xref: /linux/drivers/tty/tty_io.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	alloc_tty_struct	-	allocate a tty object
161  *
162  *	Return a new empty tty structure. The data fields have not
163  *	been initialized in any way but has been zeroed
164  *
165  *	Locking: none
166  */
167 
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172 
173 /**
174  *	free_tty_struct		-	free a disused tty
175  *	@tty: tty struct to free
176  *
177  *	Free the write buffers, tty queue and tty memory itself.
178  *
179  *	Locking: none. Must be called after tty is definitely unused
180  */
181 
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 	if (tty->dev)
185 		put_device(tty->dev);
186 	kfree(tty->write_buf);
187 	tty_buffer_free_all(tty);
188 	kfree(tty);
189 }
190 
191 static inline struct tty_struct *file_tty(struct file *file)
192 {
193 	return ((struct tty_file_private *)file->private_data)->tty;
194 }
195 
196 int tty_alloc_file(struct file *file)
197 {
198 	struct tty_file_private *priv;
199 
200 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
201 	if (!priv)
202 		return -ENOMEM;
203 
204 	file->private_data = priv;
205 
206 	return 0;
207 }
208 
209 /* Associate a new file with the tty structure */
210 void tty_add_file(struct tty_struct *tty, struct file *file)
211 {
212 	struct tty_file_private *priv = file->private_data;
213 
214 	priv->tty = tty;
215 	priv->file = file;
216 
217 	spin_lock(&tty_files_lock);
218 	list_add(&priv->list, &tty->tty_files);
219 	spin_unlock(&tty_files_lock);
220 }
221 
222 /**
223  * tty_free_file - free file->private_data
224  *
225  * This shall be used only for fail path handling when tty_add_file was not
226  * called yet.
227  */
228 void tty_free_file(struct file *file)
229 {
230 	struct tty_file_private *priv = file->private_data;
231 
232 	file->private_data = NULL;
233 	kfree(priv);
234 }
235 
236 /* Delete file from its tty */
237 void tty_del_file(struct file *file)
238 {
239 	struct tty_file_private *priv = file->private_data;
240 
241 	spin_lock(&tty_files_lock);
242 	list_del(&priv->list);
243 	spin_unlock(&tty_files_lock);
244 	tty_free_file(file);
245 }
246 
247 
248 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
249 
250 /**
251  *	tty_name	-	return tty naming
252  *	@tty: tty structure
253  *	@buf: buffer for output
254  *
255  *	Convert a tty structure into a name. The name reflects the kernel
256  *	naming policy and if udev is in use may not reflect user space
257  *
258  *	Locking: none
259  */
260 
261 char *tty_name(struct tty_struct *tty, char *buf)
262 {
263 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
264 		strcpy(buf, "NULL tty");
265 	else
266 		strcpy(buf, tty->name);
267 	return buf;
268 }
269 
270 EXPORT_SYMBOL(tty_name);
271 
272 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
273 			      const char *routine)
274 {
275 #ifdef TTY_PARANOIA_CHECK
276 	if (!tty) {
277 		printk(KERN_WARNING
278 			"null TTY for (%d:%d) in %s\n",
279 			imajor(inode), iminor(inode), routine);
280 		return 1;
281 	}
282 	if (tty->magic != TTY_MAGIC) {
283 		printk(KERN_WARNING
284 			"bad magic number for tty struct (%d:%d) in %s\n",
285 			imajor(inode), iminor(inode), routine);
286 		return 1;
287 	}
288 #endif
289 	return 0;
290 }
291 
292 static int check_tty_count(struct tty_struct *tty, const char *routine)
293 {
294 #ifdef CHECK_TTY_COUNT
295 	struct list_head *p;
296 	int count = 0;
297 
298 	spin_lock(&tty_files_lock);
299 	list_for_each(p, &tty->tty_files) {
300 		count++;
301 	}
302 	spin_unlock(&tty_files_lock);
303 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
304 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
305 	    tty->link && tty->link->count)
306 		count++;
307 	if (tty->count != count) {
308 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
309 				    "!= #fd's(%d) in %s\n",
310 		       tty->name, tty->count, count, routine);
311 		return count;
312 	}
313 #endif
314 	return 0;
315 }
316 
317 /**
318  *	get_tty_driver		-	find device of a tty
319  *	@dev_t: device identifier
320  *	@index: returns the index of the tty
321  *
322  *	This routine returns a tty driver structure, given a device number
323  *	and also passes back the index number.
324  *
325  *	Locking: caller must hold tty_mutex
326  */
327 
328 static struct tty_driver *get_tty_driver(dev_t device, int *index)
329 {
330 	struct tty_driver *p;
331 
332 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
333 		dev_t base = MKDEV(p->major, p->minor_start);
334 		if (device < base || device >= base + p->num)
335 			continue;
336 		*index = device - base;
337 		return tty_driver_kref_get(p);
338 	}
339 	return NULL;
340 }
341 
342 #ifdef CONFIG_CONSOLE_POLL
343 
344 /**
345  *	tty_find_polling_driver	-	find device of a polled tty
346  *	@name: name string to match
347  *	@line: pointer to resulting tty line nr
348  *
349  *	This routine returns a tty driver structure, given a name
350  *	and the condition that the tty driver is capable of polled
351  *	operation.
352  */
353 struct tty_driver *tty_find_polling_driver(char *name, int *line)
354 {
355 	struct tty_driver *p, *res = NULL;
356 	int tty_line = 0;
357 	int len;
358 	char *str, *stp;
359 
360 	for (str = name; *str; str++)
361 		if ((*str >= '0' && *str <= '9') || *str == ',')
362 			break;
363 	if (!*str)
364 		return NULL;
365 
366 	len = str - name;
367 	tty_line = simple_strtoul(str, &str, 10);
368 
369 	mutex_lock(&tty_mutex);
370 	/* Search through the tty devices to look for a match */
371 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
372 		if (strncmp(name, p->name, len) != 0)
373 			continue;
374 		stp = str;
375 		if (*stp == ',')
376 			stp++;
377 		if (*stp == '\0')
378 			stp = NULL;
379 
380 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
381 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
382 			res = tty_driver_kref_get(p);
383 			*line = tty_line;
384 			break;
385 		}
386 	}
387 	mutex_unlock(&tty_mutex);
388 
389 	return res;
390 }
391 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
392 #endif
393 
394 /**
395  *	tty_check_change	-	check for POSIX terminal changes
396  *	@tty: tty to check
397  *
398  *	If we try to write to, or set the state of, a terminal and we're
399  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
400  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
401  *
402  *	Locking: ctrl_lock
403  */
404 
405 int tty_check_change(struct tty_struct *tty)
406 {
407 	unsigned long flags;
408 	int ret = 0;
409 
410 	if (current->signal->tty != tty)
411 		return 0;
412 
413 	spin_lock_irqsave(&tty->ctrl_lock, flags);
414 
415 	if (!tty->pgrp) {
416 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
417 		goto out_unlock;
418 	}
419 	if (task_pgrp(current) == tty->pgrp)
420 		goto out_unlock;
421 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
422 	if (is_ignored(SIGTTOU))
423 		goto out;
424 	if (is_current_pgrp_orphaned()) {
425 		ret = -EIO;
426 		goto out;
427 	}
428 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
429 	set_thread_flag(TIF_SIGPENDING);
430 	ret = -ERESTARTSYS;
431 out:
432 	return ret;
433 out_unlock:
434 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
435 	return ret;
436 }
437 
438 EXPORT_SYMBOL(tty_check_change);
439 
440 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
441 				size_t count, loff_t *ppos)
442 {
443 	return 0;
444 }
445 
446 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
447 				 size_t count, loff_t *ppos)
448 {
449 	return -EIO;
450 }
451 
452 /* No kernel lock held - none needed ;) */
453 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
454 {
455 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
456 }
457 
458 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
459 		unsigned long arg)
460 {
461 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
462 }
463 
464 static long hung_up_tty_compat_ioctl(struct file *file,
465 				     unsigned int cmd, unsigned long arg)
466 {
467 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
468 }
469 
470 static const struct file_operations tty_fops = {
471 	.llseek		= no_llseek,
472 	.read		= tty_read,
473 	.write		= tty_write,
474 	.poll		= tty_poll,
475 	.unlocked_ioctl	= tty_ioctl,
476 	.compat_ioctl	= tty_compat_ioctl,
477 	.open		= tty_open,
478 	.release	= tty_release,
479 	.fasync		= tty_fasync,
480 };
481 
482 static const struct file_operations console_fops = {
483 	.llseek		= no_llseek,
484 	.read		= tty_read,
485 	.write		= redirected_tty_write,
486 	.poll		= tty_poll,
487 	.unlocked_ioctl	= tty_ioctl,
488 	.compat_ioctl	= tty_compat_ioctl,
489 	.open		= tty_open,
490 	.release	= tty_release,
491 	.fasync		= tty_fasync,
492 };
493 
494 static const struct file_operations hung_up_tty_fops = {
495 	.llseek		= no_llseek,
496 	.read		= hung_up_tty_read,
497 	.write		= hung_up_tty_write,
498 	.poll		= hung_up_tty_poll,
499 	.unlocked_ioctl	= hung_up_tty_ioctl,
500 	.compat_ioctl	= hung_up_tty_compat_ioctl,
501 	.release	= tty_release,
502 };
503 
504 static DEFINE_SPINLOCK(redirect_lock);
505 static struct file *redirect;
506 
507 /**
508  *	tty_wakeup	-	request more data
509  *	@tty: terminal
510  *
511  *	Internal and external helper for wakeups of tty. This function
512  *	informs the line discipline if present that the driver is ready
513  *	to receive more output data.
514  */
515 
516 void tty_wakeup(struct tty_struct *tty)
517 {
518 	struct tty_ldisc *ld;
519 
520 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521 		ld = tty_ldisc_ref(tty);
522 		if (ld) {
523 			if (ld->ops->write_wakeup)
524 				ld->ops->write_wakeup(tty);
525 			tty_ldisc_deref(ld);
526 		}
527 	}
528 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
529 }
530 
531 EXPORT_SYMBOL_GPL(tty_wakeup);
532 
533 /**
534  *	__tty_hangup		-	actual handler for hangup events
535  *	@work: tty device
536  *
537  *	This can be called by the "eventd" kernel thread.  That is process
538  *	synchronous but doesn't hold any locks, so we need to make sure we
539  *	have the appropriate locks for what we're doing.
540  *
541  *	The hangup event clears any pending redirections onto the hung up
542  *	device. It ensures future writes will error and it does the needed
543  *	line discipline hangup and signal delivery. The tty object itself
544  *	remains intact.
545  *
546  *	Locking:
547  *		BTM
548  *		  redirect lock for undoing redirection
549  *		  file list lock for manipulating list of ttys
550  *		  tty_ldisc_lock from called functions
551  *		  termios_mutex resetting termios data
552  *		  tasklist_lock to walk task list for hangup event
553  *		    ->siglock to protect ->signal/->sighand
554  */
555 void __tty_hangup(struct tty_struct *tty)
556 {
557 	struct file *cons_filp = NULL;
558 	struct file *filp, *f = NULL;
559 	struct task_struct *p;
560 	struct tty_file_private *priv;
561 	int    closecount = 0, n;
562 	unsigned long flags;
563 	int refs = 0;
564 
565 	if (!tty)
566 		return;
567 
568 
569 	spin_lock(&redirect_lock);
570 	if (redirect && file_tty(redirect) == tty) {
571 		f = redirect;
572 		redirect = NULL;
573 	}
574 	spin_unlock(&redirect_lock);
575 
576 	tty_lock();
577 
578 	/* some functions below drop BTM, so we need this bit */
579 	set_bit(TTY_HUPPING, &tty->flags);
580 
581 	/* inuse_filps is protected by the single tty lock,
582 	   this really needs to change if we want to flush the
583 	   workqueue with the lock held */
584 	check_tty_count(tty, "tty_hangup");
585 
586 	spin_lock(&tty_files_lock);
587 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
588 	list_for_each_entry(priv, &tty->tty_files, list) {
589 		filp = priv->file;
590 		if (filp->f_op->write == redirected_tty_write)
591 			cons_filp = filp;
592 		if (filp->f_op->write != tty_write)
593 			continue;
594 		closecount++;
595 		__tty_fasync(-1, filp, 0);	/* can't block */
596 		filp->f_op = &hung_up_tty_fops;
597 	}
598 	spin_unlock(&tty_files_lock);
599 
600 	/*
601 	 * it drops BTM and thus races with reopen
602 	 * we protect the race by TTY_HUPPING
603 	 */
604 	tty_ldisc_hangup(tty);
605 
606 	read_lock(&tasklist_lock);
607 	if (tty->session) {
608 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609 			spin_lock_irq(&p->sighand->siglock);
610 			if (p->signal->tty == tty) {
611 				p->signal->tty = NULL;
612 				/* We defer the dereferences outside fo
613 				   the tasklist lock */
614 				refs++;
615 			}
616 			if (!p->signal->leader) {
617 				spin_unlock_irq(&p->sighand->siglock);
618 				continue;
619 			}
620 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
623 			spin_lock_irqsave(&tty->ctrl_lock, flags);
624 			if (tty->pgrp)
625 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627 			spin_unlock_irq(&p->sighand->siglock);
628 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
629 	}
630 	read_unlock(&tasklist_lock);
631 
632 	spin_lock_irqsave(&tty->ctrl_lock, flags);
633 	clear_bit(TTY_THROTTLED, &tty->flags);
634 	clear_bit(TTY_PUSH, &tty->flags);
635 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636 	put_pid(tty->session);
637 	put_pid(tty->pgrp);
638 	tty->session = NULL;
639 	tty->pgrp = NULL;
640 	tty->ctrl_status = 0;
641 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
642 
643 	/* Account for the p->signal references we killed */
644 	while (refs--)
645 		tty_kref_put(tty);
646 
647 	/*
648 	 * If one of the devices matches a console pointer, we
649 	 * cannot just call hangup() because that will cause
650 	 * tty->count and state->count to go out of sync.
651 	 * So we just call close() the right number of times.
652 	 */
653 	if (cons_filp) {
654 		if (tty->ops->close)
655 			for (n = 0; n < closecount; n++)
656 				tty->ops->close(tty, cons_filp);
657 	} else if (tty->ops->hangup)
658 		(tty->ops->hangup)(tty);
659 	/*
660 	 * We don't want to have driver/ldisc interactions beyond
661 	 * the ones we did here. The driver layer expects no
662 	 * calls after ->hangup() from the ldisc side. However we
663 	 * can't yet guarantee all that.
664 	 */
665 	set_bit(TTY_HUPPED, &tty->flags);
666 	clear_bit(TTY_HUPPING, &tty->flags);
667 	tty_ldisc_enable(tty);
668 
669 	tty_unlock();
670 
671 	if (f)
672 		fput(f);
673 }
674 
675 static void do_tty_hangup(struct work_struct *work)
676 {
677 	struct tty_struct *tty =
678 		container_of(work, struct tty_struct, hangup_work);
679 
680 	__tty_hangup(tty);
681 }
682 
683 /**
684  *	tty_hangup		-	trigger a hangup event
685  *	@tty: tty to hangup
686  *
687  *	A carrier loss (virtual or otherwise) has occurred on this like
688  *	schedule a hangup sequence to run after this event.
689  */
690 
691 void tty_hangup(struct tty_struct *tty)
692 {
693 #ifdef TTY_DEBUG_HANGUP
694 	char	buf[64];
695 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
696 #endif
697 	schedule_work(&tty->hangup_work);
698 }
699 
700 EXPORT_SYMBOL(tty_hangup);
701 
702 /**
703  *	tty_vhangup		-	process vhangup
704  *	@tty: tty to hangup
705  *
706  *	The user has asked via system call for the terminal to be hung up.
707  *	We do this synchronously so that when the syscall returns the process
708  *	is complete. That guarantee is necessary for security reasons.
709  */
710 
711 void tty_vhangup(struct tty_struct *tty)
712 {
713 #ifdef TTY_DEBUG_HANGUP
714 	char	buf[64];
715 
716 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
717 #endif
718 	__tty_hangup(tty);
719 }
720 
721 EXPORT_SYMBOL(tty_vhangup);
722 
723 
724 /**
725  *	tty_vhangup_self	-	process vhangup for own ctty
726  *
727  *	Perform a vhangup on the current controlling tty
728  */
729 
730 void tty_vhangup_self(void)
731 {
732 	struct tty_struct *tty;
733 
734 	tty = get_current_tty();
735 	if (tty) {
736 		tty_vhangup(tty);
737 		tty_kref_put(tty);
738 	}
739 }
740 
741 /**
742  *	tty_hung_up_p		-	was tty hung up
743  *	@filp: file pointer of tty
744  *
745  *	Return true if the tty has been subject to a vhangup or a carrier
746  *	loss
747  */
748 
749 int tty_hung_up_p(struct file *filp)
750 {
751 	return (filp->f_op == &hung_up_tty_fops);
752 }
753 
754 EXPORT_SYMBOL(tty_hung_up_p);
755 
756 static void session_clear_tty(struct pid *session)
757 {
758 	struct task_struct *p;
759 	do_each_pid_task(session, PIDTYPE_SID, p) {
760 		proc_clear_tty(p);
761 	} while_each_pid_task(session, PIDTYPE_SID, p);
762 }
763 
764 /**
765  *	disassociate_ctty	-	disconnect controlling tty
766  *	@on_exit: true if exiting so need to "hang up" the session
767  *
768  *	This function is typically called only by the session leader, when
769  *	it wants to disassociate itself from its controlling tty.
770  *
771  *	It performs the following functions:
772  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
773  * 	(2)  Clears the tty from being controlling the session
774  * 	(3)  Clears the controlling tty for all processes in the
775  * 		session group.
776  *
777  *	The argument on_exit is set to 1 if called when a process is
778  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
779  *
780  *	Locking:
781  *		BTM is taken for hysterical raisins, and held when
782  *		  called from no_tty().
783  *		  tty_mutex is taken to protect tty
784  *		  ->siglock is taken to protect ->signal/->sighand
785  *		  tasklist_lock is taken to walk process list for sessions
786  *		    ->siglock is taken to protect ->signal/->sighand
787  */
788 
789 void disassociate_ctty(int on_exit)
790 {
791 	struct tty_struct *tty;
792 
793 	if (!current->signal->leader)
794 		return;
795 
796 	tty = get_current_tty();
797 	if (tty) {
798 		struct pid *tty_pgrp = get_pid(tty->pgrp);
799 		if (on_exit) {
800 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
801 				tty_vhangup(tty);
802 		}
803 		tty_kref_put(tty);
804 		if (tty_pgrp) {
805 			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
806 			if (!on_exit)
807 				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
808 			put_pid(tty_pgrp);
809 		}
810 	} else if (on_exit) {
811 		struct pid *old_pgrp;
812 		spin_lock_irq(&current->sighand->siglock);
813 		old_pgrp = current->signal->tty_old_pgrp;
814 		current->signal->tty_old_pgrp = NULL;
815 		spin_unlock_irq(&current->sighand->siglock);
816 		if (old_pgrp) {
817 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
818 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
819 			put_pid(old_pgrp);
820 		}
821 		return;
822 	}
823 
824 	spin_lock_irq(&current->sighand->siglock);
825 	put_pid(current->signal->tty_old_pgrp);
826 	current->signal->tty_old_pgrp = NULL;
827 	spin_unlock_irq(&current->sighand->siglock);
828 
829 	tty = get_current_tty();
830 	if (tty) {
831 		unsigned long flags;
832 		spin_lock_irqsave(&tty->ctrl_lock, flags);
833 		put_pid(tty->session);
834 		put_pid(tty->pgrp);
835 		tty->session = NULL;
836 		tty->pgrp = NULL;
837 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
838 		tty_kref_put(tty);
839 	} else {
840 #ifdef TTY_DEBUG_HANGUP
841 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
842 		       " = NULL", tty);
843 #endif
844 	}
845 
846 	/* Now clear signal->tty under the lock */
847 	read_lock(&tasklist_lock);
848 	session_clear_tty(task_session(current));
849 	read_unlock(&tasklist_lock);
850 }
851 
852 /**
853  *
854  *	no_tty	- Ensure the current process does not have a controlling tty
855  */
856 void no_tty(void)
857 {
858 	/* FIXME: Review locking here. The tty_lock never covered any race
859 	   between a new association and proc_clear_tty but possible we need
860 	   to protect against this anyway */
861 	struct task_struct *tsk = current;
862 	disassociate_ctty(0);
863 	proc_clear_tty(tsk);
864 }
865 
866 
867 /**
868  *	stop_tty	-	propagate flow control
869  *	@tty: tty to stop
870  *
871  *	Perform flow control to the driver. For PTY/TTY pairs we
872  *	must also propagate the TIOCKPKT status. May be called
873  *	on an already stopped device and will not re-call the driver
874  *	method.
875  *
876  *	This functionality is used by both the line disciplines for
877  *	halting incoming flow and by the driver. It may therefore be
878  *	called from any context, may be under the tty atomic_write_lock
879  *	but not always.
880  *
881  *	Locking:
882  *		Uses the tty control lock internally
883  */
884 
885 void stop_tty(struct tty_struct *tty)
886 {
887 	unsigned long flags;
888 	spin_lock_irqsave(&tty->ctrl_lock, flags);
889 	if (tty->stopped) {
890 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891 		return;
892 	}
893 	tty->stopped = 1;
894 	if (tty->link && tty->link->packet) {
895 		tty->ctrl_status &= ~TIOCPKT_START;
896 		tty->ctrl_status |= TIOCPKT_STOP;
897 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898 	}
899 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900 	if (tty->ops->stop)
901 		(tty->ops->stop)(tty);
902 }
903 
904 EXPORT_SYMBOL(stop_tty);
905 
906 /**
907  *	start_tty	-	propagate flow control
908  *	@tty: tty to start
909  *
910  *	Start a tty that has been stopped if at all possible. Perform
911  *	any necessary wakeups and propagate the TIOCPKT status. If this
912  *	is the tty was previous stopped and is being started then the
913  *	driver start method is invoked and the line discipline woken.
914  *
915  *	Locking:
916  *		ctrl_lock
917  */
918 
919 void start_tty(struct tty_struct *tty)
920 {
921 	unsigned long flags;
922 	spin_lock_irqsave(&tty->ctrl_lock, flags);
923 	if (!tty->stopped || tty->flow_stopped) {
924 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925 		return;
926 	}
927 	tty->stopped = 0;
928 	if (tty->link && tty->link->packet) {
929 		tty->ctrl_status &= ~TIOCPKT_STOP;
930 		tty->ctrl_status |= TIOCPKT_START;
931 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932 	}
933 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934 	if (tty->ops->start)
935 		(tty->ops->start)(tty);
936 	/* If we have a running line discipline it may need kicking */
937 	tty_wakeup(tty);
938 }
939 
940 EXPORT_SYMBOL(start_tty);
941 
942 /**
943  *	tty_read	-	read method for tty device files
944  *	@file: pointer to tty file
945  *	@buf: user buffer
946  *	@count: size of user buffer
947  *	@ppos: unused
948  *
949  *	Perform the read system call function on this terminal device. Checks
950  *	for hung up devices before calling the line discipline method.
951  *
952  *	Locking:
953  *		Locks the line discipline internally while needed. Multiple
954  *	read calls may be outstanding in parallel.
955  */
956 
957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958 			loff_t *ppos)
959 {
960 	int i;
961 	struct inode *inode = file->f_path.dentry->d_inode;
962 	struct tty_struct *tty = file_tty(file);
963 	struct tty_ldisc *ld;
964 
965 	if (tty_paranoia_check(tty, inode, "tty_read"))
966 		return -EIO;
967 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968 		return -EIO;
969 
970 	/* We want to wait for the line discipline to sort out in this
971 	   situation */
972 	ld = tty_ldisc_ref_wait(tty);
973 	if (ld->ops->read)
974 		i = (ld->ops->read)(tty, file, buf, count);
975 	else
976 		i = -EIO;
977 	tty_ldisc_deref(ld);
978 	if (i > 0)
979 		inode->i_atime = current_fs_time(inode->i_sb);
980 	return i;
981 }
982 
983 void tty_write_unlock(struct tty_struct *tty)
984 	__releases(&tty->atomic_write_lock)
985 {
986 	mutex_unlock(&tty->atomic_write_lock);
987 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989 
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991 	__acquires(&tty->atomic_write_lock)
992 {
993 	if (!mutex_trylock(&tty->atomic_write_lock)) {
994 		if (ndelay)
995 			return -EAGAIN;
996 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
997 			return -ERESTARTSYS;
998 	}
999 	return 0;
1000 }
1001 
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008 	struct tty_struct *tty,
1009 	struct file *file,
1010 	const char __user *buf,
1011 	size_t count)
1012 {
1013 	ssize_t ret, written = 0;
1014 	unsigned int chunk;
1015 
1016 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017 	if (ret < 0)
1018 		return ret;
1019 
1020 	/*
1021 	 * We chunk up writes into a temporary buffer. This
1022 	 * simplifies low-level drivers immensely, since they
1023 	 * don't have locking issues and user mode accesses.
1024 	 *
1025 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026 	 * big chunk-size..
1027 	 *
1028 	 * The default chunk-size is 2kB, because the NTTY
1029 	 * layer has problems with bigger chunks. It will
1030 	 * claim to be able to handle more characters than
1031 	 * it actually does.
1032 	 *
1033 	 * FIXME: This can probably go away now except that 64K chunks
1034 	 * are too likely to fail unless switched to vmalloc...
1035 	 */
1036 	chunk = 2048;
1037 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038 		chunk = 65536;
1039 	if (count < chunk)
1040 		chunk = count;
1041 
1042 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043 	if (tty->write_cnt < chunk) {
1044 		unsigned char *buf_chunk;
1045 
1046 		if (chunk < 1024)
1047 			chunk = 1024;
1048 
1049 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050 		if (!buf_chunk) {
1051 			ret = -ENOMEM;
1052 			goto out;
1053 		}
1054 		kfree(tty->write_buf);
1055 		tty->write_cnt = chunk;
1056 		tty->write_buf = buf_chunk;
1057 	}
1058 
1059 	/* Do the write .. */
1060 	for (;;) {
1061 		size_t size = count;
1062 		if (size > chunk)
1063 			size = chunk;
1064 		ret = -EFAULT;
1065 		if (copy_from_user(tty->write_buf, buf, size))
1066 			break;
1067 		ret = write(tty, file, tty->write_buf, size);
1068 		if (ret <= 0)
1069 			break;
1070 		written += ret;
1071 		buf += ret;
1072 		count -= ret;
1073 		if (!count)
1074 			break;
1075 		ret = -ERESTARTSYS;
1076 		if (signal_pending(current))
1077 			break;
1078 		cond_resched();
1079 	}
1080 	if (written) {
1081 		struct inode *inode = file->f_path.dentry->d_inode;
1082 		inode->i_mtime = current_fs_time(inode->i_sb);
1083 		ret = written;
1084 	}
1085 out:
1086 	tty_write_unlock(tty);
1087 	return ret;
1088 }
1089 
1090 /**
1091  * tty_write_message - write a message to a certain tty, not just the console.
1092  * @tty: the destination tty_struct
1093  * @msg: the message to write
1094  *
1095  * This is used for messages that need to be redirected to a specific tty.
1096  * We don't put it into the syslog queue right now maybe in the future if
1097  * really needed.
1098  *
1099  * We must still hold the BTM and test the CLOSING flag for the moment.
1100  */
1101 
1102 void tty_write_message(struct tty_struct *tty, char *msg)
1103 {
1104 	if (tty) {
1105 		mutex_lock(&tty->atomic_write_lock);
1106 		tty_lock();
1107 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108 			tty_unlock();
1109 			tty->ops->write(tty, msg, strlen(msg));
1110 		} else
1111 			tty_unlock();
1112 		tty_write_unlock(tty);
1113 	}
1114 	return;
1115 }
1116 
1117 
1118 /**
1119  *	tty_write		-	write method for tty device file
1120  *	@file: tty file pointer
1121  *	@buf: user data to write
1122  *	@count: bytes to write
1123  *	@ppos: unused
1124  *
1125  *	Write data to a tty device via the line discipline.
1126  *
1127  *	Locking:
1128  *		Locks the line discipline as required
1129  *		Writes to the tty driver are serialized by the atomic_write_lock
1130  *	and are then processed in chunks to the device. The line discipline
1131  *	write method will not be invoked in parallel for each device.
1132  */
1133 
1134 static ssize_t tty_write(struct file *file, const char __user *buf,
1135 						size_t count, loff_t *ppos)
1136 {
1137 	struct inode *inode = file->f_path.dentry->d_inode;
1138 	struct tty_struct *tty = file_tty(file);
1139  	struct tty_ldisc *ld;
1140 	ssize_t ret;
1141 
1142 	if (tty_paranoia_check(tty, inode, "tty_write"))
1143 		return -EIO;
1144 	if (!tty || !tty->ops->write ||
1145 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1146 			return -EIO;
1147 	/* Short term debug to catch buggy drivers */
1148 	if (tty->ops->write_room == NULL)
1149 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150 			tty->driver->name);
1151 	ld = tty_ldisc_ref_wait(tty);
1152 	if (!ld->ops->write)
1153 		ret = -EIO;
1154 	else
1155 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156 	tty_ldisc_deref(ld);
1157 	return ret;
1158 }
1159 
1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161 						size_t count, loff_t *ppos)
1162 {
1163 	struct file *p = NULL;
1164 
1165 	spin_lock(&redirect_lock);
1166 	if (redirect) {
1167 		get_file(redirect);
1168 		p = redirect;
1169 	}
1170 	spin_unlock(&redirect_lock);
1171 
1172 	if (p) {
1173 		ssize_t res;
1174 		res = vfs_write(p, buf, count, &p->f_pos);
1175 		fput(p);
1176 		return res;
1177 	}
1178 	return tty_write(file, buf, count, ppos);
1179 }
1180 
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182 
1183 /**
1184  *	pty_line_name	-	generate name for a pty
1185  *	@driver: the tty driver in use
1186  *	@index: the minor number
1187  *	@p: output buffer of at least 6 bytes
1188  *
1189  *	Generate a name from a driver reference and write it to the output
1190  *	buffer.
1191  *
1192  *	Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196 	int i = index + driver->name_base;
1197 	/* ->name is initialized to "ttyp", but "tty" is expected */
1198 	sprintf(p, "%s%c%x",
1199 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200 		ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202 
1203 /**
1204  *	tty_line_name	-	generate name for a tty
1205  *	@driver: the tty driver in use
1206  *	@index: the minor number
1207  *	@p: output buffer of at least 7 bytes
1208  *
1209  *	Generate a name from a driver reference and write it to the output
1210  *	buffer.
1211  *
1212  *	Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216 	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217 }
1218 
1219 /**
1220  *	tty_driver_lookup_tty() - find an existing tty, if any
1221  *	@driver: the driver for the tty
1222  *	@idx:	 the minor number
1223  *
1224  *	Return the tty, if found or ERR_PTR() otherwise.
1225  *
1226  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1227  *	be held until the 'fast-open' is also done. Will change once we
1228  *	have refcounting in the driver and per driver locking
1229  */
1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231 		struct inode *inode, int idx)
1232 {
1233 	if (driver->ops->lookup)
1234 		return driver->ops->lookup(driver, inode, idx);
1235 
1236 	return driver->ttys[idx];
1237 }
1238 
1239 /**
1240  *	tty_init_termios	-  helper for termios setup
1241  *	@tty: the tty to set up
1242  *
1243  *	Initialise the termios structures for this tty. Thus runs under
1244  *	the tty_mutex currently so we can be relaxed about ordering.
1245  */
1246 
1247 int tty_init_termios(struct tty_struct *tty)
1248 {
1249 	struct ktermios *tp;
1250 	int idx = tty->index;
1251 
1252 	tp = tty->driver->termios[idx];
1253 	if (tp == NULL) {
1254 		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255 		if (tp == NULL)
1256 			return -ENOMEM;
1257 		memcpy(tp, &tty->driver->init_termios,
1258 						sizeof(struct ktermios));
1259 		tty->driver->termios[idx] = tp;
1260 	}
1261 	tty->termios = tp;
1262 	tty->termios_locked = tp + 1;
1263 
1264 	/* Compatibility until drivers always set this */
1265 	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266 	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(tty_init_termios);
1270 
1271 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272 {
1273 	int ret = tty_init_termios(tty);
1274 	if (ret)
1275 		return ret;
1276 
1277 	tty_driver_kref_get(driver);
1278 	tty->count++;
1279 	driver->ttys[tty->index] = tty;
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL_GPL(tty_standard_install);
1283 
1284 /**
1285  *	tty_driver_install_tty() - install a tty entry in the driver
1286  *	@driver: the driver for the tty
1287  *	@tty: the tty
1288  *
1289  *	Install a tty object into the driver tables. The tty->index field
1290  *	will be set by the time this is called. This method is responsible
1291  *	for ensuring any need additional structures are allocated and
1292  *	configured.
1293  *
1294  *	Locking: tty_mutex for now
1295  */
1296 static int tty_driver_install_tty(struct tty_driver *driver,
1297 						struct tty_struct *tty)
1298 {
1299 	return driver->ops->install ? driver->ops->install(driver, tty) :
1300 		tty_standard_install(driver, tty);
1301 }
1302 
1303 /**
1304  *	tty_driver_remove_tty() - remove a tty from the driver tables
1305  *	@driver: the driver for the tty
1306  *	@idx:	 the minor number
1307  *
1308  *	Remvoe a tty object from the driver tables. The tty->index field
1309  *	will be set by the time this is called.
1310  *
1311  *	Locking: tty_mutex for now
1312  */
1313 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314 {
1315 	if (driver->ops->remove)
1316 		driver->ops->remove(driver, tty);
1317 	else
1318 		driver->ttys[tty->index] = NULL;
1319 }
1320 
1321 /*
1322  * 	tty_reopen()	- fast re-open of an open tty
1323  * 	@tty	- the tty to open
1324  *
1325  *	Return 0 on success, -errno on error.
1326  *
1327  *	Locking: tty_mutex must be held from the time the tty was found
1328  *		 till this open completes.
1329  */
1330 static int tty_reopen(struct tty_struct *tty)
1331 {
1332 	struct tty_driver *driver = tty->driver;
1333 
1334 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1335 			test_bit(TTY_HUPPING, &tty->flags) ||
1336 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337 		return -EIO;
1338 
1339 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340 	    driver->subtype == PTY_TYPE_MASTER) {
1341 		/*
1342 		 * special case for PTY masters: only one open permitted,
1343 		 * and the slave side open count is incremented as well.
1344 		 */
1345 		if (tty->count)
1346 			return -EIO;
1347 
1348 		tty->link->count++;
1349 	}
1350 	tty->count++;
1351 
1352 	mutex_lock(&tty->ldisc_mutex);
1353 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1354 	mutex_unlock(&tty->ldisc_mutex);
1355 
1356 	return 0;
1357 }
1358 
1359 /**
1360  *	tty_init_dev		-	initialise a tty device
1361  *	@driver: tty driver we are opening a device on
1362  *	@idx: device index
1363  *	@ret_tty: returned tty structure
1364  *
1365  *	Prepare a tty device. This may not be a "new" clean device but
1366  *	could also be an active device. The pty drivers require special
1367  *	handling because of this.
1368  *
1369  *	Locking:
1370  *		The function is called under the tty_mutex, which
1371  *	protects us from the tty struct or driver itself going away.
1372  *
1373  *	On exit the tty device has the line discipline attached and
1374  *	a reference count of 1. If a pair was created for pty/tty use
1375  *	and the other was a pty master then it too has a reference count of 1.
1376  *
1377  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1378  * failed open.  The new code protects the open with a mutex, so it's
1379  * really quite straightforward.  The mutex locking can probably be
1380  * relaxed for the (most common) case of reopening a tty.
1381  */
1382 
1383 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1384 {
1385 	struct tty_struct *tty;
1386 	int retval;
1387 
1388 	/*
1389 	 * First time open is complex, especially for PTY devices.
1390 	 * This code guarantees that either everything succeeds and the
1391 	 * TTY is ready for operation, or else the table slots are vacated
1392 	 * and the allocated memory released.  (Except that the termios
1393 	 * and locked termios may be retained.)
1394 	 */
1395 
1396 	if (!try_module_get(driver->owner))
1397 		return ERR_PTR(-ENODEV);
1398 
1399 	tty = alloc_tty_struct();
1400 	if (!tty) {
1401 		retval = -ENOMEM;
1402 		goto err_module_put;
1403 	}
1404 	initialize_tty_struct(tty, driver, idx);
1405 
1406 	retval = tty_driver_install_tty(driver, tty);
1407 	if (retval < 0)
1408 		goto err_deinit_tty;
1409 
1410 	/*
1411 	 * Structures all installed ... call the ldisc open routines.
1412 	 * If we fail here just call release_tty to clean up.  No need
1413 	 * to decrement the use counts, as release_tty doesn't care.
1414 	 */
1415 	retval = tty_ldisc_setup(tty, tty->link);
1416 	if (retval)
1417 		goto err_release_tty;
1418 	return tty;
1419 
1420 err_deinit_tty:
1421 	deinitialize_tty_struct(tty);
1422 	free_tty_struct(tty);
1423 err_module_put:
1424 	module_put(driver->owner);
1425 	return ERR_PTR(retval);
1426 
1427 	/* call the tty release_tty routine to clean out this slot */
1428 err_release_tty:
1429 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1430 				 "clearing slot %d\n", idx);
1431 	release_tty(tty, idx);
1432 	return ERR_PTR(retval);
1433 }
1434 
1435 void tty_free_termios(struct tty_struct *tty)
1436 {
1437 	struct ktermios *tp;
1438 	int idx = tty->index;
1439 	/* Kill this flag and push into drivers for locking etc */
1440 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1441 		/* FIXME: Locking on ->termios array */
1442 		tp = tty->termios;
1443 		tty->driver->termios[idx] = NULL;
1444 		kfree(tp);
1445 	}
1446 }
1447 EXPORT_SYMBOL(tty_free_termios);
1448 
1449 void tty_shutdown(struct tty_struct *tty)
1450 {
1451 	tty_driver_remove_tty(tty->driver, tty);
1452 	tty_free_termios(tty);
1453 }
1454 EXPORT_SYMBOL(tty_shutdown);
1455 
1456 /**
1457  *	release_one_tty		-	release tty structure memory
1458  *	@kref: kref of tty we are obliterating
1459  *
1460  *	Releases memory associated with a tty structure, and clears out the
1461  *	driver table slots. This function is called when a device is no longer
1462  *	in use. It also gets called when setup of a device fails.
1463  *
1464  *	Locking:
1465  *		tty_mutex - sometimes only
1466  *		takes the file list lock internally when working on the list
1467  *	of ttys that the driver keeps.
1468  *
1469  *	This method gets called from a work queue so that the driver private
1470  *	cleanup ops can sleep (needed for USB at least)
1471  */
1472 static void release_one_tty(struct work_struct *work)
1473 {
1474 	struct tty_struct *tty =
1475 		container_of(work, struct tty_struct, hangup_work);
1476 	struct tty_driver *driver = tty->driver;
1477 
1478 	if (tty->ops->cleanup)
1479 		tty->ops->cleanup(tty);
1480 
1481 	tty->magic = 0;
1482 	tty_driver_kref_put(driver);
1483 	module_put(driver->owner);
1484 
1485 	spin_lock(&tty_files_lock);
1486 	list_del_init(&tty->tty_files);
1487 	spin_unlock(&tty_files_lock);
1488 
1489 	put_pid(tty->pgrp);
1490 	put_pid(tty->session);
1491 	free_tty_struct(tty);
1492 }
1493 
1494 static void queue_release_one_tty(struct kref *kref)
1495 {
1496 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497 
1498 	if (tty->ops->shutdown)
1499 		tty->ops->shutdown(tty);
1500 	else
1501 		tty_shutdown(tty);
1502 
1503 	/* The hangup queue is now free so we can reuse it rather than
1504 	   waste a chunk of memory for each port */
1505 	INIT_WORK(&tty->hangup_work, release_one_tty);
1506 	schedule_work(&tty->hangup_work);
1507 }
1508 
1509 /**
1510  *	tty_kref_put		-	release a tty kref
1511  *	@tty: tty device
1512  *
1513  *	Release a reference to a tty device and if need be let the kref
1514  *	layer destruct the object for us
1515  */
1516 
1517 void tty_kref_put(struct tty_struct *tty)
1518 {
1519 	if (tty)
1520 		kref_put(&tty->kref, queue_release_one_tty);
1521 }
1522 EXPORT_SYMBOL(tty_kref_put);
1523 
1524 /**
1525  *	release_tty		-	release tty structure memory
1526  *
1527  *	Release both @tty and a possible linked partner (think pty pair),
1528  *	and decrement the refcount of the backing module.
1529  *
1530  *	Locking:
1531  *		tty_mutex - sometimes only
1532  *		takes the file list lock internally when working on the list
1533  *	of ttys that the driver keeps.
1534  *		FIXME: should we require tty_mutex is held here ??
1535  *
1536  */
1537 static void release_tty(struct tty_struct *tty, int idx)
1538 {
1539 	/* This should always be true but check for the moment */
1540 	WARN_ON(tty->index != idx);
1541 
1542 	if (tty->link)
1543 		tty_kref_put(tty->link);
1544 	tty_kref_put(tty);
1545 }
1546 
1547 /**
1548  *	tty_release_checks - check a tty before real release
1549  *	@tty: tty to check
1550  *	@o_tty: link of @tty (if any)
1551  *	@idx: index of the tty
1552  *
1553  *	Performs some paranoid checking before true release of the @tty.
1554  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555  */
1556 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1557 		int idx)
1558 {
1559 #ifdef TTY_PARANOIA_CHECK
1560 	if (idx < 0 || idx >= tty->driver->num) {
1561 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1562 				__func__, tty->name);
1563 		return -1;
1564 	}
1565 
1566 	/* not much to check for devpts */
1567 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1568 		return 0;
1569 
1570 	if (tty != tty->driver->ttys[idx]) {
1571 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1572 				__func__, idx, tty->name);
1573 		return -1;
1574 	}
1575 	if (tty->termios != tty->driver->termios[idx]) {
1576 		printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1577 				__func__, idx, tty->name);
1578 		return -1;
1579 	}
1580 	if (tty->driver->other) {
1581 		if (o_tty != tty->driver->other->ttys[idx]) {
1582 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1583 					__func__, idx, tty->name);
1584 			return -1;
1585 		}
1586 		if (o_tty->termios != tty->driver->other->termios[idx]) {
1587 			printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1588 					__func__, idx, tty->name);
1589 			return -1;
1590 		}
1591 		if (o_tty->link != tty) {
1592 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593 			return -1;
1594 		}
1595 	}
1596 #endif
1597 	return 0;
1598 }
1599 
1600 /**
1601  *	tty_release		-	vfs callback for close
1602  *	@inode: inode of tty
1603  *	@filp: file pointer for handle to tty
1604  *
1605  *	Called the last time each file handle is closed that references
1606  *	this tty. There may however be several such references.
1607  *
1608  *	Locking:
1609  *		Takes bkl. See tty_release_dev
1610  *
1611  * Even releasing the tty structures is a tricky business.. We have
1612  * to be very careful that the structures are all released at the
1613  * same time, as interrupts might otherwise get the wrong pointers.
1614  *
1615  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616  * lead to double frees or releasing memory still in use.
1617  */
1618 
1619 int tty_release(struct inode *inode, struct file *filp)
1620 {
1621 	struct tty_struct *tty = file_tty(filp);
1622 	struct tty_struct *o_tty;
1623 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1624 	int	devpts;
1625 	int	idx;
1626 	char	buf[64];
1627 
1628 	if (tty_paranoia_check(tty, inode, __func__))
1629 		return 0;
1630 
1631 	tty_lock();
1632 	check_tty_count(tty, __func__);
1633 
1634 	__tty_fasync(-1, filp, 0);
1635 
1636 	idx = tty->index;
1637 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1638 		      tty->driver->subtype == PTY_TYPE_MASTER);
1639 	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1640 	o_tty = tty->link;
1641 
1642 	if (tty_release_checks(tty, o_tty, idx)) {
1643 		tty_unlock();
1644 		return 0;
1645 	}
1646 
1647 #ifdef TTY_DEBUG_HANGUP
1648 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649 			tty_name(tty, buf), tty->count);
1650 #endif
1651 
1652 	if (tty->ops->close)
1653 		tty->ops->close(tty, filp);
1654 
1655 	tty_unlock();
1656 	/*
1657 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1658 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1659 	 * wait queues and kick everyone out _before_ actually starting to
1660 	 * close.  This ensures that we won't block while releasing the tty
1661 	 * structure.
1662 	 *
1663 	 * The test for the o_tty closing is necessary, since the master and
1664 	 * slave sides may close in any order.  If the slave side closes out
1665 	 * first, its count will be one, since the master side holds an open.
1666 	 * Thus this test wouldn't be triggered at the time the slave closes,
1667 	 * so we do it now.
1668 	 *
1669 	 * Note that it's possible for the tty to be opened again while we're
1670 	 * flushing out waiters.  By recalculating the closing flags before
1671 	 * each iteration we avoid any problems.
1672 	 */
1673 	while (1) {
1674 		/* Guard against races with tty->count changes elsewhere and
1675 		   opens on /dev/tty */
1676 
1677 		mutex_lock(&tty_mutex);
1678 		tty_lock();
1679 		tty_closing = tty->count <= 1;
1680 		o_tty_closing = o_tty &&
1681 			(o_tty->count <= (pty_master ? 1 : 0));
1682 		do_sleep = 0;
1683 
1684 		if (tty_closing) {
1685 			if (waitqueue_active(&tty->read_wait)) {
1686 				wake_up_poll(&tty->read_wait, POLLIN);
1687 				do_sleep++;
1688 			}
1689 			if (waitqueue_active(&tty->write_wait)) {
1690 				wake_up_poll(&tty->write_wait, POLLOUT);
1691 				do_sleep++;
1692 			}
1693 		}
1694 		if (o_tty_closing) {
1695 			if (waitqueue_active(&o_tty->read_wait)) {
1696 				wake_up_poll(&o_tty->read_wait, POLLIN);
1697 				do_sleep++;
1698 			}
1699 			if (waitqueue_active(&o_tty->write_wait)) {
1700 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1701 				do_sleep++;
1702 			}
1703 		}
1704 		if (!do_sleep)
1705 			break;
1706 
1707 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708 				__func__, tty_name(tty, buf));
1709 		tty_unlock();
1710 		mutex_unlock(&tty_mutex);
1711 		schedule();
1712 	}
1713 
1714 	/*
1715 	 * The closing flags are now consistent with the open counts on
1716 	 * both sides, and we've completed the last operation that could
1717 	 * block, so it's safe to proceed with closing.
1718 	 */
1719 	if (pty_master) {
1720 		if (--o_tty->count < 0) {
1721 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1722 				__func__, o_tty->count, tty_name(o_tty, buf));
1723 			o_tty->count = 0;
1724 		}
1725 	}
1726 	if (--tty->count < 0) {
1727 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1728 				__func__, tty->count, tty_name(tty, buf));
1729 		tty->count = 0;
1730 	}
1731 
1732 	/*
1733 	 * We've decremented tty->count, so we need to remove this file
1734 	 * descriptor off the tty->tty_files list; this serves two
1735 	 * purposes:
1736 	 *  - check_tty_count sees the correct number of file descriptors
1737 	 *    associated with this tty.
1738 	 *  - do_tty_hangup no longer sees this file descriptor as
1739 	 *    something that needs to be handled for hangups.
1740 	 */
1741 	tty_del_file(filp);
1742 
1743 	/*
1744 	 * Perform some housekeeping before deciding whether to return.
1745 	 *
1746 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1747 	 * case of a pty we may have to wait around for the other side
1748 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1749 	 */
1750 	if (tty_closing)
1751 		set_bit(TTY_CLOSING, &tty->flags);
1752 	if (o_tty_closing)
1753 		set_bit(TTY_CLOSING, &o_tty->flags);
1754 
1755 	/*
1756 	 * If _either_ side is closing, make sure there aren't any
1757 	 * processes that still think tty or o_tty is their controlling
1758 	 * tty.
1759 	 */
1760 	if (tty_closing || o_tty_closing) {
1761 		read_lock(&tasklist_lock);
1762 		session_clear_tty(tty->session);
1763 		if (o_tty)
1764 			session_clear_tty(o_tty->session);
1765 		read_unlock(&tasklist_lock);
1766 	}
1767 
1768 	mutex_unlock(&tty_mutex);
1769 
1770 	/* check whether both sides are closing ... */
1771 	if (!tty_closing || (o_tty && !o_tty_closing)) {
1772 		tty_unlock();
1773 		return 0;
1774 	}
1775 
1776 #ifdef TTY_DEBUG_HANGUP
1777 	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1778 #endif
1779 	/*
1780 	 * Ask the line discipline code to release its structures
1781 	 */
1782 	tty_ldisc_release(tty, o_tty);
1783 	/*
1784 	 * The release_tty function takes care of the details of clearing
1785 	 * the slots and preserving the termios structure.
1786 	 */
1787 	release_tty(tty, idx);
1788 
1789 	/* Make this pty number available for reallocation */
1790 	if (devpts)
1791 		devpts_kill_index(inode, idx);
1792 	tty_unlock();
1793 	return 0;
1794 }
1795 
1796 /**
1797  *	tty_open_current_tty - get tty of current task for open
1798  *	@device: device number
1799  *	@filp: file pointer to tty
1800  *	@return: tty of the current task iff @device is /dev/tty
1801  *
1802  *	We cannot return driver and index like for the other nodes because
1803  *	devpts will not work then. It expects inodes to be from devpts FS.
1804  *
1805  *	We need to move to returning a refcounted object from all the lookup
1806  *	paths including this one.
1807  */
1808 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809 {
1810 	struct tty_struct *tty;
1811 
1812 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1813 		return NULL;
1814 
1815 	tty = get_current_tty();
1816 	if (!tty)
1817 		return ERR_PTR(-ENXIO);
1818 
1819 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820 	/* noctty = 1; */
1821 	tty_kref_put(tty);
1822 	/* FIXME: we put a reference and return a TTY! */
1823 	/* This is only safe because the caller holds tty_mutex */
1824 	return tty;
1825 }
1826 
1827 /**
1828  *	tty_lookup_driver - lookup a tty driver for a given device file
1829  *	@device: device number
1830  *	@filp: file pointer to tty
1831  *	@noctty: set if the device should not become a controlling tty
1832  *	@index: index for the device in the @return driver
1833  *	@return: driver for this inode (with increased refcount)
1834  *
1835  * 	If @return is not erroneous, the caller is responsible to decrement the
1836  * 	refcount by tty_driver_kref_put.
1837  *
1838  *	Locking: tty_mutex protects get_tty_driver
1839  */
1840 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1841 		int *noctty, int *index)
1842 {
1843 	struct tty_driver *driver;
1844 
1845 	switch (device) {
1846 #ifdef CONFIG_VT
1847 	case MKDEV(TTY_MAJOR, 0): {
1848 		extern struct tty_driver *console_driver;
1849 		driver = tty_driver_kref_get(console_driver);
1850 		*index = fg_console;
1851 		*noctty = 1;
1852 		break;
1853 	}
1854 #endif
1855 	case MKDEV(TTYAUX_MAJOR, 1): {
1856 		struct tty_driver *console_driver = console_device(index);
1857 		if (console_driver) {
1858 			driver = tty_driver_kref_get(console_driver);
1859 			if (driver) {
1860 				/* Don't let /dev/console block */
1861 				filp->f_flags |= O_NONBLOCK;
1862 				*noctty = 1;
1863 				break;
1864 			}
1865 		}
1866 		return ERR_PTR(-ENODEV);
1867 	}
1868 	default:
1869 		driver = get_tty_driver(device, index);
1870 		if (!driver)
1871 			return ERR_PTR(-ENODEV);
1872 		break;
1873 	}
1874 	return driver;
1875 }
1876 
1877 /**
1878  *	tty_open		-	open a tty device
1879  *	@inode: inode of device file
1880  *	@filp: file pointer to tty
1881  *
1882  *	tty_open and tty_release keep up the tty count that contains the
1883  *	number of opens done on a tty. We cannot use the inode-count, as
1884  *	different inodes might point to the same tty.
1885  *
1886  *	Open-counting is needed for pty masters, as well as for keeping
1887  *	track of serial lines: DTR is dropped when the last close happens.
1888  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1889  *
1890  *	The termios state of a pty is reset on first open so that
1891  *	settings don't persist across reuse.
1892  *
1893  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1894  *		 tty->count should protect the rest.
1895  *		 ->siglock protects ->signal/->sighand
1896  */
1897 
1898 static int tty_open(struct inode *inode, struct file *filp)
1899 {
1900 	struct tty_struct *tty;
1901 	int noctty, retval;
1902 	struct tty_driver *driver = NULL;
1903 	int index;
1904 	dev_t device = inode->i_rdev;
1905 	unsigned saved_flags = filp->f_flags;
1906 
1907 	nonseekable_open(inode, filp);
1908 
1909 retry_open:
1910 	retval = tty_alloc_file(filp);
1911 	if (retval)
1912 		return -ENOMEM;
1913 
1914 	noctty = filp->f_flags & O_NOCTTY;
1915 	index  = -1;
1916 	retval = 0;
1917 
1918 	mutex_lock(&tty_mutex);
1919 	tty_lock();
1920 
1921 	tty = tty_open_current_tty(device, filp);
1922 	if (IS_ERR(tty)) {
1923 		retval = PTR_ERR(tty);
1924 		goto err_unlock;
1925 	} else if (!tty) {
1926 		driver = tty_lookup_driver(device, filp, &noctty, &index);
1927 		if (IS_ERR(driver)) {
1928 			retval = PTR_ERR(driver);
1929 			goto err_unlock;
1930 		}
1931 
1932 		/* check whether we're reopening an existing tty */
1933 		tty = tty_driver_lookup_tty(driver, inode, index);
1934 		if (IS_ERR(tty)) {
1935 			retval = PTR_ERR(tty);
1936 			goto err_unlock;
1937 		}
1938 	}
1939 
1940 	if (tty) {
1941 		retval = tty_reopen(tty);
1942 		if (retval)
1943 			tty = ERR_PTR(retval);
1944 	} else
1945 		tty = tty_init_dev(driver, index);
1946 
1947 	mutex_unlock(&tty_mutex);
1948 	if (driver)
1949 		tty_driver_kref_put(driver);
1950 	if (IS_ERR(tty)) {
1951 		tty_unlock();
1952 		retval = PTR_ERR(tty);
1953 		goto err_file;
1954 	}
1955 
1956 	tty_add_file(tty, filp);
1957 
1958 	check_tty_count(tty, __func__);
1959 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1960 	    tty->driver->subtype == PTY_TYPE_MASTER)
1961 		noctty = 1;
1962 #ifdef TTY_DEBUG_HANGUP
1963 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1964 #endif
1965 	if (tty->ops->open)
1966 		retval = tty->ops->open(tty, filp);
1967 	else
1968 		retval = -ENODEV;
1969 	filp->f_flags = saved_flags;
1970 
1971 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1972 						!capable(CAP_SYS_ADMIN))
1973 		retval = -EBUSY;
1974 
1975 	if (retval) {
1976 #ifdef TTY_DEBUG_HANGUP
1977 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1978 				retval, tty->name);
1979 #endif
1980 		tty_unlock(); /* need to call tty_release without BTM */
1981 		tty_release(inode, filp);
1982 		if (retval != -ERESTARTSYS)
1983 			return retval;
1984 
1985 		if (signal_pending(current))
1986 			return retval;
1987 
1988 		schedule();
1989 		/*
1990 		 * Need to reset f_op in case a hangup happened.
1991 		 */
1992 		tty_lock();
1993 		if (filp->f_op == &hung_up_tty_fops)
1994 			filp->f_op = &tty_fops;
1995 		tty_unlock();
1996 		goto retry_open;
1997 	}
1998 	tty_unlock();
1999 
2000 
2001 	mutex_lock(&tty_mutex);
2002 	tty_lock();
2003 	spin_lock_irq(&current->sighand->siglock);
2004 	if (!noctty &&
2005 	    current->signal->leader &&
2006 	    !current->signal->tty &&
2007 	    tty->session == NULL)
2008 		__proc_set_tty(current, tty);
2009 	spin_unlock_irq(&current->sighand->siglock);
2010 	tty_unlock();
2011 	mutex_unlock(&tty_mutex);
2012 	return 0;
2013 err_unlock:
2014 	tty_unlock();
2015 	mutex_unlock(&tty_mutex);
2016 	/* after locks to avoid deadlock */
2017 	if (!IS_ERR_OR_NULL(driver))
2018 		tty_driver_kref_put(driver);
2019 err_file:
2020 	tty_free_file(filp);
2021 	return retval;
2022 }
2023 
2024 
2025 
2026 /**
2027  *	tty_poll	-	check tty status
2028  *	@filp: file being polled
2029  *	@wait: poll wait structures to update
2030  *
2031  *	Call the line discipline polling method to obtain the poll
2032  *	status of the device.
2033  *
2034  *	Locking: locks called line discipline but ldisc poll method
2035  *	may be re-entered freely by other callers.
2036  */
2037 
2038 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2039 {
2040 	struct tty_struct *tty = file_tty(filp);
2041 	struct tty_ldisc *ld;
2042 	int ret = 0;
2043 
2044 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2045 		return 0;
2046 
2047 	ld = tty_ldisc_ref_wait(tty);
2048 	if (ld->ops->poll)
2049 		ret = (ld->ops->poll)(tty, filp, wait);
2050 	tty_ldisc_deref(ld);
2051 	return ret;
2052 }
2053 
2054 static int __tty_fasync(int fd, struct file *filp, int on)
2055 {
2056 	struct tty_struct *tty = file_tty(filp);
2057 	unsigned long flags;
2058 	int retval = 0;
2059 
2060 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2061 		goto out;
2062 
2063 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2064 	if (retval <= 0)
2065 		goto out;
2066 
2067 	if (on) {
2068 		enum pid_type type;
2069 		struct pid *pid;
2070 		if (!waitqueue_active(&tty->read_wait))
2071 			tty->minimum_to_wake = 1;
2072 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2073 		if (tty->pgrp) {
2074 			pid = tty->pgrp;
2075 			type = PIDTYPE_PGID;
2076 		} else {
2077 			pid = task_pid(current);
2078 			type = PIDTYPE_PID;
2079 		}
2080 		get_pid(pid);
2081 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2082 		retval = __f_setown(filp, pid, type, 0);
2083 		put_pid(pid);
2084 		if (retval)
2085 			goto out;
2086 	} else {
2087 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2088 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2089 	}
2090 	retval = 0;
2091 out:
2092 	return retval;
2093 }
2094 
2095 static int tty_fasync(int fd, struct file *filp, int on)
2096 {
2097 	int retval;
2098 	tty_lock();
2099 	retval = __tty_fasync(fd, filp, on);
2100 	tty_unlock();
2101 	return retval;
2102 }
2103 
2104 /**
2105  *	tiocsti			-	fake input character
2106  *	@tty: tty to fake input into
2107  *	@p: pointer to character
2108  *
2109  *	Fake input to a tty device. Does the necessary locking and
2110  *	input management.
2111  *
2112  *	FIXME: does not honour flow control ??
2113  *
2114  *	Locking:
2115  *		Called functions take tty_ldisc_lock
2116  *		current->signal->tty check is safe without locks
2117  *
2118  *	FIXME: may race normal receive processing
2119  */
2120 
2121 static int tiocsti(struct tty_struct *tty, char __user *p)
2122 {
2123 	char ch, mbz = 0;
2124 	struct tty_ldisc *ld;
2125 
2126 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2127 		return -EPERM;
2128 	if (get_user(ch, p))
2129 		return -EFAULT;
2130 	tty_audit_tiocsti(tty, ch);
2131 	ld = tty_ldisc_ref_wait(tty);
2132 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2133 	tty_ldisc_deref(ld);
2134 	return 0;
2135 }
2136 
2137 /**
2138  *	tiocgwinsz		-	implement window query ioctl
2139  *	@tty; tty
2140  *	@arg: user buffer for result
2141  *
2142  *	Copies the kernel idea of the window size into the user buffer.
2143  *
2144  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2145  *		is consistent.
2146  */
2147 
2148 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2149 {
2150 	int err;
2151 
2152 	mutex_lock(&tty->termios_mutex);
2153 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2154 	mutex_unlock(&tty->termios_mutex);
2155 
2156 	return err ? -EFAULT: 0;
2157 }
2158 
2159 /**
2160  *	tty_do_resize		-	resize event
2161  *	@tty: tty being resized
2162  *	@rows: rows (character)
2163  *	@cols: cols (character)
2164  *
2165  *	Update the termios variables and send the necessary signals to
2166  *	peform a terminal resize correctly
2167  */
2168 
2169 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2170 {
2171 	struct pid *pgrp;
2172 	unsigned long flags;
2173 
2174 	/* Lock the tty */
2175 	mutex_lock(&tty->termios_mutex);
2176 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2177 		goto done;
2178 	/* Get the PID values and reference them so we can
2179 	   avoid holding the tty ctrl lock while sending signals */
2180 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2181 	pgrp = get_pid(tty->pgrp);
2182 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183 
2184 	if (pgrp)
2185 		kill_pgrp(pgrp, SIGWINCH, 1);
2186 	put_pid(pgrp);
2187 
2188 	tty->winsize = *ws;
2189 done:
2190 	mutex_unlock(&tty->termios_mutex);
2191 	return 0;
2192 }
2193 
2194 /**
2195  *	tiocswinsz		-	implement window size set ioctl
2196  *	@tty; tty side of tty
2197  *	@arg: user buffer for result
2198  *
2199  *	Copies the user idea of the window size to the kernel. Traditionally
2200  *	this is just advisory information but for the Linux console it
2201  *	actually has driver level meaning and triggers a VC resize.
2202  *
2203  *	Locking:
2204  *		Driver dependent. The default do_resize method takes the
2205  *	tty termios mutex and ctrl_lock. The console takes its own lock
2206  *	then calls into the default method.
2207  */
2208 
2209 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2210 {
2211 	struct winsize tmp_ws;
2212 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2213 		return -EFAULT;
2214 
2215 	if (tty->ops->resize)
2216 		return tty->ops->resize(tty, &tmp_ws);
2217 	else
2218 		return tty_do_resize(tty, &tmp_ws);
2219 }
2220 
2221 /**
2222  *	tioccons	-	allow admin to move logical console
2223  *	@file: the file to become console
2224  *
2225  *	Allow the administrator to move the redirected console device
2226  *
2227  *	Locking: uses redirect_lock to guard the redirect information
2228  */
2229 
2230 static int tioccons(struct file *file)
2231 {
2232 	if (!capable(CAP_SYS_ADMIN))
2233 		return -EPERM;
2234 	if (file->f_op->write == redirected_tty_write) {
2235 		struct file *f;
2236 		spin_lock(&redirect_lock);
2237 		f = redirect;
2238 		redirect = NULL;
2239 		spin_unlock(&redirect_lock);
2240 		if (f)
2241 			fput(f);
2242 		return 0;
2243 	}
2244 	spin_lock(&redirect_lock);
2245 	if (redirect) {
2246 		spin_unlock(&redirect_lock);
2247 		return -EBUSY;
2248 	}
2249 	get_file(file);
2250 	redirect = file;
2251 	spin_unlock(&redirect_lock);
2252 	return 0;
2253 }
2254 
2255 /**
2256  *	fionbio		-	non blocking ioctl
2257  *	@file: file to set blocking value
2258  *	@p: user parameter
2259  *
2260  *	Historical tty interfaces had a blocking control ioctl before
2261  *	the generic functionality existed. This piece of history is preserved
2262  *	in the expected tty API of posix OS's.
2263  *
2264  *	Locking: none, the open file handle ensures it won't go away.
2265  */
2266 
2267 static int fionbio(struct file *file, int __user *p)
2268 {
2269 	int nonblock;
2270 
2271 	if (get_user(nonblock, p))
2272 		return -EFAULT;
2273 
2274 	spin_lock(&file->f_lock);
2275 	if (nonblock)
2276 		file->f_flags |= O_NONBLOCK;
2277 	else
2278 		file->f_flags &= ~O_NONBLOCK;
2279 	spin_unlock(&file->f_lock);
2280 	return 0;
2281 }
2282 
2283 /**
2284  *	tiocsctty	-	set controlling tty
2285  *	@tty: tty structure
2286  *	@arg: user argument
2287  *
2288  *	This ioctl is used to manage job control. It permits a session
2289  *	leader to set this tty as the controlling tty for the session.
2290  *
2291  *	Locking:
2292  *		Takes tty_mutex() to protect tty instance
2293  *		Takes tasklist_lock internally to walk sessions
2294  *		Takes ->siglock() when updating signal->tty
2295  */
2296 
2297 static int tiocsctty(struct tty_struct *tty, int arg)
2298 {
2299 	int ret = 0;
2300 	if (current->signal->leader && (task_session(current) == tty->session))
2301 		return ret;
2302 
2303 	mutex_lock(&tty_mutex);
2304 	/*
2305 	 * The process must be a session leader and
2306 	 * not have a controlling tty already.
2307 	 */
2308 	if (!current->signal->leader || current->signal->tty) {
2309 		ret = -EPERM;
2310 		goto unlock;
2311 	}
2312 
2313 	if (tty->session) {
2314 		/*
2315 		 * This tty is already the controlling
2316 		 * tty for another session group!
2317 		 */
2318 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2319 			/*
2320 			 * Steal it away
2321 			 */
2322 			read_lock(&tasklist_lock);
2323 			session_clear_tty(tty->session);
2324 			read_unlock(&tasklist_lock);
2325 		} else {
2326 			ret = -EPERM;
2327 			goto unlock;
2328 		}
2329 	}
2330 	proc_set_tty(current, tty);
2331 unlock:
2332 	mutex_unlock(&tty_mutex);
2333 	return ret;
2334 }
2335 
2336 /**
2337  *	tty_get_pgrp	-	return a ref counted pgrp pid
2338  *	@tty: tty to read
2339  *
2340  *	Returns a refcounted instance of the pid struct for the process
2341  *	group controlling the tty.
2342  */
2343 
2344 struct pid *tty_get_pgrp(struct tty_struct *tty)
2345 {
2346 	unsigned long flags;
2347 	struct pid *pgrp;
2348 
2349 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2350 	pgrp = get_pid(tty->pgrp);
2351 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2352 
2353 	return pgrp;
2354 }
2355 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2356 
2357 /**
2358  *	tiocgpgrp		-	get process group
2359  *	@tty: tty passed by user
2360  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2361  *	@p: returned pid
2362  *
2363  *	Obtain the process group of the tty. If there is no process group
2364  *	return an error.
2365  *
2366  *	Locking: none. Reference to current->signal->tty is safe.
2367  */
2368 
2369 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2370 {
2371 	struct pid *pid;
2372 	int ret;
2373 	/*
2374 	 * (tty == real_tty) is a cheap way of
2375 	 * testing if the tty is NOT a master pty.
2376 	 */
2377 	if (tty == real_tty && current->signal->tty != real_tty)
2378 		return -ENOTTY;
2379 	pid = tty_get_pgrp(real_tty);
2380 	ret =  put_user(pid_vnr(pid), p);
2381 	put_pid(pid);
2382 	return ret;
2383 }
2384 
2385 /**
2386  *	tiocspgrp		-	attempt to set process group
2387  *	@tty: tty passed by user
2388  *	@real_tty: tty side device matching tty passed by user
2389  *	@p: pid pointer
2390  *
2391  *	Set the process group of the tty to the session passed. Only
2392  *	permitted where the tty session is our session.
2393  *
2394  *	Locking: RCU, ctrl lock
2395  */
2396 
2397 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2398 {
2399 	struct pid *pgrp;
2400 	pid_t pgrp_nr;
2401 	int retval = tty_check_change(real_tty);
2402 	unsigned long flags;
2403 
2404 	if (retval == -EIO)
2405 		return -ENOTTY;
2406 	if (retval)
2407 		return retval;
2408 	if (!current->signal->tty ||
2409 	    (current->signal->tty != real_tty) ||
2410 	    (real_tty->session != task_session(current)))
2411 		return -ENOTTY;
2412 	if (get_user(pgrp_nr, p))
2413 		return -EFAULT;
2414 	if (pgrp_nr < 0)
2415 		return -EINVAL;
2416 	rcu_read_lock();
2417 	pgrp = find_vpid(pgrp_nr);
2418 	retval = -ESRCH;
2419 	if (!pgrp)
2420 		goto out_unlock;
2421 	retval = -EPERM;
2422 	if (session_of_pgrp(pgrp) != task_session(current))
2423 		goto out_unlock;
2424 	retval = 0;
2425 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2426 	put_pid(real_tty->pgrp);
2427 	real_tty->pgrp = get_pid(pgrp);
2428 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2429 out_unlock:
2430 	rcu_read_unlock();
2431 	return retval;
2432 }
2433 
2434 /**
2435  *	tiocgsid		-	get session id
2436  *	@tty: tty passed by user
2437  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2438  *	@p: pointer to returned session id
2439  *
2440  *	Obtain the session id of the tty. If there is no session
2441  *	return an error.
2442  *
2443  *	Locking: none. Reference to current->signal->tty is safe.
2444  */
2445 
2446 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2447 {
2448 	/*
2449 	 * (tty == real_tty) is a cheap way of
2450 	 * testing if the tty is NOT a master pty.
2451 	*/
2452 	if (tty == real_tty && current->signal->tty != real_tty)
2453 		return -ENOTTY;
2454 	if (!real_tty->session)
2455 		return -ENOTTY;
2456 	return put_user(pid_vnr(real_tty->session), p);
2457 }
2458 
2459 /**
2460  *	tiocsetd	-	set line discipline
2461  *	@tty: tty device
2462  *	@p: pointer to user data
2463  *
2464  *	Set the line discipline according to user request.
2465  *
2466  *	Locking: see tty_set_ldisc, this function is just a helper
2467  */
2468 
2469 static int tiocsetd(struct tty_struct *tty, int __user *p)
2470 {
2471 	int ldisc;
2472 	int ret;
2473 
2474 	if (get_user(ldisc, p))
2475 		return -EFAULT;
2476 
2477 	ret = tty_set_ldisc(tty, ldisc);
2478 
2479 	return ret;
2480 }
2481 
2482 /**
2483  *	send_break	-	performed time break
2484  *	@tty: device to break on
2485  *	@duration: timeout in mS
2486  *
2487  *	Perform a timed break on hardware that lacks its own driver level
2488  *	timed break functionality.
2489  *
2490  *	Locking:
2491  *		atomic_write_lock serializes
2492  *
2493  */
2494 
2495 static int send_break(struct tty_struct *tty, unsigned int duration)
2496 {
2497 	int retval;
2498 
2499 	if (tty->ops->break_ctl == NULL)
2500 		return 0;
2501 
2502 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2503 		retval = tty->ops->break_ctl(tty, duration);
2504 	else {
2505 		/* Do the work ourselves */
2506 		if (tty_write_lock(tty, 0) < 0)
2507 			return -EINTR;
2508 		retval = tty->ops->break_ctl(tty, -1);
2509 		if (retval)
2510 			goto out;
2511 		if (!signal_pending(current))
2512 			msleep_interruptible(duration);
2513 		retval = tty->ops->break_ctl(tty, 0);
2514 out:
2515 		tty_write_unlock(tty);
2516 		if (signal_pending(current))
2517 			retval = -EINTR;
2518 	}
2519 	return retval;
2520 }
2521 
2522 /**
2523  *	tty_tiocmget		-	get modem status
2524  *	@tty: tty device
2525  *	@file: user file pointer
2526  *	@p: pointer to result
2527  *
2528  *	Obtain the modem status bits from the tty driver if the feature
2529  *	is supported. Return -EINVAL if it is not available.
2530  *
2531  *	Locking: none (up to the driver)
2532  */
2533 
2534 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2535 {
2536 	int retval = -EINVAL;
2537 
2538 	if (tty->ops->tiocmget) {
2539 		retval = tty->ops->tiocmget(tty);
2540 
2541 		if (retval >= 0)
2542 			retval = put_user(retval, p);
2543 	}
2544 	return retval;
2545 }
2546 
2547 /**
2548  *	tty_tiocmset		-	set modem status
2549  *	@tty: tty device
2550  *	@cmd: command - clear bits, set bits or set all
2551  *	@p: pointer to desired bits
2552  *
2553  *	Set the modem status bits from the tty driver if the feature
2554  *	is supported. Return -EINVAL if it is not available.
2555  *
2556  *	Locking: none (up to the driver)
2557  */
2558 
2559 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2560 	     unsigned __user *p)
2561 {
2562 	int retval;
2563 	unsigned int set, clear, val;
2564 
2565 	if (tty->ops->tiocmset == NULL)
2566 		return -EINVAL;
2567 
2568 	retval = get_user(val, p);
2569 	if (retval)
2570 		return retval;
2571 	set = clear = 0;
2572 	switch (cmd) {
2573 	case TIOCMBIS:
2574 		set = val;
2575 		break;
2576 	case TIOCMBIC:
2577 		clear = val;
2578 		break;
2579 	case TIOCMSET:
2580 		set = val;
2581 		clear = ~val;
2582 		break;
2583 	}
2584 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586 	return tty->ops->tiocmset(tty, set, clear);
2587 }
2588 
2589 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2590 {
2591 	int retval = -EINVAL;
2592 	struct serial_icounter_struct icount;
2593 	memset(&icount, 0, sizeof(icount));
2594 	if (tty->ops->get_icount)
2595 		retval = tty->ops->get_icount(tty, &icount);
2596 	if (retval != 0)
2597 		return retval;
2598 	if (copy_to_user(arg, &icount, sizeof(icount)))
2599 		return -EFAULT;
2600 	return 0;
2601 }
2602 
2603 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2604 {
2605 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2606 	    tty->driver->subtype == PTY_TYPE_MASTER)
2607 		tty = tty->link;
2608 	return tty;
2609 }
2610 EXPORT_SYMBOL(tty_pair_get_tty);
2611 
2612 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2613 {
2614 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2615 	    tty->driver->subtype == PTY_TYPE_MASTER)
2616 	    return tty;
2617 	return tty->link;
2618 }
2619 EXPORT_SYMBOL(tty_pair_get_pty);
2620 
2621 /*
2622  * Split this up, as gcc can choke on it otherwise..
2623  */
2624 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2625 {
2626 	struct tty_struct *tty = file_tty(file);
2627 	struct tty_struct *real_tty;
2628 	void __user *p = (void __user *)arg;
2629 	int retval;
2630 	struct tty_ldisc *ld;
2631 	struct inode *inode = file->f_dentry->d_inode;
2632 
2633 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2634 		return -EINVAL;
2635 
2636 	real_tty = tty_pair_get_tty(tty);
2637 
2638 	/*
2639 	 * Factor out some common prep work
2640 	 */
2641 	switch (cmd) {
2642 	case TIOCSETD:
2643 	case TIOCSBRK:
2644 	case TIOCCBRK:
2645 	case TCSBRK:
2646 	case TCSBRKP:
2647 		retval = tty_check_change(tty);
2648 		if (retval)
2649 			return retval;
2650 		if (cmd != TIOCCBRK) {
2651 			tty_wait_until_sent(tty, 0);
2652 			if (signal_pending(current))
2653 				return -EINTR;
2654 		}
2655 		break;
2656 	}
2657 
2658 	/*
2659 	 *	Now do the stuff.
2660 	 */
2661 	switch (cmd) {
2662 	case TIOCSTI:
2663 		return tiocsti(tty, p);
2664 	case TIOCGWINSZ:
2665 		return tiocgwinsz(real_tty, p);
2666 	case TIOCSWINSZ:
2667 		return tiocswinsz(real_tty, p);
2668 	case TIOCCONS:
2669 		return real_tty != tty ? -EINVAL : tioccons(file);
2670 	case FIONBIO:
2671 		return fionbio(file, p);
2672 	case TIOCEXCL:
2673 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2674 		return 0;
2675 	case TIOCNXCL:
2676 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2677 		return 0;
2678 	case TIOCNOTTY:
2679 		if (current->signal->tty != tty)
2680 			return -ENOTTY;
2681 		no_tty();
2682 		return 0;
2683 	case TIOCSCTTY:
2684 		return tiocsctty(tty, arg);
2685 	case TIOCGPGRP:
2686 		return tiocgpgrp(tty, real_tty, p);
2687 	case TIOCSPGRP:
2688 		return tiocspgrp(tty, real_tty, p);
2689 	case TIOCGSID:
2690 		return tiocgsid(tty, real_tty, p);
2691 	case TIOCGETD:
2692 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2693 	case TIOCSETD:
2694 		return tiocsetd(tty, p);
2695 	case TIOCVHANGUP:
2696 		if (!capable(CAP_SYS_ADMIN))
2697 			return -EPERM;
2698 		tty_vhangup(tty);
2699 		return 0;
2700 	case TIOCGDEV:
2701 	{
2702 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2703 		return put_user(ret, (unsigned int __user *)p);
2704 	}
2705 	/*
2706 	 * Break handling
2707 	 */
2708 	case TIOCSBRK:	/* Turn break on, unconditionally */
2709 		if (tty->ops->break_ctl)
2710 			return tty->ops->break_ctl(tty, -1);
2711 		return 0;
2712 	case TIOCCBRK:	/* Turn break off, unconditionally */
2713 		if (tty->ops->break_ctl)
2714 			return tty->ops->break_ctl(tty, 0);
2715 		return 0;
2716 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2717 		/* non-zero arg means wait for all output data
2718 		 * to be sent (performed above) but don't send break.
2719 		 * This is used by the tcdrain() termios function.
2720 		 */
2721 		if (!arg)
2722 			return send_break(tty, 250);
2723 		return 0;
2724 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2725 		return send_break(tty, arg ? arg*100 : 250);
2726 
2727 	case TIOCMGET:
2728 		return tty_tiocmget(tty, p);
2729 	case TIOCMSET:
2730 	case TIOCMBIC:
2731 	case TIOCMBIS:
2732 		return tty_tiocmset(tty, cmd, p);
2733 	case TIOCGICOUNT:
2734 		retval = tty_tiocgicount(tty, p);
2735 		/* For the moment allow fall through to the old method */
2736         	if (retval != -EINVAL)
2737 			return retval;
2738 		break;
2739 	case TCFLSH:
2740 		switch (arg) {
2741 		case TCIFLUSH:
2742 		case TCIOFLUSH:
2743 		/* flush tty buffer and allow ldisc to process ioctl */
2744 			tty_buffer_flush(tty);
2745 			break;
2746 		}
2747 		break;
2748 	}
2749 	if (tty->ops->ioctl) {
2750 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2751 		if (retval != -ENOIOCTLCMD)
2752 			return retval;
2753 	}
2754 	ld = tty_ldisc_ref_wait(tty);
2755 	retval = -EINVAL;
2756 	if (ld->ops->ioctl) {
2757 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2758 		if (retval == -ENOIOCTLCMD)
2759 			retval = -EINVAL;
2760 	}
2761 	tty_ldisc_deref(ld);
2762 	return retval;
2763 }
2764 
2765 #ifdef CONFIG_COMPAT
2766 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2767 				unsigned long arg)
2768 {
2769 	struct inode *inode = file->f_dentry->d_inode;
2770 	struct tty_struct *tty = file_tty(file);
2771 	struct tty_ldisc *ld;
2772 	int retval = -ENOIOCTLCMD;
2773 
2774 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2775 		return -EINVAL;
2776 
2777 	if (tty->ops->compat_ioctl) {
2778 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2779 		if (retval != -ENOIOCTLCMD)
2780 			return retval;
2781 	}
2782 
2783 	ld = tty_ldisc_ref_wait(tty);
2784 	if (ld->ops->compat_ioctl)
2785 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2786 	else
2787 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2788 	tty_ldisc_deref(ld);
2789 
2790 	return retval;
2791 }
2792 #endif
2793 
2794 /*
2795  * This implements the "Secure Attention Key" ---  the idea is to
2796  * prevent trojan horses by killing all processes associated with this
2797  * tty when the user hits the "Secure Attention Key".  Required for
2798  * super-paranoid applications --- see the Orange Book for more details.
2799  *
2800  * This code could be nicer; ideally it should send a HUP, wait a few
2801  * seconds, then send a INT, and then a KILL signal.  But you then
2802  * have to coordinate with the init process, since all processes associated
2803  * with the current tty must be dead before the new getty is allowed
2804  * to spawn.
2805  *
2806  * Now, if it would be correct ;-/ The current code has a nasty hole -
2807  * it doesn't catch files in flight. We may send the descriptor to ourselves
2808  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2809  *
2810  * Nasty bug: do_SAK is being called in interrupt context.  This can
2811  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2812  */
2813 void __do_SAK(struct tty_struct *tty)
2814 {
2815 #ifdef TTY_SOFT_SAK
2816 	tty_hangup(tty);
2817 #else
2818 	struct task_struct *g, *p;
2819 	struct pid *session;
2820 	int		i;
2821 	struct file	*filp;
2822 	struct fdtable *fdt;
2823 
2824 	if (!tty)
2825 		return;
2826 	session = tty->session;
2827 
2828 	tty_ldisc_flush(tty);
2829 
2830 	tty_driver_flush_buffer(tty);
2831 
2832 	read_lock(&tasklist_lock);
2833 	/* Kill the entire session */
2834 	do_each_pid_task(session, PIDTYPE_SID, p) {
2835 		printk(KERN_NOTICE "SAK: killed process %d"
2836 			" (%s): task_session(p)==tty->session\n",
2837 			task_pid_nr(p), p->comm);
2838 		send_sig(SIGKILL, p, 1);
2839 	} while_each_pid_task(session, PIDTYPE_SID, p);
2840 	/* Now kill any processes that happen to have the
2841 	 * tty open.
2842 	 */
2843 	do_each_thread(g, p) {
2844 		if (p->signal->tty == tty) {
2845 			printk(KERN_NOTICE "SAK: killed process %d"
2846 			    " (%s): task_session(p)==tty->session\n",
2847 			    task_pid_nr(p), p->comm);
2848 			send_sig(SIGKILL, p, 1);
2849 			continue;
2850 		}
2851 		task_lock(p);
2852 		if (p->files) {
2853 			/*
2854 			 * We don't take a ref to the file, so we must
2855 			 * hold ->file_lock instead.
2856 			 */
2857 			spin_lock(&p->files->file_lock);
2858 			fdt = files_fdtable(p->files);
2859 			for (i = 0; i < fdt->max_fds; i++) {
2860 				filp = fcheck_files(p->files, i);
2861 				if (!filp)
2862 					continue;
2863 				if (filp->f_op->read == tty_read &&
2864 				    file_tty(filp) == tty) {
2865 					printk(KERN_NOTICE "SAK: killed process %d"
2866 					    " (%s): fd#%d opened to the tty\n",
2867 					    task_pid_nr(p), p->comm, i);
2868 					force_sig(SIGKILL, p);
2869 					break;
2870 				}
2871 			}
2872 			spin_unlock(&p->files->file_lock);
2873 		}
2874 		task_unlock(p);
2875 	} while_each_thread(g, p);
2876 	read_unlock(&tasklist_lock);
2877 #endif
2878 }
2879 
2880 static void do_SAK_work(struct work_struct *work)
2881 {
2882 	struct tty_struct *tty =
2883 		container_of(work, struct tty_struct, SAK_work);
2884 	__do_SAK(tty);
2885 }
2886 
2887 /*
2888  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890  * the values which we write to it will be identical to the values which it
2891  * already has. --akpm
2892  */
2893 void do_SAK(struct tty_struct *tty)
2894 {
2895 	if (!tty)
2896 		return;
2897 	schedule_work(&tty->SAK_work);
2898 }
2899 
2900 EXPORT_SYMBOL(do_SAK);
2901 
2902 static int dev_match_devt(struct device *dev, void *data)
2903 {
2904 	dev_t *devt = data;
2905 	return dev->devt == *devt;
2906 }
2907 
2908 /* Must put_device() after it's unused! */
2909 static struct device *tty_get_device(struct tty_struct *tty)
2910 {
2911 	dev_t devt = tty_devnum(tty);
2912 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2913 }
2914 
2915 
2916 /**
2917  *	initialize_tty_struct
2918  *	@tty: tty to initialize
2919  *
2920  *	This subroutine initializes a tty structure that has been newly
2921  *	allocated.
2922  *
2923  *	Locking: none - tty in question must not be exposed at this point
2924  */
2925 
2926 void initialize_tty_struct(struct tty_struct *tty,
2927 		struct tty_driver *driver, int idx)
2928 {
2929 	memset(tty, 0, sizeof(struct tty_struct));
2930 	kref_init(&tty->kref);
2931 	tty->magic = TTY_MAGIC;
2932 	tty_ldisc_init(tty);
2933 	tty->session = NULL;
2934 	tty->pgrp = NULL;
2935 	tty->overrun_time = jiffies;
2936 	tty_buffer_init(tty);
2937 	mutex_init(&tty->termios_mutex);
2938 	mutex_init(&tty->ldisc_mutex);
2939 	init_waitqueue_head(&tty->write_wait);
2940 	init_waitqueue_head(&tty->read_wait);
2941 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2942 	mutex_init(&tty->atomic_read_lock);
2943 	mutex_init(&tty->atomic_write_lock);
2944 	mutex_init(&tty->output_lock);
2945 	mutex_init(&tty->echo_lock);
2946 	spin_lock_init(&tty->read_lock);
2947 	spin_lock_init(&tty->ctrl_lock);
2948 	INIT_LIST_HEAD(&tty->tty_files);
2949 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2950 
2951 	tty->driver = driver;
2952 	tty->ops = driver->ops;
2953 	tty->index = idx;
2954 	tty_line_name(driver, idx, tty->name);
2955 	tty->dev = tty_get_device(tty);
2956 }
2957 
2958 /**
2959  *	deinitialize_tty_struct
2960  *	@tty: tty to deinitialize
2961  *
2962  *	This subroutine deinitializes a tty structure that has been newly
2963  *	allocated but tty_release cannot be called on that yet.
2964  *
2965  *	Locking: none - tty in question must not be exposed at this point
2966  */
2967 void deinitialize_tty_struct(struct tty_struct *tty)
2968 {
2969 	tty_ldisc_deinit(tty);
2970 }
2971 
2972 /**
2973  *	tty_put_char	-	write one character to a tty
2974  *	@tty: tty
2975  *	@ch: character
2976  *
2977  *	Write one byte to the tty using the provided put_char method
2978  *	if present. Returns the number of characters successfully output.
2979  *
2980  *	Note: the specific put_char operation in the driver layer may go
2981  *	away soon. Don't call it directly, use this method
2982  */
2983 
2984 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2985 {
2986 	if (tty->ops->put_char)
2987 		return tty->ops->put_char(tty, ch);
2988 	return tty->ops->write(tty, &ch, 1);
2989 }
2990 EXPORT_SYMBOL_GPL(tty_put_char);
2991 
2992 struct class *tty_class;
2993 
2994 /**
2995  *	tty_register_device - register a tty device
2996  *	@driver: the tty driver that describes the tty device
2997  *	@index: the index in the tty driver for this tty device
2998  *	@device: a struct device that is associated with this tty device.
2999  *		This field is optional, if there is no known struct device
3000  *		for this tty device it can be set to NULL safely.
3001  *
3002  *	Returns a pointer to the struct device for this tty device
3003  *	(or ERR_PTR(-EFOO) on error).
3004  *
3005  *	This call is required to be made to register an individual tty device
3006  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3007  *	that bit is not set, this function should not be called by a tty
3008  *	driver.
3009  *
3010  *	Locking: ??
3011  */
3012 
3013 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3014 				   struct device *device)
3015 {
3016 	char name[64];
3017 	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3018 
3019 	if (index >= driver->num) {
3020 		printk(KERN_ERR "Attempt to register invalid tty line number "
3021 		       " (%d).\n", index);
3022 		return ERR_PTR(-EINVAL);
3023 	}
3024 
3025 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3026 		pty_line_name(driver, index, name);
3027 	else
3028 		tty_line_name(driver, index, name);
3029 
3030 	return device_create(tty_class, device, dev, NULL, name);
3031 }
3032 EXPORT_SYMBOL(tty_register_device);
3033 
3034 /**
3035  * 	tty_unregister_device - unregister a tty device
3036  * 	@driver: the tty driver that describes the tty device
3037  * 	@index: the index in the tty driver for this tty device
3038  *
3039  * 	If a tty device is registered with a call to tty_register_device() then
3040  *	this function must be called when the tty device is gone.
3041  *
3042  *	Locking: ??
3043  */
3044 
3045 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3046 {
3047 	device_destroy(tty_class,
3048 		MKDEV(driver->major, driver->minor_start) + index);
3049 }
3050 EXPORT_SYMBOL(tty_unregister_device);
3051 
3052 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3053 {
3054 	struct tty_driver *driver;
3055 
3056 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057 	if (driver) {
3058 		kref_init(&driver->kref);
3059 		driver->magic = TTY_DRIVER_MAGIC;
3060 		driver->num = lines;
3061 		driver->owner = owner;
3062 		/* later we'll move allocation of tables here */
3063 	}
3064 	return driver;
3065 }
3066 EXPORT_SYMBOL(__alloc_tty_driver);
3067 
3068 static void destruct_tty_driver(struct kref *kref)
3069 {
3070 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3071 	int i;
3072 	struct ktermios *tp;
3073 	void *p;
3074 
3075 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3076 		/*
3077 		 * Free the termios and termios_locked structures because
3078 		 * we don't want to get memory leaks when modular tty
3079 		 * drivers are removed from the kernel.
3080 		 */
3081 		for (i = 0; i < driver->num; i++) {
3082 			tp = driver->termios[i];
3083 			if (tp) {
3084 				driver->termios[i] = NULL;
3085 				kfree(tp);
3086 			}
3087 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3088 				tty_unregister_device(driver, i);
3089 		}
3090 		p = driver->ttys;
3091 		proc_tty_unregister_driver(driver);
3092 		driver->ttys = NULL;
3093 		driver->termios = NULL;
3094 		kfree(p);
3095 		cdev_del(&driver->cdev);
3096 	}
3097 	kfree(driver);
3098 }
3099 
3100 void tty_driver_kref_put(struct tty_driver *driver)
3101 {
3102 	kref_put(&driver->kref, destruct_tty_driver);
3103 }
3104 EXPORT_SYMBOL(tty_driver_kref_put);
3105 
3106 void tty_set_operations(struct tty_driver *driver,
3107 			const struct tty_operations *op)
3108 {
3109 	driver->ops = op;
3110 };
3111 EXPORT_SYMBOL(tty_set_operations);
3112 
3113 void put_tty_driver(struct tty_driver *d)
3114 {
3115 	tty_driver_kref_put(d);
3116 }
3117 EXPORT_SYMBOL(put_tty_driver);
3118 
3119 /*
3120  * Called by a tty driver to register itself.
3121  */
3122 int tty_register_driver(struct tty_driver *driver)
3123 {
3124 	int error;
3125 	int i;
3126 	dev_t dev;
3127 	void **p = NULL;
3128 	struct device *d;
3129 
3130 	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3131 		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3132 		if (!p)
3133 			return -ENOMEM;
3134 	}
3135 
3136 	if (!driver->major) {
3137 		error = alloc_chrdev_region(&dev, driver->minor_start,
3138 						driver->num, driver->name);
3139 		if (!error) {
3140 			driver->major = MAJOR(dev);
3141 			driver->minor_start = MINOR(dev);
3142 		}
3143 	} else {
3144 		dev = MKDEV(driver->major, driver->minor_start);
3145 		error = register_chrdev_region(dev, driver->num, driver->name);
3146 	}
3147 	if (error < 0) {
3148 		kfree(p);
3149 		return error;
3150 	}
3151 
3152 	if (p) {
3153 		driver->ttys = (struct tty_struct **)p;
3154 		driver->termios = (struct ktermios **)(p + driver->num);
3155 	} else {
3156 		driver->ttys = NULL;
3157 		driver->termios = NULL;
3158 	}
3159 
3160 	cdev_init(&driver->cdev, &tty_fops);
3161 	driver->cdev.owner = driver->owner;
3162 	error = cdev_add(&driver->cdev, dev, driver->num);
3163 	if (error) {
3164 		unregister_chrdev_region(dev, driver->num);
3165 		driver->ttys = NULL;
3166 		driver->termios = NULL;
3167 		kfree(p);
3168 		return error;
3169 	}
3170 
3171 	mutex_lock(&tty_mutex);
3172 	list_add(&driver->tty_drivers, &tty_drivers);
3173 	mutex_unlock(&tty_mutex);
3174 
3175 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3176 		for (i = 0; i < driver->num; i++) {
3177 			d = tty_register_device(driver, i, NULL);
3178 			if (IS_ERR(d)) {
3179 				error = PTR_ERR(d);
3180 				goto err;
3181 			}
3182 		}
3183 	}
3184 	proc_tty_register_driver(driver);
3185 	driver->flags |= TTY_DRIVER_INSTALLED;
3186 	return 0;
3187 
3188 err:
3189 	for (i--; i >= 0; i--)
3190 		tty_unregister_device(driver, i);
3191 
3192 	mutex_lock(&tty_mutex);
3193 	list_del(&driver->tty_drivers);
3194 	mutex_unlock(&tty_mutex);
3195 
3196 	unregister_chrdev_region(dev, driver->num);
3197 	driver->ttys = NULL;
3198 	driver->termios = NULL;
3199 	kfree(p);
3200 	return error;
3201 }
3202 
3203 EXPORT_SYMBOL(tty_register_driver);
3204 
3205 /*
3206  * Called by a tty driver to unregister itself.
3207  */
3208 int tty_unregister_driver(struct tty_driver *driver)
3209 {
3210 #if 0
3211 	/* FIXME */
3212 	if (driver->refcount)
3213 		return -EBUSY;
3214 #endif
3215 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3216 				driver->num);
3217 	mutex_lock(&tty_mutex);
3218 	list_del(&driver->tty_drivers);
3219 	mutex_unlock(&tty_mutex);
3220 	return 0;
3221 }
3222 
3223 EXPORT_SYMBOL(tty_unregister_driver);
3224 
3225 dev_t tty_devnum(struct tty_struct *tty)
3226 {
3227 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3228 }
3229 EXPORT_SYMBOL(tty_devnum);
3230 
3231 void proc_clear_tty(struct task_struct *p)
3232 {
3233 	unsigned long flags;
3234 	struct tty_struct *tty;
3235 	spin_lock_irqsave(&p->sighand->siglock, flags);
3236 	tty = p->signal->tty;
3237 	p->signal->tty = NULL;
3238 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3239 	tty_kref_put(tty);
3240 }
3241 
3242 /* Called under the sighand lock */
3243 
3244 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3245 {
3246 	if (tty) {
3247 		unsigned long flags;
3248 		/* We should not have a session or pgrp to put here but.... */
3249 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3250 		put_pid(tty->session);
3251 		put_pid(tty->pgrp);
3252 		tty->pgrp = get_pid(task_pgrp(tsk));
3253 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3254 		tty->session = get_pid(task_session(tsk));
3255 		if (tsk->signal->tty) {
3256 			printk(KERN_DEBUG "tty not NULL!!\n");
3257 			tty_kref_put(tsk->signal->tty);
3258 		}
3259 	}
3260 	put_pid(tsk->signal->tty_old_pgrp);
3261 	tsk->signal->tty = tty_kref_get(tty);
3262 	tsk->signal->tty_old_pgrp = NULL;
3263 }
3264 
3265 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3266 {
3267 	spin_lock_irq(&tsk->sighand->siglock);
3268 	__proc_set_tty(tsk, tty);
3269 	spin_unlock_irq(&tsk->sighand->siglock);
3270 }
3271 
3272 struct tty_struct *get_current_tty(void)
3273 {
3274 	struct tty_struct *tty;
3275 	unsigned long flags;
3276 
3277 	spin_lock_irqsave(&current->sighand->siglock, flags);
3278 	tty = tty_kref_get(current->signal->tty);
3279 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3280 	return tty;
3281 }
3282 EXPORT_SYMBOL_GPL(get_current_tty);
3283 
3284 void tty_default_fops(struct file_operations *fops)
3285 {
3286 	*fops = tty_fops;
3287 }
3288 
3289 /*
3290  * Initialize the console device. This is called *early*, so
3291  * we can't necessarily depend on lots of kernel help here.
3292  * Just do some early initializations, and do the complex setup
3293  * later.
3294  */
3295 void __init console_init(void)
3296 {
3297 	initcall_t *call;
3298 
3299 	/* Setup the default TTY line discipline. */
3300 	tty_ldisc_begin();
3301 
3302 	/*
3303 	 * set up the console device so that later boot sequences can
3304 	 * inform about problems etc..
3305 	 */
3306 	call = __con_initcall_start;
3307 	while (call < __con_initcall_end) {
3308 		(*call)();
3309 		call++;
3310 	}
3311 }
3312 
3313 static char *tty_devnode(struct device *dev, umode_t *mode)
3314 {
3315 	if (!mode)
3316 		return NULL;
3317 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3318 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3319 		*mode = 0666;
3320 	return NULL;
3321 }
3322 
3323 static int __init tty_class_init(void)
3324 {
3325 	tty_class = class_create(THIS_MODULE, "tty");
3326 	if (IS_ERR(tty_class))
3327 		return PTR_ERR(tty_class);
3328 	tty_class->devnode = tty_devnode;
3329 	return 0;
3330 }
3331 
3332 postcore_initcall(tty_class_init);
3333 
3334 /* 3/2004 jmc: why do these devices exist? */
3335 static struct cdev tty_cdev, console_cdev;
3336 
3337 static ssize_t show_cons_active(struct device *dev,
3338 				struct device_attribute *attr, char *buf)
3339 {
3340 	struct console *cs[16];
3341 	int i = 0;
3342 	struct console *c;
3343 	ssize_t count = 0;
3344 
3345 	console_lock();
3346 	for_each_console(c) {
3347 		if (!c->device)
3348 			continue;
3349 		if (!c->write)
3350 			continue;
3351 		if ((c->flags & CON_ENABLED) == 0)
3352 			continue;
3353 		cs[i++] = c;
3354 		if (i >= ARRAY_SIZE(cs))
3355 			break;
3356 	}
3357 	while (i--)
3358 		count += sprintf(buf + count, "%s%d%c",
3359 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3360 	console_unlock();
3361 
3362 	return count;
3363 }
3364 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3365 
3366 static struct device *consdev;
3367 
3368 void console_sysfs_notify(void)
3369 {
3370 	if (consdev)
3371 		sysfs_notify(&consdev->kobj, NULL, "active");
3372 }
3373 
3374 /*
3375  * Ok, now we can initialize the rest of the tty devices and can count
3376  * on memory allocations, interrupts etc..
3377  */
3378 int __init tty_init(void)
3379 {
3380 	cdev_init(&tty_cdev, &tty_fops);
3381 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3382 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3383 		panic("Couldn't register /dev/tty driver\n");
3384 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3385 
3386 	cdev_init(&console_cdev, &console_fops);
3387 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3388 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3389 		panic("Couldn't register /dev/console driver\n");
3390 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3391 			      "console");
3392 	if (IS_ERR(consdev))
3393 		consdev = NULL;
3394 	else
3395 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3396 
3397 #ifdef CONFIG_VT
3398 	vty_init(&console_fops);
3399 #endif
3400 	return 0;
3401 }
3402 
3403