xref: /linux/drivers/tty/tty_io.c (revision 9ab27b018649c9504e894496cb4d7d8afcffd897)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  */
5 
6 /*
7  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8  * or rs-channels. It also implements echoing, cooked mode etc.
9  *
10  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11  *
12  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13  * tty_struct and tty_queue structures.  Previously there was an array
14  * of 256 tty_struct's which was statically allocated, and the
15  * tty_queue structures were allocated at boot time.  Both are now
16  * dynamically allocated only when the tty is open.
17  *
18  * Also restructured routines so that there is more of a separation
19  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20  * the low-level tty routines (serial.c, pty.c, console.c).  This
21  * makes for cleaner and more compact code.  -TYT, 9/17/92
22  *
23  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24  * which can be dynamically activated and de-activated by the line
25  * discipline handling modules (like SLIP).
26  *
27  * NOTE: pay no attention to the line discipline code (yet); its
28  * interface is still subject to change in this version...
29  * -- TYT, 1/31/92
30  *
31  * Added functionality to the OPOST tty handling.  No delays, but all
32  * other bits should be there.
33  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34  *
35  * Rewrote canonical mode and added more termios flags.
36  *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37  *
38  * Reorganized FASYNC support so mouse code can share it.
39  *	-- ctm@ardi.com, 9Sep95
40  *
41  * New TIOCLINUX variants added.
42  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43  *
44  * Restrict vt switching via ioctl()
45  *      -- grif@cs.ucr.edu, 5-Dec-95
46  *
47  * Move console and virtual terminal code to more appropriate files,
48  * implement CONFIG_VT and generalize console device interface.
49  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50  *
51  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52  *	-- Bill Hawes <whawes@star.net>, June 97
53  *
54  * Added devfs support.
55  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56  *
57  * Added support for a Unix98-style ptmx device.
58  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59  *
60  * Reduced memory usage for older ARM systems
61  *      -- Russell King <rmk@arm.linux.org.uk>
62  *
63  * Move do_SAK() into process context.  Less stack use in devfs functions.
64  * alloc_tty_struct() always uses kmalloc()
65  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67 
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/ppp-ioctl.h>
91 #include <linux/proc_fs.h>
92 #include <linux/init.h>
93 #include <linux/module.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100 #include <linux/ratelimit.h>
101 #include <linux/compat.h>
102 #include <linux/uaccess.h>
103 #include <linux/termios_internal.h>
104 #include <linux/fs.h>
105 
106 #include <linux/kbd_kern.h>
107 #include <linux/vt_kern.h>
108 #include <linux/selection.h>
109 
110 #include <linux/kmod.h>
111 #include <linux/nsproxy.h>
112 #include "tty.h"
113 
114 #undef TTY_DEBUG_HANGUP
115 #ifdef TTY_DEBUG_HANGUP
116 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
117 #else
118 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
119 #endif
120 
121 #define TTY_PARANOIA_CHECK 1
122 #define CHECK_TTY_COUNT 1
123 
124 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
125 	.c_iflag = ICRNL | IXON,
126 	.c_oflag = OPOST | ONLCR,
127 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
128 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
129 		   ECHOCTL | ECHOKE | IEXTEN,
130 	.c_cc = INIT_C_CC,
131 	.c_ispeed = 38400,
132 	.c_ospeed = 38400,
133 	/* .c_line = N_TTY, */
134 };
135 EXPORT_SYMBOL(tty_std_termios);
136 
137 /* This list gets poked at by procfs and various bits of boot up code. This
138  * could do with some rationalisation such as pulling the tty proc function
139  * into this file.
140  */
141 
142 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
143 
144 /* Mutex to protect creating and releasing a tty */
145 DEFINE_MUTEX(tty_mutex);
146 
147 static ssize_t tty_read(struct kiocb *, struct iov_iter *);
148 static ssize_t tty_write(struct kiocb *, struct iov_iter *);
149 static __poll_t tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 #ifdef CONFIG_COMPAT
152 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
153 				unsigned long arg);
154 #else
155 #define tty_compat_ioctl NULL
156 #endif
157 static int __tty_fasync(int fd, struct file *filp, int on);
158 static int tty_fasync(int fd, struct file *filp, int on);
159 static void release_tty(struct tty_struct *tty, int idx);
160 
161 /**
162  * free_tty_struct - free a disused tty
163  * @tty: tty struct to free
164  *
165  * Free the write buffers, tty queue and tty memory itself.
166  *
167  * Locking: none. Must be called after tty is definitely unused
168  */
169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 	tty_ldisc_deinit(tty);
172 	put_device(tty->dev);
173 	kvfree(tty->write_buf);
174 	kfree(tty);
175 }
176 
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179 	return ((struct tty_file_private *)file->private_data)->tty;
180 }
181 
182 int tty_alloc_file(struct file *file)
183 {
184 	struct tty_file_private *priv;
185 
186 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187 	if (!priv)
188 		return -ENOMEM;
189 
190 	file->private_data = priv;
191 
192 	return 0;
193 }
194 
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198 	struct tty_file_private *priv = file->private_data;
199 
200 	priv->tty = tty;
201 	priv->file = file;
202 
203 	spin_lock(&tty->files_lock);
204 	list_add(&priv->list, &tty->tty_files);
205 	spin_unlock(&tty->files_lock);
206 }
207 
208 /**
209  * tty_free_file - free file->private_data
210  * @file: to free private_data of
211  *
212  * This shall be used only for fail path handling when tty_add_file was not
213  * called yet.
214  */
215 void tty_free_file(struct file *file)
216 {
217 	struct tty_file_private *priv = file->private_data;
218 
219 	file->private_data = NULL;
220 	kfree(priv);
221 }
222 
223 /* Delete file from its tty */
224 static void tty_del_file(struct file *file)
225 {
226 	struct tty_file_private *priv = file->private_data;
227 	struct tty_struct *tty = priv->tty;
228 
229 	spin_lock(&tty->files_lock);
230 	list_del(&priv->list);
231 	spin_unlock(&tty->files_lock);
232 	tty_free_file(file);
233 }
234 
235 /**
236  * tty_name - return tty naming
237  * @tty: tty structure
238  *
239  * Convert a tty structure into a name. The name reflects the kernel naming
240  * policy and if udev is in use may not reflect user space
241  *
242  * Locking: none
243  */
244 const char *tty_name(const struct tty_struct *tty)
245 {
246 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
247 		return "NULL tty";
248 	return tty->name;
249 }
250 EXPORT_SYMBOL(tty_name);
251 
252 const char *tty_driver_name(const struct tty_struct *tty)
253 {
254 	if (!tty || !tty->driver)
255 		return "";
256 	return tty->driver->name;
257 }
258 
259 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 			      const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 	if (!tty) {
264 		pr_warn("(%d:%d): %s: NULL tty\n",
265 			imajor(inode), iminor(inode), routine);
266 		return 1;
267 	}
268 #endif
269 	return 0;
270 }
271 
272 /* Caller must hold tty_lock */
273 static void check_tty_count(struct tty_struct *tty, const char *routine)
274 {
275 #ifdef CHECK_TTY_COUNT
276 	struct list_head *p;
277 	int count = 0, kopen_count = 0;
278 
279 	spin_lock(&tty->files_lock);
280 	list_for_each(p, &tty->tty_files) {
281 		count++;
282 	}
283 	spin_unlock(&tty->files_lock);
284 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
285 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
286 	    tty->link && tty->link->count)
287 		count++;
288 	if (tty_port_kopened(tty->port))
289 		kopen_count++;
290 	if (tty->count != (count + kopen_count)) {
291 		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
292 			 routine, tty->count, count, kopen_count);
293 	}
294 #endif
295 }
296 
297 /**
298  * get_tty_driver - find device of a tty
299  * @device: device identifier
300  * @index: returns the index of the tty
301  *
302  * This routine returns a tty driver structure, given a device number and also
303  * passes back the index number.
304  *
305  * Locking: caller must hold tty_mutex
306  */
307 static struct tty_driver *get_tty_driver(dev_t device, int *index)
308 {
309 	struct tty_driver *p;
310 
311 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 		dev_t base = MKDEV(p->major, p->minor_start);
313 
314 		if (device < base || device >= base + p->num)
315 			continue;
316 		*index = device - base;
317 		return tty_driver_kref_get(p);
318 	}
319 	return NULL;
320 }
321 
322 /**
323  * tty_dev_name_to_number - return dev_t for device name
324  * @name: user space name of device under /dev
325  * @number: pointer to dev_t that this function will populate
326  *
327  * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
328  * (4, 64) or (188, 1). If no corresponding driver is registered then the
329  * function returns -%ENODEV.
330  *
331  * Locking: this acquires tty_mutex to protect the tty_drivers list from
332  *	being modified while we are traversing it, and makes sure to
333  *	release it before exiting.
334  */
335 int tty_dev_name_to_number(const char *name, dev_t *number)
336 {
337 	struct tty_driver *p;
338 	int ret;
339 	int index, prefix_length = 0;
340 	const char *str;
341 
342 	for (str = name; *str && !isdigit(*str); str++)
343 		;
344 
345 	if (!*str)
346 		return -EINVAL;
347 
348 	ret = kstrtoint(str, 10, &index);
349 	if (ret)
350 		return ret;
351 
352 	prefix_length = str - name;
353 	mutex_lock(&tty_mutex);
354 
355 	list_for_each_entry(p, &tty_drivers, tty_drivers)
356 		if (prefix_length == strlen(p->name) && strncmp(name,
357 					p->name, prefix_length) == 0) {
358 			if (index < p->num) {
359 				*number = MKDEV(p->major, p->minor_start + index);
360 				goto out;
361 			}
362 		}
363 
364 	/* if here then driver wasn't found */
365 	ret = -ENODEV;
366 out:
367 	mutex_unlock(&tty_mutex);
368 	return ret;
369 }
370 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
371 
372 #ifdef CONFIG_CONSOLE_POLL
373 
374 /**
375  * tty_find_polling_driver - find device of a polled tty
376  * @name: name string to match
377  * @line: pointer to resulting tty line nr
378  *
379  * This routine returns a tty driver structure, given a name and the condition
380  * that the tty driver is capable of polled operation.
381  */
382 struct tty_driver *tty_find_polling_driver(char *name, int *line)
383 {
384 	struct tty_driver *p, *res = NULL;
385 	int tty_line = 0;
386 	int len;
387 	char *str, *stp;
388 
389 	for (str = name; *str; str++)
390 		if ((*str >= '0' && *str <= '9') || *str == ',')
391 			break;
392 	if (!*str)
393 		return NULL;
394 
395 	len = str - name;
396 	tty_line = simple_strtoul(str, &str, 10);
397 
398 	mutex_lock(&tty_mutex);
399 	/* Search through the tty devices to look for a match */
400 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
401 		if (!len || strncmp(name, p->name, len) != 0)
402 			continue;
403 		stp = str;
404 		if (*stp == ',')
405 			stp++;
406 		if (*stp == '\0')
407 			stp = NULL;
408 
409 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
410 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
411 			res = tty_driver_kref_get(p);
412 			*line = tty_line;
413 			break;
414 		}
415 	}
416 	mutex_unlock(&tty_mutex);
417 
418 	return res;
419 }
420 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
421 #endif
422 
423 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
424 {
425 	return 0;
426 }
427 
428 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
429 {
430 	return -EIO;
431 }
432 
433 /* No kernel lock held - none needed ;) */
434 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
435 {
436 	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
437 }
438 
439 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
440 		unsigned long arg)
441 {
442 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
443 }
444 
445 static long hung_up_tty_compat_ioctl(struct file *file,
446 				     unsigned int cmd, unsigned long arg)
447 {
448 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
449 }
450 
451 static int hung_up_tty_fasync(int fd, struct file *file, int on)
452 {
453 	return -ENOTTY;
454 }
455 
456 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
457 {
458 	struct tty_struct *tty = file_tty(file);
459 
460 	if (tty && tty->ops && tty->ops->show_fdinfo)
461 		tty->ops->show_fdinfo(tty, m);
462 }
463 
464 static const struct file_operations tty_fops = {
465 	.llseek		= no_llseek,
466 	.read_iter	= tty_read,
467 	.write_iter	= tty_write,
468 	.splice_read	= copy_splice_read,
469 	.splice_write	= iter_file_splice_write,
470 	.poll		= tty_poll,
471 	.unlocked_ioctl	= tty_ioctl,
472 	.compat_ioctl	= tty_compat_ioctl,
473 	.open		= tty_open,
474 	.release	= tty_release,
475 	.fasync		= tty_fasync,
476 	.show_fdinfo	= tty_show_fdinfo,
477 };
478 
479 static const struct file_operations console_fops = {
480 	.llseek		= no_llseek,
481 	.read_iter	= tty_read,
482 	.write_iter	= redirected_tty_write,
483 	.splice_read	= copy_splice_read,
484 	.splice_write	= iter_file_splice_write,
485 	.poll		= tty_poll,
486 	.unlocked_ioctl	= tty_ioctl,
487 	.compat_ioctl	= tty_compat_ioctl,
488 	.open		= tty_open,
489 	.release	= tty_release,
490 	.fasync		= tty_fasync,
491 };
492 
493 static const struct file_operations hung_up_tty_fops = {
494 	.llseek		= no_llseek,
495 	.read_iter	= hung_up_tty_read,
496 	.write_iter	= hung_up_tty_write,
497 	.poll		= hung_up_tty_poll,
498 	.unlocked_ioctl	= hung_up_tty_ioctl,
499 	.compat_ioctl	= hung_up_tty_compat_ioctl,
500 	.release	= tty_release,
501 	.fasync		= hung_up_tty_fasync,
502 };
503 
504 static DEFINE_SPINLOCK(redirect_lock);
505 static struct file *redirect;
506 
507 /**
508  * tty_wakeup - request more data
509  * @tty: terminal
510  *
511  * Internal and external helper for wakeups of tty. This function informs the
512  * line discipline if present that the driver is ready to receive more output
513  * data.
514  */
515 void tty_wakeup(struct tty_struct *tty)
516 {
517 	struct tty_ldisc *ld;
518 
519 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
520 		ld = tty_ldisc_ref(tty);
521 		if (ld) {
522 			if (ld->ops->write_wakeup)
523 				ld->ops->write_wakeup(tty);
524 			tty_ldisc_deref(ld);
525 		}
526 	}
527 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
528 }
529 EXPORT_SYMBOL_GPL(tty_wakeup);
530 
531 /**
532  * tty_release_redirect - Release a redirect on a pty if present
533  * @tty: tty device
534  *
535  * This is available to the pty code so if the master closes, if the slave is a
536  * redirect it can release the redirect.
537  */
538 static struct file *tty_release_redirect(struct tty_struct *tty)
539 {
540 	struct file *f = NULL;
541 
542 	spin_lock(&redirect_lock);
543 	if (redirect && file_tty(redirect) == tty) {
544 		f = redirect;
545 		redirect = NULL;
546 	}
547 	spin_unlock(&redirect_lock);
548 
549 	return f;
550 }
551 
552 /**
553  * __tty_hangup - actual handler for hangup events
554  * @tty: tty device
555  * @exit_session: if non-zero, signal all foreground group processes
556  *
557  * This can be called by a "kworker" kernel thread. That is process synchronous
558  * but doesn't hold any locks, so we need to make sure we have the appropriate
559  * locks for what we're doing.
560  *
561  * The hangup event clears any pending redirections onto the hung up device. It
562  * ensures future writes will error and it does the needed line discipline
563  * hangup and signal delivery. The tty object itself remains intact.
564  *
565  * Locking:
566  *  * BTM
567  *
568  *   * redirect lock for undoing redirection
569  *   * file list lock for manipulating list of ttys
570  *   * tty_ldiscs_lock from called functions
571  *   * termios_rwsem resetting termios data
572  *   * tasklist_lock to walk task list for hangup event
573  *
574  *    * ->siglock to protect ->signal/->sighand
575  *
576  */
577 static void __tty_hangup(struct tty_struct *tty, int exit_session)
578 {
579 	struct file *cons_filp = NULL;
580 	struct file *filp, *f;
581 	struct tty_file_private *priv;
582 	int    closecount = 0, n;
583 	int refs;
584 
585 	if (!tty)
586 		return;
587 
588 	f = tty_release_redirect(tty);
589 
590 	tty_lock(tty);
591 
592 	if (test_bit(TTY_HUPPED, &tty->flags)) {
593 		tty_unlock(tty);
594 		return;
595 	}
596 
597 	/*
598 	 * Some console devices aren't actually hung up for technical and
599 	 * historical reasons, which can lead to indefinite interruptible
600 	 * sleep in n_tty_read().  The following explicitly tells
601 	 * n_tty_read() to abort readers.
602 	 */
603 	set_bit(TTY_HUPPING, &tty->flags);
604 
605 	/* inuse_filps is protected by the single tty lock,
606 	 * this really needs to change if we want to flush the
607 	 * workqueue with the lock held.
608 	 */
609 	check_tty_count(tty, "tty_hangup");
610 
611 	spin_lock(&tty->files_lock);
612 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
613 	list_for_each_entry(priv, &tty->tty_files, list) {
614 		filp = priv->file;
615 		if (filp->f_op->write_iter == redirected_tty_write)
616 			cons_filp = filp;
617 		if (filp->f_op->write_iter != tty_write)
618 			continue;
619 		closecount++;
620 		__tty_fasync(-1, filp, 0);	/* can't block */
621 		filp->f_op = &hung_up_tty_fops;
622 	}
623 	spin_unlock(&tty->files_lock);
624 
625 	refs = tty_signal_session_leader(tty, exit_session);
626 	/* Account for the p->signal references we killed */
627 	while (refs--)
628 		tty_kref_put(tty);
629 
630 	tty_ldisc_hangup(tty, cons_filp != NULL);
631 
632 	spin_lock_irq(&tty->ctrl.lock);
633 	clear_bit(TTY_THROTTLED, &tty->flags);
634 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
635 	put_pid(tty->ctrl.session);
636 	put_pid(tty->ctrl.pgrp);
637 	tty->ctrl.session = NULL;
638 	tty->ctrl.pgrp = NULL;
639 	tty->ctrl.pktstatus = 0;
640 	spin_unlock_irq(&tty->ctrl.lock);
641 
642 	/*
643 	 * If one of the devices matches a console pointer, we
644 	 * cannot just call hangup() because that will cause
645 	 * tty->count and state->count to go out of sync.
646 	 * So we just call close() the right number of times.
647 	 */
648 	if (cons_filp) {
649 		if (tty->ops->close)
650 			for (n = 0; n < closecount; n++)
651 				tty->ops->close(tty, cons_filp);
652 	} else if (tty->ops->hangup)
653 		tty->ops->hangup(tty);
654 	/*
655 	 * We don't want to have driver/ldisc interactions beyond the ones
656 	 * we did here. The driver layer expects no calls after ->hangup()
657 	 * from the ldisc side, which is now guaranteed.
658 	 */
659 	set_bit(TTY_HUPPED, &tty->flags);
660 	clear_bit(TTY_HUPPING, &tty->flags);
661 	tty_unlock(tty);
662 
663 	if (f)
664 		fput(f);
665 }
666 
667 static void do_tty_hangup(struct work_struct *work)
668 {
669 	struct tty_struct *tty =
670 		container_of(work, struct tty_struct, hangup_work);
671 
672 	__tty_hangup(tty, 0);
673 }
674 
675 /**
676  * tty_hangup - trigger a hangup event
677  * @tty: tty to hangup
678  *
679  * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
680  * hangup sequence to run after this event.
681  */
682 void tty_hangup(struct tty_struct *tty)
683 {
684 	tty_debug_hangup(tty, "hangup\n");
685 	schedule_work(&tty->hangup_work);
686 }
687 EXPORT_SYMBOL(tty_hangup);
688 
689 /**
690  * tty_vhangup - process vhangup
691  * @tty: tty to hangup
692  *
693  * The user has asked via system call for the terminal to be hung up. We do
694  * this synchronously so that when the syscall returns the process is complete.
695  * That guarantee is necessary for security reasons.
696  */
697 void tty_vhangup(struct tty_struct *tty)
698 {
699 	tty_debug_hangup(tty, "vhangup\n");
700 	__tty_hangup(tty, 0);
701 }
702 EXPORT_SYMBOL(tty_vhangup);
703 
704 
705 /**
706  * tty_vhangup_self - process vhangup for own ctty
707  *
708  * Perform a vhangup on the current controlling tty
709  */
710 void tty_vhangup_self(void)
711 {
712 	struct tty_struct *tty;
713 
714 	tty = get_current_tty();
715 	if (tty) {
716 		tty_vhangup(tty);
717 		tty_kref_put(tty);
718 	}
719 }
720 
721 /**
722  * tty_vhangup_session - hangup session leader exit
723  * @tty: tty to hangup
724  *
725  * The session leader is exiting and hanging up its controlling terminal.
726  * Every process in the foreground process group is signalled %SIGHUP.
727  *
728  * We do this synchronously so that when the syscall returns the process is
729  * complete. That guarantee is necessary for security reasons.
730  */
731 void tty_vhangup_session(struct tty_struct *tty)
732 {
733 	tty_debug_hangup(tty, "session hangup\n");
734 	__tty_hangup(tty, 1);
735 }
736 
737 /**
738  * tty_hung_up_p - was tty hung up
739  * @filp: file pointer of tty
740  *
741  * Return: true if the tty has been subject to a vhangup or a carrier loss
742  */
743 int tty_hung_up_p(struct file *filp)
744 {
745 	return (filp && filp->f_op == &hung_up_tty_fops);
746 }
747 EXPORT_SYMBOL(tty_hung_up_p);
748 
749 void __stop_tty(struct tty_struct *tty)
750 {
751 	if (tty->flow.stopped)
752 		return;
753 	tty->flow.stopped = true;
754 	if (tty->ops->stop)
755 		tty->ops->stop(tty);
756 }
757 
758 /**
759  * stop_tty - propagate flow control
760  * @tty: tty to stop
761  *
762  * Perform flow control to the driver. May be called on an already stopped
763  * device and will not re-call the &tty_driver->stop() method.
764  *
765  * This functionality is used by both the line disciplines for halting incoming
766  * flow and by the driver. It may therefore be called from any context, may be
767  * under the tty %atomic_write_lock but not always.
768  *
769  * Locking:
770  *	flow.lock
771  */
772 void stop_tty(struct tty_struct *tty)
773 {
774 	unsigned long flags;
775 
776 	spin_lock_irqsave(&tty->flow.lock, flags);
777 	__stop_tty(tty);
778 	spin_unlock_irqrestore(&tty->flow.lock, flags);
779 }
780 EXPORT_SYMBOL(stop_tty);
781 
782 void __start_tty(struct tty_struct *tty)
783 {
784 	if (!tty->flow.stopped || tty->flow.tco_stopped)
785 		return;
786 	tty->flow.stopped = false;
787 	if (tty->ops->start)
788 		tty->ops->start(tty);
789 	tty_wakeup(tty);
790 }
791 
792 /**
793  * start_tty - propagate flow control
794  * @tty: tty to start
795  *
796  * Start a tty that has been stopped if at all possible. If @tty was previously
797  * stopped and is now being started, the &tty_driver->start() method is invoked
798  * and the line discipline woken.
799  *
800  * Locking:
801  *	flow.lock
802  */
803 void start_tty(struct tty_struct *tty)
804 {
805 	unsigned long flags;
806 
807 	spin_lock_irqsave(&tty->flow.lock, flags);
808 	__start_tty(tty);
809 	spin_unlock_irqrestore(&tty->flow.lock, flags);
810 }
811 EXPORT_SYMBOL(start_tty);
812 
813 static void tty_update_time(struct tty_struct *tty, bool mtime)
814 {
815 	time64_t sec = ktime_get_real_seconds();
816 	struct tty_file_private *priv;
817 
818 	spin_lock(&tty->files_lock);
819 	list_for_each_entry(priv, &tty->tty_files, list) {
820 		struct inode *inode = file_inode(priv->file);
821 		struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode);
822 
823 		/*
824 		 * We only care if the two values differ in anything other than the
825 		 * lower three bits (i.e every 8 seconds).  If so, then we can update
826 		 * the time of the tty device, otherwise it could be construded as a
827 		 * security leak to let userspace know the exact timing of the tty.
828 		 */
829 		if ((sec ^ time.tv_sec) & ~7) {
830 			if (mtime)
831 				inode_set_mtime(inode, sec, 0);
832 			else
833 				inode_set_atime(inode, sec, 0);
834 		}
835 	}
836 	spin_unlock(&tty->files_lock);
837 }
838 
839 /*
840  * Iterate on the ldisc ->read() function until we've gotten all
841  * the data the ldisc has for us.
842  *
843  * The "cookie" is something that the ldisc read function can fill
844  * in to let us know that there is more data to be had.
845  *
846  * We promise to continue to call the ldisc until it stops returning
847  * data or clears the cookie. The cookie may be something that the
848  * ldisc maintains state for and needs to free.
849  */
850 static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
851 				struct file *file, struct iov_iter *to)
852 {
853 	void *cookie = NULL;
854 	unsigned long offset = 0;
855 	ssize_t retval = 0;
856 	size_t copied, count = iov_iter_count(to);
857 	u8 kernel_buf[64];
858 
859 	do {
860 		ssize_t size = min(count, sizeof(kernel_buf));
861 
862 		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
863 		if (!size)
864 			break;
865 
866 		if (size < 0) {
867 			/* Did we have an earlier error (ie -EFAULT)? */
868 			if (retval)
869 				break;
870 			retval = size;
871 
872 			/*
873 			 * -EOVERFLOW means we didn't have enough space
874 			 * for a whole packet, and we shouldn't return
875 			 * a partial result.
876 			 */
877 			if (retval == -EOVERFLOW)
878 				offset = 0;
879 			break;
880 		}
881 
882 		copied = copy_to_iter(kernel_buf, size, to);
883 		offset += copied;
884 		count -= copied;
885 
886 		/*
887 		 * If the user copy failed, we still need to do another ->read()
888 		 * call if we had a cookie to let the ldisc clear up.
889 		 *
890 		 * But make sure size is zeroed.
891 		 */
892 		if (unlikely(copied != size)) {
893 			count = 0;
894 			retval = -EFAULT;
895 		}
896 	} while (cookie);
897 
898 	/* We always clear tty buffer in case they contained passwords */
899 	memzero_explicit(kernel_buf, sizeof(kernel_buf));
900 	return offset ? offset : retval;
901 }
902 
903 
904 /**
905  * tty_read - read method for tty device files
906  * @iocb: kernel I/O control block
907  * @to: destination for the data read
908  *
909  * Perform the read system call function on this terminal device. Checks
910  * for hung up devices before calling the line discipline method.
911  *
912  * Locking:
913  *	Locks the line discipline internally while needed. Multiple read calls
914  *	may be outstanding in parallel.
915  */
916 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
917 {
918 	struct file *file = iocb->ki_filp;
919 	struct inode *inode = file_inode(file);
920 	struct tty_struct *tty = file_tty(file);
921 	struct tty_ldisc *ld;
922 	ssize_t ret;
923 
924 	if (tty_paranoia_check(tty, inode, "tty_read"))
925 		return -EIO;
926 	if (!tty || tty_io_error(tty))
927 		return -EIO;
928 
929 	/* We want to wait for the line discipline to sort out in this
930 	 * situation.
931 	 */
932 	ld = tty_ldisc_ref_wait(tty);
933 	if (!ld)
934 		return hung_up_tty_read(iocb, to);
935 	ret = -EIO;
936 	if (ld->ops->read)
937 		ret = iterate_tty_read(ld, tty, file, to);
938 	tty_ldisc_deref(ld);
939 
940 	if (ret > 0)
941 		tty_update_time(tty, false);
942 
943 	return ret;
944 }
945 
946 void tty_write_unlock(struct tty_struct *tty)
947 {
948 	mutex_unlock(&tty->atomic_write_lock);
949 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
950 }
951 
952 int tty_write_lock(struct tty_struct *tty, bool ndelay)
953 {
954 	if (!mutex_trylock(&tty->atomic_write_lock)) {
955 		if (ndelay)
956 			return -EAGAIN;
957 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
958 			return -ERESTARTSYS;
959 	}
960 	return 0;
961 }
962 
963 /*
964  * Split writes up in sane blocksizes to avoid
965  * denial-of-service type attacks
966  */
967 static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
968 				 struct file *file, struct iov_iter *from)
969 {
970 	size_t chunk, count = iov_iter_count(from);
971 	ssize_t ret, written = 0;
972 
973 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
974 	if (ret < 0)
975 		return ret;
976 
977 	/*
978 	 * We chunk up writes into a temporary buffer. This
979 	 * simplifies low-level drivers immensely, since they
980 	 * don't have locking issues and user mode accesses.
981 	 *
982 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
983 	 * big chunk-size..
984 	 *
985 	 * The default chunk-size is 2kB, because the NTTY
986 	 * layer has problems with bigger chunks. It will
987 	 * claim to be able to handle more characters than
988 	 * it actually does.
989 	 */
990 	chunk = 2048;
991 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
992 		chunk = 65536;
993 	if (count < chunk)
994 		chunk = count;
995 
996 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
997 	if (tty->write_cnt < chunk) {
998 		u8 *buf_chunk;
999 
1000 		if (chunk < 1024)
1001 			chunk = 1024;
1002 
1003 		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1004 		if (!buf_chunk) {
1005 			ret = -ENOMEM;
1006 			goto out;
1007 		}
1008 		kvfree(tty->write_buf);
1009 		tty->write_cnt = chunk;
1010 		tty->write_buf = buf_chunk;
1011 	}
1012 
1013 	/* Do the write .. */
1014 	for (;;) {
1015 		size_t size = min(chunk, count);
1016 
1017 		ret = -EFAULT;
1018 		if (copy_from_iter(tty->write_buf, size, from) != size)
1019 			break;
1020 
1021 		ret = ld->ops->write(tty, file, tty->write_buf, size);
1022 		if (ret <= 0)
1023 			break;
1024 
1025 		written += ret;
1026 		if (ret > size)
1027 			break;
1028 
1029 		/* FIXME! Have Al check this! */
1030 		if (ret != size)
1031 			iov_iter_revert(from, size-ret);
1032 
1033 		count -= ret;
1034 		if (!count)
1035 			break;
1036 		ret = -ERESTARTSYS;
1037 		if (signal_pending(current))
1038 			break;
1039 		cond_resched();
1040 	}
1041 	if (written) {
1042 		tty_update_time(tty, true);
1043 		ret = written;
1044 	}
1045 out:
1046 	tty_write_unlock(tty);
1047 	return ret;
1048 }
1049 
1050 #ifdef CONFIG_PRINT_QUOTA_WARNING
1051 /**
1052  * tty_write_message - write a message to a certain tty, not just the console.
1053  * @tty: the destination tty_struct
1054  * @msg: the message to write
1055  *
1056  * This is used for messages that need to be redirected to a specific tty. We
1057  * don't put it into the syslog queue right now maybe in the future if really
1058  * needed.
1059  *
1060  * We must still hold the BTM and test the CLOSING flag for the moment.
1061  *
1062  * This function is DEPRECATED, do not use in new code.
1063  */
1064 void tty_write_message(struct tty_struct *tty, char *msg)
1065 {
1066 	if (tty) {
1067 		mutex_lock(&tty->atomic_write_lock);
1068 		tty_lock(tty);
1069 		if (tty->ops->write && tty->count > 0)
1070 			tty->ops->write(tty, msg, strlen(msg));
1071 		tty_unlock(tty);
1072 		tty_write_unlock(tty);
1073 	}
1074 }
1075 #endif
1076 
1077 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1078 {
1079 	struct tty_struct *tty = file_tty(file);
1080 	struct tty_ldisc *ld;
1081 	ssize_t ret;
1082 
1083 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1084 		return -EIO;
1085 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1086 		return -EIO;
1087 	/* Short term debug to catch buggy drivers */
1088 	if (tty->ops->write_room == NULL)
1089 		tty_err(tty, "missing write_room method\n");
1090 	ld = tty_ldisc_ref_wait(tty);
1091 	if (!ld)
1092 		return hung_up_tty_write(iocb, from);
1093 	if (!ld->ops->write)
1094 		ret = -EIO;
1095 	else
1096 		ret = iterate_tty_write(ld, tty, file, from);
1097 	tty_ldisc_deref(ld);
1098 	return ret;
1099 }
1100 
1101 /**
1102  * tty_write - write method for tty device file
1103  * @iocb: kernel I/O control block
1104  * @from: iov_iter with data to write
1105  *
1106  * Write data to a tty device via the line discipline.
1107  *
1108  * Locking:
1109  *	Locks the line discipline as required
1110  *	Writes to the tty driver are serialized by the atomic_write_lock
1111  *	and are then processed in chunks to the device. The line
1112  *	discipline write method will not be invoked in parallel for
1113  *	each device.
1114  */
1115 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1116 {
1117 	return file_tty_write(iocb->ki_filp, iocb, from);
1118 }
1119 
1120 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1121 {
1122 	struct file *p = NULL;
1123 
1124 	spin_lock(&redirect_lock);
1125 	if (redirect)
1126 		p = get_file(redirect);
1127 	spin_unlock(&redirect_lock);
1128 
1129 	/*
1130 	 * We know the redirected tty is just another tty, we can
1131 	 * call file_tty_write() directly with that file pointer.
1132 	 */
1133 	if (p) {
1134 		ssize_t res;
1135 
1136 		res = file_tty_write(p, iocb, iter);
1137 		fput(p);
1138 		return res;
1139 	}
1140 	return tty_write(iocb, iter);
1141 }
1142 
1143 /**
1144  * tty_send_xchar - send priority character
1145  * @tty: the tty to send to
1146  * @ch: xchar to send
1147  *
1148  * Send a high priority character to the tty even if stopped.
1149  *
1150  * Locking: none for xchar method, write ordering for write method.
1151  */
1152 int tty_send_xchar(struct tty_struct *tty, u8 ch)
1153 {
1154 	bool was_stopped = tty->flow.stopped;
1155 
1156 	if (tty->ops->send_xchar) {
1157 		down_read(&tty->termios_rwsem);
1158 		tty->ops->send_xchar(tty, ch);
1159 		up_read(&tty->termios_rwsem);
1160 		return 0;
1161 	}
1162 
1163 	if (tty_write_lock(tty, false) < 0)
1164 		return -ERESTARTSYS;
1165 
1166 	down_read(&tty->termios_rwsem);
1167 	if (was_stopped)
1168 		start_tty(tty);
1169 	tty->ops->write(tty, &ch, 1);
1170 	if (was_stopped)
1171 		stop_tty(tty);
1172 	up_read(&tty->termios_rwsem);
1173 	tty_write_unlock(tty);
1174 	return 0;
1175 }
1176 
1177 /**
1178  * pty_line_name - generate name for a pty
1179  * @driver: the tty driver in use
1180  * @index: the minor number
1181  * @p: output buffer of at least 6 bytes
1182  *
1183  * Generate a name from a @driver reference and write it to the output buffer
1184  * @p.
1185  *
1186  * Locking: None
1187  */
1188 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1189 {
1190 	static const char ptychar[] = "pqrstuvwxyzabcde";
1191 	int i = index + driver->name_base;
1192 	/* ->name is initialized to "ttyp", but "tty" is expected */
1193 	sprintf(p, "%s%c%x",
1194 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1195 		ptychar[i >> 4 & 0xf], i & 0xf);
1196 }
1197 
1198 /**
1199  * tty_line_name - generate name for a tty
1200  * @driver: the tty driver in use
1201  * @index: the minor number
1202  * @p: output buffer of at least 7 bytes
1203  *
1204  * Generate a name from a @driver reference and write it to the output buffer
1205  * @p.
1206  *
1207  * Locking: None
1208  */
1209 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1210 {
1211 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1212 		return sprintf(p, "%s", driver->name);
1213 	else
1214 		return sprintf(p, "%s%d", driver->name,
1215 			       index + driver->name_base);
1216 }
1217 
1218 /**
1219  * tty_driver_lookup_tty() - find an existing tty, if any
1220  * @driver: the driver for the tty
1221  * @file: file object
1222  * @idx: the minor number
1223  *
1224  * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1225  * driver lookup() method returns an error.
1226  *
1227  * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1228  */
1229 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1230 		struct file *file, int idx)
1231 {
1232 	struct tty_struct *tty;
1233 
1234 	if (driver->ops->lookup) {
1235 		if (!file)
1236 			tty = ERR_PTR(-EIO);
1237 		else
1238 			tty = driver->ops->lookup(driver, file, idx);
1239 	} else {
1240 		if (idx >= driver->num)
1241 			return ERR_PTR(-EINVAL);
1242 		tty = driver->ttys[idx];
1243 	}
1244 	if (!IS_ERR(tty))
1245 		tty_kref_get(tty);
1246 	return tty;
1247 }
1248 
1249 /**
1250  * tty_init_termios - helper for termios setup
1251  * @tty: the tty to set up
1252  *
1253  * Initialise the termios structure for this tty. This runs under the
1254  * %tty_mutex currently so we can be relaxed about ordering.
1255  */
1256 void tty_init_termios(struct tty_struct *tty)
1257 {
1258 	struct ktermios *tp;
1259 	int idx = tty->index;
1260 
1261 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1262 		tty->termios = tty->driver->init_termios;
1263 	else {
1264 		/* Check for lazy saved data */
1265 		tp = tty->driver->termios[idx];
1266 		if (tp != NULL) {
1267 			tty->termios = *tp;
1268 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1269 		} else
1270 			tty->termios = tty->driver->init_termios;
1271 	}
1272 	/* Compatibility until drivers always set this */
1273 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1274 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1275 }
1276 EXPORT_SYMBOL_GPL(tty_init_termios);
1277 
1278 /**
1279  * tty_standard_install - usual tty->ops->install
1280  * @driver: the driver for the tty
1281  * @tty: the tty
1282  *
1283  * If the @driver overrides @tty->ops->install, it still can call this function
1284  * to perform the standard install operations.
1285  */
1286 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1287 {
1288 	tty_init_termios(tty);
1289 	tty_driver_kref_get(driver);
1290 	tty->count++;
1291 	driver->ttys[tty->index] = tty;
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(tty_standard_install);
1295 
1296 /**
1297  * tty_driver_install_tty() - install a tty entry in the driver
1298  * @driver: the driver for the tty
1299  * @tty: the tty
1300  *
1301  * Install a tty object into the driver tables. The @tty->index field will be
1302  * set by the time this is called. This method is responsible for ensuring any
1303  * need additional structures are allocated and configured.
1304  *
1305  * Locking: tty_mutex for now
1306  */
1307 static int tty_driver_install_tty(struct tty_driver *driver,
1308 						struct tty_struct *tty)
1309 {
1310 	return driver->ops->install ? driver->ops->install(driver, tty) :
1311 		tty_standard_install(driver, tty);
1312 }
1313 
1314 /**
1315  * tty_driver_remove_tty() - remove a tty from the driver tables
1316  * @driver: the driver for the tty
1317  * @tty: tty to remove
1318  *
1319  * Remove a tty object from the driver tables. The tty->index field will be set
1320  * by the time this is called.
1321  *
1322  * Locking: tty_mutex for now
1323  */
1324 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1325 {
1326 	if (driver->ops->remove)
1327 		driver->ops->remove(driver, tty);
1328 	else
1329 		driver->ttys[tty->index] = NULL;
1330 }
1331 
1332 /**
1333  * tty_reopen() - fast re-open of an open tty
1334  * @tty: the tty to open
1335  *
1336  * Re-opens on master ptys are not allowed and return -%EIO.
1337  *
1338  * Locking: Caller must hold tty_lock
1339  * Return: 0 on success, -errno on error.
1340  */
1341 static int tty_reopen(struct tty_struct *tty)
1342 {
1343 	struct tty_driver *driver = tty->driver;
1344 	struct tty_ldisc *ld;
1345 	int retval = 0;
1346 
1347 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1348 	    driver->subtype == PTY_TYPE_MASTER)
1349 		return -EIO;
1350 
1351 	if (!tty->count)
1352 		return -EAGAIN;
1353 
1354 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1355 		return -EBUSY;
1356 
1357 	ld = tty_ldisc_ref_wait(tty);
1358 	if (ld) {
1359 		tty_ldisc_deref(ld);
1360 	} else {
1361 		retval = tty_ldisc_lock(tty, 5 * HZ);
1362 		if (retval)
1363 			return retval;
1364 
1365 		if (!tty->ldisc)
1366 			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1367 		tty_ldisc_unlock(tty);
1368 	}
1369 
1370 	if (retval == 0)
1371 		tty->count++;
1372 
1373 	return retval;
1374 }
1375 
1376 /**
1377  * tty_init_dev - initialise a tty device
1378  * @driver: tty driver we are opening a device on
1379  * @idx: device index
1380  *
1381  * Prepare a tty device. This may not be a "new" clean device but could also be
1382  * an active device. The pty drivers require special handling because of this.
1383  *
1384  * Locking:
1385  *	The function is called under the tty_mutex, which protects us from the
1386  *	tty struct or driver itself going away.
1387  *
1388  * On exit the tty device has the line discipline attached and a reference
1389  * count of 1. If a pair was created for pty/tty use and the other was a pty
1390  * master then it too has a reference count of 1.
1391  *
1392  * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1393  * open. The new code protects the open with a mutex, so it's really quite
1394  * straightforward. The mutex locking can probably be relaxed for the (most
1395  * common) case of reopening a tty.
1396  *
1397  * Return: new tty structure
1398  */
1399 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1400 {
1401 	struct tty_struct *tty;
1402 	int retval;
1403 
1404 	/*
1405 	 * First time open is complex, especially for PTY devices.
1406 	 * This code guarantees that either everything succeeds and the
1407 	 * TTY is ready for operation, or else the table slots are vacated
1408 	 * and the allocated memory released.  (Except that the termios
1409 	 * may be retained.)
1410 	 */
1411 
1412 	if (!try_module_get(driver->owner))
1413 		return ERR_PTR(-ENODEV);
1414 
1415 	tty = alloc_tty_struct(driver, idx);
1416 	if (!tty) {
1417 		retval = -ENOMEM;
1418 		goto err_module_put;
1419 	}
1420 
1421 	tty_lock(tty);
1422 	retval = tty_driver_install_tty(driver, tty);
1423 	if (retval < 0)
1424 		goto err_free_tty;
1425 
1426 	if (!tty->port)
1427 		tty->port = driver->ports[idx];
1428 
1429 	if (WARN_RATELIMIT(!tty->port,
1430 			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1431 			__func__, tty->driver->name)) {
1432 		retval = -EINVAL;
1433 		goto err_release_lock;
1434 	}
1435 
1436 	retval = tty_ldisc_lock(tty, 5 * HZ);
1437 	if (retval)
1438 		goto err_release_lock;
1439 	tty->port->itty = tty;
1440 
1441 	/*
1442 	 * Structures all installed ... call the ldisc open routines.
1443 	 * If we fail here just call release_tty to clean up.  No need
1444 	 * to decrement the use counts, as release_tty doesn't care.
1445 	 */
1446 	retval = tty_ldisc_setup(tty, tty->link);
1447 	if (retval)
1448 		goto err_release_tty;
1449 	tty_ldisc_unlock(tty);
1450 	/* Return the tty locked so that it cannot vanish under the caller */
1451 	return tty;
1452 
1453 err_free_tty:
1454 	tty_unlock(tty);
1455 	free_tty_struct(tty);
1456 err_module_put:
1457 	module_put(driver->owner);
1458 	return ERR_PTR(retval);
1459 
1460 	/* call the tty release_tty routine to clean out this slot */
1461 err_release_tty:
1462 	tty_ldisc_unlock(tty);
1463 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1464 			     retval, idx);
1465 err_release_lock:
1466 	tty_unlock(tty);
1467 	release_tty(tty, idx);
1468 	return ERR_PTR(retval);
1469 }
1470 
1471 /**
1472  * tty_save_termios() - save tty termios data in driver table
1473  * @tty: tty whose termios data to save
1474  *
1475  * Locking: Caller guarantees serialisation with tty_init_termios().
1476  */
1477 void tty_save_termios(struct tty_struct *tty)
1478 {
1479 	struct ktermios *tp;
1480 	int idx = tty->index;
1481 
1482 	/* If the port is going to reset then it has no termios to save */
1483 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1484 		return;
1485 
1486 	/* Stash the termios data */
1487 	tp = tty->driver->termios[idx];
1488 	if (tp == NULL) {
1489 		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1490 		if (tp == NULL)
1491 			return;
1492 		tty->driver->termios[idx] = tp;
1493 	}
1494 	*tp = tty->termios;
1495 }
1496 EXPORT_SYMBOL_GPL(tty_save_termios);
1497 
1498 /**
1499  * tty_flush_works - flush all works of a tty/pty pair
1500  * @tty: tty device to flush works for (or either end of a pty pair)
1501  *
1502  * Sync flush all works belonging to @tty (and the 'other' tty).
1503  */
1504 static void tty_flush_works(struct tty_struct *tty)
1505 {
1506 	flush_work(&tty->SAK_work);
1507 	flush_work(&tty->hangup_work);
1508 	if (tty->link) {
1509 		flush_work(&tty->link->SAK_work);
1510 		flush_work(&tty->link->hangup_work);
1511 	}
1512 }
1513 
1514 /**
1515  * release_one_tty - release tty structure memory
1516  * @work: work of tty we are obliterating
1517  *
1518  * Releases memory associated with a tty structure, and clears out the
1519  * driver table slots. This function is called when a device is no longer
1520  * in use. It also gets called when setup of a device fails.
1521  *
1522  * Locking:
1523  *	takes the file list lock internally when working on the list of ttys
1524  *	that the driver keeps.
1525  *
1526  * This method gets called from a work queue so that the driver private
1527  * cleanup ops can sleep (needed for USB at least)
1528  */
1529 static void release_one_tty(struct work_struct *work)
1530 {
1531 	struct tty_struct *tty =
1532 		container_of(work, struct tty_struct, hangup_work);
1533 	struct tty_driver *driver = tty->driver;
1534 	struct module *owner = driver->owner;
1535 
1536 	if (tty->ops->cleanup)
1537 		tty->ops->cleanup(tty);
1538 
1539 	tty_driver_kref_put(driver);
1540 	module_put(owner);
1541 
1542 	spin_lock(&tty->files_lock);
1543 	list_del_init(&tty->tty_files);
1544 	spin_unlock(&tty->files_lock);
1545 
1546 	put_pid(tty->ctrl.pgrp);
1547 	put_pid(tty->ctrl.session);
1548 	free_tty_struct(tty);
1549 }
1550 
1551 static void queue_release_one_tty(struct kref *kref)
1552 {
1553 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1554 
1555 	/* The hangup queue is now free so we can reuse it rather than
1556 	 *  waste a chunk of memory for each port.
1557 	 */
1558 	INIT_WORK(&tty->hangup_work, release_one_tty);
1559 	schedule_work(&tty->hangup_work);
1560 }
1561 
1562 /**
1563  * tty_kref_put - release a tty kref
1564  * @tty: tty device
1565  *
1566  * Release a reference to the @tty device and if need be let the kref layer
1567  * destruct the object for us.
1568  */
1569 void tty_kref_put(struct tty_struct *tty)
1570 {
1571 	if (tty)
1572 		kref_put(&tty->kref, queue_release_one_tty);
1573 }
1574 EXPORT_SYMBOL(tty_kref_put);
1575 
1576 /**
1577  * release_tty - release tty structure memory
1578  * @tty: tty device release
1579  * @idx: index of the tty device release
1580  *
1581  * Release both @tty and a possible linked partner (think pty pair),
1582  * and decrement the refcount of the backing module.
1583  *
1584  * Locking:
1585  *	tty_mutex
1586  *	takes the file list lock internally when working on the list of ttys
1587  *	that the driver keeps.
1588  */
1589 static void release_tty(struct tty_struct *tty, int idx)
1590 {
1591 	/* This should always be true but check for the moment */
1592 	WARN_ON(tty->index != idx);
1593 	WARN_ON(!mutex_is_locked(&tty_mutex));
1594 	if (tty->ops->shutdown)
1595 		tty->ops->shutdown(tty);
1596 	tty_save_termios(tty);
1597 	tty_driver_remove_tty(tty->driver, tty);
1598 	if (tty->port)
1599 		tty->port->itty = NULL;
1600 	if (tty->link)
1601 		tty->link->port->itty = NULL;
1602 	if (tty->port)
1603 		tty_buffer_cancel_work(tty->port);
1604 	if (tty->link)
1605 		tty_buffer_cancel_work(tty->link->port);
1606 
1607 	tty_kref_put(tty->link);
1608 	tty_kref_put(tty);
1609 }
1610 
1611 /**
1612  * tty_release_checks - check a tty before real release
1613  * @tty: tty to check
1614  * @idx: index of the tty
1615  *
1616  * Performs some paranoid checking before true release of the @tty. This is a
1617  * no-op unless %TTY_PARANOIA_CHECK is defined.
1618  */
1619 static int tty_release_checks(struct tty_struct *tty, int idx)
1620 {
1621 #ifdef TTY_PARANOIA_CHECK
1622 	if (idx < 0 || idx >= tty->driver->num) {
1623 		tty_debug(tty, "bad idx %d\n", idx);
1624 		return -1;
1625 	}
1626 
1627 	/* not much to check for devpts */
1628 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1629 		return 0;
1630 
1631 	if (tty != tty->driver->ttys[idx]) {
1632 		tty_debug(tty, "bad driver table[%d] = %p\n",
1633 			  idx, tty->driver->ttys[idx]);
1634 		return -1;
1635 	}
1636 	if (tty->driver->other) {
1637 		struct tty_struct *o_tty = tty->link;
1638 
1639 		if (o_tty != tty->driver->other->ttys[idx]) {
1640 			tty_debug(tty, "bad other table[%d] = %p\n",
1641 				  idx, tty->driver->other->ttys[idx]);
1642 			return -1;
1643 		}
1644 		if (o_tty->link != tty) {
1645 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1646 			return -1;
1647 		}
1648 	}
1649 #endif
1650 	return 0;
1651 }
1652 
1653 /**
1654  * tty_kclose - closes tty opened by tty_kopen
1655  * @tty: tty device
1656  *
1657  * Performs the final steps to release and free a tty device. It is the same as
1658  * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1659  * @tty->port.
1660  */
1661 void tty_kclose(struct tty_struct *tty)
1662 {
1663 	/*
1664 	 * Ask the line discipline code to release its structures
1665 	 */
1666 	tty_ldisc_release(tty);
1667 
1668 	/* Wait for pending work before tty destruction commences */
1669 	tty_flush_works(tty);
1670 
1671 	tty_debug_hangup(tty, "freeing structure\n");
1672 	/*
1673 	 * The release_tty function takes care of the details of clearing
1674 	 * the slots and preserving the termios structure.
1675 	 */
1676 	mutex_lock(&tty_mutex);
1677 	tty_port_set_kopened(tty->port, 0);
1678 	release_tty(tty, tty->index);
1679 	mutex_unlock(&tty_mutex);
1680 }
1681 EXPORT_SYMBOL_GPL(tty_kclose);
1682 
1683 /**
1684  * tty_release_struct - release a tty struct
1685  * @tty: tty device
1686  * @idx: index of the tty
1687  *
1688  * Performs the final steps to release and free a tty device. It is roughly the
1689  * reverse of tty_init_dev().
1690  */
1691 void tty_release_struct(struct tty_struct *tty, int idx)
1692 {
1693 	/*
1694 	 * Ask the line discipline code to release its structures
1695 	 */
1696 	tty_ldisc_release(tty);
1697 
1698 	/* Wait for pending work before tty destruction commmences */
1699 	tty_flush_works(tty);
1700 
1701 	tty_debug_hangup(tty, "freeing structure\n");
1702 	/*
1703 	 * The release_tty function takes care of the details of clearing
1704 	 * the slots and preserving the termios structure.
1705 	 */
1706 	mutex_lock(&tty_mutex);
1707 	release_tty(tty, idx);
1708 	mutex_unlock(&tty_mutex);
1709 }
1710 EXPORT_SYMBOL_GPL(tty_release_struct);
1711 
1712 /**
1713  * tty_release - vfs callback for close
1714  * @inode: inode of tty
1715  * @filp: file pointer for handle to tty
1716  *
1717  * Called the last time each file handle is closed that references this tty.
1718  * There may however be several such references.
1719  *
1720  * Locking:
1721  *	Takes BKL. See tty_release_dev().
1722  *
1723  * Even releasing the tty structures is a tricky business. We have to be very
1724  * careful that the structures are all released at the same time, as interrupts
1725  * might otherwise get the wrong pointers.
1726  *
1727  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1728  * lead to double frees or releasing memory still in use.
1729  */
1730 int tty_release(struct inode *inode, struct file *filp)
1731 {
1732 	struct tty_struct *tty = file_tty(filp);
1733 	struct tty_struct *o_tty = NULL;
1734 	int	do_sleep, final;
1735 	int	idx;
1736 	long	timeout = 0;
1737 	int	once = 1;
1738 
1739 	if (tty_paranoia_check(tty, inode, __func__))
1740 		return 0;
1741 
1742 	tty_lock(tty);
1743 	check_tty_count(tty, __func__);
1744 
1745 	__tty_fasync(-1, filp, 0);
1746 
1747 	idx = tty->index;
1748 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1749 	    tty->driver->subtype == PTY_TYPE_MASTER)
1750 		o_tty = tty->link;
1751 
1752 	if (tty_release_checks(tty, idx)) {
1753 		tty_unlock(tty);
1754 		return 0;
1755 	}
1756 
1757 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1758 
1759 	if (tty->ops->close)
1760 		tty->ops->close(tty, filp);
1761 
1762 	/* If tty is pty master, lock the slave pty (stable lock order) */
1763 	tty_lock_slave(o_tty);
1764 
1765 	/*
1766 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1767 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1768 	 * wait queues and kick everyone out _before_ actually starting to
1769 	 * close.  This ensures that we won't block while releasing the tty
1770 	 * structure.
1771 	 *
1772 	 * The test for the o_tty closing is necessary, since the master and
1773 	 * slave sides may close in any order.  If the slave side closes out
1774 	 * first, its count will be one, since the master side holds an open.
1775 	 * Thus this test wouldn't be triggered at the time the slave closed,
1776 	 * so we do it now.
1777 	 */
1778 	while (1) {
1779 		do_sleep = 0;
1780 
1781 		if (tty->count <= 1) {
1782 			if (waitqueue_active(&tty->read_wait)) {
1783 				wake_up_poll(&tty->read_wait, EPOLLIN);
1784 				do_sleep++;
1785 			}
1786 			if (waitqueue_active(&tty->write_wait)) {
1787 				wake_up_poll(&tty->write_wait, EPOLLOUT);
1788 				do_sleep++;
1789 			}
1790 		}
1791 		if (o_tty && o_tty->count <= 1) {
1792 			if (waitqueue_active(&o_tty->read_wait)) {
1793 				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1794 				do_sleep++;
1795 			}
1796 			if (waitqueue_active(&o_tty->write_wait)) {
1797 				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1798 				do_sleep++;
1799 			}
1800 		}
1801 		if (!do_sleep)
1802 			break;
1803 
1804 		if (once) {
1805 			once = 0;
1806 			tty_warn(tty, "read/write wait queue active!\n");
1807 		}
1808 		schedule_timeout_killable(timeout);
1809 		if (timeout < 120 * HZ)
1810 			timeout = 2 * timeout + 1;
1811 		else
1812 			timeout = MAX_SCHEDULE_TIMEOUT;
1813 	}
1814 
1815 	if (o_tty) {
1816 		if (--o_tty->count < 0) {
1817 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1818 			o_tty->count = 0;
1819 		}
1820 	}
1821 	if (--tty->count < 0) {
1822 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1823 		tty->count = 0;
1824 	}
1825 
1826 	/*
1827 	 * We've decremented tty->count, so we need to remove this file
1828 	 * descriptor off the tty->tty_files list; this serves two
1829 	 * purposes:
1830 	 *  - check_tty_count sees the correct number of file descriptors
1831 	 *    associated with this tty.
1832 	 *  - do_tty_hangup no longer sees this file descriptor as
1833 	 *    something that needs to be handled for hangups.
1834 	 */
1835 	tty_del_file(filp);
1836 
1837 	/*
1838 	 * Perform some housekeeping before deciding whether to return.
1839 	 *
1840 	 * If _either_ side is closing, make sure there aren't any
1841 	 * processes that still think tty or o_tty is their controlling
1842 	 * tty.
1843 	 */
1844 	if (!tty->count) {
1845 		read_lock(&tasklist_lock);
1846 		session_clear_tty(tty->ctrl.session);
1847 		if (o_tty)
1848 			session_clear_tty(o_tty->ctrl.session);
1849 		read_unlock(&tasklist_lock);
1850 	}
1851 
1852 	/* check whether both sides are closing ... */
1853 	final = !tty->count && !(o_tty && o_tty->count);
1854 
1855 	tty_unlock_slave(o_tty);
1856 	tty_unlock(tty);
1857 
1858 	/* At this point, the tty->count == 0 should ensure a dead tty
1859 	 * cannot be re-opened by a racing opener.
1860 	 */
1861 
1862 	if (!final)
1863 		return 0;
1864 
1865 	tty_debug_hangup(tty, "final close\n");
1866 
1867 	tty_release_struct(tty, idx);
1868 	return 0;
1869 }
1870 
1871 /**
1872  * tty_open_current_tty - get locked tty of current task
1873  * @device: device number
1874  * @filp: file pointer to tty
1875  * @return: locked tty of the current task iff @device is /dev/tty
1876  *
1877  * Performs a re-open of the current task's controlling tty.
1878  *
1879  * We cannot return driver and index like for the other nodes because devpts
1880  * will not work then. It expects inodes to be from devpts FS.
1881  */
1882 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1883 {
1884 	struct tty_struct *tty;
1885 	int retval;
1886 
1887 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1888 		return NULL;
1889 
1890 	tty = get_current_tty();
1891 	if (!tty)
1892 		return ERR_PTR(-ENXIO);
1893 
1894 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1895 	/* noctty = 1; */
1896 	tty_lock(tty);
1897 	tty_kref_put(tty);	/* safe to drop the kref now */
1898 
1899 	retval = tty_reopen(tty);
1900 	if (retval < 0) {
1901 		tty_unlock(tty);
1902 		tty = ERR_PTR(retval);
1903 	}
1904 	return tty;
1905 }
1906 
1907 /**
1908  * tty_lookup_driver - lookup a tty driver for a given device file
1909  * @device: device number
1910  * @filp: file pointer to tty
1911  * @index: index for the device in the @return driver
1912  *
1913  * If returned value is not erroneous, the caller is responsible to decrement
1914  * the refcount by tty_driver_kref_put().
1915  *
1916  * Locking: %tty_mutex protects get_tty_driver()
1917  *
1918  * Return: driver for this inode (with increased refcount)
1919  */
1920 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1921 		int *index)
1922 {
1923 	struct tty_driver *driver = NULL;
1924 
1925 	switch (device) {
1926 #ifdef CONFIG_VT
1927 	case MKDEV(TTY_MAJOR, 0): {
1928 		extern struct tty_driver *console_driver;
1929 
1930 		driver = tty_driver_kref_get(console_driver);
1931 		*index = fg_console;
1932 		break;
1933 	}
1934 #endif
1935 	case MKDEV(TTYAUX_MAJOR, 1): {
1936 		struct tty_driver *console_driver = console_device(index);
1937 
1938 		if (console_driver) {
1939 			driver = tty_driver_kref_get(console_driver);
1940 			if (driver && filp) {
1941 				/* Don't let /dev/console block */
1942 				filp->f_flags |= O_NONBLOCK;
1943 				break;
1944 			}
1945 		}
1946 		if (driver)
1947 			tty_driver_kref_put(driver);
1948 		return ERR_PTR(-ENODEV);
1949 	}
1950 	default:
1951 		driver = get_tty_driver(device, index);
1952 		if (!driver)
1953 			return ERR_PTR(-ENODEV);
1954 		break;
1955 	}
1956 	return driver;
1957 }
1958 
1959 static struct tty_struct *tty_kopen(dev_t device, int shared)
1960 {
1961 	struct tty_struct *tty;
1962 	struct tty_driver *driver;
1963 	int index = -1;
1964 
1965 	mutex_lock(&tty_mutex);
1966 	driver = tty_lookup_driver(device, NULL, &index);
1967 	if (IS_ERR(driver)) {
1968 		mutex_unlock(&tty_mutex);
1969 		return ERR_CAST(driver);
1970 	}
1971 
1972 	/* check whether we're reopening an existing tty */
1973 	tty = tty_driver_lookup_tty(driver, NULL, index);
1974 	if (IS_ERR(tty) || shared)
1975 		goto out;
1976 
1977 	if (tty) {
1978 		/* drop kref from tty_driver_lookup_tty() */
1979 		tty_kref_put(tty);
1980 		tty = ERR_PTR(-EBUSY);
1981 	} else { /* tty_init_dev returns tty with the tty_lock held */
1982 		tty = tty_init_dev(driver, index);
1983 		if (IS_ERR(tty))
1984 			goto out;
1985 		tty_port_set_kopened(tty->port, 1);
1986 	}
1987 out:
1988 	mutex_unlock(&tty_mutex);
1989 	tty_driver_kref_put(driver);
1990 	return tty;
1991 }
1992 
1993 /**
1994  * tty_kopen_exclusive - open a tty device for kernel
1995  * @device: dev_t of device to open
1996  *
1997  * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1998  * it's not already opened and performs the first-time tty initialization.
1999  *
2000  * Claims the global %tty_mutex to serialize:
2001  *  * concurrent first-time tty initialization
2002  *  * concurrent tty driver removal w/ lookup
2003  *  * concurrent tty removal from driver table
2004  *
2005  * Return: the locked initialized &tty_struct
2006  */
2007 struct tty_struct *tty_kopen_exclusive(dev_t device)
2008 {
2009 	return tty_kopen(device, 0);
2010 }
2011 EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2012 
2013 /**
2014  * tty_kopen_shared - open a tty device for shared in-kernel use
2015  * @device: dev_t of device to open
2016  *
2017  * Opens an already existing tty for in-kernel use. Compared to
2018  * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2019  *
2020  * Locking: identical to tty_kopen() above.
2021  */
2022 struct tty_struct *tty_kopen_shared(dev_t device)
2023 {
2024 	return tty_kopen(device, 1);
2025 }
2026 EXPORT_SYMBOL_GPL(tty_kopen_shared);
2027 
2028 /**
2029  * tty_open_by_driver - open a tty device
2030  * @device: dev_t of device to open
2031  * @filp: file pointer to tty
2032  *
2033  * Performs the driver lookup, checks for a reopen, or otherwise performs the
2034  * first-time tty initialization.
2035  *
2036  *
2037  * Claims the global tty_mutex to serialize:
2038  *  * concurrent first-time tty initialization
2039  *  * concurrent tty driver removal w/ lookup
2040  *  * concurrent tty removal from driver table
2041  *
2042  * Return: the locked initialized or re-opened &tty_struct
2043  */
2044 static struct tty_struct *tty_open_by_driver(dev_t device,
2045 					     struct file *filp)
2046 {
2047 	struct tty_struct *tty;
2048 	struct tty_driver *driver = NULL;
2049 	int index = -1;
2050 	int retval;
2051 
2052 	mutex_lock(&tty_mutex);
2053 	driver = tty_lookup_driver(device, filp, &index);
2054 	if (IS_ERR(driver)) {
2055 		mutex_unlock(&tty_mutex);
2056 		return ERR_CAST(driver);
2057 	}
2058 
2059 	/* check whether we're reopening an existing tty */
2060 	tty = tty_driver_lookup_tty(driver, filp, index);
2061 	if (IS_ERR(tty)) {
2062 		mutex_unlock(&tty_mutex);
2063 		goto out;
2064 	}
2065 
2066 	if (tty) {
2067 		if (tty_port_kopened(tty->port)) {
2068 			tty_kref_put(tty);
2069 			mutex_unlock(&tty_mutex);
2070 			tty = ERR_PTR(-EBUSY);
2071 			goto out;
2072 		}
2073 		mutex_unlock(&tty_mutex);
2074 		retval = tty_lock_interruptible(tty);
2075 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2076 		if (retval) {
2077 			if (retval == -EINTR)
2078 				retval = -ERESTARTSYS;
2079 			tty = ERR_PTR(retval);
2080 			goto out;
2081 		}
2082 		retval = tty_reopen(tty);
2083 		if (retval < 0) {
2084 			tty_unlock(tty);
2085 			tty = ERR_PTR(retval);
2086 		}
2087 	} else { /* Returns with the tty_lock held for now */
2088 		tty = tty_init_dev(driver, index);
2089 		mutex_unlock(&tty_mutex);
2090 	}
2091 out:
2092 	tty_driver_kref_put(driver);
2093 	return tty;
2094 }
2095 
2096 /**
2097  * tty_open - open a tty device
2098  * @inode: inode of device file
2099  * @filp: file pointer to tty
2100  *
2101  * tty_open() and tty_release() keep up the tty count that contains the number
2102  * of opens done on a tty. We cannot use the inode-count, as different inodes
2103  * might point to the same tty.
2104  *
2105  * Open-counting is needed for pty masters, as well as for keeping track of
2106  * serial lines: DTR is dropped when the last close happens.
2107  * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2108  *
2109  * The termios state of a pty is reset on the first open so that settings don't
2110  * persist across reuse.
2111  *
2112  * Locking:
2113  *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2114  *  * @tty->count should protect the rest.
2115  *  * ->siglock protects ->signal/->sighand
2116  *
2117  * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2118  */
2119 static int tty_open(struct inode *inode, struct file *filp)
2120 {
2121 	struct tty_struct *tty;
2122 	int noctty, retval;
2123 	dev_t device = inode->i_rdev;
2124 	unsigned saved_flags = filp->f_flags;
2125 
2126 	nonseekable_open(inode, filp);
2127 
2128 retry_open:
2129 	retval = tty_alloc_file(filp);
2130 	if (retval)
2131 		return -ENOMEM;
2132 
2133 	tty = tty_open_current_tty(device, filp);
2134 	if (!tty)
2135 		tty = tty_open_by_driver(device, filp);
2136 
2137 	if (IS_ERR(tty)) {
2138 		tty_free_file(filp);
2139 		retval = PTR_ERR(tty);
2140 		if (retval != -EAGAIN || signal_pending(current))
2141 			return retval;
2142 		schedule();
2143 		goto retry_open;
2144 	}
2145 
2146 	tty_add_file(tty, filp);
2147 
2148 	check_tty_count(tty, __func__);
2149 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2150 
2151 	if (tty->ops->open)
2152 		retval = tty->ops->open(tty, filp);
2153 	else
2154 		retval = -ENODEV;
2155 	filp->f_flags = saved_flags;
2156 
2157 	if (retval) {
2158 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2159 
2160 		tty_unlock(tty); /* need to call tty_release without BTM */
2161 		tty_release(inode, filp);
2162 		if (retval != -ERESTARTSYS)
2163 			return retval;
2164 
2165 		if (signal_pending(current))
2166 			return retval;
2167 
2168 		schedule();
2169 		/*
2170 		 * Need to reset f_op in case a hangup happened.
2171 		 */
2172 		if (tty_hung_up_p(filp))
2173 			filp->f_op = &tty_fops;
2174 		goto retry_open;
2175 	}
2176 	clear_bit(TTY_HUPPED, &tty->flags);
2177 
2178 	noctty = (filp->f_flags & O_NOCTTY) ||
2179 		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2180 		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2181 		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2182 		  tty->driver->subtype == PTY_TYPE_MASTER);
2183 	if (!noctty)
2184 		tty_open_proc_set_tty(filp, tty);
2185 	tty_unlock(tty);
2186 	return 0;
2187 }
2188 
2189 
2190 /**
2191  * tty_poll - check tty status
2192  * @filp: file being polled
2193  * @wait: poll wait structures to update
2194  *
2195  * Call the line discipline polling method to obtain the poll status of the
2196  * device.
2197  *
2198  * Locking: locks called line discipline but ldisc poll method may be
2199  * re-entered freely by other callers.
2200  */
2201 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2202 {
2203 	struct tty_struct *tty = file_tty(filp);
2204 	struct tty_ldisc *ld;
2205 	__poll_t ret = 0;
2206 
2207 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208 		return 0;
2209 
2210 	ld = tty_ldisc_ref_wait(tty);
2211 	if (!ld)
2212 		return hung_up_tty_poll(filp, wait);
2213 	if (ld->ops->poll)
2214 		ret = ld->ops->poll(tty, filp, wait);
2215 	tty_ldisc_deref(ld);
2216 	return ret;
2217 }
2218 
2219 static int __tty_fasync(int fd, struct file *filp, int on)
2220 {
2221 	struct tty_struct *tty = file_tty(filp);
2222 	unsigned long flags;
2223 	int retval = 0;
2224 
2225 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226 		goto out;
2227 
2228 	if (on) {
2229 		retval = file_f_owner_allocate(filp);
2230 		if (retval)
2231 			goto out;
2232 	}
2233 
2234 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2235 	if (retval <= 0)
2236 		goto out;
2237 
2238 	if (on) {
2239 		enum pid_type type;
2240 		struct pid *pid;
2241 
2242 		spin_lock_irqsave(&tty->ctrl.lock, flags);
2243 		if (tty->ctrl.pgrp) {
2244 			pid = tty->ctrl.pgrp;
2245 			type = PIDTYPE_PGID;
2246 		} else {
2247 			pid = task_pid(current);
2248 			type = PIDTYPE_TGID;
2249 		}
2250 		get_pid(pid);
2251 		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2252 		__f_setown(filp, pid, type, 0);
2253 		put_pid(pid);
2254 		retval = 0;
2255 	}
2256 out:
2257 	return retval;
2258 }
2259 
2260 static int tty_fasync(int fd, struct file *filp, int on)
2261 {
2262 	struct tty_struct *tty = file_tty(filp);
2263 	int retval = -ENOTTY;
2264 
2265 	tty_lock(tty);
2266 	if (!tty_hung_up_p(filp))
2267 		retval = __tty_fasync(fd, filp, on);
2268 	tty_unlock(tty);
2269 
2270 	return retval;
2271 }
2272 
2273 static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2274 /**
2275  * tiocsti - fake input character
2276  * @tty: tty to fake input into
2277  * @p: pointer to character
2278  *
2279  * Fake input to a tty device. Does the necessary locking and input management.
2280  *
2281  * FIXME: does not honour flow control ??
2282  *
2283  * Locking:
2284  *  * Called functions take tty_ldiscs_lock
2285  *  * current->signal->tty check is safe without locks
2286  */
2287 static int tiocsti(struct tty_struct *tty, u8 __user *p)
2288 {
2289 	struct tty_ldisc *ld;
2290 	u8 ch;
2291 
2292 	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2293 		return -EIO;
2294 
2295 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2296 		return -EPERM;
2297 	if (get_user(ch, p))
2298 		return -EFAULT;
2299 	tty_audit_tiocsti(tty, ch);
2300 	ld = tty_ldisc_ref_wait(tty);
2301 	if (!ld)
2302 		return -EIO;
2303 	tty_buffer_lock_exclusive(tty->port);
2304 	if (ld->ops->receive_buf)
2305 		ld->ops->receive_buf(tty, &ch, NULL, 1);
2306 	tty_buffer_unlock_exclusive(tty->port);
2307 	tty_ldisc_deref(ld);
2308 	return 0;
2309 }
2310 
2311 /**
2312  * tiocgwinsz - implement window query ioctl
2313  * @tty: tty
2314  * @arg: user buffer for result
2315  *
2316  * Copies the kernel idea of the window size into the user buffer.
2317  *
2318  * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2319  * consistent.
2320  */
2321 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2322 {
2323 	int err;
2324 
2325 	mutex_lock(&tty->winsize_mutex);
2326 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2327 	mutex_unlock(&tty->winsize_mutex);
2328 
2329 	return err ? -EFAULT : 0;
2330 }
2331 
2332 /**
2333  * tty_do_resize - resize event
2334  * @tty: tty being resized
2335  * @ws: new dimensions
2336  *
2337  * Update the termios variables and send the necessary signals to peform a
2338  * terminal resize correctly.
2339  */
2340 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2341 {
2342 	struct pid *pgrp;
2343 
2344 	/* Lock the tty */
2345 	mutex_lock(&tty->winsize_mutex);
2346 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2347 		goto done;
2348 
2349 	/* Signal the foreground process group */
2350 	pgrp = tty_get_pgrp(tty);
2351 	if (pgrp)
2352 		kill_pgrp(pgrp, SIGWINCH, 1);
2353 	put_pid(pgrp);
2354 
2355 	tty->winsize = *ws;
2356 done:
2357 	mutex_unlock(&tty->winsize_mutex);
2358 	return 0;
2359 }
2360 EXPORT_SYMBOL(tty_do_resize);
2361 
2362 /**
2363  * tiocswinsz - implement window size set ioctl
2364  * @tty: tty side of tty
2365  * @arg: user buffer for result
2366  *
2367  * Copies the user idea of the window size to the kernel. Traditionally this is
2368  * just advisory information but for the Linux console it actually has driver
2369  * level meaning and triggers a VC resize.
2370  *
2371  * Locking:
2372  *	Driver dependent. The default do_resize method takes the tty termios
2373  *	mutex and ctrl.lock. The console takes its own lock then calls into the
2374  *	default method.
2375  */
2376 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2377 {
2378 	struct winsize tmp_ws;
2379 
2380 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2381 		return -EFAULT;
2382 
2383 	if (tty->ops->resize)
2384 		return tty->ops->resize(tty, &tmp_ws);
2385 	else
2386 		return tty_do_resize(tty, &tmp_ws);
2387 }
2388 
2389 /**
2390  * tioccons - allow admin to move logical console
2391  * @file: the file to become console
2392  *
2393  * Allow the administrator to move the redirected console device.
2394  *
2395  * Locking: uses redirect_lock to guard the redirect information
2396  */
2397 static int tioccons(struct file *file)
2398 {
2399 	if (!capable(CAP_SYS_ADMIN))
2400 		return -EPERM;
2401 	if (file->f_op->write_iter == redirected_tty_write) {
2402 		struct file *f;
2403 
2404 		spin_lock(&redirect_lock);
2405 		f = redirect;
2406 		redirect = NULL;
2407 		spin_unlock(&redirect_lock);
2408 		if (f)
2409 			fput(f);
2410 		return 0;
2411 	}
2412 	if (file->f_op->write_iter != tty_write)
2413 		return -ENOTTY;
2414 	if (!(file->f_mode & FMODE_WRITE))
2415 		return -EBADF;
2416 	if (!(file->f_mode & FMODE_CAN_WRITE))
2417 		return -EINVAL;
2418 	spin_lock(&redirect_lock);
2419 	if (redirect) {
2420 		spin_unlock(&redirect_lock);
2421 		return -EBUSY;
2422 	}
2423 	redirect = get_file(file);
2424 	spin_unlock(&redirect_lock);
2425 	return 0;
2426 }
2427 
2428 /**
2429  * tiocsetd - set line discipline
2430  * @tty: tty device
2431  * @p: pointer to user data
2432  *
2433  * Set the line discipline according to user request.
2434  *
2435  * Locking: see tty_set_ldisc(), this function is just a helper
2436  */
2437 static int tiocsetd(struct tty_struct *tty, int __user *p)
2438 {
2439 	int disc;
2440 	int ret;
2441 
2442 	if (get_user(disc, p))
2443 		return -EFAULT;
2444 
2445 	ret = tty_set_ldisc(tty, disc);
2446 
2447 	return ret;
2448 }
2449 
2450 /**
2451  * tiocgetd - get line discipline
2452  * @tty: tty device
2453  * @p: pointer to user data
2454  *
2455  * Retrieves the line discipline id directly from the ldisc.
2456  *
2457  * Locking: waits for ldisc reference (in case the line discipline is changing
2458  * or the @tty is being hungup)
2459  */
2460 static int tiocgetd(struct tty_struct *tty, int __user *p)
2461 {
2462 	struct tty_ldisc *ld;
2463 	int ret;
2464 
2465 	ld = tty_ldisc_ref_wait(tty);
2466 	if (!ld)
2467 		return -EIO;
2468 	ret = put_user(ld->ops->num, p);
2469 	tty_ldisc_deref(ld);
2470 	return ret;
2471 }
2472 
2473 /**
2474  * send_break - performed time break
2475  * @tty: device to break on
2476  * @duration: timeout in mS
2477  *
2478  * Perform a timed break on hardware that lacks its own driver level timed
2479  * break functionality.
2480  *
2481  * Locking:
2482  *	@tty->atomic_write_lock serializes
2483  */
2484 static int send_break(struct tty_struct *tty, unsigned int duration)
2485 {
2486 	int retval;
2487 
2488 	if (tty->ops->break_ctl == NULL)
2489 		return 0;
2490 
2491 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2492 		return tty->ops->break_ctl(tty, duration);
2493 
2494 	/* Do the work ourselves */
2495 	if (tty_write_lock(tty, false) < 0)
2496 		return -EINTR;
2497 
2498 	retval = tty->ops->break_ctl(tty, -1);
2499 	if (!retval) {
2500 		msleep_interruptible(duration);
2501 		retval = tty->ops->break_ctl(tty, 0);
2502 	} else if (retval == -EOPNOTSUPP) {
2503 		/* some drivers can tell only dynamically */
2504 		retval = 0;
2505 	}
2506 	tty_write_unlock(tty);
2507 
2508 	if (signal_pending(current))
2509 		retval = -EINTR;
2510 
2511 	return retval;
2512 }
2513 
2514 /**
2515  * tty_get_tiocm - get tiocm status register
2516  * @tty: tty device
2517  *
2518  * Obtain the modem status bits from the tty driver if the feature
2519  * is supported.
2520  */
2521 int tty_get_tiocm(struct tty_struct *tty)
2522 {
2523 	int retval = -ENOTTY;
2524 
2525 	if (tty->ops->tiocmget)
2526 		retval = tty->ops->tiocmget(tty);
2527 
2528 	return retval;
2529 }
2530 EXPORT_SYMBOL_GPL(tty_get_tiocm);
2531 
2532 /**
2533  * tty_tiocmget - get modem status
2534  * @tty: tty device
2535  * @p: pointer to result
2536  *
2537  * Obtain the modem status bits from the tty driver if the feature is
2538  * supported. Return -%ENOTTY if it is not available.
2539  *
2540  * Locking: none (up to the driver)
2541  */
2542 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2543 {
2544 	int retval;
2545 
2546 	retval = tty_get_tiocm(tty);
2547 	if (retval >= 0)
2548 		retval = put_user(retval, p);
2549 
2550 	return retval;
2551 }
2552 
2553 /**
2554  * tty_tiocmset - set modem status
2555  * @tty: tty device
2556  * @cmd: command - clear bits, set bits or set all
2557  * @p: pointer to desired bits
2558  *
2559  * Set the modem status bits from the tty driver if the feature
2560  * is supported. Return -%ENOTTY if it is not available.
2561  *
2562  * Locking: none (up to the driver)
2563  */
2564 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2565 	     unsigned __user *p)
2566 {
2567 	int retval;
2568 	unsigned int set, clear, val;
2569 
2570 	if (tty->ops->tiocmset == NULL)
2571 		return -ENOTTY;
2572 
2573 	retval = get_user(val, p);
2574 	if (retval)
2575 		return retval;
2576 	set = clear = 0;
2577 	switch (cmd) {
2578 	case TIOCMBIS:
2579 		set = val;
2580 		break;
2581 	case TIOCMBIC:
2582 		clear = val;
2583 		break;
2584 	case TIOCMSET:
2585 		set = val;
2586 		clear = ~val;
2587 		break;
2588 	}
2589 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2590 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2591 	return tty->ops->tiocmset(tty, set, clear);
2592 }
2593 
2594 /**
2595  * tty_get_icount - get tty statistics
2596  * @tty: tty device
2597  * @icount: output parameter
2598  *
2599  * Gets a copy of the @tty's icount statistics.
2600  *
2601  * Locking: none (up to the driver)
2602  */
2603 int tty_get_icount(struct tty_struct *tty,
2604 		   struct serial_icounter_struct *icount)
2605 {
2606 	memset(icount, 0, sizeof(*icount));
2607 
2608 	if (tty->ops->get_icount)
2609 		return tty->ops->get_icount(tty, icount);
2610 	else
2611 		return -ENOTTY;
2612 }
2613 EXPORT_SYMBOL_GPL(tty_get_icount);
2614 
2615 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2616 {
2617 	struct serial_icounter_struct icount;
2618 	int retval;
2619 
2620 	retval = tty_get_icount(tty, &icount);
2621 	if (retval != 0)
2622 		return retval;
2623 
2624 	if (copy_to_user(arg, &icount, sizeof(icount)))
2625 		return -EFAULT;
2626 	return 0;
2627 }
2628 
2629 static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2630 {
2631 	char comm[TASK_COMM_LEN];
2632 	int flags;
2633 
2634 	flags = ss->flags & ASYNC_DEPRECATED;
2635 
2636 	if (flags)
2637 		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2638 				__func__, get_task_comm(comm, current), flags);
2639 
2640 	if (!tty->ops->set_serial)
2641 		return -ENOTTY;
2642 
2643 	return tty->ops->set_serial(tty, ss);
2644 }
2645 
2646 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2647 {
2648 	struct serial_struct v;
2649 
2650 	if (copy_from_user(&v, ss, sizeof(*ss)))
2651 		return -EFAULT;
2652 
2653 	return tty_set_serial(tty, &v);
2654 }
2655 
2656 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2657 {
2658 	struct serial_struct v;
2659 	int err;
2660 
2661 	memset(&v, 0, sizeof(v));
2662 	if (!tty->ops->get_serial)
2663 		return -ENOTTY;
2664 	err = tty->ops->get_serial(tty, &v);
2665 	if (!err && copy_to_user(ss, &v, sizeof(v)))
2666 		err = -EFAULT;
2667 	return err;
2668 }
2669 
2670 /*
2671  * if pty, return the slave side (real_tty)
2672  * otherwise, return self
2673  */
2674 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2675 {
2676 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2677 	    tty->driver->subtype == PTY_TYPE_MASTER)
2678 		tty = tty->link;
2679 	return tty;
2680 }
2681 
2682 /*
2683  * Split this up, as gcc can choke on it otherwise..
2684  */
2685 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2686 {
2687 	struct tty_struct *tty = file_tty(file);
2688 	struct tty_struct *real_tty;
2689 	void __user *p = (void __user *)arg;
2690 	int retval;
2691 	struct tty_ldisc *ld;
2692 
2693 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2694 		return -EINVAL;
2695 
2696 	real_tty = tty_pair_get_tty(tty);
2697 
2698 	/*
2699 	 * Factor out some common prep work
2700 	 */
2701 	switch (cmd) {
2702 	case TIOCSETD:
2703 	case TIOCSBRK:
2704 	case TIOCCBRK:
2705 	case TCSBRK:
2706 	case TCSBRKP:
2707 		retval = tty_check_change(tty);
2708 		if (retval)
2709 			return retval;
2710 		if (cmd != TIOCCBRK) {
2711 			tty_wait_until_sent(tty, 0);
2712 			if (signal_pending(current))
2713 				return -EINTR;
2714 		}
2715 		break;
2716 	}
2717 
2718 	/*
2719 	 *	Now do the stuff.
2720 	 */
2721 	switch (cmd) {
2722 	case TIOCSTI:
2723 		return tiocsti(tty, p);
2724 	case TIOCGWINSZ:
2725 		return tiocgwinsz(real_tty, p);
2726 	case TIOCSWINSZ:
2727 		return tiocswinsz(real_tty, p);
2728 	case TIOCCONS:
2729 		return real_tty != tty ? -EINVAL : tioccons(file);
2730 	case TIOCEXCL:
2731 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2732 		return 0;
2733 	case TIOCNXCL:
2734 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2735 		return 0;
2736 	case TIOCGEXCL:
2737 	{
2738 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2739 
2740 		return put_user(excl, (int __user *)p);
2741 	}
2742 	case TIOCGETD:
2743 		return tiocgetd(tty, p);
2744 	case TIOCSETD:
2745 		return tiocsetd(tty, p);
2746 	case TIOCVHANGUP:
2747 		if (!capable(CAP_SYS_ADMIN))
2748 			return -EPERM;
2749 		tty_vhangup(tty);
2750 		return 0;
2751 	case TIOCGDEV:
2752 	{
2753 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2754 
2755 		return put_user(ret, (unsigned int __user *)p);
2756 	}
2757 	/*
2758 	 * Break handling
2759 	 */
2760 	case TIOCSBRK:	/* Turn break on, unconditionally */
2761 		if (tty->ops->break_ctl)
2762 			return tty->ops->break_ctl(tty, -1);
2763 		return 0;
2764 	case TIOCCBRK:	/* Turn break off, unconditionally */
2765 		if (tty->ops->break_ctl)
2766 			return tty->ops->break_ctl(tty, 0);
2767 		return 0;
2768 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2769 		/* non-zero arg means wait for all output data
2770 		 * to be sent (performed above) but don't send break.
2771 		 * This is used by the tcdrain() termios function.
2772 		 */
2773 		if (!arg)
2774 			return send_break(tty, 250);
2775 		return 0;
2776 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2777 		return send_break(tty, arg ? arg*100 : 250);
2778 
2779 	case TIOCMGET:
2780 		return tty_tiocmget(tty, p);
2781 	case TIOCMSET:
2782 	case TIOCMBIC:
2783 	case TIOCMBIS:
2784 		return tty_tiocmset(tty, cmd, p);
2785 	case TIOCGICOUNT:
2786 		return tty_tiocgicount(tty, p);
2787 	case TCFLSH:
2788 		switch (arg) {
2789 		case TCIFLUSH:
2790 		case TCIOFLUSH:
2791 		/* flush tty buffer and allow ldisc to process ioctl */
2792 			tty_buffer_flush(tty, NULL);
2793 			break;
2794 		}
2795 		break;
2796 	case TIOCSSERIAL:
2797 		return tty_tiocsserial(tty, p);
2798 	case TIOCGSERIAL:
2799 		return tty_tiocgserial(tty, p);
2800 	case TIOCGPTPEER:
2801 		/* Special because the struct file is needed */
2802 		return ptm_open_peer(file, tty, (int)arg);
2803 	default:
2804 		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2805 		if (retval != -ENOIOCTLCMD)
2806 			return retval;
2807 	}
2808 	if (tty->ops->ioctl) {
2809 		retval = tty->ops->ioctl(tty, cmd, arg);
2810 		if (retval != -ENOIOCTLCMD)
2811 			return retval;
2812 	}
2813 	ld = tty_ldisc_ref_wait(tty);
2814 	if (!ld)
2815 		return hung_up_tty_ioctl(file, cmd, arg);
2816 	retval = -EINVAL;
2817 	if (ld->ops->ioctl) {
2818 		retval = ld->ops->ioctl(tty, cmd, arg);
2819 		if (retval == -ENOIOCTLCMD)
2820 			retval = -ENOTTY;
2821 	}
2822 	tty_ldisc_deref(ld);
2823 	return retval;
2824 }
2825 
2826 #ifdef CONFIG_COMPAT
2827 
2828 struct serial_struct32 {
2829 	compat_int_t    type;
2830 	compat_int_t    line;
2831 	compat_uint_t   port;
2832 	compat_int_t    irq;
2833 	compat_int_t    flags;
2834 	compat_int_t    xmit_fifo_size;
2835 	compat_int_t    custom_divisor;
2836 	compat_int_t    baud_base;
2837 	unsigned short  close_delay;
2838 	char    io_type;
2839 	char    reserved_char;
2840 	compat_int_t    hub6;
2841 	unsigned short  closing_wait; /* time to wait before closing */
2842 	unsigned short  closing_wait2; /* no longer used... */
2843 	compat_uint_t   iomem_base;
2844 	unsigned short  iomem_reg_shift;
2845 	unsigned int    port_high;
2846 	/* compat_ulong_t  iomap_base FIXME */
2847 	compat_int_t    reserved;
2848 };
2849 
2850 static int compat_tty_tiocsserial(struct tty_struct *tty,
2851 		struct serial_struct32 __user *ss)
2852 {
2853 	struct serial_struct32 v32;
2854 	struct serial_struct v;
2855 
2856 	if (copy_from_user(&v32, ss, sizeof(*ss)))
2857 		return -EFAULT;
2858 
2859 	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2860 	v.iomem_base = compat_ptr(v32.iomem_base);
2861 	v.iomem_reg_shift = v32.iomem_reg_shift;
2862 	v.port_high = v32.port_high;
2863 	v.iomap_base = 0;
2864 
2865 	return tty_set_serial(tty, &v);
2866 }
2867 
2868 static int compat_tty_tiocgserial(struct tty_struct *tty,
2869 			struct serial_struct32 __user *ss)
2870 {
2871 	struct serial_struct32 v32;
2872 	struct serial_struct v;
2873 	int err;
2874 
2875 	memset(&v, 0, sizeof(v));
2876 	memset(&v32, 0, sizeof(v32));
2877 
2878 	if (!tty->ops->get_serial)
2879 		return -ENOTTY;
2880 	err = tty->ops->get_serial(tty, &v);
2881 	if (!err) {
2882 		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2883 		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2884 			0xfffffff : ptr_to_compat(v.iomem_base);
2885 		v32.iomem_reg_shift = v.iomem_reg_shift;
2886 		v32.port_high = v.port_high;
2887 		if (copy_to_user(ss, &v32, sizeof(v32)))
2888 			err = -EFAULT;
2889 	}
2890 	return err;
2891 }
2892 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2893 				unsigned long arg)
2894 {
2895 	struct tty_struct *tty = file_tty(file);
2896 	struct tty_ldisc *ld;
2897 	int retval = -ENOIOCTLCMD;
2898 
2899 	switch (cmd) {
2900 	case TIOCOUTQ:
2901 	case TIOCSTI:
2902 	case TIOCGWINSZ:
2903 	case TIOCSWINSZ:
2904 	case TIOCGEXCL:
2905 	case TIOCGETD:
2906 	case TIOCSETD:
2907 	case TIOCGDEV:
2908 	case TIOCMGET:
2909 	case TIOCMSET:
2910 	case TIOCMBIC:
2911 	case TIOCMBIS:
2912 	case TIOCGICOUNT:
2913 	case TIOCGPGRP:
2914 	case TIOCSPGRP:
2915 	case TIOCGSID:
2916 	case TIOCSERGETLSR:
2917 	case TIOCGRS485:
2918 	case TIOCSRS485:
2919 #ifdef TIOCGETP
2920 	case TIOCGETP:
2921 	case TIOCSETP:
2922 	case TIOCSETN:
2923 #endif
2924 #ifdef TIOCGETC
2925 	case TIOCGETC:
2926 	case TIOCSETC:
2927 #endif
2928 #ifdef TIOCGLTC
2929 	case TIOCGLTC:
2930 	case TIOCSLTC:
2931 #endif
2932 	case TCSETSF:
2933 	case TCSETSW:
2934 	case TCSETS:
2935 	case TCGETS:
2936 #ifdef TCGETS2
2937 	case TCGETS2:
2938 	case TCSETSF2:
2939 	case TCSETSW2:
2940 	case TCSETS2:
2941 #endif
2942 	case TCGETA:
2943 	case TCSETAF:
2944 	case TCSETAW:
2945 	case TCSETA:
2946 	case TIOCGLCKTRMIOS:
2947 	case TIOCSLCKTRMIOS:
2948 #ifdef TCGETX
2949 	case TCGETX:
2950 	case TCSETX:
2951 	case TCSETXW:
2952 	case TCSETXF:
2953 #endif
2954 	case TIOCGSOFTCAR:
2955 	case TIOCSSOFTCAR:
2956 
2957 	case PPPIOCGCHAN:
2958 	case PPPIOCGUNIT:
2959 		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2960 	case TIOCCONS:
2961 	case TIOCEXCL:
2962 	case TIOCNXCL:
2963 	case TIOCVHANGUP:
2964 	case TIOCSBRK:
2965 	case TIOCCBRK:
2966 	case TCSBRK:
2967 	case TCSBRKP:
2968 	case TCFLSH:
2969 	case TIOCGPTPEER:
2970 	case TIOCNOTTY:
2971 	case TIOCSCTTY:
2972 	case TCXONC:
2973 	case TIOCMIWAIT:
2974 	case TIOCSERCONFIG:
2975 		return tty_ioctl(file, cmd, arg);
2976 	}
2977 
2978 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2979 		return -EINVAL;
2980 
2981 	switch (cmd) {
2982 	case TIOCSSERIAL:
2983 		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2984 	case TIOCGSERIAL:
2985 		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2986 	}
2987 	if (tty->ops->compat_ioctl) {
2988 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2989 		if (retval != -ENOIOCTLCMD)
2990 			return retval;
2991 	}
2992 
2993 	ld = tty_ldisc_ref_wait(tty);
2994 	if (!ld)
2995 		return hung_up_tty_compat_ioctl(file, cmd, arg);
2996 	if (ld->ops->compat_ioctl)
2997 		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2998 	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2999 		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
3000 				arg);
3001 	tty_ldisc_deref(ld);
3002 
3003 	return retval;
3004 }
3005 #endif
3006 
3007 static int this_tty(const void *t, struct file *file, unsigned fd)
3008 {
3009 	if (likely(file->f_op->read_iter != tty_read))
3010 		return 0;
3011 	return file_tty(file) != t ? 0 : fd + 1;
3012 }
3013 
3014 /*
3015  * This implements the "Secure Attention Key" ---  the idea is to
3016  * prevent trojan horses by killing all processes associated with this
3017  * tty when the user hits the "Secure Attention Key".  Required for
3018  * super-paranoid applications --- see the Orange Book for more details.
3019  *
3020  * This code could be nicer; ideally it should send a HUP, wait a few
3021  * seconds, then send a INT, and then a KILL signal.  But you then
3022  * have to coordinate with the init process, since all processes associated
3023  * with the current tty must be dead before the new getty is allowed
3024  * to spawn.
3025  *
3026  * Now, if it would be correct ;-/ The current code has a nasty hole -
3027  * it doesn't catch files in flight. We may send the descriptor to ourselves
3028  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3029  *
3030  * Nasty bug: do_SAK is being called in interrupt context.  This can
3031  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3032  */
3033 void __do_SAK(struct tty_struct *tty)
3034 {
3035 	struct task_struct *g, *p;
3036 	struct pid *session;
3037 	int i;
3038 	unsigned long flags;
3039 
3040 	spin_lock_irqsave(&tty->ctrl.lock, flags);
3041 	session = get_pid(tty->ctrl.session);
3042 	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3043 
3044 	tty_ldisc_flush(tty);
3045 
3046 	tty_driver_flush_buffer(tty);
3047 
3048 	read_lock(&tasklist_lock);
3049 	/* Kill the entire session */
3050 	do_each_pid_task(session, PIDTYPE_SID, p) {
3051 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3052 			   task_pid_nr(p), p->comm);
3053 		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3054 	} while_each_pid_task(session, PIDTYPE_SID, p);
3055 
3056 	/* Now kill any processes that happen to have the tty open */
3057 	for_each_process_thread(g, p) {
3058 		if (p->signal->tty == tty) {
3059 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3060 				   task_pid_nr(p), p->comm);
3061 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3062 					PIDTYPE_SID);
3063 			continue;
3064 		}
3065 		task_lock(p);
3066 		i = iterate_fd(p->files, 0, this_tty, tty);
3067 		if (i != 0) {
3068 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3069 				   task_pid_nr(p), p->comm, i - 1);
3070 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3071 					PIDTYPE_SID);
3072 		}
3073 		task_unlock(p);
3074 	}
3075 	read_unlock(&tasklist_lock);
3076 	put_pid(session);
3077 }
3078 
3079 static void do_SAK_work(struct work_struct *work)
3080 {
3081 	struct tty_struct *tty =
3082 		container_of(work, struct tty_struct, SAK_work);
3083 	__do_SAK(tty);
3084 }
3085 
3086 /*
3087  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3088  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3089  * the values which we write to it will be identical to the values which it
3090  * already has. --akpm
3091  */
3092 void do_SAK(struct tty_struct *tty)
3093 {
3094 	if (!tty)
3095 		return;
3096 	schedule_work(&tty->SAK_work);
3097 }
3098 EXPORT_SYMBOL(do_SAK);
3099 
3100 /* Must put_device() after it's unused! */
3101 static struct device *tty_get_device(struct tty_struct *tty)
3102 {
3103 	dev_t devt = tty_devnum(tty);
3104 
3105 	return class_find_device_by_devt(&tty_class, devt);
3106 }
3107 
3108 
3109 /**
3110  * alloc_tty_struct - allocate a new tty
3111  * @driver: driver which will handle the returned tty
3112  * @idx: minor of the tty
3113  *
3114  * This subroutine allocates and initializes a tty structure.
3115  *
3116  * Locking: none - @tty in question is not exposed at this point
3117  */
3118 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3119 {
3120 	struct tty_struct *tty;
3121 
3122 	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3123 	if (!tty)
3124 		return NULL;
3125 
3126 	kref_init(&tty->kref);
3127 	if (tty_ldisc_init(tty)) {
3128 		kfree(tty);
3129 		return NULL;
3130 	}
3131 	tty->ctrl.session = NULL;
3132 	tty->ctrl.pgrp = NULL;
3133 	mutex_init(&tty->legacy_mutex);
3134 	mutex_init(&tty->throttle_mutex);
3135 	init_rwsem(&tty->termios_rwsem);
3136 	mutex_init(&tty->winsize_mutex);
3137 	init_ldsem(&tty->ldisc_sem);
3138 	init_waitqueue_head(&tty->write_wait);
3139 	init_waitqueue_head(&tty->read_wait);
3140 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3141 	mutex_init(&tty->atomic_write_lock);
3142 	spin_lock_init(&tty->ctrl.lock);
3143 	spin_lock_init(&tty->flow.lock);
3144 	spin_lock_init(&tty->files_lock);
3145 	INIT_LIST_HEAD(&tty->tty_files);
3146 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3147 
3148 	tty->driver = driver;
3149 	tty->ops = driver->ops;
3150 	tty->index = idx;
3151 	tty_line_name(driver, idx, tty->name);
3152 	tty->dev = tty_get_device(tty);
3153 
3154 	return tty;
3155 }
3156 
3157 /**
3158  * tty_put_char - write one character to a tty
3159  * @tty: tty
3160  * @ch: character to write
3161  *
3162  * Write one byte to the @tty using the provided @tty->ops->put_char() method
3163  * if present.
3164  *
3165  * Note: the specific put_char operation in the driver layer may go
3166  * away soon. Don't call it directly, use this method
3167  *
3168  * Return: the number of characters successfully output.
3169  */
3170 int tty_put_char(struct tty_struct *tty, u8 ch)
3171 {
3172 	if (tty->ops->put_char)
3173 		return tty->ops->put_char(tty, ch);
3174 	return tty->ops->write(tty, &ch, 1);
3175 }
3176 EXPORT_SYMBOL_GPL(tty_put_char);
3177 
3178 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3179 		unsigned int index, unsigned int count)
3180 {
3181 	int err;
3182 
3183 	/* init here, since reused cdevs cause crashes */
3184 	driver->cdevs[index] = cdev_alloc();
3185 	if (!driver->cdevs[index])
3186 		return -ENOMEM;
3187 	driver->cdevs[index]->ops = &tty_fops;
3188 	driver->cdevs[index]->owner = driver->owner;
3189 	err = cdev_add(driver->cdevs[index], dev, count);
3190 	if (err)
3191 		kobject_put(&driver->cdevs[index]->kobj);
3192 	return err;
3193 }
3194 
3195 /**
3196  * tty_register_device - register a tty device
3197  * @driver: the tty driver that describes the tty device
3198  * @index: the index in the tty driver for this tty device
3199  * @device: a struct device that is associated with this tty device.
3200  *	This field is optional, if there is no known struct device
3201  *	for this tty device it can be set to NULL safely.
3202  *
3203  * This call is required to be made to register an individual tty device
3204  * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3205  * that bit is not set, this function should not be called by a tty
3206  * driver.
3207  *
3208  * Locking: ??
3209  *
3210  * Return: A pointer to the struct device for this tty device (or
3211  * ERR_PTR(-EFOO) on error).
3212  */
3213 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3214 				   struct device *device)
3215 {
3216 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3217 }
3218 EXPORT_SYMBOL(tty_register_device);
3219 
3220 static void tty_device_create_release(struct device *dev)
3221 {
3222 	dev_dbg(dev, "releasing...\n");
3223 	kfree(dev);
3224 }
3225 
3226 /**
3227  * tty_register_device_attr - register a tty device
3228  * @driver: the tty driver that describes the tty device
3229  * @index: the index in the tty driver for this tty device
3230  * @device: a struct device that is associated with this tty device.
3231  *	This field is optional, if there is no known struct device
3232  *	for this tty device it can be set to %NULL safely.
3233  * @drvdata: Driver data to be set to device.
3234  * @attr_grp: Attribute group to be set on device.
3235  *
3236  * This call is required to be made to register an individual tty device if the
3237  * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3238  * not set, this function should not be called by a tty driver.
3239  *
3240  * Locking: ??
3241  *
3242  * Return: A pointer to the struct device for this tty device (or
3243  * ERR_PTR(-EFOO) on error).
3244  */
3245 struct device *tty_register_device_attr(struct tty_driver *driver,
3246 				   unsigned index, struct device *device,
3247 				   void *drvdata,
3248 				   const struct attribute_group **attr_grp)
3249 {
3250 	char name[64];
3251 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3252 	struct ktermios *tp;
3253 	struct device *dev;
3254 	int retval;
3255 
3256 	if (index >= driver->num) {
3257 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3258 		       driver->name, index);
3259 		return ERR_PTR(-EINVAL);
3260 	}
3261 
3262 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3263 		pty_line_name(driver, index, name);
3264 	else
3265 		tty_line_name(driver, index, name);
3266 
3267 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3268 	if (!dev)
3269 		return ERR_PTR(-ENOMEM);
3270 
3271 	dev->devt = devt;
3272 	dev->class = &tty_class;
3273 	dev->parent = device;
3274 	dev->release = tty_device_create_release;
3275 	dev_set_name(dev, "%s", name);
3276 	dev->groups = attr_grp;
3277 	dev_set_drvdata(dev, drvdata);
3278 
3279 	dev_set_uevent_suppress(dev, 1);
3280 
3281 	retval = device_register(dev);
3282 	if (retval)
3283 		goto err_put;
3284 
3285 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3286 		/*
3287 		 * Free any saved termios data so that the termios state is
3288 		 * reset when reusing a minor number.
3289 		 */
3290 		tp = driver->termios[index];
3291 		if (tp) {
3292 			driver->termios[index] = NULL;
3293 			kfree(tp);
3294 		}
3295 
3296 		retval = tty_cdev_add(driver, devt, index, 1);
3297 		if (retval)
3298 			goto err_del;
3299 	}
3300 
3301 	dev_set_uevent_suppress(dev, 0);
3302 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3303 
3304 	return dev;
3305 
3306 err_del:
3307 	device_del(dev);
3308 err_put:
3309 	put_device(dev);
3310 
3311 	return ERR_PTR(retval);
3312 }
3313 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3314 
3315 /**
3316  * tty_unregister_device - unregister a tty device
3317  * @driver: the tty driver that describes the tty device
3318  * @index: the index in the tty driver for this tty device
3319  *
3320  * If a tty device is registered with a call to tty_register_device() then
3321  * this function must be called when the tty device is gone.
3322  *
3323  * Locking: ??
3324  */
3325 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3326 {
3327 	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3328 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3329 		cdev_del(driver->cdevs[index]);
3330 		driver->cdevs[index] = NULL;
3331 	}
3332 }
3333 EXPORT_SYMBOL(tty_unregister_device);
3334 
3335 /**
3336  * __tty_alloc_driver - allocate tty driver
3337  * @lines: count of lines this driver can handle at most
3338  * @owner: module which is responsible for this driver
3339  * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3340  *
3341  * This should not be called directly, some of the provided macros should be
3342  * used instead. Use IS_ERR() and friends on @retval.
3343  */
3344 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3345 		unsigned long flags)
3346 {
3347 	struct tty_driver *driver;
3348 	unsigned int cdevs = 1;
3349 	int err;
3350 
3351 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3352 		return ERR_PTR(-EINVAL);
3353 
3354 	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3355 	if (!driver)
3356 		return ERR_PTR(-ENOMEM);
3357 
3358 	kref_init(&driver->kref);
3359 	driver->num = lines;
3360 	driver->owner = owner;
3361 	driver->flags = flags;
3362 
3363 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3364 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3365 				GFP_KERNEL);
3366 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3367 				GFP_KERNEL);
3368 		if (!driver->ttys || !driver->termios) {
3369 			err = -ENOMEM;
3370 			goto err_free_all;
3371 		}
3372 	}
3373 
3374 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3375 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3376 				GFP_KERNEL);
3377 		if (!driver->ports) {
3378 			err = -ENOMEM;
3379 			goto err_free_all;
3380 		}
3381 		cdevs = lines;
3382 	}
3383 
3384 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3385 	if (!driver->cdevs) {
3386 		err = -ENOMEM;
3387 		goto err_free_all;
3388 	}
3389 
3390 	return driver;
3391 err_free_all:
3392 	kfree(driver->ports);
3393 	kfree(driver->ttys);
3394 	kfree(driver->termios);
3395 	kfree(driver->cdevs);
3396 	kfree(driver);
3397 	return ERR_PTR(err);
3398 }
3399 EXPORT_SYMBOL(__tty_alloc_driver);
3400 
3401 static void destruct_tty_driver(struct kref *kref)
3402 {
3403 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3404 	int i;
3405 	struct ktermios *tp;
3406 
3407 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3408 		for (i = 0; i < driver->num; i++) {
3409 			tp = driver->termios[i];
3410 			if (tp) {
3411 				driver->termios[i] = NULL;
3412 				kfree(tp);
3413 			}
3414 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3415 				tty_unregister_device(driver, i);
3416 		}
3417 		proc_tty_unregister_driver(driver);
3418 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3419 			cdev_del(driver->cdevs[0]);
3420 	}
3421 	kfree(driver->cdevs);
3422 	kfree(driver->ports);
3423 	kfree(driver->termios);
3424 	kfree(driver->ttys);
3425 	kfree(driver);
3426 }
3427 
3428 /**
3429  * tty_driver_kref_put - drop a reference to a tty driver
3430  * @driver: driver of which to drop the reference
3431  *
3432  * The final put will destroy and free up the driver.
3433  */
3434 void tty_driver_kref_put(struct tty_driver *driver)
3435 {
3436 	kref_put(&driver->kref, destruct_tty_driver);
3437 }
3438 EXPORT_SYMBOL(tty_driver_kref_put);
3439 
3440 /**
3441  * tty_register_driver - register a tty driver
3442  * @driver: driver to register
3443  *
3444  * Called by a tty driver to register itself.
3445  */
3446 int tty_register_driver(struct tty_driver *driver)
3447 {
3448 	int error;
3449 	int i;
3450 	dev_t dev;
3451 	struct device *d;
3452 
3453 	if (!driver->major) {
3454 		error = alloc_chrdev_region(&dev, driver->minor_start,
3455 						driver->num, driver->name);
3456 		if (!error) {
3457 			driver->major = MAJOR(dev);
3458 			driver->minor_start = MINOR(dev);
3459 		}
3460 	} else {
3461 		dev = MKDEV(driver->major, driver->minor_start);
3462 		error = register_chrdev_region(dev, driver->num, driver->name);
3463 	}
3464 	if (error < 0)
3465 		goto err;
3466 
3467 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3468 		error = tty_cdev_add(driver, dev, 0, driver->num);
3469 		if (error)
3470 			goto err_unreg_char;
3471 	}
3472 
3473 	mutex_lock(&tty_mutex);
3474 	list_add(&driver->tty_drivers, &tty_drivers);
3475 	mutex_unlock(&tty_mutex);
3476 
3477 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3478 		for (i = 0; i < driver->num; i++) {
3479 			d = tty_register_device(driver, i, NULL);
3480 			if (IS_ERR(d)) {
3481 				error = PTR_ERR(d);
3482 				goto err_unreg_devs;
3483 			}
3484 		}
3485 	}
3486 	proc_tty_register_driver(driver);
3487 	driver->flags |= TTY_DRIVER_INSTALLED;
3488 	return 0;
3489 
3490 err_unreg_devs:
3491 	for (i--; i >= 0; i--)
3492 		tty_unregister_device(driver, i);
3493 
3494 	mutex_lock(&tty_mutex);
3495 	list_del(&driver->tty_drivers);
3496 	mutex_unlock(&tty_mutex);
3497 
3498 err_unreg_char:
3499 	unregister_chrdev_region(dev, driver->num);
3500 err:
3501 	return error;
3502 }
3503 EXPORT_SYMBOL(tty_register_driver);
3504 
3505 /**
3506  * tty_unregister_driver - unregister a tty driver
3507  * @driver: driver to unregister
3508  *
3509  * Called by a tty driver to unregister itself.
3510  */
3511 void tty_unregister_driver(struct tty_driver *driver)
3512 {
3513 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3514 				driver->num);
3515 	mutex_lock(&tty_mutex);
3516 	list_del(&driver->tty_drivers);
3517 	mutex_unlock(&tty_mutex);
3518 }
3519 EXPORT_SYMBOL(tty_unregister_driver);
3520 
3521 dev_t tty_devnum(struct tty_struct *tty)
3522 {
3523 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3524 }
3525 EXPORT_SYMBOL(tty_devnum);
3526 
3527 void tty_default_fops(struct file_operations *fops)
3528 {
3529 	*fops = tty_fops;
3530 }
3531 
3532 static char *tty_devnode(const struct device *dev, umode_t *mode)
3533 {
3534 	if (!mode)
3535 		return NULL;
3536 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3537 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3538 		*mode = 0666;
3539 	return NULL;
3540 }
3541 
3542 const struct class tty_class = {
3543 	.name		= "tty",
3544 	.devnode	= tty_devnode,
3545 };
3546 
3547 static int __init tty_class_init(void)
3548 {
3549 	return class_register(&tty_class);
3550 }
3551 
3552 postcore_initcall(tty_class_init);
3553 
3554 /* 3/2004 jmc: why do these devices exist? */
3555 static struct cdev tty_cdev, console_cdev;
3556 
3557 static ssize_t show_cons_active(struct device *dev,
3558 				struct device_attribute *attr, char *buf)
3559 {
3560 	struct console *cs[16];
3561 	int i = 0;
3562 	struct console *c;
3563 	ssize_t count = 0;
3564 
3565 	/*
3566 	 * Hold the console_list_lock to guarantee that no consoles are
3567 	 * unregistered until all console processing is complete.
3568 	 * This also allows safe traversal of the console list and
3569 	 * race-free reading of @flags.
3570 	 */
3571 	console_list_lock();
3572 
3573 	for_each_console(c) {
3574 		if (!c->device)
3575 			continue;
3576 		if (!(c->flags & CON_NBCON) && !c->write)
3577 			continue;
3578 		if ((c->flags & CON_ENABLED) == 0)
3579 			continue;
3580 		cs[i++] = c;
3581 		if (i >= ARRAY_SIZE(cs))
3582 			break;
3583 	}
3584 
3585 	/*
3586 	 * Take console_lock to serialize device() callback with
3587 	 * other console operations. For example, fg_console is
3588 	 * modified under console_lock when switching vt.
3589 	 */
3590 	console_lock();
3591 	while (i--) {
3592 		int index = cs[i]->index;
3593 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3594 
3595 		/* don't resolve tty0 as some programs depend on it */
3596 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3597 			count += tty_line_name(drv, index, buf + count);
3598 		else
3599 			count += sprintf(buf + count, "%s%d",
3600 					 cs[i]->name, cs[i]->index);
3601 
3602 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3603 	}
3604 	console_unlock();
3605 
3606 	console_list_unlock();
3607 
3608 	return count;
3609 }
3610 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3611 
3612 static struct attribute *cons_dev_attrs[] = {
3613 	&dev_attr_active.attr,
3614 	NULL
3615 };
3616 
3617 ATTRIBUTE_GROUPS(cons_dev);
3618 
3619 static struct device *consdev;
3620 
3621 void console_sysfs_notify(void)
3622 {
3623 	if (consdev)
3624 		sysfs_notify(&consdev->kobj, NULL, "active");
3625 }
3626 
3627 static struct ctl_table tty_table[] = {
3628 	{
3629 		.procname	= "legacy_tiocsti",
3630 		.data		= &tty_legacy_tiocsti,
3631 		.maxlen		= sizeof(tty_legacy_tiocsti),
3632 		.mode		= 0644,
3633 		.proc_handler	= proc_dobool,
3634 	},
3635 	{
3636 		.procname	= "ldisc_autoload",
3637 		.data		= &tty_ldisc_autoload,
3638 		.maxlen		= sizeof(tty_ldisc_autoload),
3639 		.mode		= 0644,
3640 		.proc_handler	= proc_dointvec,
3641 		.extra1		= SYSCTL_ZERO,
3642 		.extra2		= SYSCTL_ONE,
3643 	},
3644 };
3645 
3646 /*
3647  * Ok, now we can initialize the rest of the tty devices and can count
3648  * on memory allocations, interrupts etc..
3649  */
3650 int __init tty_init(void)
3651 {
3652 	register_sysctl_init("dev/tty", tty_table);
3653 	cdev_init(&tty_cdev, &tty_fops);
3654 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3655 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3656 		panic("Couldn't register /dev/tty driver\n");
3657 	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3658 
3659 	cdev_init(&console_cdev, &console_fops);
3660 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3661 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3662 		panic("Couldn't register /dev/console driver\n");
3663 	consdev = device_create_with_groups(&tty_class, NULL,
3664 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3665 					    cons_dev_groups, "console");
3666 	if (IS_ERR(consdev))
3667 		consdev = NULL;
3668 
3669 #ifdef CONFIG_VT
3670 	vty_init(&console_fops);
3671 #endif
3672 	return 0;
3673 }
3674