
1542 	/* This should always be true but check for the moment */
1543 	WARN_ON(tty->index != idx);
1544 
1545 	if (tty->link)
1546 		tty_kref_put(tty->link);
1547 	tty_kref_put(tty);
1548 }
1549 
1550 /**
1551  *	tty_release_checks - check a tty before real release
1552  *	@tty: tty to check
1553  *	@o_tty: link of @tty (if any)
1554  *	@idx: index of the tty
1555  *
1556  *	Performs some paranoid checking before true release of the @tty.
1557  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1558  */
1559 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1560 		int idx)
1561 {
1562 #ifdef TTY_PARANOIA_CHECK
1563 	if (idx < 0 || idx >= tty->driver->num) {
1564 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1565 				__func__, tty->name);
1566 		return -1;
1567 	}
1568 
1569 	/* not much to check for devpts */
1570 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1571 		return 0;
1572 
1573 	if (tty != tty->driver->ttys[idx]) {
1574 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1575 				__func__, idx, tty->name);
1576 		return -1;
1577 	}
1578 	if (tty->driver->other) {
1579 		if (o_tty != tty->driver->other->ttys[idx]) {
1580 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1581 					__func__, idx, tty->name);
1582 			return -1;
1583 		}
1584 		if (o_tty->link != tty) {
1585 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1586 			return -1;
1587 		}
1588 	}
1589 #endif
1590 	return 0;
1591 }
1592 
1593 /**
1594  *	tty_release		-	vfs callback for close
1595  *	@inode: inode of tty
1596  *	@filp: file pointer for handle to tty
1597  *
1598  *	Called the last time each file handle is closed that references
1599  *	this tty. There may however be several such references.
1600  *
1601  *	Locking:
1602  *		Takes bkl. See tty_release_dev
1603  *
1604  * Even releasing the tty structures is a tricky business.. We have
1605  * to be very careful that the structures are all released at the
1606  * same time, as interrupts might otherwise get the wrong pointers.
1607  *
1608  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1609  * lead to double frees or releasing memory still in use.
1610  */
1611 
1612 int tty_release(struct inode *inode, struct file *filp)
1613 {
1614 	struct tty_struct *tty = file_tty(filp);
1615 	struct tty_struct *o_tty;
1616 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1617 	int	devpts;
1618 	int	idx;
1619 	char	buf[64];
1620 
1621 	if (tty_paranoia_check(tty, inode, __func__))
1622 		return 0;
1623 
1624 	tty_lock();
1625 	check_tty_count(tty, __func__);
1626 
1627 	__tty_fasync(-1, filp, 0);
1628 
1629 	idx = tty->index;
1630 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1631 		      tty->driver->subtype == PTY_TYPE_MASTER);
1632 	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1633 	o_tty = tty->link;
1634 
1635 	if (tty_release_checks(tty, o_tty, idx)) {
1636 		tty_unlock();
1637 		return 0;
1638 	}
1639 
1640 #ifdef TTY_DEBUG_HANGUP
1641 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1642 			tty_name(tty, buf), tty->count);
1643 #endif
1644 
1645 	if (tty->ops->close)
1646 		tty->ops->close(tty, filp);
1647 
1648 	tty_unlock();
1649 	/*
1650 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1651 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1652 	 * wait queues and kick everyone out _before_ actually starting to
1653 	 * close.  This ensures that we won't block while releasing the tty
1654 	 * structure.
1655 	 *
1656 	 * The test for the o_tty closing is necessary, since the master and
1657 	 * slave sides may close in any order.  If the slave side closes out
1658 	 * first, its count will be one, since the master side holds an open.
1659 	 * Thus this test wouldn't be triggered at the time the slave closes,
1660 	 * so we do it now.
1661 	 *
1662 	 * Note that it's possible for the tty to be opened again while we're
1663 	 * flushing out waiters.  By recalculating the closing flags before
1664 	 * each iteration we avoid any problems.
1665 	 */
1666 	while (1) {
1667 		/* Guard against races with tty->count changes elsewhere and
1668 		   opens on /dev/tty */
1669 
1670 		mutex_lock(&tty_mutex);
1671 		tty_lock();
1672 		tty_closing = tty->count <= 1;
1673 		o_tty_closing = o_tty &&
1674 			(o_tty->count <= (pty_master ? 1 : 0));
1675 		do_sleep = 0;
1676 
1677 		if (tty_closing) {
1678 			if (waitqueue_active(&tty->read_wait)) {
1679 				wake_up_poll(&tty->read_wait, POLLIN);
1680 				do_sleep++;
1681 			}
1682 			if (waitqueue_active(&tty->write_wait)) {
1683 				wake_up_poll(&tty->write_wait, POLLOUT);
1684 				do_sleep++;
1685 			}
1686 		}
1687 		if (o_tty_closing) {
1688 			if (waitqueue_active(&o_tty->read_wait)) {
1689 				wake_up_poll(&o_tty->read_wait, POLLIN);
1690 				do_sleep++;
1691 			}
1692 			if (waitqueue_active(&o_tty->write_wait)) {
1693 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1694 				do_sleep++;
1695 			}
1696 		}
1697 		if (!do_sleep)
1698 			break;
1699 
1700 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1701 				__func__, tty_name(tty, buf));
1702 		tty_unlock();
1703 		mutex_unlock(&tty_mutex);
1704 		schedule();
1705 	}
1706 
1707 	/*
1708 	 * The closing flags are now consistent with the open counts on
1709 	 * both sides, and we've completed the last operation that could
1710 	 * block, so it's safe to proceed with closing.
1711 	 */
1712 	if (pty_master) {
1713 		if (--o_tty->count < 0) {
1714 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1715 				__func__, o_tty->count, tty_name(o_tty, buf));
1716 			o_tty->count = 0;
1717 		}
1718 	}
1719 	if (--tty->count < 0) {
1720 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1721 				__func__, tty->count, tty_name(tty, buf));
1722 		tty->count = 0;
1723 	}
1724 
1725 	/*
1726 	 * We've decremented tty->count, so we need to remove this file
1727 	 * descriptor off the tty->tty_files list; this serves two
1728 	 * purposes:
1729 	 *  - check_tty_count sees the correct number of file descriptors
1730 	 *    associated with this tty.
1731 	 *  - do_tty_hangup no longer sees this file descriptor as
1732 	 *    something that needs to be handled for hangups.
1733 	 */
1734 	tty_del_file(filp);
1735 
1736 	/*
1737 	 * Perform some housekeeping before deciding whether to return.
1738 	 *
1739 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1740 	 * case of a pty we may have to wait around for the other side
1741 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1742 	 */
1743 	if (tty_closing)
1744 		set_bit(TTY_CLOSING, &tty->flags);
1745 	if (o_tty_closing)
1746 		set_bit(TTY_CLOSING, &o_tty->flags);
1747 
1748 	/*
1749 	 * If _either_ side is closing, make sure there aren't any
1750 	 * processes that still think tty or o_tty is their controlling
1751 	 * tty.
1752 	 */
1753 	if (tty_closing || o_tty_closing) {
1754 		read_lock(&tasklist_lock);
1755 		session_clear_tty(tty->session);
1756 		if (o_tty)
1757 			session_clear_tty(o_tty->session);
1758 		read_unlock(&tasklist_lock);
1759 	}
1760 
1761 	mutex_unlock(&tty_mutex);
1762 
1763 	/* check whether both sides are closing ... */
1764 	if (!tty_closing || (o_tty && !o_tty_closing)) {
1765 		tty_unlock();
1766 		return 0;
1767 	}
1768 
1769 #ifdef TTY_DEBUG_HANGUP
1770 	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1771 #endif
1772 	/*
1773 	 * Ask the line discipline code to release its structures
1774 	 */
1775 	tty_ldisc_release(tty, o_tty);
1776 	/*
1777 	 * The release_tty function takes care of the details of clearing
1778 	 * the slots and preserving the termios structure.
1779 	 */
1780 	release_tty(tty, idx);
1781 
1782 	/* Make this pty number available for reallocation */
1783 	if (devpts)
1784 		devpts_kill_index(inode, idx);
1785 	tty_unlock();
1786 	return 0;
1787 }
1788 
1789 /**
1790  *	tty_open_current_tty - get tty of current task for open
1791  *	@device: device number
1792  *	@filp: file pointer to tty
1793  *	@return: tty of the current task iff @device is /dev/tty
1794  *
1795  *	We cannot return driver and index like for the other nodes because
1796  *	devpts will not work then. It expects inodes to be from devpts FS.
1797  *
1798  *	We need to move to returning a refcounted object from all the lookup
1799  *	paths including this one.
1800  */
1801 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1802 {
1803 	struct tty_struct *tty;
1804 
1805 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1806 		return NULL;
1807 
1808 	tty = get_current_tty();
1809 	if (!tty)
1810 		return ERR_PTR(-ENXIO);
1811 
1812 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1813 	/* noctty = 1; */
1814 	tty_kref_put(tty);
1815 	/* FIXME: we put a reference and return a TTY! */
1816 	/* This is only safe because the caller holds tty_mutex */
1817 	return tty;
1818 }
1819 
1820 /**
1821  *	tty_lookup_driver - lookup a tty driver for a given device file
1822  *	@device: device number
1823  *	@filp: file pointer to tty
1824  *	@noctty: set if the device should not become a controlling tty
1825  *	@index: index for the device in the @return driver
1826  *	@return: driver for this inode (with increased refcount)
1827  *
1828  * 	If @return is not erroneous, the caller is responsible to decrement the
1829  * 	refcount by tty_driver_kref_put.
1830  *
1831  *	Locking: tty_mutex protects get_tty_driver
1832  */
1833 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1834 		int *noctty, int *index)
1835 {
1836 	struct tty_driver *driver;
1837 
1838 	switch (device) {
1839 #ifdef CONFIG_VT
1840 	case MKDEV(TTY_MAJOR, 0): {
1841 		extern struct tty_driver *console_driver;
1842 		driver = tty_driver_kref_get(console_driver);
1843 		*index = fg_console;
1844 		*noctty = 1;
1845 		break;
1846 	}
1847 #endif
1848 	case MKDEV(TTYAUX_MAJOR, 1): {
1849 		struct tty_driver *console_driver = console_device(index);
1850 		if (console_driver) {
1851 			driver = tty_driver_kref_get(console_driver);
1852 			if (driver) {
1853 				/* Don't let /dev/console block */
1854 				filp->f_flags |= O_NONBLOCK;
1855 				*noctty = 1;
1856 				break;
1857 			}
1858 		}
1859 		return ERR_PTR(-ENODEV);
1860 	}
1861 	default:
1862 		driver = get_tty_driver(device, index);
1863 		if (!driver)
1864 			return ERR_PTR(-ENODEV);
1865 		break;
1866 	}
1867 	return driver;
1868 }
1869 
1870 /**
1871  *	tty_open		-	open a tty device
1872  *	@inode: inode of device file
1873  *	@filp: file pointer to tty
1874  *
1875  *	tty_open and tty_release keep up the tty count that contains the
1876  *	number of opens done on a tty. We cannot use the inode-count, as
1877  *	different inodes might point to the same tty.
1878  *
1879  *	Open-counting is needed for pty masters, as well as for keeping
1880  *	track of serial lines: DTR is dropped when the last close happens.
1881  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1882  *
1883  *	The termios state of a pty is reset on first open so that
1884  *	settings don't persist across reuse.
1885  *
1886  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1887  *		 tty->count should protect the rest.
1888  *		 ->siglock protects ->signal/->sighand
1889  */
1890 
1891 static int tty_open(struct inode *inode, struct file *filp)
1892 {
1893 	struct tty_struct *tty;
1894 	int noctty, retval;
1895 	struct tty_driver *driver = NULL;
1896 	int index;
1897 	dev_t device = inode->i_rdev;
1898 	unsigned saved_flags = filp->f_flags;
1899 
1900 	nonseekable_open(inode, filp);
1901 
1902 retry_open:
1903 	retval = tty_alloc_file(filp);
1904 	if (retval)
1905 		return -ENOMEM;
1906 
1907 	noctty = filp->f_flags & O_NOCTTY;
1908 	index  = -1;
1909 	retval = 0;
1910 
1911 	mutex_lock(&tty_mutex);
1912 	tty_lock();
1913 
1914 	tty = tty_open_current_tty(device, filp);
1915 	if (IS_ERR(tty)) {
1916 		retval = PTR_ERR(tty);
1917 		goto err_unlock;
1918 	} else if (!tty) {
1919 		driver = tty_lookup_driver(device, filp, &noctty, &index);
1920 		if (IS_ERR(driver)) {
1921 			retval = PTR_ERR(driver);
1922 			goto err_unlock;
1923 		}
1924 
1925 		/* check whether we're reopening an existing tty */
1926 		tty = tty_driver_lookup_tty(driver, inode, index);
1927 		if (IS_ERR(tty)) {
1928 			retval = PTR_ERR(tty);
1929 			goto err_unlock;
1930 		}
1931 	}
1932 
1933 	if (tty) {
1934 		retval = tty_reopen(tty);
1935 		if (retval)
1936 			tty = ERR_PTR(retval);
1937 	} else
1938 		tty = tty_init_dev(driver, index);
1939 
1940 	mutex_unlock(&tty_mutex);
1941 	if (driver)
1942 		tty_driver_kref_put(driver);
1943 	if (IS_ERR(tty)) {
1944 		tty_unlock();
1945 		retval = PTR_ERR(tty);
1946 		goto err_file;
1947 	}
1948 
1949 	tty_add_file(tty, filp);
1950 
1951 	check_tty_count(tty, __func__);
1952 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1953 	    tty->driver->subtype == PTY_TYPE_MASTER)
1954 		noctty = 1;
1955 #ifdef TTY_DEBUG_HANGUP
1956 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1957 #endif
1958 	if (tty->ops->open)
1959 		retval = tty->ops->open(tty, filp);
1960 	else
1961 		retval = -ENODEV;
1962 	filp->f_flags = saved_flags;
1963 
1964 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1965 						!capable(CAP_SYS_ADMIN))
1966 		retval = -EBUSY;
1967 
1968 	if (retval) {
1969 #ifdef TTY_DEBUG_HANGUP
1970 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1971 				retval, tty->name);
1972 #endif
1973 		tty_unlock(); /* need to call tty_release without BTM */
1974 		tty_release(inode, filp);
1975 		if (retval != -ERESTARTSYS)
1976 			return retval;
1977 
1978 		if (signal_pending(current))
1979 			return retval;
1980 
1981 		schedule();
1982 		/*
1983 		 * Need to reset f_op in case a hangup happened.
1984 		 */
1985 		tty_lock();
1986 		if (filp->f_op == &hung_up_tty_fops)
1987 			filp->f_op = &tty_fops;
1988 		tty_unlock();
1989 		goto retry_open;
1990 	}
1991 	tty_unlock();
1992 
1993 
1994 	mutex_lock(&tty_mutex);
1995 	tty_lock();
1996 	spin_lock_irq(&current->sighand->siglock);
1997 	if (!noctty &&
1998 	    current->signal->leader &&
1999 	    !current->signal->tty &&
2000 	    tty->session == NULL)
2001 		__proc_set_tty(current, tty);
2002 	spin_unlock_irq(&current->sighand->siglock);
2003 	tty_unlock();
2004 	mutex_unlock(&tty_mutex);
2005 	return 0;
2006 err_unlock:
2007 	tty_unlock();
2008 	mutex_unlock(&tty_mutex);
2009 	/* after locks to avoid deadlock */
2010 	if (!IS_ERR_OR_NULL(driver))
2011 		tty_driver_kref_put(driver);
2012 err_file:
2013 	tty_free_file(filp);
2014 	return retval;
2015 }
2016 
2017 
2018 
2019 /**
2020  *	tty_poll	-	check tty status
2021  *	@filp: file being polled
2022  *	@wait: poll wait structures to update
2023  *
2024  *	Call the line discipline polling method to obtain the poll
2025  *	status of the device.
2026  *
2027  *	Locking: locks called line discipline but ldisc poll method
2028  *	may be re-entered freely by other callers.
2029  */
2030 
2031 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2032 {
2033 	struct tty_struct *tty = file_tty(filp);
2034 	struct tty_ldisc *ld;
2035 	int ret = 0;
2036 
2037 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2038 		return 0;
2039 
2040 	ld = tty_ldisc_ref_wait(tty);
2041 	if (ld->ops->poll)
2042 		ret = (ld->ops->poll)(tty, filp, wait);
2043 	tty_ldisc_deref(ld);
2044 	return ret;
2045 }
2046 
2047 static int __tty_fasync(int fd, struct file *filp, int on)
2048 {
2049 	struct tty_struct *tty = file_tty(filp);
2050 	unsigned long flags;
2051 	int retval = 0;
2052 
2053 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2054 		goto out;
2055 
2056 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2057 	if (retval <= 0)
2058 		goto out;
2059 
2060 	if (on) {
2061 		enum pid_type type;
2062 		struct pid *pid;
2063 		if (!waitqueue_active(&tty->read_wait))
2064 			tty->minimum_to_wake = 1;
2065 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2066 		if (tty->pgrp) {
2067 			pid = tty->pgrp;
2068 			type = PIDTYPE_PGID;
2069 		} else {
2070 			pid = task_pid(current);
2071 			type = PIDTYPE_PID;
2072 		}
2073 		get_pid(pid);
2074 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2075 		retval = __f_setown(filp, pid, type, 0);
2076 		put_pid(pid);
2077 		if (retval)
2078 			goto out;
2079 	} else {
2080 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2081 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2082 	}
2083 	retval = 0;
2084 out:
2085 	return retval;
2086 }
2087 
2088 static int tty_fasync(int fd, struct file *filp, int on)
2089 {
2090 	int retval;
2091 	tty_lock();
2092 	retval = __tty_fasync(fd, filp, on);
2093 	tty_unlock();
2094 	return retval;
2095 }
2096 
2097 /**
2098  *	tiocsti			-	fake input character
2099  *	@tty: tty to fake input into
2100  *	@p: pointer to character
2101  *
2102  *	Fake input to a tty device. Does the necessary locking and
2103  *	input management.
2104  *
2105  *	FIXME: does not honour flow control ??
2106  *
2107  *	Locking:
2108  *		Called functions take tty_ldisc_lock
2109  *		current->signal->tty check is safe without locks
2110  *
2111  *	FIXME: may race normal receive processing
2112  */
2113 
2114 static int tiocsti(struct tty_struct *tty, char __user *p)
2115 {
2116 	char ch, mbz = 0;
2117 	struct tty_ldisc *ld;
2118 
2119 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2120 		return -EPERM;
2121 	if (get_user(ch, p))
2122 		return -EFAULT;
2123 	tty_audit_tiocsti(tty, ch);
2124 	ld = tty_ldisc_ref_wait(tty);
2125 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2126 	tty_ldisc_deref(ld);
2127 	return 0;
2128 }
2129 
2130 /**
2131  *	tiocgwinsz		-	implement window query ioctl
2132  *	@tty; tty
2133  *	@arg: user buffer for result
2134  *
2135  *	Copies the kernel idea of the window size into the user buffer.
2136  *
2137  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2138  *		is consistent.
2139  */
2140 
2141 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2142 {
2143 	int err;
2144 
2145 	mutex_lock(&tty->termios_mutex);
2146 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2147 	mutex_unlock(&tty->termios_mutex);
2148 
2149 	return err ? -EFAULT: 0;
2150 }
2151 
2152 /**
2153  *	tty_do_resize		-	resize event
2154  *	@tty: tty being resized
2155  *	@rows: rows (character)
2156  *	@cols: cols (character)
2157  *
2158  *	Update the termios variables and send the necessary signals to
2159  *	peform a terminal resize correctly
2160  */
2161 
2162 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2163 {
2164 	struct pid *pgrp;
2165 	unsigned long flags;
2166 
2167 	/* Lock the tty */
2168 	mutex_lock(&tty->termios_mutex);
2169 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2170 		goto done;
2171 	/* Get the PID values and reference them so we can
2172 	   avoid holding the tty ctrl lock while sending signals */
2173 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2174 	pgrp = get_pid(tty->pgrp);
2175 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2176 
2177 	if (pgrp)
2178 		kill_pgrp(pgrp, SIGWINCH, 1);
2179 	put_pid(pgrp);
2180 
2181 	tty->winsize = *ws;
2182 done:
2183 	mutex_unlock(&tty->termios_mutex);
2184 	return 0;
2185 }
2186 
2187 /**
2188  *	tiocswinsz		-	implement window size set ioctl
2189  *	@tty; tty side of tty
2190  *	@arg: user buffer for result
2191  *
2192  *	Copies the user idea of the window size to the kernel. Traditionally
2193  *	this is just advisory information but for the Linux console it
2194  *	actually has driver level meaning and triggers a VC resize.
2195  *
2196  *	Locking:
2197  *		Driver dependent. The default do_resize method takes the
2198  *	tty termios mutex and ctrl_lock. The console takes its own lock
2199  *	then calls into the default method.
2200  */
2201 
2202 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2203 {
2204 	struct winsize tmp_ws;
2205 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2206 		return -EFAULT;
2207 
2208 	if (tty->ops->resize)
2209 		return tty->ops->resize(tty, &tmp_ws);
2210 	else
2211 		return tty_do_resize(tty, &tmp_ws);
2212 }
2213 
2214 /**
2215  *	tioccons	-	allow admin to move logical console
2216  *	@file: the file to become console
2217  *
2218  *	Allow the administrator to move the redirected console device
2219  *
2220  *	Locking: uses redirect_lock to guard the redirect information
2221  */
2222 
2223 static int tioccons(struct file *file)
2224 {
2225 	if (!capable(CAP_SYS_ADMIN))
2226 		return -EPERM;
2227 	if (file->f_op->write == redirected_tty_write) {
2228 		struct file *f;
2229 		spin_lock(&redirect_lock);
2230 		f = redirect;
2231 		redirect = NULL;
2232 		spin_unlock(&redirect_lock);
2233 		if (f)
2234 			fput(f);
2235 		return 0;
2236 	}
2237 	spin_lock(&redirect_lock);
2238 	if (redirect) {
2239 		spin_unlock(&redirect_lock);
2240 		return -EBUSY;
2241 	}
2242 	get_file(file);
2243 	redirect = file;
2244 	spin_unlock(&redirect_lock);
2245 	return 0;
2246 }
2247 
2248 /**
2249  *	fionbio		-	non blocking ioctl
2250  *	@file: file to set blocking value
2251  *	@p: user parameter
2252  *
2253  *	Historical tty interfaces had a blocking control ioctl before
2254  *	the generic functionality existed. This piece of history is preserved
2255  *	in the expected tty API of posix OS's.
2256  *
2257  *	Locking: none, the open file handle ensures it won't go away.
2258  */
2259 
2260 static int fionbio(struct file *file, int __user *p)
2261 {
2262 	int nonblock;
2263 
2264 	if (get_user(nonblock, p))
2265 		return -EFAULT;
2266 
2267 	spin_lock(&file->f_lock);
2268 	if (nonblock)
2269 		file->f_flags |= O_NONBLOCK;
2270 	else
2271 		file->f_flags &= ~O_NONBLOCK;
2272 	spin_unlock(&file->f_lock);
2273 	return 0;
2274 }
2275 
2276 /**
2277  *	tiocsctty	-	set controlling tty
2278  *	@tty: tty structure
2279  *	@arg: user argument
2280  *
2281  *	This ioctl is used to manage job control. It permits a session
2282  *	leader to set this tty as the controlling tty for the session.
2283  *
2284  *	Locking:
2285  *		Takes tty_mutex() to protect tty instance
2286  *		Takes tasklist_lock internally to walk sessions
2287  *		Takes ->siglock() when updating signal->tty
2288  */
2289 
2290 static int tiocsctty(struct tty_struct *tty, int arg)
2291 {
2292 	int ret = 0;
2293 	if (current->signal->leader && (task_session(current) == tty->session))
2294 		return ret;
2295 
2296 	mutex_lock(&tty_mutex);
2297 	/*
2298 	 * The process must be a session leader and
2299 	 * not have a controlling tty already.
2300 	 */
2301 	if (!current->signal->leader || current->signal->tty) {
2302 		ret = -EPERM;
2303 		goto unlock;
2304 	}
2305 
2306 	if (tty->session) {
2307 		/*
2308 		 * This tty is already the controlling
2309 		 * tty for another session group!
2310 		 */
2311 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2312 			/*
2313 			 * Steal it away
2314 			 */
2315 			read_lock(&tasklist_lock);
2316 			session_clear_tty(tty->session);
2317 			read_unlock(&tasklist_lock);
2318 		} else {
2319 			ret = -EPERM;
2320 			goto unlock;
2321 		}
2322 	}
2323 	proc_set_tty(current, tty);
2324 unlock:
2325 	mutex_unlock(&tty_mutex);
2326 	return ret;
2327 }
2328 
2329 /**
2330  *	tty_get_pgrp	-	return a ref counted pgrp pid
2331  *	@tty: tty to read
2332  *
2333  *	Returns a refcounted instance of the pid struct for the process
2334  *	group controlling the tty.
2335  */
2336 
2337 struct pid *tty_get_pgrp(struct tty_struct *tty)
2338 {
2339 	unsigned long flags;
2340 	struct pid *pgrp;
2341 
2342 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2343 	pgrp = get_pid(tty->pgrp);
2344 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2345 
2346 	return pgrp;
2347 }
2348 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2349 
2350 /**
2351  *	tiocgpgrp		-	get process group
2352  *	@tty: tty passed by user
2353  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2354  *	@p: returned pid
2355  *
2356  *	Obtain the process group of the tty. If there is no process group
2357  *	return an error.
2358  *
2359  *	Locking: none. Reference to current->signal->tty is safe.
2360  */
2361 
2362 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2363 {
2364 	struct pid *pid;
2365 	int ret;
2366 	/*
2367 	 * (tty == real_tty) is a cheap way of
2368 	 * testing if the tty is NOT a master pty.
2369 	 */
2370 	if (tty == real_tty && current->signal->tty != real_tty)
2371 		return -ENOTTY;
2372 	pid = tty_get_pgrp(real_tty);
2373 	ret =  put_user(pid_vnr(pid), p);
2374 	put_pid(pid);
2375 	return ret;
2376 }
2377 
2378 /**
2379  *	tiocspgrp		-	attempt to set process group
2380  *	@tty: tty passed by user
2381  *	@real_tty: tty side device matching tty passed by user
2382  *	@p: pid pointer
2383  *
2384  *	Set the process group of the tty to the session passed. Only
2385  *	permitted where the tty session is our session.
2386  *
2387  *	Locking: RCU, ctrl lock
2388  */
2389 
2390 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2391 {
2392 	struct pid *pgrp;
2393 	pid_t pgrp_nr;
2394 	int retval = tty_check_change(real_tty);
2395 	unsigned long flags;
2396 
2397 	if (retval == -EIO)
2398 		return -ENOTTY;
2399 	if (retval)
2400 		return retval;
2401 	if (!current->signal->tty ||
2402 	    (current->signal->tty != real_tty) ||
2403 	    (real_tty->session != task_session(current)))
2404 		return -ENOTTY;
2405 	if (get_user(pgrp_nr, p))
2406 		return -EFAULT;
2407 	if (pgrp_nr < 0)
2408 		return -EINVAL;
2409 	rcu_read_lock();
2410 	pgrp = find_vpid(pgrp_nr);
2411 	retval = -ESRCH;
2412 	if (!pgrp)
2413 		goto out_unlock;
2414 	retval = -EPERM;
2415 	if (session_of_pgrp(pgrp) != task_session(current))
2416 		goto out_unlock;
2417 	retval = 0;
2418 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2419 	put_pid(real_tty->pgrp);
2420 	real_tty->pgrp = get_pid(pgrp);
2421 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2422 out_unlock:
2423 	rcu_read_unlock();
2424 	return retval;
2425 }
2426 
2427 /**
2428  *	tiocgsid		-	get session id
2429  *	@tty: tty passed by user
2430  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2431  *	@p: pointer to returned session id
2432  *
2433  *	Obtain the session id of the tty. If there is no session
2434  *	return an error.
2435  *
2436  *	Locking: none. Reference to current->signal->tty is safe.
2437  */
2438 
2439 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2440 {
2441 	/*
2442 	 * (tty == real_tty) is a cheap way of
2443 	 * testing if the tty is NOT a master pty.
2444 	*/
2445 	if (tty == real_tty && current->signal->tty != real_tty)
2446 		return -ENOTTY;
2447 	if (!real_tty->session)
2448 		return -ENOTTY;
2449 	return put_user(pid_vnr(real_tty->session), p);
2450 }
2451 
2452 /**
2453  *	tiocsetd	-	set line discipline
2454  *	@tty: tty device
2455  *	@p: pointer to user data
2456  *
2457  *	Set the line discipline according to user request.
2458  *
2459  *	Locking: see tty_set_ldisc, this function is just a helper
2460  */
2461 
2462 static int tiocsetd(struct tty_struct *tty, int __user *p)
2463 {
2464 	int ldisc;
2465 	int ret;
2466 
2467 	if (get_user(ldisc, p))
2468 		return -EFAULT;
2469 
2470 	ret = tty_set_ldisc(tty, ldisc);
2471 
2472 	return ret;
2473 }
2474 
2475 /**
2476  *	send_break	-	performed time break
2477  *	@tty: device to break on
2478  *	@duration: timeout in mS
2479  *
2480  *	Perform a timed break on hardware that lacks its own driver level
2481  *	timed break functionality.
2482  *
2483  *	Locking:
2484  *		atomic_write_lock serializes
2485  *
2486  */
2487 
2488 static int send_break(struct tty_struct *tty, unsigned int duration)
2489 {
2490 	int retval;
2491 
2492 	if (tty->ops->break_ctl == NULL)
2493 		return 0;
2494 
2495 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2496 		retval = tty->ops->break_ctl(tty, duration);
2497 	else {
2498 		/* Do the work ourselves */
2499 		if (tty_write_lock(tty, 0) < 0)
2500 			return -EINTR;
2501 		retval = tty->ops->break_ctl(tty, -1);
2502 		if (retval)
2503 			goto out;
2504 		if (!signal_pending(current))
2505 			msleep_interruptible(duration);
2506 		retval = tty->ops->break_ctl(tty, 0);
2507 out:
2508 		tty_write_unlock(tty);
2509 		if (signal_pending(current))
2510 			retval = -EINTR;
2511 	}
2512 	return retval;
2513 }
2514 
2515 /**
2516  *	tty_tiocmget		-	get modem status
2517  *	@tty: tty device
2518  *	@file: user file pointer
2519  *	@p: pointer to result
2520  *
2521  *	Obtain the modem status bits from the tty driver if the feature
2522  *	is supported. Return -EINVAL if it is not available.
2523  *
2524  *	Locking: none (up to the driver)
2525  */
2526 
2527 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2528 {
2529 	int retval = -EINVAL;
2530 
2531 	if (tty->ops->tiocmget) {
2532 		retval = tty->ops->tiocmget(tty);
2533 
2534 		if (retval >= 0)
2535 			retval = put_user(retval, p);
2536 	}
2537 	return retval;
2538 }
2539 
2540 /**
2541  *	tty_tiocmset		-	set modem status
2542  *	@tty: tty device
2543  *	@cmd: command - clear bits, set bits or set all
2544  *	@p: pointer to desired bits
2545  *
2546  *	Set the modem status bits from the tty driver if the feature
2547  *	is supported. Return -EINVAL if it is not available.
2548  *
2549  *	Locking: none (up to the driver)
2550  */
2551 
2552 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2553 	     unsigned __user *p)
2554 {
2555 	int retval;
2556 	unsigned int set, clear, val;
2557 
2558 	if (tty->ops->tiocmset == NULL)
2559 		return -EINVAL;
2560 
2561 	retval = get_user(val, p);
2562 	if (retval)
2563 		return retval;
2564 	set = clear = 0;
2565 	switch (cmd) {
2566 	case TIOCMBIS:
2567 		set = val;
2568 		break;
2569 	case TIOCMBIC:
2570 		clear = val;
2571 		break;
2572 	case TIOCMSET:
2573 		set = val;
2574 		clear = ~val;
2575 		break;
2576 	}
2577 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2578 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2579 	return tty->ops->tiocmset(tty, set, clear);
2580 }
2581 
2582 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2583 {
2584 	int retval = -EINVAL;
2585 	struct serial_icounter_struct icount;
2586 	memset(&icount, 0, sizeof(icount));
2587 	if (tty->ops->get_icount)
2588 		retval = tty->ops->get_icount(tty, &icount);
2589 	if (retval != 0)
2590 		return retval;
2591 	if (copy_to_user(arg, &icount, sizeof(icount)))
2592 		return -EFAULT;
2593 	return 0;
2594 }
2595 
2596 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2597 {
2598 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2599 	    tty->driver->subtype == PTY_TYPE_MASTER)
2600 		tty = tty->link;
2601 	return tty;
2602 }
2603 EXPORT_SYMBOL(tty_pair_get_tty);
2604 
2605 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2606 {
2607 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2608 	    tty->driver->subtype == PTY_TYPE_MASTER)
2609 	    return tty;
2610 	return tty->link;
2611 }
2612 EXPORT_SYMBOL(tty_pair_get_pty);
2613 
2614 /*
2615  * Split this up, as gcc can choke on it otherwise..
2616  */
2617 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2618 {
2619 	struct tty_struct *tty = file_tty(file);
2620 	struct tty_struct *real_tty;
2621 	void __user *p = (void __user *)arg;
2622 	int retval;
2623 	struct tty_ldisc *ld;
2624 	struct inode *inode = file->f_dentry->d_inode;
2625 
2626 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2627 		return -EINVAL;
2628 
2629 	real_tty = tty_pair_get_tty(tty);
2630 
2631 	/*
2632 	 * Factor out some common prep work
2633 	 */
2634 	switch (cmd) {
2635 	case TIOCSETD:
2636 	case TIOCSBRK:
2637 	case TIOCCBRK:
2638 	case TCSBRK:
2639 	case TCSBRKP:
2640 		retval = tty_check_change(tty);
2641 		if (retval)
2642 			return retval;
2643 		if (cmd != TIOCCBRK) {
2644 			tty_wait_until_sent(tty, 0);
2645 			if (signal_pending(current))
2646 				return -EINTR;
2647 		}
2648 		break;
2649 	}
2650 
2651 	/*
2652 	 *	Now do the stuff.
2653 	 */
2654 	switch (cmd) {
2655 	case TIOCSTI:
2656 		return tiocsti(tty, p);
2657 	case TIOCGWINSZ:
2658 		return tiocgwinsz(real_tty, p);
2659 	case TIOCSWINSZ:
2660 		return tiocswinsz(real_tty, p);
2661 	case TIOCCONS:
2662 		return real_tty != tty ? -EINVAL : tioccons(file);
2663 	case FIONBIO:
2664 		return fionbio(file, p);
2665 	case TIOCEXCL:
2666 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2667 		return 0;
2668 	case TIOCNXCL:
2669 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2670 		return 0;
2671 	case TIOCNOTTY:
2672 		if (current->signal->tty != tty)
2673 			return -ENOTTY;
2674 		no_tty();
2675 		return 0;
2676 	case TIOCSCTTY:
2677 		return tiocsctty(tty, arg);
2678 	case TIOCGPGRP:
2679 		return tiocgpgrp(tty, real_tty, p);
2680 	case TIOCSPGRP:
2681 		return tiocspgrp(tty, real_tty, p);
2682 	case TIOCGSID:
2683 		return tiocgsid(tty, real_tty, p);
2684 	case TIOCGETD:
2685 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2686 	case TIOCSETD:
2687 		return tiocsetd(tty, p);
2688 	case TIOCVHANGUP:
2689 		if (!capable(CAP_SYS_ADMIN))
2690 			return -EPERM;
2691 		tty_vhangup(tty);
2692 		return 0;
2693 	case TIOCGDEV:
2694 	{
2695 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2696 		return put_user(ret, (unsigned int __user *)p);
2697 	}
2698 	/*
2699 	 * Break handling
2700 	 */
2701 	case TIOCSBRK:	/* Turn break on, unconditionally */
2702 		if (tty->ops->break_ctl)
2703 			return tty->ops->break_ctl(tty, -1);
2704 		return 0;
2705 	case TIOCCBRK:	/* Turn break off, unconditionally */
2706 		if (tty->ops->break_ctl)
2707 			return tty->ops->break_ctl(tty, 0);
2708 		return 0;
2709 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2710 		/* non-zero arg means wait for all output data
2711 		 * to be sent (performed above) but don't send break.
2712 		 * This is used by the tcdrain() termios function.
2713 		 */
2714 		if (!arg)
2715 			return send_break(tty, 250);
2716 		return 0;
2717 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2718 		return send_break(tty, arg ? arg*100 : 250);
2719 
2720 	case TIOCMGET:
2721 		return tty_tiocmget(tty, p);
2722 	case TIOCMSET:
2723 	case TIOCMBIC:
2724 	case TIOCMBIS:
2725 		return tty_tiocmset(tty, cmd, p);
2726 	case TIOCGICOUNT:
2727 		retval = tty_tiocgicount(tty, p);
2728 		/* For the moment allow fall through to the old method */
2729         	if (retval != -EINVAL)
2730 			return retval;
2731 		break;
2732 	case TCFLSH:
2733 		switch (arg) {
2734 		case TCIFLUSH:
2735 		case TCIOFLUSH:
2736 		/* flush tty buffer and allow ldisc to process ioctl */
2737 			tty_buffer_flush(tty);
2738 			break;
2739 		}
2740 		break;
2741 	}
2742 	if (tty->ops->ioctl) {
2743 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2744 		if (retval != -ENOIOCTLCMD)
2745 			return retval;
2746 	}
2747 	ld = tty_ldisc_ref_wait(tty);
2748 	retval = -EINVAL;
2749 	if (ld->ops->ioctl) {
2750 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2751 		if (retval == -ENOIOCTLCMD)
2752 			retval = -EINVAL;
2753 	}
2754 	tty_ldisc_deref(ld);
2755 	return retval;
2756 }
2757 
2758 #ifdef CONFIG_COMPAT
2759 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2760 				unsigned long arg)
2761 {
2762 	struct inode *inode = file->f_dentry->d_inode;
2763 	struct tty_struct *tty = file_tty(file);
2764 	struct tty_ldisc *ld;
2765 	int retval = -ENOIOCTLCMD;
2766 
2767 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2768 		return -EINVAL;
2769 
2770 	if (tty->ops->compat_ioctl) {
2771 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2772 		if (retval != -ENOIOCTLCMD)
2773 			return retval;
2774 	}
2775 
2776 	ld = tty_ldisc_ref_wait(tty);
2777 	if (ld->ops->compat_ioctl)
2778 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2779 	else
2780 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2781 	tty_ldisc_deref(ld);
2782 
2783 	return retval;
2784 }
2785 #endif
2786 
2787 /*
2788  * This implements the "Secure Attention Key" ---  the idea is to
2789  * prevent trojan horses by killing all processes associated with this
2790  * tty when the user hits the "Secure Attention Key".  Required for
2791  * super-paranoid applications --- see the Orange Book for more details.
2792  *
2793  * This code could be nicer; ideally it should send a HUP, wait a few
2794  * seconds, then send a INT, and then a KILL signal.  But you then
2795  * have to coordinate with the init process, since all processes associated
2796  * with the current tty must be dead before the new getty is allowed
2797  * to spawn.
2798  *
2799  * Now, if it would be correct ;-/ The current code has a nasty hole -
2800  * it doesn't catch files in flight. We may send the descriptor to ourselves
2801  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2802  *
2803  * Nasty bug: do_SAK is being called in interrupt context.  This can
2804  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2805  */
2806 void __do_SAK(struct tty_struct *tty)
2807 {
2808 #ifdef TTY_SOFT_SAK
2809 	tty_hangup(tty);
2810 #else
2811 	struct task_struct *g, *p;
2812 	struct pid *session;
2813 	int		i;
2814 	struct file	*filp;
2815 	struct fdtable *fdt;
2816 
2817 	if (!tty)
2818 		return;
2819 	session = tty->session;
2820 
2821 	tty_ldisc_flush(tty);
2822 
2823 	tty_driver_flush_buffer(tty);
2824 
2825 	read_lock(&tasklist_lock);
2826 	/* Kill the entire session */
2827 	do_each_pid_task(session, PIDTYPE_SID, p) {
2828 		printk(KERN_NOTICE "SAK: killed process %d"
2829 			" (%s): task_session(p)==tty->session\n",
2830 			task_pid_nr(p), p->comm);
2831 		send_sig(SIGKILL, p, 1);
2832 	} while_each_pid_task(session, PIDTYPE_SID, p);
2833 	/* Now kill any processes that happen to have the
2834 	 * tty open.
2835 	 */
2836 	do_each_thread(g, p) {
2837 		if (p->signal->tty == tty) {
2838 			printk(KERN_NOTICE "SAK: killed process %d"
2839 			    " (%s): task_session(p)==tty->session\n",
2840 			    task_pid_nr(p), p->comm);
2841 			send_sig(SIGKILL, p, 1);
2842 			continue;
2843 		}
2844 		task_lock(p);
2845 		if (p->files) {
2846 			/*
2847 			 * We don't take a ref to the file, so we must
2848 			 * hold ->file_lock instead.
2849 			 */
2850 			spin_lock(&p->files->file_lock);
2851 			fdt = files_fdtable(p->files);
2852 			for (i = 0; i < fdt->max_fds; i++) {
2853 				filp = fcheck_files(p->files, i);
2854 				if (!filp)
2855 					continue;
2856 				if (filp->f_op->read == tty_read &&
2857 				    file_tty(filp) == tty) {
2858 					printk(KERN_NOTICE "SAK: killed process %d"
2859 					    " (%s): fd#%d opened to the tty\n",
2860 					    task_pid_nr(p), p->comm, i);
2861 					force_sig(SIGKILL, p);
2862 					break;
2863 				}
2864 			}
2865 			spin_unlock(&p->files->file_lock);
2866 		}
2867 		task_unlock(p);
2868 	} while_each_thread(g, p);
2869 	read_unlock(&tasklist_lock);
2870 #endif
2871 }
2872 
2873 static void do_SAK_work(struct work_struct *work)
2874 {
2875 	struct tty_struct *tty =
2876 		container_of(work, struct tty_struct, SAK_work);
2877 	__do_SAK(tty);
2878 }
2879 
2880 /*
2881  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2882  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2883  * the values which we write to it will be identical to the values which it
2884  * already has. --akpm
2885  */
2886 void do_SAK(struct tty_struct *tty)
2887 {
2888 	if (!tty)
2889 		return;
2890 	schedule_work(&tty->SAK_work);
2891 }
2892 
2893 EXPORT_SYMBOL(do_SAK);
2894 
2895 static int dev_match_devt(struct device *dev, void *data)
2896 {
2897 	dev_t *devt = data;
2898 	return dev->devt == *devt;
2899 }
2900 
2901 /* Must put_device() after it's unused! */
2902 static struct device *tty_get_device(struct tty_struct *tty)
2903 {
2904 	dev_t devt = tty_devnum(tty);
2905 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2906 }
2907 
2908 
2909 /**
2910  *	initialize_tty_struct
2911  *	@tty: tty to initialize
2912  *
2913  *	This subroutine initializes a tty structure that has been newly
2914  *	allocated.
2915  *
2916  *	Locking: none - tty in question must not be exposed at this point
2917  */
2918 
2919 void initialize_tty_struct(struct tty_struct *tty,
2920 		struct tty_driver *driver, int idx)
2921 {
2922 	memset(tty, 0, sizeof(struct tty_struct));
2923 	kref_init(&tty->kref);
2924 	tty->magic = TTY_MAGIC;
2925 	tty_ldisc_init(tty);
2926 	tty->session = NULL;
2927 	tty->pgrp = NULL;
2928 	tty->overrun_time = jiffies;
2929 	tty_buffer_init(tty);
2930 	mutex_init(&tty->termios_mutex);
2931 	mutex_init(&tty->ldisc_mutex);
2932 	init_waitqueue_head(&tty->write_wait);
2933 	init_waitqueue_head(&tty->read_wait);
2934 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2935 	mutex_init(&tty->atomic_read_lock);
2936 	mutex_init(&tty->atomic_write_lock);
2937 	mutex_init(&tty->output_lock);
2938 	mutex_init(&tty->echo_lock);
2939 	spin_lock_init(&tty->read_lock);
2940 	spin_lock_init(&tty->ctrl_lock);
2941 	INIT_LIST_HEAD(&tty->tty_files);
2942 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2943 
2944 	tty->driver = driver;
2945 	tty->ops = driver->ops;
2946 	tty->index = idx;
2947 	tty_line_name(driver, idx, tty->name);
2948 	tty->dev = tty_get_device(tty);
2949 }
2950 
2951 /**
2952  *	deinitialize_tty_struct
2953  *	@tty: tty to deinitialize
2954  *
2955  *	This subroutine deinitializes a tty structure that has been newly
2956  *	allocated but tty_release cannot be called on that yet.
2957  *
2958  *	Locking: none - tty in question must not be exposed at this point
2959  */
2960 void deinitialize_tty_struct(struct tty_struct *tty)
2961 {
2962 	tty_ldisc_deinit(tty);
2963 }
2964 
2965 /**
2966  *	tty_put_char	-	write one character to a tty
2967  *	@tty: tty
2968  *	@ch: character
2969  *
2970  *	Write one byte to the tty using the provided put_char method
2971  *	if present. Returns the number of characters successfully output.
2972  *
2973  *	Note: the specific put_char operation in the driver layer may go
2974  *	away soon. Don't call it directly, use this method
2975  */
2976 
2977 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2978 {
2979 	if (tty->ops->put_char)
2980 		return tty->ops->put_char(tty, ch);
2981 	return tty->ops->write(tty, &ch, 1);
2982 }
2983 EXPORT_SYMBOL_GPL(tty_put_char);
2984 
2985 struct class *tty_class;
2986 
2987 /**
2988  *	tty_register_device - register a tty device
2989  *	@driver: the tty driver that describes the tty device
2990  *	@index: the index in the tty driver for this tty device
2991  *	@device: a struct device that is associated with this tty device.
2992  *		This field is optional, if there is no known struct device
2993  *		for this tty device it can be set to NULL safely.
2994  *
2995  *	Returns a pointer to the struct device for this tty device
2996  *	(or ERR_PTR(-EFOO) on error).
2997  *
2998  *	This call is required to be made to register an individual tty device
2999  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3000  *	that bit is not set, this function should not be called by a tty
3001  *	driver.
3002  *
3003  *	Locking: ??
3004  */
3005 
3006 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3007 				   struct device *device)
3008 {
3009 	char name[64];
3010 	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3011 
3012 	if (index >= driver->num) {
3013 		printk(KERN_ERR "Attempt to register invalid tty line number "
3014 		       " (%d).\n", index);
3015 		return ERR_PTR(-EINVAL);
3016 	}
3017 
3018 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3019 		pty_line_name(driver, index, name);
3020 	else
3021 		tty_line_name(driver, index, name);
3022 
3023 	return device_create(tty_class, device, dev, NULL, name);
3024 }
3025 EXPORT_SYMBOL(tty_register_device);
3026 
3027 /**
3028  * 	tty_unregister_device - unregister a tty device
3029  * 	@driver: the tty driver that describes the tty device
3030  * 	@index: the index in the tty driver for this tty device
3031  *
3032  * 	If a tty device is registered with a call to tty_register_device() then
3033  *	this function must be called when the tty device is gone.
3034  *
3035  *	Locking: ??
3036  */
3037 
3038 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3039 {
3040 	device_destroy(tty_class,
3041 		MKDEV(driver->major, driver->minor_start) + index);
3042 }
3043 EXPORT_SYMBOL(tty_unregister_device);
3044 
3045 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3046 {
3047 	struct tty_driver *driver;
3048 
3049 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3050 	if (driver) {
3051 		kref_init(&driver->kref);
3052 		driver->magic = TTY_DRIVER_MAGIC;
3053 		driver->num = lines;
3054 		driver->owner = owner;
3055 		/* later we'll move allocation of tables here */
3056 	}
3057 	return driver;
3058 }
3059 EXPORT_SYMBOL(__alloc_tty_driver);
3060 
3061 static void destruct_tty_driver(struct kref *kref)
3062 {
3063 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3064 	int i;
3065 	struct ktermios *tp;
3066 	void *p;
3067 
3068 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3069 		/*
3070 		 * Free the termios and termios_locked structures because
3071 		 * we don't want to get memory leaks when modular tty
3072 		 * drivers are removed from the kernel.
3073 		 */
3074 		for (i = 0; i < driver->num; i++) {
3075 			tp = driver->termios[i];
3076 			if (tp) {
3077 				driver->termios[i] = NULL;
3078 				kfree(tp);
3079 			}
3080 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3081 				tty_unregister_device(driver, i);
3082 		}
3083 		p = driver->ttys;
3084 		proc_tty_unregister_driver(driver);
3085 		driver->ttys = NULL;
3086 		driver->termios = NULL;
3087 		kfree(p);
3088 		cdev_del(&driver->cdev);
3089 	}
3090 	kfree(driver->ports);
3091 	kfree(driver);
3092 }
3093 
3094 void tty_driver_kref_put(struct tty_driver *driver)
3095 {
3096 	kref_put(&driver->kref, destruct_tty_driver);
3097 }
3098 EXPORT_SYMBOL(tty_driver_kref_put);
3099 
3100 void tty_set_operations(struct tty_driver *driver,
3101 			const struct tty_operations *op)
3102 {
3103 	driver->ops = op;
3104 };
3105 EXPORT_SYMBOL(tty_set_operations);
3106 
3107 void put_tty_driver(struct tty_driver *d)
3108 {
3109 	tty_driver_kref_put(d);
3110 }
3111 EXPORT_SYMBOL(put_tty_driver);
3112 
3113 /*
3114  * Called by a tty driver to register itself.
3115  */
3116 int tty_register_driver(struct tty_driver *driver)
3117 {
3118 	int error;
3119 	int i;
3120 	dev_t dev;
3121 	void **p = NULL;
3122 	struct device *d;
3123 
3124 	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3125 		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3126 		if (!p)
3127 			return -ENOMEM;
3128 	}
3129 	/*
3130 	 * There is too many lines in PTY and we won't need the array there
3131 	 * since it has an ->install hook where it assigns ports properly.
3132 	 */
3133 	if (driver->type != TTY_DRIVER_TYPE_PTY) {
3134 		driver->ports = kcalloc(driver->num, sizeof(struct tty_port *),
3135 				GFP_KERNEL);
3136 		if (!driver->ports) {
3137 			error = -ENOMEM;
3138 			goto err_free_p;
3139 		}
3140 	}
3141 
3142 	if (!driver->major) {
3143 		error = alloc_chrdev_region(&dev, driver->minor_start,
3144 						driver->num, driver->name);
3145 		if (!error) {
3146 			driver->major = MAJOR(dev);
3147 			driver->minor_start = MINOR(dev);
3148 		}
3149 	} else {
3150 		dev = MKDEV(driver->major, driver->minor_start);
3151 		error = register_chrdev_region(dev, driver->num, driver->name);
3152 	}
3153 	if (error < 0)
3154 		goto err_free_p;
3155 
3156 	if (p) {
3157 		driver->ttys = (struct tty_struct **)p;
3158 		driver->termios = (struct ktermios **)(p + driver->num);
3159 	} else {
3160 		driver->ttys = NULL;
3161 		driver->termios = NULL;
3162 	}
3163 
3164 	cdev_init(&driver->cdev, &tty_fops);
3165 	driver->cdev.owner = driver->owner;
3166 	error = cdev_add(&driver->cdev, dev, driver->num);
3167 	if (error)
3168 		goto err_unreg_char;
3169 
3170 	mutex_lock(&tty_mutex);
3171 	list_add(&driver->tty_drivers, &tty_drivers);
3172 	mutex_unlock(&tty_mutex);
3173 
3174 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3175 		for (i = 0; i < driver->num; i++) {
3176 			d = tty_register_device(driver, i, NULL);
3177 			if (IS_ERR(d)) {
3178 				error = PTR_ERR(d);
3179 				goto err;
3180 			}
3181 		}
3182 	}
3183 	proc_tty_register_driver(driver);
3184 	driver->flags |= TTY_DRIVER_INSTALLED;
3185 	return 0;
3186 
3187 err:
3188 	for (i--; i >= 0; i--)
3189 		tty_unregister_device(driver, i);
3190 
3191 	mutex_lock(&tty_mutex);
3192 	list_del(&driver->tty_drivers);
3193 	mutex_unlock(&tty_mutex);
3194 
3195 err_unreg_char:
3196 	unregister_chrdev_region(dev, driver->num);
3197 	driver->ttys = NULL;
3198 	driver->termios = NULL;
3199 err_free_p: /* destruct_tty_driver will free driver->ports */
3200 	kfree(p);
3201 	return error;
3202 }
3203 EXPORT_SYMBOL(tty_register_driver);
3204 
3205 /*
3206  * Called by a tty driver to unregister itself.
3207  */
3208 int tty_unregister_driver(struct tty_driver *driver)
3209 {
3210 #if 0
3211 	/* FIXME */
3212 	if (driver->refcount)
3213 		return -EBUSY;
3214 #endif
3215 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3216 				driver->num);
3217 	mutex_lock(&tty_mutex);
3218 	list_del(&driver->tty_drivers);
3219 	mutex_unlock(&tty_mutex);
3220 	return 0;
3221 }
3222 
3223 EXPORT_SYMBOL(tty_unregister_driver);
3224 
3225 dev_t tty_devnum(struct tty_struct *tty)
3226 {
3227 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3228 }
3229 EXPORT_SYMBOL(tty_devnum);
3230 
3231 void proc_clear_tty(struct task_struct *p)
3232 {
3233 	unsigned long flags;
3234 	struct tty_struct *tty;
3235 	spin_lock_irqsave(&p->sighand->siglock, flags);
3236 	tty = p->signal->tty;
3237 	p->signal->tty = NULL;
3238 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3239 	tty_kref_put(tty);
3240 }
3241 
3242 /* Called under the sighand lock */
3243 
3244 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3245 {
3246 	if (tty) {
3247 		unsigned long flags;
3248 		/* We should not have a session or pgrp to put here but.... */
3249 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3250 		put_pid(tty->session);
3251 		put_pid(tty->pgrp);
3252 		tty->pgrp = get_pid(task_pgrp(tsk));
3253 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3254 		tty->session = get_pid(task_session(tsk));
3255 		if (tsk->signal->tty) {
3256 			printk(KERN_DEBUG "tty not NULL!!\n");
3257 			tty_kref_put(tsk->signal->tty);
3258 		}
3259 	}
3260 	put_pid(tsk->signal->tty_old_pgrp);
3261 	tsk->signal->tty = tty_kref_get(tty);
3262 	tsk->signal->tty_old_pgrp = NULL;
3263 }
3264 
3265 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3266 {
3267 	spin_lock_irq(&tsk->sighand->siglock);
3268 	__proc_set_tty(tsk, tty);
3269 	spin_unlock_irq(&tsk->sighand->siglock);
3270 }
3271 
3272 struct tty_struct *get_current_tty(void)
3273 {
3274 	struct tty_struct *tty;
3275 	unsigned long flags;
3276 
3277 	spin_lock_irqsave(&current->sighand->siglock, flags);
3278 	tty = tty_kref_get(current->signal->tty);
3279 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3280 	return tty;
3281 }
3282 EXPORT_SYMBOL_GPL(get_current_tty);
3283 
3284 void tty_default_fops(struct file_operations *fops)
3285 {
3286 	*fops = tty_fops;
3287 }
3288 
3289 /*
3290  * Initialize the console device. This is called *early*, so
3291  * we can't necessarily depend on lots of kernel help here.
3292  * Just do some early initializations, and do the complex setup
3293  * later.
3294  */
3295 void __init console_init(void)
3296 {
3297 	initcall_t *call;
3298 
3299 	/* Setup the default TTY line discipline. */
3300 	tty_ldisc_begin();
3301 
3302 	/*
3303 	 * set up the console device so that later boot sequences can
3304 	 * inform about problems etc..
3305 	 */
3306 	call = __con_initcall_start;
3307 	while (call < __con_initcall_end) {
3308 		(*call)();
3309 		call++;
3310 	}
3311 }
3312 
3313 static char *tty_devnode(struct device *dev, umode_t *mode)
3314 {
3315 	if (!mode)
3316 		return NULL;
3317 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3318 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3319 		*mode = 0666;
3320 	return NULL;
3321 }
3322 
3323 static int __init tty_class_init(void)
3324 {
3325 	tty_class = class_create(THIS_MODULE, "tty");
3326 	if (IS_ERR(tty_class))
3327 		return PTR_ERR(tty_class);
3328 	tty_class->devnode = tty_devnode;
3329 	return 0;
3330 }
3331 
3332 postcore_initcall(tty_class_init);
3333 
3334 /* 3/2004 jmc: why do these devices exist? */
3335 static struct cdev tty_cdev, console_cdev;
3336 
3337 static ssize_t show_cons_active(struct device *dev,
3338 				struct device_attribute *attr, char *buf)
3339 {
3340 	struct console *cs[16];
3341 	int i = 0;
3342 	struct console *c;
3343 	ssize_t count = 0;
3344 
3345 	console_lock();
3346 	for_each_console(c) {
3347 		if (!c->device)
3348 			continue;
3349 		if (!c->write)
3350 			continue;
3351 		if ((c->flags & CON_ENABLED) == 0)
3352 			continue;
3353 		cs[i++] = c;
3354 		if (i >= ARRAY_SIZE(cs))
3355 			break;
3356 	}
3357 	while (i--)
3358 		count += sprintf(buf + count, "%s%d%c",
3359 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3360 	console_unlock();
3361 
3362 	return count;
3363 }
3364 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3365 
3366 static struct device *consdev;
3367 
3368 void console_sysfs_notify(void)
3369 {
3370 	if (consdev)
3371 		sysfs_notify(&consdev->kobj, NULL, "active");
3372 }
3373 
3374 /*
3375  * Ok, now we can initialize the rest of the tty devices and can count
3376  * on memory allocations, interrupts etc..
3377  */
3378 int __init tty_init(void)
3379 {
3380 	cdev_init(&tty_cdev, &tty_fops);
3381 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3382 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3383 		panic("Couldn't register /dev/tty driver\n");
3384 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3385 
3386 	cdev_init(&console_cdev, &console_fops);
3387 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3388 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3389 		panic("Couldn't register /dev/console driver\n");
3390 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3391 			      "console");
3392 	if (IS_ERR(consdev))
3393 		consdev = NULL;
3394 	else
3395 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3396 
3397 #ifdef CONFIG_VT
3398 	vty_init(&console_fops);
3399 #endif
3400 	return 0;
3401 }
3402 
3403