xref: /linux/drivers/tty/tty_io.c (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400
127 };
128 
129 EXPORT_SYMBOL(tty_std_termios);
130 
131 /* This list gets poked at by procfs and various bits of boot up code. This
132    could do with some rationalisation such as pulling the tty proc function
133    into this file */
134 
135 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
136 
137 /* Mutex to protect creating and releasing a tty. This is shared with
138    vt.c for deeply disgusting hack reasons */
139 DEFINE_MUTEX(tty_mutex);
140 EXPORT_SYMBOL(tty_mutex);
141 
142 /* Spinlock to protect the tty->tty_files list */
143 DEFINE_SPINLOCK(tty_files_lock);
144 
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *,
148 							size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152 #ifdef CONFIG_COMPAT
153 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 				unsigned long arg);
155 #else
156 #define tty_compat_ioctl NULL
157 #endif
158 static int __tty_fasync(int fd, struct file *filp, int on);
159 static int tty_fasync(int fd, struct file *filp, int on);
160 static void release_tty(struct tty_struct *tty, int idx);
161 
162 /**
163  *	free_tty_struct		-	free a disused tty
164  *	@tty: tty struct to free
165  *
166  *	Free the write buffers, tty queue and tty memory itself.
167  *
168  *	Locking: none. Must be called after tty is definitely unused
169  */
170 
171 void free_tty_struct(struct tty_struct *tty)
172 {
173 	if (!tty)
174 		return;
175 	put_device(tty->dev);
176 	kfree(tty->write_buf);
177 	tty->magic = 0xDEADDEAD;
178 	kfree(tty);
179 }
180 
181 static inline struct tty_struct *file_tty(struct file *file)
182 {
183 	return ((struct tty_file_private *)file->private_data)->tty;
184 }
185 
186 int tty_alloc_file(struct file *file)
187 {
188 	struct tty_file_private *priv;
189 
190 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191 	if (!priv)
192 		return -ENOMEM;
193 
194 	file->private_data = priv;
195 
196 	return 0;
197 }
198 
199 /* Associate a new file with the tty structure */
200 void tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202 	struct tty_file_private *priv = file->private_data;
203 
204 	priv->tty = tty;
205 	priv->file = file;
206 
207 	spin_lock(&tty_files_lock);
208 	list_add(&priv->list, &tty->tty_files);
209 	spin_unlock(&tty_files_lock);
210 }
211 
212 /**
213  * tty_free_file - free file->private_data
214  *
215  * This shall be used only for fail path handling when tty_add_file was not
216  * called yet.
217  */
218 void tty_free_file(struct file *file)
219 {
220 	struct tty_file_private *priv = file->private_data;
221 
222 	file->private_data = NULL;
223 	kfree(priv);
224 }
225 
226 /* Delete file from its tty */
227 static void tty_del_file(struct file *file)
228 {
229 	struct tty_file_private *priv = file->private_data;
230 
231 	spin_lock(&tty_files_lock);
232 	list_del(&priv->list);
233 	spin_unlock(&tty_files_lock);
234 	tty_free_file(file);
235 }
236 
237 
238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239 
240 /**
241  *	tty_name	-	return tty naming
242  *	@tty: tty structure
243  *
244  *	Convert a tty structure into a name. The name reflects the kernel
245  *	naming policy and if udev is in use may not reflect user space
246  *
247  *	Locking: none
248  */
249 
250 const char *tty_name(const struct tty_struct *tty)
251 {
252 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
253 		return "NULL tty";
254 	return tty->name;
255 }
256 
257 EXPORT_SYMBOL(tty_name);
258 
259 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 			      const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 	if (!tty) {
264 		printk(KERN_WARNING
265 			"null TTY for (%d:%d) in %s\n",
266 			imajor(inode), iminor(inode), routine);
267 		return 1;
268 	}
269 	if (tty->magic != TTY_MAGIC) {
270 		printk(KERN_WARNING
271 			"bad magic number for tty struct (%d:%d) in %s\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 #endif
276 	return 0;
277 }
278 
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0;
285 
286 	spin_lock(&tty_files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty_files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty->count != count) {
296 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 				    "!= #fd's(%d) in %s\n",
298 		       tty->name, tty->count, count, routine);
299 		return count;
300 	}
301 #endif
302 	return 0;
303 }
304 
305 /**
306  *	get_tty_driver		-	find device of a tty
307  *	@dev_t: device identifier
308  *	@index: returns the index of the tty
309  *
310  *	This routine returns a tty driver structure, given a device number
311  *	and also passes back the index number.
312  *
313  *	Locking: caller must hold tty_mutex
314  */
315 
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 	struct tty_driver *p;
319 
320 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 		dev_t base = MKDEV(p->major, p->minor_start);
322 		if (device < base || device >= base + p->num)
323 			continue;
324 		*index = device - base;
325 		return tty_driver_kref_get(p);
326 	}
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_CONSOLE_POLL
331 
332 /**
333  *	tty_find_polling_driver	-	find device of a polled tty
334  *	@name: name string to match
335  *	@line: pointer to resulting tty line nr
336  *
337  *	This routine returns a tty driver structure, given a name
338  *	and the condition that the tty driver is capable of polled
339  *	operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 	struct tty_driver *p, *res = NULL;
344 	int tty_line = 0;
345 	int len;
346 	char *str, *stp;
347 
348 	for (str = name; *str; str++)
349 		if ((*str >= '0' && *str <= '9') || *str == ',')
350 			break;
351 	if (!*str)
352 		return NULL;
353 
354 	len = str - name;
355 	tty_line = simple_strtoul(str, &str, 10);
356 
357 	mutex_lock(&tty_mutex);
358 	/* Search through the tty devices to look for a match */
359 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 		if (strncmp(name, p->name, len) != 0)
361 			continue;
362 		stp = str;
363 		if (*stp == ',')
364 			stp++;
365 		if (*stp == '\0')
366 			stp = NULL;
367 
368 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 			res = tty_driver_kref_get(p);
371 			*line = tty_line;
372 			break;
373 		}
374 	}
375 	mutex_unlock(&tty_mutex);
376 
377 	return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381 
382 /**
383  *	tty_check_change	-	check for POSIX terminal changes
384  *	@tty: tty to check
385  *
386  *	If we try to write to, or set the state of, a terminal and we're
387  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *	Locking: ctrl_lock
391  */
392 
393 int tty_check_change(struct tty_struct *tty)
394 {
395 	unsigned long flags;
396 	struct pid *pgrp;
397 	int ret = 0;
398 
399 	if (current->signal->tty != tty)
400 		return 0;
401 
402 	rcu_read_lock();
403 	pgrp = task_pgrp(current);
404 
405 	spin_lock_irqsave(&tty->ctrl_lock, flags);
406 
407 	if (!tty->pgrp) {
408 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
409 		goto out_unlock;
410 	}
411 	if (pgrp == tty->pgrp)
412 		goto out_unlock;
413 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
414 
415 	if (is_ignored(SIGTTOU))
416 		goto out_rcuunlock;
417 	if (is_current_pgrp_orphaned()) {
418 		ret = -EIO;
419 		goto out_rcuunlock;
420 	}
421 	kill_pgrp(pgrp, SIGTTOU, 1);
422 	rcu_read_unlock();
423 	set_thread_flag(TIF_SIGPENDING);
424 	ret = -ERESTARTSYS;
425 	return ret;
426 out_unlock:
427 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
428 out_rcuunlock:
429 	rcu_read_unlock();
430 	return ret;
431 }
432 
433 EXPORT_SYMBOL(tty_check_change);
434 
435 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
436 				size_t count, loff_t *ppos)
437 {
438 	return 0;
439 }
440 
441 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
442 				 size_t count, loff_t *ppos)
443 {
444 	return -EIO;
445 }
446 
447 /* No kernel lock held - none needed ;) */
448 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
449 {
450 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
451 }
452 
453 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
454 		unsigned long arg)
455 {
456 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
457 }
458 
459 static long hung_up_tty_compat_ioctl(struct file *file,
460 				     unsigned int cmd, unsigned long arg)
461 {
462 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464 
465 static const struct file_operations tty_fops = {
466 	.llseek		= no_llseek,
467 	.read		= tty_read,
468 	.write		= tty_write,
469 	.poll		= tty_poll,
470 	.unlocked_ioctl	= tty_ioctl,
471 	.compat_ioctl	= tty_compat_ioctl,
472 	.open		= tty_open,
473 	.release	= tty_release,
474 	.fasync		= tty_fasync,
475 };
476 
477 static const struct file_operations console_fops = {
478 	.llseek		= no_llseek,
479 	.read		= tty_read,
480 	.write		= redirected_tty_write,
481 	.poll		= tty_poll,
482 	.unlocked_ioctl	= tty_ioctl,
483 	.compat_ioctl	= tty_compat_ioctl,
484 	.open		= tty_open,
485 	.release	= tty_release,
486 	.fasync		= tty_fasync,
487 };
488 
489 static const struct file_operations hung_up_tty_fops = {
490 	.llseek		= no_llseek,
491 	.read		= hung_up_tty_read,
492 	.write		= hung_up_tty_write,
493 	.poll		= hung_up_tty_poll,
494 	.unlocked_ioctl	= hung_up_tty_ioctl,
495 	.compat_ioctl	= hung_up_tty_compat_ioctl,
496 	.release	= tty_release,
497 };
498 
499 static DEFINE_SPINLOCK(redirect_lock);
500 static struct file *redirect;
501 
502 
503 void proc_clear_tty(struct task_struct *p)
504 {
505 	unsigned long flags;
506 	struct tty_struct *tty;
507 	spin_lock_irqsave(&p->sighand->siglock, flags);
508 	tty = p->signal->tty;
509 	p->signal->tty = NULL;
510 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
511 	tty_kref_put(tty);
512 }
513 
514 /**
515  * proc_set_tty -  set the controlling terminal
516  *
517  * Only callable by the session leader and only if it does not already have
518  * a controlling terminal.
519  *
520  * Caller must hold:  tty_lock()
521  *		      a readlock on tasklist_lock
522  *		      sighand lock
523  */
524 static void __proc_set_tty(struct tty_struct *tty)
525 {
526 	unsigned long flags;
527 
528 	spin_lock_irqsave(&tty->ctrl_lock, flags);
529 	/*
530 	 * The session and fg pgrp references will be non-NULL if
531 	 * tiocsctty() is stealing the controlling tty
532 	 */
533 	put_pid(tty->session);
534 	put_pid(tty->pgrp);
535 	tty->pgrp = get_pid(task_pgrp(current));
536 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
537 	tty->session = get_pid(task_session(current));
538 	if (current->signal->tty) {
539 		tty_debug(tty, "current tty %s not NULL!!\n",
540 			  current->signal->tty->name);
541 		tty_kref_put(current->signal->tty);
542 	}
543 	put_pid(current->signal->tty_old_pgrp);
544 	current->signal->tty = tty_kref_get(tty);
545 	current->signal->tty_old_pgrp = NULL;
546 }
547 
548 static void proc_set_tty(struct tty_struct *tty)
549 {
550 	spin_lock_irq(&current->sighand->siglock);
551 	__proc_set_tty(tty);
552 	spin_unlock_irq(&current->sighand->siglock);
553 }
554 
555 struct tty_struct *get_current_tty(void)
556 {
557 	struct tty_struct *tty;
558 	unsigned long flags;
559 
560 	spin_lock_irqsave(&current->sighand->siglock, flags);
561 	tty = tty_kref_get(current->signal->tty);
562 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
563 	return tty;
564 }
565 EXPORT_SYMBOL_GPL(get_current_tty);
566 
567 static void session_clear_tty(struct pid *session)
568 {
569 	struct task_struct *p;
570 	do_each_pid_task(session, PIDTYPE_SID, p) {
571 		proc_clear_tty(p);
572 	} while_each_pid_task(session, PIDTYPE_SID, p);
573 }
574 
575 /**
576  *	tty_wakeup	-	request more data
577  *	@tty: terminal
578  *
579  *	Internal and external helper for wakeups of tty. This function
580  *	informs the line discipline if present that the driver is ready
581  *	to receive more output data.
582  */
583 
584 void tty_wakeup(struct tty_struct *tty)
585 {
586 	struct tty_ldisc *ld;
587 
588 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
589 		ld = tty_ldisc_ref(tty);
590 		if (ld) {
591 			if (ld->ops->write_wakeup)
592 				ld->ops->write_wakeup(tty);
593 			tty_ldisc_deref(ld);
594 		}
595 	}
596 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
597 }
598 
599 EXPORT_SYMBOL_GPL(tty_wakeup);
600 
601 /**
602  *	tty_signal_session_leader	- sends SIGHUP to session leader
603  *	@tty		controlling tty
604  *	@exit_session	if non-zero, signal all foreground group processes
605  *
606  *	Send SIGHUP and SIGCONT to the session leader and its process group.
607  *	Optionally, signal all processes in the foreground process group.
608  *
609  *	Returns the number of processes in the session with this tty
610  *	as their controlling terminal. This value is used to drop
611  *	tty references for those processes.
612  */
613 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
614 {
615 	struct task_struct *p;
616 	int refs = 0;
617 	struct pid *tty_pgrp = NULL;
618 
619 	read_lock(&tasklist_lock);
620 	if (tty->session) {
621 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
622 			spin_lock_irq(&p->sighand->siglock);
623 			if (p->signal->tty == tty) {
624 				p->signal->tty = NULL;
625 				/* We defer the dereferences outside fo
626 				   the tasklist lock */
627 				refs++;
628 			}
629 			if (!p->signal->leader) {
630 				spin_unlock_irq(&p->sighand->siglock);
631 				continue;
632 			}
633 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
634 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
635 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
636 			spin_lock(&tty->ctrl_lock);
637 			tty_pgrp = get_pid(tty->pgrp);
638 			if (tty->pgrp)
639 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
640 			spin_unlock(&tty->ctrl_lock);
641 			spin_unlock_irq(&p->sighand->siglock);
642 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
643 	}
644 	read_unlock(&tasklist_lock);
645 
646 	if (tty_pgrp) {
647 		if (exit_session)
648 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
649 		put_pid(tty_pgrp);
650 	}
651 
652 	return refs;
653 }
654 
655 /**
656  *	__tty_hangup		-	actual handler for hangup events
657  *	@work: tty device
658  *
659  *	This can be called by a "kworker" kernel thread.  That is process
660  *	synchronous but doesn't hold any locks, so we need to make sure we
661  *	have the appropriate locks for what we're doing.
662  *
663  *	The hangup event clears any pending redirections onto the hung up
664  *	device. It ensures future writes will error and it does the needed
665  *	line discipline hangup and signal delivery. The tty object itself
666  *	remains intact.
667  *
668  *	Locking:
669  *		BTM
670  *		  redirect lock for undoing redirection
671  *		  file list lock for manipulating list of ttys
672  *		  tty_ldiscs_lock from called functions
673  *		  termios_rwsem resetting termios data
674  *		  tasklist_lock to walk task list for hangup event
675  *		    ->siglock to protect ->signal/->sighand
676  */
677 static void __tty_hangup(struct tty_struct *tty, int exit_session)
678 {
679 	struct file *cons_filp = NULL;
680 	struct file *filp, *f = NULL;
681 	struct tty_file_private *priv;
682 	int    closecount = 0, n;
683 	int refs;
684 
685 	if (!tty)
686 		return;
687 
688 
689 	spin_lock(&redirect_lock);
690 	if (redirect && file_tty(redirect) == tty) {
691 		f = redirect;
692 		redirect = NULL;
693 	}
694 	spin_unlock(&redirect_lock);
695 
696 	tty_lock(tty);
697 
698 	if (test_bit(TTY_HUPPED, &tty->flags)) {
699 		tty_unlock(tty);
700 		return;
701 	}
702 
703 	/* inuse_filps is protected by the single tty lock,
704 	   this really needs to change if we want to flush the
705 	   workqueue with the lock held */
706 	check_tty_count(tty, "tty_hangup");
707 
708 	spin_lock(&tty_files_lock);
709 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
710 	list_for_each_entry(priv, &tty->tty_files, list) {
711 		filp = priv->file;
712 		if (filp->f_op->write == redirected_tty_write)
713 			cons_filp = filp;
714 		if (filp->f_op->write != tty_write)
715 			continue;
716 		closecount++;
717 		__tty_fasync(-1, filp, 0);	/* can't block */
718 		filp->f_op = &hung_up_tty_fops;
719 	}
720 	spin_unlock(&tty_files_lock);
721 
722 	refs = tty_signal_session_leader(tty, exit_session);
723 	/* Account for the p->signal references we killed */
724 	while (refs--)
725 		tty_kref_put(tty);
726 
727 	tty_ldisc_hangup(tty);
728 
729 	spin_lock_irq(&tty->ctrl_lock);
730 	clear_bit(TTY_THROTTLED, &tty->flags);
731 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
732 	put_pid(tty->session);
733 	put_pid(tty->pgrp);
734 	tty->session = NULL;
735 	tty->pgrp = NULL;
736 	tty->ctrl_status = 0;
737 	spin_unlock_irq(&tty->ctrl_lock);
738 
739 	/*
740 	 * If one of the devices matches a console pointer, we
741 	 * cannot just call hangup() because that will cause
742 	 * tty->count and state->count to go out of sync.
743 	 * So we just call close() the right number of times.
744 	 */
745 	if (cons_filp) {
746 		if (tty->ops->close)
747 			for (n = 0; n < closecount; n++)
748 				tty->ops->close(tty, cons_filp);
749 	} else if (tty->ops->hangup)
750 		tty->ops->hangup(tty);
751 	/*
752 	 * We don't want to have driver/ldisc interactions beyond
753 	 * the ones we did here. The driver layer expects no
754 	 * calls after ->hangup() from the ldisc side. However we
755 	 * can't yet guarantee all that.
756 	 */
757 	set_bit(TTY_HUPPED, &tty->flags);
758 	tty_unlock(tty);
759 
760 	if (f)
761 		fput(f);
762 }
763 
764 static void do_tty_hangup(struct work_struct *work)
765 {
766 	struct tty_struct *tty =
767 		container_of(work, struct tty_struct, hangup_work);
768 
769 	__tty_hangup(tty, 0);
770 }
771 
772 /**
773  *	tty_hangup		-	trigger a hangup event
774  *	@tty: tty to hangup
775  *
776  *	A carrier loss (virtual or otherwise) has occurred on this like
777  *	schedule a hangup sequence to run after this event.
778  */
779 
780 void tty_hangup(struct tty_struct *tty)
781 {
782 	tty_debug_hangup(tty, "\n");
783 	schedule_work(&tty->hangup_work);
784 }
785 
786 EXPORT_SYMBOL(tty_hangup);
787 
788 /**
789  *	tty_vhangup		-	process vhangup
790  *	@tty: tty to hangup
791  *
792  *	The user has asked via system call for the terminal to be hung up.
793  *	We do this synchronously so that when the syscall returns the process
794  *	is complete. That guarantee is necessary for security reasons.
795  */
796 
797 void tty_vhangup(struct tty_struct *tty)
798 {
799 	tty_debug_hangup(tty, "\n");
800 	__tty_hangup(tty, 0);
801 }
802 
803 EXPORT_SYMBOL(tty_vhangup);
804 
805 
806 /**
807  *	tty_vhangup_self	-	process vhangup for own ctty
808  *
809  *	Perform a vhangup on the current controlling tty
810  */
811 
812 void tty_vhangup_self(void)
813 {
814 	struct tty_struct *tty;
815 
816 	tty = get_current_tty();
817 	if (tty) {
818 		tty_vhangup(tty);
819 		tty_kref_put(tty);
820 	}
821 }
822 
823 /**
824  *	tty_vhangup_session		-	hangup session leader exit
825  *	@tty: tty to hangup
826  *
827  *	The session leader is exiting and hanging up its controlling terminal.
828  *	Every process in the foreground process group is signalled SIGHUP.
829  *
830  *	We do this synchronously so that when the syscall returns the process
831  *	is complete. That guarantee is necessary for security reasons.
832  */
833 
834 static void tty_vhangup_session(struct tty_struct *tty)
835 {
836 	tty_debug_hangup(tty, "\n");
837 	__tty_hangup(tty, 1);
838 }
839 
840 /**
841  *	tty_hung_up_p		-	was tty hung up
842  *	@filp: file pointer of tty
843  *
844  *	Return true if the tty has been subject to a vhangup or a carrier
845  *	loss
846  */
847 
848 int tty_hung_up_p(struct file *filp)
849 {
850 	return (filp->f_op == &hung_up_tty_fops);
851 }
852 
853 EXPORT_SYMBOL(tty_hung_up_p);
854 
855 /**
856  *	disassociate_ctty	-	disconnect controlling tty
857  *	@on_exit: true if exiting so need to "hang up" the session
858  *
859  *	This function is typically called only by the session leader, when
860  *	it wants to disassociate itself from its controlling tty.
861  *
862  *	It performs the following functions:
863  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
864  * 	(2)  Clears the tty from being controlling the session
865  * 	(3)  Clears the controlling tty for all processes in the
866  * 		session group.
867  *
868  *	The argument on_exit is set to 1 if called when a process is
869  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
870  *
871  *	Locking:
872  *		BTM is taken for hysterical raisins, and held when
873  *		  called from no_tty().
874  *		  tty_mutex is taken to protect tty
875  *		  ->siglock is taken to protect ->signal/->sighand
876  *		  tasklist_lock is taken to walk process list for sessions
877  *		    ->siglock is taken to protect ->signal/->sighand
878  */
879 
880 void disassociate_ctty(int on_exit)
881 {
882 	struct tty_struct *tty;
883 
884 	if (!current->signal->leader)
885 		return;
886 
887 	tty = get_current_tty();
888 	if (tty) {
889 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
890 			tty_vhangup_session(tty);
891 		} else {
892 			struct pid *tty_pgrp = tty_get_pgrp(tty);
893 			if (tty_pgrp) {
894 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
895 				if (!on_exit)
896 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
897 				put_pid(tty_pgrp);
898 			}
899 		}
900 		tty_kref_put(tty);
901 
902 	} else if (on_exit) {
903 		struct pid *old_pgrp;
904 		spin_lock_irq(&current->sighand->siglock);
905 		old_pgrp = current->signal->tty_old_pgrp;
906 		current->signal->tty_old_pgrp = NULL;
907 		spin_unlock_irq(&current->sighand->siglock);
908 		if (old_pgrp) {
909 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
910 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
911 			put_pid(old_pgrp);
912 		}
913 		return;
914 	}
915 
916 	spin_lock_irq(&current->sighand->siglock);
917 	put_pid(current->signal->tty_old_pgrp);
918 	current->signal->tty_old_pgrp = NULL;
919 
920 	tty = tty_kref_get(current->signal->tty);
921 	if (tty) {
922 		unsigned long flags;
923 		spin_lock_irqsave(&tty->ctrl_lock, flags);
924 		put_pid(tty->session);
925 		put_pid(tty->pgrp);
926 		tty->session = NULL;
927 		tty->pgrp = NULL;
928 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
929 		tty_kref_put(tty);
930 	} else
931 		tty_debug_hangup(tty, "no current tty\n");
932 
933 	spin_unlock_irq(&current->sighand->siglock);
934 	/* Now clear signal->tty under the lock */
935 	read_lock(&tasklist_lock);
936 	session_clear_tty(task_session(current));
937 	read_unlock(&tasklist_lock);
938 }
939 
940 /**
941  *
942  *	no_tty	- Ensure the current process does not have a controlling tty
943  */
944 void no_tty(void)
945 {
946 	/* FIXME: Review locking here. The tty_lock never covered any race
947 	   between a new association and proc_clear_tty but possible we need
948 	   to protect against this anyway */
949 	struct task_struct *tsk = current;
950 	disassociate_ctty(0);
951 	proc_clear_tty(tsk);
952 }
953 
954 
955 /**
956  *	stop_tty	-	propagate flow control
957  *	@tty: tty to stop
958  *
959  *	Perform flow control to the driver. May be called
960  *	on an already stopped device and will not re-call the driver
961  *	method.
962  *
963  *	This functionality is used by both the line disciplines for
964  *	halting incoming flow and by the driver. It may therefore be
965  *	called from any context, may be under the tty atomic_write_lock
966  *	but not always.
967  *
968  *	Locking:
969  *		flow_lock
970  */
971 
972 void __stop_tty(struct tty_struct *tty)
973 {
974 	if (tty->stopped)
975 		return;
976 	tty->stopped = 1;
977 	if (tty->ops->stop)
978 		tty->ops->stop(tty);
979 }
980 
981 void stop_tty(struct tty_struct *tty)
982 {
983 	unsigned long flags;
984 
985 	spin_lock_irqsave(&tty->flow_lock, flags);
986 	__stop_tty(tty);
987 	spin_unlock_irqrestore(&tty->flow_lock, flags);
988 }
989 EXPORT_SYMBOL(stop_tty);
990 
991 /**
992  *	start_tty	-	propagate flow control
993  *	@tty: tty to start
994  *
995  *	Start a tty that has been stopped if at all possible. If this
996  *	tty was previous stopped and is now being started, the driver
997  *	start method is invoked and the line discipline woken.
998  *
999  *	Locking:
1000  *		flow_lock
1001  */
1002 
1003 void __start_tty(struct tty_struct *tty)
1004 {
1005 	if (!tty->stopped || tty->flow_stopped)
1006 		return;
1007 	tty->stopped = 0;
1008 	if (tty->ops->start)
1009 		tty->ops->start(tty);
1010 	tty_wakeup(tty);
1011 }
1012 
1013 void start_tty(struct tty_struct *tty)
1014 {
1015 	unsigned long flags;
1016 
1017 	spin_lock_irqsave(&tty->flow_lock, flags);
1018 	__start_tty(tty);
1019 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1020 }
1021 EXPORT_SYMBOL(start_tty);
1022 
1023 static void tty_update_time(struct timespec *time)
1024 {
1025 	unsigned long sec = get_seconds();
1026 
1027 	/*
1028 	 * We only care if the two values differ in anything other than the
1029 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1030 	 * the time of the tty device, otherwise it could be construded as a
1031 	 * security leak to let userspace know the exact timing of the tty.
1032 	 */
1033 	if ((sec ^ time->tv_sec) & ~7)
1034 		time->tv_sec = sec;
1035 }
1036 
1037 /**
1038  *	tty_read	-	read method for tty device files
1039  *	@file: pointer to tty file
1040  *	@buf: user buffer
1041  *	@count: size of user buffer
1042  *	@ppos: unused
1043  *
1044  *	Perform the read system call function on this terminal device. Checks
1045  *	for hung up devices before calling the line discipline method.
1046  *
1047  *	Locking:
1048  *		Locks the line discipline internally while needed. Multiple
1049  *	read calls may be outstanding in parallel.
1050  */
1051 
1052 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1053 			loff_t *ppos)
1054 {
1055 	int i;
1056 	struct inode *inode = file_inode(file);
1057 	struct tty_struct *tty = file_tty(file);
1058 	struct tty_ldisc *ld;
1059 
1060 	if (tty_paranoia_check(tty, inode, "tty_read"))
1061 		return -EIO;
1062 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1063 		return -EIO;
1064 
1065 	/* We want to wait for the line discipline to sort out in this
1066 	   situation */
1067 	ld = tty_ldisc_ref_wait(tty);
1068 	if (ld->ops->read)
1069 		i = ld->ops->read(tty, file, buf, count);
1070 	else
1071 		i = -EIO;
1072 	tty_ldisc_deref(ld);
1073 
1074 	if (i > 0)
1075 		tty_update_time(&inode->i_atime);
1076 
1077 	return i;
1078 }
1079 
1080 static void tty_write_unlock(struct tty_struct *tty)
1081 {
1082 	mutex_unlock(&tty->atomic_write_lock);
1083 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1084 }
1085 
1086 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1087 {
1088 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1089 		if (ndelay)
1090 			return -EAGAIN;
1091 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1092 			return -ERESTARTSYS;
1093 	}
1094 	return 0;
1095 }
1096 
1097 /*
1098  * Split writes up in sane blocksizes to avoid
1099  * denial-of-service type attacks
1100  */
1101 static inline ssize_t do_tty_write(
1102 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1103 	struct tty_struct *tty,
1104 	struct file *file,
1105 	const char __user *buf,
1106 	size_t count)
1107 {
1108 	ssize_t ret, written = 0;
1109 	unsigned int chunk;
1110 
1111 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1112 	if (ret < 0)
1113 		return ret;
1114 
1115 	/*
1116 	 * We chunk up writes into a temporary buffer. This
1117 	 * simplifies low-level drivers immensely, since they
1118 	 * don't have locking issues and user mode accesses.
1119 	 *
1120 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1121 	 * big chunk-size..
1122 	 *
1123 	 * The default chunk-size is 2kB, because the NTTY
1124 	 * layer has problems with bigger chunks. It will
1125 	 * claim to be able to handle more characters than
1126 	 * it actually does.
1127 	 *
1128 	 * FIXME: This can probably go away now except that 64K chunks
1129 	 * are too likely to fail unless switched to vmalloc...
1130 	 */
1131 	chunk = 2048;
1132 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1133 		chunk = 65536;
1134 	if (count < chunk)
1135 		chunk = count;
1136 
1137 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1138 	if (tty->write_cnt < chunk) {
1139 		unsigned char *buf_chunk;
1140 
1141 		if (chunk < 1024)
1142 			chunk = 1024;
1143 
1144 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1145 		if (!buf_chunk) {
1146 			ret = -ENOMEM;
1147 			goto out;
1148 		}
1149 		kfree(tty->write_buf);
1150 		tty->write_cnt = chunk;
1151 		tty->write_buf = buf_chunk;
1152 	}
1153 
1154 	/* Do the write .. */
1155 	for (;;) {
1156 		size_t size = count;
1157 		if (size > chunk)
1158 			size = chunk;
1159 		ret = -EFAULT;
1160 		if (copy_from_user(tty->write_buf, buf, size))
1161 			break;
1162 		ret = write(tty, file, tty->write_buf, size);
1163 		if (ret <= 0)
1164 			break;
1165 		written += ret;
1166 		buf += ret;
1167 		count -= ret;
1168 		if (!count)
1169 			break;
1170 		ret = -ERESTARTSYS;
1171 		if (signal_pending(current))
1172 			break;
1173 		cond_resched();
1174 	}
1175 	if (written) {
1176 		tty_update_time(&file_inode(file)->i_mtime);
1177 		ret = written;
1178 	}
1179 out:
1180 	tty_write_unlock(tty);
1181 	return ret;
1182 }
1183 
1184 /**
1185  * tty_write_message - write a message to a certain tty, not just the console.
1186  * @tty: the destination tty_struct
1187  * @msg: the message to write
1188  *
1189  * This is used for messages that need to be redirected to a specific tty.
1190  * We don't put it into the syslog queue right now maybe in the future if
1191  * really needed.
1192  *
1193  * We must still hold the BTM and test the CLOSING flag for the moment.
1194  */
1195 
1196 void tty_write_message(struct tty_struct *tty, char *msg)
1197 {
1198 	if (tty) {
1199 		mutex_lock(&tty->atomic_write_lock);
1200 		tty_lock(tty);
1201 		if (tty->ops->write && tty->count > 0) {
1202 			tty_unlock(tty);
1203 			tty->ops->write(tty, msg, strlen(msg));
1204 		} else
1205 			tty_unlock(tty);
1206 		tty_write_unlock(tty);
1207 	}
1208 	return;
1209 }
1210 
1211 
1212 /**
1213  *	tty_write		-	write method for tty device file
1214  *	@file: tty file pointer
1215  *	@buf: user data to write
1216  *	@count: bytes to write
1217  *	@ppos: unused
1218  *
1219  *	Write data to a tty device via the line discipline.
1220  *
1221  *	Locking:
1222  *		Locks the line discipline as required
1223  *		Writes to the tty driver are serialized by the atomic_write_lock
1224  *	and are then processed in chunks to the device. The line discipline
1225  *	write method will not be invoked in parallel for each device.
1226  */
1227 
1228 static ssize_t tty_write(struct file *file, const char __user *buf,
1229 						size_t count, loff_t *ppos)
1230 {
1231 	struct tty_struct *tty = file_tty(file);
1232  	struct tty_ldisc *ld;
1233 	ssize_t ret;
1234 
1235 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1236 		return -EIO;
1237 	if (!tty || !tty->ops->write ||
1238 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1239 			return -EIO;
1240 	/* Short term debug to catch buggy drivers */
1241 	if (tty->ops->write_room == NULL)
1242 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1243 			tty->driver->name);
1244 	ld = tty_ldisc_ref_wait(tty);
1245 	if (!ld->ops->write)
1246 		ret = -EIO;
1247 	else
1248 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1249 	tty_ldisc_deref(ld);
1250 	return ret;
1251 }
1252 
1253 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1254 						size_t count, loff_t *ppos)
1255 {
1256 	struct file *p = NULL;
1257 
1258 	spin_lock(&redirect_lock);
1259 	if (redirect)
1260 		p = get_file(redirect);
1261 	spin_unlock(&redirect_lock);
1262 
1263 	if (p) {
1264 		ssize_t res;
1265 		res = vfs_write(p, buf, count, &p->f_pos);
1266 		fput(p);
1267 		return res;
1268 	}
1269 	return tty_write(file, buf, count, ppos);
1270 }
1271 
1272 /**
1273  *	tty_send_xchar	-	send priority character
1274  *
1275  *	Send a high priority character to the tty even if stopped
1276  *
1277  *	Locking: none for xchar method, write ordering for write method.
1278  */
1279 
1280 int tty_send_xchar(struct tty_struct *tty, char ch)
1281 {
1282 	int	was_stopped = tty->stopped;
1283 
1284 	if (tty->ops->send_xchar) {
1285 		tty->ops->send_xchar(tty, ch);
1286 		return 0;
1287 	}
1288 
1289 	if (tty_write_lock(tty, 0) < 0)
1290 		return -ERESTARTSYS;
1291 
1292 	if (was_stopped)
1293 		start_tty(tty);
1294 	tty->ops->write(tty, &ch, 1);
1295 	if (was_stopped)
1296 		stop_tty(tty);
1297 	tty_write_unlock(tty);
1298 	return 0;
1299 }
1300 
1301 static char ptychar[] = "pqrstuvwxyzabcde";
1302 
1303 /**
1304  *	pty_line_name	-	generate name for a pty
1305  *	@driver: the tty driver in use
1306  *	@index: the minor number
1307  *	@p: output buffer of at least 6 bytes
1308  *
1309  *	Generate a name from a driver reference and write it to the output
1310  *	buffer.
1311  *
1312  *	Locking: None
1313  */
1314 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1315 {
1316 	int i = index + driver->name_base;
1317 	/* ->name is initialized to "ttyp", but "tty" is expected */
1318 	sprintf(p, "%s%c%x",
1319 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1320 		ptychar[i >> 4 & 0xf], i & 0xf);
1321 }
1322 
1323 /**
1324  *	tty_line_name	-	generate name for a tty
1325  *	@driver: the tty driver in use
1326  *	@index: the minor number
1327  *	@p: output buffer of at least 7 bytes
1328  *
1329  *	Generate a name from a driver reference and write it to the output
1330  *	buffer.
1331  *
1332  *	Locking: None
1333  */
1334 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1335 {
1336 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1337 		return sprintf(p, "%s", driver->name);
1338 	else
1339 		return sprintf(p, "%s%d", driver->name,
1340 			       index + driver->name_base);
1341 }
1342 
1343 /**
1344  *	tty_driver_lookup_tty() - find an existing tty, if any
1345  *	@driver: the driver for the tty
1346  *	@idx:	 the minor number
1347  *
1348  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1349  *	driver lookup() method returns an error.
1350  *
1351  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1352  */
1353 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1354 		struct inode *inode, int idx)
1355 {
1356 	struct tty_struct *tty;
1357 
1358 	if (driver->ops->lookup)
1359 		tty = driver->ops->lookup(driver, inode, idx);
1360 	else
1361 		tty = driver->ttys[idx];
1362 
1363 	if (!IS_ERR(tty))
1364 		tty_kref_get(tty);
1365 	return tty;
1366 }
1367 
1368 /**
1369  *	tty_init_termios	-  helper for termios setup
1370  *	@tty: the tty to set up
1371  *
1372  *	Initialise the termios structures for this tty. Thus runs under
1373  *	the tty_mutex currently so we can be relaxed about ordering.
1374  */
1375 
1376 int tty_init_termios(struct tty_struct *tty)
1377 {
1378 	struct ktermios *tp;
1379 	int idx = tty->index;
1380 
1381 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1382 		tty->termios = tty->driver->init_termios;
1383 	else {
1384 		/* Check for lazy saved data */
1385 		tp = tty->driver->termios[idx];
1386 		if (tp != NULL)
1387 			tty->termios = *tp;
1388 		else
1389 			tty->termios = tty->driver->init_termios;
1390 	}
1391 	/* Compatibility until drivers always set this */
1392 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1393 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1394 	return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(tty_init_termios);
1397 
1398 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1399 {
1400 	int ret = tty_init_termios(tty);
1401 	if (ret)
1402 		return ret;
1403 
1404 	tty_driver_kref_get(driver);
1405 	tty->count++;
1406 	driver->ttys[tty->index] = tty;
1407 	return 0;
1408 }
1409 EXPORT_SYMBOL_GPL(tty_standard_install);
1410 
1411 /**
1412  *	tty_driver_install_tty() - install a tty entry in the driver
1413  *	@driver: the driver for the tty
1414  *	@tty: the tty
1415  *
1416  *	Install a tty object into the driver tables. The tty->index field
1417  *	will be set by the time this is called. This method is responsible
1418  *	for ensuring any need additional structures are allocated and
1419  *	configured.
1420  *
1421  *	Locking: tty_mutex for now
1422  */
1423 static int tty_driver_install_tty(struct tty_driver *driver,
1424 						struct tty_struct *tty)
1425 {
1426 	return driver->ops->install ? driver->ops->install(driver, tty) :
1427 		tty_standard_install(driver, tty);
1428 }
1429 
1430 /**
1431  *	tty_driver_remove_tty() - remove a tty from the driver tables
1432  *	@driver: the driver for the tty
1433  *	@idx:	 the minor number
1434  *
1435  *	Remvoe a tty object from the driver tables. The tty->index field
1436  *	will be set by the time this is called.
1437  *
1438  *	Locking: tty_mutex for now
1439  */
1440 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1441 {
1442 	if (driver->ops->remove)
1443 		driver->ops->remove(driver, tty);
1444 	else
1445 		driver->ttys[tty->index] = NULL;
1446 }
1447 
1448 /*
1449  * 	tty_reopen()	- fast re-open of an open tty
1450  * 	@tty	- the tty to open
1451  *
1452  *	Return 0 on success, -errno on error.
1453  *	Re-opens on master ptys are not allowed and return -EIO.
1454  *
1455  *	Locking: Caller must hold tty_lock
1456  */
1457 static int tty_reopen(struct tty_struct *tty)
1458 {
1459 	struct tty_driver *driver = tty->driver;
1460 
1461 	if (!tty->count)
1462 		return -EIO;
1463 
1464 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1465 	    driver->subtype == PTY_TYPE_MASTER)
1466 		return -EIO;
1467 
1468 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1469 		return -EBUSY;
1470 
1471 	tty->count++;
1472 
1473 	WARN_ON(!tty->ldisc);
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  *	tty_init_dev		-	initialise a tty device
1480  *	@driver: tty driver we are opening a device on
1481  *	@idx: device index
1482  *	@ret_tty: returned tty structure
1483  *
1484  *	Prepare a tty device. This may not be a "new" clean device but
1485  *	could also be an active device. The pty drivers require special
1486  *	handling because of this.
1487  *
1488  *	Locking:
1489  *		The function is called under the tty_mutex, which
1490  *	protects us from the tty struct or driver itself going away.
1491  *
1492  *	On exit the tty device has the line discipline attached and
1493  *	a reference count of 1. If a pair was created for pty/tty use
1494  *	and the other was a pty master then it too has a reference count of 1.
1495  *
1496  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1497  * failed open.  The new code protects the open with a mutex, so it's
1498  * really quite straightforward.  The mutex locking can probably be
1499  * relaxed for the (most common) case of reopening a tty.
1500  */
1501 
1502 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1503 {
1504 	struct tty_struct *tty;
1505 	int retval;
1506 
1507 	/*
1508 	 * First time open is complex, especially for PTY devices.
1509 	 * This code guarantees that either everything succeeds and the
1510 	 * TTY is ready for operation, or else the table slots are vacated
1511 	 * and the allocated memory released.  (Except that the termios
1512 	 * and locked termios may be retained.)
1513 	 */
1514 
1515 	if (!try_module_get(driver->owner))
1516 		return ERR_PTR(-ENODEV);
1517 
1518 	tty = alloc_tty_struct(driver, idx);
1519 	if (!tty) {
1520 		retval = -ENOMEM;
1521 		goto err_module_put;
1522 	}
1523 
1524 	tty_lock(tty);
1525 	retval = tty_driver_install_tty(driver, tty);
1526 	if (retval < 0)
1527 		goto err_deinit_tty;
1528 
1529 	if (!tty->port)
1530 		tty->port = driver->ports[idx];
1531 
1532 	WARN_RATELIMIT(!tty->port,
1533 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1534 			__func__, tty->driver->name);
1535 
1536 	tty->port->itty = tty;
1537 
1538 	/*
1539 	 * Structures all installed ... call the ldisc open routines.
1540 	 * If we fail here just call release_tty to clean up.  No need
1541 	 * to decrement the use counts, as release_tty doesn't care.
1542 	 */
1543 	retval = tty_ldisc_setup(tty, tty->link);
1544 	if (retval)
1545 		goto err_release_tty;
1546 	/* Return the tty locked so that it cannot vanish under the caller */
1547 	return tty;
1548 
1549 err_deinit_tty:
1550 	tty_unlock(tty);
1551 	deinitialize_tty_struct(tty);
1552 	free_tty_struct(tty);
1553 err_module_put:
1554 	module_put(driver->owner);
1555 	return ERR_PTR(retval);
1556 
1557 	/* call the tty release_tty routine to clean out this slot */
1558 err_release_tty:
1559 	tty_unlock(tty);
1560 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1561 				 "clearing slot %d\n", idx);
1562 	release_tty(tty, idx);
1563 	return ERR_PTR(retval);
1564 }
1565 
1566 void tty_free_termios(struct tty_struct *tty)
1567 {
1568 	struct ktermios *tp;
1569 	int idx = tty->index;
1570 
1571 	/* If the port is going to reset then it has no termios to save */
1572 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1573 		return;
1574 
1575 	/* Stash the termios data */
1576 	tp = tty->driver->termios[idx];
1577 	if (tp == NULL) {
1578 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1579 		if (tp == NULL) {
1580 			pr_warn("tty: no memory to save termios state.\n");
1581 			return;
1582 		}
1583 		tty->driver->termios[idx] = tp;
1584 	}
1585 	*tp = tty->termios;
1586 }
1587 EXPORT_SYMBOL(tty_free_termios);
1588 
1589 /**
1590  *	tty_flush_works		-	flush all works of a tty/pty pair
1591  *	@tty: tty device to flush works for (or either end of a pty pair)
1592  *
1593  *	Sync flush all works belonging to @tty (and the 'other' tty).
1594  */
1595 static void tty_flush_works(struct tty_struct *tty)
1596 {
1597 	flush_work(&tty->SAK_work);
1598 	flush_work(&tty->hangup_work);
1599 	if (tty->link) {
1600 		flush_work(&tty->link->SAK_work);
1601 		flush_work(&tty->link->hangup_work);
1602 	}
1603 }
1604 
1605 /**
1606  *	release_one_tty		-	release tty structure memory
1607  *	@kref: kref of tty we are obliterating
1608  *
1609  *	Releases memory associated with a tty structure, and clears out the
1610  *	driver table slots. This function is called when a device is no longer
1611  *	in use. It also gets called when setup of a device fails.
1612  *
1613  *	Locking:
1614  *		takes the file list lock internally when working on the list
1615  *	of ttys that the driver keeps.
1616  *
1617  *	This method gets called from a work queue so that the driver private
1618  *	cleanup ops can sleep (needed for USB at least)
1619  */
1620 static void release_one_tty(struct work_struct *work)
1621 {
1622 	struct tty_struct *tty =
1623 		container_of(work, struct tty_struct, hangup_work);
1624 	struct tty_driver *driver = tty->driver;
1625 	struct module *owner = driver->owner;
1626 
1627 	if (tty->ops->cleanup)
1628 		tty->ops->cleanup(tty);
1629 
1630 	tty->magic = 0;
1631 	tty_driver_kref_put(driver);
1632 	module_put(owner);
1633 
1634 	spin_lock(&tty_files_lock);
1635 	list_del_init(&tty->tty_files);
1636 	spin_unlock(&tty_files_lock);
1637 
1638 	put_pid(tty->pgrp);
1639 	put_pid(tty->session);
1640 	free_tty_struct(tty);
1641 }
1642 
1643 static void queue_release_one_tty(struct kref *kref)
1644 {
1645 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1646 
1647 	/* The hangup queue is now free so we can reuse it rather than
1648 	   waste a chunk of memory for each port */
1649 	INIT_WORK(&tty->hangup_work, release_one_tty);
1650 	schedule_work(&tty->hangup_work);
1651 }
1652 
1653 /**
1654  *	tty_kref_put		-	release a tty kref
1655  *	@tty: tty device
1656  *
1657  *	Release a reference to a tty device and if need be let the kref
1658  *	layer destruct the object for us
1659  */
1660 
1661 void tty_kref_put(struct tty_struct *tty)
1662 {
1663 	if (tty)
1664 		kref_put(&tty->kref, queue_release_one_tty);
1665 }
1666 EXPORT_SYMBOL(tty_kref_put);
1667 
1668 /**
1669  *	release_tty		-	release tty structure memory
1670  *
1671  *	Release both @tty and a possible linked partner (think pty pair),
1672  *	and decrement the refcount of the backing module.
1673  *
1674  *	Locking:
1675  *		tty_mutex
1676  *		takes the file list lock internally when working on the list
1677  *	of ttys that the driver keeps.
1678  *
1679  */
1680 static void release_tty(struct tty_struct *tty, int idx)
1681 {
1682 	/* This should always be true but check for the moment */
1683 	WARN_ON(tty->index != idx);
1684 	WARN_ON(!mutex_is_locked(&tty_mutex));
1685 	if (tty->ops->shutdown)
1686 		tty->ops->shutdown(tty);
1687 	tty_free_termios(tty);
1688 	tty_driver_remove_tty(tty->driver, tty);
1689 	tty->port->itty = NULL;
1690 	if (tty->link)
1691 		tty->link->port->itty = NULL;
1692 	cancel_work_sync(&tty->port->buf.work);
1693 
1694 	tty_kref_put(tty->link);
1695 	tty_kref_put(tty);
1696 }
1697 
1698 /**
1699  *	tty_release_checks - check a tty before real release
1700  *	@tty: tty to check
1701  *	@o_tty: link of @tty (if any)
1702  *	@idx: index of the tty
1703  *
1704  *	Performs some paranoid checking before true release of the @tty.
1705  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1706  */
1707 static int tty_release_checks(struct tty_struct *tty, int idx)
1708 {
1709 #ifdef TTY_PARANOIA_CHECK
1710 	if (idx < 0 || idx >= tty->driver->num) {
1711 		tty_debug(tty, "bad idx %d\n", idx);
1712 		return -1;
1713 	}
1714 
1715 	/* not much to check for devpts */
1716 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1717 		return 0;
1718 
1719 	if (tty != tty->driver->ttys[idx]) {
1720 		tty_debug(tty, "bad driver table[%d] = %p\n",
1721 			  idx, tty->driver->ttys[idx]);
1722 		return -1;
1723 	}
1724 	if (tty->driver->other) {
1725 		struct tty_struct *o_tty = tty->link;
1726 
1727 		if (o_tty != tty->driver->other->ttys[idx]) {
1728 			tty_debug(tty, "bad other table[%d] = %p\n",
1729 				  idx, tty->driver->other->ttys[idx]);
1730 			return -1;
1731 		}
1732 		if (o_tty->link != tty) {
1733 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1734 			return -1;
1735 		}
1736 	}
1737 #endif
1738 	return 0;
1739 }
1740 
1741 /**
1742  *	tty_release		-	vfs callback for close
1743  *	@inode: inode of tty
1744  *	@filp: file pointer for handle to tty
1745  *
1746  *	Called the last time each file handle is closed that references
1747  *	this tty. There may however be several such references.
1748  *
1749  *	Locking:
1750  *		Takes bkl. See tty_release_dev
1751  *
1752  * Even releasing the tty structures is a tricky business.. We have
1753  * to be very careful that the structures are all released at the
1754  * same time, as interrupts might otherwise get the wrong pointers.
1755  *
1756  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1757  * lead to double frees or releasing memory still in use.
1758  */
1759 
1760 int tty_release(struct inode *inode, struct file *filp)
1761 {
1762 	struct tty_struct *tty = file_tty(filp);
1763 	struct tty_struct *o_tty = NULL;
1764 	int	do_sleep, final;
1765 	int	idx;
1766 	long	timeout = 0;
1767 	int	once = 1;
1768 
1769 	if (tty_paranoia_check(tty, inode, __func__))
1770 		return 0;
1771 
1772 	tty_lock(tty);
1773 	check_tty_count(tty, __func__);
1774 
1775 	__tty_fasync(-1, filp, 0);
1776 
1777 	idx = tty->index;
1778 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1779 	    tty->driver->subtype == PTY_TYPE_MASTER)
1780 		o_tty = tty->link;
1781 
1782 	if (tty_release_checks(tty, idx)) {
1783 		tty_unlock(tty);
1784 		return 0;
1785 	}
1786 
1787 	tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count);
1788 
1789 	if (tty->ops->close)
1790 		tty->ops->close(tty, filp);
1791 
1792 	/* If tty is pty master, lock the slave pty (stable lock order) */
1793 	tty_lock_slave(o_tty);
1794 
1795 	/*
1796 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1797 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1798 	 * wait queues and kick everyone out _before_ actually starting to
1799 	 * close.  This ensures that we won't block while releasing the tty
1800 	 * structure.
1801 	 *
1802 	 * The test for the o_tty closing is necessary, since the master and
1803 	 * slave sides may close in any order.  If the slave side closes out
1804 	 * first, its count will be one, since the master side holds an open.
1805 	 * Thus this test wouldn't be triggered at the time the slave closed,
1806 	 * so we do it now.
1807 	 */
1808 	while (1) {
1809 		do_sleep = 0;
1810 
1811 		if (tty->count <= 1) {
1812 			if (waitqueue_active(&tty->read_wait)) {
1813 				wake_up_poll(&tty->read_wait, POLLIN);
1814 				do_sleep++;
1815 			}
1816 			if (waitqueue_active(&tty->write_wait)) {
1817 				wake_up_poll(&tty->write_wait, POLLOUT);
1818 				do_sleep++;
1819 			}
1820 		}
1821 		if (o_tty && o_tty->count <= 1) {
1822 			if (waitqueue_active(&o_tty->read_wait)) {
1823 				wake_up_poll(&o_tty->read_wait, POLLIN);
1824 				do_sleep++;
1825 			}
1826 			if (waitqueue_active(&o_tty->write_wait)) {
1827 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1828 				do_sleep++;
1829 			}
1830 		}
1831 		if (!do_sleep)
1832 			break;
1833 
1834 		if (once) {
1835 			once = 0;
1836 			printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1837 			       __func__, tty_name(tty));
1838 		}
1839 		schedule_timeout_killable(timeout);
1840 		if (timeout < 120 * HZ)
1841 			timeout = 2 * timeout + 1;
1842 		else
1843 			timeout = MAX_SCHEDULE_TIMEOUT;
1844 	}
1845 
1846 	if (o_tty) {
1847 		if (--o_tty->count < 0) {
1848 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1849 				__func__, o_tty->count, tty_name(o_tty));
1850 			o_tty->count = 0;
1851 		}
1852 	}
1853 	if (--tty->count < 0) {
1854 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1855 				__func__, tty->count, tty_name(tty));
1856 		tty->count = 0;
1857 	}
1858 
1859 	/*
1860 	 * We've decremented tty->count, so we need to remove this file
1861 	 * descriptor off the tty->tty_files list; this serves two
1862 	 * purposes:
1863 	 *  - check_tty_count sees the correct number of file descriptors
1864 	 *    associated with this tty.
1865 	 *  - do_tty_hangup no longer sees this file descriptor as
1866 	 *    something that needs to be handled for hangups.
1867 	 */
1868 	tty_del_file(filp);
1869 
1870 	/*
1871 	 * Perform some housekeeping before deciding whether to return.
1872 	 *
1873 	 * If _either_ side is closing, make sure there aren't any
1874 	 * processes that still think tty or o_tty is their controlling
1875 	 * tty.
1876 	 */
1877 	if (!tty->count) {
1878 		read_lock(&tasklist_lock);
1879 		session_clear_tty(tty->session);
1880 		if (o_tty)
1881 			session_clear_tty(o_tty->session);
1882 		read_unlock(&tasklist_lock);
1883 	}
1884 
1885 	/* check whether both sides are closing ... */
1886 	final = !tty->count && !(o_tty && o_tty->count);
1887 
1888 	tty_unlock_slave(o_tty);
1889 	tty_unlock(tty);
1890 
1891 	/* At this point, the tty->count == 0 should ensure a dead tty
1892 	   cannot be re-opened by a racing opener */
1893 
1894 	if (!final)
1895 		return 0;
1896 
1897 	tty_debug_hangup(tty, "final close\n");
1898 	/*
1899 	 * Ask the line discipline code to release its structures
1900 	 */
1901 	tty_ldisc_release(tty);
1902 
1903 	/* Wait for pending work before tty destruction commmences */
1904 	tty_flush_works(tty);
1905 
1906 	tty_debug_hangup(tty, "freeing structure...\n");
1907 	/*
1908 	 * The release_tty function takes care of the details of clearing
1909 	 * the slots and preserving the termios structure. The tty_unlock_pair
1910 	 * should be safe as we keep a kref while the tty is locked (so the
1911 	 * unlock never unlocks a freed tty).
1912 	 */
1913 	mutex_lock(&tty_mutex);
1914 	release_tty(tty, idx);
1915 	mutex_unlock(&tty_mutex);
1916 
1917 	return 0;
1918 }
1919 
1920 /**
1921  *	tty_open_current_tty - get locked tty of current task
1922  *	@device: device number
1923  *	@filp: file pointer to tty
1924  *	@return: locked tty of the current task iff @device is /dev/tty
1925  *
1926  *	Performs a re-open of the current task's controlling tty.
1927  *
1928  *	We cannot return driver and index like for the other nodes because
1929  *	devpts will not work then. It expects inodes to be from devpts FS.
1930  */
1931 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1932 {
1933 	struct tty_struct *tty;
1934 	int retval;
1935 
1936 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1937 		return NULL;
1938 
1939 	tty = get_current_tty();
1940 	if (!tty)
1941 		return ERR_PTR(-ENXIO);
1942 
1943 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1944 	/* noctty = 1; */
1945 	tty_lock(tty);
1946 	tty_kref_put(tty);	/* safe to drop the kref now */
1947 
1948 	retval = tty_reopen(tty);
1949 	if (retval < 0) {
1950 		tty_unlock(tty);
1951 		tty = ERR_PTR(retval);
1952 	}
1953 	return tty;
1954 }
1955 
1956 /**
1957  *	tty_lookup_driver - lookup a tty driver for a given device file
1958  *	@device: device number
1959  *	@filp: file pointer to tty
1960  *	@noctty: set if the device should not become a controlling tty
1961  *	@index: index for the device in the @return driver
1962  *	@return: driver for this inode (with increased refcount)
1963  *
1964  * 	If @return is not erroneous, the caller is responsible to decrement the
1965  * 	refcount by tty_driver_kref_put.
1966  *
1967  *	Locking: tty_mutex protects get_tty_driver
1968  */
1969 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1970 		int *noctty, int *index)
1971 {
1972 	struct tty_driver *driver;
1973 
1974 	switch (device) {
1975 #ifdef CONFIG_VT
1976 	case MKDEV(TTY_MAJOR, 0): {
1977 		extern struct tty_driver *console_driver;
1978 		driver = tty_driver_kref_get(console_driver);
1979 		*index = fg_console;
1980 		*noctty = 1;
1981 		break;
1982 	}
1983 #endif
1984 	case MKDEV(TTYAUX_MAJOR, 1): {
1985 		struct tty_driver *console_driver = console_device(index);
1986 		if (console_driver) {
1987 			driver = tty_driver_kref_get(console_driver);
1988 			if (driver) {
1989 				/* Don't let /dev/console block */
1990 				filp->f_flags |= O_NONBLOCK;
1991 				*noctty = 1;
1992 				break;
1993 			}
1994 		}
1995 		return ERR_PTR(-ENODEV);
1996 	}
1997 	default:
1998 		driver = get_tty_driver(device, index);
1999 		if (!driver)
2000 			return ERR_PTR(-ENODEV);
2001 		break;
2002 	}
2003 	return driver;
2004 }
2005 
2006 /**
2007  *	tty_open		-	open a tty device
2008  *	@inode: inode of device file
2009  *	@filp: file pointer to tty
2010  *
2011  *	tty_open and tty_release keep up the tty count that contains the
2012  *	number of opens done on a tty. We cannot use the inode-count, as
2013  *	different inodes might point to the same tty.
2014  *
2015  *	Open-counting is needed for pty masters, as well as for keeping
2016  *	track of serial lines: DTR is dropped when the last close happens.
2017  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2018  *
2019  *	The termios state of a pty is reset on first open so that
2020  *	settings don't persist across reuse.
2021  *
2022  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2023  *		 tty->count should protect the rest.
2024  *		 ->siglock protects ->signal/->sighand
2025  *
2026  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2027  *	tty_mutex
2028  */
2029 
2030 static int tty_open(struct inode *inode, struct file *filp)
2031 {
2032 	struct tty_struct *tty;
2033 	int noctty, retval;
2034 	struct tty_driver *driver = NULL;
2035 	int index;
2036 	dev_t device = inode->i_rdev;
2037 	unsigned saved_flags = filp->f_flags;
2038 
2039 	nonseekable_open(inode, filp);
2040 
2041 retry_open:
2042 	retval = tty_alloc_file(filp);
2043 	if (retval)
2044 		return -ENOMEM;
2045 
2046 	noctty = filp->f_flags & O_NOCTTY;
2047 	index  = -1;
2048 	retval = 0;
2049 
2050 	tty = tty_open_current_tty(device, filp);
2051 	if (!tty) {
2052 		mutex_lock(&tty_mutex);
2053 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2054 		if (IS_ERR(driver)) {
2055 			retval = PTR_ERR(driver);
2056 			goto err_unlock;
2057 		}
2058 
2059 		/* check whether we're reopening an existing tty */
2060 		tty = tty_driver_lookup_tty(driver, inode, index);
2061 		if (IS_ERR(tty)) {
2062 			retval = PTR_ERR(tty);
2063 			goto err_unlock;
2064 		}
2065 
2066 		if (tty) {
2067 			mutex_unlock(&tty_mutex);
2068 			tty_lock(tty);
2069 			/* safe to drop the kref from tty_driver_lookup_tty() */
2070 			tty_kref_put(tty);
2071 			retval = tty_reopen(tty);
2072 			if (retval < 0) {
2073 				tty_unlock(tty);
2074 				tty = ERR_PTR(retval);
2075 			}
2076 		} else { /* Returns with the tty_lock held for now */
2077 			tty = tty_init_dev(driver, index);
2078 			mutex_unlock(&tty_mutex);
2079 		}
2080 
2081 		tty_driver_kref_put(driver);
2082 	}
2083 
2084 	if (IS_ERR(tty)) {
2085 		retval = PTR_ERR(tty);
2086 		goto err_file;
2087 	}
2088 
2089 	tty_add_file(tty, filp);
2090 
2091 	check_tty_count(tty, __func__);
2092 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2093 	    tty->driver->subtype == PTY_TYPE_MASTER)
2094 		noctty = 1;
2095 
2096 	tty_debug_hangup(tty, "(tty count=%d)\n", tty->count);
2097 
2098 	if (tty->ops->open)
2099 		retval = tty->ops->open(tty, filp);
2100 	else
2101 		retval = -ENODEV;
2102 	filp->f_flags = saved_flags;
2103 
2104 	if (retval) {
2105 		tty_debug_hangup(tty, "error %d, releasing...\n", retval);
2106 
2107 		tty_unlock(tty); /* need to call tty_release without BTM */
2108 		tty_release(inode, filp);
2109 		if (retval != -ERESTARTSYS)
2110 			return retval;
2111 
2112 		if (signal_pending(current))
2113 			return retval;
2114 
2115 		schedule();
2116 		/*
2117 		 * Need to reset f_op in case a hangup happened.
2118 		 */
2119 		if (tty_hung_up_p(filp))
2120 			filp->f_op = &tty_fops;
2121 		goto retry_open;
2122 	}
2123 	clear_bit(TTY_HUPPED, &tty->flags);
2124 
2125 
2126 	read_lock(&tasklist_lock);
2127 	spin_lock_irq(&current->sighand->siglock);
2128 	if (!noctty &&
2129 	    current->signal->leader &&
2130 	    !current->signal->tty &&
2131 	    tty->session == NULL) {
2132 		/*
2133 		 * Don't let a process that only has write access to the tty
2134 		 * obtain the privileges associated with having a tty as
2135 		 * controlling terminal (being able to reopen it with full
2136 		 * access through /dev/tty, being able to perform pushback).
2137 		 * Many distributions set the group of all ttys to "tty" and
2138 		 * grant write-only access to all terminals for setgid tty
2139 		 * binaries, which should not imply full privileges on all ttys.
2140 		 *
2141 		 * This could theoretically break old code that performs open()
2142 		 * on a write-only file descriptor. In that case, it might be
2143 		 * necessary to also permit this if
2144 		 * inode_permission(inode, MAY_READ) == 0.
2145 		 */
2146 		if (filp->f_mode & FMODE_READ)
2147 			__proc_set_tty(tty);
2148 	}
2149 	spin_unlock_irq(&current->sighand->siglock);
2150 	read_unlock(&tasklist_lock);
2151 	tty_unlock(tty);
2152 	return 0;
2153 err_unlock:
2154 	mutex_unlock(&tty_mutex);
2155 	/* after locks to avoid deadlock */
2156 	if (!IS_ERR_OR_NULL(driver))
2157 		tty_driver_kref_put(driver);
2158 err_file:
2159 	tty_free_file(filp);
2160 	return retval;
2161 }
2162 
2163 
2164 
2165 /**
2166  *	tty_poll	-	check tty status
2167  *	@filp: file being polled
2168  *	@wait: poll wait structures to update
2169  *
2170  *	Call the line discipline polling method to obtain the poll
2171  *	status of the device.
2172  *
2173  *	Locking: locks called line discipline but ldisc poll method
2174  *	may be re-entered freely by other callers.
2175  */
2176 
2177 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2178 {
2179 	struct tty_struct *tty = file_tty(filp);
2180 	struct tty_ldisc *ld;
2181 	int ret = 0;
2182 
2183 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2184 		return 0;
2185 
2186 	ld = tty_ldisc_ref_wait(tty);
2187 	if (ld->ops->poll)
2188 		ret = ld->ops->poll(tty, filp, wait);
2189 	tty_ldisc_deref(ld);
2190 	return ret;
2191 }
2192 
2193 static int __tty_fasync(int fd, struct file *filp, int on)
2194 {
2195 	struct tty_struct *tty = file_tty(filp);
2196 	struct tty_ldisc *ldisc;
2197 	unsigned long flags;
2198 	int retval = 0;
2199 
2200 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2201 		goto out;
2202 
2203 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2204 	if (retval <= 0)
2205 		goto out;
2206 
2207 	ldisc = tty_ldisc_ref(tty);
2208 	if (ldisc) {
2209 		if (ldisc->ops->fasync)
2210 			ldisc->ops->fasync(tty, on);
2211 		tty_ldisc_deref(ldisc);
2212 	}
2213 
2214 	if (on) {
2215 		enum pid_type type;
2216 		struct pid *pid;
2217 
2218 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2219 		if (tty->pgrp) {
2220 			pid = tty->pgrp;
2221 			type = PIDTYPE_PGID;
2222 		} else {
2223 			pid = task_pid(current);
2224 			type = PIDTYPE_PID;
2225 		}
2226 		get_pid(pid);
2227 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2228 		__f_setown(filp, pid, type, 0);
2229 		put_pid(pid);
2230 		retval = 0;
2231 	}
2232 out:
2233 	return retval;
2234 }
2235 
2236 static int tty_fasync(int fd, struct file *filp, int on)
2237 {
2238 	struct tty_struct *tty = file_tty(filp);
2239 	int retval;
2240 
2241 	tty_lock(tty);
2242 	retval = __tty_fasync(fd, filp, on);
2243 	tty_unlock(tty);
2244 
2245 	return retval;
2246 }
2247 
2248 /**
2249  *	tiocsti			-	fake input character
2250  *	@tty: tty to fake input into
2251  *	@p: pointer to character
2252  *
2253  *	Fake input to a tty device. Does the necessary locking and
2254  *	input management.
2255  *
2256  *	FIXME: does not honour flow control ??
2257  *
2258  *	Locking:
2259  *		Called functions take tty_ldiscs_lock
2260  *		current->signal->tty check is safe without locks
2261  *
2262  *	FIXME: may race normal receive processing
2263  */
2264 
2265 static int tiocsti(struct tty_struct *tty, char __user *p)
2266 {
2267 	char ch, mbz = 0;
2268 	struct tty_ldisc *ld;
2269 
2270 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2271 		return -EPERM;
2272 	if (get_user(ch, p))
2273 		return -EFAULT;
2274 	tty_audit_tiocsti(tty, ch);
2275 	ld = tty_ldisc_ref_wait(tty);
2276 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2277 	tty_ldisc_deref(ld);
2278 	return 0;
2279 }
2280 
2281 /**
2282  *	tiocgwinsz		-	implement window query ioctl
2283  *	@tty; tty
2284  *	@arg: user buffer for result
2285  *
2286  *	Copies the kernel idea of the window size into the user buffer.
2287  *
2288  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2289  *		is consistent.
2290  */
2291 
2292 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2293 {
2294 	int err;
2295 
2296 	mutex_lock(&tty->winsize_mutex);
2297 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2298 	mutex_unlock(&tty->winsize_mutex);
2299 
2300 	return err ? -EFAULT: 0;
2301 }
2302 
2303 /**
2304  *	tty_do_resize		-	resize event
2305  *	@tty: tty being resized
2306  *	@rows: rows (character)
2307  *	@cols: cols (character)
2308  *
2309  *	Update the termios variables and send the necessary signals to
2310  *	peform a terminal resize correctly
2311  */
2312 
2313 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2314 {
2315 	struct pid *pgrp;
2316 
2317 	/* Lock the tty */
2318 	mutex_lock(&tty->winsize_mutex);
2319 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2320 		goto done;
2321 
2322 	/* Signal the foreground process group */
2323 	pgrp = tty_get_pgrp(tty);
2324 	if (pgrp)
2325 		kill_pgrp(pgrp, SIGWINCH, 1);
2326 	put_pid(pgrp);
2327 
2328 	tty->winsize = *ws;
2329 done:
2330 	mutex_unlock(&tty->winsize_mutex);
2331 	return 0;
2332 }
2333 EXPORT_SYMBOL(tty_do_resize);
2334 
2335 /**
2336  *	tiocswinsz		-	implement window size set ioctl
2337  *	@tty; tty side of tty
2338  *	@arg: user buffer for result
2339  *
2340  *	Copies the user idea of the window size to the kernel. Traditionally
2341  *	this is just advisory information but for the Linux console it
2342  *	actually has driver level meaning and triggers a VC resize.
2343  *
2344  *	Locking:
2345  *		Driver dependent. The default do_resize method takes the
2346  *	tty termios mutex and ctrl_lock. The console takes its own lock
2347  *	then calls into the default method.
2348  */
2349 
2350 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2351 {
2352 	struct winsize tmp_ws;
2353 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2354 		return -EFAULT;
2355 
2356 	if (tty->ops->resize)
2357 		return tty->ops->resize(tty, &tmp_ws);
2358 	else
2359 		return tty_do_resize(tty, &tmp_ws);
2360 }
2361 
2362 /**
2363  *	tioccons	-	allow admin to move logical console
2364  *	@file: the file to become console
2365  *
2366  *	Allow the administrator to move the redirected console device
2367  *
2368  *	Locking: uses redirect_lock to guard the redirect information
2369  */
2370 
2371 static int tioccons(struct file *file)
2372 {
2373 	if (!capable(CAP_SYS_ADMIN))
2374 		return -EPERM;
2375 	if (file->f_op->write == redirected_tty_write) {
2376 		struct file *f;
2377 		spin_lock(&redirect_lock);
2378 		f = redirect;
2379 		redirect = NULL;
2380 		spin_unlock(&redirect_lock);
2381 		if (f)
2382 			fput(f);
2383 		return 0;
2384 	}
2385 	spin_lock(&redirect_lock);
2386 	if (redirect) {
2387 		spin_unlock(&redirect_lock);
2388 		return -EBUSY;
2389 	}
2390 	redirect = get_file(file);
2391 	spin_unlock(&redirect_lock);
2392 	return 0;
2393 }
2394 
2395 /**
2396  *	fionbio		-	non blocking ioctl
2397  *	@file: file to set blocking value
2398  *	@p: user parameter
2399  *
2400  *	Historical tty interfaces had a blocking control ioctl before
2401  *	the generic functionality existed. This piece of history is preserved
2402  *	in the expected tty API of posix OS's.
2403  *
2404  *	Locking: none, the open file handle ensures it won't go away.
2405  */
2406 
2407 static int fionbio(struct file *file, int __user *p)
2408 {
2409 	int nonblock;
2410 
2411 	if (get_user(nonblock, p))
2412 		return -EFAULT;
2413 
2414 	spin_lock(&file->f_lock);
2415 	if (nonblock)
2416 		file->f_flags |= O_NONBLOCK;
2417 	else
2418 		file->f_flags &= ~O_NONBLOCK;
2419 	spin_unlock(&file->f_lock);
2420 	return 0;
2421 }
2422 
2423 /**
2424  *	tiocsctty	-	set controlling tty
2425  *	@tty: tty structure
2426  *	@arg: user argument
2427  *
2428  *	This ioctl is used to manage job control. It permits a session
2429  *	leader to set this tty as the controlling tty for the session.
2430  *
2431  *	Locking:
2432  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2433  *		Takes tasklist_lock internally to walk sessions
2434  *		Takes ->siglock() when updating signal->tty
2435  */
2436 
2437 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2438 {
2439 	int ret = 0;
2440 
2441 	tty_lock(tty);
2442 	read_lock(&tasklist_lock);
2443 
2444 	if (current->signal->leader && (task_session(current) == tty->session))
2445 		goto unlock;
2446 
2447 	/*
2448 	 * The process must be a session leader and
2449 	 * not have a controlling tty already.
2450 	 */
2451 	if (!current->signal->leader || current->signal->tty) {
2452 		ret = -EPERM;
2453 		goto unlock;
2454 	}
2455 
2456 	if (tty->session) {
2457 		/*
2458 		 * This tty is already the controlling
2459 		 * tty for another session group!
2460 		 */
2461 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2462 			/*
2463 			 * Steal it away
2464 			 */
2465 			session_clear_tty(tty->session);
2466 		} else {
2467 			ret = -EPERM;
2468 			goto unlock;
2469 		}
2470 	}
2471 
2472 	/* See the comment in tty_open(). */
2473 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2474 		ret = -EPERM;
2475 		goto unlock;
2476 	}
2477 
2478 	proc_set_tty(tty);
2479 unlock:
2480 	read_unlock(&tasklist_lock);
2481 	tty_unlock(tty);
2482 	return ret;
2483 }
2484 
2485 /**
2486  *	tty_get_pgrp	-	return a ref counted pgrp pid
2487  *	@tty: tty to read
2488  *
2489  *	Returns a refcounted instance of the pid struct for the process
2490  *	group controlling the tty.
2491  */
2492 
2493 struct pid *tty_get_pgrp(struct tty_struct *tty)
2494 {
2495 	unsigned long flags;
2496 	struct pid *pgrp;
2497 
2498 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2499 	pgrp = get_pid(tty->pgrp);
2500 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2501 
2502 	return pgrp;
2503 }
2504 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2505 
2506 /*
2507  * This checks not only the pgrp, but falls back on the pid if no
2508  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2509  * without this...
2510  *
2511  * The caller must hold rcu lock or the tasklist lock.
2512  */
2513 static struct pid *session_of_pgrp(struct pid *pgrp)
2514 {
2515 	struct task_struct *p;
2516 	struct pid *sid = NULL;
2517 
2518 	p = pid_task(pgrp, PIDTYPE_PGID);
2519 	if (p == NULL)
2520 		p = pid_task(pgrp, PIDTYPE_PID);
2521 	if (p != NULL)
2522 		sid = task_session(p);
2523 
2524 	return sid;
2525 }
2526 
2527 /**
2528  *	tiocgpgrp		-	get process group
2529  *	@tty: tty passed by user
2530  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2531  *	@p: returned pid
2532  *
2533  *	Obtain the process group of the tty. If there is no process group
2534  *	return an error.
2535  *
2536  *	Locking: none. Reference to current->signal->tty is safe.
2537  */
2538 
2539 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2540 {
2541 	struct pid *pid;
2542 	int ret;
2543 	/*
2544 	 * (tty == real_tty) is a cheap way of
2545 	 * testing if the tty is NOT a master pty.
2546 	 */
2547 	if (tty == real_tty && current->signal->tty != real_tty)
2548 		return -ENOTTY;
2549 	pid = tty_get_pgrp(real_tty);
2550 	ret =  put_user(pid_vnr(pid), p);
2551 	put_pid(pid);
2552 	return ret;
2553 }
2554 
2555 /**
2556  *	tiocspgrp		-	attempt to set process group
2557  *	@tty: tty passed by user
2558  *	@real_tty: tty side device matching tty passed by user
2559  *	@p: pid pointer
2560  *
2561  *	Set the process group of the tty to the session passed. Only
2562  *	permitted where the tty session is our session.
2563  *
2564  *	Locking: RCU, ctrl lock
2565  */
2566 
2567 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2568 {
2569 	struct pid *pgrp;
2570 	pid_t pgrp_nr;
2571 	int retval = tty_check_change(real_tty);
2572 	unsigned long flags;
2573 
2574 	if (retval == -EIO)
2575 		return -ENOTTY;
2576 	if (retval)
2577 		return retval;
2578 	if (!current->signal->tty ||
2579 	    (current->signal->tty != real_tty) ||
2580 	    (real_tty->session != task_session(current)))
2581 		return -ENOTTY;
2582 	if (get_user(pgrp_nr, p))
2583 		return -EFAULT;
2584 	if (pgrp_nr < 0)
2585 		return -EINVAL;
2586 	rcu_read_lock();
2587 	pgrp = find_vpid(pgrp_nr);
2588 	retval = -ESRCH;
2589 	if (!pgrp)
2590 		goto out_unlock;
2591 	retval = -EPERM;
2592 	if (session_of_pgrp(pgrp) != task_session(current))
2593 		goto out_unlock;
2594 	retval = 0;
2595 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2596 	put_pid(real_tty->pgrp);
2597 	real_tty->pgrp = get_pid(pgrp);
2598 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2599 out_unlock:
2600 	rcu_read_unlock();
2601 	return retval;
2602 }
2603 
2604 /**
2605  *	tiocgsid		-	get session id
2606  *	@tty: tty passed by user
2607  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2608  *	@p: pointer to returned session id
2609  *
2610  *	Obtain the session id of the tty. If there is no session
2611  *	return an error.
2612  *
2613  *	Locking: none. Reference to current->signal->tty is safe.
2614  */
2615 
2616 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2617 {
2618 	/*
2619 	 * (tty == real_tty) is a cheap way of
2620 	 * testing if the tty is NOT a master pty.
2621 	*/
2622 	if (tty == real_tty && current->signal->tty != real_tty)
2623 		return -ENOTTY;
2624 	if (!real_tty->session)
2625 		return -ENOTTY;
2626 	return put_user(pid_vnr(real_tty->session), p);
2627 }
2628 
2629 /**
2630  *	tiocsetd	-	set line discipline
2631  *	@tty: tty device
2632  *	@p: pointer to user data
2633  *
2634  *	Set the line discipline according to user request.
2635  *
2636  *	Locking: see tty_set_ldisc, this function is just a helper
2637  */
2638 
2639 static int tiocsetd(struct tty_struct *tty, int __user *p)
2640 {
2641 	int ldisc;
2642 	int ret;
2643 
2644 	if (get_user(ldisc, p))
2645 		return -EFAULT;
2646 
2647 	ret = tty_set_ldisc(tty, ldisc);
2648 
2649 	return ret;
2650 }
2651 
2652 /**
2653  *	send_break	-	performed time break
2654  *	@tty: device to break on
2655  *	@duration: timeout in mS
2656  *
2657  *	Perform a timed break on hardware that lacks its own driver level
2658  *	timed break functionality.
2659  *
2660  *	Locking:
2661  *		atomic_write_lock serializes
2662  *
2663  */
2664 
2665 static int send_break(struct tty_struct *tty, unsigned int duration)
2666 {
2667 	int retval;
2668 
2669 	if (tty->ops->break_ctl == NULL)
2670 		return 0;
2671 
2672 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2673 		retval = tty->ops->break_ctl(tty, duration);
2674 	else {
2675 		/* Do the work ourselves */
2676 		if (tty_write_lock(tty, 0) < 0)
2677 			return -EINTR;
2678 		retval = tty->ops->break_ctl(tty, -1);
2679 		if (retval)
2680 			goto out;
2681 		if (!signal_pending(current))
2682 			msleep_interruptible(duration);
2683 		retval = tty->ops->break_ctl(tty, 0);
2684 out:
2685 		tty_write_unlock(tty);
2686 		if (signal_pending(current))
2687 			retval = -EINTR;
2688 	}
2689 	return retval;
2690 }
2691 
2692 /**
2693  *	tty_tiocmget		-	get modem status
2694  *	@tty: tty device
2695  *	@file: user file pointer
2696  *	@p: pointer to result
2697  *
2698  *	Obtain the modem status bits from the tty driver if the feature
2699  *	is supported. Return -EINVAL if it is not available.
2700  *
2701  *	Locking: none (up to the driver)
2702  */
2703 
2704 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2705 {
2706 	int retval = -EINVAL;
2707 
2708 	if (tty->ops->tiocmget) {
2709 		retval = tty->ops->tiocmget(tty);
2710 
2711 		if (retval >= 0)
2712 			retval = put_user(retval, p);
2713 	}
2714 	return retval;
2715 }
2716 
2717 /**
2718  *	tty_tiocmset		-	set modem status
2719  *	@tty: tty device
2720  *	@cmd: command - clear bits, set bits or set all
2721  *	@p: pointer to desired bits
2722  *
2723  *	Set the modem status bits from the tty driver if the feature
2724  *	is supported. Return -EINVAL if it is not available.
2725  *
2726  *	Locking: none (up to the driver)
2727  */
2728 
2729 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2730 	     unsigned __user *p)
2731 {
2732 	int retval;
2733 	unsigned int set, clear, val;
2734 
2735 	if (tty->ops->tiocmset == NULL)
2736 		return -EINVAL;
2737 
2738 	retval = get_user(val, p);
2739 	if (retval)
2740 		return retval;
2741 	set = clear = 0;
2742 	switch (cmd) {
2743 	case TIOCMBIS:
2744 		set = val;
2745 		break;
2746 	case TIOCMBIC:
2747 		clear = val;
2748 		break;
2749 	case TIOCMSET:
2750 		set = val;
2751 		clear = ~val;
2752 		break;
2753 	}
2754 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2755 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2756 	return tty->ops->tiocmset(tty, set, clear);
2757 }
2758 
2759 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2760 {
2761 	int retval = -EINVAL;
2762 	struct serial_icounter_struct icount;
2763 	memset(&icount, 0, sizeof(icount));
2764 	if (tty->ops->get_icount)
2765 		retval = tty->ops->get_icount(tty, &icount);
2766 	if (retval != 0)
2767 		return retval;
2768 	if (copy_to_user(arg, &icount, sizeof(icount)))
2769 		return -EFAULT;
2770 	return 0;
2771 }
2772 
2773 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2774 {
2775 	static DEFINE_RATELIMIT_STATE(depr_flags,
2776 			DEFAULT_RATELIMIT_INTERVAL,
2777 			DEFAULT_RATELIMIT_BURST);
2778 	char comm[TASK_COMM_LEN];
2779 	int flags;
2780 
2781 	if (get_user(flags, &ss->flags))
2782 		return;
2783 
2784 	flags &= ASYNC_DEPRECATED;
2785 
2786 	if (flags && __ratelimit(&depr_flags))
2787 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2788 				__func__, get_task_comm(comm, current), flags);
2789 }
2790 
2791 /*
2792  * if pty, return the slave side (real_tty)
2793  * otherwise, return self
2794  */
2795 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2796 {
2797 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2798 	    tty->driver->subtype == PTY_TYPE_MASTER)
2799 		tty = tty->link;
2800 	return tty;
2801 }
2802 
2803 /*
2804  * Split this up, as gcc can choke on it otherwise..
2805  */
2806 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2807 {
2808 	struct tty_struct *tty = file_tty(file);
2809 	struct tty_struct *real_tty;
2810 	void __user *p = (void __user *)arg;
2811 	int retval;
2812 	struct tty_ldisc *ld;
2813 
2814 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2815 		return -EINVAL;
2816 
2817 	real_tty = tty_pair_get_tty(tty);
2818 
2819 	/*
2820 	 * Factor out some common prep work
2821 	 */
2822 	switch (cmd) {
2823 	case TIOCSETD:
2824 	case TIOCSBRK:
2825 	case TIOCCBRK:
2826 	case TCSBRK:
2827 	case TCSBRKP:
2828 		retval = tty_check_change(tty);
2829 		if (retval)
2830 			return retval;
2831 		if (cmd != TIOCCBRK) {
2832 			tty_wait_until_sent(tty, 0);
2833 			if (signal_pending(current))
2834 				return -EINTR;
2835 		}
2836 		break;
2837 	}
2838 
2839 	/*
2840 	 *	Now do the stuff.
2841 	 */
2842 	switch (cmd) {
2843 	case TIOCSTI:
2844 		return tiocsti(tty, p);
2845 	case TIOCGWINSZ:
2846 		return tiocgwinsz(real_tty, p);
2847 	case TIOCSWINSZ:
2848 		return tiocswinsz(real_tty, p);
2849 	case TIOCCONS:
2850 		return real_tty != tty ? -EINVAL : tioccons(file);
2851 	case FIONBIO:
2852 		return fionbio(file, p);
2853 	case TIOCEXCL:
2854 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2855 		return 0;
2856 	case TIOCNXCL:
2857 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2858 		return 0;
2859 	case TIOCGEXCL:
2860 	{
2861 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2862 		return put_user(excl, (int __user *)p);
2863 	}
2864 	case TIOCNOTTY:
2865 		if (current->signal->tty != tty)
2866 			return -ENOTTY;
2867 		no_tty();
2868 		return 0;
2869 	case TIOCSCTTY:
2870 		return tiocsctty(tty, file, arg);
2871 	case TIOCGPGRP:
2872 		return tiocgpgrp(tty, real_tty, p);
2873 	case TIOCSPGRP:
2874 		return tiocspgrp(tty, real_tty, p);
2875 	case TIOCGSID:
2876 		return tiocgsid(tty, real_tty, p);
2877 	case TIOCGETD:
2878 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2879 	case TIOCSETD:
2880 		return tiocsetd(tty, p);
2881 	case TIOCVHANGUP:
2882 		if (!capable(CAP_SYS_ADMIN))
2883 			return -EPERM;
2884 		tty_vhangup(tty);
2885 		return 0;
2886 	case TIOCGDEV:
2887 	{
2888 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2889 		return put_user(ret, (unsigned int __user *)p);
2890 	}
2891 	/*
2892 	 * Break handling
2893 	 */
2894 	case TIOCSBRK:	/* Turn break on, unconditionally */
2895 		if (tty->ops->break_ctl)
2896 			return tty->ops->break_ctl(tty, -1);
2897 		return 0;
2898 	case TIOCCBRK:	/* Turn break off, unconditionally */
2899 		if (tty->ops->break_ctl)
2900 			return tty->ops->break_ctl(tty, 0);
2901 		return 0;
2902 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2903 		/* non-zero arg means wait for all output data
2904 		 * to be sent (performed above) but don't send break.
2905 		 * This is used by the tcdrain() termios function.
2906 		 */
2907 		if (!arg)
2908 			return send_break(tty, 250);
2909 		return 0;
2910 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2911 		return send_break(tty, arg ? arg*100 : 250);
2912 
2913 	case TIOCMGET:
2914 		return tty_tiocmget(tty, p);
2915 	case TIOCMSET:
2916 	case TIOCMBIC:
2917 	case TIOCMBIS:
2918 		return tty_tiocmset(tty, cmd, p);
2919 	case TIOCGICOUNT:
2920 		retval = tty_tiocgicount(tty, p);
2921 		/* For the moment allow fall through to the old method */
2922         	if (retval != -EINVAL)
2923 			return retval;
2924 		break;
2925 	case TCFLSH:
2926 		switch (arg) {
2927 		case TCIFLUSH:
2928 		case TCIOFLUSH:
2929 		/* flush tty buffer and allow ldisc to process ioctl */
2930 			tty_buffer_flush(tty, NULL);
2931 			break;
2932 		}
2933 		break;
2934 	case TIOCSSERIAL:
2935 		tty_warn_deprecated_flags(p);
2936 		break;
2937 	}
2938 	if (tty->ops->ioctl) {
2939 		retval = tty->ops->ioctl(tty, cmd, arg);
2940 		if (retval != -ENOIOCTLCMD)
2941 			return retval;
2942 	}
2943 	ld = tty_ldisc_ref_wait(tty);
2944 	retval = -EINVAL;
2945 	if (ld->ops->ioctl) {
2946 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2947 		if (retval == -ENOIOCTLCMD)
2948 			retval = -ENOTTY;
2949 	}
2950 	tty_ldisc_deref(ld);
2951 	return retval;
2952 }
2953 
2954 #ifdef CONFIG_COMPAT
2955 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2956 				unsigned long arg)
2957 {
2958 	struct tty_struct *tty = file_tty(file);
2959 	struct tty_ldisc *ld;
2960 	int retval = -ENOIOCTLCMD;
2961 
2962 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2963 		return -EINVAL;
2964 
2965 	if (tty->ops->compat_ioctl) {
2966 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2967 		if (retval != -ENOIOCTLCMD)
2968 			return retval;
2969 	}
2970 
2971 	ld = tty_ldisc_ref_wait(tty);
2972 	if (ld->ops->compat_ioctl)
2973 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2974 	else
2975 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2976 	tty_ldisc_deref(ld);
2977 
2978 	return retval;
2979 }
2980 #endif
2981 
2982 static int this_tty(const void *t, struct file *file, unsigned fd)
2983 {
2984 	if (likely(file->f_op->read != tty_read))
2985 		return 0;
2986 	return file_tty(file) != t ? 0 : fd + 1;
2987 }
2988 
2989 /*
2990  * This implements the "Secure Attention Key" ---  the idea is to
2991  * prevent trojan horses by killing all processes associated with this
2992  * tty when the user hits the "Secure Attention Key".  Required for
2993  * super-paranoid applications --- see the Orange Book for more details.
2994  *
2995  * This code could be nicer; ideally it should send a HUP, wait a few
2996  * seconds, then send a INT, and then a KILL signal.  But you then
2997  * have to coordinate with the init process, since all processes associated
2998  * with the current tty must be dead before the new getty is allowed
2999  * to spawn.
3000  *
3001  * Now, if it would be correct ;-/ The current code has a nasty hole -
3002  * it doesn't catch files in flight. We may send the descriptor to ourselves
3003  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3004  *
3005  * Nasty bug: do_SAK is being called in interrupt context.  This can
3006  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3007  */
3008 void __do_SAK(struct tty_struct *tty)
3009 {
3010 #ifdef TTY_SOFT_SAK
3011 	tty_hangup(tty);
3012 #else
3013 	struct task_struct *g, *p;
3014 	struct pid *session;
3015 	int		i;
3016 
3017 	if (!tty)
3018 		return;
3019 	session = tty->session;
3020 
3021 	tty_ldisc_flush(tty);
3022 
3023 	tty_driver_flush_buffer(tty);
3024 
3025 	read_lock(&tasklist_lock);
3026 	/* Kill the entire session */
3027 	do_each_pid_task(session, PIDTYPE_SID, p) {
3028 		printk(KERN_NOTICE "SAK: killed process %d"
3029 			" (%s): task_session(p)==tty->session\n",
3030 			task_pid_nr(p), p->comm);
3031 		send_sig(SIGKILL, p, 1);
3032 	} while_each_pid_task(session, PIDTYPE_SID, p);
3033 	/* Now kill any processes that happen to have the
3034 	 * tty open.
3035 	 */
3036 	do_each_thread(g, p) {
3037 		if (p->signal->tty == tty) {
3038 			printk(KERN_NOTICE "SAK: killed process %d"
3039 			    " (%s): task_session(p)==tty->session\n",
3040 			    task_pid_nr(p), p->comm);
3041 			send_sig(SIGKILL, p, 1);
3042 			continue;
3043 		}
3044 		task_lock(p);
3045 		i = iterate_fd(p->files, 0, this_tty, tty);
3046 		if (i != 0) {
3047 			printk(KERN_NOTICE "SAK: killed process %d"
3048 			    " (%s): fd#%d opened to the tty\n",
3049 				    task_pid_nr(p), p->comm, i - 1);
3050 			force_sig(SIGKILL, p);
3051 		}
3052 		task_unlock(p);
3053 	} while_each_thread(g, p);
3054 	read_unlock(&tasklist_lock);
3055 #endif
3056 }
3057 
3058 static void do_SAK_work(struct work_struct *work)
3059 {
3060 	struct tty_struct *tty =
3061 		container_of(work, struct tty_struct, SAK_work);
3062 	__do_SAK(tty);
3063 }
3064 
3065 /*
3066  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3067  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3068  * the values which we write to it will be identical to the values which it
3069  * already has. --akpm
3070  */
3071 void do_SAK(struct tty_struct *tty)
3072 {
3073 	if (!tty)
3074 		return;
3075 	schedule_work(&tty->SAK_work);
3076 }
3077 
3078 EXPORT_SYMBOL(do_SAK);
3079 
3080 static int dev_match_devt(struct device *dev, const void *data)
3081 {
3082 	const dev_t *devt = data;
3083 	return dev->devt == *devt;
3084 }
3085 
3086 /* Must put_device() after it's unused! */
3087 static struct device *tty_get_device(struct tty_struct *tty)
3088 {
3089 	dev_t devt = tty_devnum(tty);
3090 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3091 }
3092 
3093 
3094 /**
3095  *	alloc_tty_struct
3096  *
3097  *	This subroutine allocates and initializes a tty structure.
3098  *
3099  *	Locking: none - tty in question is not exposed at this point
3100  */
3101 
3102 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3103 {
3104 	struct tty_struct *tty;
3105 
3106 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3107 	if (!tty)
3108 		return NULL;
3109 
3110 	kref_init(&tty->kref);
3111 	tty->magic = TTY_MAGIC;
3112 	tty_ldisc_init(tty);
3113 	tty->session = NULL;
3114 	tty->pgrp = NULL;
3115 	mutex_init(&tty->legacy_mutex);
3116 	mutex_init(&tty->throttle_mutex);
3117 	init_rwsem(&tty->termios_rwsem);
3118 	mutex_init(&tty->winsize_mutex);
3119 	init_ldsem(&tty->ldisc_sem);
3120 	init_waitqueue_head(&tty->write_wait);
3121 	init_waitqueue_head(&tty->read_wait);
3122 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3123 	mutex_init(&tty->atomic_write_lock);
3124 	spin_lock_init(&tty->ctrl_lock);
3125 	spin_lock_init(&tty->flow_lock);
3126 	INIT_LIST_HEAD(&tty->tty_files);
3127 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3128 
3129 	tty->driver = driver;
3130 	tty->ops = driver->ops;
3131 	tty->index = idx;
3132 	tty_line_name(driver, idx, tty->name);
3133 	tty->dev = tty_get_device(tty);
3134 
3135 	return tty;
3136 }
3137 
3138 /**
3139  *	deinitialize_tty_struct
3140  *	@tty: tty to deinitialize
3141  *
3142  *	This subroutine deinitializes a tty structure that has been newly
3143  *	allocated but tty_release cannot be called on that yet.
3144  *
3145  *	Locking: none - tty in question must not be exposed at this point
3146  */
3147 void deinitialize_tty_struct(struct tty_struct *tty)
3148 {
3149 	tty_ldisc_deinit(tty);
3150 }
3151 
3152 /**
3153  *	tty_put_char	-	write one character to a tty
3154  *	@tty: tty
3155  *	@ch: character
3156  *
3157  *	Write one byte to the tty using the provided put_char method
3158  *	if present. Returns the number of characters successfully output.
3159  *
3160  *	Note: the specific put_char operation in the driver layer may go
3161  *	away soon. Don't call it directly, use this method
3162  */
3163 
3164 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3165 {
3166 	if (tty->ops->put_char)
3167 		return tty->ops->put_char(tty, ch);
3168 	return tty->ops->write(tty, &ch, 1);
3169 }
3170 EXPORT_SYMBOL_GPL(tty_put_char);
3171 
3172 struct class *tty_class;
3173 
3174 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3175 		unsigned int index, unsigned int count)
3176 {
3177 	int err;
3178 
3179 	/* init here, since reused cdevs cause crashes */
3180 	driver->cdevs[index] = cdev_alloc();
3181 	if (!driver->cdevs[index])
3182 		return -ENOMEM;
3183 	driver->cdevs[index]->ops = &tty_fops;
3184 	driver->cdevs[index]->owner = driver->owner;
3185 	err = cdev_add(driver->cdevs[index], dev, count);
3186 	if (err)
3187 		kobject_put(&driver->cdevs[index]->kobj);
3188 	return err;
3189 }
3190 
3191 /**
3192  *	tty_register_device - register a tty device
3193  *	@driver: the tty driver that describes the tty device
3194  *	@index: the index in the tty driver for this tty device
3195  *	@device: a struct device that is associated with this tty device.
3196  *		This field is optional, if there is no known struct device
3197  *		for this tty device it can be set to NULL safely.
3198  *
3199  *	Returns a pointer to the struct device for this tty device
3200  *	(or ERR_PTR(-EFOO) on error).
3201  *
3202  *	This call is required to be made to register an individual tty device
3203  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3204  *	that bit is not set, this function should not be called by a tty
3205  *	driver.
3206  *
3207  *	Locking: ??
3208  */
3209 
3210 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3211 				   struct device *device)
3212 {
3213 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3214 }
3215 EXPORT_SYMBOL(tty_register_device);
3216 
3217 static void tty_device_create_release(struct device *dev)
3218 {
3219 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3220 	kfree(dev);
3221 }
3222 
3223 /**
3224  *	tty_register_device_attr - register a tty device
3225  *	@driver: the tty driver that describes the tty device
3226  *	@index: the index in the tty driver for this tty device
3227  *	@device: a struct device that is associated with this tty device.
3228  *		This field is optional, if there is no known struct device
3229  *		for this tty device it can be set to NULL safely.
3230  *	@drvdata: Driver data to be set to device.
3231  *	@attr_grp: Attribute group to be set on device.
3232  *
3233  *	Returns a pointer to the struct device for this tty device
3234  *	(or ERR_PTR(-EFOO) on error).
3235  *
3236  *	This call is required to be made to register an individual tty device
3237  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3238  *	that bit is not set, this function should not be called by a tty
3239  *	driver.
3240  *
3241  *	Locking: ??
3242  */
3243 struct device *tty_register_device_attr(struct tty_driver *driver,
3244 				   unsigned index, struct device *device,
3245 				   void *drvdata,
3246 				   const struct attribute_group **attr_grp)
3247 {
3248 	char name[64];
3249 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3250 	struct device *dev = NULL;
3251 	int retval = -ENODEV;
3252 	bool cdev = false;
3253 
3254 	if (index >= driver->num) {
3255 		printk(KERN_ERR "Attempt to register invalid tty line number "
3256 		       " (%d).\n", index);
3257 		return ERR_PTR(-EINVAL);
3258 	}
3259 
3260 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3261 		pty_line_name(driver, index, name);
3262 	else
3263 		tty_line_name(driver, index, name);
3264 
3265 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3266 		retval = tty_cdev_add(driver, devt, index, 1);
3267 		if (retval)
3268 			goto error;
3269 		cdev = true;
3270 	}
3271 
3272 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3273 	if (!dev) {
3274 		retval = -ENOMEM;
3275 		goto error;
3276 	}
3277 
3278 	dev->devt = devt;
3279 	dev->class = tty_class;
3280 	dev->parent = device;
3281 	dev->release = tty_device_create_release;
3282 	dev_set_name(dev, "%s", name);
3283 	dev->groups = attr_grp;
3284 	dev_set_drvdata(dev, drvdata);
3285 
3286 	retval = device_register(dev);
3287 	if (retval)
3288 		goto error;
3289 
3290 	return dev;
3291 
3292 error:
3293 	put_device(dev);
3294 	if (cdev) {
3295 		cdev_del(driver->cdevs[index]);
3296 		driver->cdevs[index] = NULL;
3297 	}
3298 	return ERR_PTR(retval);
3299 }
3300 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3301 
3302 /**
3303  * 	tty_unregister_device - unregister a tty device
3304  * 	@driver: the tty driver that describes the tty device
3305  * 	@index: the index in the tty driver for this tty device
3306  *
3307  * 	If a tty device is registered with a call to tty_register_device() then
3308  *	this function must be called when the tty device is gone.
3309  *
3310  *	Locking: ??
3311  */
3312 
3313 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3314 {
3315 	device_destroy(tty_class,
3316 		MKDEV(driver->major, driver->minor_start) + index);
3317 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3318 		cdev_del(driver->cdevs[index]);
3319 		driver->cdevs[index] = NULL;
3320 	}
3321 }
3322 EXPORT_SYMBOL(tty_unregister_device);
3323 
3324 /**
3325  * __tty_alloc_driver -- allocate tty driver
3326  * @lines: count of lines this driver can handle at most
3327  * @owner: module which is repsonsible for this driver
3328  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3329  *
3330  * This should not be called directly, some of the provided macros should be
3331  * used instead. Use IS_ERR and friends on @retval.
3332  */
3333 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3334 		unsigned long flags)
3335 {
3336 	struct tty_driver *driver;
3337 	unsigned int cdevs = 1;
3338 	int err;
3339 
3340 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3341 		return ERR_PTR(-EINVAL);
3342 
3343 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3344 	if (!driver)
3345 		return ERR_PTR(-ENOMEM);
3346 
3347 	kref_init(&driver->kref);
3348 	driver->magic = TTY_DRIVER_MAGIC;
3349 	driver->num = lines;
3350 	driver->owner = owner;
3351 	driver->flags = flags;
3352 
3353 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3354 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3355 				GFP_KERNEL);
3356 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3357 				GFP_KERNEL);
3358 		if (!driver->ttys || !driver->termios) {
3359 			err = -ENOMEM;
3360 			goto err_free_all;
3361 		}
3362 	}
3363 
3364 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3365 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3366 				GFP_KERNEL);
3367 		if (!driver->ports) {
3368 			err = -ENOMEM;
3369 			goto err_free_all;
3370 		}
3371 		cdevs = lines;
3372 	}
3373 
3374 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3375 	if (!driver->cdevs) {
3376 		err = -ENOMEM;
3377 		goto err_free_all;
3378 	}
3379 
3380 	return driver;
3381 err_free_all:
3382 	kfree(driver->ports);
3383 	kfree(driver->ttys);
3384 	kfree(driver->termios);
3385 	kfree(driver->cdevs);
3386 	kfree(driver);
3387 	return ERR_PTR(err);
3388 }
3389 EXPORT_SYMBOL(__tty_alloc_driver);
3390 
3391 static void destruct_tty_driver(struct kref *kref)
3392 {
3393 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3394 	int i;
3395 	struct ktermios *tp;
3396 
3397 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3398 		/*
3399 		 * Free the termios and termios_locked structures because
3400 		 * we don't want to get memory leaks when modular tty
3401 		 * drivers are removed from the kernel.
3402 		 */
3403 		for (i = 0; i < driver->num; i++) {
3404 			tp = driver->termios[i];
3405 			if (tp) {
3406 				driver->termios[i] = NULL;
3407 				kfree(tp);
3408 			}
3409 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3410 				tty_unregister_device(driver, i);
3411 		}
3412 		proc_tty_unregister_driver(driver);
3413 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3414 			cdev_del(driver->cdevs[0]);
3415 	}
3416 	kfree(driver->cdevs);
3417 	kfree(driver->ports);
3418 	kfree(driver->termios);
3419 	kfree(driver->ttys);
3420 	kfree(driver);
3421 }
3422 
3423 void tty_driver_kref_put(struct tty_driver *driver)
3424 {
3425 	kref_put(&driver->kref, destruct_tty_driver);
3426 }
3427 EXPORT_SYMBOL(tty_driver_kref_put);
3428 
3429 void tty_set_operations(struct tty_driver *driver,
3430 			const struct tty_operations *op)
3431 {
3432 	driver->ops = op;
3433 };
3434 EXPORT_SYMBOL(tty_set_operations);
3435 
3436 void put_tty_driver(struct tty_driver *d)
3437 {
3438 	tty_driver_kref_put(d);
3439 }
3440 EXPORT_SYMBOL(put_tty_driver);
3441 
3442 /*
3443  * Called by a tty driver to register itself.
3444  */
3445 int tty_register_driver(struct tty_driver *driver)
3446 {
3447 	int error;
3448 	int i;
3449 	dev_t dev;
3450 	struct device *d;
3451 
3452 	if (!driver->major) {
3453 		error = alloc_chrdev_region(&dev, driver->minor_start,
3454 						driver->num, driver->name);
3455 		if (!error) {
3456 			driver->major = MAJOR(dev);
3457 			driver->minor_start = MINOR(dev);
3458 		}
3459 	} else {
3460 		dev = MKDEV(driver->major, driver->minor_start);
3461 		error = register_chrdev_region(dev, driver->num, driver->name);
3462 	}
3463 	if (error < 0)
3464 		goto err;
3465 
3466 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3467 		error = tty_cdev_add(driver, dev, 0, driver->num);
3468 		if (error)
3469 			goto err_unreg_char;
3470 	}
3471 
3472 	mutex_lock(&tty_mutex);
3473 	list_add(&driver->tty_drivers, &tty_drivers);
3474 	mutex_unlock(&tty_mutex);
3475 
3476 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3477 		for (i = 0; i < driver->num; i++) {
3478 			d = tty_register_device(driver, i, NULL);
3479 			if (IS_ERR(d)) {
3480 				error = PTR_ERR(d);
3481 				goto err_unreg_devs;
3482 			}
3483 		}
3484 	}
3485 	proc_tty_register_driver(driver);
3486 	driver->flags |= TTY_DRIVER_INSTALLED;
3487 	return 0;
3488 
3489 err_unreg_devs:
3490 	for (i--; i >= 0; i--)
3491 		tty_unregister_device(driver, i);
3492 
3493 	mutex_lock(&tty_mutex);
3494 	list_del(&driver->tty_drivers);
3495 	mutex_unlock(&tty_mutex);
3496 
3497 err_unreg_char:
3498 	unregister_chrdev_region(dev, driver->num);
3499 err:
3500 	return error;
3501 }
3502 EXPORT_SYMBOL(tty_register_driver);
3503 
3504 /*
3505  * Called by a tty driver to unregister itself.
3506  */
3507 int tty_unregister_driver(struct tty_driver *driver)
3508 {
3509 #if 0
3510 	/* FIXME */
3511 	if (driver->refcount)
3512 		return -EBUSY;
3513 #endif
3514 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3515 				driver->num);
3516 	mutex_lock(&tty_mutex);
3517 	list_del(&driver->tty_drivers);
3518 	mutex_unlock(&tty_mutex);
3519 	return 0;
3520 }
3521 
3522 EXPORT_SYMBOL(tty_unregister_driver);
3523 
3524 dev_t tty_devnum(struct tty_struct *tty)
3525 {
3526 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3527 }
3528 EXPORT_SYMBOL(tty_devnum);
3529 
3530 void tty_default_fops(struct file_operations *fops)
3531 {
3532 	*fops = tty_fops;
3533 }
3534 
3535 /*
3536  * Initialize the console device. This is called *early*, so
3537  * we can't necessarily depend on lots of kernel help here.
3538  * Just do some early initializations, and do the complex setup
3539  * later.
3540  */
3541 void __init console_init(void)
3542 {
3543 	initcall_t *call;
3544 
3545 	/* Setup the default TTY line discipline. */
3546 	tty_ldisc_begin();
3547 
3548 	/*
3549 	 * set up the console device so that later boot sequences can
3550 	 * inform about problems etc..
3551 	 */
3552 	call = __con_initcall_start;
3553 	while (call < __con_initcall_end) {
3554 		(*call)();
3555 		call++;
3556 	}
3557 }
3558 
3559 static char *tty_devnode(struct device *dev, umode_t *mode)
3560 {
3561 	if (!mode)
3562 		return NULL;
3563 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3564 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3565 		*mode = 0666;
3566 	return NULL;
3567 }
3568 
3569 static int __init tty_class_init(void)
3570 {
3571 	tty_class = class_create(THIS_MODULE, "tty");
3572 	if (IS_ERR(tty_class))
3573 		return PTR_ERR(tty_class);
3574 	tty_class->devnode = tty_devnode;
3575 	return 0;
3576 }
3577 
3578 postcore_initcall(tty_class_init);
3579 
3580 /* 3/2004 jmc: why do these devices exist? */
3581 static struct cdev tty_cdev, console_cdev;
3582 
3583 static ssize_t show_cons_active(struct device *dev,
3584 				struct device_attribute *attr, char *buf)
3585 {
3586 	struct console *cs[16];
3587 	int i = 0;
3588 	struct console *c;
3589 	ssize_t count = 0;
3590 
3591 	console_lock();
3592 	for_each_console(c) {
3593 		if (!c->device)
3594 			continue;
3595 		if (!c->write)
3596 			continue;
3597 		if ((c->flags & CON_ENABLED) == 0)
3598 			continue;
3599 		cs[i++] = c;
3600 		if (i >= ARRAY_SIZE(cs))
3601 			break;
3602 	}
3603 	while (i--) {
3604 		int index = cs[i]->index;
3605 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3606 
3607 		/* don't resolve tty0 as some programs depend on it */
3608 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3609 			count += tty_line_name(drv, index, buf + count);
3610 		else
3611 			count += sprintf(buf + count, "%s%d",
3612 					 cs[i]->name, cs[i]->index);
3613 
3614 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3615 	}
3616 	console_unlock();
3617 
3618 	return count;
3619 }
3620 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3621 
3622 static struct attribute *cons_dev_attrs[] = {
3623 	&dev_attr_active.attr,
3624 	NULL
3625 };
3626 
3627 ATTRIBUTE_GROUPS(cons_dev);
3628 
3629 static struct device *consdev;
3630 
3631 void console_sysfs_notify(void)
3632 {
3633 	if (consdev)
3634 		sysfs_notify(&consdev->kobj, NULL, "active");
3635 }
3636 
3637 /*
3638  * Ok, now we can initialize the rest of the tty devices and can count
3639  * on memory allocations, interrupts etc..
3640  */
3641 int __init tty_init(void)
3642 {
3643 	cdev_init(&tty_cdev, &tty_fops);
3644 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3645 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3646 		panic("Couldn't register /dev/tty driver\n");
3647 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3648 
3649 	cdev_init(&console_cdev, &console_fops);
3650 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3651 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3652 		panic("Couldn't register /dev/console driver\n");
3653 	consdev = device_create_with_groups(tty_class, NULL,
3654 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3655 					    cons_dev_groups, "console");
3656 	if (IS_ERR(consdev))
3657 		consdev = NULL;
3658 
3659 #ifdef CONFIG_VT
3660 	vty_init(&console_fops);
3661 #endif
3662 	return 0;
3663 }
3664 
3665