xref: /linux/drivers/tty/tty_io.c (revision bb5b94f5bbe75470912b70fb08880fc5273aa62d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  */
5 
6 /*
7  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8  * or rs-channels. It also implements echoing, cooked mode etc.
9  *
10  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11  *
12  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13  * tty_struct and tty_queue structures.  Previously there was an array
14  * of 256 tty_struct's which was statically allocated, and the
15  * tty_queue structures were allocated at boot time.  Both are now
16  * dynamically allocated only when the tty is open.
17  *
18  * Also restructured routines so that there is more of a separation
19  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20  * the low-level tty routines (serial.c, pty.c, console.c).  This
21  * makes for cleaner and more compact code.  -TYT, 9/17/92
22  *
23  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24  * which can be dynamically activated and de-activated by the line
25  * discipline handling modules (like SLIP).
26  *
27  * NOTE: pay no attention to the line discipline code (yet); its
28  * interface is still subject to change in this version...
29  * -- TYT, 1/31/92
30  *
31  * Added functionality to the OPOST tty handling.  No delays, but all
32  * other bits should be there.
33  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34  *
35  * Rewrote canonical mode and added more termios flags.
36  *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37  *
38  * Reorganized FASYNC support so mouse code can share it.
39  *	-- ctm@ardi.com, 9Sep95
40  *
41  * New TIOCLINUX variants added.
42  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43  *
44  * Restrict vt switching via ioctl()
45  *      -- grif@cs.ucr.edu, 5-Dec-95
46  *
47  * Move console and virtual terminal code to more appropriate files,
48  * implement CONFIG_VT and generalize console device interface.
49  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50  *
51  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52  *	-- Bill Hawes <whawes@star.net>, June 97
53  *
54  * Added devfs support.
55  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56  *
57  * Added support for a Unix98-style ptmx device.
58  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59  *
60  * Reduced memory usage for older ARM systems
61  *      -- Russell King <rmk@arm.linux.org.uk>
62  *
63  * Move do_SAK() into process context.  Less stack use in devfs functions.
64  * alloc_tty_struct() always uses kmalloc()
65  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67 
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/ppp-ioctl.h>
91 #include <linux/proc_fs.h>
92 #include <linux/init.h>
93 #include <linux/module.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100 #include <linux/ratelimit.h>
101 #include <linux/compat.h>
102 
103 #include <linux/uaccess.h>
104 
105 #include <linux/kbd_kern.h>
106 #include <linux/vt_kern.h>
107 #include <linux/selection.h>
108 
109 #include <linux/kmod.h>
110 #include <linux/nsproxy.h>
111 #include "tty.h"
112 
113 #undef TTY_DEBUG_HANGUP
114 #ifdef TTY_DEBUG_HANGUP
115 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
116 #else
117 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
118 #endif
119 
120 #define TTY_PARANOIA_CHECK 1
121 #define CHECK_TTY_COUNT 1
122 
123 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
124 	.c_iflag = ICRNL | IXON,
125 	.c_oflag = OPOST | ONLCR,
126 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
127 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
128 		   ECHOCTL | ECHOKE | IEXTEN,
129 	.c_cc = INIT_C_CC,
130 	.c_ispeed = 38400,
131 	.c_ospeed = 38400,
132 	/* .c_line = N_TTY, */
133 };
134 EXPORT_SYMBOL(tty_std_termios);
135 
136 /* This list gets poked at by procfs and various bits of boot up code. This
137  * could do with some rationalisation such as pulling the tty proc function
138  * into this file.
139  */
140 
141 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
142 
143 /* Mutex to protect creating and releasing a tty */
144 DEFINE_MUTEX(tty_mutex);
145 
146 static ssize_t tty_read(struct kiocb *, struct iov_iter *);
147 static ssize_t tty_write(struct kiocb *, struct iov_iter *);
148 static __poll_t tty_poll(struct file *, poll_table *);
149 static int tty_open(struct inode *, struct file *);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 				unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 
160 /**
161  *	free_tty_struct		-	free a disused tty
162  *	@tty: tty struct to free
163  *
164  *	Free the write buffers, tty queue and tty memory itself.
165  *
166  *	Locking: none. Must be called after tty is definitely unused
167  */
168 
169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 	tty_ldisc_deinit(tty);
172 	put_device(tty->dev);
173 	kfree(tty->write_buf);
174 	tty->magic = 0xDEADDEAD;
175 	kfree(tty);
176 }
177 
178 static inline struct tty_struct *file_tty(struct file *file)
179 {
180 	return ((struct tty_file_private *)file->private_data)->tty;
181 }
182 
183 int tty_alloc_file(struct file *file)
184 {
185 	struct tty_file_private *priv;
186 
187 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 	if (!priv)
189 		return -ENOMEM;
190 
191 	file->private_data = priv;
192 
193 	return 0;
194 }
195 
196 /* Associate a new file with the tty structure */
197 void tty_add_file(struct tty_struct *tty, struct file *file)
198 {
199 	struct tty_file_private *priv = file->private_data;
200 
201 	priv->tty = tty;
202 	priv->file = file;
203 
204 	spin_lock(&tty->files_lock);
205 	list_add(&priv->list, &tty->tty_files);
206 	spin_unlock(&tty->files_lock);
207 }
208 
209 /*
210  * tty_free_file - free file->private_data
211  *
212  * This shall be used only for fail path handling when tty_add_file was not
213  * called yet.
214  */
215 void tty_free_file(struct file *file)
216 {
217 	struct tty_file_private *priv = file->private_data;
218 
219 	file->private_data = NULL;
220 	kfree(priv);
221 }
222 
223 /* Delete file from its tty */
224 static void tty_del_file(struct file *file)
225 {
226 	struct tty_file_private *priv = file->private_data;
227 	struct tty_struct *tty = priv->tty;
228 
229 	spin_lock(&tty->files_lock);
230 	list_del(&priv->list);
231 	spin_unlock(&tty->files_lock);
232 	tty_free_file(file);
233 }
234 
235 /**
236  *	tty_name	-	return tty naming
237  *	@tty: tty structure
238  *
239  *	Convert a tty structure into a name. The name reflects the kernel
240  *	naming policy and if udev is in use may not reflect user space
241  *
242  *	Locking: none
243  */
244 
245 const char *tty_name(const struct tty_struct *tty)
246 {
247 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
248 		return "NULL tty";
249 	return tty->name;
250 }
251 EXPORT_SYMBOL(tty_name);
252 
253 const char *tty_driver_name(const struct tty_struct *tty)
254 {
255 	if (!tty || !tty->driver)
256 		return "";
257 	return tty->driver->name;
258 }
259 
260 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 			      const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 	if (!tty) {
265 		pr_warn("(%d:%d): %s: NULL tty\n",
266 			imajor(inode), iminor(inode), routine);
267 		return 1;
268 	}
269 	if (tty->magic != TTY_MAGIC) {
270 		pr_warn("(%d:%d): %s: bad magic number\n",
271 			imajor(inode), iminor(inode), routine);
272 		return 1;
273 	}
274 #endif
275 	return 0;
276 }
277 
278 /* Caller must hold tty_lock */
279 static int check_tty_count(struct tty_struct *tty, const char *routine)
280 {
281 #ifdef CHECK_TTY_COUNT
282 	struct list_head *p;
283 	int count = 0, kopen_count = 0;
284 
285 	spin_lock(&tty->files_lock);
286 	list_for_each(p, &tty->tty_files) {
287 		count++;
288 	}
289 	spin_unlock(&tty->files_lock);
290 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
291 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
292 	    tty->link && tty->link->count)
293 		count++;
294 	if (tty_port_kopened(tty->port))
295 		kopen_count++;
296 	if (tty->count != (count + kopen_count)) {
297 		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
298 			 routine, tty->count, count, kopen_count);
299 		return (count + kopen_count);
300 	}
301 #endif
302 	return 0;
303 }
304 
305 /**
306  *	get_tty_driver		-	find device of a tty
307  *	@device: device identifier
308  *	@index: returns the index of the tty
309  *
310  *	This routine returns a tty driver structure, given a device number
311  *	and also passes back the index number.
312  *
313  *	Locking: caller must hold tty_mutex
314  */
315 
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 	struct tty_driver *p;
319 
320 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 		dev_t base = MKDEV(p->major, p->minor_start);
322 
323 		if (device < base || device >= base + p->num)
324 			continue;
325 		*index = device - base;
326 		return tty_driver_kref_get(p);
327 	}
328 	return NULL;
329 }
330 
331 /**
332  *	tty_dev_name_to_number	-	return dev_t for device name
333  *	@name: user space name of device under /dev
334  *	@number: pointer to dev_t that this function will populate
335  *
336  *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
337  *	like (4, 64) or (188, 1). If no corresponding driver is registered then
338  *	the function returns -ENODEV.
339  *
340  *	Locking: this acquires tty_mutex to protect the tty_drivers list from
341  *		being modified while we are traversing it, and makes sure to
342  *		release it before exiting.
343  */
344 int tty_dev_name_to_number(const char *name, dev_t *number)
345 {
346 	struct tty_driver *p;
347 	int ret;
348 	int index, prefix_length = 0;
349 	const char *str;
350 
351 	for (str = name; *str && !isdigit(*str); str++)
352 		;
353 
354 	if (!*str)
355 		return -EINVAL;
356 
357 	ret = kstrtoint(str, 10, &index);
358 	if (ret)
359 		return ret;
360 
361 	prefix_length = str - name;
362 	mutex_lock(&tty_mutex);
363 
364 	list_for_each_entry(p, &tty_drivers, tty_drivers)
365 		if (prefix_length == strlen(p->name) && strncmp(name,
366 					p->name, prefix_length) == 0) {
367 			if (index < p->num) {
368 				*number = MKDEV(p->major, p->minor_start + index);
369 				goto out;
370 			}
371 		}
372 
373 	/* if here then driver wasn't found */
374 	ret = -ENODEV;
375 out:
376 	mutex_unlock(&tty_mutex);
377 	return ret;
378 }
379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380 
381 #ifdef CONFIG_CONSOLE_POLL
382 
383 /**
384  *	tty_find_polling_driver	-	find device of a polled tty
385  *	@name: name string to match
386  *	@line: pointer to resulting tty line nr
387  *
388  *	This routine returns a tty driver structure, given a name
389  *	and the condition that the tty driver is capable of polled
390  *	operation.
391  */
392 struct tty_driver *tty_find_polling_driver(char *name, int *line)
393 {
394 	struct tty_driver *p, *res = NULL;
395 	int tty_line = 0;
396 	int len;
397 	char *str, *stp;
398 
399 	for (str = name; *str; str++)
400 		if ((*str >= '0' && *str <= '9') || *str == ',')
401 			break;
402 	if (!*str)
403 		return NULL;
404 
405 	len = str - name;
406 	tty_line = simple_strtoul(str, &str, 10);
407 
408 	mutex_lock(&tty_mutex);
409 	/* Search through the tty devices to look for a match */
410 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 		if (!len || strncmp(name, p->name, len) != 0)
412 			continue;
413 		stp = str;
414 		if (*stp == ',')
415 			stp++;
416 		if (*stp == '\0')
417 			stp = NULL;
418 
419 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 			res = tty_driver_kref_get(p);
422 			*line = tty_line;
423 			break;
424 		}
425 	}
426 	mutex_unlock(&tty_mutex);
427 
428 	return res;
429 }
430 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431 #endif
432 
433 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
434 {
435 	return 0;
436 }
437 
438 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
439 {
440 	return -EIO;
441 }
442 
443 /* No kernel lock held - none needed ;) */
444 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
445 {
446 	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
447 }
448 
449 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
450 		unsigned long arg)
451 {
452 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
453 }
454 
455 static long hung_up_tty_compat_ioctl(struct file *file,
456 				     unsigned int cmd, unsigned long arg)
457 {
458 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
459 }
460 
461 static int hung_up_tty_fasync(int fd, struct file *file, int on)
462 {
463 	return -ENOTTY;
464 }
465 
466 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
467 {
468 	struct tty_struct *tty = file_tty(file);
469 
470 	if (tty && tty->ops && tty->ops->show_fdinfo)
471 		tty->ops->show_fdinfo(tty, m);
472 }
473 
474 static const struct file_operations tty_fops = {
475 	.llseek		= no_llseek,
476 	.read_iter	= tty_read,
477 	.write_iter	= tty_write,
478 	.splice_read	= generic_file_splice_read,
479 	.splice_write	= iter_file_splice_write,
480 	.poll		= tty_poll,
481 	.unlocked_ioctl	= tty_ioctl,
482 	.compat_ioctl	= tty_compat_ioctl,
483 	.open		= tty_open,
484 	.release	= tty_release,
485 	.fasync		= tty_fasync,
486 	.show_fdinfo	= tty_show_fdinfo,
487 };
488 
489 static const struct file_operations console_fops = {
490 	.llseek		= no_llseek,
491 	.read_iter	= tty_read,
492 	.write_iter	= redirected_tty_write,
493 	.splice_read	= generic_file_splice_read,
494 	.splice_write	= iter_file_splice_write,
495 	.poll		= tty_poll,
496 	.unlocked_ioctl	= tty_ioctl,
497 	.compat_ioctl	= tty_compat_ioctl,
498 	.open		= tty_open,
499 	.release	= tty_release,
500 	.fasync		= tty_fasync,
501 };
502 
503 static const struct file_operations hung_up_tty_fops = {
504 	.llseek		= no_llseek,
505 	.read_iter	= hung_up_tty_read,
506 	.write_iter	= hung_up_tty_write,
507 	.poll		= hung_up_tty_poll,
508 	.unlocked_ioctl	= hung_up_tty_ioctl,
509 	.compat_ioctl	= hung_up_tty_compat_ioctl,
510 	.release	= tty_release,
511 	.fasync		= hung_up_tty_fasync,
512 };
513 
514 static DEFINE_SPINLOCK(redirect_lock);
515 static struct file *redirect;
516 
517 /**
518  *	tty_wakeup	-	request more data
519  *	@tty: terminal
520  *
521  *	Internal and external helper for wakeups of tty. This function
522  *	informs the line discipline if present that the driver is ready
523  *	to receive more output data.
524  */
525 
526 void tty_wakeup(struct tty_struct *tty)
527 {
528 	struct tty_ldisc *ld;
529 
530 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
531 		ld = tty_ldisc_ref(tty);
532 		if (ld) {
533 			if (ld->ops->write_wakeup)
534 				ld->ops->write_wakeup(tty);
535 			tty_ldisc_deref(ld);
536 		}
537 	}
538 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
539 }
540 EXPORT_SYMBOL_GPL(tty_wakeup);
541 
542 /**
543  *	tty_release_redirect	-	Release a redirect on a pty if present
544  *	@tty: tty device
545  *
546  *	This is available to the pty code so if the master closes, if the
547  *	slave is a redirect it can release the redirect.
548  */
549 static struct file *tty_release_redirect(struct tty_struct *tty)
550 {
551 	struct file *f = NULL;
552 
553 	spin_lock(&redirect_lock);
554 	if (redirect && file_tty(redirect) == tty) {
555 		f = redirect;
556 		redirect = NULL;
557 	}
558 	spin_unlock(&redirect_lock);
559 
560 	return f;
561 }
562 
563 /**
564  *	__tty_hangup		-	actual handler for hangup events
565  *	@tty: tty device
566  *	@exit_session: if non-zero, signal all foreground group processes
567  *
568  *	This can be called by a "kworker" kernel thread.  That is process
569  *	synchronous but doesn't hold any locks, so we need to make sure we
570  *	have the appropriate locks for what we're doing.
571  *
572  *	The hangup event clears any pending redirections onto the hung up
573  *	device. It ensures future writes will error and it does the needed
574  *	line discipline hangup and signal delivery. The tty object itself
575  *	remains intact.
576  *
577  *	Locking:
578  *		BTM
579  *		  redirect lock for undoing redirection
580  *		  file list lock for manipulating list of ttys
581  *		  tty_ldiscs_lock from called functions
582  *		  termios_rwsem resetting termios data
583  *		  tasklist_lock to walk task list for hangup event
584  *		    ->siglock to protect ->signal/->sighand
585  */
586 static void __tty_hangup(struct tty_struct *tty, int exit_session)
587 {
588 	struct file *cons_filp = NULL;
589 	struct file *filp, *f;
590 	struct tty_file_private *priv;
591 	int    closecount = 0, n;
592 	int refs;
593 
594 	if (!tty)
595 		return;
596 
597 	f = tty_release_redirect(tty);
598 
599 	tty_lock(tty);
600 
601 	if (test_bit(TTY_HUPPED, &tty->flags)) {
602 		tty_unlock(tty);
603 		return;
604 	}
605 
606 	/*
607 	 * Some console devices aren't actually hung up for technical and
608 	 * historical reasons, which can lead to indefinite interruptible
609 	 * sleep in n_tty_read().  The following explicitly tells
610 	 * n_tty_read() to abort readers.
611 	 */
612 	set_bit(TTY_HUPPING, &tty->flags);
613 
614 	/* inuse_filps is protected by the single tty lock,
615 	 * this really needs to change if we want to flush the
616 	 * workqueue with the lock held.
617 	 */
618 	check_tty_count(tty, "tty_hangup");
619 
620 	spin_lock(&tty->files_lock);
621 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
622 	list_for_each_entry(priv, &tty->tty_files, list) {
623 		filp = priv->file;
624 		if (filp->f_op->write_iter == redirected_tty_write)
625 			cons_filp = filp;
626 		if (filp->f_op->write_iter != tty_write)
627 			continue;
628 		closecount++;
629 		__tty_fasync(-1, filp, 0);	/* can't block */
630 		filp->f_op = &hung_up_tty_fops;
631 	}
632 	spin_unlock(&tty->files_lock);
633 
634 	refs = tty_signal_session_leader(tty, exit_session);
635 	/* Account for the p->signal references we killed */
636 	while (refs--)
637 		tty_kref_put(tty);
638 
639 	tty_ldisc_hangup(tty, cons_filp != NULL);
640 
641 	spin_lock_irq(&tty->ctrl.lock);
642 	clear_bit(TTY_THROTTLED, &tty->flags);
643 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
644 	put_pid(tty->ctrl.session);
645 	put_pid(tty->ctrl.pgrp);
646 	tty->ctrl.session = NULL;
647 	tty->ctrl.pgrp = NULL;
648 	tty->ctrl.pktstatus = 0;
649 	spin_unlock_irq(&tty->ctrl.lock);
650 
651 	/*
652 	 * If one of the devices matches a console pointer, we
653 	 * cannot just call hangup() because that will cause
654 	 * tty->count and state->count to go out of sync.
655 	 * So we just call close() the right number of times.
656 	 */
657 	if (cons_filp) {
658 		if (tty->ops->close)
659 			for (n = 0; n < closecount; n++)
660 				tty->ops->close(tty, cons_filp);
661 	} else if (tty->ops->hangup)
662 		tty->ops->hangup(tty);
663 	/*
664 	 * We don't want to have driver/ldisc interactions beyond the ones
665 	 * we did here. The driver layer expects no calls after ->hangup()
666 	 * from the ldisc side, which is now guaranteed.
667 	 */
668 	set_bit(TTY_HUPPED, &tty->flags);
669 	clear_bit(TTY_HUPPING, &tty->flags);
670 	tty_unlock(tty);
671 
672 	if (f)
673 		fput(f);
674 }
675 
676 static void do_tty_hangup(struct work_struct *work)
677 {
678 	struct tty_struct *tty =
679 		container_of(work, struct tty_struct, hangup_work);
680 
681 	__tty_hangup(tty, 0);
682 }
683 
684 /**
685  *	tty_hangup		-	trigger a hangup event
686  *	@tty: tty to hangup
687  *
688  *	A carrier loss (virtual or otherwise) has occurred on this like
689  *	schedule a hangup sequence to run after this event.
690  */
691 
692 void tty_hangup(struct tty_struct *tty)
693 {
694 	tty_debug_hangup(tty, "hangup\n");
695 	schedule_work(&tty->hangup_work);
696 }
697 EXPORT_SYMBOL(tty_hangup);
698 
699 /**
700  *	tty_vhangup		-	process vhangup
701  *	@tty: tty to hangup
702  *
703  *	The user has asked via system call for the terminal to be hung up.
704  *	We do this synchronously so that when the syscall returns the process
705  *	is complete. That guarantee is necessary for security reasons.
706  */
707 
708 void tty_vhangup(struct tty_struct *tty)
709 {
710 	tty_debug_hangup(tty, "vhangup\n");
711 	__tty_hangup(tty, 0);
712 }
713 EXPORT_SYMBOL(tty_vhangup);
714 
715 
716 /**
717  *	tty_vhangup_self	-	process vhangup for own ctty
718  *
719  *	Perform a vhangup on the current controlling tty
720  */
721 
722 void tty_vhangup_self(void)
723 {
724 	struct tty_struct *tty;
725 
726 	tty = get_current_tty();
727 	if (tty) {
728 		tty_vhangup(tty);
729 		tty_kref_put(tty);
730 	}
731 }
732 
733 /**
734  *	tty_vhangup_session		-	hangup session leader exit
735  *	@tty: tty to hangup
736  *
737  *	The session leader is exiting and hanging up its controlling terminal.
738  *	Every process in the foreground process group is signalled SIGHUP.
739  *
740  *	We do this synchronously so that when the syscall returns the process
741  *	is complete. That guarantee is necessary for security reasons.
742  */
743 
744 void tty_vhangup_session(struct tty_struct *tty)
745 {
746 	tty_debug_hangup(tty, "session hangup\n");
747 	__tty_hangup(tty, 1);
748 }
749 
750 /**
751  *	tty_hung_up_p		-	was tty hung up
752  *	@filp: file pointer of tty
753  *
754  *	Return true if the tty has been subject to a vhangup or a carrier
755  *	loss
756  */
757 
758 int tty_hung_up_p(struct file *filp)
759 {
760 	return (filp && filp->f_op == &hung_up_tty_fops);
761 }
762 EXPORT_SYMBOL(tty_hung_up_p);
763 
764 void __stop_tty(struct tty_struct *tty)
765 {
766 	if (tty->flow.stopped)
767 		return;
768 	tty->flow.stopped = true;
769 	if (tty->ops->stop)
770 		tty->ops->stop(tty);
771 }
772 
773 /**
774  *	stop_tty	-	propagate flow control
775  *	@tty: tty to stop
776  *
777  *	Perform flow control to the driver. May be called
778  *	on an already stopped device and will not re-call the driver
779  *	method.
780  *
781  *	This functionality is used by both the line disciplines for
782  *	halting incoming flow and by the driver. It may therefore be
783  *	called from any context, may be under the tty atomic_write_lock
784  *	but not always.
785  *
786  *	Locking:
787  *		flow.lock
788  */
789 void stop_tty(struct tty_struct *tty)
790 {
791 	unsigned long flags;
792 
793 	spin_lock_irqsave(&tty->flow.lock, flags);
794 	__stop_tty(tty);
795 	spin_unlock_irqrestore(&tty->flow.lock, flags);
796 }
797 EXPORT_SYMBOL(stop_tty);
798 
799 void __start_tty(struct tty_struct *tty)
800 {
801 	if (!tty->flow.stopped || tty->flow.tco_stopped)
802 		return;
803 	tty->flow.stopped = false;
804 	if (tty->ops->start)
805 		tty->ops->start(tty);
806 	tty_wakeup(tty);
807 }
808 
809 /**
810  *	start_tty	-	propagate flow control
811  *	@tty: tty to start
812  *
813  *	Start a tty that has been stopped if at all possible. If this
814  *	tty was previous stopped and is now being started, the driver
815  *	start method is invoked and the line discipline woken.
816  *
817  *	Locking:
818  *		flow.lock
819  */
820 void start_tty(struct tty_struct *tty)
821 {
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(&tty->flow.lock, flags);
825 	__start_tty(tty);
826 	spin_unlock_irqrestore(&tty->flow.lock, flags);
827 }
828 EXPORT_SYMBOL(start_tty);
829 
830 static void tty_update_time(struct timespec64 *time)
831 {
832 	time64_t sec = ktime_get_real_seconds();
833 
834 	/*
835 	 * We only care if the two values differ in anything other than the
836 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
837 	 * the time of the tty device, otherwise it could be construded as a
838 	 * security leak to let userspace know the exact timing of the tty.
839 	 */
840 	if ((sec ^ time->tv_sec) & ~7)
841 		time->tv_sec = sec;
842 }
843 
844 /*
845  * Iterate on the ldisc ->read() function until we've gotten all
846  * the data the ldisc has for us.
847  *
848  * The "cookie" is something that the ldisc read function can fill
849  * in to let us know that there is more data to be had.
850  *
851  * We promise to continue to call the ldisc until it stops returning
852  * data or clears the cookie. The cookie may be something that the
853  * ldisc maintains state for and needs to free.
854  */
855 static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
856 		struct file *file, struct iov_iter *to)
857 {
858 	int retval = 0;
859 	void *cookie = NULL;
860 	unsigned long offset = 0;
861 	char kernel_buf[64];
862 	size_t count = iov_iter_count(to);
863 
864 	do {
865 		int size, copied;
866 
867 		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
868 		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
869 		if (!size)
870 			break;
871 
872 		if (size < 0) {
873 			/* Did we have an earlier error (ie -EFAULT)? */
874 			if (retval)
875 				break;
876 			retval = size;
877 
878 			/*
879 			 * -EOVERFLOW means we didn't have enough space
880 			 * for a whole packet, and we shouldn't return
881 			 * a partial result.
882 			 */
883 			if (retval == -EOVERFLOW)
884 				offset = 0;
885 			break;
886 		}
887 
888 		copied = copy_to_iter(kernel_buf, size, to);
889 		offset += copied;
890 		count -= copied;
891 
892 		/*
893 		 * If the user copy failed, we still need to do another ->read()
894 		 * call if we had a cookie to let the ldisc clear up.
895 		 *
896 		 * But make sure size is zeroed.
897 		 */
898 		if (unlikely(copied != size)) {
899 			count = 0;
900 			retval = -EFAULT;
901 		}
902 	} while (cookie);
903 
904 	/* We always clear tty buffer in case they contained passwords */
905 	memzero_explicit(kernel_buf, sizeof(kernel_buf));
906 	return offset ? offset : retval;
907 }
908 
909 
910 /**
911  *	tty_read	-	read method for tty device files
912  *	@iocb: kernel I/O control block
913  *	@to: destination for the data read
914  *
915  *	Perform the read system call function on this terminal device. Checks
916  *	for hung up devices before calling the line discipline method.
917  *
918  *	Locking:
919  *		Locks the line discipline internally while needed. Multiple
920  *	read calls may be outstanding in parallel.
921  */
922 
923 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
924 {
925 	int i;
926 	struct file *file = iocb->ki_filp;
927 	struct inode *inode = file_inode(file);
928 	struct tty_struct *tty = file_tty(file);
929 	struct tty_ldisc *ld;
930 
931 	if (tty_paranoia_check(tty, inode, "tty_read"))
932 		return -EIO;
933 	if (!tty || tty_io_error(tty))
934 		return -EIO;
935 
936 	/* We want to wait for the line discipline to sort out in this
937 	 * situation.
938 	 */
939 	ld = tty_ldisc_ref_wait(tty);
940 	if (!ld)
941 		return hung_up_tty_read(iocb, to);
942 	i = -EIO;
943 	if (ld->ops->read)
944 		i = iterate_tty_read(ld, tty, file, to);
945 	tty_ldisc_deref(ld);
946 
947 	if (i > 0)
948 		tty_update_time(&inode->i_atime);
949 
950 	return i;
951 }
952 
953 static void tty_write_unlock(struct tty_struct *tty)
954 {
955 	mutex_unlock(&tty->atomic_write_lock);
956 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
957 }
958 
959 static int tty_write_lock(struct tty_struct *tty, int ndelay)
960 {
961 	if (!mutex_trylock(&tty->atomic_write_lock)) {
962 		if (ndelay)
963 			return -EAGAIN;
964 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
965 			return -ERESTARTSYS;
966 	}
967 	return 0;
968 }
969 
970 /*
971  * Split writes up in sane blocksizes to avoid
972  * denial-of-service type attacks
973  */
974 static inline ssize_t do_tty_write(
975 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
976 	struct tty_struct *tty,
977 	struct file *file,
978 	struct iov_iter *from)
979 {
980 	size_t count = iov_iter_count(from);
981 	ssize_t ret, written = 0;
982 	unsigned int chunk;
983 
984 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
985 	if (ret < 0)
986 		return ret;
987 
988 	/*
989 	 * We chunk up writes into a temporary buffer. This
990 	 * simplifies low-level drivers immensely, since they
991 	 * don't have locking issues and user mode accesses.
992 	 *
993 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
994 	 * big chunk-size..
995 	 *
996 	 * The default chunk-size is 2kB, because the NTTY
997 	 * layer has problems with bigger chunks. It will
998 	 * claim to be able to handle more characters than
999 	 * it actually does.
1000 	 *
1001 	 * FIXME: This can probably go away now except that 64K chunks
1002 	 * are too likely to fail unless switched to vmalloc...
1003 	 */
1004 	chunk = 2048;
1005 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1006 		chunk = 65536;
1007 	if (count < chunk)
1008 		chunk = count;
1009 
1010 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1011 	if (tty->write_cnt < chunk) {
1012 		unsigned char *buf_chunk;
1013 
1014 		if (chunk < 1024)
1015 			chunk = 1024;
1016 
1017 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1018 		if (!buf_chunk) {
1019 			ret = -ENOMEM;
1020 			goto out;
1021 		}
1022 		kfree(tty->write_buf);
1023 		tty->write_cnt = chunk;
1024 		tty->write_buf = buf_chunk;
1025 	}
1026 
1027 	/* Do the write .. */
1028 	for (;;) {
1029 		size_t size = count;
1030 
1031 		if (size > chunk)
1032 			size = chunk;
1033 
1034 		ret = -EFAULT;
1035 		if (copy_from_iter(tty->write_buf, size, from) != size)
1036 			break;
1037 
1038 		ret = write(tty, file, tty->write_buf, size);
1039 		if (ret <= 0)
1040 			break;
1041 
1042 		written += ret;
1043 		if (ret > size)
1044 			break;
1045 
1046 		/* FIXME! Have Al check this! */
1047 		if (ret != size)
1048 			iov_iter_revert(from, size-ret);
1049 
1050 		count -= ret;
1051 		if (!count)
1052 			break;
1053 		ret = -ERESTARTSYS;
1054 		if (signal_pending(current))
1055 			break;
1056 		cond_resched();
1057 	}
1058 	if (written) {
1059 		tty_update_time(&file_inode(file)->i_mtime);
1060 		ret = written;
1061 	}
1062 out:
1063 	tty_write_unlock(tty);
1064 	return ret;
1065 }
1066 
1067 /**
1068  * tty_write_message - write a message to a certain tty, not just the console.
1069  * @tty: the destination tty_struct
1070  * @msg: the message to write
1071  *
1072  * This is used for messages that need to be redirected to a specific tty.
1073  * We don't put it into the syslog queue right now maybe in the future if
1074  * really needed.
1075  *
1076  * We must still hold the BTM and test the CLOSING flag for the moment.
1077  */
1078 
1079 void tty_write_message(struct tty_struct *tty, char *msg)
1080 {
1081 	if (tty) {
1082 		mutex_lock(&tty->atomic_write_lock);
1083 		tty_lock(tty);
1084 		if (tty->ops->write && tty->count > 0)
1085 			tty->ops->write(tty, msg, strlen(msg));
1086 		tty_unlock(tty);
1087 		tty_write_unlock(tty);
1088 	}
1089 }
1090 
1091 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1092 {
1093 	struct tty_struct *tty = file_tty(file);
1094 	struct tty_ldisc *ld;
1095 	ssize_t ret;
1096 
1097 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1098 		return -EIO;
1099 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1100 		return -EIO;
1101 	/* Short term debug to catch buggy drivers */
1102 	if (tty->ops->write_room == NULL)
1103 		tty_err(tty, "missing write_room method\n");
1104 	ld = tty_ldisc_ref_wait(tty);
1105 	if (!ld)
1106 		return hung_up_tty_write(iocb, from);
1107 	if (!ld->ops->write)
1108 		ret = -EIO;
1109 	else
1110 		ret = do_tty_write(ld->ops->write, tty, file, from);
1111 	tty_ldisc_deref(ld);
1112 	return ret;
1113 }
1114 
1115 /**
1116  *	tty_write		-	write method for tty device file
1117  *	@iocb: kernel I/O control block
1118  *	@from: iov_iter with data to write
1119  *
1120  *	Write data to a tty device via the line discipline.
1121  *
1122  *	Locking:
1123  *		Locks the line discipline as required
1124  *		Writes to the tty driver are serialized by the atomic_write_lock
1125  *		and are then processed in chunks to the device. The line
1126  *		discipline write method will not be invoked in parallel for
1127  *		each device.
1128  */
1129 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1130 {
1131 	return file_tty_write(iocb->ki_filp, iocb, from);
1132 }
1133 
1134 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1135 {
1136 	struct file *p = NULL;
1137 
1138 	spin_lock(&redirect_lock);
1139 	if (redirect)
1140 		p = get_file(redirect);
1141 	spin_unlock(&redirect_lock);
1142 
1143 	/*
1144 	 * We know the redirected tty is just another tty, we can
1145 	 * call file_tty_write() directly with that file pointer.
1146 	 */
1147 	if (p) {
1148 		ssize_t res;
1149 
1150 		res = file_tty_write(p, iocb, iter);
1151 		fput(p);
1152 		return res;
1153 	}
1154 	return tty_write(iocb, iter);
1155 }
1156 
1157 /*
1158  *	tty_send_xchar	-	send priority character
1159  *
1160  *	Send a high priority character to the tty even if stopped
1161  *
1162  *	Locking: none for xchar method, write ordering for write method.
1163  */
1164 
1165 int tty_send_xchar(struct tty_struct *tty, char ch)
1166 {
1167 	bool was_stopped = tty->flow.stopped;
1168 
1169 	if (tty->ops->send_xchar) {
1170 		down_read(&tty->termios_rwsem);
1171 		tty->ops->send_xchar(tty, ch);
1172 		up_read(&tty->termios_rwsem);
1173 		return 0;
1174 	}
1175 
1176 	if (tty_write_lock(tty, 0) < 0)
1177 		return -ERESTARTSYS;
1178 
1179 	down_read(&tty->termios_rwsem);
1180 	if (was_stopped)
1181 		start_tty(tty);
1182 	tty->ops->write(tty, &ch, 1);
1183 	if (was_stopped)
1184 		stop_tty(tty);
1185 	up_read(&tty->termios_rwsem);
1186 	tty_write_unlock(tty);
1187 	return 0;
1188 }
1189 
1190 /**
1191  *	pty_line_name	-	generate name for a pty
1192  *	@driver: the tty driver in use
1193  *	@index: the minor number
1194  *	@p: output buffer of at least 6 bytes
1195  *
1196  *	Generate a name from a driver reference and write it to the output
1197  *	buffer.
1198  *
1199  *	Locking: None
1200  */
1201 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1202 {
1203 	static const char ptychar[] = "pqrstuvwxyzabcde";
1204 	int i = index + driver->name_base;
1205 	/* ->name is initialized to "ttyp", but "tty" is expected */
1206 	sprintf(p, "%s%c%x",
1207 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1208 		ptychar[i >> 4 & 0xf], i & 0xf);
1209 }
1210 
1211 /**
1212  *	tty_line_name	-	generate name for a tty
1213  *	@driver: the tty driver in use
1214  *	@index: the minor number
1215  *	@p: output buffer of at least 7 bytes
1216  *
1217  *	Generate a name from a driver reference and write it to the output
1218  *	buffer.
1219  *
1220  *	Locking: None
1221  */
1222 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1223 {
1224 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1225 		return sprintf(p, "%s", driver->name);
1226 	else
1227 		return sprintf(p, "%s%d", driver->name,
1228 			       index + driver->name_base);
1229 }
1230 
1231 /**
1232  *	tty_driver_lookup_tty() - find an existing tty, if any
1233  *	@driver: the driver for the tty
1234  *	@file:   file object
1235  *	@idx:	 the minor number
1236  *
1237  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1238  *	driver lookup() method returns an error.
1239  *
1240  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1241  */
1242 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1243 		struct file *file, int idx)
1244 {
1245 	struct tty_struct *tty;
1246 
1247 	if (driver->ops->lookup)
1248 		if (!file)
1249 			tty = ERR_PTR(-EIO);
1250 		else
1251 			tty = driver->ops->lookup(driver, file, idx);
1252 	else
1253 		tty = driver->ttys[idx];
1254 
1255 	if (!IS_ERR(tty))
1256 		tty_kref_get(tty);
1257 	return tty;
1258 }
1259 
1260 /**
1261  *	tty_init_termios	-  helper for termios setup
1262  *	@tty: the tty to set up
1263  *
1264  *	Initialise the termios structure for this tty. This runs under
1265  *	the tty_mutex currently so we can be relaxed about ordering.
1266  */
1267 
1268 void tty_init_termios(struct tty_struct *tty)
1269 {
1270 	struct ktermios *tp;
1271 	int idx = tty->index;
1272 
1273 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1274 		tty->termios = tty->driver->init_termios;
1275 	else {
1276 		/* Check for lazy saved data */
1277 		tp = tty->driver->termios[idx];
1278 		if (tp != NULL) {
1279 			tty->termios = *tp;
1280 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1281 		} else
1282 			tty->termios = tty->driver->init_termios;
1283 	}
1284 	/* Compatibility until drivers always set this */
1285 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1286 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1287 }
1288 EXPORT_SYMBOL_GPL(tty_init_termios);
1289 
1290 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1291 {
1292 	tty_init_termios(tty);
1293 	tty_driver_kref_get(driver);
1294 	tty->count++;
1295 	driver->ttys[tty->index] = tty;
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(tty_standard_install);
1299 
1300 /**
1301  *	tty_driver_install_tty() - install a tty entry in the driver
1302  *	@driver: the driver for the tty
1303  *	@tty: the tty
1304  *
1305  *	Install a tty object into the driver tables. The tty->index field
1306  *	will be set by the time this is called. This method is responsible
1307  *	for ensuring any need additional structures are allocated and
1308  *	configured.
1309  *
1310  *	Locking: tty_mutex for now
1311  */
1312 static int tty_driver_install_tty(struct tty_driver *driver,
1313 						struct tty_struct *tty)
1314 {
1315 	return driver->ops->install ? driver->ops->install(driver, tty) :
1316 		tty_standard_install(driver, tty);
1317 }
1318 
1319 /**
1320  *	tty_driver_remove_tty() - remove a tty from the driver tables
1321  *	@driver: the driver for the tty
1322  *	@tty: tty to remove
1323  *
1324  *	Remvoe a tty object from the driver tables. The tty->index field
1325  *	will be set by the time this is called.
1326  *
1327  *	Locking: tty_mutex for now
1328  */
1329 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1330 {
1331 	if (driver->ops->remove)
1332 		driver->ops->remove(driver, tty);
1333 	else
1334 		driver->ttys[tty->index] = NULL;
1335 }
1336 
1337 /**
1338  *	tty_reopen()	- fast re-open of an open tty
1339  *	@tty: the tty to open
1340  *
1341  *	Return 0 on success, -errno on error.
1342  *	Re-opens on master ptys are not allowed and return -EIO.
1343  *
1344  *	Locking: Caller must hold tty_lock
1345  */
1346 static int tty_reopen(struct tty_struct *tty)
1347 {
1348 	struct tty_driver *driver = tty->driver;
1349 	struct tty_ldisc *ld;
1350 	int retval = 0;
1351 
1352 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1353 	    driver->subtype == PTY_TYPE_MASTER)
1354 		return -EIO;
1355 
1356 	if (!tty->count)
1357 		return -EAGAIN;
1358 
1359 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1360 		return -EBUSY;
1361 
1362 	ld = tty_ldisc_ref_wait(tty);
1363 	if (ld) {
1364 		tty_ldisc_deref(ld);
1365 	} else {
1366 		retval = tty_ldisc_lock(tty, 5 * HZ);
1367 		if (retval)
1368 			return retval;
1369 
1370 		if (!tty->ldisc)
1371 			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1372 		tty_ldisc_unlock(tty);
1373 	}
1374 
1375 	if (retval == 0)
1376 		tty->count++;
1377 
1378 	return retval;
1379 }
1380 
1381 /**
1382  *	tty_init_dev		-	initialise a tty device
1383  *	@driver: tty driver we are opening a device on
1384  *	@idx: device index
1385  *
1386  *	Prepare a tty device. This may not be a "new" clean device but
1387  *	could also be an active device. The pty drivers require special
1388  *	handling because of this.
1389  *
1390  *	Locking:
1391  *		The function is called under the tty_mutex, which
1392  *	protects us from the tty struct or driver itself going away.
1393  *
1394  *	On exit the tty device has the line discipline attached and
1395  *	a reference count of 1. If a pair was created for pty/tty use
1396  *	and the other was a pty master then it too has a reference count of 1.
1397  *
1398  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1399  * failed open.  The new code protects the open with a mutex, so it's
1400  * really quite straightforward.  The mutex locking can probably be
1401  * relaxed for the (most common) case of reopening a tty.
1402  *
1403  *	Return: returned tty structure
1404  */
1405 
1406 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1407 {
1408 	struct tty_struct *tty;
1409 	int retval;
1410 
1411 	/*
1412 	 * First time open is complex, especially for PTY devices.
1413 	 * This code guarantees that either everything succeeds and the
1414 	 * TTY is ready for operation, or else the table slots are vacated
1415 	 * and the allocated memory released.  (Except that the termios
1416 	 * may be retained.)
1417 	 */
1418 
1419 	if (!try_module_get(driver->owner))
1420 		return ERR_PTR(-ENODEV);
1421 
1422 	tty = alloc_tty_struct(driver, idx);
1423 	if (!tty) {
1424 		retval = -ENOMEM;
1425 		goto err_module_put;
1426 	}
1427 
1428 	tty_lock(tty);
1429 	retval = tty_driver_install_tty(driver, tty);
1430 	if (retval < 0)
1431 		goto err_free_tty;
1432 
1433 	if (!tty->port)
1434 		tty->port = driver->ports[idx];
1435 
1436 	if (WARN_RATELIMIT(!tty->port,
1437 			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1438 			__func__, tty->driver->name)) {
1439 		retval = -EINVAL;
1440 		goto err_release_lock;
1441 	}
1442 
1443 	retval = tty_ldisc_lock(tty, 5 * HZ);
1444 	if (retval)
1445 		goto err_release_lock;
1446 	tty->port->itty = tty;
1447 
1448 	/*
1449 	 * Structures all installed ... call the ldisc open routines.
1450 	 * If we fail here just call release_tty to clean up.  No need
1451 	 * to decrement the use counts, as release_tty doesn't care.
1452 	 */
1453 	retval = tty_ldisc_setup(tty, tty->link);
1454 	if (retval)
1455 		goto err_release_tty;
1456 	tty_ldisc_unlock(tty);
1457 	/* Return the tty locked so that it cannot vanish under the caller */
1458 	return tty;
1459 
1460 err_free_tty:
1461 	tty_unlock(tty);
1462 	free_tty_struct(tty);
1463 err_module_put:
1464 	module_put(driver->owner);
1465 	return ERR_PTR(retval);
1466 
1467 	/* call the tty release_tty routine to clean out this slot */
1468 err_release_tty:
1469 	tty_ldisc_unlock(tty);
1470 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1471 			     retval, idx);
1472 err_release_lock:
1473 	tty_unlock(tty);
1474 	release_tty(tty, idx);
1475 	return ERR_PTR(retval);
1476 }
1477 
1478 /**
1479  * tty_save_termios() - save tty termios data in driver table
1480  * @tty: tty whose termios data to save
1481  *
1482  * Locking: Caller guarantees serialisation with tty_init_termios().
1483  */
1484 void tty_save_termios(struct tty_struct *tty)
1485 {
1486 	struct ktermios *tp;
1487 	int idx = tty->index;
1488 
1489 	/* If the port is going to reset then it has no termios to save */
1490 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1491 		return;
1492 
1493 	/* Stash the termios data */
1494 	tp = tty->driver->termios[idx];
1495 	if (tp == NULL) {
1496 		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1497 		if (tp == NULL)
1498 			return;
1499 		tty->driver->termios[idx] = tp;
1500 	}
1501 	*tp = tty->termios;
1502 }
1503 EXPORT_SYMBOL_GPL(tty_save_termios);
1504 
1505 /**
1506  *	tty_flush_works		-	flush all works of a tty/pty pair
1507  *	@tty: tty device to flush works for (or either end of a pty pair)
1508  *
1509  *	Sync flush all works belonging to @tty (and the 'other' tty).
1510  */
1511 static void tty_flush_works(struct tty_struct *tty)
1512 {
1513 	flush_work(&tty->SAK_work);
1514 	flush_work(&tty->hangup_work);
1515 	if (tty->link) {
1516 		flush_work(&tty->link->SAK_work);
1517 		flush_work(&tty->link->hangup_work);
1518 	}
1519 }
1520 
1521 /**
1522  *	release_one_tty		-	release tty structure memory
1523  *	@work: work of tty we are obliterating
1524  *
1525  *	Releases memory associated with a tty structure, and clears out the
1526  *	driver table slots. This function is called when a device is no longer
1527  *	in use. It also gets called when setup of a device fails.
1528  *
1529  *	Locking:
1530  *		takes the file list lock internally when working on the list
1531  *	of ttys that the driver keeps.
1532  *
1533  *	This method gets called from a work queue so that the driver private
1534  *	cleanup ops can sleep (needed for USB at least)
1535  */
1536 static void release_one_tty(struct work_struct *work)
1537 {
1538 	struct tty_struct *tty =
1539 		container_of(work, struct tty_struct, hangup_work);
1540 	struct tty_driver *driver = tty->driver;
1541 	struct module *owner = driver->owner;
1542 
1543 	if (tty->ops->cleanup)
1544 		tty->ops->cleanup(tty);
1545 
1546 	tty->magic = 0;
1547 	tty_driver_kref_put(driver);
1548 	module_put(owner);
1549 
1550 	spin_lock(&tty->files_lock);
1551 	list_del_init(&tty->tty_files);
1552 	spin_unlock(&tty->files_lock);
1553 
1554 	put_pid(tty->ctrl.pgrp);
1555 	put_pid(tty->ctrl.session);
1556 	free_tty_struct(tty);
1557 }
1558 
1559 static void queue_release_one_tty(struct kref *kref)
1560 {
1561 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1562 
1563 	/* The hangup queue is now free so we can reuse it rather than
1564 	 *  waste a chunk of memory for each port.
1565 	 */
1566 	INIT_WORK(&tty->hangup_work, release_one_tty);
1567 	schedule_work(&tty->hangup_work);
1568 }
1569 
1570 /**
1571  *	tty_kref_put		-	release a tty kref
1572  *	@tty: tty device
1573  *
1574  *	Release a reference to a tty device and if need be let the kref
1575  *	layer destruct the object for us
1576  */
1577 
1578 void tty_kref_put(struct tty_struct *tty)
1579 {
1580 	if (tty)
1581 		kref_put(&tty->kref, queue_release_one_tty);
1582 }
1583 EXPORT_SYMBOL(tty_kref_put);
1584 
1585 /**
1586  *	release_tty		-	release tty structure memory
1587  *	@tty: tty device release
1588  *	@idx: index of the tty device release
1589  *
1590  *	Release both @tty and a possible linked partner (think pty pair),
1591  *	and decrement the refcount of the backing module.
1592  *
1593  *	Locking:
1594  *		tty_mutex
1595  *		takes the file list lock internally when working on the list
1596  *	of ttys that the driver keeps.
1597  *
1598  */
1599 static void release_tty(struct tty_struct *tty, int idx)
1600 {
1601 	/* This should always be true but check for the moment */
1602 	WARN_ON(tty->index != idx);
1603 	WARN_ON(!mutex_is_locked(&tty_mutex));
1604 	if (tty->ops->shutdown)
1605 		tty->ops->shutdown(tty);
1606 	tty_save_termios(tty);
1607 	tty_driver_remove_tty(tty->driver, tty);
1608 	if (tty->port)
1609 		tty->port->itty = NULL;
1610 	if (tty->link)
1611 		tty->link->port->itty = NULL;
1612 	if (tty->port)
1613 		tty_buffer_cancel_work(tty->port);
1614 	if (tty->link)
1615 		tty_buffer_cancel_work(tty->link->port);
1616 
1617 	tty_kref_put(tty->link);
1618 	tty_kref_put(tty);
1619 }
1620 
1621 /**
1622  *	tty_release_checks - check a tty before real release
1623  *	@tty: tty to check
1624  *	@idx: index of the tty
1625  *
1626  *	Performs some paranoid checking before true release of the @tty.
1627  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1628  */
1629 static int tty_release_checks(struct tty_struct *tty, int idx)
1630 {
1631 #ifdef TTY_PARANOIA_CHECK
1632 	if (idx < 0 || idx >= tty->driver->num) {
1633 		tty_debug(tty, "bad idx %d\n", idx);
1634 		return -1;
1635 	}
1636 
1637 	/* not much to check for devpts */
1638 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1639 		return 0;
1640 
1641 	if (tty != tty->driver->ttys[idx]) {
1642 		tty_debug(tty, "bad driver table[%d] = %p\n",
1643 			  idx, tty->driver->ttys[idx]);
1644 		return -1;
1645 	}
1646 	if (tty->driver->other) {
1647 		struct tty_struct *o_tty = tty->link;
1648 
1649 		if (o_tty != tty->driver->other->ttys[idx]) {
1650 			tty_debug(tty, "bad other table[%d] = %p\n",
1651 				  idx, tty->driver->other->ttys[idx]);
1652 			return -1;
1653 		}
1654 		if (o_tty->link != tty) {
1655 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1656 			return -1;
1657 		}
1658 	}
1659 #endif
1660 	return 0;
1661 }
1662 
1663 /**
1664  *      tty_kclose      -       closes tty opened by tty_kopen
1665  *      @tty: tty device
1666  *
1667  *      Performs the final steps to release and free a tty device. It is the
1668  *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1669  *      flag on tty->port.
1670  */
1671 void tty_kclose(struct tty_struct *tty)
1672 {
1673 	/*
1674 	 * Ask the line discipline code to release its structures
1675 	 */
1676 	tty_ldisc_release(tty);
1677 
1678 	/* Wait for pending work before tty destruction commmences */
1679 	tty_flush_works(tty);
1680 
1681 	tty_debug_hangup(tty, "freeing structure\n");
1682 	/*
1683 	 * The release_tty function takes care of the details of clearing
1684 	 * the slots and preserving the termios structure.
1685 	 */
1686 	mutex_lock(&tty_mutex);
1687 	tty_port_set_kopened(tty->port, 0);
1688 	release_tty(tty, tty->index);
1689 	mutex_unlock(&tty_mutex);
1690 }
1691 EXPORT_SYMBOL_GPL(tty_kclose);
1692 
1693 /**
1694  *	tty_release_struct	-	release a tty struct
1695  *	@tty: tty device
1696  *	@idx: index of the tty
1697  *
1698  *	Performs the final steps to release and free a tty device. It is
1699  *	roughly the reverse of tty_init_dev.
1700  */
1701 void tty_release_struct(struct tty_struct *tty, int idx)
1702 {
1703 	/*
1704 	 * Ask the line discipline code to release its structures
1705 	 */
1706 	tty_ldisc_release(tty);
1707 
1708 	/* Wait for pending work before tty destruction commmences */
1709 	tty_flush_works(tty);
1710 
1711 	tty_debug_hangup(tty, "freeing structure\n");
1712 	/*
1713 	 * The release_tty function takes care of the details of clearing
1714 	 * the slots and preserving the termios structure.
1715 	 */
1716 	mutex_lock(&tty_mutex);
1717 	release_tty(tty, idx);
1718 	mutex_unlock(&tty_mutex);
1719 }
1720 EXPORT_SYMBOL_GPL(tty_release_struct);
1721 
1722 /**
1723  *	tty_release		-	vfs callback for close
1724  *	@inode: inode of tty
1725  *	@filp: file pointer for handle to tty
1726  *
1727  *	Called the last time each file handle is closed that references
1728  *	this tty. There may however be several such references.
1729  *
1730  *	Locking:
1731  *		Takes bkl. See tty_release_dev
1732  *
1733  * Even releasing the tty structures is a tricky business.. We have
1734  * to be very careful that the structures are all released at the
1735  * same time, as interrupts might otherwise get the wrong pointers.
1736  *
1737  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1738  * lead to double frees or releasing memory still in use.
1739  */
1740 
1741 int tty_release(struct inode *inode, struct file *filp)
1742 {
1743 	struct tty_struct *tty = file_tty(filp);
1744 	struct tty_struct *o_tty = NULL;
1745 	int	do_sleep, final;
1746 	int	idx;
1747 	long	timeout = 0;
1748 	int	once = 1;
1749 
1750 	if (tty_paranoia_check(tty, inode, __func__))
1751 		return 0;
1752 
1753 	tty_lock(tty);
1754 	check_tty_count(tty, __func__);
1755 
1756 	__tty_fasync(-1, filp, 0);
1757 
1758 	idx = tty->index;
1759 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1760 	    tty->driver->subtype == PTY_TYPE_MASTER)
1761 		o_tty = tty->link;
1762 
1763 	if (tty_release_checks(tty, idx)) {
1764 		tty_unlock(tty);
1765 		return 0;
1766 	}
1767 
1768 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1769 
1770 	if (tty->ops->close)
1771 		tty->ops->close(tty, filp);
1772 
1773 	/* If tty is pty master, lock the slave pty (stable lock order) */
1774 	tty_lock_slave(o_tty);
1775 
1776 	/*
1777 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1778 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1779 	 * wait queues and kick everyone out _before_ actually starting to
1780 	 * close.  This ensures that we won't block while releasing the tty
1781 	 * structure.
1782 	 *
1783 	 * The test for the o_tty closing is necessary, since the master and
1784 	 * slave sides may close in any order.  If the slave side closes out
1785 	 * first, its count will be one, since the master side holds an open.
1786 	 * Thus this test wouldn't be triggered at the time the slave closed,
1787 	 * so we do it now.
1788 	 */
1789 	while (1) {
1790 		do_sleep = 0;
1791 
1792 		if (tty->count <= 1) {
1793 			if (waitqueue_active(&tty->read_wait)) {
1794 				wake_up_poll(&tty->read_wait, EPOLLIN);
1795 				do_sleep++;
1796 			}
1797 			if (waitqueue_active(&tty->write_wait)) {
1798 				wake_up_poll(&tty->write_wait, EPOLLOUT);
1799 				do_sleep++;
1800 			}
1801 		}
1802 		if (o_tty && o_tty->count <= 1) {
1803 			if (waitqueue_active(&o_tty->read_wait)) {
1804 				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1805 				do_sleep++;
1806 			}
1807 			if (waitqueue_active(&o_tty->write_wait)) {
1808 				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1809 				do_sleep++;
1810 			}
1811 		}
1812 		if (!do_sleep)
1813 			break;
1814 
1815 		if (once) {
1816 			once = 0;
1817 			tty_warn(tty, "read/write wait queue active!\n");
1818 		}
1819 		schedule_timeout_killable(timeout);
1820 		if (timeout < 120 * HZ)
1821 			timeout = 2 * timeout + 1;
1822 		else
1823 			timeout = MAX_SCHEDULE_TIMEOUT;
1824 	}
1825 
1826 	if (o_tty) {
1827 		if (--o_tty->count < 0) {
1828 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1829 			o_tty->count = 0;
1830 		}
1831 	}
1832 	if (--tty->count < 0) {
1833 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1834 		tty->count = 0;
1835 	}
1836 
1837 	/*
1838 	 * We've decremented tty->count, so we need to remove this file
1839 	 * descriptor off the tty->tty_files list; this serves two
1840 	 * purposes:
1841 	 *  - check_tty_count sees the correct number of file descriptors
1842 	 *    associated with this tty.
1843 	 *  - do_tty_hangup no longer sees this file descriptor as
1844 	 *    something that needs to be handled for hangups.
1845 	 */
1846 	tty_del_file(filp);
1847 
1848 	/*
1849 	 * Perform some housekeeping before deciding whether to return.
1850 	 *
1851 	 * If _either_ side is closing, make sure there aren't any
1852 	 * processes that still think tty or o_tty is their controlling
1853 	 * tty.
1854 	 */
1855 	if (!tty->count) {
1856 		read_lock(&tasklist_lock);
1857 		session_clear_tty(tty->ctrl.session);
1858 		if (o_tty)
1859 			session_clear_tty(o_tty->ctrl.session);
1860 		read_unlock(&tasklist_lock);
1861 	}
1862 
1863 	/* check whether both sides are closing ... */
1864 	final = !tty->count && !(o_tty && o_tty->count);
1865 
1866 	tty_unlock_slave(o_tty);
1867 	tty_unlock(tty);
1868 
1869 	/* At this point, the tty->count == 0 should ensure a dead tty
1870 	 * cannot be re-opened by a racing opener.
1871 	 */
1872 
1873 	if (!final)
1874 		return 0;
1875 
1876 	tty_debug_hangup(tty, "final close\n");
1877 
1878 	tty_release_struct(tty, idx);
1879 	return 0;
1880 }
1881 
1882 /**
1883  *	tty_open_current_tty - get locked tty of current task
1884  *	@device: device number
1885  *	@filp: file pointer to tty
1886  *	@return: locked tty of the current task iff @device is /dev/tty
1887  *
1888  *	Performs a re-open of the current task's controlling tty.
1889  *
1890  *	We cannot return driver and index like for the other nodes because
1891  *	devpts will not work then. It expects inodes to be from devpts FS.
1892  */
1893 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1894 {
1895 	struct tty_struct *tty;
1896 	int retval;
1897 
1898 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1899 		return NULL;
1900 
1901 	tty = get_current_tty();
1902 	if (!tty)
1903 		return ERR_PTR(-ENXIO);
1904 
1905 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1906 	/* noctty = 1; */
1907 	tty_lock(tty);
1908 	tty_kref_put(tty);	/* safe to drop the kref now */
1909 
1910 	retval = tty_reopen(tty);
1911 	if (retval < 0) {
1912 		tty_unlock(tty);
1913 		tty = ERR_PTR(retval);
1914 	}
1915 	return tty;
1916 }
1917 
1918 /**
1919  *	tty_lookup_driver - lookup a tty driver for a given device file
1920  *	@device: device number
1921  *	@filp: file pointer to tty
1922  *	@index: index for the device in the @return driver
1923  *	@return: driver for this inode (with increased refcount)
1924  *
1925  *	If @return is not erroneous, the caller is responsible to decrement the
1926  *	refcount by tty_driver_kref_put.
1927  *
1928  *	Locking: tty_mutex protects get_tty_driver
1929  */
1930 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931 		int *index)
1932 {
1933 	struct tty_driver *driver = NULL;
1934 
1935 	switch (device) {
1936 #ifdef CONFIG_VT
1937 	case MKDEV(TTY_MAJOR, 0): {
1938 		extern struct tty_driver *console_driver;
1939 
1940 		driver = tty_driver_kref_get(console_driver);
1941 		*index = fg_console;
1942 		break;
1943 	}
1944 #endif
1945 	case MKDEV(TTYAUX_MAJOR, 1): {
1946 		struct tty_driver *console_driver = console_device(index);
1947 
1948 		if (console_driver) {
1949 			driver = tty_driver_kref_get(console_driver);
1950 			if (driver && filp) {
1951 				/* Don't let /dev/console block */
1952 				filp->f_flags |= O_NONBLOCK;
1953 				break;
1954 			}
1955 		}
1956 		if (driver)
1957 			tty_driver_kref_put(driver);
1958 		return ERR_PTR(-ENODEV);
1959 	}
1960 	default:
1961 		driver = get_tty_driver(device, index);
1962 		if (!driver)
1963 			return ERR_PTR(-ENODEV);
1964 		break;
1965 	}
1966 	return driver;
1967 }
1968 
1969 static struct tty_struct *tty_kopen(dev_t device, int shared)
1970 {
1971 	struct tty_struct *tty;
1972 	struct tty_driver *driver;
1973 	int index = -1;
1974 
1975 	mutex_lock(&tty_mutex);
1976 	driver = tty_lookup_driver(device, NULL, &index);
1977 	if (IS_ERR(driver)) {
1978 		mutex_unlock(&tty_mutex);
1979 		return ERR_CAST(driver);
1980 	}
1981 
1982 	/* check whether we're reopening an existing tty */
1983 	tty = tty_driver_lookup_tty(driver, NULL, index);
1984 	if (IS_ERR(tty) || shared)
1985 		goto out;
1986 
1987 	if (tty) {
1988 		/* drop kref from tty_driver_lookup_tty() */
1989 		tty_kref_put(tty);
1990 		tty = ERR_PTR(-EBUSY);
1991 	} else { /* tty_init_dev returns tty with the tty_lock held */
1992 		tty = tty_init_dev(driver, index);
1993 		if (IS_ERR(tty))
1994 			goto out;
1995 		tty_port_set_kopened(tty->port, 1);
1996 	}
1997 out:
1998 	mutex_unlock(&tty_mutex);
1999 	tty_driver_kref_put(driver);
2000 	return tty;
2001 }
2002 
2003 /**
2004  *	tty_kopen_exclusive	-	open a tty device for kernel
2005  *	@device: dev_t of device to open
2006  *
2007  *	Opens tty exclusively for kernel. Performs the driver lookup,
2008  *	makes sure it's not already opened and performs the first-time
2009  *	tty initialization.
2010  *
2011  *	Returns the locked initialized &tty_struct
2012  *
2013  *	Claims the global tty_mutex to serialize:
2014  *	  - concurrent first-time tty initialization
2015  *	  - concurrent tty driver removal w/ lookup
2016  *	  - concurrent tty removal from driver table
2017  */
2018 struct tty_struct *tty_kopen_exclusive(dev_t device)
2019 {
2020 	return tty_kopen(device, 0);
2021 }
2022 EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2023 
2024 /**
2025  *	tty_kopen_shared	-	open a tty device for shared in-kernel use
2026  *	@device: dev_t of device to open
2027  *
2028  *	Opens an already existing tty for in-kernel use. Compared to
2029  *	tty_kopen_exclusive() above it doesn't ensure to be the only user.
2030  *
2031  *	Locking is identical to tty_kopen() above.
2032  */
2033 struct tty_struct *tty_kopen_shared(dev_t device)
2034 {
2035 	return tty_kopen(device, 1);
2036 }
2037 EXPORT_SYMBOL_GPL(tty_kopen_shared);
2038 
2039 /**
2040  *	tty_open_by_driver	-	open a tty device
2041  *	@device: dev_t of device to open
2042  *	@filp: file pointer to tty
2043  *
2044  *	Performs the driver lookup, checks for a reopen, or otherwise
2045  *	performs the first-time tty initialization.
2046  *
2047  *	Returns the locked initialized or re-opened &tty_struct
2048  *
2049  *	Claims the global tty_mutex to serialize:
2050  *	  - concurrent first-time tty initialization
2051  *	  - concurrent tty driver removal w/ lookup
2052  *	  - concurrent tty removal from driver table
2053  */
2054 static struct tty_struct *tty_open_by_driver(dev_t device,
2055 					     struct file *filp)
2056 {
2057 	struct tty_struct *tty;
2058 	struct tty_driver *driver = NULL;
2059 	int index = -1;
2060 	int retval;
2061 
2062 	mutex_lock(&tty_mutex);
2063 	driver = tty_lookup_driver(device, filp, &index);
2064 	if (IS_ERR(driver)) {
2065 		mutex_unlock(&tty_mutex);
2066 		return ERR_CAST(driver);
2067 	}
2068 
2069 	/* check whether we're reopening an existing tty */
2070 	tty = tty_driver_lookup_tty(driver, filp, index);
2071 	if (IS_ERR(tty)) {
2072 		mutex_unlock(&tty_mutex);
2073 		goto out;
2074 	}
2075 
2076 	if (tty) {
2077 		if (tty_port_kopened(tty->port)) {
2078 			tty_kref_put(tty);
2079 			mutex_unlock(&tty_mutex);
2080 			tty = ERR_PTR(-EBUSY);
2081 			goto out;
2082 		}
2083 		mutex_unlock(&tty_mutex);
2084 		retval = tty_lock_interruptible(tty);
2085 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2086 		if (retval) {
2087 			if (retval == -EINTR)
2088 				retval = -ERESTARTSYS;
2089 			tty = ERR_PTR(retval);
2090 			goto out;
2091 		}
2092 		retval = tty_reopen(tty);
2093 		if (retval < 0) {
2094 			tty_unlock(tty);
2095 			tty = ERR_PTR(retval);
2096 		}
2097 	} else { /* Returns with the tty_lock held for now */
2098 		tty = tty_init_dev(driver, index);
2099 		mutex_unlock(&tty_mutex);
2100 	}
2101 out:
2102 	tty_driver_kref_put(driver);
2103 	return tty;
2104 }
2105 
2106 /**
2107  *	tty_open		-	open a tty device
2108  *	@inode: inode of device file
2109  *	@filp: file pointer to tty
2110  *
2111  *	tty_open and tty_release keep up the tty count that contains the
2112  *	number of opens done on a tty. We cannot use the inode-count, as
2113  *	different inodes might point to the same tty.
2114  *
2115  *	Open-counting is needed for pty masters, as well as for keeping
2116  *	track of serial lines: DTR is dropped when the last close happens.
2117  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2118  *
2119  *	The termios state of a pty is reset on first open so that
2120  *	settings don't persist across reuse.
2121  *
2122  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2123  *		 tty->count should protect the rest.
2124  *		 ->siglock protects ->signal/->sighand
2125  *
2126  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2127  *	tty_mutex
2128  */
2129 
2130 static int tty_open(struct inode *inode, struct file *filp)
2131 {
2132 	struct tty_struct *tty;
2133 	int noctty, retval;
2134 	dev_t device = inode->i_rdev;
2135 	unsigned saved_flags = filp->f_flags;
2136 
2137 	nonseekable_open(inode, filp);
2138 
2139 retry_open:
2140 	retval = tty_alloc_file(filp);
2141 	if (retval)
2142 		return -ENOMEM;
2143 
2144 	tty = tty_open_current_tty(device, filp);
2145 	if (!tty)
2146 		tty = tty_open_by_driver(device, filp);
2147 
2148 	if (IS_ERR(tty)) {
2149 		tty_free_file(filp);
2150 		retval = PTR_ERR(tty);
2151 		if (retval != -EAGAIN || signal_pending(current))
2152 			return retval;
2153 		schedule();
2154 		goto retry_open;
2155 	}
2156 
2157 	tty_add_file(tty, filp);
2158 
2159 	check_tty_count(tty, __func__);
2160 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2161 
2162 	if (tty->ops->open)
2163 		retval = tty->ops->open(tty, filp);
2164 	else
2165 		retval = -ENODEV;
2166 	filp->f_flags = saved_flags;
2167 
2168 	if (retval) {
2169 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2170 
2171 		tty_unlock(tty); /* need to call tty_release without BTM */
2172 		tty_release(inode, filp);
2173 		if (retval != -ERESTARTSYS)
2174 			return retval;
2175 
2176 		if (signal_pending(current))
2177 			return retval;
2178 
2179 		schedule();
2180 		/*
2181 		 * Need to reset f_op in case a hangup happened.
2182 		 */
2183 		if (tty_hung_up_p(filp))
2184 			filp->f_op = &tty_fops;
2185 		goto retry_open;
2186 	}
2187 	clear_bit(TTY_HUPPED, &tty->flags);
2188 
2189 	noctty = (filp->f_flags & O_NOCTTY) ||
2190 		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2191 		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2192 		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2193 		  tty->driver->subtype == PTY_TYPE_MASTER);
2194 	if (!noctty)
2195 		tty_open_proc_set_tty(filp, tty);
2196 	tty_unlock(tty);
2197 	return 0;
2198 }
2199 
2200 
2201 
2202 /**
2203  *	tty_poll	-	check tty status
2204  *	@filp: file being polled
2205  *	@wait: poll wait structures to update
2206  *
2207  *	Call the line discipline polling method to obtain the poll
2208  *	status of the device.
2209  *
2210  *	Locking: locks called line discipline but ldisc poll method
2211  *	may be re-entered freely by other callers.
2212  */
2213 
2214 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2215 {
2216 	struct tty_struct *tty = file_tty(filp);
2217 	struct tty_ldisc *ld;
2218 	__poll_t ret = 0;
2219 
2220 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2221 		return 0;
2222 
2223 	ld = tty_ldisc_ref_wait(tty);
2224 	if (!ld)
2225 		return hung_up_tty_poll(filp, wait);
2226 	if (ld->ops->poll)
2227 		ret = ld->ops->poll(tty, filp, wait);
2228 	tty_ldisc_deref(ld);
2229 	return ret;
2230 }
2231 
2232 static int __tty_fasync(int fd, struct file *filp, int on)
2233 {
2234 	struct tty_struct *tty = file_tty(filp);
2235 	unsigned long flags;
2236 	int retval = 0;
2237 
2238 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2239 		goto out;
2240 
2241 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2242 	if (retval <= 0)
2243 		goto out;
2244 
2245 	if (on) {
2246 		enum pid_type type;
2247 		struct pid *pid;
2248 
2249 		spin_lock_irqsave(&tty->ctrl.lock, flags);
2250 		if (tty->ctrl.pgrp) {
2251 			pid = tty->ctrl.pgrp;
2252 			type = PIDTYPE_PGID;
2253 		} else {
2254 			pid = task_pid(current);
2255 			type = PIDTYPE_TGID;
2256 		}
2257 		get_pid(pid);
2258 		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2259 		__f_setown(filp, pid, type, 0);
2260 		put_pid(pid);
2261 		retval = 0;
2262 	}
2263 out:
2264 	return retval;
2265 }
2266 
2267 static int tty_fasync(int fd, struct file *filp, int on)
2268 {
2269 	struct tty_struct *tty = file_tty(filp);
2270 	int retval = -ENOTTY;
2271 
2272 	tty_lock(tty);
2273 	if (!tty_hung_up_p(filp))
2274 		retval = __tty_fasync(fd, filp, on);
2275 	tty_unlock(tty);
2276 
2277 	return retval;
2278 }
2279 
2280 /**
2281  *	tiocsti			-	fake input character
2282  *	@tty: tty to fake input into
2283  *	@p: pointer to character
2284  *
2285  *	Fake input to a tty device. Does the necessary locking and
2286  *	input management.
2287  *
2288  *	FIXME: does not honour flow control ??
2289  *
2290  *	Locking:
2291  *		Called functions take tty_ldiscs_lock
2292  *		current->signal->tty check is safe without locks
2293  *
2294  *	FIXME: may race normal receive processing
2295  */
2296 
2297 static int tiocsti(struct tty_struct *tty, char __user *p)
2298 {
2299 	char ch, mbz = 0;
2300 	struct tty_ldisc *ld;
2301 
2302 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2303 		return -EPERM;
2304 	if (get_user(ch, p))
2305 		return -EFAULT;
2306 	tty_audit_tiocsti(tty, ch);
2307 	ld = tty_ldisc_ref_wait(tty);
2308 	if (!ld)
2309 		return -EIO;
2310 	if (ld->ops->receive_buf)
2311 		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2312 	tty_ldisc_deref(ld);
2313 	return 0;
2314 }
2315 
2316 /**
2317  *	tiocgwinsz		-	implement window query ioctl
2318  *	@tty: tty
2319  *	@arg: user buffer for result
2320  *
2321  *	Copies the kernel idea of the window size into the user buffer.
2322  *
2323  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2324  *		is consistent.
2325  */
2326 
2327 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2328 {
2329 	int err;
2330 
2331 	mutex_lock(&tty->winsize_mutex);
2332 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2333 	mutex_unlock(&tty->winsize_mutex);
2334 
2335 	return err ? -EFAULT : 0;
2336 }
2337 
2338 /**
2339  *	tty_do_resize		-	resize event
2340  *	@tty: tty being resized
2341  *	@ws: new dimensions
2342  *
2343  *	Update the termios variables and send the necessary signals to
2344  *	peform a terminal resize correctly
2345  */
2346 
2347 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2348 {
2349 	struct pid *pgrp;
2350 
2351 	/* Lock the tty */
2352 	mutex_lock(&tty->winsize_mutex);
2353 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2354 		goto done;
2355 
2356 	/* Signal the foreground process group */
2357 	pgrp = tty_get_pgrp(tty);
2358 	if (pgrp)
2359 		kill_pgrp(pgrp, SIGWINCH, 1);
2360 	put_pid(pgrp);
2361 
2362 	tty->winsize = *ws;
2363 done:
2364 	mutex_unlock(&tty->winsize_mutex);
2365 	return 0;
2366 }
2367 EXPORT_SYMBOL(tty_do_resize);
2368 
2369 /**
2370  *	tiocswinsz		-	implement window size set ioctl
2371  *	@tty: tty side of tty
2372  *	@arg: user buffer for result
2373  *
2374  *	Copies the user idea of the window size to the kernel. Traditionally
2375  *	this is just advisory information but for the Linux console it
2376  *	actually has driver level meaning and triggers a VC resize.
2377  *
2378  *	Locking:
2379  *		Driver dependent. The default do_resize method takes the
2380  *	tty termios mutex and ctrl.lock. The console takes its own lock
2381  *	then calls into the default method.
2382  */
2383 
2384 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2385 {
2386 	struct winsize tmp_ws;
2387 
2388 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2389 		return -EFAULT;
2390 
2391 	if (tty->ops->resize)
2392 		return tty->ops->resize(tty, &tmp_ws);
2393 	else
2394 		return tty_do_resize(tty, &tmp_ws);
2395 }
2396 
2397 /**
2398  *	tioccons	-	allow admin to move logical console
2399  *	@file: the file to become console
2400  *
2401  *	Allow the administrator to move the redirected console device
2402  *
2403  *	Locking: uses redirect_lock to guard the redirect information
2404  */
2405 
2406 static int tioccons(struct file *file)
2407 {
2408 	if (!capable(CAP_SYS_ADMIN))
2409 		return -EPERM;
2410 	if (file->f_op->write_iter == redirected_tty_write) {
2411 		struct file *f;
2412 
2413 		spin_lock(&redirect_lock);
2414 		f = redirect;
2415 		redirect = NULL;
2416 		spin_unlock(&redirect_lock);
2417 		if (f)
2418 			fput(f);
2419 		return 0;
2420 	}
2421 	if (file->f_op->write_iter != tty_write)
2422 		return -ENOTTY;
2423 	if (!(file->f_mode & FMODE_WRITE))
2424 		return -EBADF;
2425 	if (!(file->f_mode & FMODE_CAN_WRITE))
2426 		return -EINVAL;
2427 	spin_lock(&redirect_lock);
2428 	if (redirect) {
2429 		spin_unlock(&redirect_lock);
2430 		return -EBUSY;
2431 	}
2432 	redirect = get_file(file);
2433 	spin_unlock(&redirect_lock);
2434 	return 0;
2435 }
2436 
2437 /**
2438  *	tiocsetd	-	set line discipline
2439  *	@tty: tty device
2440  *	@p: pointer to user data
2441  *
2442  *	Set the line discipline according to user request.
2443  *
2444  *	Locking: see tty_set_ldisc, this function is just a helper
2445  */
2446 
2447 static int tiocsetd(struct tty_struct *tty, int __user *p)
2448 {
2449 	int disc;
2450 	int ret;
2451 
2452 	if (get_user(disc, p))
2453 		return -EFAULT;
2454 
2455 	ret = tty_set_ldisc(tty, disc);
2456 
2457 	return ret;
2458 }
2459 
2460 /**
2461  *	tiocgetd	-	get line discipline
2462  *	@tty: tty device
2463  *	@p: pointer to user data
2464  *
2465  *	Retrieves the line discipline id directly from the ldisc.
2466  *
2467  *	Locking: waits for ldisc reference (in case the line discipline
2468  *		is changing or the tty is being hungup)
2469  */
2470 
2471 static int tiocgetd(struct tty_struct *tty, int __user *p)
2472 {
2473 	struct tty_ldisc *ld;
2474 	int ret;
2475 
2476 	ld = tty_ldisc_ref_wait(tty);
2477 	if (!ld)
2478 		return -EIO;
2479 	ret = put_user(ld->ops->num, p);
2480 	tty_ldisc_deref(ld);
2481 	return ret;
2482 }
2483 
2484 /**
2485  *	send_break	-	performed time break
2486  *	@tty: device to break on
2487  *	@duration: timeout in mS
2488  *
2489  *	Perform a timed break on hardware that lacks its own driver level
2490  *	timed break functionality.
2491  *
2492  *	Locking:
2493  *		atomic_write_lock serializes
2494  *
2495  */
2496 
2497 static int send_break(struct tty_struct *tty, unsigned int duration)
2498 {
2499 	int retval;
2500 
2501 	if (tty->ops->break_ctl == NULL)
2502 		return 0;
2503 
2504 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2505 		retval = tty->ops->break_ctl(tty, duration);
2506 	else {
2507 		/* Do the work ourselves */
2508 		if (tty_write_lock(tty, 0) < 0)
2509 			return -EINTR;
2510 		retval = tty->ops->break_ctl(tty, -1);
2511 		if (retval)
2512 			goto out;
2513 		if (!signal_pending(current))
2514 			msleep_interruptible(duration);
2515 		retval = tty->ops->break_ctl(tty, 0);
2516 out:
2517 		tty_write_unlock(tty);
2518 		if (signal_pending(current))
2519 			retval = -EINTR;
2520 	}
2521 	return retval;
2522 }
2523 
2524 /**
2525  *	tty_tiocmget		-	get modem status
2526  *	@tty: tty device
2527  *	@p: pointer to result
2528  *
2529  *	Obtain the modem status bits from the tty driver if the feature
2530  *	is supported. Return -ENOTTY if it is not available.
2531  *
2532  *	Locking: none (up to the driver)
2533  */
2534 
2535 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2536 {
2537 	int retval = -ENOTTY;
2538 
2539 	if (tty->ops->tiocmget) {
2540 		retval = tty->ops->tiocmget(tty);
2541 
2542 		if (retval >= 0)
2543 			retval = put_user(retval, p);
2544 	}
2545 	return retval;
2546 }
2547 
2548 /**
2549  *	tty_tiocmset		-	set modem status
2550  *	@tty: tty device
2551  *	@cmd: command - clear bits, set bits or set all
2552  *	@p: pointer to desired bits
2553  *
2554  *	Set the modem status bits from the tty driver if the feature
2555  *	is supported. Return -ENOTTY if it is not available.
2556  *
2557  *	Locking: none (up to the driver)
2558  */
2559 
2560 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2561 	     unsigned __user *p)
2562 {
2563 	int retval;
2564 	unsigned int set, clear, val;
2565 
2566 	if (tty->ops->tiocmset == NULL)
2567 		return -ENOTTY;
2568 
2569 	retval = get_user(val, p);
2570 	if (retval)
2571 		return retval;
2572 	set = clear = 0;
2573 	switch (cmd) {
2574 	case TIOCMBIS:
2575 		set = val;
2576 		break;
2577 	case TIOCMBIC:
2578 		clear = val;
2579 		break;
2580 	case TIOCMSET:
2581 		set = val;
2582 		clear = ~val;
2583 		break;
2584 	}
2585 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2587 	return tty->ops->tiocmset(tty, set, clear);
2588 }
2589 
2590 /**
2591  *	tty_get_icount		-	get tty statistics
2592  *	@tty: tty device
2593  *	@icount: output parameter
2594  *
2595  *	Gets a copy of the tty's icount statistics.
2596  *
2597  *	Locking: none (up to the driver)
2598  */
2599 int tty_get_icount(struct tty_struct *tty,
2600 		   struct serial_icounter_struct *icount)
2601 {
2602 	memset(icount, 0, sizeof(*icount));
2603 
2604 	if (tty->ops->get_icount)
2605 		return tty->ops->get_icount(tty, icount);
2606 	else
2607 		return -ENOTTY;
2608 }
2609 EXPORT_SYMBOL_GPL(tty_get_icount);
2610 
2611 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2612 {
2613 	struct serial_icounter_struct icount;
2614 	int retval;
2615 
2616 	retval = tty_get_icount(tty, &icount);
2617 	if (retval != 0)
2618 		return retval;
2619 
2620 	if (copy_to_user(arg, &icount, sizeof(icount)))
2621 		return -EFAULT;
2622 	return 0;
2623 }
2624 
2625 static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2626 {
2627 	char comm[TASK_COMM_LEN];
2628 	int flags;
2629 
2630 	flags = ss->flags & ASYNC_DEPRECATED;
2631 
2632 	if (flags)
2633 		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2634 				__func__, get_task_comm(comm, current), flags);
2635 
2636 	if (!tty->ops->set_serial)
2637 		return -ENOTTY;
2638 
2639 	return tty->ops->set_serial(tty, ss);
2640 }
2641 
2642 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2643 {
2644 	struct serial_struct v;
2645 
2646 	if (copy_from_user(&v, ss, sizeof(*ss)))
2647 		return -EFAULT;
2648 
2649 	return tty_set_serial(tty, &v);
2650 }
2651 
2652 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2653 {
2654 	struct serial_struct v;
2655 	int err;
2656 
2657 	memset(&v, 0, sizeof(v));
2658 	if (!tty->ops->get_serial)
2659 		return -ENOTTY;
2660 	err = tty->ops->get_serial(tty, &v);
2661 	if (!err && copy_to_user(ss, &v, sizeof(v)))
2662 		err = -EFAULT;
2663 	return err;
2664 }
2665 
2666 /*
2667  * if pty, return the slave side (real_tty)
2668  * otherwise, return self
2669  */
2670 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2671 {
2672 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2673 	    tty->driver->subtype == PTY_TYPE_MASTER)
2674 		tty = tty->link;
2675 	return tty;
2676 }
2677 
2678 /*
2679  * Split this up, as gcc can choke on it otherwise..
2680  */
2681 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2682 {
2683 	struct tty_struct *tty = file_tty(file);
2684 	struct tty_struct *real_tty;
2685 	void __user *p = (void __user *)arg;
2686 	int retval;
2687 	struct tty_ldisc *ld;
2688 
2689 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2690 		return -EINVAL;
2691 
2692 	real_tty = tty_pair_get_tty(tty);
2693 
2694 	/*
2695 	 * Factor out some common prep work
2696 	 */
2697 	switch (cmd) {
2698 	case TIOCSETD:
2699 	case TIOCSBRK:
2700 	case TIOCCBRK:
2701 	case TCSBRK:
2702 	case TCSBRKP:
2703 		retval = tty_check_change(tty);
2704 		if (retval)
2705 			return retval;
2706 		if (cmd != TIOCCBRK) {
2707 			tty_wait_until_sent(tty, 0);
2708 			if (signal_pending(current))
2709 				return -EINTR;
2710 		}
2711 		break;
2712 	}
2713 
2714 	/*
2715 	 *	Now do the stuff.
2716 	 */
2717 	switch (cmd) {
2718 	case TIOCSTI:
2719 		return tiocsti(tty, p);
2720 	case TIOCGWINSZ:
2721 		return tiocgwinsz(real_tty, p);
2722 	case TIOCSWINSZ:
2723 		return tiocswinsz(real_tty, p);
2724 	case TIOCCONS:
2725 		return real_tty != tty ? -EINVAL : tioccons(file);
2726 	case TIOCEXCL:
2727 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2728 		return 0;
2729 	case TIOCNXCL:
2730 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2731 		return 0;
2732 	case TIOCGEXCL:
2733 	{
2734 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2735 
2736 		return put_user(excl, (int __user *)p);
2737 	}
2738 	case TIOCGETD:
2739 		return tiocgetd(tty, p);
2740 	case TIOCSETD:
2741 		return tiocsetd(tty, p);
2742 	case TIOCVHANGUP:
2743 		if (!capable(CAP_SYS_ADMIN))
2744 			return -EPERM;
2745 		tty_vhangup(tty);
2746 		return 0;
2747 	case TIOCGDEV:
2748 	{
2749 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2750 
2751 		return put_user(ret, (unsigned int __user *)p);
2752 	}
2753 	/*
2754 	 * Break handling
2755 	 */
2756 	case TIOCSBRK:	/* Turn break on, unconditionally */
2757 		if (tty->ops->break_ctl)
2758 			return tty->ops->break_ctl(tty, -1);
2759 		return 0;
2760 	case TIOCCBRK:	/* Turn break off, unconditionally */
2761 		if (tty->ops->break_ctl)
2762 			return tty->ops->break_ctl(tty, 0);
2763 		return 0;
2764 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2765 		/* non-zero arg means wait for all output data
2766 		 * to be sent (performed above) but don't send break.
2767 		 * This is used by the tcdrain() termios function.
2768 		 */
2769 		if (!arg)
2770 			return send_break(tty, 250);
2771 		return 0;
2772 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2773 		return send_break(tty, arg ? arg*100 : 250);
2774 
2775 	case TIOCMGET:
2776 		return tty_tiocmget(tty, p);
2777 	case TIOCMSET:
2778 	case TIOCMBIC:
2779 	case TIOCMBIS:
2780 		return tty_tiocmset(tty, cmd, p);
2781 	case TIOCGICOUNT:
2782 		return tty_tiocgicount(tty, p);
2783 	case TCFLSH:
2784 		switch (arg) {
2785 		case TCIFLUSH:
2786 		case TCIOFLUSH:
2787 		/* flush tty buffer and allow ldisc to process ioctl */
2788 			tty_buffer_flush(tty, NULL);
2789 			break;
2790 		}
2791 		break;
2792 	case TIOCSSERIAL:
2793 		return tty_tiocsserial(tty, p);
2794 	case TIOCGSERIAL:
2795 		return tty_tiocgserial(tty, p);
2796 	case TIOCGPTPEER:
2797 		/* Special because the struct file is needed */
2798 		return ptm_open_peer(file, tty, (int)arg);
2799 	default:
2800 		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2801 		if (retval != -ENOIOCTLCMD)
2802 			return retval;
2803 	}
2804 	if (tty->ops->ioctl) {
2805 		retval = tty->ops->ioctl(tty, cmd, arg);
2806 		if (retval != -ENOIOCTLCMD)
2807 			return retval;
2808 	}
2809 	ld = tty_ldisc_ref_wait(tty);
2810 	if (!ld)
2811 		return hung_up_tty_ioctl(file, cmd, arg);
2812 	retval = -EINVAL;
2813 	if (ld->ops->ioctl) {
2814 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2815 		if (retval == -ENOIOCTLCMD)
2816 			retval = -ENOTTY;
2817 	}
2818 	tty_ldisc_deref(ld);
2819 	return retval;
2820 }
2821 
2822 #ifdef CONFIG_COMPAT
2823 
2824 struct serial_struct32 {
2825 	compat_int_t    type;
2826 	compat_int_t    line;
2827 	compat_uint_t   port;
2828 	compat_int_t    irq;
2829 	compat_int_t    flags;
2830 	compat_int_t    xmit_fifo_size;
2831 	compat_int_t    custom_divisor;
2832 	compat_int_t    baud_base;
2833 	unsigned short  close_delay;
2834 	char    io_type;
2835 	char    reserved_char;
2836 	compat_int_t    hub6;
2837 	unsigned short  closing_wait; /* time to wait before closing */
2838 	unsigned short  closing_wait2; /* no longer used... */
2839 	compat_uint_t   iomem_base;
2840 	unsigned short  iomem_reg_shift;
2841 	unsigned int    port_high;
2842 	/* compat_ulong_t  iomap_base FIXME */
2843 	compat_int_t    reserved;
2844 };
2845 
2846 static int compat_tty_tiocsserial(struct tty_struct *tty,
2847 		struct serial_struct32 __user *ss)
2848 {
2849 	struct serial_struct32 v32;
2850 	struct serial_struct v;
2851 
2852 	if (copy_from_user(&v32, ss, sizeof(*ss)))
2853 		return -EFAULT;
2854 
2855 	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2856 	v.iomem_base = compat_ptr(v32.iomem_base);
2857 	v.iomem_reg_shift = v32.iomem_reg_shift;
2858 	v.port_high = v32.port_high;
2859 	v.iomap_base = 0;
2860 
2861 	return tty_set_serial(tty, &v);
2862 }
2863 
2864 static int compat_tty_tiocgserial(struct tty_struct *tty,
2865 			struct serial_struct32 __user *ss)
2866 {
2867 	struct serial_struct32 v32;
2868 	struct serial_struct v;
2869 	int err;
2870 
2871 	memset(&v, 0, sizeof(v));
2872 	memset(&v32, 0, sizeof(v32));
2873 
2874 	if (!tty->ops->get_serial)
2875 		return -ENOTTY;
2876 	err = tty->ops->get_serial(tty, &v);
2877 	if (!err) {
2878 		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2879 		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2880 			0xfffffff : ptr_to_compat(v.iomem_base);
2881 		v32.iomem_reg_shift = v.iomem_reg_shift;
2882 		v32.port_high = v.port_high;
2883 		if (copy_to_user(ss, &v32, sizeof(v32)))
2884 			err = -EFAULT;
2885 	}
2886 	return err;
2887 }
2888 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2889 				unsigned long arg)
2890 {
2891 	struct tty_struct *tty = file_tty(file);
2892 	struct tty_ldisc *ld;
2893 	int retval = -ENOIOCTLCMD;
2894 
2895 	switch (cmd) {
2896 	case TIOCOUTQ:
2897 	case TIOCSTI:
2898 	case TIOCGWINSZ:
2899 	case TIOCSWINSZ:
2900 	case TIOCGEXCL:
2901 	case TIOCGETD:
2902 	case TIOCSETD:
2903 	case TIOCGDEV:
2904 	case TIOCMGET:
2905 	case TIOCMSET:
2906 	case TIOCMBIC:
2907 	case TIOCMBIS:
2908 	case TIOCGICOUNT:
2909 	case TIOCGPGRP:
2910 	case TIOCSPGRP:
2911 	case TIOCGSID:
2912 	case TIOCSERGETLSR:
2913 	case TIOCGRS485:
2914 	case TIOCSRS485:
2915 #ifdef TIOCGETP
2916 	case TIOCGETP:
2917 	case TIOCSETP:
2918 	case TIOCSETN:
2919 #endif
2920 #ifdef TIOCGETC
2921 	case TIOCGETC:
2922 	case TIOCSETC:
2923 #endif
2924 #ifdef TIOCGLTC
2925 	case TIOCGLTC:
2926 	case TIOCSLTC:
2927 #endif
2928 	case TCSETSF:
2929 	case TCSETSW:
2930 	case TCSETS:
2931 	case TCGETS:
2932 #ifdef TCGETS2
2933 	case TCGETS2:
2934 	case TCSETSF2:
2935 	case TCSETSW2:
2936 	case TCSETS2:
2937 #endif
2938 	case TCGETA:
2939 	case TCSETAF:
2940 	case TCSETAW:
2941 	case TCSETA:
2942 	case TIOCGLCKTRMIOS:
2943 	case TIOCSLCKTRMIOS:
2944 #ifdef TCGETX
2945 	case TCGETX:
2946 	case TCSETX:
2947 	case TCSETXW:
2948 	case TCSETXF:
2949 #endif
2950 	case TIOCGSOFTCAR:
2951 	case TIOCSSOFTCAR:
2952 
2953 	case PPPIOCGCHAN:
2954 	case PPPIOCGUNIT:
2955 		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2956 	case TIOCCONS:
2957 	case TIOCEXCL:
2958 	case TIOCNXCL:
2959 	case TIOCVHANGUP:
2960 	case TIOCSBRK:
2961 	case TIOCCBRK:
2962 	case TCSBRK:
2963 	case TCSBRKP:
2964 	case TCFLSH:
2965 	case TIOCGPTPEER:
2966 	case TIOCNOTTY:
2967 	case TIOCSCTTY:
2968 	case TCXONC:
2969 	case TIOCMIWAIT:
2970 	case TIOCSERCONFIG:
2971 		return tty_ioctl(file, cmd, arg);
2972 	}
2973 
2974 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2975 		return -EINVAL;
2976 
2977 	switch (cmd) {
2978 	case TIOCSSERIAL:
2979 		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2980 	case TIOCGSERIAL:
2981 		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2982 	}
2983 	if (tty->ops->compat_ioctl) {
2984 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2985 		if (retval != -ENOIOCTLCMD)
2986 			return retval;
2987 	}
2988 
2989 	ld = tty_ldisc_ref_wait(tty);
2990 	if (!ld)
2991 		return hung_up_tty_compat_ioctl(file, cmd, arg);
2992 	if (ld->ops->compat_ioctl)
2993 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2994 	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2995 		retval = ld->ops->ioctl(tty, file,
2996 				(unsigned long)compat_ptr(cmd), arg);
2997 	tty_ldisc_deref(ld);
2998 
2999 	return retval;
3000 }
3001 #endif
3002 
3003 static int this_tty(const void *t, struct file *file, unsigned fd)
3004 {
3005 	if (likely(file->f_op->read_iter != tty_read))
3006 		return 0;
3007 	return file_tty(file) != t ? 0 : fd + 1;
3008 }
3009 
3010 /*
3011  * This implements the "Secure Attention Key" ---  the idea is to
3012  * prevent trojan horses by killing all processes associated with this
3013  * tty when the user hits the "Secure Attention Key".  Required for
3014  * super-paranoid applications --- see the Orange Book for more details.
3015  *
3016  * This code could be nicer; ideally it should send a HUP, wait a few
3017  * seconds, then send a INT, and then a KILL signal.  But you then
3018  * have to coordinate with the init process, since all processes associated
3019  * with the current tty must be dead before the new getty is allowed
3020  * to spawn.
3021  *
3022  * Now, if it would be correct ;-/ The current code has a nasty hole -
3023  * it doesn't catch files in flight. We may send the descriptor to ourselves
3024  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3025  *
3026  * Nasty bug: do_SAK is being called in interrupt context.  This can
3027  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3028  */
3029 void __do_SAK(struct tty_struct *tty)
3030 {
3031 #ifdef TTY_SOFT_SAK
3032 	tty_hangup(tty);
3033 #else
3034 	struct task_struct *g, *p;
3035 	struct pid *session;
3036 	int		i;
3037 	unsigned long flags;
3038 
3039 	if (!tty)
3040 		return;
3041 
3042 	spin_lock_irqsave(&tty->ctrl.lock, flags);
3043 	session = get_pid(tty->ctrl.session);
3044 	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3045 
3046 	tty_ldisc_flush(tty);
3047 
3048 	tty_driver_flush_buffer(tty);
3049 
3050 	read_lock(&tasklist_lock);
3051 	/* Kill the entire session */
3052 	do_each_pid_task(session, PIDTYPE_SID, p) {
3053 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3054 			   task_pid_nr(p), p->comm);
3055 		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3056 	} while_each_pid_task(session, PIDTYPE_SID, p);
3057 
3058 	/* Now kill any processes that happen to have the tty open */
3059 	do_each_thread(g, p) {
3060 		if (p->signal->tty == tty) {
3061 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3062 				   task_pid_nr(p), p->comm);
3063 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3064 			continue;
3065 		}
3066 		task_lock(p);
3067 		i = iterate_fd(p->files, 0, this_tty, tty);
3068 		if (i != 0) {
3069 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3070 				   task_pid_nr(p), p->comm, i - 1);
3071 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3072 		}
3073 		task_unlock(p);
3074 	} while_each_thread(g, p);
3075 	read_unlock(&tasklist_lock);
3076 	put_pid(session);
3077 #endif
3078 }
3079 
3080 static void do_SAK_work(struct work_struct *work)
3081 {
3082 	struct tty_struct *tty =
3083 		container_of(work, struct tty_struct, SAK_work);
3084 	__do_SAK(tty);
3085 }
3086 
3087 /*
3088  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3089  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3090  * the values which we write to it will be identical to the values which it
3091  * already has. --akpm
3092  */
3093 void do_SAK(struct tty_struct *tty)
3094 {
3095 	if (!tty)
3096 		return;
3097 	schedule_work(&tty->SAK_work);
3098 }
3099 EXPORT_SYMBOL(do_SAK);
3100 
3101 /* Must put_device() after it's unused! */
3102 static struct device *tty_get_device(struct tty_struct *tty)
3103 {
3104 	dev_t devt = tty_devnum(tty);
3105 
3106 	return class_find_device_by_devt(tty_class, devt);
3107 }
3108 
3109 
3110 /*
3111  *	alloc_tty_struct
3112  *
3113  *	This subroutine allocates and initializes a tty structure.
3114  *
3115  *	Locking: none - tty in question is not exposed at this point
3116  */
3117 
3118 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3119 {
3120 	struct tty_struct *tty;
3121 
3122 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3123 	if (!tty)
3124 		return NULL;
3125 
3126 	kref_init(&tty->kref);
3127 	tty->magic = TTY_MAGIC;
3128 	if (tty_ldisc_init(tty)) {
3129 		kfree(tty);
3130 		return NULL;
3131 	}
3132 	tty->ctrl.session = NULL;
3133 	tty->ctrl.pgrp = NULL;
3134 	mutex_init(&tty->legacy_mutex);
3135 	mutex_init(&tty->throttle_mutex);
3136 	init_rwsem(&tty->termios_rwsem);
3137 	mutex_init(&tty->winsize_mutex);
3138 	init_ldsem(&tty->ldisc_sem);
3139 	init_waitqueue_head(&tty->write_wait);
3140 	init_waitqueue_head(&tty->read_wait);
3141 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3142 	mutex_init(&tty->atomic_write_lock);
3143 	spin_lock_init(&tty->ctrl.lock);
3144 	spin_lock_init(&tty->flow.lock);
3145 	spin_lock_init(&tty->files_lock);
3146 	INIT_LIST_HEAD(&tty->tty_files);
3147 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3148 
3149 	tty->driver = driver;
3150 	tty->ops = driver->ops;
3151 	tty->index = idx;
3152 	tty_line_name(driver, idx, tty->name);
3153 	tty->dev = tty_get_device(tty);
3154 
3155 	return tty;
3156 }
3157 
3158 /**
3159  *	tty_put_char	-	write one character to a tty
3160  *	@tty: tty
3161  *	@ch: character
3162  *
3163  *	Write one byte to the tty using the provided put_char method
3164  *	if present. Returns the number of characters successfully output.
3165  *
3166  *	Note: the specific put_char operation in the driver layer may go
3167  *	away soon. Don't call it directly, use this method
3168  */
3169 
3170 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3171 {
3172 	if (tty->ops->put_char)
3173 		return tty->ops->put_char(tty, ch);
3174 	return tty->ops->write(tty, &ch, 1);
3175 }
3176 EXPORT_SYMBOL_GPL(tty_put_char);
3177 
3178 struct class *tty_class;
3179 
3180 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3181 		unsigned int index, unsigned int count)
3182 {
3183 	int err;
3184 
3185 	/* init here, since reused cdevs cause crashes */
3186 	driver->cdevs[index] = cdev_alloc();
3187 	if (!driver->cdevs[index])
3188 		return -ENOMEM;
3189 	driver->cdevs[index]->ops = &tty_fops;
3190 	driver->cdevs[index]->owner = driver->owner;
3191 	err = cdev_add(driver->cdevs[index], dev, count);
3192 	if (err)
3193 		kobject_put(&driver->cdevs[index]->kobj);
3194 	return err;
3195 }
3196 
3197 /**
3198  *	tty_register_device - register a tty device
3199  *	@driver: the tty driver that describes the tty device
3200  *	@index: the index in the tty driver for this tty device
3201  *	@device: a struct device that is associated with this tty device.
3202  *		This field is optional, if there is no known struct device
3203  *		for this tty device it can be set to NULL safely.
3204  *
3205  *	Returns a pointer to the struct device for this tty device
3206  *	(or ERR_PTR(-EFOO) on error).
3207  *
3208  *	This call is required to be made to register an individual tty device
3209  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3210  *	that bit is not set, this function should not be called by a tty
3211  *	driver.
3212  *
3213  *	Locking: ??
3214  */
3215 
3216 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3217 				   struct device *device)
3218 {
3219 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3220 }
3221 EXPORT_SYMBOL(tty_register_device);
3222 
3223 static void tty_device_create_release(struct device *dev)
3224 {
3225 	dev_dbg(dev, "releasing...\n");
3226 	kfree(dev);
3227 }
3228 
3229 /**
3230  *	tty_register_device_attr - register a tty device
3231  *	@driver: the tty driver that describes the tty device
3232  *	@index: the index in the tty driver for this tty device
3233  *	@device: a struct device that is associated with this tty device.
3234  *		This field is optional, if there is no known struct device
3235  *		for this tty device it can be set to NULL safely.
3236  *	@drvdata: Driver data to be set to device.
3237  *	@attr_grp: Attribute group to be set on device.
3238  *
3239  *	Returns a pointer to the struct device for this tty device
3240  *	(or ERR_PTR(-EFOO) on error).
3241  *
3242  *	This call is required to be made to register an individual tty device
3243  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3244  *	that bit is not set, this function should not be called by a tty
3245  *	driver.
3246  *
3247  *	Locking: ??
3248  */
3249 struct device *tty_register_device_attr(struct tty_driver *driver,
3250 				   unsigned index, struct device *device,
3251 				   void *drvdata,
3252 				   const struct attribute_group **attr_grp)
3253 {
3254 	char name[64];
3255 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3256 	struct ktermios *tp;
3257 	struct device *dev;
3258 	int retval;
3259 
3260 	if (index >= driver->num) {
3261 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3262 		       driver->name, index);
3263 		return ERR_PTR(-EINVAL);
3264 	}
3265 
3266 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3267 		pty_line_name(driver, index, name);
3268 	else
3269 		tty_line_name(driver, index, name);
3270 
3271 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3272 	if (!dev)
3273 		return ERR_PTR(-ENOMEM);
3274 
3275 	dev->devt = devt;
3276 	dev->class = tty_class;
3277 	dev->parent = device;
3278 	dev->release = tty_device_create_release;
3279 	dev_set_name(dev, "%s", name);
3280 	dev->groups = attr_grp;
3281 	dev_set_drvdata(dev, drvdata);
3282 
3283 	dev_set_uevent_suppress(dev, 1);
3284 
3285 	retval = device_register(dev);
3286 	if (retval)
3287 		goto err_put;
3288 
3289 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3290 		/*
3291 		 * Free any saved termios data so that the termios state is
3292 		 * reset when reusing a minor number.
3293 		 */
3294 		tp = driver->termios[index];
3295 		if (tp) {
3296 			driver->termios[index] = NULL;
3297 			kfree(tp);
3298 		}
3299 
3300 		retval = tty_cdev_add(driver, devt, index, 1);
3301 		if (retval)
3302 			goto err_del;
3303 	}
3304 
3305 	dev_set_uevent_suppress(dev, 0);
3306 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3307 
3308 	return dev;
3309 
3310 err_del:
3311 	device_del(dev);
3312 err_put:
3313 	put_device(dev);
3314 
3315 	return ERR_PTR(retval);
3316 }
3317 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3318 
3319 /**
3320  *	tty_unregister_device - unregister a tty device
3321  *	@driver: the tty driver that describes the tty device
3322  *	@index: the index in the tty driver for this tty device
3323  *
3324  *	If a tty device is registered with a call to tty_register_device() then
3325  *	this function must be called when the tty device is gone.
3326  *
3327  *	Locking: ??
3328  */
3329 
3330 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3331 {
3332 	device_destroy(tty_class,
3333 		MKDEV(driver->major, driver->minor_start) + index);
3334 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3335 		cdev_del(driver->cdevs[index]);
3336 		driver->cdevs[index] = NULL;
3337 	}
3338 }
3339 EXPORT_SYMBOL(tty_unregister_device);
3340 
3341 /**
3342  * __tty_alloc_driver -- allocate tty driver
3343  * @lines: count of lines this driver can handle at most
3344  * @owner: module which is responsible for this driver
3345  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3346  *
3347  * This should not be called directly, some of the provided macros should be
3348  * used instead. Use IS_ERR and friends on @retval.
3349  */
3350 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3351 		unsigned long flags)
3352 {
3353 	struct tty_driver *driver;
3354 	unsigned int cdevs = 1;
3355 	int err;
3356 
3357 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3358 		return ERR_PTR(-EINVAL);
3359 
3360 	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3361 	if (!driver)
3362 		return ERR_PTR(-ENOMEM);
3363 
3364 	kref_init(&driver->kref);
3365 	driver->magic = TTY_DRIVER_MAGIC;
3366 	driver->num = lines;
3367 	driver->owner = owner;
3368 	driver->flags = flags;
3369 
3370 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3371 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3372 				GFP_KERNEL);
3373 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3374 				GFP_KERNEL);
3375 		if (!driver->ttys || !driver->termios) {
3376 			err = -ENOMEM;
3377 			goto err_free_all;
3378 		}
3379 	}
3380 
3381 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3382 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3383 				GFP_KERNEL);
3384 		if (!driver->ports) {
3385 			err = -ENOMEM;
3386 			goto err_free_all;
3387 		}
3388 		cdevs = lines;
3389 	}
3390 
3391 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3392 	if (!driver->cdevs) {
3393 		err = -ENOMEM;
3394 		goto err_free_all;
3395 	}
3396 
3397 	return driver;
3398 err_free_all:
3399 	kfree(driver->ports);
3400 	kfree(driver->ttys);
3401 	kfree(driver->termios);
3402 	kfree(driver->cdevs);
3403 	kfree(driver);
3404 	return ERR_PTR(err);
3405 }
3406 EXPORT_SYMBOL(__tty_alloc_driver);
3407 
3408 static void destruct_tty_driver(struct kref *kref)
3409 {
3410 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3411 	int i;
3412 	struct ktermios *tp;
3413 
3414 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3415 		for (i = 0; i < driver->num; i++) {
3416 			tp = driver->termios[i];
3417 			if (tp) {
3418 				driver->termios[i] = NULL;
3419 				kfree(tp);
3420 			}
3421 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3422 				tty_unregister_device(driver, i);
3423 		}
3424 		proc_tty_unregister_driver(driver);
3425 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3426 			cdev_del(driver->cdevs[0]);
3427 	}
3428 	kfree(driver->cdevs);
3429 	kfree(driver->ports);
3430 	kfree(driver->termios);
3431 	kfree(driver->ttys);
3432 	kfree(driver);
3433 }
3434 
3435 void tty_driver_kref_put(struct tty_driver *driver)
3436 {
3437 	kref_put(&driver->kref, destruct_tty_driver);
3438 }
3439 EXPORT_SYMBOL(tty_driver_kref_put);
3440 
3441 void tty_set_operations(struct tty_driver *driver,
3442 			const struct tty_operations *op)
3443 {
3444 	driver->ops = op;
3445 };
3446 EXPORT_SYMBOL(tty_set_operations);
3447 
3448 void put_tty_driver(struct tty_driver *d)
3449 {
3450 	tty_driver_kref_put(d);
3451 }
3452 EXPORT_SYMBOL(put_tty_driver);
3453 
3454 /*
3455  * Called by a tty driver to register itself.
3456  */
3457 int tty_register_driver(struct tty_driver *driver)
3458 {
3459 	int error;
3460 	int i;
3461 	dev_t dev;
3462 	struct device *d;
3463 
3464 	if (!driver->major) {
3465 		error = alloc_chrdev_region(&dev, driver->minor_start,
3466 						driver->num, driver->name);
3467 		if (!error) {
3468 			driver->major = MAJOR(dev);
3469 			driver->minor_start = MINOR(dev);
3470 		}
3471 	} else {
3472 		dev = MKDEV(driver->major, driver->minor_start);
3473 		error = register_chrdev_region(dev, driver->num, driver->name);
3474 	}
3475 	if (error < 0)
3476 		goto err;
3477 
3478 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3479 		error = tty_cdev_add(driver, dev, 0, driver->num);
3480 		if (error)
3481 			goto err_unreg_char;
3482 	}
3483 
3484 	mutex_lock(&tty_mutex);
3485 	list_add(&driver->tty_drivers, &tty_drivers);
3486 	mutex_unlock(&tty_mutex);
3487 
3488 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3489 		for (i = 0; i < driver->num; i++) {
3490 			d = tty_register_device(driver, i, NULL);
3491 			if (IS_ERR(d)) {
3492 				error = PTR_ERR(d);
3493 				goto err_unreg_devs;
3494 			}
3495 		}
3496 	}
3497 	proc_tty_register_driver(driver);
3498 	driver->flags |= TTY_DRIVER_INSTALLED;
3499 	return 0;
3500 
3501 err_unreg_devs:
3502 	for (i--; i >= 0; i--)
3503 		tty_unregister_device(driver, i);
3504 
3505 	mutex_lock(&tty_mutex);
3506 	list_del(&driver->tty_drivers);
3507 	mutex_unlock(&tty_mutex);
3508 
3509 err_unreg_char:
3510 	unregister_chrdev_region(dev, driver->num);
3511 err:
3512 	return error;
3513 }
3514 EXPORT_SYMBOL(tty_register_driver);
3515 
3516 /*
3517  * Called by a tty driver to unregister itself.
3518  */
3519 void tty_unregister_driver(struct tty_driver *driver)
3520 {
3521 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3522 				driver->num);
3523 	mutex_lock(&tty_mutex);
3524 	list_del(&driver->tty_drivers);
3525 	mutex_unlock(&tty_mutex);
3526 }
3527 EXPORT_SYMBOL(tty_unregister_driver);
3528 
3529 dev_t tty_devnum(struct tty_struct *tty)
3530 {
3531 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3532 }
3533 EXPORT_SYMBOL(tty_devnum);
3534 
3535 void tty_default_fops(struct file_operations *fops)
3536 {
3537 	*fops = tty_fops;
3538 }
3539 
3540 static char *tty_devnode(struct device *dev, umode_t *mode)
3541 {
3542 	if (!mode)
3543 		return NULL;
3544 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3545 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3546 		*mode = 0666;
3547 	return NULL;
3548 }
3549 
3550 static int __init tty_class_init(void)
3551 {
3552 	tty_class = class_create(THIS_MODULE, "tty");
3553 	if (IS_ERR(tty_class))
3554 		return PTR_ERR(tty_class);
3555 	tty_class->devnode = tty_devnode;
3556 	return 0;
3557 }
3558 
3559 postcore_initcall(tty_class_init);
3560 
3561 /* 3/2004 jmc: why do these devices exist? */
3562 static struct cdev tty_cdev, console_cdev;
3563 
3564 static ssize_t show_cons_active(struct device *dev,
3565 				struct device_attribute *attr, char *buf)
3566 {
3567 	struct console *cs[16];
3568 	int i = 0;
3569 	struct console *c;
3570 	ssize_t count = 0;
3571 
3572 	console_lock();
3573 	for_each_console(c) {
3574 		if (!c->device)
3575 			continue;
3576 		if (!c->write)
3577 			continue;
3578 		if ((c->flags & CON_ENABLED) == 0)
3579 			continue;
3580 		cs[i++] = c;
3581 		if (i >= ARRAY_SIZE(cs))
3582 			break;
3583 	}
3584 	while (i--) {
3585 		int index = cs[i]->index;
3586 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3587 
3588 		/* don't resolve tty0 as some programs depend on it */
3589 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3590 			count += tty_line_name(drv, index, buf + count);
3591 		else
3592 			count += sprintf(buf + count, "%s%d",
3593 					 cs[i]->name, cs[i]->index);
3594 
3595 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3596 	}
3597 	console_unlock();
3598 
3599 	return count;
3600 }
3601 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3602 
3603 static struct attribute *cons_dev_attrs[] = {
3604 	&dev_attr_active.attr,
3605 	NULL
3606 };
3607 
3608 ATTRIBUTE_GROUPS(cons_dev);
3609 
3610 static struct device *consdev;
3611 
3612 void console_sysfs_notify(void)
3613 {
3614 	if (consdev)
3615 		sysfs_notify(&consdev->kobj, NULL, "active");
3616 }
3617 
3618 /*
3619  * Ok, now we can initialize the rest of the tty devices and can count
3620  * on memory allocations, interrupts etc..
3621  */
3622 int __init tty_init(void)
3623 {
3624 	tty_sysctl_init();
3625 	cdev_init(&tty_cdev, &tty_fops);
3626 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3627 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3628 		panic("Couldn't register /dev/tty driver\n");
3629 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3630 
3631 	cdev_init(&console_cdev, &console_fops);
3632 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3633 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3634 		panic("Couldn't register /dev/console driver\n");
3635 	consdev = device_create_with_groups(tty_class, NULL,
3636 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3637 					    cons_dev_groups, "console");
3638 	if (IS_ERR(consdev))
3639 		consdev = NULL;
3640 
3641 #ifdef CONFIG_VT
3642 	vty_init(&console_fops);
3643 #endif
3644 	return 0;
3645 }
3646 
3647