1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 110 #define TTY_PARANOIA_CHECK 1 111 #define CHECK_TTY_COUNT 1 112 113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 114 .c_iflag = ICRNL | IXON, 115 .c_oflag = OPOST | ONLCR, 116 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 118 ECHOCTL | ECHOKE | IEXTEN, 119 .c_cc = INIT_C_CC, 120 .c_ispeed = 38400, 121 .c_ospeed = 38400 122 }; 123 124 EXPORT_SYMBOL(tty_std_termios); 125 126 /* This list gets poked at by procfs and various bits of boot up code. This 127 could do with some rationalisation such as pulling the tty proc function 128 into this file */ 129 130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 131 132 /* Mutex to protect creating and releasing a tty. This is shared with 133 vt.c for deeply disgusting hack reasons */ 134 DEFINE_MUTEX(tty_mutex); 135 EXPORT_SYMBOL(tty_mutex); 136 137 /* Spinlock to protect the tty->tty_files list */ 138 DEFINE_SPINLOCK(tty_files_lock); 139 140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 142 ssize_t redirected_tty_write(struct file *, const char __user *, 143 size_t, loff_t *); 144 static unsigned int tty_poll(struct file *, poll_table *); 145 static int tty_open(struct inode *, struct file *); 146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 147 #ifdef CONFIG_COMPAT 148 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 149 unsigned long arg); 150 #else 151 #define tty_compat_ioctl NULL 152 #endif 153 static int __tty_fasync(int fd, struct file *filp, int on); 154 static int tty_fasync(int fd, struct file *filp, int on); 155 static void release_tty(struct tty_struct *tty, int idx); 156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 158 159 /** 160 * alloc_tty_struct - allocate a tty object 161 * 162 * Return a new empty tty structure. The data fields have not 163 * been initialized in any way but has been zeroed 164 * 165 * Locking: none 166 */ 167 168 struct tty_struct *alloc_tty_struct(void) 169 { 170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL); 171 } 172 173 /** 174 * free_tty_struct - free a disused tty 175 * @tty: tty struct to free 176 * 177 * Free the write buffers, tty queue and tty memory itself. 178 * 179 * Locking: none. Must be called after tty is definitely unused 180 */ 181 182 void free_tty_struct(struct tty_struct *tty) 183 { 184 if (tty->dev) 185 put_device(tty->dev); 186 kfree(tty->write_buf); 187 tty_buffer_free_all(tty); 188 kfree(tty); 189 } 190 191 static inline struct tty_struct *file_tty(struct file *file) 192 { 193 return ((struct tty_file_private *)file->private_data)->tty; 194 } 195 196 int tty_alloc_file(struct file *file) 197 { 198 struct tty_file_private *priv; 199 200 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 201 if (!priv) 202 return -ENOMEM; 203 204 file->private_data = priv; 205 206 return 0; 207 } 208 209 /* Associate a new file with the tty structure */ 210 void tty_add_file(struct tty_struct *tty, struct file *file) 211 { 212 struct tty_file_private *priv = file->private_data; 213 214 priv->tty = tty; 215 priv->file = file; 216 217 spin_lock(&tty_files_lock); 218 list_add(&priv->list, &tty->tty_files); 219 spin_unlock(&tty_files_lock); 220 } 221 222 /** 223 * tty_free_file - free file->private_data 224 * 225 * This shall be used only for fail path handling when tty_add_file was not 226 * called yet. 227 */ 228 void tty_free_file(struct file *file) 229 { 230 struct tty_file_private *priv = file->private_data; 231 232 file->private_data = NULL; 233 kfree(priv); 234 } 235 236 /* Delete file from its tty */ 237 void tty_del_file(struct file *file) 238 { 239 struct tty_file_private *priv = file->private_data; 240 241 spin_lock(&tty_files_lock); 242 list_del(&priv->list); 243 spin_unlock(&tty_files_lock); 244 tty_free_file(file); 245 } 246 247 248 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 249 250 /** 251 * tty_name - return tty naming 252 * @tty: tty structure 253 * @buf: buffer for output 254 * 255 * Convert a tty structure into a name. The name reflects the kernel 256 * naming policy and if udev is in use may not reflect user space 257 * 258 * Locking: none 259 */ 260 261 char *tty_name(struct tty_struct *tty, char *buf) 262 { 263 if (!tty) /* Hmm. NULL pointer. That's fun. */ 264 strcpy(buf, "NULL tty"); 265 else 266 strcpy(buf, tty->name); 267 return buf; 268 } 269 270 EXPORT_SYMBOL(tty_name); 271 272 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 273 const char *routine) 274 { 275 #ifdef TTY_PARANOIA_CHECK 276 if (!tty) { 277 printk(KERN_WARNING 278 "null TTY for (%d:%d) in %s\n", 279 imajor(inode), iminor(inode), routine); 280 return 1; 281 } 282 if (tty->magic != TTY_MAGIC) { 283 printk(KERN_WARNING 284 "bad magic number for tty struct (%d:%d) in %s\n", 285 imajor(inode), iminor(inode), routine); 286 return 1; 287 } 288 #endif 289 return 0; 290 } 291 292 static int check_tty_count(struct tty_struct *tty, const char *routine) 293 { 294 #ifdef CHECK_TTY_COUNT 295 struct list_head *p; 296 int count = 0; 297 298 spin_lock(&tty_files_lock); 299 list_for_each(p, &tty->tty_files) { 300 count++; 301 } 302 spin_unlock(&tty_files_lock); 303 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 304 tty->driver->subtype == PTY_TYPE_SLAVE && 305 tty->link && tty->link->count) 306 count++; 307 if (tty->count != count) { 308 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 309 "!= #fd's(%d) in %s\n", 310 tty->name, tty->count, count, routine); 311 return count; 312 } 313 #endif 314 return 0; 315 } 316 317 /** 318 * get_tty_driver - find device of a tty 319 * @dev_t: device identifier 320 * @index: returns the index of the tty 321 * 322 * This routine returns a tty driver structure, given a device number 323 * and also passes back the index number. 324 * 325 * Locking: caller must hold tty_mutex 326 */ 327 328 static struct tty_driver *get_tty_driver(dev_t device, int *index) 329 { 330 struct tty_driver *p; 331 332 list_for_each_entry(p, &tty_drivers, tty_drivers) { 333 dev_t base = MKDEV(p->major, p->minor_start); 334 if (device < base || device >= base + p->num) 335 continue; 336 *index = device - base; 337 return tty_driver_kref_get(p); 338 } 339 return NULL; 340 } 341 342 #ifdef CONFIG_CONSOLE_POLL 343 344 /** 345 * tty_find_polling_driver - find device of a polled tty 346 * @name: name string to match 347 * @line: pointer to resulting tty line nr 348 * 349 * This routine returns a tty driver structure, given a name 350 * and the condition that the tty driver is capable of polled 351 * operation. 352 */ 353 struct tty_driver *tty_find_polling_driver(char *name, int *line) 354 { 355 struct tty_driver *p, *res = NULL; 356 int tty_line = 0; 357 int len; 358 char *str, *stp; 359 360 for (str = name; *str; str++) 361 if ((*str >= '0' && *str <= '9') || *str == ',') 362 break; 363 if (!*str) 364 return NULL; 365 366 len = str - name; 367 tty_line = simple_strtoul(str, &str, 10); 368 369 mutex_lock(&tty_mutex); 370 /* Search through the tty devices to look for a match */ 371 list_for_each_entry(p, &tty_drivers, tty_drivers) { 372 if (strncmp(name, p->name, len) != 0) 373 continue; 374 stp = str; 375 if (*stp == ',') 376 stp++; 377 if (*stp == '\0') 378 stp = NULL; 379 380 if (tty_line >= 0 && tty_line < p->num && p->ops && 381 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 382 res = tty_driver_kref_get(p); 383 *line = tty_line; 384 break; 385 } 386 } 387 mutex_unlock(&tty_mutex); 388 389 return res; 390 } 391 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 392 #endif 393 394 /** 395 * tty_check_change - check for POSIX terminal changes 396 * @tty: tty to check 397 * 398 * If we try to write to, or set the state of, a terminal and we're 399 * not in the foreground, send a SIGTTOU. If the signal is blocked or 400 * ignored, go ahead and perform the operation. (POSIX 7.2) 401 * 402 * Locking: ctrl_lock 403 */ 404 405 int tty_check_change(struct tty_struct *tty) 406 { 407 unsigned long flags; 408 int ret = 0; 409 410 if (current->signal->tty != tty) 411 return 0; 412 413 spin_lock_irqsave(&tty->ctrl_lock, flags); 414 415 if (!tty->pgrp) { 416 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 417 goto out_unlock; 418 } 419 if (task_pgrp(current) == tty->pgrp) 420 goto out_unlock; 421 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 422 if (is_ignored(SIGTTOU)) 423 goto out; 424 if (is_current_pgrp_orphaned()) { 425 ret = -EIO; 426 goto out; 427 } 428 kill_pgrp(task_pgrp(current), SIGTTOU, 1); 429 set_thread_flag(TIF_SIGPENDING); 430 ret = -ERESTARTSYS; 431 out: 432 return ret; 433 out_unlock: 434 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 435 return ret; 436 } 437 438 EXPORT_SYMBOL(tty_check_change); 439 440 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 441 size_t count, loff_t *ppos) 442 { 443 return 0; 444 } 445 446 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 447 size_t count, loff_t *ppos) 448 { 449 return -EIO; 450 } 451 452 /* No kernel lock held - none needed ;) */ 453 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 454 { 455 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 456 } 457 458 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 459 unsigned long arg) 460 { 461 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 462 } 463 464 static long hung_up_tty_compat_ioctl(struct file *file, 465 unsigned int cmd, unsigned long arg) 466 { 467 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 468 } 469 470 static const struct file_operations tty_fops = { 471 .llseek = no_llseek, 472 .read = tty_read, 473 .write = tty_write, 474 .poll = tty_poll, 475 .unlocked_ioctl = tty_ioctl, 476 .compat_ioctl = tty_compat_ioctl, 477 .open = tty_open, 478 .release = tty_release, 479 .fasync = tty_fasync, 480 }; 481 482 static const struct file_operations console_fops = { 483 .llseek = no_llseek, 484 .read = tty_read, 485 .write = redirected_tty_write, 486 .poll = tty_poll, 487 .unlocked_ioctl = tty_ioctl, 488 .compat_ioctl = tty_compat_ioctl, 489 .open = tty_open, 490 .release = tty_release, 491 .fasync = tty_fasync, 492 }; 493 494 static const struct file_operations hung_up_tty_fops = { 495 .llseek = no_llseek, 496 .read = hung_up_tty_read, 497 .write = hung_up_tty_write, 498 .poll = hung_up_tty_poll, 499 .unlocked_ioctl = hung_up_tty_ioctl, 500 .compat_ioctl = hung_up_tty_compat_ioctl, 501 .release = tty_release, 502 }; 503 504 static DEFINE_SPINLOCK(redirect_lock); 505 static struct file *redirect; 506 507 /** 508 * tty_wakeup - request more data 509 * @tty: terminal 510 * 511 * Internal and external helper for wakeups of tty. This function 512 * informs the line discipline if present that the driver is ready 513 * to receive more output data. 514 */ 515 516 void tty_wakeup(struct tty_struct *tty) 517 { 518 struct tty_ldisc *ld; 519 520 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 521 ld = tty_ldisc_ref(tty); 522 if (ld) { 523 if (ld->ops->write_wakeup) 524 ld->ops->write_wakeup(tty); 525 tty_ldisc_deref(ld); 526 } 527 } 528 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 529 } 530 531 EXPORT_SYMBOL_GPL(tty_wakeup); 532 533 /** 534 * __tty_hangup - actual handler for hangup events 535 * @work: tty device 536 * 537 * This can be called by the "eventd" kernel thread. That is process 538 * synchronous but doesn't hold any locks, so we need to make sure we 539 * have the appropriate locks for what we're doing. 540 * 541 * The hangup event clears any pending redirections onto the hung up 542 * device. It ensures future writes will error and it does the needed 543 * line discipline hangup and signal delivery. The tty object itself 544 * remains intact. 545 * 546 * Locking: 547 * BTM 548 * redirect lock for undoing redirection 549 * file list lock for manipulating list of ttys 550 * tty_ldisc_lock from called functions 551 * termios_mutex resetting termios data 552 * tasklist_lock to walk task list for hangup event 553 * ->siglock to protect ->signal/->sighand 554 */ 555 void __tty_hangup(struct tty_struct *tty) 556 { 557 struct file *cons_filp = NULL; 558 struct file *filp, *f = NULL; 559 struct task_struct *p; 560 struct tty_file_private *priv; 561 int closecount = 0, n; 562 unsigned long flags; 563 int refs = 0; 564 565 if (!tty) 566 return; 567 568 569 spin_lock(&redirect_lock); 570 if (redirect && file_tty(redirect) == tty) { 571 f = redirect; 572 redirect = NULL; 573 } 574 spin_unlock(&redirect_lock); 575 576 tty_lock(); 577 578 /* some functions below drop BTM, so we need this bit */ 579 set_bit(TTY_HUPPING, &tty->flags); 580 581 /* inuse_filps is protected by the single tty lock, 582 this really needs to change if we want to flush the 583 workqueue with the lock held */ 584 check_tty_count(tty, "tty_hangup"); 585 586 spin_lock(&tty_files_lock); 587 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 588 list_for_each_entry(priv, &tty->tty_files, list) { 589 filp = priv->file; 590 if (filp->f_op->write == redirected_tty_write) 591 cons_filp = filp; 592 if (filp->f_op->write != tty_write) 593 continue; 594 closecount++; 595 __tty_fasync(-1, filp, 0); /* can't block */ 596 filp->f_op = &hung_up_tty_fops; 597 } 598 spin_unlock(&tty_files_lock); 599 600 /* 601 * it drops BTM and thus races with reopen 602 * we protect the race by TTY_HUPPING 603 */ 604 tty_ldisc_hangup(tty); 605 606 read_lock(&tasklist_lock); 607 if (tty->session) { 608 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 609 spin_lock_irq(&p->sighand->siglock); 610 if (p->signal->tty == tty) { 611 p->signal->tty = NULL; 612 /* We defer the dereferences outside fo 613 the tasklist lock */ 614 refs++; 615 } 616 if (!p->signal->leader) { 617 spin_unlock_irq(&p->sighand->siglock); 618 continue; 619 } 620 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 621 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 622 put_pid(p->signal->tty_old_pgrp); /* A noop */ 623 spin_lock_irqsave(&tty->ctrl_lock, flags); 624 if (tty->pgrp) 625 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 626 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 627 spin_unlock_irq(&p->sighand->siglock); 628 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 629 } 630 read_unlock(&tasklist_lock); 631 632 spin_lock_irqsave(&tty->ctrl_lock, flags); 633 clear_bit(TTY_THROTTLED, &tty->flags); 634 clear_bit(TTY_PUSH, &tty->flags); 635 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 636 put_pid(tty->session); 637 put_pid(tty->pgrp); 638 tty->session = NULL; 639 tty->pgrp = NULL; 640 tty->ctrl_status = 0; 641 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 642 643 /* Account for the p->signal references we killed */ 644 while (refs--) 645 tty_kref_put(tty); 646 647 /* 648 * If one of the devices matches a console pointer, we 649 * cannot just call hangup() because that will cause 650 * tty->count and state->count to go out of sync. 651 * So we just call close() the right number of times. 652 */ 653 if (cons_filp) { 654 if (tty->ops->close) 655 for (n = 0; n < closecount; n++) 656 tty->ops->close(tty, cons_filp); 657 } else if (tty->ops->hangup) 658 (tty->ops->hangup)(tty); 659 /* 660 * We don't want to have driver/ldisc interactions beyond 661 * the ones we did here. The driver layer expects no 662 * calls after ->hangup() from the ldisc side. However we 663 * can't yet guarantee all that. 664 */ 665 set_bit(TTY_HUPPED, &tty->flags); 666 clear_bit(TTY_HUPPING, &tty->flags); 667 tty_ldisc_enable(tty); 668 669 tty_unlock(); 670 671 if (f) 672 fput(f); 673 } 674 675 static void do_tty_hangup(struct work_struct *work) 676 { 677 struct tty_struct *tty = 678 container_of(work, struct tty_struct, hangup_work); 679 680 __tty_hangup(tty); 681 } 682 683 /** 684 * tty_hangup - trigger a hangup event 685 * @tty: tty to hangup 686 * 687 * A carrier loss (virtual or otherwise) has occurred on this like 688 * schedule a hangup sequence to run after this event. 689 */ 690 691 void tty_hangup(struct tty_struct *tty) 692 { 693 #ifdef TTY_DEBUG_HANGUP 694 char buf[64]; 695 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf)); 696 #endif 697 schedule_work(&tty->hangup_work); 698 } 699 700 EXPORT_SYMBOL(tty_hangup); 701 702 /** 703 * tty_vhangup - process vhangup 704 * @tty: tty to hangup 705 * 706 * The user has asked via system call for the terminal to be hung up. 707 * We do this synchronously so that when the syscall returns the process 708 * is complete. That guarantee is necessary for security reasons. 709 */ 710 711 void tty_vhangup(struct tty_struct *tty) 712 { 713 #ifdef TTY_DEBUG_HANGUP 714 char buf[64]; 715 716 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf)); 717 #endif 718 __tty_hangup(tty); 719 } 720 721 EXPORT_SYMBOL(tty_vhangup); 722 723 724 /** 725 * tty_vhangup_self - process vhangup for own ctty 726 * 727 * Perform a vhangup on the current controlling tty 728 */ 729 730 void tty_vhangup_self(void) 731 { 732 struct tty_struct *tty; 733 734 tty = get_current_tty(); 735 if (tty) { 736 tty_vhangup(tty); 737 tty_kref_put(tty); 738 } 739 } 740 741 /** 742 * tty_hung_up_p - was tty hung up 743 * @filp: file pointer of tty 744 * 745 * Return true if the tty has been subject to a vhangup or a carrier 746 * loss 747 */ 748 749 int tty_hung_up_p(struct file *filp) 750 { 751 return (filp->f_op == &hung_up_tty_fops); 752 } 753 754 EXPORT_SYMBOL(tty_hung_up_p); 755 756 static void session_clear_tty(struct pid *session) 757 { 758 struct task_struct *p; 759 do_each_pid_task(session, PIDTYPE_SID, p) { 760 proc_clear_tty(p); 761 } while_each_pid_task(session, PIDTYPE_SID, p); 762 } 763 764 /** 765 * disassociate_ctty - disconnect controlling tty 766 * @on_exit: true if exiting so need to "hang up" the session 767 * 768 * This function is typically called only by the session leader, when 769 * it wants to disassociate itself from its controlling tty. 770 * 771 * It performs the following functions: 772 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 773 * (2) Clears the tty from being controlling the session 774 * (3) Clears the controlling tty for all processes in the 775 * session group. 776 * 777 * The argument on_exit is set to 1 if called when a process is 778 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 779 * 780 * Locking: 781 * BTM is taken for hysterical raisins, and held when 782 * called from no_tty(). 783 * tty_mutex is taken to protect tty 784 * ->siglock is taken to protect ->signal/->sighand 785 * tasklist_lock is taken to walk process list for sessions 786 * ->siglock is taken to protect ->signal/->sighand 787 */ 788 789 void disassociate_ctty(int on_exit) 790 { 791 struct tty_struct *tty; 792 793 if (!current->signal->leader) 794 return; 795 796 tty = get_current_tty(); 797 if (tty) { 798 struct pid *tty_pgrp = get_pid(tty->pgrp); 799 if (on_exit) { 800 if (tty->driver->type != TTY_DRIVER_TYPE_PTY) 801 tty_vhangup(tty); 802 } 803 tty_kref_put(tty); 804 if (tty_pgrp) { 805 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 806 if (!on_exit) 807 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 808 put_pid(tty_pgrp); 809 } 810 } else if (on_exit) { 811 struct pid *old_pgrp; 812 spin_lock_irq(¤t->sighand->siglock); 813 old_pgrp = current->signal->tty_old_pgrp; 814 current->signal->tty_old_pgrp = NULL; 815 spin_unlock_irq(¤t->sighand->siglock); 816 if (old_pgrp) { 817 kill_pgrp(old_pgrp, SIGHUP, on_exit); 818 kill_pgrp(old_pgrp, SIGCONT, on_exit); 819 put_pid(old_pgrp); 820 } 821 return; 822 } 823 824 spin_lock_irq(¤t->sighand->siglock); 825 put_pid(current->signal->tty_old_pgrp); 826 current->signal->tty_old_pgrp = NULL; 827 spin_unlock_irq(¤t->sighand->siglock); 828 829 tty = get_current_tty(); 830 if (tty) { 831 unsigned long flags; 832 spin_lock_irqsave(&tty->ctrl_lock, flags); 833 put_pid(tty->session); 834 put_pid(tty->pgrp); 835 tty->session = NULL; 836 tty->pgrp = NULL; 837 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 838 tty_kref_put(tty); 839 } else { 840 #ifdef TTY_DEBUG_HANGUP 841 printk(KERN_DEBUG "error attempted to write to tty [0x%p]" 842 " = NULL", tty); 843 #endif 844 } 845 846 /* Now clear signal->tty under the lock */ 847 read_lock(&tasklist_lock); 848 session_clear_tty(task_session(current)); 849 read_unlock(&tasklist_lock); 850 } 851 852 /** 853 * 854 * no_tty - Ensure the current process does not have a controlling tty 855 */ 856 void no_tty(void) 857 { 858 /* FIXME: Review locking here. The tty_lock never covered any race 859 between a new association and proc_clear_tty but possible we need 860 to protect against this anyway */ 861 struct task_struct *tsk = current; 862 disassociate_ctty(0); 863 proc_clear_tty(tsk); 864 } 865 866 867 /** 868 * stop_tty - propagate flow control 869 * @tty: tty to stop 870 * 871 * Perform flow control to the driver. For PTY/TTY pairs we 872 * must also propagate the TIOCKPKT status. May be called 873 * on an already stopped device and will not re-call the driver 874 * method. 875 * 876 * This functionality is used by both the line disciplines for 877 * halting incoming flow and by the driver. It may therefore be 878 * called from any context, may be under the tty atomic_write_lock 879 * but not always. 880 * 881 * Locking: 882 * Uses the tty control lock internally 883 */ 884 885 void stop_tty(struct tty_struct *tty) 886 { 887 unsigned long flags; 888 spin_lock_irqsave(&tty->ctrl_lock, flags); 889 if (tty->stopped) { 890 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 891 return; 892 } 893 tty->stopped = 1; 894 if (tty->link && tty->link->packet) { 895 tty->ctrl_status &= ~TIOCPKT_START; 896 tty->ctrl_status |= TIOCPKT_STOP; 897 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 898 } 899 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 900 if (tty->ops->stop) 901 (tty->ops->stop)(tty); 902 } 903 904 EXPORT_SYMBOL(stop_tty); 905 906 /** 907 * start_tty - propagate flow control 908 * @tty: tty to start 909 * 910 * Start a tty that has been stopped if at all possible. Perform 911 * any necessary wakeups and propagate the TIOCPKT status. If this 912 * is the tty was previous stopped and is being started then the 913 * driver start method is invoked and the line discipline woken. 914 * 915 * Locking: 916 * ctrl_lock 917 */ 918 919 void start_tty(struct tty_struct *tty) 920 { 921 unsigned long flags; 922 spin_lock_irqsave(&tty->ctrl_lock, flags); 923 if (!tty->stopped || tty->flow_stopped) { 924 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 925 return; 926 } 927 tty->stopped = 0; 928 if (tty->link && tty->link->packet) { 929 tty->ctrl_status &= ~TIOCPKT_STOP; 930 tty->ctrl_status |= TIOCPKT_START; 931 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 932 } 933 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 934 if (tty->ops->start) 935 (tty->ops->start)(tty); 936 /* If we have a running line discipline it may need kicking */ 937 tty_wakeup(tty); 938 } 939 940 EXPORT_SYMBOL(start_tty); 941 942 /** 943 * tty_read - read method for tty device files 944 * @file: pointer to tty file 945 * @buf: user buffer 946 * @count: size of user buffer 947 * @ppos: unused 948 * 949 * Perform the read system call function on this terminal device. Checks 950 * for hung up devices before calling the line discipline method. 951 * 952 * Locking: 953 * Locks the line discipline internally while needed. Multiple 954 * read calls may be outstanding in parallel. 955 */ 956 957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 958 loff_t *ppos) 959 { 960 int i; 961 struct inode *inode = file->f_path.dentry->d_inode; 962 struct tty_struct *tty = file_tty(file); 963 struct tty_ldisc *ld; 964 965 if (tty_paranoia_check(tty, inode, "tty_read")) 966 return -EIO; 967 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 968 return -EIO; 969 970 /* We want to wait for the line discipline to sort out in this 971 situation */ 972 ld = tty_ldisc_ref_wait(tty); 973 if (ld->ops->read) 974 i = (ld->ops->read)(tty, file, buf, count); 975 else 976 i = -EIO; 977 tty_ldisc_deref(ld); 978 if (i > 0) 979 inode->i_atime = current_fs_time(inode->i_sb); 980 return i; 981 } 982 983 void tty_write_unlock(struct tty_struct *tty) 984 __releases(&tty->atomic_write_lock) 985 { 986 mutex_unlock(&tty->atomic_write_lock); 987 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 988 } 989 990 int tty_write_lock(struct tty_struct *tty, int ndelay) 991 __acquires(&tty->atomic_write_lock) 992 { 993 if (!mutex_trylock(&tty->atomic_write_lock)) { 994 if (ndelay) 995 return -EAGAIN; 996 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 997 return -ERESTARTSYS; 998 } 999 return 0; 1000 } 1001 1002 /* 1003 * Split writes up in sane blocksizes to avoid 1004 * denial-of-service type attacks 1005 */ 1006 static inline ssize_t do_tty_write( 1007 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1008 struct tty_struct *tty, 1009 struct file *file, 1010 const char __user *buf, 1011 size_t count) 1012 { 1013 ssize_t ret, written = 0; 1014 unsigned int chunk; 1015 1016 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1017 if (ret < 0) 1018 return ret; 1019 1020 /* 1021 * We chunk up writes into a temporary buffer. This 1022 * simplifies low-level drivers immensely, since they 1023 * don't have locking issues and user mode accesses. 1024 * 1025 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1026 * big chunk-size.. 1027 * 1028 * The default chunk-size is 2kB, because the NTTY 1029 * layer has problems with bigger chunks. It will 1030 * claim to be able to handle more characters than 1031 * it actually does. 1032 * 1033 * FIXME: This can probably go away now except that 64K chunks 1034 * are too likely to fail unless switched to vmalloc... 1035 */ 1036 chunk = 2048; 1037 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1038 chunk = 65536; 1039 if (count < chunk) 1040 chunk = count; 1041 1042 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1043 if (tty->write_cnt < chunk) { 1044 unsigned char *buf_chunk; 1045 1046 if (chunk < 1024) 1047 chunk = 1024; 1048 1049 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1050 if (!buf_chunk) { 1051 ret = -ENOMEM; 1052 goto out; 1053 } 1054 kfree(tty->write_buf); 1055 tty->write_cnt = chunk; 1056 tty->write_buf = buf_chunk; 1057 } 1058 1059 /* Do the write .. */ 1060 for (;;) { 1061 size_t size = count; 1062 if (size > chunk) 1063 size = chunk; 1064 ret = -EFAULT; 1065 if (copy_from_user(tty->write_buf, buf, size)) 1066 break; 1067 ret = write(tty, file, tty->write_buf, size); 1068 if (ret <= 0) 1069 break; 1070 written += ret; 1071 buf += ret; 1072 count -= ret; 1073 if (!count) 1074 break; 1075 ret = -ERESTARTSYS; 1076 if (signal_pending(current)) 1077 break; 1078 cond_resched(); 1079 } 1080 if (written) { 1081 struct inode *inode = file->f_path.dentry->d_inode; 1082 inode->i_mtime = current_fs_time(inode->i_sb); 1083 ret = written; 1084 } 1085 out: 1086 tty_write_unlock(tty); 1087 return ret; 1088 } 1089 1090 /** 1091 * tty_write_message - write a message to a certain tty, not just the console. 1092 * @tty: the destination tty_struct 1093 * @msg: the message to write 1094 * 1095 * This is used for messages that need to be redirected to a specific tty. 1096 * We don't put it into the syslog queue right now maybe in the future if 1097 * really needed. 1098 * 1099 * We must still hold the BTM and test the CLOSING flag for the moment. 1100 */ 1101 1102 void tty_write_message(struct tty_struct *tty, char *msg) 1103 { 1104 if (tty) { 1105 mutex_lock(&tty->atomic_write_lock); 1106 tty_lock(); 1107 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) { 1108 tty_unlock(); 1109 tty->ops->write(tty, msg, strlen(msg)); 1110 } else 1111 tty_unlock(); 1112 tty_write_unlock(tty); 1113 } 1114 return; 1115 } 1116 1117 1118 /** 1119 * tty_write - write method for tty device file 1120 * @file: tty file pointer 1121 * @buf: user data to write 1122 * @count: bytes to write 1123 * @ppos: unused 1124 * 1125 * Write data to a tty device via the line discipline. 1126 * 1127 * Locking: 1128 * Locks the line discipline as required 1129 * Writes to the tty driver are serialized by the atomic_write_lock 1130 * and are then processed in chunks to the device. The line discipline 1131 * write method will not be invoked in parallel for each device. 1132 */ 1133 1134 static ssize_t tty_write(struct file *file, const char __user *buf, 1135 size_t count, loff_t *ppos) 1136 { 1137 struct inode *inode = file->f_path.dentry->d_inode; 1138 struct tty_struct *tty = file_tty(file); 1139 struct tty_ldisc *ld; 1140 ssize_t ret; 1141 1142 if (tty_paranoia_check(tty, inode, "tty_write")) 1143 return -EIO; 1144 if (!tty || !tty->ops->write || 1145 (test_bit(TTY_IO_ERROR, &tty->flags))) 1146 return -EIO; 1147 /* Short term debug to catch buggy drivers */ 1148 if (tty->ops->write_room == NULL) 1149 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1150 tty->driver->name); 1151 ld = tty_ldisc_ref_wait(tty); 1152 if (!ld->ops->write) 1153 ret = -EIO; 1154 else 1155 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1156 tty_ldisc_deref(ld); 1157 return ret; 1158 } 1159 1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1161 size_t count, loff_t *ppos) 1162 { 1163 struct file *p = NULL; 1164 1165 spin_lock(&redirect_lock); 1166 if (redirect) { 1167 get_file(redirect); 1168 p = redirect; 1169 } 1170 spin_unlock(&redirect_lock); 1171 1172 if (p) { 1173 ssize_t res; 1174 res = vfs_write(p, buf, count, &p->f_pos); 1175 fput(p); 1176 return res; 1177 } 1178 return tty_write(file, buf, count, ppos); 1179 } 1180 1181 static char ptychar[] = "pqrstuvwxyzabcde"; 1182 1183 /** 1184 * pty_line_name - generate name for a pty 1185 * @driver: the tty driver in use 1186 * @index: the minor number 1187 * @p: output buffer of at least 6 bytes 1188 * 1189 * Generate a name from a driver reference and write it to the output 1190 * buffer. 1191 * 1192 * Locking: None 1193 */ 1194 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1195 { 1196 int i = index + driver->name_base; 1197 /* ->name is initialized to "ttyp", but "tty" is expected */ 1198 sprintf(p, "%s%c%x", 1199 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1200 ptychar[i >> 4 & 0xf], i & 0xf); 1201 } 1202 1203 /** 1204 * tty_line_name - generate name for a tty 1205 * @driver: the tty driver in use 1206 * @index: the minor number 1207 * @p: output buffer of at least 7 bytes 1208 * 1209 * Generate a name from a driver reference and write it to the output 1210 * buffer. 1211 * 1212 * Locking: None 1213 */ 1214 static void tty_line_name(struct tty_driver *driver, int index, char *p) 1215 { 1216 sprintf(p, "%s%d", driver->name, index + driver->name_base); 1217 } 1218 1219 /** 1220 * tty_driver_lookup_tty() - find an existing tty, if any 1221 * @driver: the driver for the tty 1222 * @idx: the minor number 1223 * 1224 * Return the tty, if found or ERR_PTR() otherwise. 1225 * 1226 * Locking: tty_mutex must be held. If tty is found, the mutex must 1227 * be held until the 'fast-open' is also done. Will change once we 1228 * have refcounting in the driver and per driver locking 1229 */ 1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1231 struct inode *inode, int idx) 1232 { 1233 if (driver->ops->lookup) 1234 return driver->ops->lookup(driver, inode, idx); 1235 1236 return driver->ttys[idx]; 1237 } 1238 1239 /** 1240 * tty_init_termios - helper for termios setup 1241 * @tty: the tty to set up 1242 * 1243 * Initialise the termios structures for this tty. Thus runs under 1244 * the tty_mutex currently so we can be relaxed about ordering. 1245 */ 1246 1247 int tty_init_termios(struct tty_struct *tty) 1248 { 1249 struct ktermios *tp; 1250 int idx = tty->index; 1251 1252 tp = tty->driver->termios[idx]; 1253 if (tp == NULL) { 1254 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL); 1255 if (tp == NULL) 1256 return -ENOMEM; 1257 memcpy(tp, &tty->driver->init_termios, 1258 sizeof(struct ktermios)); 1259 tty->driver->termios[idx] = tp; 1260 } 1261 tty->termios = tp; 1262 tty->termios_locked = tp + 1; 1263 1264 /* Compatibility until drivers always set this */ 1265 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios); 1266 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios); 1267 return 0; 1268 } 1269 EXPORT_SYMBOL_GPL(tty_init_termios); 1270 1271 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1272 { 1273 int ret = tty_init_termios(tty); 1274 if (ret) 1275 return ret; 1276 1277 tty_driver_kref_get(driver); 1278 tty->count++; 1279 driver->ttys[tty->index] = tty; 1280 return 0; 1281 } 1282 EXPORT_SYMBOL_GPL(tty_standard_install); 1283 1284 /** 1285 * tty_driver_install_tty() - install a tty entry in the driver 1286 * @driver: the driver for the tty 1287 * @tty: the tty 1288 * 1289 * Install a tty object into the driver tables. The tty->index field 1290 * will be set by the time this is called. This method is responsible 1291 * for ensuring any need additional structures are allocated and 1292 * configured. 1293 * 1294 * Locking: tty_mutex for now 1295 */ 1296 static int tty_driver_install_tty(struct tty_driver *driver, 1297 struct tty_struct *tty) 1298 { 1299 return driver->ops->install ? driver->ops->install(driver, tty) : 1300 tty_standard_install(driver, tty); 1301 } 1302 1303 /** 1304 * tty_driver_remove_tty() - remove a tty from the driver tables 1305 * @driver: the driver for the tty 1306 * @idx: the minor number 1307 * 1308 * Remvoe a tty object from the driver tables. The tty->index field 1309 * will be set by the time this is called. 1310 * 1311 * Locking: tty_mutex for now 1312 */ 1313 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1314 { 1315 if (driver->ops->remove) 1316 driver->ops->remove(driver, tty); 1317 else 1318 driver->ttys[tty->index] = NULL; 1319 } 1320 1321 /* 1322 * tty_reopen() - fast re-open of an open tty 1323 * @tty - the tty to open 1324 * 1325 * Return 0 on success, -errno on error. 1326 * 1327 * Locking: tty_mutex must be held from the time the tty was found 1328 * till this open completes. 1329 */ 1330 static int tty_reopen(struct tty_struct *tty) 1331 { 1332 struct tty_driver *driver = tty->driver; 1333 1334 if (test_bit(TTY_CLOSING, &tty->flags) || 1335 test_bit(TTY_HUPPING, &tty->flags) || 1336 test_bit(TTY_LDISC_CHANGING, &tty->flags)) 1337 return -EIO; 1338 1339 if (driver->type == TTY_DRIVER_TYPE_PTY && 1340 driver->subtype == PTY_TYPE_MASTER) { 1341 /* 1342 * special case for PTY masters: only one open permitted, 1343 * and the slave side open count is incremented as well. 1344 */ 1345 if (tty->count) 1346 return -EIO; 1347 1348 tty->link->count++; 1349 } 1350 tty->count++; 1351 1352 mutex_lock(&tty->ldisc_mutex); 1353 WARN_ON(!test_bit(TTY_LDISC, &tty->flags)); 1354 mutex_unlock(&tty->ldisc_mutex); 1355 1356 return 0; 1357 } 1358 1359 /** 1360 * tty_init_dev - initialise a tty device 1361 * @driver: tty driver we are opening a device on 1362 * @idx: device index 1363 * @ret_tty: returned tty structure 1364 * 1365 * Prepare a tty device. This may not be a "new" clean device but 1366 * could also be an active device. The pty drivers require special 1367 * handling because of this. 1368 * 1369 * Locking: 1370 * The function is called under the tty_mutex, which 1371 * protects us from the tty struct or driver itself going away. 1372 * 1373 * On exit the tty device has the line discipline attached and 1374 * a reference count of 1. If a pair was created for pty/tty use 1375 * and the other was a pty master then it too has a reference count of 1. 1376 * 1377 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1378 * failed open. The new code protects the open with a mutex, so it's 1379 * really quite straightforward. The mutex locking can probably be 1380 * relaxed for the (most common) case of reopening a tty. 1381 */ 1382 1383 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1384 { 1385 struct tty_struct *tty; 1386 int retval; 1387 1388 /* 1389 * First time open is complex, especially for PTY devices. 1390 * This code guarantees that either everything succeeds and the 1391 * TTY is ready for operation, or else the table slots are vacated 1392 * and the allocated memory released. (Except that the termios 1393 * and locked termios may be retained.) 1394 */ 1395 1396 if (!try_module_get(driver->owner)) 1397 return ERR_PTR(-ENODEV); 1398 1399 tty = alloc_tty_struct(); 1400 if (!tty) { 1401 retval = -ENOMEM; 1402 goto err_module_put; 1403 } 1404 initialize_tty_struct(tty, driver, idx); 1405 1406 retval = tty_driver_install_tty(driver, tty); 1407 if (retval < 0) 1408 goto err_deinit_tty; 1409 1410 /* 1411 * Structures all installed ... call the ldisc open routines. 1412 * If we fail here just call release_tty to clean up. No need 1413 * to decrement the use counts, as release_tty doesn't care. 1414 */ 1415 retval = tty_ldisc_setup(tty, tty->link); 1416 if (retval) 1417 goto err_release_tty; 1418 return tty; 1419 1420 err_deinit_tty: 1421 deinitialize_tty_struct(tty); 1422 free_tty_struct(tty); 1423 err_module_put: 1424 module_put(driver->owner); 1425 return ERR_PTR(retval); 1426 1427 /* call the tty release_tty routine to clean out this slot */ 1428 err_release_tty: 1429 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1430 "clearing slot %d\n", idx); 1431 release_tty(tty, idx); 1432 return ERR_PTR(retval); 1433 } 1434 1435 void tty_free_termios(struct tty_struct *tty) 1436 { 1437 struct ktermios *tp; 1438 int idx = tty->index; 1439 /* Kill this flag and push into drivers for locking etc */ 1440 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) { 1441 /* FIXME: Locking on ->termios array */ 1442 tp = tty->termios; 1443 tty->driver->termios[idx] = NULL; 1444 kfree(tp); 1445 } 1446 } 1447 EXPORT_SYMBOL(tty_free_termios); 1448 1449 void tty_shutdown(struct tty_struct *tty) 1450 { 1451 tty_driver_remove_tty(tty->driver, tty); 1452 tty_free_termios(tty); 1453 } 1454 EXPORT_SYMBOL(tty_shutdown); 1455 1456 /** 1457 * release_one_tty - release tty structure memory 1458 * @kref: kref of tty we are obliterating 1459 * 1460 * Releases memory associated with a tty structure, and clears out the 1461 * driver table slots. This function is called when a device is no longer 1462 * in use. It also gets called when setup of a device fails. 1463 * 1464 * Locking: 1465 * tty_mutex - sometimes only 1466 * takes the file list lock internally when working on the list 1467 * of ttys that the driver keeps. 1468 * 1469 * This method gets called from a work queue so that the driver private 1470 * cleanup ops can sleep (needed for USB at least) 1471 */ 1472 static void release_one_tty(struct work_struct *work) 1473 { 1474 struct tty_struct *tty = 1475 container_of(work, struct tty_struct, hangup_work); 1476 struct tty_driver *driver = tty->driver; 1477 1478 if (tty->ops->cleanup) 1479 tty->ops->cleanup(tty); 1480 1481 tty->magic = 0; 1482 tty_driver_kref_put(driver); 1483 module_put(driver->owner); 1484 1485 spin_lock(&tty_files_lock); 1486 list_del_init(&tty->tty_files); 1487 spin_unlock(&tty_files_lock); 1488 1489 put_pid(tty->pgrp); 1490 put_pid(tty->session); 1491 free_tty_struct(tty); 1492 } 1493 1494 static void queue_release_one_tty(struct kref *kref) 1495 { 1496 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1497 1498 if (tty->ops->shutdown) 1499 tty->ops->shutdown(tty); 1500 else 1501 tty_shutdown(tty); 1502 1503 /* The hangup queue is now free so we can reuse it rather than 1504 waste a chunk of memory for each port */ 1505 INIT_WORK(&tty->hangup_work, release_one_tty); 1506 schedule_work(&tty->hangup_work); 1507 } 1508 1509 /** 1510 * tty_kref_put - release a tty kref 1511 * @tty: tty device 1512 * 1513 * Release a reference to a tty device and if need be let the kref 1514 * layer destruct the object for us 1515 */ 1516 1517 void tty_kref_put(struct tty_struct *tty) 1518 { 1519 if (tty) 1520 kref_put(&tty->kref, queue_release_one_tty); 1521 } 1522 EXPORT_SYMBOL(tty_kref_put); 1523 1524 /** 1525 * release_tty - release tty structure memory 1526 * 1527 * Release both @tty and a possible linked partner (think pty pair), 1528 * and decrement the refcount of the backing module. 1529 * 1530 * Locking: 1531 * tty_mutex - sometimes only 1532 * takes the file list lock internally when working on the list 1533 * of ttys that the driver keeps. 1534 * FIXME: should we require tty_mutex is held here ?? 1535 * 1536 */ 1537 static void release_tty(struct tty_struct *tty, int idx) 1538 { 1539 /* This should always be true but check for the moment */ 1540 WARN_ON(tty->index != idx); 1541 1542 if (tty->link) 1543 tty_kref_put(tty->link); 1544 tty_kref_put(tty); 1545 } 1546 1547 /** 1548 * tty_release_checks - check a tty before real release 1549 * @tty: tty to check 1550 * @o_tty: link of @tty (if any) 1551 * @idx: index of the tty 1552 * 1553 * Performs some paranoid checking before true release of the @tty. 1554 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1555 */ 1556 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty, 1557 int idx) 1558 { 1559 #ifdef TTY_PARANOIA_CHECK 1560 if (idx < 0 || idx >= tty->driver->num) { 1561 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n", 1562 __func__, tty->name); 1563 return -1; 1564 } 1565 1566 /* not much to check for devpts */ 1567 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1568 return 0; 1569 1570 if (tty != tty->driver->ttys[idx]) { 1571 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n", 1572 __func__, idx, tty->name); 1573 return -1; 1574 } 1575 if (tty->termios != tty->driver->termios[idx]) { 1576 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n", 1577 __func__, idx, tty->name); 1578 return -1; 1579 } 1580 if (tty->driver->other) { 1581 if (o_tty != tty->driver->other->ttys[idx]) { 1582 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n", 1583 __func__, idx, tty->name); 1584 return -1; 1585 } 1586 if (o_tty->termios != tty->driver->other->termios[idx]) { 1587 printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n", 1588 __func__, idx, tty->name); 1589 return -1; 1590 } 1591 if (o_tty->link != tty) { 1592 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__); 1593 return -1; 1594 } 1595 } 1596 #endif 1597 return 0; 1598 } 1599 1600 /** 1601 * tty_release - vfs callback for close 1602 * @inode: inode of tty 1603 * @filp: file pointer for handle to tty 1604 * 1605 * Called the last time each file handle is closed that references 1606 * this tty. There may however be several such references. 1607 * 1608 * Locking: 1609 * Takes bkl. See tty_release_dev 1610 * 1611 * Even releasing the tty structures is a tricky business.. We have 1612 * to be very careful that the structures are all released at the 1613 * same time, as interrupts might otherwise get the wrong pointers. 1614 * 1615 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1616 * lead to double frees or releasing memory still in use. 1617 */ 1618 1619 int tty_release(struct inode *inode, struct file *filp) 1620 { 1621 struct tty_struct *tty = file_tty(filp); 1622 struct tty_struct *o_tty; 1623 int pty_master, tty_closing, o_tty_closing, do_sleep; 1624 int devpts; 1625 int idx; 1626 char buf[64]; 1627 1628 if (tty_paranoia_check(tty, inode, __func__)) 1629 return 0; 1630 1631 tty_lock(); 1632 check_tty_count(tty, __func__); 1633 1634 __tty_fasync(-1, filp, 0); 1635 1636 idx = tty->index; 1637 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1638 tty->driver->subtype == PTY_TYPE_MASTER); 1639 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0; 1640 o_tty = tty->link; 1641 1642 if (tty_release_checks(tty, o_tty, idx)) { 1643 tty_unlock(); 1644 return 0; 1645 } 1646 1647 #ifdef TTY_DEBUG_HANGUP 1648 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__, 1649 tty_name(tty, buf), tty->count); 1650 #endif 1651 1652 if (tty->ops->close) 1653 tty->ops->close(tty, filp); 1654 1655 tty_unlock(); 1656 /* 1657 * Sanity check: if tty->count is going to zero, there shouldn't be 1658 * any waiters on tty->read_wait or tty->write_wait. We test the 1659 * wait queues and kick everyone out _before_ actually starting to 1660 * close. This ensures that we won't block while releasing the tty 1661 * structure. 1662 * 1663 * The test for the o_tty closing is necessary, since the master and 1664 * slave sides may close in any order. If the slave side closes out 1665 * first, its count will be one, since the master side holds an open. 1666 * Thus this test wouldn't be triggered at the time the slave closes, 1667 * so we do it now. 1668 * 1669 * Note that it's possible for the tty to be opened again while we're 1670 * flushing out waiters. By recalculating the closing flags before 1671 * each iteration we avoid any problems. 1672 */ 1673 while (1) { 1674 /* Guard against races with tty->count changes elsewhere and 1675 opens on /dev/tty */ 1676 1677 mutex_lock(&tty_mutex); 1678 tty_lock(); 1679 tty_closing = tty->count <= 1; 1680 o_tty_closing = o_tty && 1681 (o_tty->count <= (pty_master ? 1 : 0)); 1682 do_sleep = 0; 1683 1684 if (tty_closing) { 1685 if (waitqueue_active(&tty->read_wait)) { 1686 wake_up_poll(&tty->read_wait, POLLIN); 1687 do_sleep++; 1688 } 1689 if (waitqueue_active(&tty->write_wait)) { 1690 wake_up_poll(&tty->write_wait, POLLOUT); 1691 do_sleep++; 1692 } 1693 } 1694 if (o_tty_closing) { 1695 if (waitqueue_active(&o_tty->read_wait)) { 1696 wake_up_poll(&o_tty->read_wait, POLLIN); 1697 do_sleep++; 1698 } 1699 if (waitqueue_active(&o_tty->write_wait)) { 1700 wake_up_poll(&o_tty->write_wait, POLLOUT); 1701 do_sleep++; 1702 } 1703 } 1704 if (!do_sleep) 1705 break; 1706 1707 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1708 __func__, tty_name(tty, buf)); 1709 tty_unlock(); 1710 mutex_unlock(&tty_mutex); 1711 schedule(); 1712 } 1713 1714 /* 1715 * The closing flags are now consistent with the open counts on 1716 * both sides, and we've completed the last operation that could 1717 * block, so it's safe to proceed with closing. 1718 */ 1719 if (pty_master) { 1720 if (--o_tty->count < 0) { 1721 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1722 __func__, o_tty->count, tty_name(o_tty, buf)); 1723 o_tty->count = 0; 1724 } 1725 } 1726 if (--tty->count < 0) { 1727 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1728 __func__, tty->count, tty_name(tty, buf)); 1729 tty->count = 0; 1730 } 1731 1732 /* 1733 * We've decremented tty->count, so we need to remove this file 1734 * descriptor off the tty->tty_files list; this serves two 1735 * purposes: 1736 * - check_tty_count sees the correct number of file descriptors 1737 * associated with this tty. 1738 * - do_tty_hangup no longer sees this file descriptor as 1739 * something that needs to be handled for hangups. 1740 */ 1741 tty_del_file(filp); 1742 1743 /* 1744 * Perform some housekeeping before deciding whether to return. 1745 * 1746 * Set the TTY_CLOSING flag if this was the last open. In the 1747 * case of a pty we may have to wait around for the other side 1748 * to close, and TTY_CLOSING makes sure we can't be reopened. 1749 */ 1750 if (tty_closing) 1751 set_bit(TTY_CLOSING, &tty->flags); 1752 if (o_tty_closing) 1753 set_bit(TTY_CLOSING, &o_tty->flags); 1754 1755 /* 1756 * If _either_ side is closing, make sure there aren't any 1757 * processes that still think tty or o_tty is their controlling 1758 * tty. 1759 */ 1760 if (tty_closing || o_tty_closing) { 1761 read_lock(&tasklist_lock); 1762 session_clear_tty(tty->session); 1763 if (o_tty) 1764 session_clear_tty(o_tty->session); 1765 read_unlock(&tasklist_lock); 1766 } 1767 1768 mutex_unlock(&tty_mutex); 1769 1770 /* check whether both sides are closing ... */ 1771 if (!tty_closing || (o_tty && !o_tty_closing)) { 1772 tty_unlock(); 1773 return 0; 1774 } 1775 1776 #ifdef TTY_DEBUG_HANGUP 1777 printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__); 1778 #endif 1779 /* 1780 * Ask the line discipline code to release its structures 1781 */ 1782 tty_ldisc_release(tty, o_tty); 1783 /* 1784 * The release_tty function takes care of the details of clearing 1785 * the slots and preserving the termios structure. 1786 */ 1787 release_tty(tty, idx); 1788 1789 /* Make this pty number available for reallocation */ 1790 if (devpts) 1791 devpts_kill_index(inode, idx); 1792 tty_unlock(); 1793 return 0; 1794 } 1795 1796 /** 1797 * tty_open_current_tty - get tty of current task for open 1798 * @device: device number 1799 * @filp: file pointer to tty 1800 * @return: tty of the current task iff @device is /dev/tty 1801 * 1802 * We cannot return driver and index like for the other nodes because 1803 * devpts will not work then. It expects inodes to be from devpts FS. 1804 * 1805 * We need to move to returning a refcounted object from all the lookup 1806 * paths including this one. 1807 */ 1808 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1809 { 1810 struct tty_struct *tty; 1811 1812 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1813 return NULL; 1814 1815 tty = get_current_tty(); 1816 if (!tty) 1817 return ERR_PTR(-ENXIO); 1818 1819 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1820 /* noctty = 1; */ 1821 tty_kref_put(tty); 1822 /* FIXME: we put a reference and return a TTY! */ 1823 /* This is only safe because the caller holds tty_mutex */ 1824 return tty; 1825 } 1826 1827 /** 1828 * tty_lookup_driver - lookup a tty driver for a given device file 1829 * @device: device number 1830 * @filp: file pointer to tty 1831 * @noctty: set if the device should not become a controlling tty 1832 * @index: index for the device in the @return driver 1833 * @return: driver for this inode (with increased refcount) 1834 * 1835 * If @return is not erroneous, the caller is responsible to decrement the 1836 * refcount by tty_driver_kref_put. 1837 * 1838 * Locking: tty_mutex protects get_tty_driver 1839 */ 1840 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1841 int *noctty, int *index) 1842 { 1843 struct tty_driver *driver; 1844 1845 switch (device) { 1846 #ifdef CONFIG_VT 1847 case MKDEV(TTY_MAJOR, 0): { 1848 extern struct tty_driver *console_driver; 1849 driver = tty_driver_kref_get(console_driver); 1850 *index = fg_console; 1851 *noctty = 1; 1852 break; 1853 } 1854 #endif 1855 case MKDEV(TTYAUX_MAJOR, 1): { 1856 struct tty_driver *console_driver = console_device(index); 1857 if (console_driver) { 1858 driver = tty_driver_kref_get(console_driver); 1859 if (driver) { 1860 /* Don't let /dev/console block */ 1861 filp->f_flags |= O_NONBLOCK; 1862 *noctty = 1; 1863 break; 1864 } 1865 } 1866 return ERR_PTR(-ENODEV); 1867 } 1868 default: 1869 driver = get_tty_driver(device, index); 1870 if (!driver) 1871 return ERR_PTR(-ENODEV); 1872 break; 1873 } 1874 return driver; 1875 } 1876 1877 /** 1878 * tty_open - open a tty device 1879 * @inode: inode of device file 1880 * @filp: file pointer to tty 1881 * 1882 * tty_open and tty_release keep up the tty count that contains the 1883 * number of opens done on a tty. We cannot use the inode-count, as 1884 * different inodes might point to the same tty. 1885 * 1886 * Open-counting is needed for pty masters, as well as for keeping 1887 * track of serial lines: DTR is dropped when the last close happens. 1888 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1889 * 1890 * The termios state of a pty is reset on first open so that 1891 * settings don't persist across reuse. 1892 * 1893 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1894 * tty->count should protect the rest. 1895 * ->siglock protects ->signal/->sighand 1896 */ 1897 1898 static int tty_open(struct inode *inode, struct file *filp) 1899 { 1900 struct tty_struct *tty; 1901 int noctty, retval; 1902 struct tty_driver *driver = NULL; 1903 int index; 1904 dev_t device = inode->i_rdev; 1905 unsigned saved_flags = filp->f_flags; 1906 1907 nonseekable_open(inode, filp); 1908 1909 retry_open: 1910 retval = tty_alloc_file(filp); 1911 if (retval) 1912 return -ENOMEM; 1913 1914 noctty = filp->f_flags & O_NOCTTY; 1915 index = -1; 1916 retval = 0; 1917 1918 mutex_lock(&tty_mutex); 1919 tty_lock(); 1920 1921 tty = tty_open_current_tty(device, filp); 1922 if (IS_ERR(tty)) { 1923 retval = PTR_ERR(tty); 1924 goto err_unlock; 1925 } else if (!tty) { 1926 driver = tty_lookup_driver(device, filp, &noctty, &index); 1927 if (IS_ERR(driver)) { 1928 retval = PTR_ERR(driver); 1929 goto err_unlock; 1930 } 1931 1932 /* check whether we're reopening an existing tty */ 1933 tty = tty_driver_lookup_tty(driver, inode, index); 1934 if (IS_ERR(tty)) { 1935 retval = PTR_ERR(tty); 1936 goto err_unlock; 1937 } 1938 } 1939 1940 if (tty) { 1941 retval = tty_reopen(tty); 1942 if (retval) 1943 tty = ERR_PTR(retval); 1944 } else 1945 tty = tty_init_dev(driver, index); 1946 1947 mutex_unlock(&tty_mutex); 1948 if (driver) 1949 tty_driver_kref_put(driver); 1950 if (IS_ERR(tty)) { 1951 tty_unlock(); 1952 retval = PTR_ERR(tty); 1953 goto err_file; 1954 } 1955 1956 tty_add_file(tty, filp); 1957 1958 check_tty_count(tty, __func__); 1959 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1960 tty->driver->subtype == PTY_TYPE_MASTER) 1961 noctty = 1; 1962 #ifdef TTY_DEBUG_HANGUP 1963 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name); 1964 #endif 1965 if (tty->ops->open) 1966 retval = tty->ops->open(tty, filp); 1967 else 1968 retval = -ENODEV; 1969 filp->f_flags = saved_flags; 1970 1971 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && 1972 !capable(CAP_SYS_ADMIN)) 1973 retval = -EBUSY; 1974 1975 if (retval) { 1976 #ifdef TTY_DEBUG_HANGUP 1977 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__, 1978 retval, tty->name); 1979 #endif 1980 tty_unlock(); /* need to call tty_release without BTM */ 1981 tty_release(inode, filp); 1982 if (retval != -ERESTARTSYS) 1983 return retval; 1984 1985 if (signal_pending(current)) 1986 return retval; 1987 1988 schedule(); 1989 /* 1990 * Need to reset f_op in case a hangup happened. 1991 */ 1992 tty_lock(); 1993 if (filp->f_op == &hung_up_tty_fops) 1994 filp->f_op = &tty_fops; 1995 tty_unlock(); 1996 goto retry_open; 1997 } 1998 tty_unlock(); 1999 2000 2001 mutex_lock(&tty_mutex); 2002 tty_lock(); 2003 spin_lock_irq(¤t->sighand->siglock); 2004 if (!noctty && 2005 current->signal->leader && 2006 !current->signal->tty && 2007 tty->session == NULL) 2008 __proc_set_tty(current, tty); 2009 spin_unlock_irq(¤t->sighand->siglock); 2010 tty_unlock(); 2011 mutex_unlock(&tty_mutex); 2012 return 0; 2013 err_unlock: 2014 tty_unlock(); 2015 mutex_unlock(&tty_mutex); 2016 /* after locks to avoid deadlock */ 2017 if (!IS_ERR_OR_NULL(driver)) 2018 tty_driver_kref_put(driver); 2019 err_file: 2020 tty_free_file(filp); 2021 return retval; 2022 } 2023 2024 2025 2026 /** 2027 * tty_poll - check tty status 2028 * @filp: file being polled 2029 * @wait: poll wait structures to update 2030 * 2031 * Call the line discipline polling method to obtain the poll 2032 * status of the device. 2033 * 2034 * Locking: locks called line discipline but ldisc poll method 2035 * may be re-entered freely by other callers. 2036 */ 2037 2038 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2039 { 2040 struct tty_struct *tty = file_tty(filp); 2041 struct tty_ldisc *ld; 2042 int ret = 0; 2043 2044 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll")) 2045 return 0; 2046 2047 ld = tty_ldisc_ref_wait(tty); 2048 if (ld->ops->poll) 2049 ret = (ld->ops->poll)(tty, filp, wait); 2050 tty_ldisc_deref(ld); 2051 return ret; 2052 } 2053 2054 static int __tty_fasync(int fd, struct file *filp, int on) 2055 { 2056 struct tty_struct *tty = file_tty(filp); 2057 unsigned long flags; 2058 int retval = 0; 2059 2060 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync")) 2061 goto out; 2062 2063 retval = fasync_helper(fd, filp, on, &tty->fasync); 2064 if (retval <= 0) 2065 goto out; 2066 2067 if (on) { 2068 enum pid_type type; 2069 struct pid *pid; 2070 if (!waitqueue_active(&tty->read_wait)) 2071 tty->minimum_to_wake = 1; 2072 spin_lock_irqsave(&tty->ctrl_lock, flags); 2073 if (tty->pgrp) { 2074 pid = tty->pgrp; 2075 type = PIDTYPE_PGID; 2076 } else { 2077 pid = task_pid(current); 2078 type = PIDTYPE_PID; 2079 } 2080 get_pid(pid); 2081 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2082 retval = __f_setown(filp, pid, type, 0); 2083 put_pid(pid); 2084 if (retval) 2085 goto out; 2086 } else { 2087 if (!tty->fasync && !waitqueue_active(&tty->read_wait)) 2088 tty->minimum_to_wake = N_TTY_BUF_SIZE; 2089 } 2090 retval = 0; 2091 out: 2092 return retval; 2093 } 2094 2095 static int tty_fasync(int fd, struct file *filp, int on) 2096 { 2097 int retval; 2098 tty_lock(); 2099 retval = __tty_fasync(fd, filp, on); 2100 tty_unlock(); 2101 return retval; 2102 } 2103 2104 /** 2105 * tiocsti - fake input character 2106 * @tty: tty to fake input into 2107 * @p: pointer to character 2108 * 2109 * Fake input to a tty device. Does the necessary locking and 2110 * input management. 2111 * 2112 * FIXME: does not honour flow control ?? 2113 * 2114 * Locking: 2115 * Called functions take tty_ldisc_lock 2116 * current->signal->tty check is safe without locks 2117 * 2118 * FIXME: may race normal receive processing 2119 */ 2120 2121 static int tiocsti(struct tty_struct *tty, char __user *p) 2122 { 2123 char ch, mbz = 0; 2124 struct tty_ldisc *ld; 2125 2126 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2127 return -EPERM; 2128 if (get_user(ch, p)) 2129 return -EFAULT; 2130 tty_audit_tiocsti(tty, ch); 2131 ld = tty_ldisc_ref_wait(tty); 2132 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2133 tty_ldisc_deref(ld); 2134 return 0; 2135 } 2136 2137 /** 2138 * tiocgwinsz - implement window query ioctl 2139 * @tty; tty 2140 * @arg: user buffer for result 2141 * 2142 * Copies the kernel idea of the window size into the user buffer. 2143 * 2144 * Locking: tty->termios_mutex is taken to ensure the winsize data 2145 * is consistent. 2146 */ 2147 2148 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2149 { 2150 int err; 2151 2152 mutex_lock(&tty->termios_mutex); 2153 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2154 mutex_unlock(&tty->termios_mutex); 2155 2156 return err ? -EFAULT: 0; 2157 } 2158 2159 /** 2160 * tty_do_resize - resize event 2161 * @tty: tty being resized 2162 * @rows: rows (character) 2163 * @cols: cols (character) 2164 * 2165 * Update the termios variables and send the necessary signals to 2166 * peform a terminal resize correctly 2167 */ 2168 2169 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2170 { 2171 struct pid *pgrp; 2172 unsigned long flags; 2173 2174 /* Lock the tty */ 2175 mutex_lock(&tty->termios_mutex); 2176 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2177 goto done; 2178 /* Get the PID values and reference them so we can 2179 avoid holding the tty ctrl lock while sending signals */ 2180 spin_lock_irqsave(&tty->ctrl_lock, flags); 2181 pgrp = get_pid(tty->pgrp); 2182 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2183 2184 if (pgrp) 2185 kill_pgrp(pgrp, SIGWINCH, 1); 2186 put_pid(pgrp); 2187 2188 tty->winsize = *ws; 2189 done: 2190 mutex_unlock(&tty->termios_mutex); 2191 return 0; 2192 } 2193 2194 /** 2195 * tiocswinsz - implement window size set ioctl 2196 * @tty; tty side of tty 2197 * @arg: user buffer for result 2198 * 2199 * Copies the user idea of the window size to the kernel. Traditionally 2200 * this is just advisory information but for the Linux console it 2201 * actually has driver level meaning and triggers a VC resize. 2202 * 2203 * Locking: 2204 * Driver dependent. The default do_resize method takes the 2205 * tty termios mutex and ctrl_lock. The console takes its own lock 2206 * then calls into the default method. 2207 */ 2208 2209 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2210 { 2211 struct winsize tmp_ws; 2212 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2213 return -EFAULT; 2214 2215 if (tty->ops->resize) 2216 return tty->ops->resize(tty, &tmp_ws); 2217 else 2218 return tty_do_resize(tty, &tmp_ws); 2219 } 2220 2221 /** 2222 * tioccons - allow admin to move logical console 2223 * @file: the file to become console 2224 * 2225 * Allow the administrator to move the redirected console device 2226 * 2227 * Locking: uses redirect_lock to guard the redirect information 2228 */ 2229 2230 static int tioccons(struct file *file) 2231 { 2232 if (!capable(CAP_SYS_ADMIN)) 2233 return -EPERM; 2234 if (file->f_op->write == redirected_tty_write) { 2235 struct file *f; 2236 spin_lock(&redirect_lock); 2237 f = redirect; 2238 redirect = NULL; 2239 spin_unlock(&redirect_lock); 2240 if (f) 2241 fput(f); 2242 return 0; 2243 } 2244 spin_lock(&redirect_lock); 2245 if (redirect) { 2246 spin_unlock(&redirect_lock); 2247 return -EBUSY; 2248 } 2249 get_file(file); 2250 redirect = file; 2251 spin_unlock(&redirect_lock); 2252 return 0; 2253 } 2254 2255 /** 2256 * fionbio - non blocking ioctl 2257 * @file: file to set blocking value 2258 * @p: user parameter 2259 * 2260 * Historical tty interfaces had a blocking control ioctl before 2261 * the generic functionality existed. This piece of history is preserved 2262 * in the expected tty API of posix OS's. 2263 * 2264 * Locking: none, the open file handle ensures it won't go away. 2265 */ 2266 2267 static int fionbio(struct file *file, int __user *p) 2268 { 2269 int nonblock; 2270 2271 if (get_user(nonblock, p)) 2272 return -EFAULT; 2273 2274 spin_lock(&file->f_lock); 2275 if (nonblock) 2276 file->f_flags |= O_NONBLOCK; 2277 else 2278 file->f_flags &= ~O_NONBLOCK; 2279 spin_unlock(&file->f_lock); 2280 return 0; 2281 } 2282 2283 /** 2284 * tiocsctty - set controlling tty 2285 * @tty: tty structure 2286 * @arg: user argument 2287 * 2288 * This ioctl is used to manage job control. It permits a session 2289 * leader to set this tty as the controlling tty for the session. 2290 * 2291 * Locking: 2292 * Takes tty_mutex() to protect tty instance 2293 * Takes tasklist_lock internally to walk sessions 2294 * Takes ->siglock() when updating signal->tty 2295 */ 2296 2297 static int tiocsctty(struct tty_struct *tty, int arg) 2298 { 2299 int ret = 0; 2300 if (current->signal->leader && (task_session(current) == tty->session)) 2301 return ret; 2302 2303 mutex_lock(&tty_mutex); 2304 /* 2305 * The process must be a session leader and 2306 * not have a controlling tty already. 2307 */ 2308 if (!current->signal->leader || current->signal->tty) { 2309 ret = -EPERM; 2310 goto unlock; 2311 } 2312 2313 if (tty->session) { 2314 /* 2315 * This tty is already the controlling 2316 * tty for another session group! 2317 */ 2318 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2319 /* 2320 * Steal it away 2321 */ 2322 read_lock(&tasklist_lock); 2323 session_clear_tty(tty->session); 2324 read_unlock(&tasklist_lock); 2325 } else { 2326 ret = -EPERM; 2327 goto unlock; 2328 } 2329 } 2330 proc_set_tty(current, tty); 2331 unlock: 2332 mutex_unlock(&tty_mutex); 2333 return ret; 2334 } 2335 2336 /** 2337 * tty_get_pgrp - return a ref counted pgrp pid 2338 * @tty: tty to read 2339 * 2340 * Returns a refcounted instance of the pid struct for the process 2341 * group controlling the tty. 2342 */ 2343 2344 struct pid *tty_get_pgrp(struct tty_struct *tty) 2345 { 2346 unsigned long flags; 2347 struct pid *pgrp; 2348 2349 spin_lock_irqsave(&tty->ctrl_lock, flags); 2350 pgrp = get_pid(tty->pgrp); 2351 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2352 2353 return pgrp; 2354 } 2355 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2356 2357 /** 2358 * tiocgpgrp - get process group 2359 * @tty: tty passed by user 2360 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2361 * @p: returned pid 2362 * 2363 * Obtain the process group of the tty. If there is no process group 2364 * return an error. 2365 * 2366 * Locking: none. Reference to current->signal->tty is safe. 2367 */ 2368 2369 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2370 { 2371 struct pid *pid; 2372 int ret; 2373 /* 2374 * (tty == real_tty) is a cheap way of 2375 * testing if the tty is NOT a master pty. 2376 */ 2377 if (tty == real_tty && current->signal->tty != real_tty) 2378 return -ENOTTY; 2379 pid = tty_get_pgrp(real_tty); 2380 ret = put_user(pid_vnr(pid), p); 2381 put_pid(pid); 2382 return ret; 2383 } 2384 2385 /** 2386 * tiocspgrp - attempt to set process group 2387 * @tty: tty passed by user 2388 * @real_tty: tty side device matching tty passed by user 2389 * @p: pid pointer 2390 * 2391 * Set the process group of the tty to the session passed. Only 2392 * permitted where the tty session is our session. 2393 * 2394 * Locking: RCU, ctrl lock 2395 */ 2396 2397 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2398 { 2399 struct pid *pgrp; 2400 pid_t pgrp_nr; 2401 int retval = tty_check_change(real_tty); 2402 unsigned long flags; 2403 2404 if (retval == -EIO) 2405 return -ENOTTY; 2406 if (retval) 2407 return retval; 2408 if (!current->signal->tty || 2409 (current->signal->tty != real_tty) || 2410 (real_tty->session != task_session(current))) 2411 return -ENOTTY; 2412 if (get_user(pgrp_nr, p)) 2413 return -EFAULT; 2414 if (pgrp_nr < 0) 2415 return -EINVAL; 2416 rcu_read_lock(); 2417 pgrp = find_vpid(pgrp_nr); 2418 retval = -ESRCH; 2419 if (!pgrp) 2420 goto out_unlock; 2421 retval = -EPERM; 2422 if (session_of_pgrp(pgrp) != task_session(current)) 2423 goto out_unlock; 2424 retval = 0; 2425 spin_lock_irqsave(&tty->ctrl_lock, flags); 2426 put_pid(real_tty->pgrp); 2427 real_tty->pgrp = get_pid(pgrp); 2428 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2429 out_unlock: 2430 rcu_read_unlock(); 2431 return retval; 2432 } 2433 2434 /** 2435 * tiocgsid - get session id 2436 * @tty: tty passed by user 2437 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2438 * @p: pointer to returned session id 2439 * 2440 * Obtain the session id of the tty. If there is no session 2441 * return an error. 2442 * 2443 * Locking: none. Reference to current->signal->tty is safe. 2444 */ 2445 2446 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2447 { 2448 /* 2449 * (tty == real_tty) is a cheap way of 2450 * testing if the tty is NOT a master pty. 2451 */ 2452 if (tty == real_tty && current->signal->tty != real_tty) 2453 return -ENOTTY; 2454 if (!real_tty->session) 2455 return -ENOTTY; 2456 return put_user(pid_vnr(real_tty->session), p); 2457 } 2458 2459 /** 2460 * tiocsetd - set line discipline 2461 * @tty: tty device 2462 * @p: pointer to user data 2463 * 2464 * Set the line discipline according to user request. 2465 * 2466 * Locking: see tty_set_ldisc, this function is just a helper 2467 */ 2468 2469 static int tiocsetd(struct tty_struct *tty, int __user *p) 2470 { 2471 int ldisc; 2472 int ret; 2473 2474 if (get_user(ldisc, p)) 2475 return -EFAULT; 2476 2477 ret = tty_set_ldisc(tty, ldisc); 2478 2479 return ret; 2480 } 2481 2482 /** 2483 * send_break - performed time break 2484 * @tty: device to break on 2485 * @duration: timeout in mS 2486 * 2487 * Perform a timed break on hardware that lacks its own driver level 2488 * timed break functionality. 2489 * 2490 * Locking: 2491 * atomic_write_lock serializes 2492 * 2493 */ 2494 2495 static int send_break(struct tty_struct *tty, unsigned int duration) 2496 { 2497 int retval; 2498 2499 if (tty->ops->break_ctl == NULL) 2500 return 0; 2501 2502 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2503 retval = tty->ops->break_ctl(tty, duration); 2504 else { 2505 /* Do the work ourselves */ 2506 if (tty_write_lock(tty, 0) < 0) 2507 return -EINTR; 2508 retval = tty->ops->break_ctl(tty, -1); 2509 if (retval) 2510 goto out; 2511 if (!signal_pending(current)) 2512 msleep_interruptible(duration); 2513 retval = tty->ops->break_ctl(tty, 0); 2514 out: 2515 tty_write_unlock(tty); 2516 if (signal_pending(current)) 2517 retval = -EINTR; 2518 } 2519 return retval; 2520 } 2521 2522 /** 2523 * tty_tiocmget - get modem status 2524 * @tty: tty device 2525 * @file: user file pointer 2526 * @p: pointer to result 2527 * 2528 * Obtain the modem status bits from the tty driver if the feature 2529 * is supported. Return -EINVAL if it is not available. 2530 * 2531 * Locking: none (up to the driver) 2532 */ 2533 2534 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2535 { 2536 int retval = -EINVAL; 2537 2538 if (tty->ops->tiocmget) { 2539 retval = tty->ops->tiocmget(tty); 2540 2541 if (retval >= 0) 2542 retval = put_user(retval, p); 2543 } 2544 return retval; 2545 } 2546 2547 /** 2548 * tty_tiocmset - set modem status 2549 * @tty: tty device 2550 * @cmd: command - clear bits, set bits or set all 2551 * @p: pointer to desired bits 2552 * 2553 * Set the modem status bits from the tty driver if the feature 2554 * is supported. Return -EINVAL if it is not available. 2555 * 2556 * Locking: none (up to the driver) 2557 */ 2558 2559 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2560 unsigned __user *p) 2561 { 2562 int retval; 2563 unsigned int set, clear, val; 2564 2565 if (tty->ops->tiocmset == NULL) 2566 return -EINVAL; 2567 2568 retval = get_user(val, p); 2569 if (retval) 2570 return retval; 2571 set = clear = 0; 2572 switch (cmd) { 2573 case TIOCMBIS: 2574 set = val; 2575 break; 2576 case TIOCMBIC: 2577 clear = val; 2578 break; 2579 case TIOCMSET: 2580 set = val; 2581 clear = ~val; 2582 break; 2583 } 2584 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2585 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2586 return tty->ops->tiocmset(tty, set, clear); 2587 } 2588 2589 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2590 { 2591 int retval = -EINVAL; 2592 struct serial_icounter_struct icount; 2593 memset(&icount, 0, sizeof(icount)); 2594 if (tty->ops->get_icount) 2595 retval = tty->ops->get_icount(tty, &icount); 2596 if (retval != 0) 2597 return retval; 2598 if (copy_to_user(arg, &icount, sizeof(icount))) 2599 return -EFAULT; 2600 return 0; 2601 } 2602 2603 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2604 { 2605 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2606 tty->driver->subtype == PTY_TYPE_MASTER) 2607 tty = tty->link; 2608 return tty; 2609 } 2610 EXPORT_SYMBOL(tty_pair_get_tty); 2611 2612 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty) 2613 { 2614 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2615 tty->driver->subtype == PTY_TYPE_MASTER) 2616 return tty; 2617 return tty->link; 2618 } 2619 EXPORT_SYMBOL(tty_pair_get_pty); 2620 2621 /* 2622 * Split this up, as gcc can choke on it otherwise.. 2623 */ 2624 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2625 { 2626 struct tty_struct *tty = file_tty(file); 2627 struct tty_struct *real_tty; 2628 void __user *p = (void __user *)arg; 2629 int retval; 2630 struct tty_ldisc *ld; 2631 struct inode *inode = file->f_dentry->d_inode; 2632 2633 if (tty_paranoia_check(tty, inode, "tty_ioctl")) 2634 return -EINVAL; 2635 2636 real_tty = tty_pair_get_tty(tty); 2637 2638 /* 2639 * Factor out some common prep work 2640 */ 2641 switch (cmd) { 2642 case TIOCSETD: 2643 case TIOCSBRK: 2644 case TIOCCBRK: 2645 case TCSBRK: 2646 case TCSBRKP: 2647 retval = tty_check_change(tty); 2648 if (retval) 2649 return retval; 2650 if (cmd != TIOCCBRK) { 2651 tty_wait_until_sent(tty, 0); 2652 if (signal_pending(current)) 2653 return -EINTR; 2654 } 2655 break; 2656 } 2657 2658 /* 2659 * Now do the stuff. 2660 */ 2661 switch (cmd) { 2662 case TIOCSTI: 2663 return tiocsti(tty, p); 2664 case TIOCGWINSZ: 2665 return tiocgwinsz(real_tty, p); 2666 case TIOCSWINSZ: 2667 return tiocswinsz(real_tty, p); 2668 case TIOCCONS: 2669 return real_tty != tty ? -EINVAL : tioccons(file); 2670 case FIONBIO: 2671 return fionbio(file, p); 2672 case TIOCEXCL: 2673 set_bit(TTY_EXCLUSIVE, &tty->flags); 2674 return 0; 2675 case TIOCNXCL: 2676 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2677 return 0; 2678 case TIOCNOTTY: 2679 if (current->signal->tty != tty) 2680 return -ENOTTY; 2681 no_tty(); 2682 return 0; 2683 case TIOCSCTTY: 2684 return tiocsctty(tty, arg); 2685 case TIOCGPGRP: 2686 return tiocgpgrp(tty, real_tty, p); 2687 case TIOCSPGRP: 2688 return tiocspgrp(tty, real_tty, p); 2689 case TIOCGSID: 2690 return tiocgsid(tty, real_tty, p); 2691 case TIOCGETD: 2692 return put_user(tty->ldisc->ops->num, (int __user *)p); 2693 case TIOCSETD: 2694 return tiocsetd(tty, p); 2695 case TIOCVHANGUP: 2696 if (!capable(CAP_SYS_ADMIN)) 2697 return -EPERM; 2698 tty_vhangup(tty); 2699 return 0; 2700 case TIOCGDEV: 2701 { 2702 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2703 return put_user(ret, (unsigned int __user *)p); 2704 } 2705 /* 2706 * Break handling 2707 */ 2708 case TIOCSBRK: /* Turn break on, unconditionally */ 2709 if (tty->ops->break_ctl) 2710 return tty->ops->break_ctl(tty, -1); 2711 return 0; 2712 case TIOCCBRK: /* Turn break off, unconditionally */ 2713 if (tty->ops->break_ctl) 2714 return tty->ops->break_ctl(tty, 0); 2715 return 0; 2716 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2717 /* non-zero arg means wait for all output data 2718 * to be sent (performed above) but don't send break. 2719 * This is used by the tcdrain() termios function. 2720 */ 2721 if (!arg) 2722 return send_break(tty, 250); 2723 return 0; 2724 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2725 return send_break(tty, arg ? arg*100 : 250); 2726 2727 case TIOCMGET: 2728 return tty_tiocmget(tty, p); 2729 case TIOCMSET: 2730 case TIOCMBIC: 2731 case TIOCMBIS: 2732 return tty_tiocmset(tty, cmd, p); 2733 case TIOCGICOUNT: 2734 retval = tty_tiocgicount(tty, p); 2735 /* For the moment allow fall through to the old method */ 2736 if (retval != -EINVAL) 2737 return retval; 2738 break; 2739 case TCFLSH: 2740 switch (arg) { 2741 case TCIFLUSH: 2742 case TCIOFLUSH: 2743 /* flush tty buffer and allow ldisc to process ioctl */ 2744 tty_buffer_flush(tty); 2745 break; 2746 } 2747 break; 2748 } 2749 if (tty->ops->ioctl) { 2750 retval = (tty->ops->ioctl)(tty, cmd, arg); 2751 if (retval != -ENOIOCTLCMD) 2752 return retval; 2753 } 2754 ld = tty_ldisc_ref_wait(tty); 2755 retval = -EINVAL; 2756 if (ld->ops->ioctl) { 2757 retval = ld->ops->ioctl(tty, file, cmd, arg); 2758 if (retval == -ENOIOCTLCMD) 2759 retval = -EINVAL; 2760 } 2761 tty_ldisc_deref(ld); 2762 return retval; 2763 } 2764 2765 #ifdef CONFIG_COMPAT 2766 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2767 unsigned long arg) 2768 { 2769 struct inode *inode = file->f_dentry->d_inode; 2770 struct tty_struct *tty = file_tty(file); 2771 struct tty_ldisc *ld; 2772 int retval = -ENOIOCTLCMD; 2773 2774 if (tty_paranoia_check(tty, inode, "tty_ioctl")) 2775 return -EINVAL; 2776 2777 if (tty->ops->compat_ioctl) { 2778 retval = (tty->ops->compat_ioctl)(tty, cmd, arg); 2779 if (retval != -ENOIOCTLCMD) 2780 return retval; 2781 } 2782 2783 ld = tty_ldisc_ref_wait(tty); 2784 if (ld->ops->compat_ioctl) 2785 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2786 else 2787 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2788 tty_ldisc_deref(ld); 2789 2790 return retval; 2791 } 2792 #endif 2793 2794 /* 2795 * This implements the "Secure Attention Key" --- the idea is to 2796 * prevent trojan horses by killing all processes associated with this 2797 * tty when the user hits the "Secure Attention Key". Required for 2798 * super-paranoid applications --- see the Orange Book for more details. 2799 * 2800 * This code could be nicer; ideally it should send a HUP, wait a few 2801 * seconds, then send a INT, and then a KILL signal. But you then 2802 * have to coordinate with the init process, since all processes associated 2803 * with the current tty must be dead before the new getty is allowed 2804 * to spawn. 2805 * 2806 * Now, if it would be correct ;-/ The current code has a nasty hole - 2807 * it doesn't catch files in flight. We may send the descriptor to ourselves 2808 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2809 * 2810 * Nasty bug: do_SAK is being called in interrupt context. This can 2811 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2812 */ 2813 void __do_SAK(struct tty_struct *tty) 2814 { 2815 #ifdef TTY_SOFT_SAK 2816 tty_hangup(tty); 2817 #else 2818 struct task_struct *g, *p; 2819 struct pid *session; 2820 int i; 2821 struct file *filp; 2822 struct fdtable *fdt; 2823 2824 if (!tty) 2825 return; 2826 session = tty->session; 2827 2828 tty_ldisc_flush(tty); 2829 2830 tty_driver_flush_buffer(tty); 2831 2832 read_lock(&tasklist_lock); 2833 /* Kill the entire session */ 2834 do_each_pid_task(session, PIDTYPE_SID, p) { 2835 printk(KERN_NOTICE "SAK: killed process %d" 2836 " (%s): task_session(p)==tty->session\n", 2837 task_pid_nr(p), p->comm); 2838 send_sig(SIGKILL, p, 1); 2839 } while_each_pid_task(session, PIDTYPE_SID, p); 2840 /* Now kill any processes that happen to have the 2841 * tty open. 2842 */ 2843 do_each_thread(g, p) { 2844 if (p->signal->tty == tty) { 2845 printk(KERN_NOTICE "SAK: killed process %d" 2846 " (%s): task_session(p)==tty->session\n", 2847 task_pid_nr(p), p->comm); 2848 send_sig(SIGKILL, p, 1); 2849 continue; 2850 } 2851 task_lock(p); 2852 if (p->files) { 2853 /* 2854 * We don't take a ref to the file, so we must 2855 * hold ->file_lock instead. 2856 */ 2857 spin_lock(&p->files->file_lock); 2858 fdt = files_fdtable(p->files); 2859 for (i = 0; i < fdt->max_fds; i++) { 2860 filp = fcheck_files(p->files, i); 2861 if (!filp) 2862 continue; 2863 if (filp->f_op->read == tty_read && 2864 file_tty(filp) == tty) { 2865 printk(KERN_NOTICE "SAK: killed process %d" 2866 " (%s): fd#%d opened to the tty\n", 2867 task_pid_nr(p), p->comm, i); 2868 force_sig(SIGKILL, p); 2869 break; 2870 } 2871 } 2872 spin_unlock(&p->files->file_lock); 2873 } 2874 task_unlock(p); 2875 } while_each_thread(g, p); 2876 read_unlock(&tasklist_lock); 2877 #endif 2878 } 2879 2880 static void do_SAK_work(struct work_struct *work) 2881 { 2882 struct tty_struct *tty = 2883 container_of(work, struct tty_struct, SAK_work); 2884 __do_SAK(tty); 2885 } 2886 2887 /* 2888 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2889 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2890 * the values which we write to it will be identical to the values which it 2891 * already has. --akpm 2892 */ 2893 void do_SAK(struct tty_struct *tty) 2894 { 2895 if (!tty) 2896 return; 2897 schedule_work(&tty->SAK_work); 2898 } 2899 2900 EXPORT_SYMBOL(do_SAK); 2901 2902 static int dev_match_devt(struct device *dev, void *data) 2903 { 2904 dev_t *devt = data; 2905 return dev->devt == *devt; 2906 } 2907 2908 /* Must put_device() after it's unused! */ 2909 static struct device *tty_get_device(struct tty_struct *tty) 2910 { 2911 dev_t devt = tty_devnum(tty); 2912 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 2913 } 2914 2915 2916 /** 2917 * initialize_tty_struct 2918 * @tty: tty to initialize 2919 * 2920 * This subroutine initializes a tty structure that has been newly 2921 * allocated. 2922 * 2923 * Locking: none - tty in question must not be exposed at this point 2924 */ 2925 2926 void initialize_tty_struct(struct tty_struct *tty, 2927 struct tty_driver *driver, int idx) 2928 { 2929 memset(tty, 0, sizeof(struct tty_struct)); 2930 kref_init(&tty->kref); 2931 tty->magic = TTY_MAGIC; 2932 tty_ldisc_init(tty); 2933 tty->session = NULL; 2934 tty->pgrp = NULL; 2935 tty->overrun_time = jiffies; 2936 tty_buffer_init(tty); 2937 mutex_init(&tty->termios_mutex); 2938 mutex_init(&tty->ldisc_mutex); 2939 init_waitqueue_head(&tty->write_wait); 2940 init_waitqueue_head(&tty->read_wait); 2941 INIT_WORK(&tty->hangup_work, do_tty_hangup); 2942 mutex_init(&tty->atomic_read_lock); 2943 mutex_init(&tty->atomic_write_lock); 2944 mutex_init(&tty->output_lock); 2945 mutex_init(&tty->echo_lock); 2946 spin_lock_init(&tty->read_lock); 2947 spin_lock_init(&tty->ctrl_lock); 2948 INIT_LIST_HEAD(&tty->tty_files); 2949 INIT_WORK(&tty->SAK_work, do_SAK_work); 2950 2951 tty->driver = driver; 2952 tty->ops = driver->ops; 2953 tty->index = idx; 2954 tty_line_name(driver, idx, tty->name); 2955 tty->dev = tty_get_device(tty); 2956 } 2957 2958 /** 2959 * deinitialize_tty_struct 2960 * @tty: tty to deinitialize 2961 * 2962 * This subroutine deinitializes a tty structure that has been newly 2963 * allocated but tty_release cannot be called on that yet. 2964 * 2965 * Locking: none - tty in question must not be exposed at this point 2966 */ 2967 void deinitialize_tty_struct(struct tty_struct *tty) 2968 { 2969 tty_ldisc_deinit(tty); 2970 } 2971 2972 /** 2973 * tty_put_char - write one character to a tty 2974 * @tty: tty 2975 * @ch: character 2976 * 2977 * Write one byte to the tty using the provided put_char method 2978 * if present. Returns the number of characters successfully output. 2979 * 2980 * Note: the specific put_char operation in the driver layer may go 2981 * away soon. Don't call it directly, use this method 2982 */ 2983 2984 int tty_put_char(struct tty_struct *tty, unsigned char ch) 2985 { 2986 if (tty->ops->put_char) 2987 return tty->ops->put_char(tty, ch); 2988 return tty->ops->write(tty, &ch, 1); 2989 } 2990 EXPORT_SYMBOL_GPL(tty_put_char); 2991 2992 struct class *tty_class; 2993 2994 /** 2995 * tty_register_device - register a tty device 2996 * @driver: the tty driver that describes the tty device 2997 * @index: the index in the tty driver for this tty device 2998 * @device: a struct device that is associated with this tty device. 2999 * This field is optional, if there is no known struct device 3000 * for this tty device it can be set to NULL safely. 3001 * 3002 * Returns a pointer to the struct device for this tty device 3003 * (or ERR_PTR(-EFOO) on error). 3004 * 3005 * This call is required to be made to register an individual tty device 3006 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3007 * that bit is not set, this function should not be called by a tty 3008 * driver. 3009 * 3010 * Locking: ?? 3011 */ 3012 3013 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3014 struct device *device) 3015 { 3016 char name[64]; 3017 dev_t dev = MKDEV(driver->major, driver->minor_start) + index; 3018 3019 if (index >= driver->num) { 3020 printk(KERN_ERR "Attempt to register invalid tty line number " 3021 " (%d).\n", index); 3022 return ERR_PTR(-EINVAL); 3023 } 3024 3025 if (driver->type == TTY_DRIVER_TYPE_PTY) 3026 pty_line_name(driver, index, name); 3027 else 3028 tty_line_name(driver, index, name); 3029 3030 return device_create(tty_class, device, dev, NULL, name); 3031 } 3032 EXPORT_SYMBOL(tty_register_device); 3033 3034 /** 3035 * tty_unregister_device - unregister a tty device 3036 * @driver: the tty driver that describes the tty device 3037 * @index: the index in the tty driver for this tty device 3038 * 3039 * If a tty device is registered with a call to tty_register_device() then 3040 * this function must be called when the tty device is gone. 3041 * 3042 * Locking: ?? 3043 */ 3044 3045 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3046 { 3047 device_destroy(tty_class, 3048 MKDEV(driver->major, driver->minor_start) + index); 3049 } 3050 EXPORT_SYMBOL(tty_unregister_device); 3051 3052 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner) 3053 { 3054 struct tty_driver *driver; 3055 3056 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3057 if (driver) { 3058 kref_init(&driver->kref); 3059 driver->magic = TTY_DRIVER_MAGIC; 3060 driver->num = lines; 3061 driver->owner = owner; 3062 /* later we'll move allocation of tables here */ 3063 } 3064 return driver; 3065 } 3066 EXPORT_SYMBOL(__alloc_tty_driver); 3067 3068 static void destruct_tty_driver(struct kref *kref) 3069 { 3070 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3071 int i; 3072 struct ktermios *tp; 3073 void *p; 3074 3075 if (driver->flags & TTY_DRIVER_INSTALLED) { 3076 /* 3077 * Free the termios and termios_locked structures because 3078 * we don't want to get memory leaks when modular tty 3079 * drivers are removed from the kernel. 3080 */ 3081 for (i = 0; i < driver->num; i++) { 3082 tp = driver->termios[i]; 3083 if (tp) { 3084 driver->termios[i] = NULL; 3085 kfree(tp); 3086 } 3087 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3088 tty_unregister_device(driver, i); 3089 } 3090 p = driver->ttys; 3091 proc_tty_unregister_driver(driver); 3092 driver->ttys = NULL; 3093 driver->termios = NULL; 3094 kfree(p); 3095 cdev_del(&driver->cdev); 3096 } 3097 kfree(driver); 3098 } 3099 3100 void tty_driver_kref_put(struct tty_driver *driver) 3101 { 3102 kref_put(&driver->kref, destruct_tty_driver); 3103 } 3104 EXPORT_SYMBOL(tty_driver_kref_put); 3105 3106 void tty_set_operations(struct tty_driver *driver, 3107 const struct tty_operations *op) 3108 { 3109 driver->ops = op; 3110 }; 3111 EXPORT_SYMBOL(tty_set_operations); 3112 3113 void put_tty_driver(struct tty_driver *d) 3114 { 3115 tty_driver_kref_put(d); 3116 } 3117 EXPORT_SYMBOL(put_tty_driver); 3118 3119 /* 3120 * Called by a tty driver to register itself. 3121 */ 3122 int tty_register_driver(struct tty_driver *driver) 3123 { 3124 int error; 3125 int i; 3126 dev_t dev; 3127 void **p = NULL; 3128 struct device *d; 3129 3130 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) { 3131 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL); 3132 if (!p) 3133 return -ENOMEM; 3134 } 3135 3136 if (!driver->major) { 3137 error = alloc_chrdev_region(&dev, driver->minor_start, 3138 driver->num, driver->name); 3139 if (!error) { 3140 driver->major = MAJOR(dev); 3141 driver->minor_start = MINOR(dev); 3142 } 3143 } else { 3144 dev = MKDEV(driver->major, driver->minor_start); 3145 error = register_chrdev_region(dev, driver->num, driver->name); 3146 } 3147 if (error < 0) { 3148 kfree(p); 3149 return error; 3150 } 3151 3152 if (p) { 3153 driver->ttys = (struct tty_struct **)p; 3154 driver->termios = (struct ktermios **)(p + driver->num); 3155 } else { 3156 driver->ttys = NULL; 3157 driver->termios = NULL; 3158 } 3159 3160 cdev_init(&driver->cdev, &tty_fops); 3161 driver->cdev.owner = driver->owner; 3162 error = cdev_add(&driver->cdev, dev, driver->num); 3163 if (error) { 3164 unregister_chrdev_region(dev, driver->num); 3165 driver->ttys = NULL; 3166 driver->termios = NULL; 3167 kfree(p); 3168 return error; 3169 } 3170 3171 mutex_lock(&tty_mutex); 3172 list_add(&driver->tty_drivers, &tty_drivers); 3173 mutex_unlock(&tty_mutex); 3174 3175 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3176 for (i = 0; i < driver->num; i++) { 3177 d = tty_register_device(driver, i, NULL); 3178 if (IS_ERR(d)) { 3179 error = PTR_ERR(d); 3180 goto err; 3181 } 3182 } 3183 } 3184 proc_tty_register_driver(driver); 3185 driver->flags |= TTY_DRIVER_INSTALLED; 3186 return 0; 3187 3188 err: 3189 for (i--; i >= 0; i--) 3190 tty_unregister_device(driver, i); 3191 3192 mutex_lock(&tty_mutex); 3193 list_del(&driver->tty_drivers); 3194 mutex_unlock(&tty_mutex); 3195 3196 unregister_chrdev_region(dev, driver->num); 3197 driver->ttys = NULL; 3198 driver->termios = NULL; 3199 kfree(p); 3200 return error; 3201 } 3202 3203 EXPORT_SYMBOL(tty_register_driver); 3204 3205 /* 3206 * Called by a tty driver to unregister itself. 3207 */ 3208 int tty_unregister_driver(struct tty_driver *driver) 3209 { 3210 #if 0 3211 /* FIXME */ 3212 if (driver->refcount) 3213 return -EBUSY; 3214 #endif 3215 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3216 driver->num); 3217 mutex_lock(&tty_mutex); 3218 list_del(&driver->tty_drivers); 3219 mutex_unlock(&tty_mutex); 3220 return 0; 3221 } 3222 3223 EXPORT_SYMBOL(tty_unregister_driver); 3224 3225 dev_t tty_devnum(struct tty_struct *tty) 3226 { 3227 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3228 } 3229 EXPORT_SYMBOL(tty_devnum); 3230 3231 void proc_clear_tty(struct task_struct *p) 3232 { 3233 unsigned long flags; 3234 struct tty_struct *tty; 3235 spin_lock_irqsave(&p->sighand->siglock, flags); 3236 tty = p->signal->tty; 3237 p->signal->tty = NULL; 3238 spin_unlock_irqrestore(&p->sighand->siglock, flags); 3239 tty_kref_put(tty); 3240 } 3241 3242 /* Called under the sighand lock */ 3243 3244 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3245 { 3246 if (tty) { 3247 unsigned long flags; 3248 /* We should not have a session or pgrp to put here but.... */ 3249 spin_lock_irqsave(&tty->ctrl_lock, flags); 3250 put_pid(tty->session); 3251 put_pid(tty->pgrp); 3252 tty->pgrp = get_pid(task_pgrp(tsk)); 3253 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3254 tty->session = get_pid(task_session(tsk)); 3255 if (tsk->signal->tty) { 3256 printk(KERN_DEBUG "tty not NULL!!\n"); 3257 tty_kref_put(tsk->signal->tty); 3258 } 3259 } 3260 put_pid(tsk->signal->tty_old_pgrp); 3261 tsk->signal->tty = tty_kref_get(tty); 3262 tsk->signal->tty_old_pgrp = NULL; 3263 } 3264 3265 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3266 { 3267 spin_lock_irq(&tsk->sighand->siglock); 3268 __proc_set_tty(tsk, tty); 3269 spin_unlock_irq(&tsk->sighand->siglock); 3270 } 3271 3272 struct tty_struct *get_current_tty(void) 3273 { 3274 struct tty_struct *tty; 3275 unsigned long flags; 3276 3277 spin_lock_irqsave(¤t->sighand->siglock, flags); 3278 tty = tty_kref_get(current->signal->tty); 3279 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 3280 return tty; 3281 } 3282 EXPORT_SYMBOL_GPL(get_current_tty); 3283 3284 void tty_default_fops(struct file_operations *fops) 3285 { 3286 *fops = tty_fops; 3287 } 3288 3289 /* 3290 * Initialize the console device. This is called *early*, so 3291 * we can't necessarily depend on lots of kernel help here. 3292 * Just do some early initializations, and do the complex setup 3293 * later. 3294 */ 3295 void __init console_init(void) 3296 { 3297 initcall_t *call; 3298 3299 /* Setup the default TTY line discipline. */ 3300 tty_ldisc_begin(); 3301 3302 /* 3303 * set up the console device so that later boot sequences can 3304 * inform about problems etc.. 3305 */ 3306 call = __con_initcall_start; 3307 while (call < __con_initcall_end) { 3308 (*call)(); 3309 call++; 3310 } 3311 } 3312 3313 static char *tty_devnode(struct device *dev, umode_t *mode) 3314 { 3315 if (!mode) 3316 return NULL; 3317 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3318 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3319 *mode = 0666; 3320 return NULL; 3321 } 3322 3323 static int __init tty_class_init(void) 3324 { 3325 tty_class = class_create(THIS_MODULE, "tty"); 3326 if (IS_ERR(tty_class)) 3327 return PTR_ERR(tty_class); 3328 tty_class->devnode = tty_devnode; 3329 return 0; 3330 } 3331 3332 postcore_initcall(tty_class_init); 3333 3334 /* 3/2004 jmc: why do these devices exist? */ 3335 static struct cdev tty_cdev, console_cdev; 3336 3337 static ssize_t show_cons_active(struct device *dev, 3338 struct device_attribute *attr, char *buf) 3339 { 3340 struct console *cs[16]; 3341 int i = 0; 3342 struct console *c; 3343 ssize_t count = 0; 3344 3345 console_lock(); 3346 for_each_console(c) { 3347 if (!c->device) 3348 continue; 3349 if (!c->write) 3350 continue; 3351 if ((c->flags & CON_ENABLED) == 0) 3352 continue; 3353 cs[i++] = c; 3354 if (i >= ARRAY_SIZE(cs)) 3355 break; 3356 } 3357 while (i--) 3358 count += sprintf(buf + count, "%s%d%c", 3359 cs[i]->name, cs[i]->index, i ? ' ':'\n'); 3360 console_unlock(); 3361 3362 return count; 3363 } 3364 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3365 3366 static struct device *consdev; 3367 3368 void console_sysfs_notify(void) 3369 { 3370 if (consdev) 3371 sysfs_notify(&consdev->kobj, NULL, "active"); 3372 } 3373 3374 /* 3375 * Ok, now we can initialize the rest of the tty devices and can count 3376 * on memory allocations, interrupts etc.. 3377 */ 3378 int __init tty_init(void) 3379 { 3380 cdev_init(&tty_cdev, &tty_fops); 3381 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3382 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3383 panic("Couldn't register /dev/tty driver\n"); 3384 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3385 3386 cdev_init(&console_cdev, &console_fops); 3387 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3388 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3389 panic("Couldn't register /dev/console driver\n"); 3390 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, 3391 "console"); 3392 if (IS_ERR(consdev)) 3393 consdev = NULL; 3394 else 3395 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0); 3396 3397 #ifdef CONFIG_VT 3398 vty_init(&console_fops); 3399 #endif 3400 return 0; 3401 } 3402 3403