xref: /linux/drivers/tty/tty_io.c (revision 9e9f60108423f18a99c9cc93ef7f23490ecc709b)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 
157 /**
158  *	free_tty_struct		-	free a disused tty
159  *	@tty: tty struct to free
160  *
161  *	Free the write buffers, tty queue and tty memory itself.
162  *
163  *	Locking: none. Must be called after tty is definitely unused
164  */
165 
166 void free_tty_struct(struct tty_struct *tty)
167 {
168 	if (!tty)
169 		return;
170 	put_device(tty->dev);
171 	kfree(tty->write_buf);
172 	tty->magic = 0xDEADDEAD;
173 	kfree(tty);
174 }
175 
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty_files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty_files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
213 void tty_free_file(struct file *file)
214 {
215 	struct tty_file_private *priv = file->private_data;
216 
217 	file->private_data = NULL;
218 	kfree(priv);
219 }
220 
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224 	struct tty_file_private *priv = file->private_data;
225 
226 	spin_lock(&tty_files_lock);
227 	list_del(&priv->list);
228 	spin_unlock(&tty_files_lock);
229 	tty_free_file(file);
230 }
231 
232 
233 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
234 
235 /**
236  *	tty_name	-	return tty naming
237  *	@tty: tty structure
238  *	@buf: buffer for output
239  *
240  *	Convert a tty structure into a name. The name reflects the kernel
241  *	naming policy and if udev is in use may not reflect user space
242  *
243  *	Locking: none
244  */
245 
246 char *tty_name(struct tty_struct *tty, char *buf)
247 {
248 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
249 		strcpy(buf, "NULL tty");
250 	else
251 		strcpy(buf, tty->name);
252 	return buf;
253 }
254 
255 EXPORT_SYMBOL(tty_name);
256 
257 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
258 			      const char *routine)
259 {
260 #ifdef TTY_PARANOIA_CHECK
261 	if (!tty) {
262 		printk(KERN_WARNING
263 			"null TTY for (%d:%d) in %s\n",
264 			imajor(inode), iminor(inode), routine);
265 		return 1;
266 	}
267 	if (tty->magic != TTY_MAGIC) {
268 		printk(KERN_WARNING
269 			"bad magic number for tty struct (%d:%d) in %s\n",
270 			imajor(inode), iminor(inode), routine);
271 		return 1;
272 	}
273 #endif
274 	return 0;
275 }
276 
277 /* Caller must hold tty_lock */
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281 	struct list_head *p;
282 	int count = 0;
283 
284 	spin_lock(&tty_files_lock);
285 	list_for_each(p, &tty->tty_files) {
286 		count++;
287 	}
288 	spin_unlock(&tty_files_lock);
289 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
291 	    tty->link && tty->link->count)
292 		count++;
293 	if (tty->count != count) {
294 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295 				    "!= #fd's(%d) in %s\n",
296 		       tty->name, tty->count, count, routine);
297 		return count;
298 	}
299 #endif
300 	return 0;
301 }
302 
303 /**
304  *	get_tty_driver		-	find device of a tty
305  *	@dev_t: device identifier
306  *	@index: returns the index of the tty
307  *
308  *	This routine returns a tty driver structure, given a device number
309  *	and also passes back the index number.
310  *
311  *	Locking: caller must hold tty_mutex
312  */
313 
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316 	struct tty_driver *p;
317 
318 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
319 		dev_t base = MKDEV(p->major, p->minor_start);
320 		if (device < base || device >= base + p->num)
321 			continue;
322 		*index = device - base;
323 		return tty_driver_kref_get(p);
324 	}
325 	return NULL;
326 }
327 
328 #ifdef CONFIG_CONSOLE_POLL
329 
330 /**
331  *	tty_find_polling_driver	-	find device of a polled tty
332  *	@name: name string to match
333  *	@line: pointer to resulting tty line nr
334  *
335  *	This routine returns a tty driver structure, given a name
336  *	and the condition that the tty driver is capable of polled
337  *	operation.
338  */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341 	struct tty_driver *p, *res = NULL;
342 	int tty_line = 0;
343 	int len;
344 	char *str, *stp;
345 
346 	for (str = name; *str; str++)
347 		if ((*str >= '0' && *str <= '9') || *str == ',')
348 			break;
349 	if (!*str)
350 		return NULL;
351 
352 	len = str - name;
353 	tty_line = simple_strtoul(str, &str, 10);
354 
355 	mutex_lock(&tty_mutex);
356 	/* Search through the tty devices to look for a match */
357 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
358 		if (strncmp(name, p->name, len) != 0)
359 			continue;
360 		stp = str;
361 		if (*stp == ',')
362 			stp++;
363 		if (*stp == '\0')
364 			stp = NULL;
365 
366 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
367 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368 			res = tty_driver_kref_get(p);
369 			*line = tty_line;
370 			break;
371 		}
372 	}
373 	mutex_unlock(&tty_mutex);
374 
375 	return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379 
380 /**
381  *	tty_check_change	-	check for POSIX terminal changes
382  *	@tty: tty to check
383  *
384  *	If we try to write to, or set the state of, a terminal and we're
385  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
386  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
387  *
388  *	Locking: ctrl_lock
389  */
390 
391 int tty_check_change(struct tty_struct *tty)
392 {
393 	unsigned long flags;
394 	int ret = 0;
395 
396 	if (current->signal->tty != tty)
397 		return 0;
398 
399 	spin_lock_irqsave(&tty->ctrl_lock, flags);
400 
401 	if (!tty->pgrp) {
402 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403 		goto out_unlock;
404 	}
405 	if (task_pgrp(current) == tty->pgrp)
406 		goto out_unlock;
407 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408 	if (is_ignored(SIGTTOU))
409 		goto out;
410 	if (is_current_pgrp_orphaned()) {
411 		ret = -EIO;
412 		goto out;
413 	}
414 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415 	set_thread_flag(TIF_SIGPENDING);
416 	ret = -ERESTARTSYS;
417 out:
418 	return ret;
419 out_unlock:
420 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421 	return ret;
422 }
423 
424 EXPORT_SYMBOL(tty_check_change);
425 
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427 				size_t count, loff_t *ppos)
428 {
429 	return 0;
430 }
431 
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433 				 size_t count, loff_t *ppos)
434 {
435 	return -EIO;
436 }
437 
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443 
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445 		unsigned long arg)
446 {
447 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449 
450 static long hung_up_tty_compat_ioctl(struct file *file,
451 				     unsigned int cmd, unsigned long arg)
452 {
453 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455 
456 static const struct file_operations tty_fops = {
457 	.llseek		= no_llseek,
458 	.read		= tty_read,
459 	.write		= tty_write,
460 	.poll		= tty_poll,
461 	.unlocked_ioctl	= tty_ioctl,
462 	.compat_ioctl	= tty_compat_ioctl,
463 	.open		= tty_open,
464 	.release	= tty_release,
465 	.fasync		= tty_fasync,
466 };
467 
468 static const struct file_operations console_fops = {
469 	.llseek		= no_llseek,
470 	.read		= tty_read,
471 	.write		= redirected_tty_write,
472 	.poll		= tty_poll,
473 	.unlocked_ioctl	= tty_ioctl,
474 	.compat_ioctl	= tty_compat_ioctl,
475 	.open		= tty_open,
476 	.release	= tty_release,
477 	.fasync		= tty_fasync,
478 };
479 
480 static const struct file_operations hung_up_tty_fops = {
481 	.llseek		= no_llseek,
482 	.read		= hung_up_tty_read,
483 	.write		= hung_up_tty_write,
484 	.poll		= hung_up_tty_poll,
485 	.unlocked_ioctl	= hung_up_tty_ioctl,
486 	.compat_ioctl	= hung_up_tty_compat_ioctl,
487 	.release	= tty_release,
488 };
489 
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492 
493 
494 void proc_clear_tty(struct task_struct *p)
495 {
496 	unsigned long flags;
497 	struct tty_struct *tty;
498 	spin_lock_irqsave(&p->sighand->siglock, flags);
499 	tty = p->signal->tty;
500 	p->signal->tty = NULL;
501 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
502 	tty_kref_put(tty);
503 }
504 
505 /**
506  * proc_set_tty -  set the controlling terminal
507  *
508  * Only callable by the session leader and only if it does not already have
509  * a controlling terminal.
510  *
511  * Caller must hold:  tty_lock()
512  *		      a readlock on tasklist_lock
513  *		      sighand lock
514  */
515 static void __proc_set_tty(struct tty_struct *tty)
516 {
517 	unsigned long flags;
518 
519 	spin_lock_irqsave(&tty->ctrl_lock, flags);
520 	/*
521 	 * The session and fg pgrp references will be non-NULL if
522 	 * tiocsctty() is stealing the controlling tty
523 	 */
524 	put_pid(tty->session);
525 	put_pid(tty->pgrp);
526 	tty->pgrp = get_pid(task_pgrp(current));
527 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
528 	tty->session = get_pid(task_session(current));
529 	if (current->signal->tty) {
530 		printk(KERN_DEBUG "tty not NULL!!\n");
531 		tty_kref_put(current->signal->tty);
532 	}
533 	put_pid(current->signal->tty_old_pgrp);
534 	current->signal->tty = tty_kref_get(tty);
535 	current->signal->tty_old_pgrp = NULL;
536 }
537 
538 static void proc_set_tty(struct tty_struct *tty)
539 {
540 	spin_lock_irq(&current->sighand->siglock);
541 	__proc_set_tty(tty);
542 	spin_unlock_irq(&current->sighand->siglock);
543 }
544 
545 struct tty_struct *get_current_tty(void)
546 {
547 	struct tty_struct *tty;
548 	unsigned long flags;
549 
550 	spin_lock_irqsave(&current->sighand->siglock, flags);
551 	tty = tty_kref_get(current->signal->tty);
552 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
553 	return tty;
554 }
555 EXPORT_SYMBOL_GPL(get_current_tty);
556 
557 static void session_clear_tty(struct pid *session)
558 {
559 	struct task_struct *p;
560 	do_each_pid_task(session, PIDTYPE_SID, p) {
561 		proc_clear_tty(p);
562 	} while_each_pid_task(session, PIDTYPE_SID, p);
563 }
564 
565 /**
566  *	tty_wakeup	-	request more data
567  *	@tty: terminal
568  *
569  *	Internal and external helper for wakeups of tty. This function
570  *	informs the line discipline if present that the driver is ready
571  *	to receive more output data.
572  */
573 
574 void tty_wakeup(struct tty_struct *tty)
575 {
576 	struct tty_ldisc *ld;
577 
578 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
579 		ld = tty_ldisc_ref(tty);
580 		if (ld) {
581 			if (ld->ops->write_wakeup)
582 				ld->ops->write_wakeup(tty);
583 			tty_ldisc_deref(ld);
584 		}
585 	}
586 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
587 }
588 
589 EXPORT_SYMBOL_GPL(tty_wakeup);
590 
591 /**
592  *	tty_signal_session_leader	- sends SIGHUP to session leader
593  *	@tty		controlling tty
594  *	@exit_session	if non-zero, signal all foreground group processes
595  *
596  *	Send SIGHUP and SIGCONT to the session leader and its process group.
597  *	Optionally, signal all processes in the foreground process group.
598  *
599  *	Returns the number of processes in the session with this tty
600  *	as their controlling terminal. This value is used to drop
601  *	tty references for those processes.
602  */
603 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
604 {
605 	struct task_struct *p;
606 	int refs = 0;
607 	struct pid *tty_pgrp = NULL;
608 
609 	read_lock(&tasklist_lock);
610 	if (tty->session) {
611 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612 			spin_lock_irq(&p->sighand->siglock);
613 			if (p->signal->tty == tty) {
614 				p->signal->tty = NULL;
615 				/* We defer the dereferences outside fo
616 				   the tasklist lock */
617 				refs++;
618 			}
619 			if (!p->signal->leader) {
620 				spin_unlock_irq(&p->sighand->siglock);
621 				continue;
622 			}
623 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
626 			spin_lock(&tty->ctrl_lock);
627 			tty_pgrp = get_pid(tty->pgrp);
628 			if (tty->pgrp)
629 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
630 			spin_unlock(&tty->ctrl_lock);
631 			spin_unlock_irq(&p->sighand->siglock);
632 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
633 	}
634 	read_unlock(&tasklist_lock);
635 
636 	if (tty_pgrp) {
637 		if (exit_session)
638 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
639 		put_pid(tty_pgrp);
640 	}
641 
642 	return refs;
643 }
644 
645 /**
646  *	__tty_hangup		-	actual handler for hangup events
647  *	@work: tty device
648  *
649  *	This can be called by a "kworker" kernel thread.  That is process
650  *	synchronous but doesn't hold any locks, so we need to make sure we
651  *	have the appropriate locks for what we're doing.
652  *
653  *	The hangup event clears any pending redirections onto the hung up
654  *	device. It ensures future writes will error and it does the needed
655  *	line discipline hangup and signal delivery. The tty object itself
656  *	remains intact.
657  *
658  *	Locking:
659  *		BTM
660  *		  redirect lock for undoing redirection
661  *		  file list lock for manipulating list of ttys
662  *		  tty_ldiscs_lock from called functions
663  *		  termios_rwsem resetting termios data
664  *		  tasklist_lock to walk task list for hangup event
665  *		    ->siglock to protect ->signal/->sighand
666  */
667 static void __tty_hangup(struct tty_struct *tty, int exit_session)
668 {
669 	struct file *cons_filp = NULL;
670 	struct file *filp, *f = NULL;
671 	struct tty_file_private *priv;
672 	int    closecount = 0, n;
673 	int refs;
674 
675 	if (!tty)
676 		return;
677 
678 
679 	spin_lock(&redirect_lock);
680 	if (redirect && file_tty(redirect) == tty) {
681 		f = redirect;
682 		redirect = NULL;
683 	}
684 	spin_unlock(&redirect_lock);
685 
686 	tty_lock(tty);
687 
688 	if (test_bit(TTY_HUPPED, &tty->flags)) {
689 		tty_unlock(tty);
690 		return;
691 	}
692 
693 	/* inuse_filps is protected by the single tty lock,
694 	   this really needs to change if we want to flush the
695 	   workqueue with the lock held */
696 	check_tty_count(tty, "tty_hangup");
697 
698 	spin_lock(&tty_files_lock);
699 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
700 	list_for_each_entry(priv, &tty->tty_files, list) {
701 		filp = priv->file;
702 		if (filp->f_op->write == redirected_tty_write)
703 			cons_filp = filp;
704 		if (filp->f_op->write != tty_write)
705 			continue;
706 		closecount++;
707 		__tty_fasync(-1, filp, 0);	/* can't block */
708 		filp->f_op = &hung_up_tty_fops;
709 	}
710 	spin_unlock(&tty_files_lock);
711 
712 	refs = tty_signal_session_leader(tty, exit_session);
713 	/* Account for the p->signal references we killed */
714 	while (refs--)
715 		tty_kref_put(tty);
716 
717 	tty_ldisc_hangup(tty);
718 
719 	spin_lock_irq(&tty->ctrl_lock);
720 	clear_bit(TTY_THROTTLED, &tty->flags);
721 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
722 	put_pid(tty->session);
723 	put_pid(tty->pgrp);
724 	tty->session = NULL;
725 	tty->pgrp = NULL;
726 	tty->ctrl_status = 0;
727 	spin_unlock_irq(&tty->ctrl_lock);
728 
729 	/*
730 	 * If one of the devices matches a console pointer, we
731 	 * cannot just call hangup() because that will cause
732 	 * tty->count and state->count to go out of sync.
733 	 * So we just call close() the right number of times.
734 	 */
735 	if (cons_filp) {
736 		if (tty->ops->close)
737 			for (n = 0; n < closecount; n++)
738 				tty->ops->close(tty, cons_filp);
739 	} else if (tty->ops->hangup)
740 		tty->ops->hangup(tty);
741 	/*
742 	 * We don't want to have driver/ldisc interactions beyond
743 	 * the ones we did here. The driver layer expects no
744 	 * calls after ->hangup() from the ldisc side. However we
745 	 * can't yet guarantee all that.
746 	 */
747 	set_bit(TTY_HUPPED, &tty->flags);
748 	tty_unlock(tty);
749 
750 	if (f)
751 		fput(f);
752 }
753 
754 static void do_tty_hangup(struct work_struct *work)
755 {
756 	struct tty_struct *tty =
757 		container_of(work, struct tty_struct, hangup_work);
758 
759 	__tty_hangup(tty, 0);
760 }
761 
762 /**
763  *	tty_hangup		-	trigger a hangup event
764  *	@tty: tty to hangup
765  *
766  *	A carrier loss (virtual or otherwise) has occurred on this like
767  *	schedule a hangup sequence to run after this event.
768  */
769 
770 void tty_hangup(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773 	char	buf[64];
774 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
775 #endif
776 	schedule_work(&tty->hangup_work);
777 }
778 
779 EXPORT_SYMBOL(tty_hangup);
780 
781 /**
782  *	tty_vhangup		-	process vhangup
783  *	@tty: tty to hangup
784  *
785  *	The user has asked via system call for the terminal to be hung up.
786  *	We do this synchronously so that when the syscall returns the process
787  *	is complete. That guarantee is necessary for security reasons.
788  */
789 
790 void tty_vhangup(struct tty_struct *tty)
791 {
792 #ifdef TTY_DEBUG_HANGUP
793 	char	buf[64];
794 
795 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
796 #endif
797 	__tty_hangup(tty, 0);
798 }
799 
800 EXPORT_SYMBOL(tty_vhangup);
801 
802 
803 /**
804  *	tty_vhangup_self	-	process vhangup for own ctty
805  *
806  *	Perform a vhangup on the current controlling tty
807  */
808 
809 void tty_vhangup_self(void)
810 {
811 	struct tty_struct *tty;
812 
813 	tty = get_current_tty();
814 	if (tty) {
815 		tty_vhangup(tty);
816 		tty_kref_put(tty);
817 	}
818 }
819 
820 /**
821  *	tty_vhangup_session		-	hangup session leader exit
822  *	@tty: tty to hangup
823  *
824  *	The session leader is exiting and hanging up its controlling terminal.
825  *	Every process in the foreground process group is signalled SIGHUP.
826  *
827  *	We do this synchronously so that when the syscall returns the process
828  *	is complete. That guarantee is necessary for security reasons.
829  */
830 
831 static void tty_vhangup_session(struct tty_struct *tty)
832 {
833 #ifdef TTY_DEBUG_HANGUP
834 	char	buf[64];
835 
836 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
837 #endif
838 	__tty_hangup(tty, 1);
839 }
840 
841 /**
842  *	tty_hung_up_p		-	was tty hung up
843  *	@filp: file pointer of tty
844  *
845  *	Return true if the tty has been subject to a vhangup or a carrier
846  *	loss
847  */
848 
849 int tty_hung_up_p(struct file *filp)
850 {
851 	return (filp->f_op == &hung_up_tty_fops);
852 }
853 
854 EXPORT_SYMBOL(tty_hung_up_p);
855 
856 /**
857  *	disassociate_ctty	-	disconnect controlling tty
858  *	@on_exit: true if exiting so need to "hang up" the session
859  *
860  *	This function is typically called only by the session leader, when
861  *	it wants to disassociate itself from its controlling tty.
862  *
863  *	It performs the following functions:
864  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
865  * 	(2)  Clears the tty from being controlling the session
866  * 	(3)  Clears the controlling tty for all processes in the
867  * 		session group.
868  *
869  *	The argument on_exit is set to 1 if called when a process is
870  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
871  *
872  *	Locking:
873  *		BTM is taken for hysterical raisins, and held when
874  *		  called from no_tty().
875  *		  tty_mutex is taken to protect tty
876  *		  ->siglock is taken to protect ->signal/->sighand
877  *		  tasklist_lock is taken to walk process list for sessions
878  *		    ->siglock is taken to protect ->signal/->sighand
879  */
880 
881 void disassociate_ctty(int on_exit)
882 {
883 	struct tty_struct *tty;
884 
885 	if (!current->signal->leader)
886 		return;
887 
888 	tty = get_current_tty();
889 	if (tty) {
890 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891 			tty_vhangup_session(tty);
892 		} else {
893 			struct pid *tty_pgrp = tty_get_pgrp(tty);
894 			if (tty_pgrp) {
895 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896 				if (!on_exit)
897 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898 				put_pid(tty_pgrp);
899 			}
900 		}
901 		tty_kref_put(tty);
902 
903 	} else if (on_exit) {
904 		struct pid *old_pgrp;
905 		spin_lock_irq(&current->sighand->siglock);
906 		old_pgrp = current->signal->tty_old_pgrp;
907 		current->signal->tty_old_pgrp = NULL;
908 		spin_unlock_irq(&current->sighand->siglock);
909 		if (old_pgrp) {
910 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
911 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
912 			put_pid(old_pgrp);
913 		}
914 		return;
915 	}
916 
917 	spin_lock_irq(&current->sighand->siglock);
918 	put_pid(current->signal->tty_old_pgrp);
919 	current->signal->tty_old_pgrp = NULL;
920 
921 	tty = tty_kref_get(current->signal->tty);
922 	if (tty) {
923 		unsigned long flags;
924 		spin_lock_irqsave(&tty->ctrl_lock, flags);
925 		put_pid(tty->session);
926 		put_pid(tty->pgrp);
927 		tty->session = NULL;
928 		tty->pgrp = NULL;
929 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930 		tty_kref_put(tty);
931 	} else {
932 #ifdef TTY_DEBUG_HANGUP
933 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
934 		       " = NULL", tty);
935 #endif
936 	}
937 
938 	spin_unlock_irq(&current->sighand->siglock);
939 	/* Now clear signal->tty under the lock */
940 	read_lock(&tasklist_lock);
941 	session_clear_tty(task_session(current));
942 	read_unlock(&tasklist_lock);
943 }
944 
945 /**
946  *
947  *	no_tty	- Ensure the current process does not have a controlling tty
948  */
949 void no_tty(void)
950 {
951 	/* FIXME: Review locking here. The tty_lock never covered any race
952 	   between a new association and proc_clear_tty but possible we need
953 	   to protect against this anyway */
954 	struct task_struct *tsk = current;
955 	disassociate_ctty(0);
956 	proc_clear_tty(tsk);
957 }
958 
959 
960 /**
961  *	stop_tty	-	propagate flow control
962  *	@tty: tty to stop
963  *
964  *	Perform flow control to the driver. May be called
965  *	on an already stopped device and will not re-call the driver
966  *	method.
967  *
968  *	This functionality is used by both the line disciplines for
969  *	halting incoming flow and by the driver. It may therefore be
970  *	called from any context, may be under the tty atomic_write_lock
971  *	but not always.
972  *
973  *	Locking:
974  *		flow_lock
975  */
976 
977 void __stop_tty(struct tty_struct *tty)
978 {
979 	if (tty->stopped)
980 		return;
981 	tty->stopped = 1;
982 	if (tty->ops->stop)
983 		tty->ops->stop(tty);
984 }
985 
986 void stop_tty(struct tty_struct *tty)
987 {
988 	unsigned long flags;
989 
990 	spin_lock_irqsave(&tty->flow_lock, flags);
991 	__stop_tty(tty);
992 	spin_unlock_irqrestore(&tty->flow_lock, flags);
993 }
994 EXPORT_SYMBOL(stop_tty);
995 
996 /**
997  *	start_tty	-	propagate flow control
998  *	@tty: tty to start
999  *
1000  *	Start a tty that has been stopped if at all possible. If this
1001  *	tty was previous stopped and is now being started, the driver
1002  *	start method is invoked and the line discipline woken.
1003  *
1004  *	Locking:
1005  *		flow_lock
1006  */
1007 
1008 void __start_tty(struct tty_struct *tty)
1009 {
1010 	if (!tty->stopped || tty->flow_stopped)
1011 		return;
1012 	tty->stopped = 0;
1013 	if (tty->ops->start)
1014 		tty->ops->start(tty);
1015 	tty_wakeup(tty);
1016 }
1017 
1018 void start_tty(struct tty_struct *tty)
1019 {
1020 	unsigned long flags;
1021 
1022 	spin_lock_irqsave(&tty->flow_lock, flags);
1023 	__start_tty(tty);
1024 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1025 }
1026 EXPORT_SYMBOL(start_tty);
1027 
1028 /* We limit tty time update visibility to every 8 seconds or so. */
1029 static void tty_update_time(struct timespec *time)
1030 {
1031 	unsigned long sec = get_seconds() & ~7;
1032 	if ((long)(sec - time->tv_sec) > 0)
1033 		time->tv_sec = sec;
1034 }
1035 
1036 /**
1037  *	tty_read	-	read method for tty device files
1038  *	@file: pointer to tty file
1039  *	@buf: user buffer
1040  *	@count: size of user buffer
1041  *	@ppos: unused
1042  *
1043  *	Perform the read system call function on this terminal device. Checks
1044  *	for hung up devices before calling the line discipline method.
1045  *
1046  *	Locking:
1047  *		Locks the line discipline internally while needed. Multiple
1048  *	read calls may be outstanding in parallel.
1049  */
1050 
1051 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1052 			loff_t *ppos)
1053 {
1054 	int i;
1055 	struct inode *inode = file_inode(file);
1056 	struct tty_struct *tty = file_tty(file);
1057 	struct tty_ldisc *ld;
1058 
1059 	if (tty_paranoia_check(tty, inode, "tty_read"))
1060 		return -EIO;
1061 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1062 		return -EIO;
1063 
1064 	/* We want to wait for the line discipline to sort out in this
1065 	   situation */
1066 	ld = tty_ldisc_ref_wait(tty);
1067 	if (ld->ops->read)
1068 		i = ld->ops->read(tty, file, buf, count);
1069 	else
1070 		i = -EIO;
1071 	tty_ldisc_deref(ld);
1072 
1073 	if (i > 0)
1074 		tty_update_time(&inode->i_atime);
1075 
1076 	return i;
1077 }
1078 
1079 static void tty_write_unlock(struct tty_struct *tty)
1080 {
1081 	mutex_unlock(&tty->atomic_write_lock);
1082 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1083 }
1084 
1085 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1086 {
1087 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1088 		if (ndelay)
1089 			return -EAGAIN;
1090 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1091 			return -ERESTARTSYS;
1092 	}
1093 	return 0;
1094 }
1095 
1096 /*
1097  * Split writes up in sane blocksizes to avoid
1098  * denial-of-service type attacks
1099  */
1100 static inline ssize_t do_tty_write(
1101 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1102 	struct tty_struct *tty,
1103 	struct file *file,
1104 	const char __user *buf,
1105 	size_t count)
1106 {
1107 	ssize_t ret, written = 0;
1108 	unsigned int chunk;
1109 
1110 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1111 	if (ret < 0)
1112 		return ret;
1113 
1114 	/*
1115 	 * We chunk up writes into a temporary buffer. This
1116 	 * simplifies low-level drivers immensely, since they
1117 	 * don't have locking issues and user mode accesses.
1118 	 *
1119 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1120 	 * big chunk-size..
1121 	 *
1122 	 * The default chunk-size is 2kB, because the NTTY
1123 	 * layer has problems with bigger chunks. It will
1124 	 * claim to be able to handle more characters than
1125 	 * it actually does.
1126 	 *
1127 	 * FIXME: This can probably go away now except that 64K chunks
1128 	 * are too likely to fail unless switched to vmalloc...
1129 	 */
1130 	chunk = 2048;
1131 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1132 		chunk = 65536;
1133 	if (count < chunk)
1134 		chunk = count;
1135 
1136 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1137 	if (tty->write_cnt < chunk) {
1138 		unsigned char *buf_chunk;
1139 
1140 		if (chunk < 1024)
1141 			chunk = 1024;
1142 
1143 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1144 		if (!buf_chunk) {
1145 			ret = -ENOMEM;
1146 			goto out;
1147 		}
1148 		kfree(tty->write_buf);
1149 		tty->write_cnt = chunk;
1150 		tty->write_buf = buf_chunk;
1151 	}
1152 
1153 	/* Do the write .. */
1154 	for (;;) {
1155 		size_t size = count;
1156 		if (size > chunk)
1157 			size = chunk;
1158 		ret = -EFAULT;
1159 		if (copy_from_user(tty->write_buf, buf, size))
1160 			break;
1161 		ret = write(tty, file, tty->write_buf, size);
1162 		if (ret <= 0)
1163 			break;
1164 		written += ret;
1165 		buf += ret;
1166 		count -= ret;
1167 		if (!count)
1168 			break;
1169 		ret = -ERESTARTSYS;
1170 		if (signal_pending(current))
1171 			break;
1172 		cond_resched();
1173 	}
1174 	if (written) {
1175 		tty_update_time(&file_inode(file)->i_mtime);
1176 		ret = written;
1177 	}
1178 out:
1179 	tty_write_unlock(tty);
1180 	return ret;
1181 }
1182 
1183 /**
1184  * tty_write_message - write a message to a certain tty, not just the console.
1185  * @tty: the destination tty_struct
1186  * @msg: the message to write
1187  *
1188  * This is used for messages that need to be redirected to a specific tty.
1189  * We don't put it into the syslog queue right now maybe in the future if
1190  * really needed.
1191  *
1192  * We must still hold the BTM and test the CLOSING flag for the moment.
1193  */
1194 
1195 void tty_write_message(struct tty_struct *tty, char *msg)
1196 {
1197 	if (tty) {
1198 		mutex_lock(&tty->atomic_write_lock);
1199 		tty_lock(tty);
1200 		if (tty->ops->write && tty->count > 0) {
1201 			tty_unlock(tty);
1202 			tty->ops->write(tty, msg, strlen(msg));
1203 		} else
1204 			tty_unlock(tty);
1205 		tty_write_unlock(tty);
1206 	}
1207 	return;
1208 }
1209 
1210 
1211 /**
1212  *	tty_write		-	write method for tty device file
1213  *	@file: tty file pointer
1214  *	@buf: user data to write
1215  *	@count: bytes to write
1216  *	@ppos: unused
1217  *
1218  *	Write data to a tty device via the line discipline.
1219  *
1220  *	Locking:
1221  *		Locks the line discipline as required
1222  *		Writes to the tty driver are serialized by the atomic_write_lock
1223  *	and are then processed in chunks to the device. The line discipline
1224  *	write method will not be invoked in parallel for each device.
1225  */
1226 
1227 static ssize_t tty_write(struct file *file, const char __user *buf,
1228 						size_t count, loff_t *ppos)
1229 {
1230 	struct tty_struct *tty = file_tty(file);
1231  	struct tty_ldisc *ld;
1232 	ssize_t ret;
1233 
1234 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1235 		return -EIO;
1236 	if (!tty || !tty->ops->write ||
1237 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1238 			return -EIO;
1239 	/* Short term debug to catch buggy drivers */
1240 	if (tty->ops->write_room == NULL)
1241 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1242 			tty->driver->name);
1243 	ld = tty_ldisc_ref_wait(tty);
1244 	if (!ld->ops->write)
1245 		ret = -EIO;
1246 	else
1247 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1248 	tty_ldisc_deref(ld);
1249 	return ret;
1250 }
1251 
1252 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1253 						size_t count, loff_t *ppos)
1254 {
1255 	struct file *p = NULL;
1256 
1257 	spin_lock(&redirect_lock);
1258 	if (redirect)
1259 		p = get_file(redirect);
1260 	spin_unlock(&redirect_lock);
1261 
1262 	if (p) {
1263 		ssize_t res;
1264 		res = vfs_write(p, buf, count, &p->f_pos);
1265 		fput(p);
1266 		return res;
1267 	}
1268 	return tty_write(file, buf, count, ppos);
1269 }
1270 
1271 /**
1272  *	tty_send_xchar	-	send priority character
1273  *
1274  *	Send a high priority character to the tty even if stopped
1275  *
1276  *	Locking: none for xchar method, write ordering for write method.
1277  */
1278 
1279 int tty_send_xchar(struct tty_struct *tty, char ch)
1280 {
1281 	int	was_stopped = tty->stopped;
1282 
1283 	if (tty->ops->send_xchar) {
1284 		tty->ops->send_xchar(tty, ch);
1285 		return 0;
1286 	}
1287 
1288 	if (tty_write_lock(tty, 0) < 0)
1289 		return -ERESTARTSYS;
1290 
1291 	if (was_stopped)
1292 		start_tty(tty);
1293 	tty->ops->write(tty, &ch, 1);
1294 	if (was_stopped)
1295 		stop_tty(tty);
1296 	tty_write_unlock(tty);
1297 	return 0;
1298 }
1299 
1300 static char ptychar[] = "pqrstuvwxyzabcde";
1301 
1302 /**
1303  *	pty_line_name	-	generate name for a pty
1304  *	@driver: the tty driver in use
1305  *	@index: the minor number
1306  *	@p: output buffer of at least 6 bytes
1307  *
1308  *	Generate a name from a driver reference and write it to the output
1309  *	buffer.
1310  *
1311  *	Locking: None
1312  */
1313 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1314 {
1315 	int i = index + driver->name_base;
1316 	/* ->name is initialized to "ttyp", but "tty" is expected */
1317 	sprintf(p, "%s%c%x",
1318 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1319 		ptychar[i >> 4 & 0xf], i & 0xf);
1320 }
1321 
1322 /**
1323  *	tty_line_name	-	generate name for a tty
1324  *	@driver: the tty driver in use
1325  *	@index: the minor number
1326  *	@p: output buffer of at least 7 bytes
1327  *
1328  *	Generate a name from a driver reference and write it to the output
1329  *	buffer.
1330  *
1331  *	Locking: None
1332  */
1333 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1334 {
1335 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1336 		return sprintf(p, "%s", driver->name);
1337 	else
1338 		return sprintf(p, "%s%d", driver->name,
1339 			       index + driver->name_base);
1340 }
1341 
1342 /**
1343  *	tty_driver_lookup_tty() - find an existing tty, if any
1344  *	@driver: the driver for the tty
1345  *	@idx:	 the minor number
1346  *
1347  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1348  *	driver lookup() method returns an error.
1349  *
1350  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1351  */
1352 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1353 		struct inode *inode, int idx)
1354 {
1355 	struct tty_struct *tty;
1356 
1357 	if (driver->ops->lookup)
1358 		tty = driver->ops->lookup(driver, inode, idx);
1359 	else
1360 		tty = driver->ttys[idx];
1361 
1362 	if (!IS_ERR(tty))
1363 		tty_kref_get(tty);
1364 	return tty;
1365 }
1366 
1367 /**
1368  *	tty_init_termios	-  helper for termios setup
1369  *	@tty: the tty to set up
1370  *
1371  *	Initialise the termios structures for this tty. Thus runs under
1372  *	the tty_mutex currently so we can be relaxed about ordering.
1373  */
1374 
1375 int tty_init_termios(struct tty_struct *tty)
1376 {
1377 	struct ktermios *tp;
1378 	int idx = tty->index;
1379 
1380 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1381 		tty->termios = tty->driver->init_termios;
1382 	else {
1383 		/* Check for lazy saved data */
1384 		tp = tty->driver->termios[idx];
1385 		if (tp != NULL)
1386 			tty->termios = *tp;
1387 		else
1388 			tty->termios = tty->driver->init_termios;
1389 	}
1390 	/* Compatibility until drivers always set this */
1391 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1392 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(tty_init_termios);
1396 
1397 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1398 {
1399 	int ret = tty_init_termios(tty);
1400 	if (ret)
1401 		return ret;
1402 
1403 	tty_driver_kref_get(driver);
1404 	tty->count++;
1405 	driver->ttys[tty->index] = tty;
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(tty_standard_install);
1409 
1410 /**
1411  *	tty_driver_install_tty() - install a tty entry in the driver
1412  *	@driver: the driver for the tty
1413  *	@tty: the tty
1414  *
1415  *	Install a tty object into the driver tables. The tty->index field
1416  *	will be set by the time this is called. This method is responsible
1417  *	for ensuring any need additional structures are allocated and
1418  *	configured.
1419  *
1420  *	Locking: tty_mutex for now
1421  */
1422 static int tty_driver_install_tty(struct tty_driver *driver,
1423 						struct tty_struct *tty)
1424 {
1425 	return driver->ops->install ? driver->ops->install(driver, tty) :
1426 		tty_standard_install(driver, tty);
1427 }
1428 
1429 /**
1430  *	tty_driver_remove_tty() - remove a tty from the driver tables
1431  *	@driver: the driver for the tty
1432  *	@idx:	 the minor number
1433  *
1434  *	Remvoe a tty object from the driver tables. The tty->index field
1435  *	will be set by the time this is called.
1436  *
1437  *	Locking: tty_mutex for now
1438  */
1439 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1440 {
1441 	if (driver->ops->remove)
1442 		driver->ops->remove(driver, tty);
1443 	else
1444 		driver->ttys[tty->index] = NULL;
1445 }
1446 
1447 /*
1448  * 	tty_reopen()	- fast re-open of an open tty
1449  * 	@tty	- the tty to open
1450  *
1451  *	Return 0 on success, -errno on error.
1452  *	Re-opens on master ptys are not allowed and return -EIO.
1453  *
1454  *	Locking: Caller must hold tty_lock
1455  */
1456 static int tty_reopen(struct tty_struct *tty)
1457 {
1458 	struct tty_driver *driver = tty->driver;
1459 
1460 	if (!tty->count)
1461 		return -EIO;
1462 
1463 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1464 	    driver->subtype == PTY_TYPE_MASTER)
1465 		return -EIO;
1466 
1467 	tty->count++;
1468 
1469 	WARN_ON(!tty->ldisc);
1470 
1471 	return 0;
1472 }
1473 
1474 /**
1475  *	tty_init_dev		-	initialise a tty device
1476  *	@driver: tty driver we are opening a device on
1477  *	@idx: device index
1478  *	@ret_tty: returned tty structure
1479  *
1480  *	Prepare a tty device. This may not be a "new" clean device but
1481  *	could also be an active device. The pty drivers require special
1482  *	handling because of this.
1483  *
1484  *	Locking:
1485  *		The function is called under the tty_mutex, which
1486  *	protects us from the tty struct or driver itself going away.
1487  *
1488  *	On exit the tty device has the line discipline attached and
1489  *	a reference count of 1. If a pair was created for pty/tty use
1490  *	and the other was a pty master then it too has a reference count of 1.
1491  *
1492  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1493  * failed open.  The new code protects the open with a mutex, so it's
1494  * really quite straightforward.  The mutex locking can probably be
1495  * relaxed for the (most common) case of reopening a tty.
1496  */
1497 
1498 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1499 {
1500 	struct tty_struct *tty;
1501 	int retval;
1502 
1503 	/*
1504 	 * First time open is complex, especially for PTY devices.
1505 	 * This code guarantees that either everything succeeds and the
1506 	 * TTY is ready for operation, or else the table slots are vacated
1507 	 * and the allocated memory released.  (Except that the termios
1508 	 * and locked termios may be retained.)
1509 	 */
1510 
1511 	if (!try_module_get(driver->owner))
1512 		return ERR_PTR(-ENODEV);
1513 
1514 	tty = alloc_tty_struct(driver, idx);
1515 	if (!tty) {
1516 		retval = -ENOMEM;
1517 		goto err_module_put;
1518 	}
1519 
1520 	tty_lock(tty);
1521 	retval = tty_driver_install_tty(driver, tty);
1522 	if (retval < 0)
1523 		goto err_deinit_tty;
1524 
1525 	if (!tty->port)
1526 		tty->port = driver->ports[idx];
1527 
1528 	WARN_RATELIMIT(!tty->port,
1529 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1530 			__func__, tty->driver->name);
1531 
1532 	tty->port->itty = tty;
1533 
1534 	/*
1535 	 * Structures all installed ... call the ldisc open routines.
1536 	 * If we fail here just call release_tty to clean up.  No need
1537 	 * to decrement the use counts, as release_tty doesn't care.
1538 	 */
1539 	retval = tty_ldisc_setup(tty, tty->link);
1540 	if (retval)
1541 		goto err_release_tty;
1542 	/* Return the tty locked so that it cannot vanish under the caller */
1543 	return tty;
1544 
1545 err_deinit_tty:
1546 	tty_unlock(tty);
1547 	deinitialize_tty_struct(tty);
1548 	free_tty_struct(tty);
1549 err_module_put:
1550 	module_put(driver->owner);
1551 	return ERR_PTR(retval);
1552 
1553 	/* call the tty release_tty routine to clean out this slot */
1554 err_release_tty:
1555 	tty_unlock(tty);
1556 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1557 				 "clearing slot %d\n", idx);
1558 	release_tty(tty, idx);
1559 	return ERR_PTR(retval);
1560 }
1561 
1562 void tty_free_termios(struct tty_struct *tty)
1563 {
1564 	struct ktermios *tp;
1565 	int idx = tty->index;
1566 
1567 	/* If the port is going to reset then it has no termios to save */
1568 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1569 		return;
1570 
1571 	/* Stash the termios data */
1572 	tp = tty->driver->termios[idx];
1573 	if (tp == NULL) {
1574 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1575 		if (tp == NULL) {
1576 			pr_warn("tty: no memory to save termios state.\n");
1577 			return;
1578 		}
1579 		tty->driver->termios[idx] = tp;
1580 	}
1581 	*tp = tty->termios;
1582 }
1583 EXPORT_SYMBOL(tty_free_termios);
1584 
1585 /**
1586  *	tty_flush_works		-	flush all works of a tty/pty pair
1587  *	@tty: tty device to flush works for (or either end of a pty pair)
1588  *
1589  *	Sync flush all works belonging to @tty (and the 'other' tty).
1590  */
1591 static void tty_flush_works(struct tty_struct *tty)
1592 {
1593 	flush_work(&tty->SAK_work);
1594 	flush_work(&tty->hangup_work);
1595 	if (tty->link) {
1596 		flush_work(&tty->link->SAK_work);
1597 		flush_work(&tty->link->hangup_work);
1598 	}
1599 }
1600 
1601 /**
1602  *	release_one_tty		-	release tty structure memory
1603  *	@kref: kref of tty we are obliterating
1604  *
1605  *	Releases memory associated with a tty structure, and clears out the
1606  *	driver table slots. This function is called when a device is no longer
1607  *	in use. It also gets called when setup of a device fails.
1608  *
1609  *	Locking:
1610  *		takes the file list lock internally when working on the list
1611  *	of ttys that the driver keeps.
1612  *
1613  *	This method gets called from a work queue so that the driver private
1614  *	cleanup ops can sleep (needed for USB at least)
1615  */
1616 static void release_one_tty(struct work_struct *work)
1617 {
1618 	struct tty_struct *tty =
1619 		container_of(work, struct tty_struct, hangup_work);
1620 	struct tty_driver *driver = tty->driver;
1621 	struct module *owner = driver->owner;
1622 
1623 	if (tty->ops->cleanup)
1624 		tty->ops->cleanup(tty);
1625 
1626 	tty->magic = 0;
1627 	tty_driver_kref_put(driver);
1628 	module_put(owner);
1629 
1630 	spin_lock(&tty_files_lock);
1631 	list_del_init(&tty->tty_files);
1632 	spin_unlock(&tty_files_lock);
1633 
1634 	put_pid(tty->pgrp);
1635 	put_pid(tty->session);
1636 	free_tty_struct(tty);
1637 }
1638 
1639 static void queue_release_one_tty(struct kref *kref)
1640 {
1641 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1642 
1643 	/* The hangup queue is now free so we can reuse it rather than
1644 	   waste a chunk of memory for each port */
1645 	INIT_WORK(&tty->hangup_work, release_one_tty);
1646 	schedule_work(&tty->hangup_work);
1647 }
1648 
1649 /**
1650  *	tty_kref_put		-	release a tty kref
1651  *	@tty: tty device
1652  *
1653  *	Release a reference to a tty device and if need be let the kref
1654  *	layer destruct the object for us
1655  */
1656 
1657 void tty_kref_put(struct tty_struct *tty)
1658 {
1659 	if (tty)
1660 		kref_put(&tty->kref, queue_release_one_tty);
1661 }
1662 EXPORT_SYMBOL(tty_kref_put);
1663 
1664 /**
1665  *	release_tty		-	release tty structure memory
1666  *
1667  *	Release both @tty and a possible linked partner (think pty pair),
1668  *	and decrement the refcount of the backing module.
1669  *
1670  *	Locking:
1671  *		tty_mutex
1672  *		takes the file list lock internally when working on the list
1673  *	of ttys that the driver keeps.
1674  *
1675  */
1676 static void release_tty(struct tty_struct *tty, int idx)
1677 {
1678 	/* This should always be true but check for the moment */
1679 	WARN_ON(tty->index != idx);
1680 	WARN_ON(!mutex_is_locked(&tty_mutex));
1681 	if (tty->ops->shutdown)
1682 		tty->ops->shutdown(tty);
1683 	tty_free_termios(tty);
1684 	tty_driver_remove_tty(tty->driver, tty);
1685 	tty->port->itty = NULL;
1686 	if (tty->link)
1687 		tty->link->port->itty = NULL;
1688 	cancel_work_sync(&tty->port->buf.work);
1689 
1690 	tty_kref_put(tty->link);
1691 	tty_kref_put(tty);
1692 }
1693 
1694 /**
1695  *	tty_release_checks - check a tty before real release
1696  *	@tty: tty to check
1697  *	@o_tty: link of @tty (if any)
1698  *	@idx: index of the tty
1699  *
1700  *	Performs some paranoid checking before true release of the @tty.
1701  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1702  */
1703 static int tty_release_checks(struct tty_struct *tty, int idx)
1704 {
1705 #ifdef TTY_PARANOIA_CHECK
1706 	if (idx < 0 || idx >= tty->driver->num) {
1707 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1708 				__func__, tty->name);
1709 		return -1;
1710 	}
1711 
1712 	/* not much to check for devpts */
1713 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1714 		return 0;
1715 
1716 	if (tty != tty->driver->ttys[idx]) {
1717 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1718 				__func__, idx, tty->name);
1719 		return -1;
1720 	}
1721 	if (tty->driver->other) {
1722 		struct tty_struct *o_tty = tty->link;
1723 
1724 		if (o_tty != tty->driver->other->ttys[idx]) {
1725 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1726 					__func__, idx, tty->name);
1727 			return -1;
1728 		}
1729 		if (o_tty->link != tty) {
1730 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1731 			return -1;
1732 		}
1733 	}
1734 #endif
1735 	return 0;
1736 }
1737 
1738 /**
1739  *	tty_release		-	vfs callback for close
1740  *	@inode: inode of tty
1741  *	@filp: file pointer for handle to tty
1742  *
1743  *	Called the last time each file handle is closed that references
1744  *	this tty. There may however be several such references.
1745  *
1746  *	Locking:
1747  *		Takes bkl. See tty_release_dev
1748  *
1749  * Even releasing the tty structures is a tricky business.. We have
1750  * to be very careful that the structures are all released at the
1751  * same time, as interrupts might otherwise get the wrong pointers.
1752  *
1753  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1754  * lead to double frees or releasing memory still in use.
1755  */
1756 
1757 int tty_release(struct inode *inode, struct file *filp)
1758 {
1759 	struct tty_struct *tty = file_tty(filp);
1760 	struct tty_struct *o_tty = NULL;
1761 	int	do_sleep, final;
1762 	int	idx;
1763 	char	buf[64];
1764 	long	timeout = 0;
1765 	int	once = 1;
1766 
1767 	if (tty_paranoia_check(tty, inode, __func__))
1768 		return 0;
1769 
1770 	tty_lock(tty);
1771 	check_tty_count(tty, __func__);
1772 
1773 	__tty_fasync(-1, filp, 0);
1774 
1775 	idx = tty->index;
1776 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1777 	    tty->driver->subtype == PTY_TYPE_MASTER)
1778 		o_tty = tty->link;
1779 
1780 	if (tty_release_checks(tty, idx)) {
1781 		tty_unlock(tty);
1782 		return 0;
1783 	}
1784 
1785 #ifdef TTY_DEBUG_HANGUP
1786 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1787 			tty_name(tty, buf), tty->count);
1788 #endif
1789 
1790 	if (tty->ops->close)
1791 		tty->ops->close(tty, filp);
1792 
1793 	/* If tty is pty master, lock the slave pty (stable lock order) */
1794 	tty_lock_slave(o_tty);
1795 
1796 	/*
1797 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1798 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1799 	 * wait queues and kick everyone out _before_ actually starting to
1800 	 * close.  This ensures that we won't block while releasing the tty
1801 	 * structure.
1802 	 *
1803 	 * The test for the o_tty closing is necessary, since the master and
1804 	 * slave sides may close in any order.  If the slave side closes out
1805 	 * first, its count will be one, since the master side holds an open.
1806 	 * Thus this test wouldn't be triggered at the time the slave closed,
1807 	 * so we do it now.
1808 	 */
1809 	while (1) {
1810 		do_sleep = 0;
1811 
1812 		if (tty->count <= 1) {
1813 			if (waitqueue_active(&tty->read_wait)) {
1814 				wake_up_poll(&tty->read_wait, POLLIN);
1815 				do_sleep++;
1816 			}
1817 			if (waitqueue_active(&tty->write_wait)) {
1818 				wake_up_poll(&tty->write_wait, POLLOUT);
1819 				do_sleep++;
1820 			}
1821 		}
1822 		if (o_tty && o_tty->count <= 1) {
1823 			if (waitqueue_active(&o_tty->read_wait)) {
1824 				wake_up_poll(&o_tty->read_wait, POLLIN);
1825 				do_sleep++;
1826 			}
1827 			if (waitqueue_active(&o_tty->write_wait)) {
1828 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1829 				do_sleep++;
1830 			}
1831 		}
1832 		if (!do_sleep)
1833 			break;
1834 
1835 		if (once) {
1836 			once = 0;
1837 			printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1838 			       __func__, tty_name(tty, buf));
1839 		}
1840 		schedule_timeout_killable(timeout);
1841 		if (timeout < 120 * HZ)
1842 			timeout = 2 * timeout + 1;
1843 		else
1844 			timeout = MAX_SCHEDULE_TIMEOUT;
1845 	}
1846 
1847 	if (o_tty) {
1848 		if (--o_tty->count < 0) {
1849 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1850 				__func__, o_tty->count, tty_name(o_tty, buf));
1851 			o_tty->count = 0;
1852 		}
1853 	}
1854 	if (--tty->count < 0) {
1855 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1856 				__func__, tty->count, tty_name(tty, buf));
1857 		tty->count = 0;
1858 	}
1859 
1860 	/*
1861 	 * We've decremented tty->count, so we need to remove this file
1862 	 * descriptor off the tty->tty_files list; this serves two
1863 	 * purposes:
1864 	 *  - check_tty_count sees the correct number of file descriptors
1865 	 *    associated with this tty.
1866 	 *  - do_tty_hangup no longer sees this file descriptor as
1867 	 *    something that needs to be handled for hangups.
1868 	 */
1869 	tty_del_file(filp);
1870 
1871 	/*
1872 	 * Perform some housekeeping before deciding whether to return.
1873 	 *
1874 	 * If _either_ side is closing, make sure there aren't any
1875 	 * processes that still think tty or o_tty is their controlling
1876 	 * tty.
1877 	 */
1878 	if (!tty->count) {
1879 		read_lock(&tasklist_lock);
1880 		session_clear_tty(tty->session);
1881 		if (o_tty)
1882 			session_clear_tty(o_tty->session);
1883 		read_unlock(&tasklist_lock);
1884 	}
1885 
1886 	/* check whether both sides are closing ... */
1887 	final = !tty->count && !(o_tty && o_tty->count);
1888 
1889 	tty_unlock_slave(o_tty);
1890 	tty_unlock(tty);
1891 
1892 	/* At this point, the tty->count == 0 should ensure a dead tty
1893 	   cannot be re-opened by a racing opener */
1894 
1895 	if (!final)
1896 		return 0;
1897 
1898 #ifdef TTY_DEBUG_HANGUP
1899 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1900 #endif
1901 	/*
1902 	 * Ask the line discipline code to release its structures
1903 	 */
1904 	tty_ldisc_release(tty);
1905 
1906 	/* Wait for pending work before tty destruction commmences */
1907 	tty_flush_works(tty);
1908 
1909 #ifdef TTY_DEBUG_HANGUP
1910 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1911 #endif
1912 	/*
1913 	 * The release_tty function takes care of the details of clearing
1914 	 * the slots and preserving the termios structure. The tty_unlock_pair
1915 	 * should be safe as we keep a kref while the tty is locked (so the
1916 	 * unlock never unlocks a freed tty).
1917 	 */
1918 	mutex_lock(&tty_mutex);
1919 	release_tty(tty, idx);
1920 	mutex_unlock(&tty_mutex);
1921 
1922 	return 0;
1923 }
1924 
1925 /**
1926  *	tty_open_current_tty - get locked tty of current task
1927  *	@device: device number
1928  *	@filp: file pointer to tty
1929  *	@return: locked tty of the current task iff @device is /dev/tty
1930  *
1931  *	Performs a re-open of the current task's controlling tty.
1932  *
1933  *	We cannot return driver and index like for the other nodes because
1934  *	devpts will not work then. It expects inodes to be from devpts FS.
1935  */
1936 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1937 {
1938 	struct tty_struct *tty;
1939 	int retval;
1940 
1941 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1942 		return NULL;
1943 
1944 	tty = get_current_tty();
1945 	if (!tty)
1946 		return ERR_PTR(-ENXIO);
1947 
1948 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1949 	/* noctty = 1; */
1950 	tty_lock(tty);
1951 	tty_kref_put(tty);	/* safe to drop the kref now */
1952 
1953 	retval = tty_reopen(tty);
1954 	if (retval < 0) {
1955 		tty_unlock(tty);
1956 		tty = ERR_PTR(retval);
1957 	}
1958 	return tty;
1959 }
1960 
1961 /**
1962  *	tty_lookup_driver - lookup a tty driver for a given device file
1963  *	@device: device number
1964  *	@filp: file pointer to tty
1965  *	@noctty: set if the device should not become a controlling tty
1966  *	@index: index for the device in the @return driver
1967  *	@return: driver for this inode (with increased refcount)
1968  *
1969  * 	If @return is not erroneous, the caller is responsible to decrement the
1970  * 	refcount by tty_driver_kref_put.
1971  *
1972  *	Locking: tty_mutex protects get_tty_driver
1973  */
1974 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1975 		int *noctty, int *index)
1976 {
1977 	struct tty_driver *driver;
1978 
1979 	switch (device) {
1980 #ifdef CONFIG_VT
1981 	case MKDEV(TTY_MAJOR, 0): {
1982 		extern struct tty_driver *console_driver;
1983 		driver = tty_driver_kref_get(console_driver);
1984 		*index = fg_console;
1985 		*noctty = 1;
1986 		break;
1987 	}
1988 #endif
1989 	case MKDEV(TTYAUX_MAJOR, 1): {
1990 		struct tty_driver *console_driver = console_device(index);
1991 		if (console_driver) {
1992 			driver = tty_driver_kref_get(console_driver);
1993 			if (driver) {
1994 				/* Don't let /dev/console block */
1995 				filp->f_flags |= O_NONBLOCK;
1996 				*noctty = 1;
1997 				break;
1998 			}
1999 		}
2000 		return ERR_PTR(-ENODEV);
2001 	}
2002 	default:
2003 		driver = get_tty_driver(device, index);
2004 		if (!driver)
2005 			return ERR_PTR(-ENODEV);
2006 		break;
2007 	}
2008 	return driver;
2009 }
2010 
2011 /**
2012  *	tty_open		-	open a tty device
2013  *	@inode: inode of device file
2014  *	@filp: file pointer to tty
2015  *
2016  *	tty_open and tty_release keep up the tty count that contains the
2017  *	number of opens done on a tty. We cannot use the inode-count, as
2018  *	different inodes might point to the same tty.
2019  *
2020  *	Open-counting is needed for pty masters, as well as for keeping
2021  *	track of serial lines: DTR is dropped when the last close happens.
2022  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2023  *
2024  *	The termios state of a pty is reset on first open so that
2025  *	settings don't persist across reuse.
2026  *
2027  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2028  *		 tty->count should protect the rest.
2029  *		 ->siglock protects ->signal/->sighand
2030  *
2031  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2032  *	tty_mutex
2033  */
2034 
2035 static int tty_open(struct inode *inode, struct file *filp)
2036 {
2037 	struct tty_struct *tty;
2038 	int noctty, retval;
2039 	struct tty_driver *driver = NULL;
2040 	int index;
2041 	dev_t device = inode->i_rdev;
2042 	unsigned saved_flags = filp->f_flags;
2043 
2044 	nonseekable_open(inode, filp);
2045 
2046 retry_open:
2047 	retval = tty_alloc_file(filp);
2048 	if (retval)
2049 		return -ENOMEM;
2050 
2051 	noctty = filp->f_flags & O_NOCTTY;
2052 	index  = -1;
2053 	retval = 0;
2054 
2055 	tty = tty_open_current_tty(device, filp);
2056 	if (!tty) {
2057 		mutex_lock(&tty_mutex);
2058 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2059 		if (IS_ERR(driver)) {
2060 			retval = PTR_ERR(driver);
2061 			goto err_unlock;
2062 		}
2063 
2064 		/* check whether we're reopening an existing tty */
2065 		tty = tty_driver_lookup_tty(driver, inode, index);
2066 		if (IS_ERR(tty)) {
2067 			retval = PTR_ERR(tty);
2068 			goto err_unlock;
2069 		}
2070 
2071 		if (tty) {
2072 			mutex_unlock(&tty_mutex);
2073 			tty_lock(tty);
2074 			/* safe to drop the kref from tty_driver_lookup_tty() */
2075 			tty_kref_put(tty);
2076 			retval = tty_reopen(tty);
2077 			if (retval < 0) {
2078 				tty_unlock(tty);
2079 				tty = ERR_PTR(retval);
2080 			}
2081 		} else { /* Returns with the tty_lock held for now */
2082 			tty = tty_init_dev(driver, index);
2083 			mutex_unlock(&tty_mutex);
2084 		}
2085 
2086 		tty_driver_kref_put(driver);
2087 	}
2088 
2089 	if (IS_ERR(tty)) {
2090 		retval = PTR_ERR(tty);
2091 		goto err_file;
2092 	}
2093 
2094 	tty_add_file(tty, filp);
2095 
2096 	check_tty_count(tty, __func__);
2097 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2098 	    tty->driver->subtype == PTY_TYPE_MASTER)
2099 		noctty = 1;
2100 #ifdef TTY_DEBUG_HANGUP
2101 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2102 #endif
2103 	if (tty->ops->open)
2104 		retval = tty->ops->open(tty, filp);
2105 	else
2106 		retval = -ENODEV;
2107 	filp->f_flags = saved_flags;
2108 
2109 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2110 						!capable(CAP_SYS_ADMIN))
2111 		retval = -EBUSY;
2112 
2113 	if (retval) {
2114 #ifdef TTY_DEBUG_HANGUP
2115 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2116 				retval, tty->name);
2117 #endif
2118 		tty_unlock(tty); /* need to call tty_release without BTM */
2119 		tty_release(inode, filp);
2120 		if (retval != -ERESTARTSYS)
2121 			return retval;
2122 
2123 		if (signal_pending(current))
2124 			return retval;
2125 
2126 		schedule();
2127 		/*
2128 		 * Need to reset f_op in case a hangup happened.
2129 		 */
2130 		if (tty_hung_up_p(filp))
2131 			filp->f_op = &tty_fops;
2132 		goto retry_open;
2133 	}
2134 	clear_bit(TTY_HUPPED, &tty->flags);
2135 
2136 
2137 	read_lock(&tasklist_lock);
2138 	spin_lock_irq(&current->sighand->siglock);
2139 	if (!noctty &&
2140 	    current->signal->leader &&
2141 	    !current->signal->tty &&
2142 	    tty->session == NULL)
2143 		__proc_set_tty(tty);
2144 	spin_unlock_irq(&current->sighand->siglock);
2145 	read_unlock(&tasklist_lock);
2146 	tty_unlock(tty);
2147 	return 0;
2148 err_unlock:
2149 	mutex_unlock(&tty_mutex);
2150 	/* after locks to avoid deadlock */
2151 	if (!IS_ERR_OR_NULL(driver))
2152 		tty_driver_kref_put(driver);
2153 err_file:
2154 	tty_free_file(filp);
2155 	return retval;
2156 }
2157 
2158 
2159 
2160 /**
2161  *	tty_poll	-	check tty status
2162  *	@filp: file being polled
2163  *	@wait: poll wait structures to update
2164  *
2165  *	Call the line discipline polling method to obtain the poll
2166  *	status of the device.
2167  *
2168  *	Locking: locks called line discipline but ldisc poll method
2169  *	may be re-entered freely by other callers.
2170  */
2171 
2172 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2173 {
2174 	struct tty_struct *tty = file_tty(filp);
2175 	struct tty_ldisc *ld;
2176 	int ret = 0;
2177 
2178 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2179 		return 0;
2180 
2181 	ld = tty_ldisc_ref_wait(tty);
2182 	if (ld->ops->poll)
2183 		ret = ld->ops->poll(tty, filp, wait);
2184 	tty_ldisc_deref(ld);
2185 	return ret;
2186 }
2187 
2188 static int __tty_fasync(int fd, struct file *filp, int on)
2189 {
2190 	struct tty_struct *tty = file_tty(filp);
2191 	struct tty_ldisc *ldisc;
2192 	unsigned long flags;
2193 	int retval = 0;
2194 
2195 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2196 		goto out;
2197 
2198 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2199 	if (retval <= 0)
2200 		goto out;
2201 
2202 	ldisc = tty_ldisc_ref(tty);
2203 	if (ldisc) {
2204 		if (ldisc->ops->fasync)
2205 			ldisc->ops->fasync(tty, on);
2206 		tty_ldisc_deref(ldisc);
2207 	}
2208 
2209 	if (on) {
2210 		enum pid_type type;
2211 		struct pid *pid;
2212 
2213 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2214 		if (tty->pgrp) {
2215 			pid = tty->pgrp;
2216 			type = PIDTYPE_PGID;
2217 		} else {
2218 			pid = task_pid(current);
2219 			type = PIDTYPE_PID;
2220 		}
2221 		get_pid(pid);
2222 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2223 		__f_setown(filp, pid, type, 0);
2224 		put_pid(pid);
2225 		retval = 0;
2226 	}
2227 out:
2228 	return retval;
2229 }
2230 
2231 static int tty_fasync(int fd, struct file *filp, int on)
2232 {
2233 	struct tty_struct *tty = file_tty(filp);
2234 	int retval;
2235 
2236 	tty_lock(tty);
2237 	retval = __tty_fasync(fd, filp, on);
2238 	tty_unlock(tty);
2239 
2240 	return retval;
2241 }
2242 
2243 /**
2244  *	tiocsti			-	fake input character
2245  *	@tty: tty to fake input into
2246  *	@p: pointer to character
2247  *
2248  *	Fake input to a tty device. Does the necessary locking and
2249  *	input management.
2250  *
2251  *	FIXME: does not honour flow control ??
2252  *
2253  *	Locking:
2254  *		Called functions take tty_ldiscs_lock
2255  *		current->signal->tty check is safe without locks
2256  *
2257  *	FIXME: may race normal receive processing
2258  */
2259 
2260 static int tiocsti(struct tty_struct *tty, char __user *p)
2261 {
2262 	char ch, mbz = 0;
2263 	struct tty_ldisc *ld;
2264 
2265 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2266 		return -EPERM;
2267 	if (get_user(ch, p))
2268 		return -EFAULT;
2269 	tty_audit_tiocsti(tty, ch);
2270 	ld = tty_ldisc_ref_wait(tty);
2271 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2272 	tty_ldisc_deref(ld);
2273 	return 0;
2274 }
2275 
2276 /**
2277  *	tiocgwinsz		-	implement window query ioctl
2278  *	@tty; tty
2279  *	@arg: user buffer for result
2280  *
2281  *	Copies the kernel idea of the window size into the user buffer.
2282  *
2283  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2284  *		is consistent.
2285  */
2286 
2287 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2288 {
2289 	int err;
2290 
2291 	mutex_lock(&tty->winsize_mutex);
2292 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2293 	mutex_unlock(&tty->winsize_mutex);
2294 
2295 	return err ? -EFAULT: 0;
2296 }
2297 
2298 /**
2299  *	tty_do_resize		-	resize event
2300  *	@tty: tty being resized
2301  *	@rows: rows (character)
2302  *	@cols: cols (character)
2303  *
2304  *	Update the termios variables and send the necessary signals to
2305  *	peform a terminal resize correctly
2306  */
2307 
2308 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2309 {
2310 	struct pid *pgrp;
2311 
2312 	/* Lock the tty */
2313 	mutex_lock(&tty->winsize_mutex);
2314 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2315 		goto done;
2316 
2317 	/* Signal the foreground process group */
2318 	pgrp = tty_get_pgrp(tty);
2319 	if (pgrp)
2320 		kill_pgrp(pgrp, SIGWINCH, 1);
2321 	put_pid(pgrp);
2322 
2323 	tty->winsize = *ws;
2324 done:
2325 	mutex_unlock(&tty->winsize_mutex);
2326 	return 0;
2327 }
2328 EXPORT_SYMBOL(tty_do_resize);
2329 
2330 /**
2331  *	tiocswinsz		-	implement window size set ioctl
2332  *	@tty; tty side of tty
2333  *	@arg: user buffer for result
2334  *
2335  *	Copies the user idea of the window size to the kernel. Traditionally
2336  *	this is just advisory information but for the Linux console it
2337  *	actually has driver level meaning and triggers a VC resize.
2338  *
2339  *	Locking:
2340  *		Driver dependent. The default do_resize method takes the
2341  *	tty termios mutex and ctrl_lock. The console takes its own lock
2342  *	then calls into the default method.
2343  */
2344 
2345 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2346 {
2347 	struct winsize tmp_ws;
2348 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2349 		return -EFAULT;
2350 
2351 	if (tty->ops->resize)
2352 		return tty->ops->resize(tty, &tmp_ws);
2353 	else
2354 		return tty_do_resize(tty, &tmp_ws);
2355 }
2356 
2357 /**
2358  *	tioccons	-	allow admin to move logical console
2359  *	@file: the file to become console
2360  *
2361  *	Allow the administrator to move the redirected console device
2362  *
2363  *	Locking: uses redirect_lock to guard the redirect information
2364  */
2365 
2366 static int tioccons(struct file *file)
2367 {
2368 	if (!capable(CAP_SYS_ADMIN))
2369 		return -EPERM;
2370 	if (file->f_op->write == redirected_tty_write) {
2371 		struct file *f;
2372 		spin_lock(&redirect_lock);
2373 		f = redirect;
2374 		redirect = NULL;
2375 		spin_unlock(&redirect_lock);
2376 		if (f)
2377 			fput(f);
2378 		return 0;
2379 	}
2380 	spin_lock(&redirect_lock);
2381 	if (redirect) {
2382 		spin_unlock(&redirect_lock);
2383 		return -EBUSY;
2384 	}
2385 	redirect = get_file(file);
2386 	spin_unlock(&redirect_lock);
2387 	return 0;
2388 }
2389 
2390 /**
2391  *	fionbio		-	non blocking ioctl
2392  *	@file: file to set blocking value
2393  *	@p: user parameter
2394  *
2395  *	Historical tty interfaces had a blocking control ioctl before
2396  *	the generic functionality existed. This piece of history is preserved
2397  *	in the expected tty API of posix OS's.
2398  *
2399  *	Locking: none, the open file handle ensures it won't go away.
2400  */
2401 
2402 static int fionbio(struct file *file, int __user *p)
2403 {
2404 	int nonblock;
2405 
2406 	if (get_user(nonblock, p))
2407 		return -EFAULT;
2408 
2409 	spin_lock(&file->f_lock);
2410 	if (nonblock)
2411 		file->f_flags |= O_NONBLOCK;
2412 	else
2413 		file->f_flags &= ~O_NONBLOCK;
2414 	spin_unlock(&file->f_lock);
2415 	return 0;
2416 }
2417 
2418 /**
2419  *	tiocsctty	-	set controlling tty
2420  *	@tty: tty structure
2421  *	@arg: user argument
2422  *
2423  *	This ioctl is used to manage job control. It permits a session
2424  *	leader to set this tty as the controlling tty for the session.
2425  *
2426  *	Locking:
2427  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2428  *		Takes tasklist_lock internally to walk sessions
2429  *		Takes ->siglock() when updating signal->tty
2430  */
2431 
2432 static int tiocsctty(struct tty_struct *tty, int arg)
2433 {
2434 	int ret = 0;
2435 
2436 	tty_lock(tty);
2437 	read_lock(&tasklist_lock);
2438 
2439 	if (current->signal->leader && (task_session(current) == tty->session))
2440 		goto unlock;
2441 
2442 	/*
2443 	 * The process must be a session leader and
2444 	 * not have a controlling tty already.
2445 	 */
2446 	if (!current->signal->leader || current->signal->tty) {
2447 		ret = -EPERM;
2448 		goto unlock;
2449 	}
2450 
2451 	if (tty->session) {
2452 		/*
2453 		 * This tty is already the controlling
2454 		 * tty for another session group!
2455 		 */
2456 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2457 			/*
2458 			 * Steal it away
2459 			 */
2460 			session_clear_tty(tty->session);
2461 		} else {
2462 			ret = -EPERM;
2463 			goto unlock;
2464 		}
2465 	}
2466 	proc_set_tty(tty);
2467 unlock:
2468 	read_unlock(&tasklist_lock);
2469 	tty_unlock(tty);
2470 	return ret;
2471 }
2472 
2473 /**
2474  *	tty_get_pgrp	-	return a ref counted pgrp pid
2475  *	@tty: tty to read
2476  *
2477  *	Returns a refcounted instance of the pid struct for the process
2478  *	group controlling the tty.
2479  */
2480 
2481 struct pid *tty_get_pgrp(struct tty_struct *tty)
2482 {
2483 	unsigned long flags;
2484 	struct pid *pgrp;
2485 
2486 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2487 	pgrp = get_pid(tty->pgrp);
2488 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2489 
2490 	return pgrp;
2491 }
2492 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2493 
2494 /*
2495  * This checks not only the pgrp, but falls back on the pid if no
2496  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2497  * without this...
2498  *
2499  * The caller must hold rcu lock or the tasklist lock.
2500  */
2501 static struct pid *session_of_pgrp(struct pid *pgrp)
2502 {
2503 	struct task_struct *p;
2504 	struct pid *sid = NULL;
2505 
2506 	p = pid_task(pgrp, PIDTYPE_PGID);
2507 	if (p == NULL)
2508 		p = pid_task(pgrp, PIDTYPE_PID);
2509 	if (p != NULL)
2510 		sid = task_session(p);
2511 
2512 	return sid;
2513 }
2514 
2515 /**
2516  *	tiocgpgrp		-	get process group
2517  *	@tty: tty passed by user
2518  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2519  *	@p: returned pid
2520  *
2521  *	Obtain the process group of the tty. If there is no process group
2522  *	return an error.
2523  *
2524  *	Locking: none. Reference to current->signal->tty is safe.
2525  */
2526 
2527 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2528 {
2529 	struct pid *pid;
2530 	int ret;
2531 	/*
2532 	 * (tty == real_tty) is a cheap way of
2533 	 * testing if the tty is NOT a master pty.
2534 	 */
2535 	if (tty == real_tty && current->signal->tty != real_tty)
2536 		return -ENOTTY;
2537 	pid = tty_get_pgrp(real_tty);
2538 	ret =  put_user(pid_vnr(pid), p);
2539 	put_pid(pid);
2540 	return ret;
2541 }
2542 
2543 /**
2544  *	tiocspgrp		-	attempt to set process group
2545  *	@tty: tty passed by user
2546  *	@real_tty: tty side device matching tty passed by user
2547  *	@p: pid pointer
2548  *
2549  *	Set the process group of the tty to the session passed. Only
2550  *	permitted where the tty session is our session.
2551  *
2552  *	Locking: RCU, ctrl lock
2553  */
2554 
2555 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2556 {
2557 	struct pid *pgrp;
2558 	pid_t pgrp_nr;
2559 	int retval = tty_check_change(real_tty);
2560 	unsigned long flags;
2561 
2562 	if (retval == -EIO)
2563 		return -ENOTTY;
2564 	if (retval)
2565 		return retval;
2566 	if (!current->signal->tty ||
2567 	    (current->signal->tty != real_tty) ||
2568 	    (real_tty->session != task_session(current)))
2569 		return -ENOTTY;
2570 	if (get_user(pgrp_nr, p))
2571 		return -EFAULT;
2572 	if (pgrp_nr < 0)
2573 		return -EINVAL;
2574 	rcu_read_lock();
2575 	pgrp = find_vpid(pgrp_nr);
2576 	retval = -ESRCH;
2577 	if (!pgrp)
2578 		goto out_unlock;
2579 	retval = -EPERM;
2580 	if (session_of_pgrp(pgrp) != task_session(current))
2581 		goto out_unlock;
2582 	retval = 0;
2583 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2584 	put_pid(real_tty->pgrp);
2585 	real_tty->pgrp = get_pid(pgrp);
2586 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2587 out_unlock:
2588 	rcu_read_unlock();
2589 	return retval;
2590 }
2591 
2592 /**
2593  *	tiocgsid		-	get session id
2594  *	@tty: tty passed by user
2595  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2596  *	@p: pointer to returned session id
2597  *
2598  *	Obtain the session id of the tty. If there is no session
2599  *	return an error.
2600  *
2601  *	Locking: none. Reference to current->signal->tty is safe.
2602  */
2603 
2604 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2605 {
2606 	/*
2607 	 * (tty == real_tty) is a cheap way of
2608 	 * testing if the tty is NOT a master pty.
2609 	*/
2610 	if (tty == real_tty && current->signal->tty != real_tty)
2611 		return -ENOTTY;
2612 	if (!real_tty->session)
2613 		return -ENOTTY;
2614 	return put_user(pid_vnr(real_tty->session), p);
2615 }
2616 
2617 /**
2618  *	tiocsetd	-	set line discipline
2619  *	@tty: tty device
2620  *	@p: pointer to user data
2621  *
2622  *	Set the line discipline according to user request.
2623  *
2624  *	Locking: see tty_set_ldisc, this function is just a helper
2625  */
2626 
2627 static int tiocsetd(struct tty_struct *tty, int __user *p)
2628 {
2629 	int ldisc;
2630 	int ret;
2631 
2632 	if (get_user(ldisc, p))
2633 		return -EFAULT;
2634 
2635 	ret = tty_set_ldisc(tty, ldisc);
2636 
2637 	return ret;
2638 }
2639 
2640 /**
2641  *	send_break	-	performed time break
2642  *	@tty: device to break on
2643  *	@duration: timeout in mS
2644  *
2645  *	Perform a timed break on hardware that lacks its own driver level
2646  *	timed break functionality.
2647  *
2648  *	Locking:
2649  *		atomic_write_lock serializes
2650  *
2651  */
2652 
2653 static int send_break(struct tty_struct *tty, unsigned int duration)
2654 {
2655 	int retval;
2656 
2657 	if (tty->ops->break_ctl == NULL)
2658 		return 0;
2659 
2660 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2661 		retval = tty->ops->break_ctl(tty, duration);
2662 	else {
2663 		/* Do the work ourselves */
2664 		if (tty_write_lock(tty, 0) < 0)
2665 			return -EINTR;
2666 		retval = tty->ops->break_ctl(tty, -1);
2667 		if (retval)
2668 			goto out;
2669 		if (!signal_pending(current))
2670 			msleep_interruptible(duration);
2671 		retval = tty->ops->break_ctl(tty, 0);
2672 out:
2673 		tty_write_unlock(tty);
2674 		if (signal_pending(current))
2675 			retval = -EINTR;
2676 	}
2677 	return retval;
2678 }
2679 
2680 /**
2681  *	tty_tiocmget		-	get modem status
2682  *	@tty: tty device
2683  *	@file: user file pointer
2684  *	@p: pointer to result
2685  *
2686  *	Obtain the modem status bits from the tty driver if the feature
2687  *	is supported. Return -EINVAL if it is not available.
2688  *
2689  *	Locking: none (up to the driver)
2690  */
2691 
2692 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2693 {
2694 	int retval = -EINVAL;
2695 
2696 	if (tty->ops->tiocmget) {
2697 		retval = tty->ops->tiocmget(tty);
2698 
2699 		if (retval >= 0)
2700 			retval = put_user(retval, p);
2701 	}
2702 	return retval;
2703 }
2704 
2705 /**
2706  *	tty_tiocmset		-	set modem status
2707  *	@tty: tty device
2708  *	@cmd: command - clear bits, set bits or set all
2709  *	@p: pointer to desired bits
2710  *
2711  *	Set the modem status bits from the tty driver if the feature
2712  *	is supported. Return -EINVAL if it is not available.
2713  *
2714  *	Locking: none (up to the driver)
2715  */
2716 
2717 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2718 	     unsigned __user *p)
2719 {
2720 	int retval;
2721 	unsigned int set, clear, val;
2722 
2723 	if (tty->ops->tiocmset == NULL)
2724 		return -EINVAL;
2725 
2726 	retval = get_user(val, p);
2727 	if (retval)
2728 		return retval;
2729 	set = clear = 0;
2730 	switch (cmd) {
2731 	case TIOCMBIS:
2732 		set = val;
2733 		break;
2734 	case TIOCMBIC:
2735 		clear = val;
2736 		break;
2737 	case TIOCMSET:
2738 		set = val;
2739 		clear = ~val;
2740 		break;
2741 	}
2742 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2743 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2744 	return tty->ops->tiocmset(tty, set, clear);
2745 }
2746 
2747 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2748 {
2749 	int retval = -EINVAL;
2750 	struct serial_icounter_struct icount;
2751 	memset(&icount, 0, sizeof(icount));
2752 	if (tty->ops->get_icount)
2753 		retval = tty->ops->get_icount(tty, &icount);
2754 	if (retval != 0)
2755 		return retval;
2756 	if (copy_to_user(arg, &icount, sizeof(icount)))
2757 		return -EFAULT;
2758 	return 0;
2759 }
2760 
2761 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2762 {
2763 	static DEFINE_RATELIMIT_STATE(depr_flags,
2764 			DEFAULT_RATELIMIT_INTERVAL,
2765 			DEFAULT_RATELIMIT_BURST);
2766 	char comm[TASK_COMM_LEN];
2767 	int flags;
2768 
2769 	if (get_user(flags, &ss->flags))
2770 		return;
2771 
2772 	flags &= ASYNC_DEPRECATED;
2773 
2774 	if (flags && __ratelimit(&depr_flags))
2775 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2776 				__func__, get_task_comm(comm, current), flags);
2777 }
2778 
2779 /*
2780  * if pty, return the slave side (real_tty)
2781  * otherwise, return self
2782  */
2783 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2784 {
2785 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2786 	    tty->driver->subtype == PTY_TYPE_MASTER)
2787 		tty = tty->link;
2788 	return tty;
2789 }
2790 
2791 /*
2792  * Split this up, as gcc can choke on it otherwise..
2793  */
2794 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2795 {
2796 	struct tty_struct *tty = file_tty(file);
2797 	struct tty_struct *real_tty;
2798 	void __user *p = (void __user *)arg;
2799 	int retval;
2800 	struct tty_ldisc *ld;
2801 
2802 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2803 		return -EINVAL;
2804 
2805 	real_tty = tty_pair_get_tty(tty);
2806 
2807 	/*
2808 	 * Factor out some common prep work
2809 	 */
2810 	switch (cmd) {
2811 	case TIOCSETD:
2812 	case TIOCSBRK:
2813 	case TIOCCBRK:
2814 	case TCSBRK:
2815 	case TCSBRKP:
2816 		retval = tty_check_change(tty);
2817 		if (retval)
2818 			return retval;
2819 		if (cmd != TIOCCBRK) {
2820 			tty_wait_until_sent(tty, 0);
2821 			if (signal_pending(current))
2822 				return -EINTR;
2823 		}
2824 		break;
2825 	}
2826 
2827 	/*
2828 	 *	Now do the stuff.
2829 	 */
2830 	switch (cmd) {
2831 	case TIOCSTI:
2832 		return tiocsti(tty, p);
2833 	case TIOCGWINSZ:
2834 		return tiocgwinsz(real_tty, p);
2835 	case TIOCSWINSZ:
2836 		return tiocswinsz(real_tty, p);
2837 	case TIOCCONS:
2838 		return real_tty != tty ? -EINVAL : tioccons(file);
2839 	case FIONBIO:
2840 		return fionbio(file, p);
2841 	case TIOCEXCL:
2842 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2843 		return 0;
2844 	case TIOCNXCL:
2845 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2846 		return 0;
2847 	case TIOCGEXCL:
2848 	{
2849 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2850 		return put_user(excl, (int __user *)p);
2851 	}
2852 	case TIOCNOTTY:
2853 		if (current->signal->tty != tty)
2854 			return -ENOTTY;
2855 		no_tty();
2856 		return 0;
2857 	case TIOCSCTTY:
2858 		return tiocsctty(tty, arg);
2859 	case TIOCGPGRP:
2860 		return tiocgpgrp(tty, real_tty, p);
2861 	case TIOCSPGRP:
2862 		return tiocspgrp(tty, real_tty, p);
2863 	case TIOCGSID:
2864 		return tiocgsid(tty, real_tty, p);
2865 	case TIOCGETD:
2866 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2867 	case TIOCSETD:
2868 		return tiocsetd(tty, p);
2869 	case TIOCVHANGUP:
2870 		if (!capable(CAP_SYS_ADMIN))
2871 			return -EPERM;
2872 		tty_vhangup(tty);
2873 		return 0;
2874 	case TIOCGDEV:
2875 	{
2876 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2877 		return put_user(ret, (unsigned int __user *)p);
2878 	}
2879 	/*
2880 	 * Break handling
2881 	 */
2882 	case TIOCSBRK:	/* Turn break on, unconditionally */
2883 		if (tty->ops->break_ctl)
2884 			return tty->ops->break_ctl(tty, -1);
2885 		return 0;
2886 	case TIOCCBRK:	/* Turn break off, unconditionally */
2887 		if (tty->ops->break_ctl)
2888 			return tty->ops->break_ctl(tty, 0);
2889 		return 0;
2890 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2891 		/* non-zero arg means wait for all output data
2892 		 * to be sent (performed above) but don't send break.
2893 		 * This is used by the tcdrain() termios function.
2894 		 */
2895 		if (!arg)
2896 			return send_break(tty, 250);
2897 		return 0;
2898 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2899 		return send_break(tty, arg ? arg*100 : 250);
2900 
2901 	case TIOCMGET:
2902 		return tty_tiocmget(tty, p);
2903 	case TIOCMSET:
2904 	case TIOCMBIC:
2905 	case TIOCMBIS:
2906 		return tty_tiocmset(tty, cmd, p);
2907 	case TIOCGICOUNT:
2908 		retval = tty_tiocgicount(tty, p);
2909 		/* For the moment allow fall through to the old method */
2910         	if (retval != -EINVAL)
2911 			return retval;
2912 		break;
2913 	case TCFLSH:
2914 		switch (arg) {
2915 		case TCIFLUSH:
2916 		case TCIOFLUSH:
2917 		/* flush tty buffer and allow ldisc to process ioctl */
2918 			tty_buffer_flush(tty, NULL);
2919 			break;
2920 		}
2921 		break;
2922 	case TIOCSSERIAL:
2923 		tty_warn_deprecated_flags(p);
2924 		break;
2925 	}
2926 	if (tty->ops->ioctl) {
2927 		retval = tty->ops->ioctl(tty, cmd, arg);
2928 		if (retval != -ENOIOCTLCMD)
2929 			return retval;
2930 	}
2931 	ld = tty_ldisc_ref_wait(tty);
2932 	retval = -EINVAL;
2933 	if (ld->ops->ioctl) {
2934 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2935 		if (retval == -ENOIOCTLCMD)
2936 			retval = -ENOTTY;
2937 	}
2938 	tty_ldisc_deref(ld);
2939 	return retval;
2940 }
2941 
2942 #ifdef CONFIG_COMPAT
2943 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2944 				unsigned long arg)
2945 {
2946 	struct tty_struct *tty = file_tty(file);
2947 	struct tty_ldisc *ld;
2948 	int retval = -ENOIOCTLCMD;
2949 
2950 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2951 		return -EINVAL;
2952 
2953 	if (tty->ops->compat_ioctl) {
2954 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2955 		if (retval != -ENOIOCTLCMD)
2956 			return retval;
2957 	}
2958 
2959 	ld = tty_ldisc_ref_wait(tty);
2960 	if (ld->ops->compat_ioctl)
2961 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2962 	else
2963 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2964 	tty_ldisc_deref(ld);
2965 
2966 	return retval;
2967 }
2968 #endif
2969 
2970 static int this_tty(const void *t, struct file *file, unsigned fd)
2971 {
2972 	if (likely(file->f_op->read != tty_read))
2973 		return 0;
2974 	return file_tty(file) != t ? 0 : fd + 1;
2975 }
2976 
2977 /*
2978  * This implements the "Secure Attention Key" ---  the idea is to
2979  * prevent trojan horses by killing all processes associated with this
2980  * tty when the user hits the "Secure Attention Key".  Required for
2981  * super-paranoid applications --- see the Orange Book for more details.
2982  *
2983  * This code could be nicer; ideally it should send a HUP, wait a few
2984  * seconds, then send a INT, and then a KILL signal.  But you then
2985  * have to coordinate with the init process, since all processes associated
2986  * with the current tty must be dead before the new getty is allowed
2987  * to spawn.
2988  *
2989  * Now, if it would be correct ;-/ The current code has a nasty hole -
2990  * it doesn't catch files in flight. We may send the descriptor to ourselves
2991  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2992  *
2993  * Nasty bug: do_SAK is being called in interrupt context.  This can
2994  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2995  */
2996 void __do_SAK(struct tty_struct *tty)
2997 {
2998 #ifdef TTY_SOFT_SAK
2999 	tty_hangup(tty);
3000 #else
3001 	struct task_struct *g, *p;
3002 	struct pid *session;
3003 	int		i;
3004 
3005 	if (!tty)
3006 		return;
3007 	session = tty->session;
3008 
3009 	tty_ldisc_flush(tty);
3010 
3011 	tty_driver_flush_buffer(tty);
3012 
3013 	read_lock(&tasklist_lock);
3014 	/* Kill the entire session */
3015 	do_each_pid_task(session, PIDTYPE_SID, p) {
3016 		printk(KERN_NOTICE "SAK: killed process %d"
3017 			" (%s): task_session(p)==tty->session\n",
3018 			task_pid_nr(p), p->comm);
3019 		send_sig(SIGKILL, p, 1);
3020 	} while_each_pid_task(session, PIDTYPE_SID, p);
3021 	/* Now kill any processes that happen to have the
3022 	 * tty open.
3023 	 */
3024 	do_each_thread(g, p) {
3025 		if (p->signal->tty == tty) {
3026 			printk(KERN_NOTICE "SAK: killed process %d"
3027 			    " (%s): task_session(p)==tty->session\n",
3028 			    task_pid_nr(p), p->comm);
3029 			send_sig(SIGKILL, p, 1);
3030 			continue;
3031 		}
3032 		task_lock(p);
3033 		i = iterate_fd(p->files, 0, this_tty, tty);
3034 		if (i != 0) {
3035 			printk(KERN_NOTICE "SAK: killed process %d"
3036 			    " (%s): fd#%d opened to the tty\n",
3037 				    task_pid_nr(p), p->comm, i - 1);
3038 			force_sig(SIGKILL, p);
3039 		}
3040 		task_unlock(p);
3041 	} while_each_thread(g, p);
3042 	read_unlock(&tasklist_lock);
3043 #endif
3044 }
3045 
3046 static void do_SAK_work(struct work_struct *work)
3047 {
3048 	struct tty_struct *tty =
3049 		container_of(work, struct tty_struct, SAK_work);
3050 	__do_SAK(tty);
3051 }
3052 
3053 /*
3054  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3055  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3056  * the values which we write to it will be identical to the values which it
3057  * already has. --akpm
3058  */
3059 void do_SAK(struct tty_struct *tty)
3060 {
3061 	if (!tty)
3062 		return;
3063 	schedule_work(&tty->SAK_work);
3064 }
3065 
3066 EXPORT_SYMBOL(do_SAK);
3067 
3068 static int dev_match_devt(struct device *dev, const void *data)
3069 {
3070 	const dev_t *devt = data;
3071 	return dev->devt == *devt;
3072 }
3073 
3074 /* Must put_device() after it's unused! */
3075 static struct device *tty_get_device(struct tty_struct *tty)
3076 {
3077 	dev_t devt = tty_devnum(tty);
3078 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3079 }
3080 
3081 
3082 /**
3083  *	alloc_tty_struct
3084  *
3085  *	This subroutine allocates and initializes a tty structure.
3086  *
3087  *	Locking: none - tty in question is not exposed at this point
3088  */
3089 
3090 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3091 {
3092 	struct tty_struct *tty;
3093 
3094 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3095 	if (!tty)
3096 		return NULL;
3097 
3098 	kref_init(&tty->kref);
3099 	tty->magic = TTY_MAGIC;
3100 	tty_ldisc_init(tty);
3101 	tty->session = NULL;
3102 	tty->pgrp = NULL;
3103 	mutex_init(&tty->legacy_mutex);
3104 	mutex_init(&tty->throttle_mutex);
3105 	init_rwsem(&tty->termios_rwsem);
3106 	mutex_init(&tty->winsize_mutex);
3107 	init_ldsem(&tty->ldisc_sem);
3108 	init_waitqueue_head(&tty->write_wait);
3109 	init_waitqueue_head(&tty->read_wait);
3110 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3111 	mutex_init(&tty->atomic_write_lock);
3112 	spin_lock_init(&tty->ctrl_lock);
3113 	spin_lock_init(&tty->flow_lock);
3114 	INIT_LIST_HEAD(&tty->tty_files);
3115 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3116 
3117 	tty->driver = driver;
3118 	tty->ops = driver->ops;
3119 	tty->index = idx;
3120 	tty_line_name(driver, idx, tty->name);
3121 	tty->dev = tty_get_device(tty);
3122 
3123 	return tty;
3124 }
3125 
3126 /**
3127  *	deinitialize_tty_struct
3128  *	@tty: tty to deinitialize
3129  *
3130  *	This subroutine deinitializes a tty structure that has been newly
3131  *	allocated but tty_release cannot be called on that yet.
3132  *
3133  *	Locking: none - tty in question must not be exposed at this point
3134  */
3135 void deinitialize_tty_struct(struct tty_struct *tty)
3136 {
3137 	tty_ldisc_deinit(tty);
3138 }
3139 
3140 /**
3141  *	tty_put_char	-	write one character to a tty
3142  *	@tty: tty
3143  *	@ch: character
3144  *
3145  *	Write one byte to the tty using the provided put_char method
3146  *	if present. Returns the number of characters successfully output.
3147  *
3148  *	Note: the specific put_char operation in the driver layer may go
3149  *	away soon. Don't call it directly, use this method
3150  */
3151 
3152 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3153 {
3154 	if (tty->ops->put_char)
3155 		return tty->ops->put_char(tty, ch);
3156 	return tty->ops->write(tty, &ch, 1);
3157 }
3158 EXPORT_SYMBOL_GPL(tty_put_char);
3159 
3160 struct class *tty_class;
3161 
3162 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3163 		unsigned int index, unsigned int count)
3164 {
3165 	/* init here, since reused cdevs cause crashes */
3166 	cdev_init(&driver->cdevs[index], &tty_fops);
3167 	driver->cdevs[index].owner = driver->owner;
3168 	return cdev_add(&driver->cdevs[index], dev, count);
3169 }
3170 
3171 /**
3172  *	tty_register_device - register a tty device
3173  *	@driver: the tty driver that describes the tty device
3174  *	@index: the index in the tty driver for this tty device
3175  *	@device: a struct device that is associated with this tty device.
3176  *		This field is optional, if there is no known struct device
3177  *		for this tty device it can be set to NULL safely.
3178  *
3179  *	Returns a pointer to the struct device for this tty device
3180  *	(or ERR_PTR(-EFOO) on error).
3181  *
3182  *	This call is required to be made to register an individual tty device
3183  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3184  *	that bit is not set, this function should not be called by a tty
3185  *	driver.
3186  *
3187  *	Locking: ??
3188  */
3189 
3190 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3191 				   struct device *device)
3192 {
3193 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3194 }
3195 EXPORT_SYMBOL(tty_register_device);
3196 
3197 static void tty_device_create_release(struct device *dev)
3198 {
3199 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3200 	kfree(dev);
3201 }
3202 
3203 /**
3204  *	tty_register_device_attr - register a tty device
3205  *	@driver: the tty driver that describes the tty device
3206  *	@index: the index in the tty driver for this tty device
3207  *	@device: a struct device that is associated with this tty device.
3208  *		This field is optional, if there is no known struct device
3209  *		for this tty device it can be set to NULL safely.
3210  *	@drvdata: Driver data to be set to device.
3211  *	@attr_grp: Attribute group to be set on device.
3212  *
3213  *	Returns a pointer to the struct device for this tty device
3214  *	(or ERR_PTR(-EFOO) on error).
3215  *
3216  *	This call is required to be made to register an individual tty device
3217  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3218  *	that bit is not set, this function should not be called by a tty
3219  *	driver.
3220  *
3221  *	Locking: ??
3222  */
3223 struct device *tty_register_device_attr(struct tty_driver *driver,
3224 				   unsigned index, struct device *device,
3225 				   void *drvdata,
3226 				   const struct attribute_group **attr_grp)
3227 {
3228 	char name[64];
3229 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3230 	struct device *dev = NULL;
3231 	int retval = -ENODEV;
3232 	bool cdev = false;
3233 
3234 	if (index >= driver->num) {
3235 		printk(KERN_ERR "Attempt to register invalid tty line number "
3236 		       " (%d).\n", index);
3237 		return ERR_PTR(-EINVAL);
3238 	}
3239 
3240 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3241 		pty_line_name(driver, index, name);
3242 	else
3243 		tty_line_name(driver, index, name);
3244 
3245 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3246 		retval = tty_cdev_add(driver, devt, index, 1);
3247 		if (retval)
3248 			goto error;
3249 		cdev = true;
3250 	}
3251 
3252 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3253 	if (!dev) {
3254 		retval = -ENOMEM;
3255 		goto error;
3256 	}
3257 
3258 	dev->devt = devt;
3259 	dev->class = tty_class;
3260 	dev->parent = device;
3261 	dev->release = tty_device_create_release;
3262 	dev_set_name(dev, "%s", name);
3263 	dev->groups = attr_grp;
3264 	dev_set_drvdata(dev, drvdata);
3265 
3266 	retval = device_register(dev);
3267 	if (retval)
3268 		goto error;
3269 
3270 	return dev;
3271 
3272 error:
3273 	put_device(dev);
3274 	if (cdev)
3275 		cdev_del(&driver->cdevs[index]);
3276 	return ERR_PTR(retval);
3277 }
3278 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3279 
3280 /**
3281  * 	tty_unregister_device - unregister a tty device
3282  * 	@driver: the tty driver that describes the tty device
3283  * 	@index: the index in the tty driver for this tty device
3284  *
3285  * 	If a tty device is registered with a call to tty_register_device() then
3286  *	this function must be called when the tty device is gone.
3287  *
3288  *	Locking: ??
3289  */
3290 
3291 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3292 {
3293 	device_destroy(tty_class,
3294 		MKDEV(driver->major, driver->minor_start) + index);
3295 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3296 		cdev_del(&driver->cdevs[index]);
3297 }
3298 EXPORT_SYMBOL(tty_unregister_device);
3299 
3300 /**
3301  * __tty_alloc_driver -- allocate tty driver
3302  * @lines: count of lines this driver can handle at most
3303  * @owner: module which is repsonsible for this driver
3304  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3305  *
3306  * This should not be called directly, some of the provided macros should be
3307  * used instead. Use IS_ERR and friends on @retval.
3308  */
3309 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3310 		unsigned long flags)
3311 {
3312 	struct tty_driver *driver;
3313 	unsigned int cdevs = 1;
3314 	int err;
3315 
3316 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3317 		return ERR_PTR(-EINVAL);
3318 
3319 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3320 	if (!driver)
3321 		return ERR_PTR(-ENOMEM);
3322 
3323 	kref_init(&driver->kref);
3324 	driver->magic = TTY_DRIVER_MAGIC;
3325 	driver->num = lines;
3326 	driver->owner = owner;
3327 	driver->flags = flags;
3328 
3329 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3330 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3331 				GFP_KERNEL);
3332 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3333 				GFP_KERNEL);
3334 		if (!driver->ttys || !driver->termios) {
3335 			err = -ENOMEM;
3336 			goto err_free_all;
3337 		}
3338 	}
3339 
3340 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3341 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3342 				GFP_KERNEL);
3343 		if (!driver->ports) {
3344 			err = -ENOMEM;
3345 			goto err_free_all;
3346 		}
3347 		cdevs = lines;
3348 	}
3349 
3350 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3351 	if (!driver->cdevs) {
3352 		err = -ENOMEM;
3353 		goto err_free_all;
3354 	}
3355 
3356 	return driver;
3357 err_free_all:
3358 	kfree(driver->ports);
3359 	kfree(driver->ttys);
3360 	kfree(driver->termios);
3361 	kfree(driver);
3362 	return ERR_PTR(err);
3363 }
3364 EXPORT_SYMBOL(__tty_alloc_driver);
3365 
3366 static void destruct_tty_driver(struct kref *kref)
3367 {
3368 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3369 	int i;
3370 	struct ktermios *tp;
3371 
3372 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3373 		/*
3374 		 * Free the termios and termios_locked structures because
3375 		 * we don't want to get memory leaks when modular tty
3376 		 * drivers are removed from the kernel.
3377 		 */
3378 		for (i = 0; i < driver->num; i++) {
3379 			tp = driver->termios[i];
3380 			if (tp) {
3381 				driver->termios[i] = NULL;
3382 				kfree(tp);
3383 			}
3384 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3385 				tty_unregister_device(driver, i);
3386 		}
3387 		proc_tty_unregister_driver(driver);
3388 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3389 			cdev_del(&driver->cdevs[0]);
3390 	}
3391 	kfree(driver->cdevs);
3392 	kfree(driver->ports);
3393 	kfree(driver->termios);
3394 	kfree(driver->ttys);
3395 	kfree(driver);
3396 }
3397 
3398 void tty_driver_kref_put(struct tty_driver *driver)
3399 {
3400 	kref_put(&driver->kref, destruct_tty_driver);
3401 }
3402 EXPORT_SYMBOL(tty_driver_kref_put);
3403 
3404 void tty_set_operations(struct tty_driver *driver,
3405 			const struct tty_operations *op)
3406 {
3407 	driver->ops = op;
3408 };
3409 EXPORT_SYMBOL(tty_set_operations);
3410 
3411 void put_tty_driver(struct tty_driver *d)
3412 {
3413 	tty_driver_kref_put(d);
3414 }
3415 EXPORT_SYMBOL(put_tty_driver);
3416 
3417 /*
3418  * Called by a tty driver to register itself.
3419  */
3420 int tty_register_driver(struct tty_driver *driver)
3421 {
3422 	int error;
3423 	int i;
3424 	dev_t dev;
3425 	struct device *d;
3426 
3427 	if (!driver->major) {
3428 		error = alloc_chrdev_region(&dev, driver->minor_start,
3429 						driver->num, driver->name);
3430 		if (!error) {
3431 			driver->major = MAJOR(dev);
3432 			driver->minor_start = MINOR(dev);
3433 		}
3434 	} else {
3435 		dev = MKDEV(driver->major, driver->minor_start);
3436 		error = register_chrdev_region(dev, driver->num, driver->name);
3437 	}
3438 	if (error < 0)
3439 		goto err;
3440 
3441 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3442 		error = tty_cdev_add(driver, dev, 0, driver->num);
3443 		if (error)
3444 			goto err_unreg_char;
3445 	}
3446 
3447 	mutex_lock(&tty_mutex);
3448 	list_add(&driver->tty_drivers, &tty_drivers);
3449 	mutex_unlock(&tty_mutex);
3450 
3451 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3452 		for (i = 0; i < driver->num; i++) {
3453 			d = tty_register_device(driver, i, NULL);
3454 			if (IS_ERR(d)) {
3455 				error = PTR_ERR(d);
3456 				goto err_unreg_devs;
3457 			}
3458 		}
3459 	}
3460 	proc_tty_register_driver(driver);
3461 	driver->flags |= TTY_DRIVER_INSTALLED;
3462 	return 0;
3463 
3464 err_unreg_devs:
3465 	for (i--; i >= 0; i--)
3466 		tty_unregister_device(driver, i);
3467 
3468 	mutex_lock(&tty_mutex);
3469 	list_del(&driver->tty_drivers);
3470 	mutex_unlock(&tty_mutex);
3471 
3472 err_unreg_char:
3473 	unregister_chrdev_region(dev, driver->num);
3474 err:
3475 	return error;
3476 }
3477 EXPORT_SYMBOL(tty_register_driver);
3478 
3479 /*
3480  * Called by a tty driver to unregister itself.
3481  */
3482 int tty_unregister_driver(struct tty_driver *driver)
3483 {
3484 #if 0
3485 	/* FIXME */
3486 	if (driver->refcount)
3487 		return -EBUSY;
3488 #endif
3489 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3490 				driver->num);
3491 	mutex_lock(&tty_mutex);
3492 	list_del(&driver->tty_drivers);
3493 	mutex_unlock(&tty_mutex);
3494 	return 0;
3495 }
3496 
3497 EXPORT_SYMBOL(tty_unregister_driver);
3498 
3499 dev_t tty_devnum(struct tty_struct *tty)
3500 {
3501 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3502 }
3503 EXPORT_SYMBOL(tty_devnum);
3504 
3505 void tty_default_fops(struct file_operations *fops)
3506 {
3507 	*fops = tty_fops;
3508 }
3509 
3510 /*
3511  * Initialize the console device. This is called *early*, so
3512  * we can't necessarily depend on lots of kernel help here.
3513  * Just do some early initializations, and do the complex setup
3514  * later.
3515  */
3516 void __init console_init(void)
3517 {
3518 	initcall_t *call;
3519 
3520 	/* Setup the default TTY line discipline. */
3521 	tty_ldisc_begin();
3522 
3523 	/*
3524 	 * set up the console device so that later boot sequences can
3525 	 * inform about problems etc..
3526 	 */
3527 	call = __con_initcall_start;
3528 	while (call < __con_initcall_end) {
3529 		(*call)();
3530 		call++;
3531 	}
3532 }
3533 
3534 static char *tty_devnode(struct device *dev, umode_t *mode)
3535 {
3536 	if (!mode)
3537 		return NULL;
3538 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3539 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3540 		*mode = 0666;
3541 	return NULL;
3542 }
3543 
3544 static int __init tty_class_init(void)
3545 {
3546 	tty_class = class_create(THIS_MODULE, "tty");
3547 	if (IS_ERR(tty_class))
3548 		return PTR_ERR(tty_class);
3549 	tty_class->devnode = tty_devnode;
3550 	return 0;
3551 }
3552 
3553 postcore_initcall(tty_class_init);
3554 
3555 /* 3/2004 jmc: why do these devices exist? */
3556 static struct cdev tty_cdev, console_cdev;
3557 
3558 static ssize_t show_cons_active(struct device *dev,
3559 				struct device_attribute *attr, char *buf)
3560 {
3561 	struct console *cs[16];
3562 	int i = 0;
3563 	struct console *c;
3564 	ssize_t count = 0;
3565 
3566 	console_lock();
3567 	for_each_console(c) {
3568 		if (!c->device)
3569 			continue;
3570 		if (!c->write)
3571 			continue;
3572 		if ((c->flags & CON_ENABLED) == 0)
3573 			continue;
3574 		cs[i++] = c;
3575 		if (i >= ARRAY_SIZE(cs))
3576 			break;
3577 	}
3578 	while (i--) {
3579 		int index = cs[i]->index;
3580 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3581 
3582 		/* don't resolve tty0 as some programs depend on it */
3583 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3584 			count += tty_line_name(drv, index, buf + count);
3585 		else
3586 			count += sprintf(buf + count, "%s%d",
3587 					 cs[i]->name, cs[i]->index);
3588 
3589 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3590 	}
3591 	console_unlock();
3592 
3593 	return count;
3594 }
3595 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3596 
3597 static struct device *consdev;
3598 
3599 void console_sysfs_notify(void)
3600 {
3601 	if (consdev)
3602 		sysfs_notify(&consdev->kobj, NULL, "active");
3603 }
3604 
3605 /*
3606  * Ok, now we can initialize the rest of the tty devices and can count
3607  * on memory allocations, interrupts etc..
3608  */
3609 int __init tty_init(void)
3610 {
3611 	cdev_init(&tty_cdev, &tty_fops);
3612 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3613 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3614 		panic("Couldn't register /dev/tty driver\n");
3615 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3616 
3617 	cdev_init(&console_cdev, &console_fops);
3618 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3619 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3620 		panic("Couldn't register /dev/console driver\n");
3621 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3622 			      "console");
3623 	if (IS_ERR(consdev))
3624 		consdev = NULL;
3625 	else
3626 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3627 
3628 #ifdef CONFIG_VT
3629 	vty_init(&console_fops);
3630 #endif
3631 	return 0;
3632 }
3633 
3634