1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 110 #define TTY_PARANOIA_CHECK 1 111 #define CHECK_TTY_COUNT 1 112 113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 114 .c_iflag = ICRNL | IXON, 115 .c_oflag = OPOST | ONLCR, 116 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 118 ECHOCTL | ECHOKE | IEXTEN, 119 .c_cc = INIT_C_CC, 120 .c_ispeed = 38400, 121 .c_ospeed = 38400 122 }; 123 124 EXPORT_SYMBOL(tty_std_termios); 125 126 /* This list gets poked at by procfs and various bits of boot up code. This 127 could do with some rationalisation such as pulling the tty proc function 128 into this file */ 129 130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 131 132 /* Mutex to protect creating and releasing a tty. This is shared with 133 vt.c for deeply disgusting hack reasons */ 134 DEFINE_MUTEX(tty_mutex); 135 EXPORT_SYMBOL(tty_mutex); 136 137 /* Spinlock to protect the tty->tty_files list */ 138 DEFINE_SPINLOCK(tty_files_lock); 139 140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 142 ssize_t redirected_tty_write(struct file *, const char __user *, 143 size_t, loff_t *); 144 static unsigned int tty_poll(struct file *, poll_table *); 145 static int tty_open(struct inode *, struct file *); 146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 147 #ifdef CONFIG_COMPAT 148 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 149 unsigned long arg); 150 #else 151 #define tty_compat_ioctl NULL 152 #endif 153 static int __tty_fasync(int fd, struct file *filp, int on); 154 static int tty_fasync(int fd, struct file *filp, int on); 155 static void release_tty(struct tty_struct *tty, int idx); 156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 158 159 /** 160 * alloc_tty_struct - allocate a tty object 161 * 162 * Return a new empty tty structure. The data fields have not 163 * been initialized in any way but has been zeroed 164 * 165 * Locking: none 166 */ 167 168 struct tty_struct *alloc_tty_struct(void) 169 { 170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL); 171 } 172 173 /** 174 * free_tty_struct - free a disused tty 175 * @tty: tty struct to free 176 * 177 * Free the write buffers, tty queue and tty memory itself. 178 * 179 * Locking: none. Must be called after tty is definitely unused 180 */ 181 182 void free_tty_struct(struct tty_struct *tty) 183 { 184 if (tty->dev) 185 put_device(tty->dev); 186 kfree(tty->write_buf); 187 tty_buffer_free_all(tty); 188 kfree(tty); 189 } 190 191 static inline struct tty_struct *file_tty(struct file *file) 192 { 193 return ((struct tty_file_private *)file->private_data)->tty; 194 } 195 196 int tty_alloc_file(struct file *file) 197 { 198 struct tty_file_private *priv; 199 200 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 201 if (!priv) 202 return -ENOMEM; 203 204 file->private_data = priv; 205 206 return 0; 207 } 208 209 /* Associate a new file with the tty structure */ 210 void tty_add_file(struct tty_struct *tty, struct file *file) 211 { 212 struct tty_file_private *priv = file->private_data; 213 214 priv->tty = tty; 215 priv->file = file; 216 217 spin_lock(&tty_files_lock); 218 list_add(&priv->list, &tty->tty_files); 219 spin_unlock(&tty_files_lock); 220 } 221 222 /** 223 * tty_free_file - free file->private_data 224 * 225 * This shall be used only for fail path handling when tty_add_file was not 226 * called yet. 227 */ 228 void tty_free_file(struct file *file) 229 { 230 struct tty_file_private *priv = file->private_data; 231 232 file->private_data = NULL; 233 kfree(priv); 234 } 235 236 /* Delete file from its tty */ 237 void tty_del_file(struct file *file) 238 { 239 struct tty_file_private *priv = file->private_data; 240 241 spin_lock(&tty_files_lock); 242 list_del(&priv->list); 243 spin_unlock(&tty_files_lock); 244 tty_free_file(file); 245 } 246 247 248 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 249 250 /** 251 * tty_name - return tty naming 252 * @tty: tty structure 253 * @buf: buffer for output 254 * 255 * Convert a tty structure into a name. The name reflects the kernel 256 * naming policy and if udev is in use may not reflect user space 257 * 258 * Locking: none 259 */ 260 261 char *tty_name(struct tty_struct *tty, char *buf) 262 { 263 if (!tty) /* Hmm. NULL pointer. That's fun. */ 264 strcpy(buf, "NULL tty"); 265 else 266 strcpy(buf, tty->name); 267 return buf; 268 } 269 270 EXPORT_SYMBOL(tty_name); 271 272 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 273 const char *routine) 274 { 275 #ifdef TTY_PARANOIA_CHECK 276 if (!tty) { 277 printk(KERN_WARNING 278 "null TTY for (%d:%d) in %s\n", 279 imajor(inode), iminor(inode), routine); 280 return 1; 281 } 282 if (tty->magic != TTY_MAGIC) { 283 printk(KERN_WARNING 284 "bad magic number for tty struct (%d:%d) in %s\n", 285 imajor(inode), iminor(inode), routine); 286 return 1; 287 } 288 #endif 289 return 0; 290 } 291 292 static int check_tty_count(struct tty_struct *tty, const char *routine) 293 { 294 #ifdef CHECK_TTY_COUNT 295 struct list_head *p; 296 int count = 0; 297 298 spin_lock(&tty_files_lock); 299 list_for_each(p, &tty->tty_files) { 300 count++; 301 } 302 spin_unlock(&tty_files_lock); 303 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 304 tty->driver->subtype == PTY_TYPE_SLAVE && 305 tty->link && tty->link->count) 306 count++; 307 if (tty->count != count) { 308 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 309 "!= #fd's(%d) in %s\n", 310 tty->name, tty->count, count, routine); 311 return count; 312 } 313 #endif 314 return 0; 315 } 316 317 /** 318 * get_tty_driver - find device of a tty 319 * @dev_t: device identifier 320 * @index: returns the index of the tty 321 * 322 * This routine returns a tty driver structure, given a device number 323 * and also passes back the index number. 324 * 325 * Locking: caller must hold tty_mutex 326 */ 327 328 static struct tty_driver *get_tty_driver(dev_t device, int *index) 329 { 330 struct tty_driver *p; 331 332 list_for_each_entry(p, &tty_drivers, tty_drivers) { 333 dev_t base = MKDEV(p->major, p->minor_start); 334 if (device < base || device >= base + p->num) 335 continue; 336 *index = device - base; 337 return tty_driver_kref_get(p); 338 } 339 return NULL; 340 } 341 342 #ifdef CONFIG_CONSOLE_POLL 343 344 /** 345 * tty_find_polling_driver - find device of a polled tty 346 * @name: name string to match 347 * @line: pointer to resulting tty line nr 348 * 349 * This routine returns a tty driver structure, given a name 350 * and the condition that the tty driver is capable of polled 351 * operation. 352 */ 353 struct tty_driver *tty_find_polling_driver(char *name, int *line) 354 { 355 struct tty_driver *p, *res = NULL; 356 int tty_line = 0; 357 int len; 358 char *str, *stp; 359 360 for (str = name; *str; str++) 361 if ((*str >= '0' && *str <= '9') || *str == ',') 362 break; 363 if (!*str) 364 return NULL; 365 366 len = str - name; 367 tty_line = simple_strtoul(str, &str, 10); 368 369 mutex_lock(&tty_mutex); 370 /* Search through the tty devices to look for a match */ 371 list_for_each_entry(p, &tty_drivers, tty_drivers) { 372 if (strncmp(name, p->name, len) != 0) 373 continue; 374 stp = str; 375 if (*stp == ',') 376 stp++; 377 if (*stp == '\0') 378 stp = NULL; 379 380 if (tty_line >= 0 && tty_line < p->num && p->ops && 381 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 382 res = tty_driver_kref_get(p); 383 *line = tty_line; 384 break; 385 } 386 } 387 mutex_unlock(&tty_mutex); 388 389 return res; 390 } 391 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 392 #endif 393 394 /** 395 * tty_check_change - check for POSIX terminal changes 396 * @tty: tty to check 397 * 398 * If we try to write to, or set the state of, a terminal and we're 399 * not in the foreground, send a SIGTTOU. If the signal is blocked or 400 * ignored, go ahead and perform the operation. (POSIX 7.2) 401 * 402 * Locking: ctrl_lock 403 */ 404 405 int tty_check_change(struct tty_struct *tty) 406 { 407 unsigned long flags; 408 int ret = 0; 409 410 if (current->signal->tty != tty) 411 return 0; 412 413 spin_lock_irqsave(&tty->ctrl_lock, flags); 414 415 if (!tty->pgrp) { 416 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 417 goto out_unlock; 418 } 419 if (task_pgrp(current) == tty->pgrp) 420 goto out_unlock; 421 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 422 if (is_ignored(SIGTTOU)) 423 goto out; 424 if (is_current_pgrp_orphaned()) { 425 ret = -EIO; 426 goto out; 427 } 428 kill_pgrp(task_pgrp(current), SIGTTOU, 1); 429 set_thread_flag(TIF_SIGPENDING); 430 ret = -ERESTARTSYS; 431 out: 432 return ret; 433 out_unlock: 434 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 435 return ret; 436 } 437 438 EXPORT_SYMBOL(tty_check_change); 439 440 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 441 size_t count, loff_t *ppos) 442 { 443 return 0; 444 } 445 446 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 447 size_t count, loff_t *ppos) 448 { 449 return -EIO; 450 } 451 452 /* No kernel lock held - none needed ;) */ 453 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 454 { 455 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 456 } 457 458 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 459 unsigned long arg) 460 { 461 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 462 } 463 464 static long hung_up_tty_compat_ioctl(struct file *file, 465 unsigned int cmd, unsigned long arg) 466 { 467 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 468 } 469 470 static const struct file_operations tty_fops = { 471 .llseek = no_llseek, 472 .read = tty_read, 473 .write = tty_write, 474 .poll = tty_poll, 475 .unlocked_ioctl = tty_ioctl, 476 .compat_ioctl = tty_compat_ioctl, 477 .open = tty_open, 478 .release = tty_release, 479 .fasync = tty_fasync, 480 }; 481 482 static const struct file_operations console_fops = { 483 .llseek = no_llseek, 484 .read = tty_read, 485 .write = redirected_tty_write, 486 .poll = tty_poll, 487 .unlocked_ioctl = tty_ioctl, 488 .compat_ioctl = tty_compat_ioctl, 489 .open = tty_open, 490 .release = tty_release, 491 .fasync = tty_fasync, 492 }; 493 494 static const struct file_operations hung_up_tty_fops = { 495 .llseek = no_llseek, 496 .read = hung_up_tty_read, 497 .write = hung_up_tty_write, 498 .poll = hung_up_tty_poll, 499 .unlocked_ioctl = hung_up_tty_ioctl, 500 .compat_ioctl = hung_up_tty_compat_ioctl, 501 .release = tty_release, 502 }; 503 504 static DEFINE_SPINLOCK(redirect_lock); 505 static struct file *redirect; 506 507 /** 508 * tty_wakeup - request more data 509 * @tty: terminal 510 * 511 * Internal and external helper for wakeups of tty. This function 512 * informs the line discipline if present that the driver is ready 513 * to receive more output data. 514 */ 515 516 void tty_wakeup(struct tty_struct *tty) 517 { 518 struct tty_ldisc *ld; 519 520 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 521 ld = tty_ldisc_ref(tty); 522 if (ld) { 523 if (ld->ops->write_wakeup) 524 ld->ops->write_wakeup(tty); 525 tty_ldisc_deref(ld); 526 } 527 } 528 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 529 } 530 531 EXPORT_SYMBOL_GPL(tty_wakeup); 532 533 /** 534 * __tty_hangup - actual handler for hangup events 535 * @work: tty device 536 * 537 * This can be called by the "eventd" kernel thread. That is process 538 * synchronous but doesn't hold any locks, so we need to make sure we 539 * have the appropriate locks for what we're doing. 540 * 541 * The hangup event clears any pending redirections onto the hung up 542 * device. It ensures future writes will error and it does the needed 543 * line discipline hangup and signal delivery. The tty object itself 544 * remains intact. 545 * 546 * Locking: 547 * BTM 548 * redirect lock for undoing redirection 549 * file list lock for manipulating list of ttys 550 * tty_ldisc_lock from called functions 551 * termios_mutex resetting termios data 552 * tasklist_lock to walk task list for hangup event 553 * ->siglock to protect ->signal/->sighand 554 */ 555 void __tty_hangup(struct tty_struct *tty) 556 { 557 struct file *cons_filp = NULL; 558 struct file *filp, *f = NULL; 559 struct task_struct *p; 560 struct tty_file_private *priv; 561 int closecount = 0, n; 562 unsigned long flags; 563 int refs = 0; 564 565 if (!tty) 566 return; 567 568 569 spin_lock(&redirect_lock); 570 if (redirect && file_tty(redirect) == tty) { 571 f = redirect; 572 redirect = NULL; 573 } 574 spin_unlock(&redirect_lock); 575 576 tty_lock(); 577 578 /* some functions below drop BTM, so we need this bit */ 579 set_bit(TTY_HUPPING, &tty->flags); 580 581 /* inuse_filps is protected by the single tty lock, 582 this really needs to change if we want to flush the 583 workqueue with the lock held */ 584 check_tty_count(tty, "tty_hangup"); 585 586 spin_lock(&tty_files_lock); 587 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 588 list_for_each_entry(priv, &tty->tty_files, list) { 589 filp = priv->file; 590 if (filp->f_op->write == redirected_tty_write) 591 cons_filp = filp; 592 if (filp->f_op->write != tty_write) 593 continue; 594 closecount++; 595 __tty_fasync(-1, filp, 0); /* can't block */ 596 filp->f_op = &hung_up_tty_fops; 597 } 598 spin_unlock(&tty_files_lock); 599 600 /* 601 * it drops BTM and thus races with reopen 602 * we protect the race by TTY_HUPPING 603 */ 604 tty_ldisc_hangup(tty); 605 606 read_lock(&tasklist_lock); 607 if (tty->session) { 608 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 609 spin_lock_irq(&p->sighand->siglock); 610 if (p->signal->tty == tty) { 611 p->signal->tty = NULL; 612 /* We defer the dereferences outside fo 613 the tasklist lock */ 614 refs++; 615 } 616 if (!p->signal->leader) { 617 spin_unlock_irq(&p->sighand->siglock); 618 continue; 619 } 620 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 621 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 622 put_pid(p->signal->tty_old_pgrp); /* A noop */ 623 spin_lock_irqsave(&tty->ctrl_lock, flags); 624 if (tty->pgrp) 625 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 626 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 627 spin_unlock_irq(&p->sighand->siglock); 628 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 629 } 630 read_unlock(&tasklist_lock); 631 632 spin_lock_irqsave(&tty->ctrl_lock, flags); 633 clear_bit(TTY_THROTTLED, &tty->flags); 634 clear_bit(TTY_PUSH, &tty->flags); 635 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 636 put_pid(tty->session); 637 put_pid(tty->pgrp); 638 tty->session = NULL; 639 tty->pgrp = NULL; 640 tty->ctrl_status = 0; 641 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 642 643 /* Account for the p->signal references we killed */ 644 while (refs--) 645 tty_kref_put(tty); 646 647 /* 648 * If one of the devices matches a console pointer, we 649 * cannot just call hangup() because that will cause 650 * tty->count and state->count to go out of sync. 651 * So we just call close() the right number of times. 652 */ 653 if (cons_filp) { 654 if (tty->ops->close) 655 for (n = 0; n < closecount; n++) 656 tty->ops->close(tty, cons_filp); 657 } else if (tty->ops->hangup) 658 (tty->ops->hangup)(tty); 659 /* 660 * We don't want to have driver/ldisc interactions beyond 661 * the ones we did here. The driver layer expects no 662 * calls after ->hangup() from the ldisc side. However we 663 * can't yet guarantee all that. 664 */ 665 set_bit(TTY_HUPPED, &tty->flags); 666 clear_bit(TTY_HUPPING, &tty->flags); 667 tty_ldisc_enable(tty); 668 669 tty_unlock(); 670 671 if (f) 672 fput(f); 673 } 674 675 static void do_tty_hangup(struct work_struct *work) 676 { 677 struct tty_struct *tty = 678 container_of(work, struct tty_struct, hangup_work); 679 680 __tty_hangup(tty); 681 } 682 683 /** 684 * tty_hangup - trigger a hangup event 685 * @tty: tty to hangup 686 * 687 * A carrier loss (virtual or otherwise) has occurred on this like 688 * schedule a hangup sequence to run after this event. 689 */ 690 691 void tty_hangup(struct tty_struct *tty) 692 { 693 #ifdef TTY_DEBUG_HANGUP 694 char buf[64]; 695 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf)); 696 #endif 697 schedule_work(&tty->hangup_work); 698 } 699 700 EXPORT_SYMBOL(tty_hangup); 701 702 /** 703 * tty_vhangup - process vhangup 704 * @tty: tty to hangup 705 * 706 * The user has asked via system call for the terminal to be hung up. 707 * We do this synchronously so that when the syscall returns the process 708 * is complete. That guarantee is necessary for security reasons. 709 */ 710 711 void tty_vhangup(struct tty_struct *tty) 712 { 713 #ifdef TTY_DEBUG_HANGUP 714 char buf[64]; 715 716 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf)); 717 #endif 718 __tty_hangup(tty); 719 } 720 721 EXPORT_SYMBOL(tty_vhangup); 722 723 724 /** 725 * tty_vhangup_self - process vhangup for own ctty 726 * 727 * Perform a vhangup on the current controlling tty 728 */ 729 730 void tty_vhangup_self(void) 731 { 732 struct tty_struct *tty; 733 734 tty = get_current_tty(); 735 if (tty) { 736 tty_vhangup(tty); 737 tty_kref_put(tty); 738 } 739 } 740 741 /** 742 * tty_hung_up_p - was tty hung up 743 * @filp: file pointer of tty 744 * 745 * Return true if the tty has been subject to a vhangup or a carrier 746 * loss 747 */ 748 749 int tty_hung_up_p(struct file *filp) 750 { 751 return (filp->f_op == &hung_up_tty_fops); 752 } 753 754 EXPORT_SYMBOL(tty_hung_up_p); 755 756 static void session_clear_tty(struct pid *session) 757 { 758 struct task_struct *p; 759 do_each_pid_task(session, PIDTYPE_SID, p) { 760 proc_clear_tty(p); 761 } while_each_pid_task(session, PIDTYPE_SID, p); 762 } 763 764 /** 765 * disassociate_ctty - disconnect controlling tty 766 * @on_exit: true if exiting so need to "hang up" the session 767 * 768 * This function is typically called only by the session leader, when 769 * it wants to disassociate itself from its controlling tty. 770 * 771 * It performs the following functions: 772 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 773 * (2) Clears the tty from being controlling the session 774 * (3) Clears the controlling tty for all processes in the 775 * session group. 776 * 777 * The argument on_exit is set to 1 if called when a process is 778 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 779 * 780 * Locking: 781 * BTM is taken for hysterical raisins, and held when 782 * called from no_tty(). 783 * tty_mutex is taken to protect tty 784 * ->siglock is taken to protect ->signal/->sighand 785 * tasklist_lock is taken to walk process list for sessions 786 * ->siglock is taken to protect ->signal/->sighand 787 */ 788 789 void disassociate_ctty(int on_exit) 790 { 791 struct tty_struct *tty; 792 793 if (!current->signal->leader) 794 return; 795 796 tty = get_current_tty(); 797 if (tty) { 798 struct pid *tty_pgrp = get_pid(tty->pgrp); 799 if (on_exit) { 800 if (tty->driver->type != TTY_DRIVER_TYPE_PTY) 801 tty_vhangup(tty); 802 } 803 tty_kref_put(tty); 804 if (tty_pgrp) { 805 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 806 if (!on_exit) 807 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 808 put_pid(tty_pgrp); 809 } 810 } else if (on_exit) { 811 struct pid *old_pgrp; 812 spin_lock_irq(¤t->sighand->siglock); 813 old_pgrp = current->signal->tty_old_pgrp; 814 current->signal->tty_old_pgrp = NULL; 815 spin_unlock_irq(¤t->sighand->siglock); 816 if (old_pgrp) { 817 kill_pgrp(old_pgrp, SIGHUP, on_exit); 818 kill_pgrp(old_pgrp, SIGCONT, on_exit); 819 put_pid(old_pgrp); 820 } 821 return; 822 } 823 824 spin_lock_irq(¤t->sighand->siglock); 825 put_pid(current->signal->tty_old_pgrp); 826 current->signal->tty_old_pgrp = NULL; 827 spin_unlock_irq(¤t->sighand->siglock); 828 829 tty = get_current_tty(); 830 if (tty) { 831 unsigned long flags; 832 spin_lock_irqsave(&tty->ctrl_lock, flags); 833 put_pid(tty->session); 834 put_pid(tty->pgrp); 835 tty->session = NULL; 836 tty->pgrp = NULL; 837 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 838 tty_kref_put(tty); 839 } else { 840 #ifdef TTY_DEBUG_HANGUP 841 printk(KERN_DEBUG "error attempted to write to tty [0x%p]" 842 " = NULL", tty); 843 #endif 844 } 845 846 /* Now clear signal->tty under the lock */ 847 read_lock(&tasklist_lock); 848 session_clear_tty(task_session(current)); 849 read_unlock(&tasklist_lock); 850 } 851 852 /** 853 * 854 * no_tty - Ensure the current process does not have a controlling tty 855 */ 856 void no_tty(void) 857 { 858 /* FIXME: Review locking here. The tty_lock never covered any race 859 between a new association and proc_clear_tty but possible we need 860 to protect against this anyway */ 861 struct task_struct *tsk = current; 862 disassociate_ctty(0); 863 proc_clear_tty(tsk); 864 } 865 866 867 /** 868 * stop_tty - propagate flow control 869 * @tty: tty to stop 870 * 871 * Perform flow control to the driver. For PTY/TTY pairs we 872 * must also propagate the TIOCKPKT status. May be called 873 * on an already stopped device and will not re-call the driver 874 * method. 875 * 876 * This functionality is used by both the line disciplines for 877 * halting incoming flow and by the driver. It may therefore be 878 * called from any context, may be under the tty atomic_write_lock 879 * but not always. 880 * 881 * Locking: 882 * Uses the tty control lock internally 883 */ 884 885 void stop_tty(struct tty_struct *tty) 886 { 887 unsigned long flags; 888 spin_lock_irqsave(&tty->ctrl_lock, flags); 889 if (tty->stopped) { 890 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 891 return; 892 } 893 tty->stopped = 1; 894 if (tty->link && tty->link->packet) { 895 tty->ctrl_status &= ~TIOCPKT_START; 896 tty->ctrl_status |= TIOCPKT_STOP; 897 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 898 } 899 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 900 if (tty->ops->stop) 901 (tty->ops->stop)(tty); 902 } 903 904 EXPORT_SYMBOL(stop_tty); 905 906 /** 907 * start_tty - propagate flow control 908 * @tty: tty to start 909 * 910 * Start a tty that has been stopped if at all possible. Perform 911 * any necessary wakeups and propagate the TIOCPKT status. If this 912 * is the tty was previous stopped and is being started then the 913 * driver start method is invoked and the line discipline woken. 914 * 915 * Locking: 916 * ctrl_lock 917 */ 918 919 void start_tty(struct tty_struct *tty) 920 { 921 unsigned long flags; 922 spin_lock_irqsave(&tty->ctrl_lock, flags); 923 if (!tty->stopped || tty->flow_stopped) { 924 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 925 return; 926 } 927 tty->stopped = 0; 928 if (tty->link && tty->link->packet) { 929 tty->ctrl_status &= ~TIOCPKT_STOP; 930 tty->ctrl_status |= TIOCPKT_START; 931 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 932 } 933 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 934 if (tty->ops->start) 935 (tty->ops->start)(tty); 936 /* If we have a running line discipline it may need kicking */ 937 tty_wakeup(tty); 938 } 939 940 EXPORT_SYMBOL(start_tty); 941 942 /** 943 * tty_read - read method for tty device files 944 * @file: pointer to tty file 945 * @buf: user buffer 946 * @count: size of user buffer 947 * @ppos: unused 948 * 949 * Perform the read system call function on this terminal device. Checks 950 * for hung up devices before calling the line discipline method. 951 * 952 * Locking: 953 * Locks the line discipline internally while needed. Multiple 954 * read calls may be outstanding in parallel. 955 */ 956 957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 958 loff_t *ppos) 959 { 960 int i; 961 struct inode *inode = file->f_path.dentry->d_inode; 962 struct tty_struct *tty = file_tty(file); 963 struct tty_ldisc *ld; 964 965 if (tty_paranoia_check(tty, inode, "tty_read")) 966 return -EIO; 967 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 968 return -EIO; 969 970 /* We want to wait for the line discipline to sort out in this 971 situation */ 972 ld = tty_ldisc_ref_wait(tty); 973 if (ld->ops->read) 974 i = (ld->ops->read)(tty, file, buf, count); 975 else 976 i = -EIO; 977 tty_ldisc_deref(ld); 978 if (i > 0) 979 inode->i_atime = current_fs_time(inode->i_sb); 980 return i; 981 } 982 983 void tty_write_unlock(struct tty_struct *tty) 984 __releases(&tty->atomic_write_lock) 985 { 986 mutex_unlock(&tty->atomic_write_lock); 987 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 988 } 989 990 int tty_write_lock(struct tty_struct *tty, int ndelay) 991 __acquires(&tty->atomic_write_lock) 992 { 993 if (!mutex_trylock(&tty->atomic_write_lock)) { 994 if (ndelay) 995 return -EAGAIN; 996 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 997 return -ERESTARTSYS; 998 } 999 return 0; 1000 } 1001 1002 /* 1003 * Split writes up in sane blocksizes to avoid 1004 * denial-of-service type attacks 1005 */ 1006 static inline ssize_t do_tty_write( 1007 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1008 struct tty_struct *tty, 1009 struct file *file, 1010 const char __user *buf, 1011 size_t count) 1012 { 1013 ssize_t ret, written = 0; 1014 unsigned int chunk; 1015 1016 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1017 if (ret < 0) 1018 return ret; 1019 1020 /* 1021 * We chunk up writes into a temporary buffer. This 1022 * simplifies low-level drivers immensely, since they 1023 * don't have locking issues and user mode accesses. 1024 * 1025 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1026 * big chunk-size.. 1027 * 1028 * The default chunk-size is 2kB, because the NTTY 1029 * layer has problems with bigger chunks. It will 1030 * claim to be able to handle more characters than 1031 * it actually does. 1032 * 1033 * FIXME: This can probably go away now except that 64K chunks 1034 * are too likely to fail unless switched to vmalloc... 1035 */ 1036 chunk = 2048; 1037 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1038 chunk = 65536; 1039 if (count < chunk) 1040 chunk = count; 1041 1042 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1043 if (tty->write_cnt < chunk) { 1044 unsigned char *buf_chunk; 1045 1046 if (chunk < 1024) 1047 chunk = 1024; 1048 1049 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1050 if (!buf_chunk) { 1051 ret = -ENOMEM; 1052 goto out; 1053 } 1054 kfree(tty->write_buf); 1055 tty->write_cnt = chunk; 1056 tty->write_buf = buf_chunk; 1057 } 1058 1059 /* Do the write .. */ 1060 for (;;) { 1061 size_t size = count; 1062 if (size > chunk) 1063 size = chunk; 1064 ret = -EFAULT; 1065 if (copy_from_user(tty->write_buf, buf, size)) 1066 break; 1067 ret = write(tty, file, tty->write_buf, size); 1068 if (ret <= 0) 1069 break; 1070 written += ret; 1071 buf += ret; 1072 count -= ret; 1073 if (!count) 1074 break; 1075 ret = -ERESTARTSYS; 1076 if (signal_pending(current)) 1077 break; 1078 cond_resched(); 1079 } 1080 if (written) { 1081 struct inode *inode = file->f_path.dentry->d_inode; 1082 inode->i_mtime = current_fs_time(inode->i_sb); 1083 ret = written; 1084 } 1085 out: 1086 tty_write_unlock(tty); 1087 return ret; 1088 } 1089 1090 /** 1091 * tty_write_message - write a message to a certain tty, not just the console. 1092 * @tty: the destination tty_struct 1093 * @msg: the message to write 1094 * 1095 * This is used for messages that need to be redirected to a specific tty. 1096 * We don't put it into the syslog queue right now maybe in the future if 1097 * really needed. 1098 * 1099 * We must still hold the BTM and test the CLOSING flag for the moment. 1100 */ 1101 1102 void tty_write_message(struct tty_struct *tty, char *msg) 1103 { 1104 if (tty) { 1105 mutex_lock(&tty->atomic_write_lock); 1106 tty_lock(); 1107 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) { 1108 tty_unlock(); 1109 tty->ops->write(tty, msg, strlen(msg)); 1110 } else 1111 tty_unlock(); 1112 tty_write_unlock(tty); 1113 } 1114 return; 1115 } 1116 1117 1118 /** 1119 * tty_write - write method for tty device file 1120 * @file: tty file pointer 1121 * @buf: user data to write 1122 * @count: bytes to write 1123 * @ppos: unused 1124 * 1125 * Write data to a tty device via the line discipline. 1126 * 1127 * Locking: 1128 * Locks the line discipline as required 1129 * Writes to the tty driver are serialized by the atomic_write_lock 1130 * and are then processed in chunks to the device. The line discipline 1131 * write method will not be invoked in parallel for each device. 1132 */ 1133 1134 static ssize_t tty_write(struct file *file, const char __user *buf, 1135 size_t count, loff_t *ppos) 1136 { 1137 struct inode *inode = file->f_path.dentry->d_inode; 1138 struct tty_struct *tty = file_tty(file); 1139 struct tty_ldisc *ld; 1140 ssize_t ret; 1141 1142 if (tty_paranoia_check(tty, inode, "tty_write")) 1143 return -EIO; 1144 if (!tty || !tty->ops->write || 1145 (test_bit(TTY_IO_ERROR, &tty->flags))) 1146 return -EIO; 1147 /* Short term debug to catch buggy drivers */ 1148 if (tty->ops->write_room == NULL) 1149 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1150 tty->driver->name); 1151 ld = tty_ldisc_ref_wait(tty); 1152 if (!ld->ops->write) 1153 ret = -EIO; 1154 else 1155 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1156 tty_ldisc_deref(ld); 1157 return ret; 1158 } 1159 1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1161 size_t count, loff_t *ppos) 1162 { 1163 struct file *p = NULL; 1164 1165 spin_lock(&redirect_lock); 1166 if (redirect) { 1167 get_file(redirect); 1168 p = redirect; 1169 } 1170 spin_unlock(&redirect_lock); 1171 1172 if (p) { 1173 ssize_t res; 1174 res = vfs_write(p, buf, count, &p->f_pos); 1175 fput(p); 1176 return res; 1177 } 1178 return tty_write(file, buf, count, ppos); 1179 } 1180 1181 static char ptychar[] = "pqrstuvwxyzabcde"; 1182 1183 /** 1184 * pty_line_name - generate name for a pty 1185 * @driver: the tty driver in use 1186 * @index: the minor number 1187 * @p: output buffer of at least 6 bytes 1188 * 1189 * Generate a name from a driver reference and write it to the output 1190 * buffer. 1191 * 1192 * Locking: None 1193 */ 1194 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1195 { 1196 int i = index + driver->name_base; 1197 /* ->name is initialized to "ttyp", but "tty" is expected */ 1198 sprintf(p, "%s%c%x", 1199 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1200 ptychar[i >> 4 & 0xf], i & 0xf); 1201 } 1202 1203 /** 1204 * tty_line_name - generate name for a tty 1205 * @driver: the tty driver in use 1206 * @index: the minor number 1207 * @p: output buffer of at least 7 bytes 1208 * 1209 * Generate a name from a driver reference and write it to the output 1210 * buffer. 1211 * 1212 * Locking: None 1213 */ 1214 static void tty_line_name(struct tty_driver *driver, int index, char *p) 1215 { 1216 sprintf(p, "%s%d", driver->name, index + driver->name_base); 1217 } 1218 1219 /** 1220 * tty_driver_lookup_tty() - find an existing tty, if any 1221 * @driver: the driver for the tty 1222 * @idx: the minor number 1223 * 1224 * Return the tty, if found or ERR_PTR() otherwise. 1225 * 1226 * Locking: tty_mutex must be held. If tty is found, the mutex must 1227 * be held until the 'fast-open' is also done. Will change once we 1228 * have refcounting in the driver and per driver locking 1229 */ 1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1231 struct inode *inode, int idx) 1232 { 1233 if (driver->ops->lookup) 1234 return driver->ops->lookup(driver, inode, idx); 1235 1236 return driver->ttys[idx]; 1237 } 1238 1239 /** 1240 * tty_init_termios - helper for termios setup 1241 * @tty: the tty to set up 1242 * 1243 * Initialise the termios structures for this tty. Thus runs under 1244 * the tty_mutex currently so we can be relaxed about ordering. 1245 */ 1246 1247 int tty_init_termios(struct tty_struct *tty) 1248 { 1249 struct ktermios *tp; 1250 int idx = tty->index; 1251 1252 tp = tty->driver->termios[idx]; 1253 if (tp == NULL) { 1254 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1255 if (tp == NULL) 1256 return -ENOMEM; 1257 *tp = tty->driver->init_termios; 1258 tty->driver->termios[idx] = tp; 1259 } 1260 tty->termios = *tp; 1261 1262 /* Compatibility until drivers always set this */ 1263 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1264 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1265 return 0; 1266 } 1267 EXPORT_SYMBOL_GPL(tty_init_termios); 1268 1269 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1270 { 1271 int ret = tty_init_termios(tty); 1272 if (ret) 1273 return ret; 1274 1275 tty_driver_kref_get(driver); 1276 tty->count++; 1277 driver->ttys[tty->index] = tty; 1278 return 0; 1279 } 1280 EXPORT_SYMBOL_GPL(tty_standard_install); 1281 1282 /** 1283 * tty_driver_install_tty() - install a tty entry in the driver 1284 * @driver: the driver for the tty 1285 * @tty: the tty 1286 * 1287 * Install a tty object into the driver tables. The tty->index field 1288 * will be set by the time this is called. This method is responsible 1289 * for ensuring any need additional structures are allocated and 1290 * configured. 1291 * 1292 * Locking: tty_mutex for now 1293 */ 1294 static int tty_driver_install_tty(struct tty_driver *driver, 1295 struct tty_struct *tty) 1296 { 1297 return driver->ops->install ? driver->ops->install(driver, tty) : 1298 tty_standard_install(driver, tty); 1299 } 1300 1301 /** 1302 * tty_driver_remove_tty() - remove a tty from the driver tables 1303 * @driver: the driver for the tty 1304 * @idx: the minor number 1305 * 1306 * Remvoe a tty object from the driver tables. The tty->index field 1307 * will be set by the time this is called. 1308 * 1309 * Locking: tty_mutex for now 1310 */ 1311 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1312 { 1313 if (driver->ops->remove) 1314 driver->ops->remove(driver, tty); 1315 else 1316 driver->ttys[tty->index] = NULL; 1317 } 1318 1319 /* 1320 * tty_reopen() - fast re-open of an open tty 1321 * @tty - the tty to open 1322 * 1323 * Return 0 on success, -errno on error. 1324 * 1325 * Locking: tty_mutex must be held from the time the tty was found 1326 * till this open completes. 1327 */ 1328 static int tty_reopen(struct tty_struct *tty) 1329 { 1330 struct tty_driver *driver = tty->driver; 1331 1332 if (test_bit(TTY_CLOSING, &tty->flags) || 1333 test_bit(TTY_HUPPING, &tty->flags) || 1334 test_bit(TTY_LDISC_CHANGING, &tty->flags)) 1335 return -EIO; 1336 1337 if (driver->type == TTY_DRIVER_TYPE_PTY && 1338 driver->subtype == PTY_TYPE_MASTER) { 1339 /* 1340 * special case for PTY masters: only one open permitted, 1341 * and the slave side open count is incremented as well. 1342 */ 1343 if (tty->count) 1344 return -EIO; 1345 1346 tty->link->count++; 1347 } 1348 tty->count++; 1349 1350 mutex_lock(&tty->ldisc_mutex); 1351 WARN_ON(!test_bit(TTY_LDISC, &tty->flags)); 1352 mutex_unlock(&tty->ldisc_mutex); 1353 1354 return 0; 1355 } 1356 1357 /** 1358 * tty_init_dev - initialise a tty device 1359 * @driver: tty driver we are opening a device on 1360 * @idx: device index 1361 * @ret_tty: returned tty structure 1362 * 1363 * Prepare a tty device. This may not be a "new" clean device but 1364 * could also be an active device. The pty drivers require special 1365 * handling because of this. 1366 * 1367 * Locking: 1368 * The function is called under the tty_mutex, which 1369 * protects us from the tty struct or driver itself going away. 1370 * 1371 * On exit the tty device has the line discipline attached and 1372 * a reference count of 1. If a pair was created for pty/tty use 1373 * and the other was a pty master then it too has a reference count of 1. 1374 * 1375 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1376 * failed open. The new code protects the open with a mutex, so it's 1377 * really quite straightforward. The mutex locking can probably be 1378 * relaxed for the (most common) case of reopening a tty. 1379 */ 1380 1381 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1382 { 1383 struct tty_struct *tty; 1384 int retval; 1385 1386 /* 1387 * First time open is complex, especially for PTY devices. 1388 * This code guarantees that either everything succeeds and the 1389 * TTY is ready for operation, or else the table slots are vacated 1390 * and the allocated memory released. (Except that the termios 1391 * and locked termios may be retained.) 1392 */ 1393 1394 if (!try_module_get(driver->owner)) 1395 return ERR_PTR(-ENODEV); 1396 1397 tty = alloc_tty_struct(); 1398 if (!tty) { 1399 retval = -ENOMEM; 1400 goto err_module_put; 1401 } 1402 initialize_tty_struct(tty, driver, idx); 1403 1404 retval = tty_driver_install_tty(driver, tty); 1405 if (retval < 0) 1406 goto err_deinit_tty; 1407 1408 if (!tty->port) 1409 tty->port = driver->ports[idx]; 1410 1411 /* 1412 * Structures all installed ... call the ldisc open routines. 1413 * If we fail here just call release_tty to clean up. No need 1414 * to decrement the use counts, as release_tty doesn't care. 1415 */ 1416 retval = tty_ldisc_setup(tty, tty->link); 1417 if (retval) 1418 goto err_release_tty; 1419 return tty; 1420 1421 err_deinit_tty: 1422 deinitialize_tty_struct(tty); 1423 free_tty_struct(tty); 1424 err_module_put: 1425 module_put(driver->owner); 1426 return ERR_PTR(retval); 1427 1428 /* call the tty release_tty routine to clean out this slot */ 1429 err_release_tty: 1430 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1431 "clearing slot %d\n", idx); 1432 release_tty(tty, idx); 1433 return ERR_PTR(retval); 1434 } 1435 1436 void tty_free_termios(struct tty_struct *tty) 1437 { 1438 struct ktermios *tp; 1439 int idx = tty->index; 1440 /* Kill this flag and push into drivers for locking etc */ 1441 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) { 1442 /* FIXME: Locking on ->termios array */ 1443 tp = tty->driver->termios[idx]; 1444 tty->driver->termios[idx] = NULL; 1445 kfree(tp); 1446 } 1447 else 1448 *tty->driver->termios[idx] = tty->termios; 1449 } 1450 EXPORT_SYMBOL(tty_free_termios); 1451 1452 void tty_shutdown(struct tty_struct *tty) 1453 { 1454 tty_driver_remove_tty(tty->driver, tty); 1455 tty_free_termios(tty); 1456 } 1457 EXPORT_SYMBOL(tty_shutdown); 1458 1459 /** 1460 * release_one_tty - release tty structure memory 1461 * @kref: kref of tty we are obliterating 1462 * 1463 * Releases memory associated with a tty structure, and clears out the 1464 * driver table slots. This function is called when a device is no longer 1465 * in use. It also gets called when setup of a device fails. 1466 * 1467 * Locking: 1468 * tty_mutex - sometimes only 1469 * takes the file list lock internally when working on the list 1470 * of ttys that the driver keeps. 1471 * 1472 * This method gets called from a work queue so that the driver private 1473 * cleanup ops can sleep (needed for USB at least) 1474 */ 1475 static void release_one_tty(struct work_struct *work) 1476 { 1477 struct tty_struct *tty = 1478 container_of(work, struct tty_struct, hangup_work); 1479 struct tty_driver *driver = tty->driver; 1480 1481 if (tty->ops->cleanup) 1482 tty->ops->cleanup(tty); 1483 1484 tty->magic = 0; 1485 tty_driver_kref_put(driver); 1486 module_put(driver->owner); 1487 1488 spin_lock(&tty_files_lock); 1489 list_del_init(&tty->tty_files); 1490 spin_unlock(&tty_files_lock); 1491 1492 put_pid(tty->pgrp); 1493 put_pid(tty->session); 1494 free_tty_struct(tty); 1495 } 1496 1497 static void queue_release_one_tty(struct kref *kref) 1498 { 1499 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1500 1501 if (tty->ops->shutdown) 1502 tty->ops->shutdown(tty); 1503 else 1504 tty_shutdown(tty); 1505 1506 /* The hangup queue is now free so we can reuse it rather than 1507 waste a chunk of memory for each port */ 1508 INIT_WORK(&tty->hangup_work, release_one_tty); 1509 schedule_work(&tty->hangup_work); 1510 } 1511 1512 /** 1513 * tty_kref_put - release a tty kref 1514 * @tty: tty device 1515 * 1516 * Release a reference to a tty device and if need be let the kref 1517 * layer destruct the object for us 1518 */ 1519 1520 void tty_kref_put(struct tty_struct *tty) 1521 { 1522 if (tty) 1523 kref_put(&tty->kref, queue_release_one_tty); 1524 } 1525 EXPORT_SYMBOL(tty_kref_put); 1526 1527 /** 1528 * release_tty - release tty structure memory 1529 * 1530 * Release both @tty and a possible linked partner (think pty pair), 1531 * and decrement the refcount of the backing module. 1532 * 1533 * Locking: 1534 * tty_mutex - sometimes only 1535 * takes the file list lock internally when working on the list 1536 * of ttys that the driver keeps. 1537 * FIXME: should we require tty_mutex is held here ?? 1538 * 1539 */ 1540 static void release_tty(struct tty_struct *tty, int idx) 1541 { 1542 /* This should always be true but check for the moment */ 1543 WARN_ON(tty->index != idx); 1544 1545 if (tty->link) 1546 tty_kref_put(tty->link); 1547 tty_kref_put(tty); 1548 } 1549 1550 /** 1551 * tty_release_checks - check a tty before real release 1552 * @tty: tty to check 1553 * @o_tty: link of @tty (if any) 1554 * @idx: index of the tty 1555 * 1556 * Performs some paranoid checking before true release of the @tty. 1557 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1558 */ 1559 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty, 1560 int idx) 1561 { 1562 #ifdef TTY_PARANOIA_CHECK 1563 if (idx < 0 || idx >= tty->driver->num) { 1564 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n", 1565 __func__, tty->name); 1566 return -1; 1567 } 1568 1569 /* not much to check for devpts */ 1570 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1571 return 0; 1572 1573 if (tty != tty->driver->ttys[idx]) { 1574 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n", 1575 __func__, idx, tty->name); 1576 return -1; 1577 } 1578 if (tty->driver->other) { 1579 if (o_tty != tty->driver->other->ttys[idx]) { 1580 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n", 1581 __func__, idx, tty->name); 1582 return -1; 1583 } 1584 if (o_tty->link != tty) { 1585 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__); 1586 return -1; 1587 } 1588 } 1589 #endif 1590 return 0; 1591 } 1592 1593 /** 1594 * tty_release - vfs callback for close 1595 * @inode: inode of tty 1596 * @filp: file pointer for handle to tty 1597 * 1598 * Called the last time each file handle is closed that references 1599 * this tty. There may however be several such references. 1600 * 1601 * Locking: 1602 * Takes bkl. See tty_release_dev 1603 * 1604 * Even releasing the tty structures is a tricky business.. We have 1605 * to be very careful that the structures are all released at the 1606 * same time, as interrupts might otherwise get the wrong pointers. 1607 * 1608 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1609 * lead to double frees or releasing memory still in use. 1610 */ 1611 1612 int tty_release(struct inode *inode, struct file *filp) 1613 { 1614 struct tty_struct *tty = file_tty(filp); 1615 struct tty_struct *o_tty; 1616 int pty_master, tty_closing, o_tty_closing, do_sleep; 1617 int devpts; 1618 int idx; 1619 char buf[64]; 1620 1621 if (tty_paranoia_check(tty, inode, __func__)) 1622 return 0; 1623 1624 tty_lock(); 1625 check_tty_count(tty, __func__); 1626 1627 __tty_fasync(-1, filp, 0); 1628 1629 idx = tty->index; 1630 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1631 tty->driver->subtype == PTY_TYPE_MASTER); 1632 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0; 1633 o_tty = tty->link; 1634 1635 if (tty_release_checks(tty, o_tty, idx)) { 1636 tty_unlock(); 1637 return 0; 1638 } 1639 1640 #ifdef TTY_DEBUG_HANGUP 1641 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__, 1642 tty_name(tty, buf), tty->count); 1643 #endif 1644 1645 if (tty->ops->close) 1646 tty->ops->close(tty, filp); 1647 1648 tty_unlock(); 1649 /* 1650 * Sanity check: if tty->count is going to zero, there shouldn't be 1651 * any waiters on tty->read_wait or tty->write_wait. We test the 1652 * wait queues and kick everyone out _before_ actually starting to 1653 * close. This ensures that we won't block while releasing the tty 1654 * structure. 1655 * 1656 * The test for the o_tty closing is necessary, since the master and 1657 * slave sides may close in any order. If the slave side closes out 1658 * first, its count will be one, since the master side holds an open. 1659 * Thus this test wouldn't be triggered at the time the slave closes, 1660 * so we do it now. 1661 * 1662 * Note that it's possible for the tty to be opened again while we're 1663 * flushing out waiters. By recalculating the closing flags before 1664 * each iteration we avoid any problems. 1665 */ 1666 while (1) { 1667 /* Guard against races with tty->count changes elsewhere and 1668 opens on /dev/tty */ 1669 1670 mutex_lock(&tty_mutex); 1671 tty_lock(); 1672 tty_closing = tty->count <= 1; 1673 o_tty_closing = o_tty && 1674 (o_tty->count <= (pty_master ? 1 : 0)); 1675 do_sleep = 0; 1676 1677 if (tty_closing) { 1678 if (waitqueue_active(&tty->read_wait)) { 1679 wake_up_poll(&tty->read_wait, POLLIN); 1680 do_sleep++; 1681 } 1682 if (waitqueue_active(&tty->write_wait)) { 1683 wake_up_poll(&tty->write_wait, POLLOUT); 1684 do_sleep++; 1685 } 1686 } 1687 if (o_tty_closing) { 1688 if (waitqueue_active(&o_tty->read_wait)) { 1689 wake_up_poll(&o_tty->read_wait, POLLIN); 1690 do_sleep++; 1691 } 1692 if (waitqueue_active(&o_tty->write_wait)) { 1693 wake_up_poll(&o_tty->write_wait, POLLOUT); 1694 do_sleep++; 1695 } 1696 } 1697 if (!do_sleep) 1698 break; 1699 1700 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1701 __func__, tty_name(tty, buf)); 1702 tty_unlock(); 1703 mutex_unlock(&tty_mutex); 1704 schedule(); 1705 } 1706 1707 /* 1708 * The closing flags are now consistent with the open counts on 1709 * both sides, and we've completed the last operation that could 1710 * block, so it's safe to proceed with closing. 1711 */ 1712 if (pty_master) { 1713 if (--o_tty->count < 0) { 1714 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1715 __func__, o_tty->count, tty_name(o_tty, buf)); 1716 o_tty->count = 0; 1717 } 1718 } 1719 if (--tty->count < 0) { 1720 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1721 __func__, tty->count, tty_name(tty, buf)); 1722 tty->count = 0; 1723 } 1724 1725 /* 1726 * We've decremented tty->count, so we need to remove this file 1727 * descriptor off the tty->tty_files list; this serves two 1728 * purposes: 1729 * - check_tty_count sees the correct number of file descriptors 1730 * associated with this tty. 1731 * - do_tty_hangup no longer sees this file descriptor as 1732 * something that needs to be handled for hangups. 1733 */ 1734 tty_del_file(filp); 1735 1736 /* 1737 * Perform some housekeeping before deciding whether to return. 1738 * 1739 * Set the TTY_CLOSING flag if this was the last open. In the 1740 * case of a pty we may have to wait around for the other side 1741 * to close, and TTY_CLOSING makes sure we can't be reopened. 1742 */ 1743 if (tty_closing) 1744 set_bit(TTY_CLOSING, &tty->flags); 1745 if (o_tty_closing) 1746 set_bit(TTY_CLOSING, &o_tty->flags); 1747 1748 /* 1749 * If _either_ side is closing, make sure there aren't any 1750 * processes that still think tty or o_tty is their controlling 1751 * tty. 1752 */ 1753 if (tty_closing || o_tty_closing) { 1754 read_lock(&tasklist_lock); 1755 session_clear_tty(tty->session); 1756 if (o_tty) 1757 session_clear_tty(o_tty->session); 1758 read_unlock(&tasklist_lock); 1759 } 1760 1761 mutex_unlock(&tty_mutex); 1762 1763 /* check whether both sides are closing ... */ 1764 if (!tty_closing || (o_tty && !o_tty_closing)) { 1765 tty_unlock(); 1766 return 0; 1767 } 1768 1769 #ifdef TTY_DEBUG_HANGUP 1770 printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__); 1771 #endif 1772 /* 1773 * Ask the line discipline code to release its structures 1774 */ 1775 tty_ldisc_release(tty, o_tty); 1776 /* 1777 * The release_tty function takes care of the details of clearing 1778 * the slots and preserving the termios structure. 1779 */ 1780 release_tty(tty, idx); 1781 1782 /* Make this pty number available for reallocation */ 1783 if (devpts) 1784 devpts_kill_index(inode, idx); 1785 tty_unlock(); 1786 return 0; 1787 } 1788 1789 /** 1790 * tty_open_current_tty - get tty of current task for open 1791 * @device: device number 1792 * @filp: file pointer to tty 1793 * @return: tty of the current task iff @device is /dev/tty 1794 * 1795 * We cannot return driver and index like for the other nodes because 1796 * devpts will not work then. It expects inodes to be from devpts FS. 1797 * 1798 * We need to move to returning a refcounted object from all the lookup 1799 * paths including this one. 1800 */ 1801 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1802 { 1803 struct tty_struct *tty; 1804 1805 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1806 return NULL; 1807 1808 tty = get_current_tty(); 1809 if (!tty) 1810 return ERR_PTR(-ENXIO); 1811 1812 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1813 /* noctty = 1; */ 1814 tty_kref_put(tty); 1815 /* FIXME: we put a reference and return a TTY! */ 1816 /* This is only safe because the caller holds tty_mutex */ 1817 return tty; 1818 } 1819 1820 /** 1821 * tty_lookup_driver - lookup a tty driver for a given device file 1822 * @device: device number 1823 * @filp: file pointer to tty 1824 * @noctty: set if the device should not become a controlling tty 1825 * @index: index for the device in the @return driver 1826 * @return: driver for this inode (with increased refcount) 1827 * 1828 * If @return is not erroneous, the caller is responsible to decrement the 1829 * refcount by tty_driver_kref_put. 1830 * 1831 * Locking: tty_mutex protects get_tty_driver 1832 */ 1833 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1834 int *noctty, int *index) 1835 { 1836 struct tty_driver *driver; 1837 1838 switch (device) { 1839 #ifdef CONFIG_VT 1840 case MKDEV(TTY_MAJOR, 0): { 1841 extern struct tty_driver *console_driver; 1842 driver = tty_driver_kref_get(console_driver); 1843 *index = fg_console; 1844 *noctty = 1; 1845 break; 1846 } 1847 #endif 1848 case MKDEV(TTYAUX_MAJOR, 1): { 1849 struct tty_driver *console_driver = console_device(index); 1850 if (console_driver) { 1851 driver = tty_driver_kref_get(console_driver); 1852 if (driver) { 1853 /* Don't let /dev/console block */ 1854 filp->f_flags |= O_NONBLOCK; 1855 *noctty = 1; 1856 break; 1857 } 1858 } 1859 return ERR_PTR(-ENODEV); 1860 } 1861 default: 1862 driver = get_tty_driver(device, index); 1863 if (!driver) 1864 return ERR_PTR(-ENODEV); 1865 break; 1866 } 1867 return driver; 1868 } 1869 1870 /** 1871 * tty_open - open a tty device 1872 * @inode: inode of device file 1873 * @filp: file pointer to tty 1874 * 1875 * tty_open and tty_release keep up the tty count that contains the 1876 * number of opens done on a tty. We cannot use the inode-count, as 1877 * different inodes might point to the same tty. 1878 * 1879 * Open-counting is needed for pty masters, as well as for keeping 1880 * track of serial lines: DTR is dropped when the last close happens. 1881 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1882 * 1883 * The termios state of a pty is reset on first open so that 1884 * settings don't persist across reuse. 1885 * 1886 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1887 * tty->count should protect the rest. 1888 * ->siglock protects ->signal/->sighand 1889 */ 1890 1891 static int tty_open(struct inode *inode, struct file *filp) 1892 { 1893 struct tty_struct *tty; 1894 int noctty, retval; 1895 struct tty_driver *driver = NULL; 1896 int index; 1897 dev_t device = inode->i_rdev; 1898 unsigned saved_flags = filp->f_flags; 1899 1900 nonseekable_open(inode, filp); 1901 1902 retry_open: 1903 retval = tty_alloc_file(filp); 1904 if (retval) 1905 return -ENOMEM; 1906 1907 noctty = filp->f_flags & O_NOCTTY; 1908 index = -1; 1909 retval = 0; 1910 1911 mutex_lock(&tty_mutex); 1912 tty_lock(); 1913 1914 tty = tty_open_current_tty(device, filp); 1915 if (IS_ERR(tty)) { 1916 retval = PTR_ERR(tty); 1917 goto err_unlock; 1918 } else if (!tty) { 1919 driver = tty_lookup_driver(device, filp, &noctty, &index); 1920 if (IS_ERR(driver)) { 1921 retval = PTR_ERR(driver); 1922 goto err_unlock; 1923 } 1924 1925 /* check whether we're reopening an existing tty */ 1926 tty = tty_driver_lookup_tty(driver, inode, index); 1927 if (IS_ERR(tty)) { 1928 retval = PTR_ERR(tty); 1929 goto err_unlock; 1930 } 1931 } 1932 1933 if (tty) { 1934 retval = tty_reopen(tty); 1935 if (retval) 1936 tty = ERR_PTR(retval); 1937 } else 1938 tty = tty_init_dev(driver, index); 1939 1940 mutex_unlock(&tty_mutex); 1941 if (driver) 1942 tty_driver_kref_put(driver); 1943 if (IS_ERR(tty)) { 1944 tty_unlock(); 1945 retval = PTR_ERR(tty); 1946 goto err_file; 1947 } 1948 1949 tty_add_file(tty, filp); 1950 1951 check_tty_count(tty, __func__); 1952 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1953 tty->driver->subtype == PTY_TYPE_MASTER) 1954 noctty = 1; 1955 #ifdef TTY_DEBUG_HANGUP 1956 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name); 1957 #endif 1958 if (tty->ops->open) 1959 retval = tty->ops->open(tty, filp); 1960 else 1961 retval = -ENODEV; 1962 filp->f_flags = saved_flags; 1963 1964 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && 1965 !capable(CAP_SYS_ADMIN)) 1966 retval = -EBUSY; 1967 1968 if (retval) { 1969 #ifdef TTY_DEBUG_HANGUP 1970 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__, 1971 retval, tty->name); 1972 #endif 1973 tty_unlock(); /* need to call tty_release without BTM */ 1974 tty_release(inode, filp); 1975 if (retval != -ERESTARTSYS) 1976 return retval; 1977 1978 if (signal_pending(current)) 1979 return retval; 1980 1981 schedule(); 1982 /* 1983 * Need to reset f_op in case a hangup happened. 1984 */ 1985 tty_lock(); 1986 if (filp->f_op == &hung_up_tty_fops) 1987 filp->f_op = &tty_fops; 1988 tty_unlock(); 1989 goto retry_open; 1990 } 1991 tty_unlock(); 1992 1993 1994 mutex_lock(&tty_mutex); 1995 tty_lock(); 1996 spin_lock_irq(¤t->sighand->siglock); 1997 if (!noctty && 1998 current->signal->leader && 1999 !current->signal->tty && 2000 tty->session == NULL) 2001 __proc_set_tty(current, tty); 2002 spin_unlock_irq(¤t->sighand->siglock); 2003 tty_unlock(); 2004 mutex_unlock(&tty_mutex); 2005 return 0; 2006 err_unlock: 2007 tty_unlock(); 2008 mutex_unlock(&tty_mutex); 2009 /* after locks to avoid deadlock */ 2010 if (!IS_ERR_OR_NULL(driver)) 2011 tty_driver_kref_put(driver); 2012 err_file: 2013 tty_free_file(filp); 2014 return retval; 2015 } 2016 2017 2018 2019 /** 2020 * tty_poll - check tty status 2021 * @filp: file being polled 2022 * @wait: poll wait structures to update 2023 * 2024 * Call the line discipline polling method to obtain the poll 2025 * status of the device. 2026 * 2027 * Locking: locks called line discipline but ldisc poll method 2028 * may be re-entered freely by other callers. 2029 */ 2030 2031 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2032 { 2033 struct tty_struct *tty = file_tty(filp); 2034 struct tty_ldisc *ld; 2035 int ret = 0; 2036 2037 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll")) 2038 return 0; 2039 2040 ld = tty_ldisc_ref_wait(tty); 2041 if (ld->ops->poll) 2042 ret = (ld->ops->poll)(tty, filp, wait); 2043 tty_ldisc_deref(ld); 2044 return ret; 2045 } 2046 2047 static int __tty_fasync(int fd, struct file *filp, int on) 2048 { 2049 struct tty_struct *tty = file_tty(filp); 2050 unsigned long flags; 2051 int retval = 0; 2052 2053 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync")) 2054 goto out; 2055 2056 retval = fasync_helper(fd, filp, on, &tty->fasync); 2057 if (retval <= 0) 2058 goto out; 2059 2060 if (on) { 2061 enum pid_type type; 2062 struct pid *pid; 2063 if (!waitqueue_active(&tty->read_wait)) 2064 tty->minimum_to_wake = 1; 2065 spin_lock_irqsave(&tty->ctrl_lock, flags); 2066 if (tty->pgrp) { 2067 pid = tty->pgrp; 2068 type = PIDTYPE_PGID; 2069 } else { 2070 pid = task_pid(current); 2071 type = PIDTYPE_PID; 2072 } 2073 get_pid(pid); 2074 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2075 retval = __f_setown(filp, pid, type, 0); 2076 put_pid(pid); 2077 if (retval) 2078 goto out; 2079 } else { 2080 if (!tty->fasync && !waitqueue_active(&tty->read_wait)) 2081 tty->minimum_to_wake = N_TTY_BUF_SIZE; 2082 } 2083 retval = 0; 2084 out: 2085 return retval; 2086 } 2087 2088 static int tty_fasync(int fd, struct file *filp, int on) 2089 { 2090 int retval; 2091 tty_lock(); 2092 retval = __tty_fasync(fd, filp, on); 2093 tty_unlock(); 2094 return retval; 2095 } 2096 2097 /** 2098 * tiocsti - fake input character 2099 * @tty: tty to fake input into 2100 * @p: pointer to character 2101 * 2102 * Fake input to a tty device. Does the necessary locking and 2103 * input management. 2104 * 2105 * FIXME: does not honour flow control ?? 2106 * 2107 * Locking: 2108 * Called functions take tty_ldisc_lock 2109 * current->signal->tty check is safe without locks 2110 * 2111 * FIXME: may race normal receive processing 2112 */ 2113 2114 static int tiocsti(struct tty_struct *tty, char __user *p) 2115 { 2116 char ch, mbz = 0; 2117 struct tty_ldisc *ld; 2118 2119 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2120 return -EPERM; 2121 if (get_user(ch, p)) 2122 return -EFAULT; 2123 tty_audit_tiocsti(tty, ch); 2124 ld = tty_ldisc_ref_wait(tty); 2125 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2126 tty_ldisc_deref(ld); 2127 return 0; 2128 } 2129 2130 /** 2131 * tiocgwinsz - implement window query ioctl 2132 * @tty; tty 2133 * @arg: user buffer for result 2134 * 2135 * Copies the kernel idea of the window size into the user buffer. 2136 * 2137 * Locking: tty->termios_mutex is taken to ensure the winsize data 2138 * is consistent. 2139 */ 2140 2141 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2142 { 2143 int err; 2144 2145 mutex_lock(&tty->termios_mutex); 2146 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2147 mutex_unlock(&tty->termios_mutex); 2148 2149 return err ? -EFAULT: 0; 2150 } 2151 2152 /** 2153 * tty_do_resize - resize event 2154 * @tty: tty being resized 2155 * @rows: rows (character) 2156 * @cols: cols (character) 2157 * 2158 * Update the termios variables and send the necessary signals to 2159 * peform a terminal resize correctly 2160 */ 2161 2162 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2163 { 2164 struct pid *pgrp; 2165 unsigned long flags; 2166 2167 /* Lock the tty */ 2168 mutex_lock(&tty->termios_mutex); 2169 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2170 goto done; 2171 /* Get the PID values and reference them so we can 2172 avoid holding the tty ctrl lock while sending signals */ 2173 spin_lock_irqsave(&tty->ctrl_lock, flags); 2174 pgrp = get_pid(tty->pgrp); 2175 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2176 2177 if (pgrp) 2178 kill_pgrp(pgrp, SIGWINCH, 1); 2179 put_pid(pgrp); 2180 2181 tty->winsize = *ws; 2182 done: 2183 mutex_unlock(&tty->termios_mutex); 2184 return 0; 2185 } 2186 2187 /** 2188 * tiocswinsz - implement window size set ioctl 2189 * @tty; tty side of tty 2190 * @arg: user buffer for result 2191 * 2192 * Copies the user idea of the window size to the kernel. Traditionally 2193 * this is just advisory information but for the Linux console it 2194 * actually has driver level meaning and triggers a VC resize. 2195 * 2196 * Locking: 2197 * Driver dependent. The default do_resize method takes the 2198 * tty termios mutex and ctrl_lock. The console takes its own lock 2199 * then calls into the default method. 2200 */ 2201 2202 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2203 { 2204 struct winsize tmp_ws; 2205 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2206 return -EFAULT; 2207 2208 if (tty->ops->resize) 2209 return tty->ops->resize(tty, &tmp_ws); 2210 else 2211 return tty_do_resize(tty, &tmp_ws); 2212 } 2213 2214 /** 2215 * tioccons - allow admin to move logical console 2216 * @file: the file to become console 2217 * 2218 * Allow the administrator to move the redirected console device 2219 * 2220 * Locking: uses redirect_lock to guard the redirect information 2221 */ 2222 2223 static int tioccons(struct file *file) 2224 { 2225 if (!capable(CAP_SYS_ADMIN)) 2226 return -EPERM; 2227 if (file->f_op->write == redirected_tty_write) { 2228 struct file *f; 2229 spin_lock(&redirect_lock); 2230 f = redirect; 2231 redirect = NULL; 2232 spin_unlock(&redirect_lock); 2233 if (f) 2234 fput(f); 2235 return 0; 2236 } 2237 spin_lock(&redirect_lock); 2238 if (redirect) { 2239 spin_unlock(&redirect_lock); 2240 return -EBUSY; 2241 } 2242 get_file(file); 2243 redirect = file; 2244 spin_unlock(&redirect_lock); 2245 return 0; 2246 } 2247 2248 /** 2249 * fionbio - non blocking ioctl 2250 * @file: file to set blocking value 2251 * @p: user parameter 2252 * 2253 * Historical tty interfaces had a blocking control ioctl before 2254 * the generic functionality existed. This piece of history is preserved 2255 * in the expected tty API of posix OS's. 2256 * 2257 * Locking: none, the open file handle ensures it won't go away. 2258 */ 2259 2260 static int fionbio(struct file *file, int __user *p) 2261 { 2262 int nonblock; 2263 2264 if (get_user(nonblock, p)) 2265 return -EFAULT; 2266 2267 spin_lock(&file->f_lock); 2268 if (nonblock) 2269 file->f_flags |= O_NONBLOCK; 2270 else 2271 file->f_flags &= ~O_NONBLOCK; 2272 spin_unlock(&file->f_lock); 2273 return 0; 2274 } 2275 2276 /** 2277 * tiocsctty - set controlling tty 2278 * @tty: tty structure 2279 * @arg: user argument 2280 * 2281 * This ioctl is used to manage job control. It permits a session 2282 * leader to set this tty as the controlling tty for the session. 2283 * 2284 * Locking: 2285 * Takes tty_mutex() to protect tty instance 2286 * Takes tasklist_lock internally to walk sessions 2287 * Takes ->siglock() when updating signal->tty 2288 */ 2289 2290 static int tiocsctty(struct tty_struct *tty, int arg) 2291 { 2292 int ret = 0; 2293 if (current->signal->leader && (task_session(current) == tty->session)) 2294 return ret; 2295 2296 mutex_lock(&tty_mutex); 2297 /* 2298 * The process must be a session leader and 2299 * not have a controlling tty already. 2300 */ 2301 if (!current->signal->leader || current->signal->tty) { 2302 ret = -EPERM; 2303 goto unlock; 2304 } 2305 2306 if (tty->session) { 2307 /* 2308 * This tty is already the controlling 2309 * tty for another session group! 2310 */ 2311 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2312 /* 2313 * Steal it away 2314 */ 2315 read_lock(&tasklist_lock); 2316 session_clear_tty(tty->session); 2317 read_unlock(&tasklist_lock); 2318 } else { 2319 ret = -EPERM; 2320 goto unlock; 2321 } 2322 } 2323 proc_set_tty(current, tty); 2324 unlock: 2325 mutex_unlock(&tty_mutex); 2326 return ret; 2327 } 2328 2329 /** 2330 * tty_get_pgrp - return a ref counted pgrp pid 2331 * @tty: tty to read 2332 * 2333 * Returns a refcounted instance of the pid struct for the process 2334 * group controlling the tty. 2335 */ 2336 2337 struct pid *tty_get_pgrp(struct tty_struct *tty) 2338 { 2339 unsigned long flags; 2340 struct pid *pgrp; 2341 2342 spin_lock_irqsave(&tty->ctrl_lock, flags); 2343 pgrp = get_pid(tty->pgrp); 2344 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2345 2346 return pgrp; 2347 } 2348 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2349 2350 /** 2351 * tiocgpgrp - get process group 2352 * @tty: tty passed by user 2353 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2354 * @p: returned pid 2355 * 2356 * Obtain the process group of the tty. If there is no process group 2357 * return an error. 2358 * 2359 * Locking: none. Reference to current->signal->tty is safe. 2360 */ 2361 2362 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2363 { 2364 struct pid *pid; 2365 int ret; 2366 /* 2367 * (tty == real_tty) is a cheap way of 2368 * testing if the tty is NOT a master pty. 2369 */ 2370 if (tty == real_tty && current->signal->tty != real_tty) 2371 return -ENOTTY; 2372 pid = tty_get_pgrp(real_tty); 2373 ret = put_user(pid_vnr(pid), p); 2374 put_pid(pid); 2375 return ret; 2376 } 2377 2378 /** 2379 * tiocspgrp - attempt to set process group 2380 * @tty: tty passed by user 2381 * @real_tty: tty side device matching tty passed by user 2382 * @p: pid pointer 2383 * 2384 * Set the process group of the tty to the session passed. Only 2385 * permitted where the tty session is our session. 2386 * 2387 * Locking: RCU, ctrl lock 2388 */ 2389 2390 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2391 { 2392 struct pid *pgrp; 2393 pid_t pgrp_nr; 2394 int retval = tty_check_change(real_tty); 2395 unsigned long flags; 2396 2397 if (retval == -EIO) 2398 return -ENOTTY; 2399 if (retval) 2400 return retval; 2401 if (!current->signal->tty || 2402 (current->signal->tty != real_tty) || 2403 (real_tty->session != task_session(current))) 2404 return -ENOTTY; 2405 if (get_user(pgrp_nr, p)) 2406 return -EFAULT; 2407 if (pgrp_nr < 0) 2408 return -EINVAL; 2409 rcu_read_lock(); 2410 pgrp = find_vpid(pgrp_nr); 2411 retval = -ESRCH; 2412 if (!pgrp) 2413 goto out_unlock; 2414 retval = -EPERM; 2415 if (session_of_pgrp(pgrp) != task_session(current)) 2416 goto out_unlock; 2417 retval = 0; 2418 spin_lock_irqsave(&tty->ctrl_lock, flags); 2419 put_pid(real_tty->pgrp); 2420 real_tty->pgrp = get_pid(pgrp); 2421 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2422 out_unlock: 2423 rcu_read_unlock(); 2424 return retval; 2425 } 2426 2427 /** 2428 * tiocgsid - get session id 2429 * @tty: tty passed by user 2430 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2431 * @p: pointer to returned session id 2432 * 2433 * Obtain the session id of the tty. If there is no session 2434 * return an error. 2435 * 2436 * Locking: none. Reference to current->signal->tty is safe. 2437 */ 2438 2439 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2440 { 2441 /* 2442 * (tty == real_tty) is a cheap way of 2443 * testing if the tty is NOT a master pty. 2444 */ 2445 if (tty == real_tty && current->signal->tty != real_tty) 2446 return -ENOTTY; 2447 if (!real_tty->session) 2448 return -ENOTTY; 2449 return put_user(pid_vnr(real_tty->session), p); 2450 } 2451 2452 /** 2453 * tiocsetd - set line discipline 2454 * @tty: tty device 2455 * @p: pointer to user data 2456 * 2457 * Set the line discipline according to user request. 2458 * 2459 * Locking: see tty_set_ldisc, this function is just a helper 2460 */ 2461 2462 static int tiocsetd(struct tty_struct *tty, int __user *p) 2463 { 2464 int ldisc; 2465 int ret; 2466 2467 if (get_user(ldisc, p)) 2468 return -EFAULT; 2469 2470 ret = tty_set_ldisc(tty, ldisc); 2471 2472 return ret; 2473 } 2474 2475 /** 2476 * send_break - performed time break 2477 * @tty: device to break on 2478 * @duration: timeout in mS 2479 * 2480 * Perform a timed break on hardware that lacks its own driver level 2481 * timed break functionality. 2482 * 2483 * Locking: 2484 * atomic_write_lock serializes 2485 * 2486 */ 2487 2488 static int send_break(struct tty_struct *tty, unsigned int duration) 2489 { 2490 int retval; 2491 2492 if (tty->ops->break_ctl == NULL) 2493 return 0; 2494 2495 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2496 retval = tty->ops->break_ctl(tty, duration); 2497 else { 2498 /* Do the work ourselves */ 2499 if (tty_write_lock(tty, 0) < 0) 2500 return -EINTR; 2501 retval = tty->ops->break_ctl(tty, -1); 2502 if (retval) 2503 goto out; 2504 if (!signal_pending(current)) 2505 msleep_interruptible(duration); 2506 retval = tty->ops->break_ctl(tty, 0); 2507 out: 2508 tty_write_unlock(tty); 2509 if (signal_pending(current)) 2510 retval = -EINTR; 2511 } 2512 return retval; 2513 } 2514 2515 /** 2516 * tty_tiocmget - get modem status 2517 * @tty: tty device 2518 * @file: user file pointer 2519 * @p: pointer to result 2520 * 2521 * Obtain the modem status bits from the tty driver if the feature 2522 * is supported. Return -EINVAL if it is not available. 2523 * 2524 * Locking: none (up to the driver) 2525 */ 2526 2527 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2528 { 2529 int retval = -EINVAL; 2530 2531 if (tty->ops->tiocmget) { 2532 retval = tty->ops->tiocmget(tty); 2533 2534 if (retval >= 0) 2535 retval = put_user(retval, p); 2536 } 2537 return retval; 2538 } 2539 2540 /** 2541 * tty_tiocmset - set modem status 2542 * @tty: tty device 2543 * @cmd: command - clear bits, set bits or set all 2544 * @p: pointer to desired bits 2545 * 2546 * Set the modem status bits from the tty driver if the feature 2547 * is supported. Return -EINVAL if it is not available. 2548 * 2549 * Locking: none (up to the driver) 2550 */ 2551 2552 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2553 unsigned __user *p) 2554 { 2555 int retval; 2556 unsigned int set, clear, val; 2557 2558 if (tty->ops->tiocmset == NULL) 2559 return -EINVAL; 2560 2561 retval = get_user(val, p); 2562 if (retval) 2563 return retval; 2564 set = clear = 0; 2565 switch (cmd) { 2566 case TIOCMBIS: 2567 set = val; 2568 break; 2569 case TIOCMBIC: 2570 clear = val; 2571 break; 2572 case TIOCMSET: 2573 set = val; 2574 clear = ~val; 2575 break; 2576 } 2577 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2578 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2579 return tty->ops->tiocmset(tty, set, clear); 2580 } 2581 2582 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2583 { 2584 int retval = -EINVAL; 2585 struct serial_icounter_struct icount; 2586 memset(&icount, 0, sizeof(icount)); 2587 if (tty->ops->get_icount) 2588 retval = tty->ops->get_icount(tty, &icount); 2589 if (retval != 0) 2590 return retval; 2591 if (copy_to_user(arg, &icount, sizeof(icount))) 2592 return -EFAULT; 2593 return 0; 2594 } 2595 2596 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2597 { 2598 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2599 tty->driver->subtype == PTY_TYPE_MASTER) 2600 tty = tty->link; 2601 return tty; 2602 } 2603 EXPORT_SYMBOL(tty_pair_get_tty); 2604 2605 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty) 2606 { 2607 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2608 tty->driver->subtype == PTY_TYPE_MASTER) 2609 return tty; 2610 return tty->link; 2611 } 2612 EXPORT_SYMBOL(tty_pair_get_pty); 2613 2614 /* 2615 * Split this up, as gcc can choke on it otherwise.. 2616 */ 2617 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2618 { 2619 struct tty_struct *tty = file_tty(file); 2620 struct tty_struct *real_tty; 2621 void __user *p = (void __user *)arg; 2622 int retval; 2623 struct tty_ldisc *ld; 2624 struct inode *inode = file->f_dentry->d_inode; 2625 2626 if (tty_paranoia_check(tty, inode, "tty_ioctl")) 2627 return -EINVAL; 2628 2629 real_tty = tty_pair_get_tty(tty); 2630 2631 /* 2632 * Factor out some common prep work 2633 */ 2634 switch (cmd) { 2635 case TIOCSETD: 2636 case TIOCSBRK: 2637 case TIOCCBRK: 2638 case TCSBRK: 2639 case TCSBRKP: 2640 retval = tty_check_change(tty); 2641 if (retval) 2642 return retval; 2643 if (cmd != TIOCCBRK) { 2644 tty_wait_until_sent(tty, 0); 2645 if (signal_pending(current)) 2646 return -EINTR; 2647 } 2648 break; 2649 } 2650 2651 /* 2652 * Now do the stuff. 2653 */ 2654 switch (cmd) { 2655 case TIOCSTI: 2656 return tiocsti(tty, p); 2657 case TIOCGWINSZ: 2658 return tiocgwinsz(real_tty, p); 2659 case TIOCSWINSZ: 2660 return tiocswinsz(real_tty, p); 2661 case TIOCCONS: 2662 return real_tty != tty ? -EINVAL : tioccons(file); 2663 case FIONBIO: 2664 return fionbio(file, p); 2665 case TIOCEXCL: 2666 set_bit(TTY_EXCLUSIVE, &tty->flags); 2667 return 0; 2668 case TIOCNXCL: 2669 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2670 return 0; 2671 case TIOCNOTTY: 2672 if (current->signal->tty != tty) 2673 return -ENOTTY; 2674 no_tty(); 2675 return 0; 2676 case TIOCSCTTY: 2677 return tiocsctty(tty, arg); 2678 case TIOCGPGRP: 2679 return tiocgpgrp(tty, real_tty, p); 2680 case TIOCSPGRP: 2681 return tiocspgrp(tty, real_tty, p); 2682 case TIOCGSID: 2683 return tiocgsid(tty, real_tty, p); 2684 case TIOCGETD: 2685 return put_user(tty->ldisc->ops->num, (int __user *)p); 2686 case TIOCSETD: 2687 return tiocsetd(tty, p); 2688 case TIOCVHANGUP: 2689 if (!capable(CAP_SYS_ADMIN)) 2690 return -EPERM; 2691 tty_vhangup(tty); 2692 return 0; 2693 case TIOCGDEV: 2694 { 2695 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2696 return put_user(ret, (unsigned int __user *)p); 2697 } 2698 /* 2699 * Break handling 2700 */ 2701 case TIOCSBRK: /* Turn break on, unconditionally */ 2702 if (tty->ops->break_ctl) 2703 return tty->ops->break_ctl(tty, -1); 2704 return 0; 2705 case TIOCCBRK: /* Turn break off, unconditionally */ 2706 if (tty->ops->break_ctl) 2707 return tty->ops->break_ctl(tty, 0); 2708 return 0; 2709 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2710 /* non-zero arg means wait for all output data 2711 * to be sent (performed above) but don't send break. 2712 * This is used by the tcdrain() termios function. 2713 */ 2714 if (!arg) 2715 return send_break(tty, 250); 2716 return 0; 2717 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2718 return send_break(tty, arg ? arg*100 : 250); 2719 2720 case TIOCMGET: 2721 return tty_tiocmget(tty, p); 2722 case TIOCMSET: 2723 case TIOCMBIC: 2724 case TIOCMBIS: 2725 return tty_tiocmset(tty, cmd, p); 2726 case TIOCGICOUNT: 2727 retval = tty_tiocgicount(tty, p); 2728 /* For the moment allow fall through to the old method */ 2729 if (retval != -EINVAL) 2730 return retval; 2731 break; 2732 case TCFLSH: 2733 switch (arg) { 2734 case TCIFLUSH: 2735 case TCIOFLUSH: 2736 /* flush tty buffer and allow ldisc to process ioctl */ 2737 tty_buffer_flush(tty); 2738 break; 2739 } 2740 break; 2741 } 2742 if (tty->ops->ioctl) { 2743 retval = (tty->ops->ioctl)(tty, cmd, arg); 2744 if (retval != -ENOIOCTLCMD) 2745 return retval; 2746 } 2747 ld = tty_ldisc_ref_wait(tty); 2748 retval = -EINVAL; 2749 if (ld->ops->ioctl) { 2750 retval = ld->ops->ioctl(tty, file, cmd, arg); 2751 if (retval == -ENOIOCTLCMD) 2752 retval = -EINVAL; 2753 } 2754 tty_ldisc_deref(ld); 2755 return retval; 2756 } 2757 2758 #ifdef CONFIG_COMPAT 2759 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2760 unsigned long arg) 2761 { 2762 struct inode *inode = file->f_dentry->d_inode; 2763 struct tty_struct *tty = file_tty(file); 2764 struct tty_ldisc *ld; 2765 int retval = -ENOIOCTLCMD; 2766 2767 if (tty_paranoia_check(tty, inode, "tty_ioctl")) 2768 return -EINVAL; 2769 2770 if (tty->ops->compat_ioctl) { 2771 retval = (tty->ops->compat_ioctl)(tty, cmd, arg); 2772 if (retval != -ENOIOCTLCMD) 2773 return retval; 2774 } 2775 2776 ld = tty_ldisc_ref_wait(tty); 2777 if (ld->ops->compat_ioctl) 2778 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2779 else 2780 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2781 tty_ldisc_deref(ld); 2782 2783 return retval; 2784 } 2785 #endif 2786 2787 /* 2788 * This implements the "Secure Attention Key" --- the idea is to 2789 * prevent trojan horses by killing all processes associated with this 2790 * tty when the user hits the "Secure Attention Key". Required for 2791 * super-paranoid applications --- see the Orange Book for more details. 2792 * 2793 * This code could be nicer; ideally it should send a HUP, wait a few 2794 * seconds, then send a INT, and then a KILL signal. But you then 2795 * have to coordinate with the init process, since all processes associated 2796 * with the current tty must be dead before the new getty is allowed 2797 * to spawn. 2798 * 2799 * Now, if it would be correct ;-/ The current code has a nasty hole - 2800 * it doesn't catch files in flight. We may send the descriptor to ourselves 2801 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2802 * 2803 * Nasty bug: do_SAK is being called in interrupt context. This can 2804 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2805 */ 2806 void __do_SAK(struct tty_struct *tty) 2807 { 2808 #ifdef TTY_SOFT_SAK 2809 tty_hangup(tty); 2810 #else 2811 struct task_struct *g, *p; 2812 struct pid *session; 2813 int i; 2814 struct file *filp; 2815 struct fdtable *fdt; 2816 2817 if (!tty) 2818 return; 2819 session = tty->session; 2820 2821 tty_ldisc_flush(tty); 2822 2823 tty_driver_flush_buffer(tty); 2824 2825 read_lock(&tasklist_lock); 2826 /* Kill the entire session */ 2827 do_each_pid_task(session, PIDTYPE_SID, p) { 2828 printk(KERN_NOTICE "SAK: killed process %d" 2829 " (%s): task_session(p)==tty->session\n", 2830 task_pid_nr(p), p->comm); 2831 send_sig(SIGKILL, p, 1); 2832 } while_each_pid_task(session, PIDTYPE_SID, p); 2833 /* Now kill any processes that happen to have the 2834 * tty open. 2835 */ 2836 do_each_thread(g, p) { 2837 if (p->signal->tty == tty) { 2838 printk(KERN_NOTICE "SAK: killed process %d" 2839 " (%s): task_session(p)==tty->session\n", 2840 task_pid_nr(p), p->comm); 2841 send_sig(SIGKILL, p, 1); 2842 continue; 2843 } 2844 task_lock(p); 2845 if (p->files) { 2846 /* 2847 * We don't take a ref to the file, so we must 2848 * hold ->file_lock instead. 2849 */ 2850 spin_lock(&p->files->file_lock); 2851 fdt = files_fdtable(p->files); 2852 for (i = 0; i < fdt->max_fds; i++) { 2853 filp = fcheck_files(p->files, i); 2854 if (!filp) 2855 continue; 2856 if (filp->f_op->read == tty_read && 2857 file_tty(filp) == tty) { 2858 printk(KERN_NOTICE "SAK: killed process %d" 2859 " (%s): fd#%d opened to the tty\n", 2860 task_pid_nr(p), p->comm, i); 2861 force_sig(SIGKILL, p); 2862 break; 2863 } 2864 } 2865 spin_unlock(&p->files->file_lock); 2866 } 2867 task_unlock(p); 2868 } while_each_thread(g, p); 2869 read_unlock(&tasklist_lock); 2870 #endif 2871 } 2872 2873 static void do_SAK_work(struct work_struct *work) 2874 { 2875 struct tty_struct *tty = 2876 container_of(work, struct tty_struct, SAK_work); 2877 __do_SAK(tty); 2878 } 2879 2880 /* 2881 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2882 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2883 * the values which we write to it will be identical to the values which it 2884 * already has. --akpm 2885 */ 2886 void do_SAK(struct tty_struct *tty) 2887 { 2888 if (!tty) 2889 return; 2890 schedule_work(&tty->SAK_work); 2891 } 2892 2893 EXPORT_SYMBOL(do_SAK); 2894 2895 static int dev_match_devt(struct device *dev, void *data) 2896 { 2897 dev_t *devt = data; 2898 return dev->devt == *devt; 2899 } 2900 2901 /* Must put_device() after it's unused! */ 2902 static struct device *tty_get_device(struct tty_struct *tty) 2903 { 2904 dev_t devt = tty_devnum(tty); 2905 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 2906 } 2907 2908 2909 /** 2910 * initialize_tty_struct 2911 * @tty: tty to initialize 2912 * 2913 * This subroutine initializes a tty structure that has been newly 2914 * allocated. 2915 * 2916 * Locking: none - tty in question must not be exposed at this point 2917 */ 2918 2919 void initialize_tty_struct(struct tty_struct *tty, 2920 struct tty_driver *driver, int idx) 2921 { 2922 memset(tty, 0, sizeof(struct tty_struct)); 2923 kref_init(&tty->kref); 2924 tty->magic = TTY_MAGIC; 2925 tty_ldisc_init(tty); 2926 tty->session = NULL; 2927 tty->pgrp = NULL; 2928 tty->overrun_time = jiffies; 2929 tty_buffer_init(tty); 2930 mutex_init(&tty->termios_mutex); 2931 mutex_init(&tty->ldisc_mutex); 2932 init_waitqueue_head(&tty->write_wait); 2933 init_waitqueue_head(&tty->read_wait); 2934 INIT_WORK(&tty->hangup_work, do_tty_hangup); 2935 mutex_init(&tty->atomic_read_lock); 2936 mutex_init(&tty->atomic_write_lock); 2937 mutex_init(&tty->output_lock); 2938 mutex_init(&tty->echo_lock); 2939 spin_lock_init(&tty->read_lock); 2940 spin_lock_init(&tty->ctrl_lock); 2941 INIT_LIST_HEAD(&tty->tty_files); 2942 INIT_WORK(&tty->SAK_work, do_SAK_work); 2943 2944 tty->driver = driver; 2945 tty->ops = driver->ops; 2946 tty->index = idx; 2947 tty_line_name(driver, idx, tty->name); 2948 tty->dev = tty_get_device(tty); 2949 } 2950 2951 /** 2952 * deinitialize_tty_struct 2953 * @tty: tty to deinitialize 2954 * 2955 * This subroutine deinitializes a tty structure that has been newly 2956 * allocated but tty_release cannot be called on that yet. 2957 * 2958 * Locking: none - tty in question must not be exposed at this point 2959 */ 2960 void deinitialize_tty_struct(struct tty_struct *tty) 2961 { 2962 tty_ldisc_deinit(tty); 2963 } 2964 2965 /** 2966 * tty_put_char - write one character to a tty 2967 * @tty: tty 2968 * @ch: character 2969 * 2970 * Write one byte to the tty using the provided put_char method 2971 * if present. Returns the number of characters successfully output. 2972 * 2973 * Note: the specific put_char operation in the driver layer may go 2974 * away soon. Don't call it directly, use this method 2975 */ 2976 2977 int tty_put_char(struct tty_struct *tty, unsigned char ch) 2978 { 2979 if (tty->ops->put_char) 2980 return tty->ops->put_char(tty, ch); 2981 return tty->ops->write(tty, &ch, 1); 2982 } 2983 EXPORT_SYMBOL_GPL(tty_put_char); 2984 2985 struct class *tty_class; 2986 2987 /** 2988 * tty_register_device - register a tty device 2989 * @driver: the tty driver that describes the tty device 2990 * @index: the index in the tty driver for this tty device 2991 * @device: a struct device that is associated with this tty device. 2992 * This field is optional, if there is no known struct device 2993 * for this tty device it can be set to NULL safely. 2994 * 2995 * Returns a pointer to the struct device for this tty device 2996 * (or ERR_PTR(-EFOO) on error). 2997 * 2998 * This call is required to be made to register an individual tty device 2999 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3000 * that bit is not set, this function should not be called by a tty 3001 * driver. 3002 * 3003 * Locking: ?? 3004 */ 3005 3006 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3007 struct device *device) 3008 { 3009 char name[64]; 3010 dev_t dev = MKDEV(driver->major, driver->minor_start) + index; 3011 3012 if (index >= driver->num) { 3013 printk(KERN_ERR "Attempt to register invalid tty line number " 3014 " (%d).\n", index); 3015 return ERR_PTR(-EINVAL); 3016 } 3017 3018 if (driver->type == TTY_DRIVER_TYPE_PTY) 3019 pty_line_name(driver, index, name); 3020 else 3021 tty_line_name(driver, index, name); 3022 3023 return device_create(tty_class, device, dev, NULL, name); 3024 } 3025 EXPORT_SYMBOL(tty_register_device); 3026 3027 /** 3028 * tty_unregister_device - unregister a tty device 3029 * @driver: the tty driver that describes the tty device 3030 * @index: the index in the tty driver for this tty device 3031 * 3032 * If a tty device is registered with a call to tty_register_device() then 3033 * this function must be called when the tty device is gone. 3034 * 3035 * Locking: ?? 3036 */ 3037 3038 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3039 { 3040 device_destroy(tty_class, 3041 MKDEV(driver->major, driver->minor_start) + index); 3042 } 3043 EXPORT_SYMBOL(tty_unregister_device); 3044 3045 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner) 3046 { 3047 struct tty_driver *driver; 3048 3049 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3050 if (driver) { 3051 kref_init(&driver->kref); 3052 driver->magic = TTY_DRIVER_MAGIC; 3053 driver->num = lines; 3054 driver->owner = owner; 3055 /* later we'll move allocation of tables here */ 3056 } 3057 return driver; 3058 } 3059 EXPORT_SYMBOL(__alloc_tty_driver); 3060 3061 static void destruct_tty_driver(struct kref *kref) 3062 { 3063 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3064 int i; 3065 struct ktermios *tp; 3066 void *p; 3067 3068 if (driver->flags & TTY_DRIVER_INSTALLED) { 3069 /* 3070 * Free the termios and termios_locked structures because 3071 * we don't want to get memory leaks when modular tty 3072 * drivers are removed from the kernel. 3073 */ 3074 for (i = 0; i < driver->num; i++) { 3075 tp = driver->termios[i]; 3076 if (tp) { 3077 driver->termios[i] = NULL; 3078 kfree(tp); 3079 } 3080 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3081 tty_unregister_device(driver, i); 3082 } 3083 p = driver->ttys; 3084 proc_tty_unregister_driver(driver); 3085 driver->ttys = NULL; 3086 driver->termios = NULL; 3087 kfree(p); 3088 cdev_del(&driver->cdev); 3089 } 3090 kfree(driver->ports); 3091 kfree(driver); 3092 } 3093 3094 void tty_driver_kref_put(struct tty_driver *driver) 3095 { 3096 kref_put(&driver->kref, destruct_tty_driver); 3097 } 3098 EXPORT_SYMBOL(tty_driver_kref_put); 3099 3100 void tty_set_operations(struct tty_driver *driver, 3101 const struct tty_operations *op) 3102 { 3103 driver->ops = op; 3104 }; 3105 EXPORT_SYMBOL(tty_set_operations); 3106 3107 void put_tty_driver(struct tty_driver *d) 3108 { 3109 tty_driver_kref_put(d); 3110 } 3111 EXPORT_SYMBOL(put_tty_driver); 3112 3113 /* 3114 * Called by a tty driver to register itself. 3115 */ 3116 int tty_register_driver(struct tty_driver *driver) 3117 { 3118 int error; 3119 int i; 3120 dev_t dev; 3121 void **p = NULL; 3122 struct device *d; 3123 3124 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) { 3125 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL); 3126 if (!p) 3127 return -ENOMEM; 3128 } 3129 /* 3130 * There is too many lines in PTY and we won't need the array there 3131 * since it has an ->install hook where it assigns ports properly. 3132 */ 3133 if (driver->type != TTY_DRIVER_TYPE_PTY) { 3134 driver->ports = kcalloc(driver->num, sizeof(struct tty_port *), 3135 GFP_KERNEL); 3136 if (!driver->ports) { 3137 error = -ENOMEM; 3138 goto err_free_p; 3139 } 3140 } 3141 3142 if (!driver->major) { 3143 error = alloc_chrdev_region(&dev, driver->minor_start, 3144 driver->num, driver->name); 3145 if (!error) { 3146 driver->major = MAJOR(dev); 3147 driver->minor_start = MINOR(dev); 3148 } 3149 } else { 3150 dev = MKDEV(driver->major, driver->minor_start); 3151 error = register_chrdev_region(dev, driver->num, driver->name); 3152 } 3153 if (error < 0) 3154 goto err_free_p; 3155 3156 if (p) { 3157 driver->ttys = (struct tty_struct **)p; 3158 driver->termios = (struct ktermios **)(p + driver->num); 3159 } else { 3160 driver->ttys = NULL; 3161 driver->termios = NULL; 3162 } 3163 3164 cdev_init(&driver->cdev, &tty_fops); 3165 driver->cdev.owner = driver->owner; 3166 error = cdev_add(&driver->cdev, dev, driver->num); 3167 if (error) 3168 goto err_unreg_char; 3169 3170 mutex_lock(&tty_mutex); 3171 list_add(&driver->tty_drivers, &tty_drivers); 3172 mutex_unlock(&tty_mutex); 3173 3174 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3175 for (i = 0; i < driver->num; i++) { 3176 d = tty_register_device(driver, i, NULL); 3177 if (IS_ERR(d)) { 3178 error = PTR_ERR(d); 3179 goto err; 3180 } 3181 } 3182 } 3183 proc_tty_register_driver(driver); 3184 driver->flags |= TTY_DRIVER_INSTALLED; 3185 return 0; 3186 3187 err: 3188 for (i--; i >= 0; i--) 3189 tty_unregister_device(driver, i); 3190 3191 mutex_lock(&tty_mutex); 3192 list_del(&driver->tty_drivers); 3193 mutex_unlock(&tty_mutex); 3194 3195 err_unreg_char: 3196 unregister_chrdev_region(dev, driver->num); 3197 driver->ttys = NULL; 3198 driver->termios = NULL; 3199 err_free_p: /* destruct_tty_driver will free driver->ports */ 3200 kfree(p); 3201 return error; 3202 } 3203 EXPORT_SYMBOL(tty_register_driver); 3204 3205 /* 3206 * Called by a tty driver to unregister itself. 3207 */ 3208 int tty_unregister_driver(struct tty_driver *driver) 3209 { 3210 #if 0 3211 /* FIXME */ 3212 if (driver->refcount) 3213 return -EBUSY; 3214 #endif 3215 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3216 driver->num); 3217 mutex_lock(&tty_mutex); 3218 list_del(&driver->tty_drivers); 3219 mutex_unlock(&tty_mutex); 3220 return 0; 3221 } 3222 3223 EXPORT_SYMBOL(tty_unregister_driver); 3224 3225 dev_t tty_devnum(struct tty_struct *tty) 3226 { 3227 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3228 } 3229 EXPORT_SYMBOL(tty_devnum); 3230 3231 void proc_clear_tty(struct task_struct *p) 3232 { 3233 unsigned long flags; 3234 struct tty_struct *tty; 3235 spin_lock_irqsave(&p->sighand->siglock, flags); 3236 tty = p->signal->tty; 3237 p->signal->tty = NULL; 3238 spin_unlock_irqrestore(&p->sighand->siglock, flags); 3239 tty_kref_put(tty); 3240 } 3241 3242 /* Called under the sighand lock */ 3243 3244 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3245 { 3246 if (tty) { 3247 unsigned long flags; 3248 /* We should not have a session or pgrp to put here but.... */ 3249 spin_lock_irqsave(&tty->ctrl_lock, flags); 3250 put_pid(tty->session); 3251 put_pid(tty->pgrp); 3252 tty->pgrp = get_pid(task_pgrp(tsk)); 3253 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3254 tty->session = get_pid(task_session(tsk)); 3255 if (tsk->signal->tty) { 3256 printk(KERN_DEBUG "tty not NULL!!\n"); 3257 tty_kref_put(tsk->signal->tty); 3258 } 3259 } 3260 put_pid(tsk->signal->tty_old_pgrp); 3261 tsk->signal->tty = tty_kref_get(tty); 3262 tsk->signal->tty_old_pgrp = NULL; 3263 } 3264 3265 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3266 { 3267 spin_lock_irq(&tsk->sighand->siglock); 3268 __proc_set_tty(tsk, tty); 3269 spin_unlock_irq(&tsk->sighand->siglock); 3270 } 3271 3272 struct tty_struct *get_current_tty(void) 3273 { 3274 struct tty_struct *tty; 3275 unsigned long flags; 3276 3277 spin_lock_irqsave(¤t->sighand->siglock, flags); 3278 tty = tty_kref_get(current->signal->tty); 3279 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 3280 return tty; 3281 } 3282 EXPORT_SYMBOL_GPL(get_current_tty); 3283 3284 void tty_default_fops(struct file_operations *fops) 3285 { 3286 *fops = tty_fops; 3287 } 3288 3289 /* 3290 * Initialize the console device. This is called *early*, so 3291 * we can't necessarily depend on lots of kernel help here. 3292 * Just do some early initializations, and do the complex setup 3293 * later. 3294 */ 3295 void __init console_init(void) 3296 { 3297 initcall_t *call; 3298 3299 /* Setup the default TTY line discipline. */ 3300 tty_ldisc_begin(); 3301 3302 /* 3303 * set up the console device so that later boot sequences can 3304 * inform about problems etc.. 3305 */ 3306 call = __con_initcall_start; 3307 while (call < __con_initcall_end) { 3308 (*call)(); 3309 call++; 3310 } 3311 } 3312 3313 static char *tty_devnode(struct device *dev, umode_t *mode) 3314 { 3315 if (!mode) 3316 return NULL; 3317 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3318 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3319 *mode = 0666; 3320 return NULL; 3321 } 3322 3323 static int __init tty_class_init(void) 3324 { 3325 tty_class = class_create(THIS_MODULE, "tty"); 3326 if (IS_ERR(tty_class)) 3327 return PTR_ERR(tty_class); 3328 tty_class->devnode = tty_devnode; 3329 return 0; 3330 } 3331 3332 postcore_initcall(tty_class_init); 3333 3334 /* 3/2004 jmc: why do these devices exist? */ 3335 static struct cdev tty_cdev, console_cdev; 3336 3337 static ssize_t show_cons_active(struct device *dev, 3338 struct device_attribute *attr, char *buf) 3339 { 3340 struct console *cs[16]; 3341 int i = 0; 3342 struct console *c; 3343 ssize_t count = 0; 3344 3345 console_lock(); 3346 for_each_console(c) { 3347 if (!c->device) 3348 continue; 3349 if (!c->write) 3350 continue; 3351 if ((c->flags & CON_ENABLED) == 0) 3352 continue; 3353 cs[i++] = c; 3354 if (i >= ARRAY_SIZE(cs)) 3355 break; 3356 } 3357 while (i--) 3358 count += sprintf(buf + count, "%s%d%c", 3359 cs[i]->name, cs[i]->index, i ? ' ':'\n'); 3360 console_unlock(); 3361 3362 return count; 3363 } 3364 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3365 3366 static struct device *consdev; 3367 3368 void console_sysfs_notify(void) 3369 { 3370 if (consdev) 3371 sysfs_notify(&consdev->kobj, NULL, "active"); 3372 } 3373 3374 /* 3375 * Ok, now we can initialize the rest of the tty devices and can count 3376 * on memory allocations, interrupts etc.. 3377 */ 3378 int __init tty_init(void) 3379 { 3380 cdev_init(&tty_cdev, &tty_fops); 3381 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3382 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3383 panic("Couldn't register /dev/tty driver\n"); 3384 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3385 3386 cdev_init(&console_cdev, &console_fops); 3387 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3388 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3389 panic("Couldn't register /dev/console driver\n"); 3390 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, 3391 "console"); 3392 if (IS_ERR(consdev)) 3393 consdev = NULL; 3394 else 3395 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0); 3396 3397 #ifdef CONFIG_VT 3398 vty_init(&console_fops); 3399 #endif 3400 return 0; 3401 } 3402 3403