1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 */ 5 6 /* 7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 8 * or rs-channels. It also implements echoing, cooked mode etc. 9 * 10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 11 * 12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 13 * tty_struct and tty_queue structures. Previously there was an array 14 * of 256 tty_struct's which was statically allocated, and the 15 * tty_queue structures were allocated at boot time. Both are now 16 * dynamically allocated only when the tty is open. 17 * 18 * Also restructured routines so that there is more of a separation 19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 20 * the low-level tty routines (serial.c, pty.c, console.c). This 21 * makes for cleaner and more compact code. -TYT, 9/17/92 22 * 23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 24 * which can be dynamically activated and de-activated by the line 25 * discipline handling modules (like SLIP). 26 * 27 * NOTE: pay no attention to the line discipline code (yet); its 28 * interface is still subject to change in this version... 29 * -- TYT, 1/31/92 30 * 31 * Added functionality to the OPOST tty handling. No delays, but all 32 * other bits should be there. 33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 34 * 35 * Rewrote canonical mode and added more termios flags. 36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 37 * 38 * Reorganized FASYNC support so mouse code can share it. 39 * -- ctm@ardi.com, 9Sep95 40 * 41 * New TIOCLINUX variants added. 42 * -- mj@k332.feld.cvut.cz, 19-Nov-95 43 * 44 * Restrict vt switching via ioctl() 45 * -- grif@cs.ucr.edu, 5-Dec-95 46 * 47 * Move console and virtual terminal code to more appropriate files, 48 * implement CONFIG_VT and generalize console device interface. 49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 50 * 51 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 52 * -- Bill Hawes <whawes@star.net>, June 97 53 * 54 * Added devfs support. 55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 56 * 57 * Added support for a Unix98-style ptmx device. 58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 59 * 60 * Reduced memory usage for older ARM systems 61 * -- Russell King <rmk@arm.linux.org.uk> 62 * 63 * Move do_SAK() into process context. Less stack use in devfs functions. 64 * alloc_tty_struct() always uses kmalloc() 65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 66 */ 67 68 #include <linux/types.h> 69 #include <linux/major.h> 70 #include <linux/errno.h> 71 #include <linux/signal.h> 72 #include <linux/fcntl.h> 73 #include <linux/sched/signal.h> 74 #include <linux/sched/task.h> 75 #include <linux/interrupt.h> 76 #include <linux/tty.h> 77 #include <linux/tty_driver.h> 78 #include <linux/tty_flip.h> 79 #include <linux/devpts_fs.h> 80 #include <linux/file.h> 81 #include <linux/fdtable.h> 82 #include <linux/console.h> 83 #include <linux/timer.h> 84 #include <linux/ctype.h> 85 #include <linux/kd.h> 86 #include <linux/mm.h> 87 #include <linux/string.h> 88 #include <linux/slab.h> 89 #include <linux/poll.h> 90 #include <linux/ppp-ioctl.h> 91 #include <linux/proc_fs.h> 92 #include <linux/init.h> 93 #include <linux/module.h> 94 #include <linux/device.h> 95 #include <linux/wait.h> 96 #include <linux/bitops.h> 97 #include <linux/delay.h> 98 #include <linux/seq_file.h> 99 #include <linux/serial.h> 100 #include <linux/ratelimit.h> 101 #include <linux/compat.h> 102 #include <linux/uaccess.h> 103 #include <linux/termios_internal.h> 104 #include <linux/fs.h> 105 106 #include <linux/kbd_kern.h> 107 #include <linux/vt_kern.h> 108 #include <linux/selection.h> 109 110 #include <linux/kmod.h> 111 #include <linux/nsproxy.h> 112 #include "tty.h" 113 114 #undef TTY_DEBUG_HANGUP 115 #ifdef TTY_DEBUG_HANGUP 116 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 117 #else 118 # define tty_debug_hangup(tty, f, args...) do { } while (0) 119 #endif 120 121 #define TTY_PARANOIA_CHECK 1 122 #define CHECK_TTY_COUNT 1 123 124 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 125 .c_iflag = ICRNL | IXON, 126 .c_oflag = OPOST | ONLCR, 127 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 128 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 129 ECHOCTL | ECHOKE | IEXTEN, 130 .c_cc = INIT_C_CC, 131 .c_ispeed = 38400, 132 .c_ospeed = 38400, 133 /* .c_line = N_TTY, */ 134 }; 135 EXPORT_SYMBOL(tty_std_termios); 136 137 /* This list gets poked at by procfs and various bits of boot up code. This 138 * could do with some rationalisation such as pulling the tty proc function 139 * into this file. 140 */ 141 142 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 143 144 /* Mutex to protect creating and releasing a tty */ 145 DEFINE_MUTEX(tty_mutex); 146 147 static ssize_t tty_read(struct kiocb *, struct iov_iter *); 148 static ssize_t tty_write(struct kiocb *, struct iov_iter *); 149 static __poll_t tty_poll(struct file *, poll_table *); 150 static int tty_open(struct inode *, struct file *); 151 #ifdef CONFIG_COMPAT 152 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 153 unsigned long arg); 154 #else 155 #define tty_compat_ioctl NULL 156 #endif 157 static int __tty_fasync(int fd, struct file *filp, int on); 158 static int tty_fasync(int fd, struct file *filp, int on); 159 static void release_tty(struct tty_struct *tty, int idx); 160 161 /** 162 * free_tty_struct - free a disused tty 163 * @tty: tty struct to free 164 * 165 * Free the write buffers, tty queue and tty memory itself. 166 * 167 * Locking: none. Must be called after tty is definitely unused 168 */ 169 static void free_tty_struct(struct tty_struct *tty) 170 { 171 tty_ldisc_deinit(tty); 172 put_device(tty->dev); 173 kvfree(tty->write_buf); 174 kfree(tty); 175 } 176 177 static inline struct tty_struct *file_tty(struct file *file) 178 { 179 return ((struct tty_file_private *)file->private_data)->tty; 180 } 181 182 int tty_alloc_file(struct file *file) 183 { 184 struct tty_file_private *priv; 185 186 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 187 if (!priv) 188 return -ENOMEM; 189 190 file->private_data = priv; 191 192 return 0; 193 } 194 195 /* Associate a new file with the tty structure */ 196 void tty_add_file(struct tty_struct *tty, struct file *file) 197 { 198 struct tty_file_private *priv = file->private_data; 199 200 priv->tty = tty; 201 priv->file = file; 202 203 spin_lock(&tty->files_lock); 204 list_add(&priv->list, &tty->tty_files); 205 spin_unlock(&tty->files_lock); 206 } 207 208 /** 209 * tty_free_file - free file->private_data 210 * @file: to free private_data of 211 * 212 * This shall be used only for fail path handling when tty_add_file was not 213 * called yet. 214 */ 215 void tty_free_file(struct file *file) 216 { 217 struct tty_file_private *priv = file->private_data; 218 219 file->private_data = NULL; 220 kfree(priv); 221 } 222 223 /* Delete file from its tty */ 224 static void tty_del_file(struct file *file) 225 { 226 struct tty_file_private *priv = file->private_data; 227 struct tty_struct *tty = priv->tty; 228 229 spin_lock(&tty->files_lock); 230 list_del(&priv->list); 231 spin_unlock(&tty->files_lock); 232 tty_free_file(file); 233 } 234 235 /** 236 * tty_name - return tty naming 237 * @tty: tty structure 238 * 239 * Convert a tty structure into a name. The name reflects the kernel naming 240 * policy and if udev is in use may not reflect user space 241 * 242 * Locking: none 243 */ 244 const char *tty_name(const struct tty_struct *tty) 245 { 246 if (!tty) /* Hmm. NULL pointer. That's fun. */ 247 return "NULL tty"; 248 return tty->name; 249 } 250 EXPORT_SYMBOL(tty_name); 251 252 const char *tty_driver_name(const struct tty_struct *tty) 253 { 254 if (!tty || !tty->driver) 255 return ""; 256 return tty->driver->name; 257 } 258 259 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 260 const char *routine) 261 { 262 #ifdef TTY_PARANOIA_CHECK 263 if (!tty) { 264 pr_warn("(%d:%d): %s: NULL tty\n", 265 imajor(inode), iminor(inode), routine); 266 return 1; 267 } 268 #endif 269 return 0; 270 } 271 272 /* Caller must hold tty_lock */ 273 static void check_tty_count(struct tty_struct *tty, const char *routine) 274 { 275 #ifdef CHECK_TTY_COUNT 276 struct list_head *p; 277 int count = 0, kopen_count = 0; 278 279 spin_lock(&tty->files_lock); 280 list_for_each(p, &tty->tty_files) { 281 count++; 282 } 283 spin_unlock(&tty->files_lock); 284 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 285 tty->driver->subtype == PTY_TYPE_SLAVE && 286 tty->link && tty->link->count) 287 count++; 288 if (tty_port_kopened(tty->port)) 289 kopen_count++; 290 if (tty->count != (count + kopen_count)) { 291 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n", 292 routine, tty->count, count, kopen_count); 293 } 294 #endif 295 } 296 297 /** 298 * get_tty_driver - find device of a tty 299 * @device: device identifier 300 * @index: returns the index of the tty 301 * 302 * This routine returns a tty driver structure, given a device number and also 303 * passes back the index number. 304 * 305 * Locking: caller must hold tty_mutex 306 */ 307 static struct tty_driver *get_tty_driver(dev_t device, int *index) 308 { 309 struct tty_driver *p; 310 311 list_for_each_entry(p, &tty_drivers, tty_drivers) { 312 dev_t base = MKDEV(p->major, p->minor_start); 313 314 if (device < base || device >= base + p->num) 315 continue; 316 *index = device - base; 317 return tty_driver_kref_get(p); 318 } 319 return NULL; 320 } 321 322 /** 323 * tty_dev_name_to_number - return dev_t for device name 324 * @name: user space name of device under /dev 325 * @number: pointer to dev_t that this function will populate 326 * 327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like 328 * (4, 64) or (188, 1). If no corresponding driver is registered then the 329 * function returns -%ENODEV. 330 * 331 * Locking: this acquires tty_mutex to protect the tty_drivers list from 332 * being modified while we are traversing it, and makes sure to 333 * release it before exiting. 334 */ 335 int tty_dev_name_to_number(const char *name, dev_t *number) 336 { 337 struct tty_driver *p; 338 int ret; 339 int index, prefix_length = 0; 340 const char *str; 341 342 for (str = name; *str && !isdigit(*str); str++) 343 ; 344 345 if (!*str) 346 return -EINVAL; 347 348 ret = kstrtoint(str, 10, &index); 349 if (ret) 350 return ret; 351 352 prefix_length = str - name; 353 mutex_lock(&tty_mutex); 354 355 list_for_each_entry(p, &tty_drivers, tty_drivers) 356 if (prefix_length == strlen(p->name) && strncmp(name, 357 p->name, prefix_length) == 0) { 358 if (index < p->num) { 359 *number = MKDEV(p->major, p->minor_start + index); 360 goto out; 361 } 362 } 363 364 /* if here then driver wasn't found */ 365 ret = -ENODEV; 366 out: 367 mutex_unlock(&tty_mutex); 368 return ret; 369 } 370 EXPORT_SYMBOL_GPL(tty_dev_name_to_number); 371 372 #ifdef CONFIG_CONSOLE_POLL 373 374 /** 375 * tty_find_polling_driver - find device of a polled tty 376 * @name: name string to match 377 * @line: pointer to resulting tty line nr 378 * 379 * This routine returns a tty driver structure, given a name and the condition 380 * that the tty driver is capable of polled operation. 381 */ 382 struct tty_driver *tty_find_polling_driver(char *name, int *line) 383 { 384 struct tty_driver *p, *res = NULL; 385 int tty_line = 0; 386 int len; 387 char *str, *stp; 388 389 for (str = name; *str; str++) 390 if ((*str >= '0' && *str <= '9') || *str == ',') 391 break; 392 if (!*str) 393 return NULL; 394 395 len = str - name; 396 tty_line = simple_strtoul(str, &str, 10); 397 398 mutex_lock(&tty_mutex); 399 /* Search through the tty devices to look for a match */ 400 list_for_each_entry(p, &tty_drivers, tty_drivers) { 401 if (!len || strncmp(name, p->name, len) != 0) 402 continue; 403 stp = str; 404 if (*stp == ',') 405 stp++; 406 if (*stp == '\0') 407 stp = NULL; 408 409 if (tty_line >= 0 && tty_line < p->num && p->ops && 410 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 411 res = tty_driver_kref_get(p); 412 *line = tty_line; 413 break; 414 } 415 } 416 mutex_unlock(&tty_mutex); 417 418 return res; 419 } 420 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 421 #endif 422 423 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to) 424 { 425 return 0; 426 } 427 428 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from) 429 { 430 return -EIO; 431 } 432 433 /* No kernel lock held - none needed ;) */ 434 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait) 435 { 436 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM; 437 } 438 439 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 440 unsigned long arg) 441 { 442 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 443 } 444 445 static long hung_up_tty_compat_ioctl(struct file *file, 446 unsigned int cmd, unsigned long arg) 447 { 448 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 449 } 450 451 static int hung_up_tty_fasync(int fd, struct file *file, int on) 452 { 453 return -ENOTTY; 454 } 455 456 static void tty_show_fdinfo(struct seq_file *m, struct file *file) 457 { 458 struct tty_struct *tty = file_tty(file); 459 460 if (tty && tty->ops && tty->ops->show_fdinfo) 461 tty->ops->show_fdinfo(tty, m); 462 } 463 464 static const struct file_operations tty_fops = { 465 .llseek = no_llseek, 466 .read_iter = tty_read, 467 .write_iter = tty_write, 468 .splice_read = copy_splice_read, 469 .splice_write = iter_file_splice_write, 470 .poll = tty_poll, 471 .unlocked_ioctl = tty_ioctl, 472 .compat_ioctl = tty_compat_ioctl, 473 .open = tty_open, 474 .release = tty_release, 475 .fasync = tty_fasync, 476 .show_fdinfo = tty_show_fdinfo, 477 }; 478 479 static const struct file_operations console_fops = { 480 .llseek = no_llseek, 481 .read_iter = tty_read, 482 .write_iter = redirected_tty_write, 483 .splice_read = copy_splice_read, 484 .splice_write = iter_file_splice_write, 485 .poll = tty_poll, 486 .unlocked_ioctl = tty_ioctl, 487 .compat_ioctl = tty_compat_ioctl, 488 .open = tty_open, 489 .release = tty_release, 490 .fasync = tty_fasync, 491 }; 492 493 static const struct file_operations hung_up_tty_fops = { 494 .llseek = no_llseek, 495 .read_iter = hung_up_tty_read, 496 .write_iter = hung_up_tty_write, 497 .poll = hung_up_tty_poll, 498 .unlocked_ioctl = hung_up_tty_ioctl, 499 .compat_ioctl = hung_up_tty_compat_ioctl, 500 .release = tty_release, 501 .fasync = hung_up_tty_fasync, 502 }; 503 504 static DEFINE_SPINLOCK(redirect_lock); 505 static struct file *redirect; 506 507 /** 508 * tty_wakeup - request more data 509 * @tty: terminal 510 * 511 * Internal and external helper for wakeups of tty. This function informs the 512 * line discipline if present that the driver is ready to receive more output 513 * data. 514 */ 515 void tty_wakeup(struct tty_struct *tty) 516 { 517 struct tty_ldisc *ld; 518 519 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 520 ld = tty_ldisc_ref(tty); 521 if (ld) { 522 if (ld->ops->write_wakeup) 523 ld->ops->write_wakeup(tty); 524 tty_ldisc_deref(ld); 525 } 526 } 527 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 528 } 529 EXPORT_SYMBOL_GPL(tty_wakeup); 530 531 /** 532 * tty_release_redirect - Release a redirect on a pty if present 533 * @tty: tty device 534 * 535 * This is available to the pty code so if the master closes, if the slave is a 536 * redirect it can release the redirect. 537 */ 538 static struct file *tty_release_redirect(struct tty_struct *tty) 539 { 540 struct file *f = NULL; 541 542 spin_lock(&redirect_lock); 543 if (redirect && file_tty(redirect) == tty) { 544 f = redirect; 545 redirect = NULL; 546 } 547 spin_unlock(&redirect_lock); 548 549 return f; 550 } 551 552 /** 553 * __tty_hangup - actual handler for hangup events 554 * @tty: tty device 555 * @exit_session: if non-zero, signal all foreground group processes 556 * 557 * This can be called by a "kworker" kernel thread. That is process synchronous 558 * but doesn't hold any locks, so we need to make sure we have the appropriate 559 * locks for what we're doing. 560 * 561 * The hangup event clears any pending redirections onto the hung up device. It 562 * ensures future writes will error and it does the needed line discipline 563 * hangup and signal delivery. The tty object itself remains intact. 564 * 565 * Locking: 566 * * BTM 567 * 568 * * redirect lock for undoing redirection 569 * * file list lock for manipulating list of ttys 570 * * tty_ldiscs_lock from called functions 571 * * termios_rwsem resetting termios data 572 * * tasklist_lock to walk task list for hangup event 573 * 574 * * ->siglock to protect ->signal/->sighand 575 * 576 */ 577 static void __tty_hangup(struct tty_struct *tty, int exit_session) 578 { 579 struct file *cons_filp = NULL; 580 struct file *filp, *f; 581 struct tty_file_private *priv; 582 int closecount = 0, n; 583 int refs; 584 585 if (!tty) 586 return; 587 588 f = tty_release_redirect(tty); 589 590 tty_lock(tty); 591 592 if (test_bit(TTY_HUPPED, &tty->flags)) { 593 tty_unlock(tty); 594 return; 595 } 596 597 /* 598 * Some console devices aren't actually hung up for technical and 599 * historical reasons, which can lead to indefinite interruptible 600 * sleep in n_tty_read(). The following explicitly tells 601 * n_tty_read() to abort readers. 602 */ 603 set_bit(TTY_HUPPING, &tty->flags); 604 605 /* inuse_filps is protected by the single tty lock, 606 * this really needs to change if we want to flush the 607 * workqueue with the lock held. 608 */ 609 check_tty_count(tty, "tty_hangup"); 610 611 spin_lock(&tty->files_lock); 612 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 613 list_for_each_entry(priv, &tty->tty_files, list) { 614 filp = priv->file; 615 if (filp->f_op->write_iter == redirected_tty_write) 616 cons_filp = filp; 617 if (filp->f_op->write_iter != tty_write) 618 continue; 619 closecount++; 620 __tty_fasync(-1, filp, 0); /* can't block */ 621 filp->f_op = &hung_up_tty_fops; 622 } 623 spin_unlock(&tty->files_lock); 624 625 refs = tty_signal_session_leader(tty, exit_session); 626 /* Account for the p->signal references we killed */ 627 while (refs--) 628 tty_kref_put(tty); 629 630 tty_ldisc_hangup(tty, cons_filp != NULL); 631 632 spin_lock_irq(&tty->ctrl.lock); 633 clear_bit(TTY_THROTTLED, &tty->flags); 634 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 635 put_pid(tty->ctrl.session); 636 put_pid(tty->ctrl.pgrp); 637 tty->ctrl.session = NULL; 638 tty->ctrl.pgrp = NULL; 639 tty->ctrl.pktstatus = 0; 640 spin_unlock_irq(&tty->ctrl.lock); 641 642 /* 643 * If one of the devices matches a console pointer, we 644 * cannot just call hangup() because that will cause 645 * tty->count and state->count to go out of sync. 646 * So we just call close() the right number of times. 647 */ 648 if (cons_filp) { 649 if (tty->ops->close) 650 for (n = 0; n < closecount; n++) 651 tty->ops->close(tty, cons_filp); 652 } else if (tty->ops->hangup) 653 tty->ops->hangup(tty); 654 /* 655 * We don't want to have driver/ldisc interactions beyond the ones 656 * we did here. The driver layer expects no calls after ->hangup() 657 * from the ldisc side, which is now guaranteed. 658 */ 659 set_bit(TTY_HUPPED, &tty->flags); 660 clear_bit(TTY_HUPPING, &tty->flags); 661 tty_unlock(tty); 662 663 if (f) 664 fput(f); 665 } 666 667 static void do_tty_hangup(struct work_struct *work) 668 { 669 struct tty_struct *tty = 670 container_of(work, struct tty_struct, hangup_work); 671 672 __tty_hangup(tty, 0); 673 } 674 675 /** 676 * tty_hangup - trigger a hangup event 677 * @tty: tty to hangup 678 * 679 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a 680 * hangup sequence to run after this event. 681 */ 682 void tty_hangup(struct tty_struct *tty) 683 { 684 tty_debug_hangup(tty, "hangup\n"); 685 schedule_work(&tty->hangup_work); 686 } 687 EXPORT_SYMBOL(tty_hangup); 688 689 /** 690 * tty_vhangup - process vhangup 691 * @tty: tty to hangup 692 * 693 * The user has asked via system call for the terminal to be hung up. We do 694 * this synchronously so that when the syscall returns the process is complete. 695 * That guarantee is necessary for security reasons. 696 */ 697 void tty_vhangup(struct tty_struct *tty) 698 { 699 tty_debug_hangup(tty, "vhangup\n"); 700 __tty_hangup(tty, 0); 701 } 702 EXPORT_SYMBOL(tty_vhangup); 703 704 705 /** 706 * tty_vhangup_self - process vhangup for own ctty 707 * 708 * Perform a vhangup on the current controlling tty 709 */ 710 void tty_vhangup_self(void) 711 { 712 struct tty_struct *tty; 713 714 tty = get_current_tty(); 715 if (tty) { 716 tty_vhangup(tty); 717 tty_kref_put(tty); 718 } 719 } 720 721 /** 722 * tty_vhangup_session - hangup session leader exit 723 * @tty: tty to hangup 724 * 725 * The session leader is exiting and hanging up its controlling terminal. 726 * Every process in the foreground process group is signalled %SIGHUP. 727 * 728 * We do this synchronously so that when the syscall returns the process is 729 * complete. That guarantee is necessary for security reasons. 730 */ 731 void tty_vhangup_session(struct tty_struct *tty) 732 { 733 tty_debug_hangup(tty, "session hangup\n"); 734 __tty_hangup(tty, 1); 735 } 736 737 /** 738 * tty_hung_up_p - was tty hung up 739 * @filp: file pointer of tty 740 * 741 * Return: true if the tty has been subject to a vhangup or a carrier loss 742 */ 743 int tty_hung_up_p(struct file *filp) 744 { 745 return (filp && filp->f_op == &hung_up_tty_fops); 746 } 747 EXPORT_SYMBOL(tty_hung_up_p); 748 749 void __stop_tty(struct tty_struct *tty) 750 { 751 if (tty->flow.stopped) 752 return; 753 tty->flow.stopped = true; 754 if (tty->ops->stop) 755 tty->ops->stop(tty); 756 } 757 758 /** 759 * stop_tty - propagate flow control 760 * @tty: tty to stop 761 * 762 * Perform flow control to the driver. May be called on an already stopped 763 * device and will not re-call the &tty_driver->stop() method. 764 * 765 * This functionality is used by both the line disciplines for halting incoming 766 * flow and by the driver. It may therefore be called from any context, may be 767 * under the tty %atomic_write_lock but not always. 768 * 769 * Locking: 770 * flow.lock 771 */ 772 void stop_tty(struct tty_struct *tty) 773 { 774 unsigned long flags; 775 776 spin_lock_irqsave(&tty->flow.lock, flags); 777 __stop_tty(tty); 778 spin_unlock_irqrestore(&tty->flow.lock, flags); 779 } 780 EXPORT_SYMBOL(stop_tty); 781 782 void __start_tty(struct tty_struct *tty) 783 { 784 if (!tty->flow.stopped || tty->flow.tco_stopped) 785 return; 786 tty->flow.stopped = false; 787 if (tty->ops->start) 788 tty->ops->start(tty); 789 tty_wakeup(tty); 790 } 791 792 /** 793 * start_tty - propagate flow control 794 * @tty: tty to start 795 * 796 * Start a tty that has been stopped if at all possible. If @tty was previously 797 * stopped and is now being started, the &tty_driver->start() method is invoked 798 * and the line discipline woken. 799 * 800 * Locking: 801 * flow.lock 802 */ 803 void start_tty(struct tty_struct *tty) 804 { 805 unsigned long flags; 806 807 spin_lock_irqsave(&tty->flow.lock, flags); 808 __start_tty(tty); 809 spin_unlock_irqrestore(&tty->flow.lock, flags); 810 } 811 EXPORT_SYMBOL(start_tty); 812 813 static void tty_update_time(struct tty_struct *tty, bool mtime) 814 { 815 time64_t sec = ktime_get_real_seconds(); 816 struct tty_file_private *priv; 817 818 spin_lock(&tty->files_lock); 819 list_for_each_entry(priv, &tty->tty_files, list) { 820 struct inode *inode = file_inode(priv->file); 821 struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode); 822 823 /* 824 * We only care if the two values differ in anything other than the 825 * lower three bits (i.e every 8 seconds). If so, then we can update 826 * the time of the tty device, otherwise it could be construded as a 827 * security leak to let userspace know the exact timing of the tty. 828 */ 829 if ((sec ^ time.tv_sec) & ~7) { 830 if (mtime) 831 inode_set_mtime(inode, sec, 0); 832 else 833 inode_set_atime(inode, sec, 0); 834 } 835 } 836 spin_unlock(&tty->files_lock); 837 } 838 839 /* 840 * Iterate on the ldisc ->read() function until we've gotten all 841 * the data the ldisc has for us. 842 * 843 * The "cookie" is something that the ldisc read function can fill 844 * in to let us know that there is more data to be had. 845 * 846 * We promise to continue to call the ldisc until it stops returning 847 * data or clears the cookie. The cookie may be something that the 848 * ldisc maintains state for and needs to free. 849 */ 850 static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty, 851 struct file *file, struct iov_iter *to) 852 { 853 void *cookie = NULL; 854 unsigned long offset = 0; 855 char kernel_buf[64]; 856 ssize_t retval = 0; 857 size_t copied, count = iov_iter_count(to); 858 859 do { 860 ssize_t size = min(count, sizeof(kernel_buf)); 861 862 size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset); 863 if (!size) 864 break; 865 866 if (size < 0) { 867 /* Did we have an earlier error (ie -EFAULT)? */ 868 if (retval) 869 break; 870 retval = size; 871 872 /* 873 * -EOVERFLOW means we didn't have enough space 874 * for a whole packet, and we shouldn't return 875 * a partial result. 876 */ 877 if (retval == -EOVERFLOW) 878 offset = 0; 879 break; 880 } 881 882 copied = copy_to_iter(kernel_buf, size, to); 883 offset += copied; 884 count -= copied; 885 886 /* 887 * If the user copy failed, we still need to do another ->read() 888 * call if we had a cookie to let the ldisc clear up. 889 * 890 * But make sure size is zeroed. 891 */ 892 if (unlikely(copied != size)) { 893 count = 0; 894 retval = -EFAULT; 895 } 896 } while (cookie); 897 898 /* We always clear tty buffer in case they contained passwords */ 899 memzero_explicit(kernel_buf, sizeof(kernel_buf)); 900 return offset ? offset : retval; 901 } 902 903 904 /** 905 * tty_read - read method for tty device files 906 * @iocb: kernel I/O control block 907 * @to: destination for the data read 908 * 909 * Perform the read system call function on this terminal device. Checks 910 * for hung up devices before calling the line discipline method. 911 * 912 * Locking: 913 * Locks the line discipline internally while needed. Multiple read calls 914 * may be outstanding in parallel. 915 */ 916 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to) 917 { 918 struct file *file = iocb->ki_filp; 919 struct inode *inode = file_inode(file); 920 struct tty_struct *tty = file_tty(file); 921 struct tty_ldisc *ld; 922 ssize_t ret; 923 924 if (tty_paranoia_check(tty, inode, "tty_read")) 925 return -EIO; 926 if (!tty || tty_io_error(tty)) 927 return -EIO; 928 929 /* We want to wait for the line discipline to sort out in this 930 * situation. 931 */ 932 ld = tty_ldisc_ref_wait(tty); 933 if (!ld) 934 return hung_up_tty_read(iocb, to); 935 ret = -EIO; 936 if (ld->ops->read) 937 ret = iterate_tty_read(ld, tty, file, to); 938 tty_ldisc_deref(ld); 939 940 if (ret > 0) 941 tty_update_time(tty, false); 942 943 return ret; 944 } 945 946 void tty_write_unlock(struct tty_struct *tty) 947 { 948 mutex_unlock(&tty->atomic_write_lock); 949 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 950 } 951 952 int tty_write_lock(struct tty_struct *tty, bool ndelay) 953 { 954 if (!mutex_trylock(&tty->atomic_write_lock)) { 955 if (ndelay) 956 return -EAGAIN; 957 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 958 return -ERESTARTSYS; 959 } 960 return 0; 961 } 962 963 /* 964 * Split writes up in sane blocksizes to avoid 965 * denial-of-service type attacks 966 */ 967 static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty, 968 struct file *file, struct iov_iter *from) 969 { 970 size_t chunk, count = iov_iter_count(from); 971 ssize_t ret, written = 0; 972 973 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 974 if (ret < 0) 975 return ret; 976 977 /* 978 * We chunk up writes into a temporary buffer. This 979 * simplifies low-level drivers immensely, since they 980 * don't have locking issues and user mode accesses. 981 * 982 * But if TTY_NO_WRITE_SPLIT is set, we should use a 983 * big chunk-size.. 984 * 985 * The default chunk-size is 2kB, because the NTTY 986 * layer has problems with bigger chunks. It will 987 * claim to be able to handle more characters than 988 * it actually does. 989 */ 990 chunk = 2048; 991 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 992 chunk = 65536; 993 if (count < chunk) 994 chunk = count; 995 996 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 997 if (tty->write_cnt < chunk) { 998 unsigned char *buf_chunk; 999 1000 if (chunk < 1024) 1001 chunk = 1024; 1002 1003 buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1004 if (!buf_chunk) { 1005 ret = -ENOMEM; 1006 goto out; 1007 } 1008 kvfree(tty->write_buf); 1009 tty->write_cnt = chunk; 1010 tty->write_buf = buf_chunk; 1011 } 1012 1013 /* Do the write .. */ 1014 for (;;) { 1015 size_t size = min(chunk, count); 1016 1017 ret = -EFAULT; 1018 if (copy_from_iter(tty->write_buf, size, from) != size) 1019 break; 1020 1021 ret = ld->ops->write(tty, file, tty->write_buf, size); 1022 if (ret <= 0) 1023 break; 1024 1025 written += ret; 1026 if (ret > size) 1027 break; 1028 1029 /* FIXME! Have Al check this! */ 1030 if (ret != size) 1031 iov_iter_revert(from, size-ret); 1032 1033 count -= ret; 1034 if (!count) 1035 break; 1036 ret = -ERESTARTSYS; 1037 if (signal_pending(current)) 1038 break; 1039 cond_resched(); 1040 } 1041 if (written) { 1042 tty_update_time(tty, true); 1043 ret = written; 1044 } 1045 out: 1046 tty_write_unlock(tty); 1047 return ret; 1048 } 1049 1050 /** 1051 * tty_write_message - write a message to a certain tty, not just the console. 1052 * @tty: the destination tty_struct 1053 * @msg: the message to write 1054 * 1055 * This is used for messages that need to be redirected to a specific tty. We 1056 * don't put it into the syslog queue right now maybe in the future if really 1057 * needed. 1058 * 1059 * We must still hold the BTM and test the CLOSING flag for the moment. 1060 */ 1061 void tty_write_message(struct tty_struct *tty, char *msg) 1062 { 1063 if (tty) { 1064 mutex_lock(&tty->atomic_write_lock); 1065 tty_lock(tty); 1066 if (tty->ops->write && tty->count > 0) 1067 tty->ops->write(tty, msg, strlen(msg)); 1068 tty_unlock(tty); 1069 tty_write_unlock(tty); 1070 } 1071 } 1072 1073 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from) 1074 { 1075 struct tty_struct *tty = file_tty(file); 1076 struct tty_ldisc *ld; 1077 ssize_t ret; 1078 1079 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1080 return -EIO; 1081 if (!tty || !tty->ops->write || tty_io_error(tty)) 1082 return -EIO; 1083 /* Short term debug to catch buggy drivers */ 1084 if (tty->ops->write_room == NULL) 1085 tty_err(tty, "missing write_room method\n"); 1086 ld = tty_ldisc_ref_wait(tty); 1087 if (!ld) 1088 return hung_up_tty_write(iocb, from); 1089 if (!ld->ops->write) 1090 ret = -EIO; 1091 else 1092 ret = iterate_tty_write(ld, tty, file, from); 1093 tty_ldisc_deref(ld); 1094 return ret; 1095 } 1096 1097 /** 1098 * tty_write - write method for tty device file 1099 * @iocb: kernel I/O control block 1100 * @from: iov_iter with data to write 1101 * 1102 * Write data to a tty device via the line discipline. 1103 * 1104 * Locking: 1105 * Locks the line discipline as required 1106 * Writes to the tty driver are serialized by the atomic_write_lock 1107 * and are then processed in chunks to the device. The line 1108 * discipline write method will not be invoked in parallel for 1109 * each device. 1110 */ 1111 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from) 1112 { 1113 return file_tty_write(iocb->ki_filp, iocb, from); 1114 } 1115 1116 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter) 1117 { 1118 struct file *p = NULL; 1119 1120 spin_lock(&redirect_lock); 1121 if (redirect) 1122 p = get_file(redirect); 1123 spin_unlock(&redirect_lock); 1124 1125 /* 1126 * We know the redirected tty is just another tty, we can 1127 * call file_tty_write() directly with that file pointer. 1128 */ 1129 if (p) { 1130 ssize_t res; 1131 1132 res = file_tty_write(p, iocb, iter); 1133 fput(p); 1134 return res; 1135 } 1136 return tty_write(iocb, iter); 1137 } 1138 1139 /** 1140 * tty_send_xchar - send priority character 1141 * @tty: the tty to send to 1142 * @ch: xchar to send 1143 * 1144 * Send a high priority character to the tty even if stopped. 1145 * 1146 * Locking: none for xchar method, write ordering for write method. 1147 */ 1148 int tty_send_xchar(struct tty_struct *tty, char ch) 1149 { 1150 bool was_stopped = tty->flow.stopped; 1151 1152 if (tty->ops->send_xchar) { 1153 down_read(&tty->termios_rwsem); 1154 tty->ops->send_xchar(tty, ch); 1155 up_read(&tty->termios_rwsem); 1156 return 0; 1157 } 1158 1159 if (tty_write_lock(tty, false) < 0) 1160 return -ERESTARTSYS; 1161 1162 down_read(&tty->termios_rwsem); 1163 if (was_stopped) 1164 start_tty(tty); 1165 tty->ops->write(tty, &ch, 1); 1166 if (was_stopped) 1167 stop_tty(tty); 1168 up_read(&tty->termios_rwsem); 1169 tty_write_unlock(tty); 1170 return 0; 1171 } 1172 1173 /** 1174 * pty_line_name - generate name for a pty 1175 * @driver: the tty driver in use 1176 * @index: the minor number 1177 * @p: output buffer of at least 6 bytes 1178 * 1179 * Generate a name from a @driver reference and write it to the output buffer 1180 * @p. 1181 * 1182 * Locking: None 1183 */ 1184 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1185 { 1186 static const char ptychar[] = "pqrstuvwxyzabcde"; 1187 int i = index + driver->name_base; 1188 /* ->name is initialized to "ttyp", but "tty" is expected */ 1189 sprintf(p, "%s%c%x", 1190 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1191 ptychar[i >> 4 & 0xf], i & 0xf); 1192 } 1193 1194 /** 1195 * tty_line_name - generate name for a tty 1196 * @driver: the tty driver in use 1197 * @index: the minor number 1198 * @p: output buffer of at least 7 bytes 1199 * 1200 * Generate a name from a @driver reference and write it to the output buffer 1201 * @p. 1202 * 1203 * Locking: None 1204 */ 1205 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1206 { 1207 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1208 return sprintf(p, "%s", driver->name); 1209 else 1210 return sprintf(p, "%s%d", driver->name, 1211 index + driver->name_base); 1212 } 1213 1214 /** 1215 * tty_driver_lookup_tty() - find an existing tty, if any 1216 * @driver: the driver for the tty 1217 * @file: file object 1218 * @idx: the minor number 1219 * 1220 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the 1221 * driver lookup() method returns an error. 1222 * 1223 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1224 */ 1225 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1226 struct file *file, int idx) 1227 { 1228 struct tty_struct *tty; 1229 1230 if (driver->ops->lookup) { 1231 if (!file) 1232 tty = ERR_PTR(-EIO); 1233 else 1234 tty = driver->ops->lookup(driver, file, idx); 1235 } else { 1236 if (idx >= driver->num) 1237 return ERR_PTR(-EINVAL); 1238 tty = driver->ttys[idx]; 1239 } 1240 if (!IS_ERR(tty)) 1241 tty_kref_get(tty); 1242 return tty; 1243 } 1244 1245 /** 1246 * tty_init_termios - helper for termios setup 1247 * @tty: the tty to set up 1248 * 1249 * Initialise the termios structure for this tty. This runs under the 1250 * %tty_mutex currently so we can be relaxed about ordering. 1251 */ 1252 void tty_init_termios(struct tty_struct *tty) 1253 { 1254 struct ktermios *tp; 1255 int idx = tty->index; 1256 1257 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1258 tty->termios = tty->driver->init_termios; 1259 else { 1260 /* Check for lazy saved data */ 1261 tp = tty->driver->termios[idx]; 1262 if (tp != NULL) { 1263 tty->termios = *tp; 1264 tty->termios.c_line = tty->driver->init_termios.c_line; 1265 } else 1266 tty->termios = tty->driver->init_termios; 1267 } 1268 /* Compatibility until drivers always set this */ 1269 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1270 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1271 } 1272 EXPORT_SYMBOL_GPL(tty_init_termios); 1273 1274 /** 1275 * tty_standard_install - usual tty->ops->install 1276 * @driver: the driver for the tty 1277 * @tty: the tty 1278 * 1279 * If the @driver overrides @tty->ops->install, it still can call this function 1280 * to perform the standard install operations. 1281 */ 1282 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1283 { 1284 tty_init_termios(tty); 1285 tty_driver_kref_get(driver); 1286 tty->count++; 1287 driver->ttys[tty->index] = tty; 1288 return 0; 1289 } 1290 EXPORT_SYMBOL_GPL(tty_standard_install); 1291 1292 /** 1293 * tty_driver_install_tty() - install a tty entry in the driver 1294 * @driver: the driver for the tty 1295 * @tty: the tty 1296 * 1297 * Install a tty object into the driver tables. The @tty->index field will be 1298 * set by the time this is called. This method is responsible for ensuring any 1299 * need additional structures are allocated and configured. 1300 * 1301 * Locking: tty_mutex for now 1302 */ 1303 static int tty_driver_install_tty(struct tty_driver *driver, 1304 struct tty_struct *tty) 1305 { 1306 return driver->ops->install ? driver->ops->install(driver, tty) : 1307 tty_standard_install(driver, tty); 1308 } 1309 1310 /** 1311 * tty_driver_remove_tty() - remove a tty from the driver tables 1312 * @driver: the driver for the tty 1313 * @tty: tty to remove 1314 * 1315 * Remove a tty object from the driver tables. The tty->index field will be set 1316 * by the time this is called. 1317 * 1318 * Locking: tty_mutex for now 1319 */ 1320 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1321 { 1322 if (driver->ops->remove) 1323 driver->ops->remove(driver, tty); 1324 else 1325 driver->ttys[tty->index] = NULL; 1326 } 1327 1328 /** 1329 * tty_reopen() - fast re-open of an open tty 1330 * @tty: the tty to open 1331 * 1332 * Re-opens on master ptys are not allowed and return -%EIO. 1333 * 1334 * Locking: Caller must hold tty_lock 1335 * Return: 0 on success, -errno on error. 1336 */ 1337 static int tty_reopen(struct tty_struct *tty) 1338 { 1339 struct tty_driver *driver = tty->driver; 1340 struct tty_ldisc *ld; 1341 int retval = 0; 1342 1343 if (driver->type == TTY_DRIVER_TYPE_PTY && 1344 driver->subtype == PTY_TYPE_MASTER) 1345 return -EIO; 1346 1347 if (!tty->count) 1348 return -EAGAIN; 1349 1350 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1351 return -EBUSY; 1352 1353 ld = tty_ldisc_ref_wait(tty); 1354 if (ld) { 1355 tty_ldisc_deref(ld); 1356 } else { 1357 retval = tty_ldisc_lock(tty, 5 * HZ); 1358 if (retval) 1359 return retval; 1360 1361 if (!tty->ldisc) 1362 retval = tty_ldisc_reinit(tty, tty->termios.c_line); 1363 tty_ldisc_unlock(tty); 1364 } 1365 1366 if (retval == 0) 1367 tty->count++; 1368 1369 return retval; 1370 } 1371 1372 /** 1373 * tty_init_dev - initialise a tty device 1374 * @driver: tty driver we are opening a device on 1375 * @idx: device index 1376 * 1377 * Prepare a tty device. This may not be a "new" clean device but could also be 1378 * an active device. The pty drivers require special handling because of this. 1379 * 1380 * Locking: 1381 * The function is called under the tty_mutex, which protects us from the 1382 * tty struct or driver itself going away. 1383 * 1384 * On exit the tty device has the line discipline attached and a reference 1385 * count of 1. If a pair was created for pty/tty use and the other was a pty 1386 * master then it too has a reference count of 1. 1387 * 1388 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed 1389 * open. The new code protects the open with a mutex, so it's really quite 1390 * straightforward. The mutex locking can probably be relaxed for the (most 1391 * common) case of reopening a tty. 1392 * 1393 * Return: new tty structure 1394 */ 1395 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1396 { 1397 struct tty_struct *tty; 1398 int retval; 1399 1400 /* 1401 * First time open is complex, especially for PTY devices. 1402 * This code guarantees that either everything succeeds and the 1403 * TTY is ready for operation, or else the table slots are vacated 1404 * and the allocated memory released. (Except that the termios 1405 * may be retained.) 1406 */ 1407 1408 if (!try_module_get(driver->owner)) 1409 return ERR_PTR(-ENODEV); 1410 1411 tty = alloc_tty_struct(driver, idx); 1412 if (!tty) { 1413 retval = -ENOMEM; 1414 goto err_module_put; 1415 } 1416 1417 tty_lock(tty); 1418 retval = tty_driver_install_tty(driver, tty); 1419 if (retval < 0) 1420 goto err_free_tty; 1421 1422 if (!tty->port) 1423 tty->port = driver->ports[idx]; 1424 1425 if (WARN_RATELIMIT(!tty->port, 1426 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n", 1427 __func__, tty->driver->name)) { 1428 retval = -EINVAL; 1429 goto err_release_lock; 1430 } 1431 1432 retval = tty_ldisc_lock(tty, 5 * HZ); 1433 if (retval) 1434 goto err_release_lock; 1435 tty->port->itty = tty; 1436 1437 /* 1438 * Structures all installed ... call the ldisc open routines. 1439 * If we fail here just call release_tty to clean up. No need 1440 * to decrement the use counts, as release_tty doesn't care. 1441 */ 1442 retval = tty_ldisc_setup(tty, tty->link); 1443 if (retval) 1444 goto err_release_tty; 1445 tty_ldisc_unlock(tty); 1446 /* Return the tty locked so that it cannot vanish under the caller */ 1447 return tty; 1448 1449 err_free_tty: 1450 tty_unlock(tty); 1451 free_tty_struct(tty); 1452 err_module_put: 1453 module_put(driver->owner); 1454 return ERR_PTR(retval); 1455 1456 /* call the tty release_tty routine to clean out this slot */ 1457 err_release_tty: 1458 tty_ldisc_unlock(tty); 1459 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1460 retval, idx); 1461 err_release_lock: 1462 tty_unlock(tty); 1463 release_tty(tty, idx); 1464 return ERR_PTR(retval); 1465 } 1466 1467 /** 1468 * tty_save_termios() - save tty termios data in driver table 1469 * @tty: tty whose termios data to save 1470 * 1471 * Locking: Caller guarantees serialisation with tty_init_termios(). 1472 */ 1473 void tty_save_termios(struct tty_struct *tty) 1474 { 1475 struct ktermios *tp; 1476 int idx = tty->index; 1477 1478 /* If the port is going to reset then it has no termios to save */ 1479 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1480 return; 1481 1482 /* Stash the termios data */ 1483 tp = tty->driver->termios[idx]; 1484 if (tp == NULL) { 1485 tp = kmalloc(sizeof(*tp), GFP_KERNEL); 1486 if (tp == NULL) 1487 return; 1488 tty->driver->termios[idx] = tp; 1489 } 1490 *tp = tty->termios; 1491 } 1492 EXPORT_SYMBOL_GPL(tty_save_termios); 1493 1494 /** 1495 * tty_flush_works - flush all works of a tty/pty pair 1496 * @tty: tty device to flush works for (or either end of a pty pair) 1497 * 1498 * Sync flush all works belonging to @tty (and the 'other' tty). 1499 */ 1500 static void tty_flush_works(struct tty_struct *tty) 1501 { 1502 flush_work(&tty->SAK_work); 1503 flush_work(&tty->hangup_work); 1504 if (tty->link) { 1505 flush_work(&tty->link->SAK_work); 1506 flush_work(&tty->link->hangup_work); 1507 } 1508 } 1509 1510 /** 1511 * release_one_tty - release tty structure memory 1512 * @work: work of tty we are obliterating 1513 * 1514 * Releases memory associated with a tty structure, and clears out the 1515 * driver table slots. This function is called when a device is no longer 1516 * in use. It also gets called when setup of a device fails. 1517 * 1518 * Locking: 1519 * takes the file list lock internally when working on the list of ttys 1520 * that the driver keeps. 1521 * 1522 * This method gets called from a work queue so that the driver private 1523 * cleanup ops can sleep (needed for USB at least) 1524 */ 1525 static void release_one_tty(struct work_struct *work) 1526 { 1527 struct tty_struct *tty = 1528 container_of(work, struct tty_struct, hangup_work); 1529 struct tty_driver *driver = tty->driver; 1530 struct module *owner = driver->owner; 1531 1532 if (tty->ops->cleanup) 1533 tty->ops->cleanup(tty); 1534 1535 tty_driver_kref_put(driver); 1536 module_put(owner); 1537 1538 spin_lock(&tty->files_lock); 1539 list_del_init(&tty->tty_files); 1540 spin_unlock(&tty->files_lock); 1541 1542 put_pid(tty->ctrl.pgrp); 1543 put_pid(tty->ctrl.session); 1544 free_tty_struct(tty); 1545 } 1546 1547 static void queue_release_one_tty(struct kref *kref) 1548 { 1549 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1550 1551 /* The hangup queue is now free so we can reuse it rather than 1552 * waste a chunk of memory for each port. 1553 */ 1554 INIT_WORK(&tty->hangup_work, release_one_tty); 1555 schedule_work(&tty->hangup_work); 1556 } 1557 1558 /** 1559 * tty_kref_put - release a tty kref 1560 * @tty: tty device 1561 * 1562 * Release a reference to the @tty device and if need be let the kref layer 1563 * destruct the object for us. 1564 */ 1565 void tty_kref_put(struct tty_struct *tty) 1566 { 1567 if (tty) 1568 kref_put(&tty->kref, queue_release_one_tty); 1569 } 1570 EXPORT_SYMBOL(tty_kref_put); 1571 1572 /** 1573 * release_tty - release tty structure memory 1574 * @tty: tty device release 1575 * @idx: index of the tty device release 1576 * 1577 * Release both @tty and a possible linked partner (think pty pair), 1578 * and decrement the refcount of the backing module. 1579 * 1580 * Locking: 1581 * tty_mutex 1582 * takes the file list lock internally when working on the list of ttys 1583 * that the driver keeps. 1584 */ 1585 static void release_tty(struct tty_struct *tty, int idx) 1586 { 1587 /* This should always be true but check for the moment */ 1588 WARN_ON(tty->index != idx); 1589 WARN_ON(!mutex_is_locked(&tty_mutex)); 1590 if (tty->ops->shutdown) 1591 tty->ops->shutdown(tty); 1592 tty_save_termios(tty); 1593 tty_driver_remove_tty(tty->driver, tty); 1594 if (tty->port) 1595 tty->port->itty = NULL; 1596 if (tty->link) 1597 tty->link->port->itty = NULL; 1598 if (tty->port) 1599 tty_buffer_cancel_work(tty->port); 1600 if (tty->link) 1601 tty_buffer_cancel_work(tty->link->port); 1602 1603 tty_kref_put(tty->link); 1604 tty_kref_put(tty); 1605 } 1606 1607 /** 1608 * tty_release_checks - check a tty before real release 1609 * @tty: tty to check 1610 * @idx: index of the tty 1611 * 1612 * Performs some paranoid checking before true release of the @tty. This is a 1613 * no-op unless %TTY_PARANOIA_CHECK is defined. 1614 */ 1615 static int tty_release_checks(struct tty_struct *tty, int idx) 1616 { 1617 #ifdef TTY_PARANOIA_CHECK 1618 if (idx < 0 || idx >= tty->driver->num) { 1619 tty_debug(tty, "bad idx %d\n", idx); 1620 return -1; 1621 } 1622 1623 /* not much to check for devpts */ 1624 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1625 return 0; 1626 1627 if (tty != tty->driver->ttys[idx]) { 1628 tty_debug(tty, "bad driver table[%d] = %p\n", 1629 idx, tty->driver->ttys[idx]); 1630 return -1; 1631 } 1632 if (tty->driver->other) { 1633 struct tty_struct *o_tty = tty->link; 1634 1635 if (o_tty != tty->driver->other->ttys[idx]) { 1636 tty_debug(tty, "bad other table[%d] = %p\n", 1637 idx, tty->driver->other->ttys[idx]); 1638 return -1; 1639 } 1640 if (o_tty->link != tty) { 1641 tty_debug(tty, "bad link = %p\n", o_tty->link); 1642 return -1; 1643 } 1644 } 1645 #endif 1646 return 0; 1647 } 1648 1649 /** 1650 * tty_kclose - closes tty opened by tty_kopen 1651 * @tty: tty device 1652 * 1653 * Performs the final steps to release and free a tty device. It is the same as 1654 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on 1655 * @tty->port. 1656 */ 1657 void tty_kclose(struct tty_struct *tty) 1658 { 1659 /* 1660 * Ask the line discipline code to release its structures 1661 */ 1662 tty_ldisc_release(tty); 1663 1664 /* Wait for pending work before tty destruction commences */ 1665 tty_flush_works(tty); 1666 1667 tty_debug_hangup(tty, "freeing structure\n"); 1668 /* 1669 * The release_tty function takes care of the details of clearing 1670 * the slots and preserving the termios structure. 1671 */ 1672 mutex_lock(&tty_mutex); 1673 tty_port_set_kopened(tty->port, 0); 1674 release_tty(tty, tty->index); 1675 mutex_unlock(&tty_mutex); 1676 } 1677 EXPORT_SYMBOL_GPL(tty_kclose); 1678 1679 /** 1680 * tty_release_struct - release a tty struct 1681 * @tty: tty device 1682 * @idx: index of the tty 1683 * 1684 * Performs the final steps to release and free a tty device. It is roughly the 1685 * reverse of tty_init_dev(). 1686 */ 1687 void tty_release_struct(struct tty_struct *tty, int idx) 1688 { 1689 /* 1690 * Ask the line discipline code to release its structures 1691 */ 1692 tty_ldisc_release(tty); 1693 1694 /* Wait for pending work before tty destruction commmences */ 1695 tty_flush_works(tty); 1696 1697 tty_debug_hangup(tty, "freeing structure\n"); 1698 /* 1699 * The release_tty function takes care of the details of clearing 1700 * the slots and preserving the termios structure. 1701 */ 1702 mutex_lock(&tty_mutex); 1703 release_tty(tty, idx); 1704 mutex_unlock(&tty_mutex); 1705 } 1706 EXPORT_SYMBOL_GPL(tty_release_struct); 1707 1708 /** 1709 * tty_release - vfs callback for close 1710 * @inode: inode of tty 1711 * @filp: file pointer for handle to tty 1712 * 1713 * Called the last time each file handle is closed that references this tty. 1714 * There may however be several such references. 1715 * 1716 * Locking: 1717 * Takes BKL. See tty_release_dev(). 1718 * 1719 * Even releasing the tty structures is a tricky business. We have to be very 1720 * careful that the structures are all released at the same time, as interrupts 1721 * might otherwise get the wrong pointers. 1722 * 1723 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1724 * lead to double frees or releasing memory still in use. 1725 */ 1726 int tty_release(struct inode *inode, struct file *filp) 1727 { 1728 struct tty_struct *tty = file_tty(filp); 1729 struct tty_struct *o_tty = NULL; 1730 int do_sleep, final; 1731 int idx; 1732 long timeout = 0; 1733 int once = 1; 1734 1735 if (tty_paranoia_check(tty, inode, __func__)) 1736 return 0; 1737 1738 tty_lock(tty); 1739 check_tty_count(tty, __func__); 1740 1741 __tty_fasync(-1, filp, 0); 1742 1743 idx = tty->index; 1744 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1745 tty->driver->subtype == PTY_TYPE_MASTER) 1746 o_tty = tty->link; 1747 1748 if (tty_release_checks(tty, idx)) { 1749 tty_unlock(tty); 1750 return 0; 1751 } 1752 1753 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1754 1755 if (tty->ops->close) 1756 tty->ops->close(tty, filp); 1757 1758 /* If tty is pty master, lock the slave pty (stable lock order) */ 1759 tty_lock_slave(o_tty); 1760 1761 /* 1762 * Sanity check: if tty->count is going to zero, there shouldn't be 1763 * any waiters on tty->read_wait or tty->write_wait. We test the 1764 * wait queues and kick everyone out _before_ actually starting to 1765 * close. This ensures that we won't block while releasing the tty 1766 * structure. 1767 * 1768 * The test for the o_tty closing is necessary, since the master and 1769 * slave sides may close in any order. If the slave side closes out 1770 * first, its count will be one, since the master side holds an open. 1771 * Thus this test wouldn't be triggered at the time the slave closed, 1772 * so we do it now. 1773 */ 1774 while (1) { 1775 do_sleep = 0; 1776 1777 if (tty->count <= 1) { 1778 if (waitqueue_active(&tty->read_wait)) { 1779 wake_up_poll(&tty->read_wait, EPOLLIN); 1780 do_sleep++; 1781 } 1782 if (waitqueue_active(&tty->write_wait)) { 1783 wake_up_poll(&tty->write_wait, EPOLLOUT); 1784 do_sleep++; 1785 } 1786 } 1787 if (o_tty && o_tty->count <= 1) { 1788 if (waitqueue_active(&o_tty->read_wait)) { 1789 wake_up_poll(&o_tty->read_wait, EPOLLIN); 1790 do_sleep++; 1791 } 1792 if (waitqueue_active(&o_tty->write_wait)) { 1793 wake_up_poll(&o_tty->write_wait, EPOLLOUT); 1794 do_sleep++; 1795 } 1796 } 1797 if (!do_sleep) 1798 break; 1799 1800 if (once) { 1801 once = 0; 1802 tty_warn(tty, "read/write wait queue active!\n"); 1803 } 1804 schedule_timeout_killable(timeout); 1805 if (timeout < 120 * HZ) 1806 timeout = 2 * timeout + 1; 1807 else 1808 timeout = MAX_SCHEDULE_TIMEOUT; 1809 } 1810 1811 if (o_tty) { 1812 if (--o_tty->count < 0) { 1813 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1814 o_tty->count = 0; 1815 } 1816 } 1817 if (--tty->count < 0) { 1818 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1819 tty->count = 0; 1820 } 1821 1822 /* 1823 * We've decremented tty->count, so we need to remove this file 1824 * descriptor off the tty->tty_files list; this serves two 1825 * purposes: 1826 * - check_tty_count sees the correct number of file descriptors 1827 * associated with this tty. 1828 * - do_tty_hangup no longer sees this file descriptor as 1829 * something that needs to be handled for hangups. 1830 */ 1831 tty_del_file(filp); 1832 1833 /* 1834 * Perform some housekeeping before deciding whether to return. 1835 * 1836 * If _either_ side is closing, make sure there aren't any 1837 * processes that still think tty or o_tty is their controlling 1838 * tty. 1839 */ 1840 if (!tty->count) { 1841 read_lock(&tasklist_lock); 1842 session_clear_tty(tty->ctrl.session); 1843 if (o_tty) 1844 session_clear_tty(o_tty->ctrl.session); 1845 read_unlock(&tasklist_lock); 1846 } 1847 1848 /* check whether both sides are closing ... */ 1849 final = !tty->count && !(o_tty && o_tty->count); 1850 1851 tty_unlock_slave(o_tty); 1852 tty_unlock(tty); 1853 1854 /* At this point, the tty->count == 0 should ensure a dead tty 1855 * cannot be re-opened by a racing opener. 1856 */ 1857 1858 if (!final) 1859 return 0; 1860 1861 tty_debug_hangup(tty, "final close\n"); 1862 1863 tty_release_struct(tty, idx); 1864 return 0; 1865 } 1866 1867 /** 1868 * tty_open_current_tty - get locked tty of current task 1869 * @device: device number 1870 * @filp: file pointer to tty 1871 * @return: locked tty of the current task iff @device is /dev/tty 1872 * 1873 * Performs a re-open of the current task's controlling tty. 1874 * 1875 * We cannot return driver and index like for the other nodes because devpts 1876 * will not work then. It expects inodes to be from devpts FS. 1877 */ 1878 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1879 { 1880 struct tty_struct *tty; 1881 int retval; 1882 1883 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1884 return NULL; 1885 1886 tty = get_current_tty(); 1887 if (!tty) 1888 return ERR_PTR(-ENXIO); 1889 1890 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1891 /* noctty = 1; */ 1892 tty_lock(tty); 1893 tty_kref_put(tty); /* safe to drop the kref now */ 1894 1895 retval = tty_reopen(tty); 1896 if (retval < 0) { 1897 tty_unlock(tty); 1898 tty = ERR_PTR(retval); 1899 } 1900 return tty; 1901 } 1902 1903 /** 1904 * tty_lookup_driver - lookup a tty driver for a given device file 1905 * @device: device number 1906 * @filp: file pointer to tty 1907 * @index: index for the device in the @return driver 1908 * 1909 * If returned value is not erroneous, the caller is responsible to decrement 1910 * the refcount by tty_driver_kref_put(). 1911 * 1912 * Locking: %tty_mutex protects get_tty_driver() 1913 * 1914 * Return: driver for this inode (with increased refcount) 1915 */ 1916 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1917 int *index) 1918 { 1919 struct tty_driver *driver = NULL; 1920 1921 switch (device) { 1922 #ifdef CONFIG_VT 1923 case MKDEV(TTY_MAJOR, 0): { 1924 extern struct tty_driver *console_driver; 1925 1926 driver = tty_driver_kref_get(console_driver); 1927 *index = fg_console; 1928 break; 1929 } 1930 #endif 1931 case MKDEV(TTYAUX_MAJOR, 1): { 1932 struct tty_driver *console_driver = console_device(index); 1933 1934 if (console_driver) { 1935 driver = tty_driver_kref_get(console_driver); 1936 if (driver && filp) { 1937 /* Don't let /dev/console block */ 1938 filp->f_flags |= O_NONBLOCK; 1939 break; 1940 } 1941 } 1942 if (driver) 1943 tty_driver_kref_put(driver); 1944 return ERR_PTR(-ENODEV); 1945 } 1946 default: 1947 driver = get_tty_driver(device, index); 1948 if (!driver) 1949 return ERR_PTR(-ENODEV); 1950 break; 1951 } 1952 return driver; 1953 } 1954 1955 static struct tty_struct *tty_kopen(dev_t device, int shared) 1956 { 1957 struct tty_struct *tty; 1958 struct tty_driver *driver; 1959 int index = -1; 1960 1961 mutex_lock(&tty_mutex); 1962 driver = tty_lookup_driver(device, NULL, &index); 1963 if (IS_ERR(driver)) { 1964 mutex_unlock(&tty_mutex); 1965 return ERR_CAST(driver); 1966 } 1967 1968 /* check whether we're reopening an existing tty */ 1969 tty = tty_driver_lookup_tty(driver, NULL, index); 1970 if (IS_ERR(tty) || shared) 1971 goto out; 1972 1973 if (tty) { 1974 /* drop kref from tty_driver_lookup_tty() */ 1975 tty_kref_put(tty); 1976 tty = ERR_PTR(-EBUSY); 1977 } else { /* tty_init_dev returns tty with the tty_lock held */ 1978 tty = tty_init_dev(driver, index); 1979 if (IS_ERR(tty)) 1980 goto out; 1981 tty_port_set_kopened(tty->port, 1); 1982 } 1983 out: 1984 mutex_unlock(&tty_mutex); 1985 tty_driver_kref_put(driver); 1986 return tty; 1987 } 1988 1989 /** 1990 * tty_kopen_exclusive - open a tty device for kernel 1991 * @device: dev_t of device to open 1992 * 1993 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure 1994 * it's not already opened and performs the first-time tty initialization. 1995 * 1996 * Claims the global %tty_mutex to serialize: 1997 * * concurrent first-time tty initialization 1998 * * concurrent tty driver removal w/ lookup 1999 * * concurrent tty removal from driver table 2000 * 2001 * Return: the locked initialized &tty_struct 2002 */ 2003 struct tty_struct *tty_kopen_exclusive(dev_t device) 2004 { 2005 return tty_kopen(device, 0); 2006 } 2007 EXPORT_SYMBOL_GPL(tty_kopen_exclusive); 2008 2009 /** 2010 * tty_kopen_shared - open a tty device for shared in-kernel use 2011 * @device: dev_t of device to open 2012 * 2013 * Opens an already existing tty for in-kernel use. Compared to 2014 * tty_kopen_exclusive() above it doesn't ensure to be the only user. 2015 * 2016 * Locking: identical to tty_kopen() above. 2017 */ 2018 struct tty_struct *tty_kopen_shared(dev_t device) 2019 { 2020 return tty_kopen(device, 1); 2021 } 2022 EXPORT_SYMBOL_GPL(tty_kopen_shared); 2023 2024 /** 2025 * tty_open_by_driver - open a tty device 2026 * @device: dev_t of device to open 2027 * @filp: file pointer to tty 2028 * 2029 * Performs the driver lookup, checks for a reopen, or otherwise performs the 2030 * first-time tty initialization. 2031 * 2032 * 2033 * Claims the global tty_mutex to serialize: 2034 * * concurrent first-time tty initialization 2035 * * concurrent tty driver removal w/ lookup 2036 * * concurrent tty removal from driver table 2037 * 2038 * Return: the locked initialized or re-opened &tty_struct 2039 */ 2040 static struct tty_struct *tty_open_by_driver(dev_t device, 2041 struct file *filp) 2042 { 2043 struct tty_struct *tty; 2044 struct tty_driver *driver = NULL; 2045 int index = -1; 2046 int retval; 2047 2048 mutex_lock(&tty_mutex); 2049 driver = tty_lookup_driver(device, filp, &index); 2050 if (IS_ERR(driver)) { 2051 mutex_unlock(&tty_mutex); 2052 return ERR_CAST(driver); 2053 } 2054 2055 /* check whether we're reopening an existing tty */ 2056 tty = tty_driver_lookup_tty(driver, filp, index); 2057 if (IS_ERR(tty)) { 2058 mutex_unlock(&tty_mutex); 2059 goto out; 2060 } 2061 2062 if (tty) { 2063 if (tty_port_kopened(tty->port)) { 2064 tty_kref_put(tty); 2065 mutex_unlock(&tty_mutex); 2066 tty = ERR_PTR(-EBUSY); 2067 goto out; 2068 } 2069 mutex_unlock(&tty_mutex); 2070 retval = tty_lock_interruptible(tty); 2071 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 2072 if (retval) { 2073 if (retval == -EINTR) 2074 retval = -ERESTARTSYS; 2075 tty = ERR_PTR(retval); 2076 goto out; 2077 } 2078 retval = tty_reopen(tty); 2079 if (retval < 0) { 2080 tty_unlock(tty); 2081 tty = ERR_PTR(retval); 2082 } 2083 } else { /* Returns with the tty_lock held for now */ 2084 tty = tty_init_dev(driver, index); 2085 mutex_unlock(&tty_mutex); 2086 } 2087 out: 2088 tty_driver_kref_put(driver); 2089 return tty; 2090 } 2091 2092 /** 2093 * tty_open - open a tty device 2094 * @inode: inode of device file 2095 * @filp: file pointer to tty 2096 * 2097 * tty_open() and tty_release() keep up the tty count that contains the number 2098 * of opens done on a tty. We cannot use the inode-count, as different inodes 2099 * might point to the same tty. 2100 * 2101 * Open-counting is needed for pty masters, as well as for keeping track of 2102 * serial lines: DTR is dropped when the last close happens. 2103 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2104 * 2105 * The termios state of a pty is reset on the first open so that settings don't 2106 * persist across reuse. 2107 * 2108 * Locking: 2109 * * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev(). 2110 * * @tty->count should protect the rest. 2111 * * ->siglock protects ->signal/->sighand 2112 * 2113 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex 2114 */ 2115 static int tty_open(struct inode *inode, struct file *filp) 2116 { 2117 struct tty_struct *tty; 2118 int noctty, retval; 2119 dev_t device = inode->i_rdev; 2120 unsigned saved_flags = filp->f_flags; 2121 2122 nonseekable_open(inode, filp); 2123 2124 retry_open: 2125 retval = tty_alloc_file(filp); 2126 if (retval) 2127 return -ENOMEM; 2128 2129 tty = tty_open_current_tty(device, filp); 2130 if (!tty) 2131 tty = tty_open_by_driver(device, filp); 2132 2133 if (IS_ERR(tty)) { 2134 tty_free_file(filp); 2135 retval = PTR_ERR(tty); 2136 if (retval != -EAGAIN || signal_pending(current)) 2137 return retval; 2138 schedule(); 2139 goto retry_open; 2140 } 2141 2142 tty_add_file(tty, filp); 2143 2144 check_tty_count(tty, __func__); 2145 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2146 2147 if (tty->ops->open) 2148 retval = tty->ops->open(tty, filp); 2149 else 2150 retval = -ENODEV; 2151 filp->f_flags = saved_flags; 2152 2153 if (retval) { 2154 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2155 2156 tty_unlock(tty); /* need to call tty_release without BTM */ 2157 tty_release(inode, filp); 2158 if (retval != -ERESTARTSYS) 2159 return retval; 2160 2161 if (signal_pending(current)) 2162 return retval; 2163 2164 schedule(); 2165 /* 2166 * Need to reset f_op in case a hangup happened. 2167 */ 2168 if (tty_hung_up_p(filp)) 2169 filp->f_op = &tty_fops; 2170 goto retry_open; 2171 } 2172 clear_bit(TTY_HUPPED, &tty->flags); 2173 2174 noctty = (filp->f_flags & O_NOCTTY) || 2175 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2176 device == MKDEV(TTYAUX_MAJOR, 1) || 2177 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2178 tty->driver->subtype == PTY_TYPE_MASTER); 2179 if (!noctty) 2180 tty_open_proc_set_tty(filp, tty); 2181 tty_unlock(tty); 2182 return 0; 2183 } 2184 2185 2186 /** 2187 * tty_poll - check tty status 2188 * @filp: file being polled 2189 * @wait: poll wait structures to update 2190 * 2191 * Call the line discipline polling method to obtain the poll status of the 2192 * device. 2193 * 2194 * Locking: locks called line discipline but ldisc poll method may be 2195 * re-entered freely by other callers. 2196 */ 2197 static __poll_t tty_poll(struct file *filp, poll_table *wait) 2198 { 2199 struct tty_struct *tty = file_tty(filp); 2200 struct tty_ldisc *ld; 2201 __poll_t ret = 0; 2202 2203 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2204 return 0; 2205 2206 ld = tty_ldisc_ref_wait(tty); 2207 if (!ld) 2208 return hung_up_tty_poll(filp, wait); 2209 if (ld->ops->poll) 2210 ret = ld->ops->poll(tty, filp, wait); 2211 tty_ldisc_deref(ld); 2212 return ret; 2213 } 2214 2215 static int __tty_fasync(int fd, struct file *filp, int on) 2216 { 2217 struct tty_struct *tty = file_tty(filp); 2218 unsigned long flags; 2219 int retval = 0; 2220 2221 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2222 goto out; 2223 2224 retval = fasync_helper(fd, filp, on, &tty->fasync); 2225 if (retval <= 0) 2226 goto out; 2227 2228 if (on) { 2229 enum pid_type type; 2230 struct pid *pid; 2231 2232 spin_lock_irqsave(&tty->ctrl.lock, flags); 2233 if (tty->ctrl.pgrp) { 2234 pid = tty->ctrl.pgrp; 2235 type = PIDTYPE_PGID; 2236 } else { 2237 pid = task_pid(current); 2238 type = PIDTYPE_TGID; 2239 } 2240 get_pid(pid); 2241 spin_unlock_irqrestore(&tty->ctrl.lock, flags); 2242 __f_setown(filp, pid, type, 0); 2243 put_pid(pid); 2244 retval = 0; 2245 } 2246 out: 2247 return retval; 2248 } 2249 2250 static int tty_fasync(int fd, struct file *filp, int on) 2251 { 2252 struct tty_struct *tty = file_tty(filp); 2253 int retval = -ENOTTY; 2254 2255 tty_lock(tty); 2256 if (!tty_hung_up_p(filp)) 2257 retval = __tty_fasync(fd, filp, on); 2258 tty_unlock(tty); 2259 2260 return retval; 2261 } 2262 2263 static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI); 2264 /** 2265 * tiocsti - fake input character 2266 * @tty: tty to fake input into 2267 * @p: pointer to character 2268 * 2269 * Fake input to a tty device. Does the necessary locking and input management. 2270 * 2271 * FIXME: does not honour flow control ?? 2272 * 2273 * Locking: 2274 * * Called functions take tty_ldiscs_lock 2275 * * current->signal->tty check is safe without locks 2276 */ 2277 static int tiocsti(struct tty_struct *tty, char __user *p) 2278 { 2279 char ch, mbz = 0; 2280 struct tty_ldisc *ld; 2281 2282 if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN)) 2283 return -EIO; 2284 2285 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2286 return -EPERM; 2287 if (get_user(ch, p)) 2288 return -EFAULT; 2289 tty_audit_tiocsti(tty, ch); 2290 ld = tty_ldisc_ref_wait(tty); 2291 if (!ld) 2292 return -EIO; 2293 tty_buffer_lock_exclusive(tty->port); 2294 if (ld->ops->receive_buf) 2295 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2296 tty_buffer_unlock_exclusive(tty->port); 2297 tty_ldisc_deref(ld); 2298 return 0; 2299 } 2300 2301 /** 2302 * tiocgwinsz - implement window query ioctl 2303 * @tty: tty 2304 * @arg: user buffer for result 2305 * 2306 * Copies the kernel idea of the window size into the user buffer. 2307 * 2308 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is 2309 * consistent. 2310 */ 2311 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2312 { 2313 int err; 2314 2315 mutex_lock(&tty->winsize_mutex); 2316 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2317 mutex_unlock(&tty->winsize_mutex); 2318 2319 return err ? -EFAULT : 0; 2320 } 2321 2322 /** 2323 * tty_do_resize - resize event 2324 * @tty: tty being resized 2325 * @ws: new dimensions 2326 * 2327 * Update the termios variables and send the necessary signals to peform a 2328 * terminal resize correctly. 2329 */ 2330 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2331 { 2332 struct pid *pgrp; 2333 2334 /* Lock the tty */ 2335 mutex_lock(&tty->winsize_mutex); 2336 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2337 goto done; 2338 2339 /* Signal the foreground process group */ 2340 pgrp = tty_get_pgrp(tty); 2341 if (pgrp) 2342 kill_pgrp(pgrp, SIGWINCH, 1); 2343 put_pid(pgrp); 2344 2345 tty->winsize = *ws; 2346 done: 2347 mutex_unlock(&tty->winsize_mutex); 2348 return 0; 2349 } 2350 EXPORT_SYMBOL(tty_do_resize); 2351 2352 /** 2353 * tiocswinsz - implement window size set ioctl 2354 * @tty: tty side of tty 2355 * @arg: user buffer for result 2356 * 2357 * Copies the user idea of the window size to the kernel. Traditionally this is 2358 * just advisory information but for the Linux console it actually has driver 2359 * level meaning and triggers a VC resize. 2360 * 2361 * Locking: 2362 * Driver dependent. The default do_resize method takes the tty termios 2363 * mutex and ctrl.lock. The console takes its own lock then calls into the 2364 * default method. 2365 */ 2366 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2367 { 2368 struct winsize tmp_ws; 2369 2370 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2371 return -EFAULT; 2372 2373 if (tty->ops->resize) 2374 return tty->ops->resize(tty, &tmp_ws); 2375 else 2376 return tty_do_resize(tty, &tmp_ws); 2377 } 2378 2379 /** 2380 * tioccons - allow admin to move logical console 2381 * @file: the file to become console 2382 * 2383 * Allow the administrator to move the redirected console device. 2384 * 2385 * Locking: uses redirect_lock to guard the redirect information 2386 */ 2387 static int tioccons(struct file *file) 2388 { 2389 if (!capable(CAP_SYS_ADMIN)) 2390 return -EPERM; 2391 if (file->f_op->write_iter == redirected_tty_write) { 2392 struct file *f; 2393 2394 spin_lock(&redirect_lock); 2395 f = redirect; 2396 redirect = NULL; 2397 spin_unlock(&redirect_lock); 2398 if (f) 2399 fput(f); 2400 return 0; 2401 } 2402 if (file->f_op->write_iter != tty_write) 2403 return -ENOTTY; 2404 if (!(file->f_mode & FMODE_WRITE)) 2405 return -EBADF; 2406 if (!(file->f_mode & FMODE_CAN_WRITE)) 2407 return -EINVAL; 2408 spin_lock(&redirect_lock); 2409 if (redirect) { 2410 spin_unlock(&redirect_lock); 2411 return -EBUSY; 2412 } 2413 redirect = get_file(file); 2414 spin_unlock(&redirect_lock); 2415 return 0; 2416 } 2417 2418 /** 2419 * tiocsetd - set line discipline 2420 * @tty: tty device 2421 * @p: pointer to user data 2422 * 2423 * Set the line discipline according to user request. 2424 * 2425 * Locking: see tty_set_ldisc(), this function is just a helper 2426 */ 2427 static int tiocsetd(struct tty_struct *tty, int __user *p) 2428 { 2429 int disc; 2430 int ret; 2431 2432 if (get_user(disc, p)) 2433 return -EFAULT; 2434 2435 ret = tty_set_ldisc(tty, disc); 2436 2437 return ret; 2438 } 2439 2440 /** 2441 * tiocgetd - get line discipline 2442 * @tty: tty device 2443 * @p: pointer to user data 2444 * 2445 * Retrieves the line discipline id directly from the ldisc. 2446 * 2447 * Locking: waits for ldisc reference (in case the line discipline is changing 2448 * or the @tty is being hungup) 2449 */ 2450 static int tiocgetd(struct tty_struct *tty, int __user *p) 2451 { 2452 struct tty_ldisc *ld; 2453 int ret; 2454 2455 ld = tty_ldisc_ref_wait(tty); 2456 if (!ld) 2457 return -EIO; 2458 ret = put_user(ld->ops->num, p); 2459 tty_ldisc_deref(ld); 2460 return ret; 2461 } 2462 2463 /** 2464 * send_break - performed time break 2465 * @tty: device to break on 2466 * @duration: timeout in mS 2467 * 2468 * Perform a timed break on hardware that lacks its own driver level timed 2469 * break functionality. 2470 * 2471 * Locking: 2472 * @tty->atomic_write_lock serializes 2473 */ 2474 static int send_break(struct tty_struct *tty, unsigned int duration) 2475 { 2476 int retval; 2477 2478 if (tty->ops->break_ctl == NULL) 2479 return 0; 2480 2481 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2482 return tty->ops->break_ctl(tty, duration); 2483 2484 /* Do the work ourselves */ 2485 if (tty_write_lock(tty, false) < 0) 2486 return -EINTR; 2487 2488 retval = tty->ops->break_ctl(tty, -1); 2489 if (!retval) { 2490 msleep_interruptible(duration); 2491 retval = tty->ops->break_ctl(tty, 0); 2492 } 2493 tty_write_unlock(tty); 2494 2495 if (signal_pending(current)) 2496 retval = -EINTR; 2497 2498 return retval; 2499 } 2500 2501 /** 2502 * tty_tiocmget - get modem status 2503 * @tty: tty device 2504 * @p: pointer to result 2505 * 2506 * Obtain the modem status bits from the tty driver if the feature is 2507 * supported. Return -%ENOTTY if it is not available. 2508 * 2509 * Locking: none (up to the driver) 2510 */ 2511 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2512 { 2513 int retval = -ENOTTY; 2514 2515 if (tty->ops->tiocmget) { 2516 retval = tty->ops->tiocmget(tty); 2517 2518 if (retval >= 0) 2519 retval = put_user(retval, p); 2520 } 2521 return retval; 2522 } 2523 2524 /** 2525 * tty_tiocmset - set modem status 2526 * @tty: tty device 2527 * @cmd: command - clear bits, set bits or set all 2528 * @p: pointer to desired bits 2529 * 2530 * Set the modem status bits from the tty driver if the feature 2531 * is supported. Return -%ENOTTY if it is not available. 2532 * 2533 * Locking: none (up to the driver) 2534 */ 2535 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2536 unsigned __user *p) 2537 { 2538 int retval; 2539 unsigned int set, clear, val; 2540 2541 if (tty->ops->tiocmset == NULL) 2542 return -ENOTTY; 2543 2544 retval = get_user(val, p); 2545 if (retval) 2546 return retval; 2547 set = clear = 0; 2548 switch (cmd) { 2549 case TIOCMBIS: 2550 set = val; 2551 break; 2552 case TIOCMBIC: 2553 clear = val; 2554 break; 2555 case TIOCMSET: 2556 set = val; 2557 clear = ~val; 2558 break; 2559 } 2560 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2561 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2562 return tty->ops->tiocmset(tty, set, clear); 2563 } 2564 2565 /** 2566 * tty_get_icount - get tty statistics 2567 * @tty: tty device 2568 * @icount: output parameter 2569 * 2570 * Gets a copy of the @tty's icount statistics. 2571 * 2572 * Locking: none (up to the driver) 2573 */ 2574 int tty_get_icount(struct tty_struct *tty, 2575 struct serial_icounter_struct *icount) 2576 { 2577 memset(icount, 0, sizeof(*icount)); 2578 2579 if (tty->ops->get_icount) 2580 return tty->ops->get_icount(tty, icount); 2581 else 2582 return -ENOTTY; 2583 } 2584 EXPORT_SYMBOL_GPL(tty_get_icount); 2585 2586 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2587 { 2588 struct serial_icounter_struct icount; 2589 int retval; 2590 2591 retval = tty_get_icount(tty, &icount); 2592 if (retval != 0) 2593 return retval; 2594 2595 if (copy_to_user(arg, &icount, sizeof(icount))) 2596 return -EFAULT; 2597 return 0; 2598 } 2599 2600 static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss) 2601 { 2602 char comm[TASK_COMM_LEN]; 2603 int flags; 2604 2605 flags = ss->flags & ASYNC_DEPRECATED; 2606 2607 if (flags) 2608 pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2609 __func__, get_task_comm(comm, current), flags); 2610 2611 if (!tty->ops->set_serial) 2612 return -ENOTTY; 2613 2614 return tty->ops->set_serial(tty, ss); 2615 } 2616 2617 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss) 2618 { 2619 struct serial_struct v; 2620 2621 if (copy_from_user(&v, ss, sizeof(*ss))) 2622 return -EFAULT; 2623 2624 return tty_set_serial(tty, &v); 2625 } 2626 2627 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss) 2628 { 2629 struct serial_struct v; 2630 int err; 2631 2632 memset(&v, 0, sizeof(v)); 2633 if (!tty->ops->get_serial) 2634 return -ENOTTY; 2635 err = tty->ops->get_serial(tty, &v); 2636 if (!err && copy_to_user(ss, &v, sizeof(v))) 2637 err = -EFAULT; 2638 return err; 2639 } 2640 2641 /* 2642 * if pty, return the slave side (real_tty) 2643 * otherwise, return self 2644 */ 2645 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2646 { 2647 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2648 tty->driver->subtype == PTY_TYPE_MASTER) 2649 tty = tty->link; 2650 return tty; 2651 } 2652 2653 /* 2654 * Split this up, as gcc can choke on it otherwise.. 2655 */ 2656 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2657 { 2658 struct tty_struct *tty = file_tty(file); 2659 struct tty_struct *real_tty; 2660 void __user *p = (void __user *)arg; 2661 int retval; 2662 struct tty_ldisc *ld; 2663 2664 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2665 return -EINVAL; 2666 2667 real_tty = tty_pair_get_tty(tty); 2668 2669 /* 2670 * Factor out some common prep work 2671 */ 2672 switch (cmd) { 2673 case TIOCSETD: 2674 case TIOCSBRK: 2675 case TIOCCBRK: 2676 case TCSBRK: 2677 case TCSBRKP: 2678 retval = tty_check_change(tty); 2679 if (retval) 2680 return retval; 2681 if (cmd != TIOCCBRK) { 2682 tty_wait_until_sent(tty, 0); 2683 if (signal_pending(current)) 2684 return -EINTR; 2685 } 2686 break; 2687 } 2688 2689 /* 2690 * Now do the stuff. 2691 */ 2692 switch (cmd) { 2693 case TIOCSTI: 2694 return tiocsti(tty, p); 2695 case TIOCGWINSZ: 2696 return tiocgwinsz(real_tty, p); 2697 case TIOCSWINSZ: 2698 return tiocswinsz(real_tty, p); 2699 case TIOCCONS: 2700 return real_tty != tty ? -EINVAL : tioccons(file); 2701 case TIOCEXCL: 2702 set_bit(TTY_EXCLUSIVE, &tty->flags); 2703 return 0; 2704 case TIOCNXCL: 2705 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2706 return 0; 2707 case TIOCGEXCL: 2708 { 2709 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2710 2711 return put_user(excl, (int __user *)p); 2712 } 2713 case TIOCGETD: 2714 return tiocgetd(tty, p); 2715 case TIOCSETD: 2716 return tiocsetd(tty, p); 2717 case TIOCVHANGUP: 2718 if (!capable(CAP_SYS_ADMIN)) 2719 return -EPERM; 2720 tty_vhangup(tty); 2721 return 0; 2722 case TIOCGDEV: 2723 { 2724 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2725 2726 return put_user(ret, (unsigned int __user *)p); 2727 } 2728 /* 2729 * Break handling 2730 */ 2731 case TIOCSBRK: /* Turn break on, unconditionally */ 2732 if (tty->ops->break_ctl) 2733 return tty->ops->break_ctl(tty, -1); 2734 return 0; 2735 case TIOCCBRK: /* Turn break off, unconditionally */ 2736 if (tty->ops->break_ctl) 2737 return tty->ops->break_ctl(tty, 0); 2738 return 0; 2739 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2740 /* non-zero arg means wait for all output data 2741 * to be sent (performed above) but don't send break. 2742 * This is used by the tcdrain() termios function. 2743 */ 2744 if (!arg) 2745 return send_break(tty, 250); 2746 return 0; 2747 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2748 return send_break(tty, arg ? arg*100 : 250); 2749 2750 case TIOCMGET: 2751 return tty_tiocmget(tty, p); 2752 case TIOCMSET: 2753 case TIOCMBIC: 2754 case TIOCMBIS: 2755 return tty_tiocmset(tty, cmd, p); 2756 case TIOCGICOUNT: 2757 return tty_tiocgicount(tty, p); 2758 case TCFLSH: 2759 switch (arg) { 2760 case TCIFLUSH: 2761 case TCIOFLUSH: 2762 /* flush tty buffer and allow ldisc to process ioctl */ 2763 tty_buffer_flush(tty, NULL); 2764 break; 2765 } 2766 break; 2767 case TIOCSSERIAL: 2768 return tty_tiocsserial(tty, p); 2769 case TIOCGSERIAL: 2770 return tty_tiocgserial(tty, p); 2771 case TIOCGPTPEER: 2772 /* Special because the struct file is needed */ 2773 return ptm_open_peer(file, tty, (int)arg); 2774 default: 2775 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg); 2776 if (retval != -ENOIOCTLCMD) 2777 return retval; 2778 } 2779 if (tty->ops->ioctl) { 2780 retval = tty->ops->ioctl(tty, cmd, arg); 2781 if (retval != -ENOIOCTLCMD) 2782 return retval; 2783 } 2784 ld = tty_ldisc_ref_wait(tty); 2785 if (!ld) 2786 return hung_up_tty_ioctl(file, cmd, arg); 2787 retval = -EINVAL; 2788 if (ld->ops->ioctl) { 2789 retval = ld->ops->ioctl(tty, cmd, arg); 2790 if (retval == -ENOIOCTLCMD) 2791 retval = -ENOTTY; 2792 } 2793 tty_ldisc_deref(ld); 2794 return retval; 2795 } 2796 2797 #ifdef CONFIG_COMPAT 2798 2799 struct serial_struct32 { 2800 compat_int_t type; 2801 compat_int_t line; 2802 compat_uint_t port; 2803 compat_int_t irq; 2804 compat_int_t flags; 2805 compat_int_t xmit_fifo_size; 2806 compat_int_t custom_divisor; 2807 compat_int_t baud_base; 2808 unsigned short close_delay; 2809 char io_type; 2810 char reserved_char; 2811 compat_int_t hub6; 2812 unsigned short closing_wait; /* time to wait before closing */ 2813 unsigned short closing_wait2; /* no longer used... */ 2814 compat_uint_t iomem_base; 2815 unsigned short iomem_reg_shift; 2816 unsigned int port_high; 2817 /* compat_ulong_t iomap_base FIXME */ 2818 compat_int_t reserved; 2819 }; 2820 2821 static int compat_tty_tiocsserial(struct tty_struct *tty, 2822 struct serial_struct32 __user *ss) 2823 { 2824 struct serial_struct32 v32; 2825 struct serial_struct v; 2826 2827 if (copy_from_user(&v32, ss, sizeof(*ss))) 2828 return -EFAULT; 2829 2830 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base)); 2831 v.iomem_base = compat_ptr(v32.iomem_base); 2832 v.iomem_reg_shift = v32.iomem_reg_shift; 2833 v.port_high = v32.port_high; 2834 v.iomap_base = 0; 2835 2836 return tty_set_serial(tty, &v); 2837 } 2838 2839 static int compat_tty_tiocgserial(struct tty_struct *tty, 2840 struct serial_struct32 __user *ss) 2841 { 2842 struct serial_struct32 v32; 2843 struct serial_struct v; 2844 int err; 2845 2846 memset(&v, 0, sizeof(v)); 2847 memset(&v32, 0, sizeof(v32)); 2848 2849 if (!tty->ops->get_serial) 2850 return -ENOTTY; 2851 err = tty->ops->get_serial(tty, &v); 2852 if (!err) { 2853 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base)); 2854 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ? 2855 0xfffffff : ptr_to_compat(v.iomem_base); 2856 v32.iomem_reg_shift = v.iomem_reg_shift; 2857 v32.port_high = v.port_high; 2858 if (copy_to_user(ss, &v32, sizeof(v32))) 2859 err = -EFAULT; 2860 } 2861 return err; 2862 } 2863 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2864 unsigned long arg) 2865 { 2866 struct tty_struct *tty = file_tty(file); 2867 struct tty_ldisc *ld; 2868 int retval = -ENOIOCTLCMD; 2869 2870 switch (cmd) { 2871 case TIOCOUTQ: 2872 case TIOCSTI: 2873 case TIOCGWINSZ: 2874 case TIOCSWINSZ: 2875 case TIOCGEXCL: 2876 case TIOCGETD: 2877 case TIOCSETD: 2878 case TIOCGDEV: 2879 case TIOCMGET: 2880 case TIOCMSET: 2881 case TIOCMBIC: 2882 case TIOCMBIS: 2883 case TIOCGICOUNT: 2884 case TIOCGPGRP: 2885 case TIOCSPGRP: 2886 case TIOCGSID: 2887 case TIOCSERGETLSR: 2888 case TIOCGRS485: 2889 case TIOCSRS485: 2890 #ifdef TIOCGETP 2891 case TIOCGETP: 2892 case TIOCSETP: 2893 case TIOCSETN: 2894 #endif 2895 #ifdef TIOCGETC 2896 case TIOCGETC: 2897 case TIOCSETC: 2898 #endif 2899 #ifdef TIOCGLTC 2900 case TIOCGLTC: 2901 case TIOCSLTC: 2902 #endif 2903 case TCSETSF: 2904 case TCSETSW: 2905 case TCSETS: 2906 case TCGETS: 2907 #ifdef TCGETS2 2908 case TCGETS2: 2909 case TCSETSF2: 2910 case TCSETSW2: 2911 case TCSETS2: 2912 #endif 2913 case TCGETA: 2914 case TCSETAF: 2915 case TCSETAW: 2916 case TCSETA: 2917 case TIOCGLCKTRMIOS: 2918 case TIOCSLCKTRMIOS: 2919 #ifdef TCGETX 2920 case TCGETX: 2921 case TCSETX: 2922 case TCSETXW: 2923 case TCSETXF: 2924 #endif 2925 case TIOCGSOFTCAR: 2926 case TIOCSSOFTCAR: 2927 2928 case PPPIOCGCHAN: 2929 case PPPIOCGUNIT: 2930 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2931 case TIOCCONS: 2932 case TIOCEXCL: 2933 case TIOCNXCL: 2934 case TIOCVHANGUP: 2935 case TIOCSBRK: 2936 case TIOCCBRK: 2937 case TCSBRK: 2938 case TCSBRKP: 2939 case TCFLSH: 2940 case TIOCGPTPEER: 2941 case TIOCNOTTY: 2942 case TIOCSCTTY: 2943 case TCXONC: 2944 case TIOCMIWAIT: 2945 case TIOCSERCONFIG: 2946 return tty_ioctl(file, cmd, arg); 2947 } 2948 2949 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2950 return -EINVAL; 2951 2952 switch (cmd) { 2953 case TIOCSSERIAL: 2954 return compat_tty_tiocsserial(tty, compat_ptr(arg)); 2955 case TIOCGSERIAL: 2956 return compat_tty_tiocgserial(tty, compat_ptr(arg)); 2957 } 2958 if (tty->ops->compat_ioctl) { 2959 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2960 if (retval != -ENOIOCTLCMD) 2961 return retval; 2962 } 2963 2964 ld = tty_ldisc_ref_wait(tty); 2965 if (!ld) 2966 return hung_up_tty_compat_ioctl(file, cmd, arg); 2967 if (ld->ops->compat_ioctl) 2968 retval = ld->ops->compat_ioctl(tty, cmd, arg); 2969 if (retval == -ENOIOCTLCMD && ld->ops->ioctl) 2970 retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd), 2971 arg); 2972 tty_ldisc_deref(ld); 2973 2974 return retval; 2975 } 2976 #endif 2977 2978 static int this_tty(const void *t, struct file *file, unsigned fd) 2979 { 2980 if (likely(file->f_op->read_iter != tty_read)) 2981 return 0; 2982 return file_tty(file) != t ? 0 : fd + 1; 2983 } 2984 2985 /* 2986 * This implements the "Secure Attention Key" --- the idea is to 2987 * prevent trojan horses by killing all processes associated with this 2988 * tty when the user hits the "Secure Attention Key". Required for 2989 * super-paranoid applications --- see the Orange Book for more details. 2990 * 2991 * This code could be nicer; ideally it should send a HUP, wait a few 2992 * seconds, then send a INT, and then a KILL signal. But you then 2993 * have to coordinate with the init process, since all processes associated 2994 * with the current tty must be dead before the new getty is allowed 2995 * to spawn. 2996 * 2997 * Now, if it would be correct ;-/ The current code has a nasty hole - 2998 * it doesn't catch files in flight. We may send the descriptor to ourselves 2999 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 3000 * 3001 * Nasty bug: do_SAK is being called in interrupt context. This can 3002 * deadlock. We punt it up to process context. AKPM - 16Mar2001 3003 */ 3004 void __do_SAK(struct tty_struct *tty) 3005 { 3006 struct task_struct *g, *p; 3007 struct pid *session; 3008 int i; 3009 unsigned long flags; 3010 3011 spin_lock_irqsave(&tty->ctrl.lock, flags); 3012 session = get_pid(tty->ctrl.session); 3013 spin_unlock_irqrestore(&tty->ctrl.lock, flags); 3014 3015 tty_ldisc_flush(tty); 3016 3017 tty_driver_flush_buffer(tty); 3018 3019 read_lock(&tasklist_lock); 3020 /* Kill the entire session */ 3021 do_each_pid_task(session, PIDTYPE_SID, p) { 3022 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 3023 task_pid_nr(p), p->comm); 3024 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 3025 } while_each_pid_task(session, PIDTYPE_SID, p); 3026 3027 /* Now kill any processes that happen to have the tty open */ 3028 for_each_process_thread(g, p) { 3029 if (p->signal->tty == tty) { 3030 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 3031 task_pid_nr(p), p->comm); 3032 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, 3033 PIDTYPE_SID); 3034 continue; 3035 } 3036 task_lock(p); 3037 i = iterate_fd(p->files, 0, this_tty, tty); 3038 if (i != 0) { 3039 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 3040 task_pid_nr(p), p->comm, i - 1); 3041 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, 3042 PIDTYPE_SID); 3043 } 3044 task_unlock(p); 3045 } 3046 read_unlock(&tasklist_lock); 3047 put_pid(session); 3048 } 3049 3050 static void do_SAK_work(struct work_struct *work) 3051 { 3052 struct tty_struct *tty = 3053 container_of(work, struct tty_struct, SAK_work); 3054 __do_SAK(tty); 3055 } 3056 3057 /* 3058 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3059 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3060 * the values which we write to it will be identical to the values which it 3061 * already has. --akpm 3062 */ 3063 void do_SAK(struct tty_struct *tty) 3064 { 3065 if (!tty) 3066 return; 3067 schedule_work(&tty->SAK_work); 3068 } 3069 EXPORT_SYMBOL(do_SAK); 3070 3071 /* Must put_device() after it's unused! */ 3072 static struct device *tty_get_device(struct tty_struct *tty) 3073 { 3074 dev_t devt = tty_devnum(tty); 3075 3076 return class_find_device_by_devt(&tty_class, devt); 3077 } 3078 3079 3080 /** 3081 * alloc_tty_struct - allocate a new tty 3082 * @driver: driver which will handle the returned tty 3083 * @idx: minor of the tty 3084 * 3085 * This subroutine allocates and initializes a tty structure. 3086 * 3087 * Locking: none - @tty in question is not exposed at this point 3088 */ 3089 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3090 { 3091 struct tty_struct *tty; 3092 3093 tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT); 3094 if (!tty) 3095 return NULL; 3096 3097 kref_init(&tty->kref); 3098 if (tty_ldisc_init(tty)) { 3099 kfree(tty); 3100 return NULL; 3101 } 3102 tty->ctrl.session = NULL; 3103 tty->ctrl.pgrp = NULL; 3104 mutex_init(&tty->legacy_mutex); 3105 mutex_init(&tty->throttle_mutex); 3106 init_rwsem(&tty->termios_rwsem); 3107 mutex_init(&tty->winsize_mutex); 3108 init_ldsem(&tty->ldisc_sem); 3109 init_waitqueue_head(&tty->write_wait); 3110 init_waitqueue_head(&tty->read_wait); 3111 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3112 mutex_init(&tty->atomic_write_lock); 3113 spin_lock_init(&tty->ctrl.lock); 3114 spin_lock_init(&tty->flow.lock); 3115 spin_lock_init(&tty->files_lock); 3116 INIT_LIST_HEAD(&tty->tty_files); 3117 INIT_WORK(&tty->SAK_work, do_SAK_work); 3118 3119 tty->driver = driver; 3120 tty->ops = driver->ops; 3121 tty->index = idx; 3122 tty_line_name(driver, idx, tty->name); 3123 tty->dev = tty_get_device(tty); 3124 3125 return tty; 3126 } 3127 3128 /** 3129 * tty_put_char - write one character to a tty 3130 * @tty: tty 3131 * @ch: character to write 3132 * 3133 * Write one byte to the @tty using the provided @tty->ops->put_char() method 3134 * if present. 3135 * 3136 * Note: the specific put_char operation in the driver layer may go 3137 * away soon. Don't call it directly, use this method 3138 * 3139 * Return: the number of characters successfully output. 3140 */ 3141 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3142 { 3143 if (tty->ops->put_char) 3144 return tty->ops->put_char(tty, ch); 3145 return tty->ops->write(tty, &ch, 1); 3146 } 3147 EXPORT_SYMBOL_GPL(tty_put_char); 3148 3149 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3150 unsigned int index, unsigned int count) 3151 { 3152 int err; 3153 3154 /* init here, since reused cdevs cause crashes */ 3155 driver->cdevs[index] = cdev_alloc(); 3156 if (!driver->cdevs[index]) 3157 return -ENOMEM; 3158 driver->cdevs[index]->ops = &tty_fops; 3159 driver->cdevs[index]->owner = driver->owner; 3160 err = cdev_add(driver->cdevs[index], dev, count); 3161 if (err) 3162 kobject_put(&driver->cdevs[index]->kobj); 3163 return err; 3164 } 3165 3166 /** 3167 * tty_register_device - register a tty device 3168 * @driver: the tty driver that describes the tty device 3169 * @index: the index in the tty driver for this tty device 3170 * @device: a struct device that is associated with this tty device. 3171 * This field is optional, if there is no known struct device 3172 * for this tty device it can be set to NULL safely. 3173 * 3174 * This call is required to be made to register an individual tty device 3175 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If 3176 * that bit is not set, this function should not be called by a tty 3177 * driver. 3178 * 3179 * Locking: ?? 3180 * 3181 * Return: A pointer to the struct device for this tty device (or 3182 * ERR_PTR(-EFOO) on error). 3183 */ 3184 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3185 struct device *device) 3186 { 3187 return tty_register_device_attr(driver, index, device, NULL, NULL); 3188 } 3189 EXPORT_SYMBOL(tty_register_device); 3190 3191 static void tty_device_create_release(struct device *dev) 3192 { 3193 dev_dbg(dev, "releasing...\n"); 3194 kfree(dev); 3195 } 3196 3197 /** 3198 * tty_register_device_attr - register a tty device 3199 * @driver: the tty driver that describes the tty device 3200 * @index: the index in the tty driver for this tty device 3201 * @device: a struct device that is associated with this tty device. 3202 * This field is optional, if there is no known struct device 3203 * for this tty device it can be set to %NULL safely. 3204 * @drvdata: Driver data to be set to device. 3205 * @attr_grp: Attribute group to be set on device. 3206 * 3207 * This call is required to be made to register an individual tty device if the 3208 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is 3209 * not set, this function should not be called by a tty driver. 3210 * 3211 * Locking: ?? 3212 * 3213 * Return: A pointer to the struct device for this tty device (or 3214 * ERR_PTR(-EFOO) on error). 3215 */ 3216 struct device *tty_register_device_attr(struct tty_driver *driver, 3217 unsigned index, struct device *device, 3218 void *drvdata, 3219 const struct attribute_group **attr_grp) 3220 { 3221 char name[64]; 3222 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3223 struct ktermios *tp; 3224 struct device *dev; 3225 int retval; 3226 3227 if (index >= driver->num) { 3228 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 3229 driver->name, index); 3230 return ERR_PTR(-EINVAL); 3231 } 3232 3233 if (driver->type == TTY_DRIVER_TYPE_PTY) 3234 pty_line_name(driver, index, name); 3235 else 3236 tty_line_name(driver, index, name); 3237 3238 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3239 if (!dev) 3240 return ERR_PTR(-ENOMEM); 3241 3242 dev->devt = devt; 3243 dev->class = &tty_class; 3244 dev->parent = device; 3245 dev->release = tty_device_create_release; 3246 dev_set_name(dev, "%s", name); 3247 dev->groups = attr_grp; 3248 dev_set_drvdata(dev, drvdata); 3249 3250 dev_set_uevent_suppress(dev, 1); 3251 3252 retval = device_register(dev); 3253 if (retval) 3254 goto err_put; 3255 3256 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3257 /* 3258 * Free any saved termios data so that the termios state is 3259 * reset when reusing a minor number. 3260 */ 3261 tp = driver->termios[index]; 3262 if (tp) { 3263 driver->termios[index] = NULL; 3264 kfree(tp); 3265 } 3266 3267 retval = tty_cdev_add(driver, devt, index, 1); 3268 if (retval) 3269 goto err_del; 3270 } 3271 3272 dev_set_uevent_suppress(dev, 0); 3273 kobject_uevent(&dev->kobj, KOBJ_ADD); 3274 3275 return dev; 3276 3277 err_del: 3278 device_del(dev); 3279 err_put: 3280 put_device(dev); 3281 3282 return ERR_PTR(retval); 3283 } 3284 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3285 3286 /** 3287 * tty_unregister_device - unregister a tty device 3288 * @driver: the tty driver that describes the tty device 3289 * @index: the index in the tty driver for this tty device 3290 * 3291 * If a tty device is registered with a call to tty_register_device() then 3292 * this function must be called when the tty device is gone. 3293 * 3294 * Locking: ?? 3295 */ 3296 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3297 { 3298 device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index); 3299 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3300 cdev_del(driver->cdevs[index]); 3301 driver->cdevs[index] = NULL; 3302 } 3303 } 3304 EXPORT_SYMBOL(tty_unregister_device); 3305 3306 /** 3307 * __tty_alloc_driver - allocate tty driver 3308 * @lines: count of lines this driver can handle at most 3309 * @owner: module which is responsible for this driver 3310 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags 3311 * 3312 * This should not be called directly, some of the provided macros should be 3313 * used instead. Use IS_ERR() and friends on @retval. 3314 */ 3315 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3316 unsigned long flags) 3317 { 3318 struct tty_driver *driver; 3319 unsigned int cdevs = 1; 3320 int err; 3321 3322 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3323 return ERR_PTR(-EINVAL); 3324 3325 driver = kzalloc(sizeof(*driver), GFP_KERNEL); 3326 if (!driver) 3327 return ERR_PTR(-ENOMEM); 3328 3329 kref_init(&driver->kref); 3330 driver->num = lines; 3331 driver->owner = owner; 3332 driver->flags = flags; 3333 3334 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3335 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3336 GFP_KERNEL); 3337 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3338 GFP_KERNEL); 3339 if (!driver->ttys || !driver->termios) { 3340 err = -ENOMEM; 3341 goto err_free_all; 3342 } 3343 } 3344 3345 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3346 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3347 GFP_KERNEL); 3348 if (!driver->ports) { 3349 err = -ENOMEM; 3350 goto err_free_all; 3351 } 3352 cdevs = lines; 3353 } 3354 3355 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3356 if (!driver->cdevs) { 3357 err = -ENOMEM; 3358 goto err_free_all; 3359 } 3360 3361 return driver; 3362 err_free_all: 3363 kfree(driver->ports); 3364 kfree(driver->ttys); 3365 kfree(driver->termios); 3366 kfree(driver->cdevs); 3367 kfree(driver); 3368 return ERR_PTR(err); 3369 } 3370 EXPORT_SYMBOL(__tty_alloc_driver); 3371 3372 static void destruct_tty_driver(struct kref *kref) 3373 { 3374 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3375 int i; 3376 struct ktermios *tp; 3377 3378 if (driver->flags & TTY_DRIVER_INSTALLED) { 3379 for (i = 0; i < driver->num; i++) { 3380 tp = driver->termios[i]; 3381 if (tp) { 3382 driver->termios[i] = NULL; 3383 kfree(tp); 3384 } 3385 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3386 tty_unregister_device(driver, i); 3387 } 3388 proc_tty_unregister_driver(driver); 3389 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3390 cdev_del(driver->cdevs[0]); 3391 } 3392 kfree(driver->cdevs); 3393 kfree(driver->ports); 3394 kfree(driver->termios); 3395 kfree(driver->ttys); 3396 kfree(driver); 3397 } 3398 3399 /** 3400 * tty_driver_kref_put - drop a reference to a tty driver 3401 * @driver: driver of which to drop the reference 3402 * 3403 * The final put will destroy and free up the driver. 3404 */ 3405 void tty_driver_kref_put(struct tty_driver *driver) 3406 { 3407 kref_put(&driver->kref, destruct_tty_driver); 3408 } 3409 EXPORT_SYMBOL(tty_driver_kref_put); 3410 3411 /** 3412 * tty_register_driver - register a tty driver 3413 * @driver: driver to register 3414 * 3415 * Called by a tty driver to register itself. 3416 */ 3417 int tty_register_driver(struct tty_driver *driver) 3418 { 3419 int error; 3420 int i; 3421 dev_t dev; 3422 struct device *d; 3423 3424 if (!driver->major) { 3425 error = alloc_chrdev_region(&dev, driver->minor_start, 3426 driver->num, driver->name); 3427 if (!error) { 3428 driver->major = MAJOR(dev); 3429 driver->minor_start = MINOR(dev); 3430 } 3431 } else { 3432 dev = MKDEV(driver->major, driver->minor_start); 3433 error = register_chrdev_region(dev, driver->num, driver->name); 3434 } 3435 if (error < 0) 3436 goto err; 3437 3438 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3439 error = tty_cdev_add(driver, dev, 0, driver->num); 3440 if (error) 3441 goto err_unreg_char; 3442 } 3443 3444 mutex_lock(&tty_mutex); 3445 list_add(&driver->tty_drivers, &tty_drivers); 3446 mutex_unlock(&tty_mutex); 3447 3448 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3449 for (i = 0; i < driver->num; i++) { 3450 d = tty_register_device(driver, i, NULL); 3451 if (IS_ERR(d)) { 3452 error = PTR_ERR(d); 3453 goto err_unreg_devs; 3454 } 3455 } 3456 } 3457 proc_tty_register_driver(driver); 3458 driver->flags |= TTY_DRIVER_INSTALLED; 3459 return 0; 3460 3461 err_unreg_devs: 3462 for (i--; i >= 0; i--) 3463 tty_unregister_device(driver, i); 3464 3465 mutex_lock(&tty_mutex); 3466 list_del(&driver->tty_drivers); 3467 mutex_unlock(&tty_mutex); 3468 3469 err_unreg_char: 3470 unregister_chrdev_region(dev, driver->num); 3471 err: 3472 return error; 3473 } 3474 EXPORT_SYMBOL(tty_register_driver); 3475 3476 /** 3477 * tty_unregister_driver - unregister a tty driver 3478 * @driver: driver to unregister 3479 * 3480 * Called by a tty driver to unregister itself. 3481 */ 3482 void tty_unregister_driver(struct tty_driver *driver) 3483 { 3484 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3485 driver->num); 3486 mutex_lock(&tty_mutex); 3487 list_del(&driver->tty_drivers); 3488 mutex_unlock(&tty_mutex); 3489 } 3490 EXPORT_SYMBOL(tty_unregister_driver); 3491 3492 dev_t tty_devnum(struct tty_struct *tty) 3493 { 3494 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3495 } 3496 EXPORT_SYMBOL(tty_devnum); 3497 3498 void tty_default_fops(struct file_operations *fops) 3499 { 3500 *fops = tty_fops; 3501 } 3502 3503 static char *tty_devnode(const struct device *dev, umode_t *mode) 3504 { 3505 if (!mode) 3506 return NULL; 3507 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3508 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3509 *mode = 0666; 3510 return NULL; 3511 } 3512 3513 const struct class tty_class = { 3514 .name = "tty", 3515 .devnode = tty_devnode, 3516 }; 3517 3518 static int __init tty_class_init(void) 3519 { 3520 return class_register(&tty_class); 3521 } 3522 3523 postcore_initcall(tty_class_init); 3524 3525 /* 3/2004 jmc: why do these devices exist? */ 3526 static struct cdev tty_cdev, console_cdev; 3527 3528 static ssize_t show_cons_active(struct device *dev, 3529 struct device_attribute *attr, char *buf) 3530 { 3531 struct console *cs[16]; 3532 int i = 0; 3533 struct console *c; 3534 ssize_t count = 0; 3535 3536 /* 3537 * Hold the console_list_lock to guarantee that no consoles are 3538 * unregistered until all console processing is complete. 3539 * This also allows safe traversal of the console list and 3540 * race-free reading of @flags. 3541 */ 3542 console_list_lock(); 3543 3544 for_each_console(c) { 3545 if (!c->device) 3546 continue; 3547 if (!c->write) 3548 continue; 3549 if ((c->flags & CON_ENABLED) == 0) 3550 continue; 3551 cs[i++] = c; 3552 if (i >= ARRAY_SIZE(cs)) 3553 break; 3554 } 3555 3556 /* 3557 * Take console_lock to serialize device() callback with 3558 * other console operations. For example, fg_console is 3559 * modified under console_lock when switching vt. 3560 */ 3561 console_lock(); 3562 while (i--) { 3563 int index = cs[i]->index; 3564 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3565 3566 /* don't resolve tty0 as some programs depend on it */ 3567 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3568 count += tty_line_name(drv, index, buf + count); 3569 else 3570 count += sprintf(buf + count, "%s%d", 3571 cs[i]->name, cs[i]->index); 3572 3573 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3574 } 3575 console_unlock(); 3576 3577 console_list_unlock(); 3578 3579 return count; 3580 } 3581 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3582 3583 static struct attribute *cons_dev_attrs[] = { 3584 &dev_attr_active.attr, 3585 NULL 3586 }; 3587 3588 ATTRIBUTE_GROUPS(cons_dev); 3589 3590 static struct device *consdev; 3591 3592 void console_sysfs_notify(void) 3593 { 3594 if (consdev) 3595 sysfs_notify(&consdev->kobj, NULL, "active"); 3596 } 3597 3598 static struct ctl_table tty_table[] = { 3599 { 3600 .procname = "legacy_tiocsti", 3601 .data = &tty_legacy_tiocsti, 3602 .maxlen = sizeof(tty_legacy_tiocsti), 3603 .mode = 0644, 3604 .proc_handler = proc_dobool, 3605 }, 3606 { 3607 .procname = "ldisc_autoload", 3608 .data = &tty_ldisc_autoload, 3609 .maxlen = sizeof(tty_ldisc_autoload), 3610 .mode = 0644, 3611 .proc_handler = proc_dointvec, 3612 .extra1 = SYSCTL_ZERO, 3613 .extra2 = SYSCTL_ONE, 3614 }, 3615 }; 3616 3617 /* 3618 * Ok, now we can initialize the rest of the tty devices and can count 3619 * on memory allocations, interrupts etc.. 3620 */ 3621 int __init tty_init(void) 3622 { 3623 register_sysctl_init("dev/tty", tty_table); 3624 cdev_init(&tty_cdev, &tty_fops); 3625 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3626 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3627 panic("Couldn't register /dev/tty driver\n"); 3628 device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3629 3630 cdev_init(&console_cdev, &console_fops); 3631 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3632 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3633 panic("Couldn't register /dev/console driver\n"); 3634 consdev = device_create_with_groups(&tty_class, NULL, 3635 MKDEV(TTYAUX_MAJOR, 1), NULL, 3636 cons_dev_groups, "console"); 3637 if (IS_ERR(consdev)) 3638 consdev = NULL; 3639 3640 #ifdef CONFIG_VT 3641 vty_init(&console_fops); 3642 #endif 3643 return 0; 3644 } 3645