xref: /linux/drivers/tty/tty_io.c (revision 8ed7cf66f4841bcc8c15a89be0732b933703b51c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  */
5 
6 /*
7  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8  * or rs-channels. It also implements echoing, cooked mode etc.
9  *
10  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11  *
12  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13  * tty_struct and tty_queue structures.  Previously there was an array
14  * of 256 tty_struct's which was statically allocated, and the
15  * tty_queue structures were allocated at boot time.  Both are now
16  * dynamically allocated only when the tty is open.
17  *
18  * Also restructured routines so that there is more of a separation
19  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20  * the low-level tty routines (serial.c, pty.c, console.c).  This
21  * makes for cleaner and more compact code.  -TYT, 9/17/92
22  *
23  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24  * which can be dynamically activated and de-activated by the line
25  * discipline handling modules (like SLIP).
26  *
27  * NOTE: pay no attention to the line discipline code (yet); its
28  * interface is still subject to change in this version...
29  * -- TYT, 1/31/92
30  *
31  * Added functionality to the OPOST tty handling.  No delays, but all
32  * other bits should be there.
33  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34  *
35  * Rewrote canonical mode and added more termios flags.
36  *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37  *
38  * Reorganized FASYNC support so mouse code can share it.
39  *	-- ctm@ardi.com, 9Sep95
40  *
41  * New TIOCLINUX variants added.
42  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43  *
44  * Restrict vt switching via ioctl()
45  *      -- grif@cs.ucr.edu, 5-Dec-95
46  *
47  * Move console and virtual terminal code to more appropriate files,
48  * implement CONFIG_VT and generalize console device interface.
49  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50  *
51  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52  *	-- Bill Hawes <whawes@star.net>, June 97
53  *
54  * Added devfs support.
55  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56  *
57  * Added support for a Unix98-style ptmx device.
58  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59  *
60  * Reduced memory usage for older ARM systems
61  *      -- Russell King <rmk@arm.linux.org.uk>
62  *
63  * Move do_SAK() into process context.  Less stack use in devfs functions.
64  * alloc_tty_struct() always uses kmalloc()
65  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67 
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/ppp-ioctl.h>
91 #include <linux/proc_fs.h>
92 #include <linux/init.h>
93 #include <linux/module.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100 #include <linux/ratelimit.h>
101 #include <linux/compat.h>
102 #include <linux/uaccess.h>
103 #include <linux/termios_internal.h>
104 #include <linux/fs.h>
105 
106 #include <linux/kbd_kern.h>
107 #include <linux/vt_kern.h>
108 #include <linux/selection.h>
109 
110 #include <linux/kmod.h>
111 #include <linux/nsproxy.h>
112 #include "tty.h"
113 
114 #undef TTY_DEBUG_HANGUP
115 #ifdef TTY_DEBUG_HANGUP
116 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
117 #else
118 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
119 #endif
120 
121 #define TTY_PARANOIA_CHECK 1
122 #define CHECK_TTY_COUNT 1
123 
124 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
125 	.c_iflag = ICRNL | IXON,
126 	.c_oflag = OPOST | ONLCR,
127 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
128 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
129 		   ECHOCTL | ECHOKE | IEXTEN,
130 	.c_cc = INIT_C_CC,
131 	.c_ispeed = 38400,
132 	.c_ospeed = 38400,
133 	/* .c_line = N_TTY, */
134 };
135 EXPORT_SYMBOL(tty_std_termios);
136 
137 /* This list gets poked at by procfs and various bits of boot up code. This
138  * could do with some rationalisation such as pulling the tty proc function
139  * into this file.
140  */
141 
142 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
143 
144 /* Mutex to protect creating and releasing a tty */
145 DEFINE_MUTEX(tty_mutex);
146 
147 static ssize_t tty_read(struct kiocb *, struct iov_iter *);
148 static ssize_t tty_write(struct kiocb *, struct iov_iter *);
149 static __poll_t tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 #ifdef CONFIG_COMPAT
152 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
153 				unsigned long arg);
154 #else
155 #define tty_compat_ioctl NULL
156 #endif
157 static int __tty_fasync(int fd, struct file *filp, int on);
158 static int tty_fasync(int fd, struct file *filp, int on);
159 static void release_tty(struct tty_struct *tty, int idx);
160 
161 /**
162  * free_tty_struct - free a disused tty
163  * @tty: tty struct to free
164  *
165  * Free the write buffers, tty queue and tty memory itself.
166  *
167  * Locking: none. Must be called after tty is definitely unused
168  */
169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 	tty_ldisc_deinit(tty);
172 	put_device(tty->dev);
173 	kvfree(tty->write_buf);
174 	kfree(tty);
175 }
176 
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179 	return ((struct tty_file_private *)file->private_data)->tty;
180 }
181 
182 int tty_alloc_file(struct file *file)
183 {
184 	struct tty_file_private *priv;
185 
186 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187 	if (!priv)
188 		return -ENOMEM;
189 
190 	file->private_data = priv;
191 
192 	return 0;
193 }
194 
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198 	struct tty_file_private *priv = file->private_data;
199 
200 	priv->tty = tty;
201 	priv->file = file;
202 
203 	spin_lock(&tty->files_lock);
204 	list_add(&priv->list, &tty->tty_files);
205 	spin_unlock(&tty->files_lock);
206 }
207 
208 /**
209  * tty_free_file - free file->private_data
210  * @file: to free private_data of
211  *
212  * This shall be used only for fail path handling when tty_add_file was not
213  * called yet.
214  */
215 void tty_free_file(struct file *file)
216 {
217 	struct tty_file_private *priv = file->private_data;
218 
219 	file->private_data = NULL;
220 	kfree(priv);
221 }
222 
223 /* Delete file from its tty */
224 static void tty_del_file(struct file *file)
225 {
226 	struct tty_file_private *priv = file->private_data;
227 	struct tty_struct *tty = priv->tty;
228 
229 	spin_lock(&tty->files_lock);
230 	list_del(&priv->list);
231 	spin_unlock(&tty->files_lock);
232 	tty_free_file(file);
233 }
234 
235 /**
236  * tty_name - return tty naming
237  * @tty: tty structure
238  *
239  * Convert a tty structure into a name. The name reflects the kernel naming
240  * policy and if udev is in use may not reflect user space
241  *
242  * Locking: none
243  */
244 const char *tty_name(const struct tty_struct *tty)
245 {
246 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
247 		return "NULL tty";
248 	return tty->name;
249 }
250 EXPORT_SYMBOL(tty_name);
251 
252 const char *tty_driver_name(const struct tty_struct *tty)
253 {
254 	if (!tty || !tty->driver)
255 		return "";
256 	return tty->driver->name;
257 }
258 
259 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 			      const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 	if (!tty) {
264 		pr_warn("(%d:%d): %s: NULL tty\n",
265 			imajor(inode), iminor(inode), routine);
266 		return 1;
267 	}
268 #endif
269 	return 0;
270 }
271 
272 /* Caller must hold tty_lock */
273 static void check_tty_count(struct tty_struct *tty, const char *routine)
274 {
275 #ifdef CHECK_TTY_COUNT
276 	struct list_head *p;
277 	int count = 0, kopen_count = 0;
278 
279 	spin_lock(&tty->files_lock);
280 	list_for_each(p, &tty->tty_files) {
281 		count++;
282 	}
283 	spin_unlock(&tty->files_lock);
284 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
285 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
286 	    tty->link && tty->link->count)
287 		count++;
288 	if (tty_port_kopened(tty->port))
289 		kopen_count++;
290 	if (tty->count != (count + kopen_count)) {
291 		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
292 			 routine, tty->count, count, kopen_count);
293 	}
294 #endif
295 }
296 
297 /**
298  * get_tty_driver - find device of a tty
299  * @device: device identifier
300  * @index: returns the index of the tty
301  *
302  * This routine returns a tty driver structure, given a device number and also
303  * passes back the index number.
304  *
305  * Locking: caller must hold tty_mutex
306  */
307 static struct tty_driver *get_tty_driver(dev_t device, int *index)
308 {
309 	struct tty_driver *p;
310 
311 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 		dev_t base = MKDEV(p->major, p->minor_start);
313 
314 		if (device < base || device >= base + p->num)
315 			continue;
316 		*index = device - base;
317 		return tty_driver_kref_get(p);
318 	}
319 	return NULL;
320 }
321 
322 /**
323  * tty_dev_name_to_number - return dev_t for device name
324  * @name: user space name of device under /dev
325  * @number: pointer to dev_t that this function will populate
326  *
327  * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
328  * (4, 64) or (188, 1). If no corresponding driver is registered then the
329  * function returns -%ENODEV.
330  *
331  * Locking: this acquires tty_mutex to protect the tty_drivers list from
332  *	being modified while we are traversing it, and makes sure to
333  *	release it before exiting.
334  */
335 int tty_dev_name_to_number(const char *name, dev_t *number)
336 {
337 	struct tty_driver *p;
338 	int ret;
339 	int index, prefix_length = 0;
340 	const char *str;
341 
342 	for (str = name; *str && !isdigit(*str); str++)
343 		;
344 
345 	if (!*str)
346 		return -EINVAL;
347 
348 	ret = kstrtoint(str, 10, &index);
349 	if (ret)
350 		return ret;
351 
352 	prefix_length = str - name;
353 
354 	guard(mutex)(&tty_mutex);
355 
356 	list_for_each_entry(p, &tty_drivers, tty_drivers)
357 		if (prefix_length == strlen(p->name) && strncmp(name,
358 					p->name, prefix_length) == 0) {
359 			if (index < p->num) {
360 				*number = MKDEV(p->major, p->minor_start + index);
361 				return 0;
362 			}
363 		}
364 
365 	return -ENODEV;
366 }
367 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
368 
369 #ifdef CONFIG_CONSOLE_POLL
370 
371 /**
372  * tty_find_polling_driver - find device of a polled tty
373  * @name: name string to match
374  * @line: pointer to resulting tty line nr
375  *
376  * This routine returns a tty driver structure, given a name and the condition
377  * that the tty driver is capable of polled operation.
378  */
379 struct tty_driver *tty_find_polling_driver(char *name, int *line)
380 {
381 	struct tty_driver *p, *res = NULL;
382 	int tty_line = 0;
383 	int len;
384 	char *str, *stp;
385 
386 	for (str = name; *str; str++)
387 		if ((*str >= '0' && *str <= '9') || *str == ',')
388 			break;
389 	if (!*str)
390 		return NULL;
391 
392 	len = str - name;
393 	tty_line = simple_strtoul(str, &str, 10);
394 
395 	mutex_lock(&tty_mutex);
396 	/* Search through the tty devices to look for a match */
397 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
398 		if (!len || strncmp(name, p->name, len) != 0)
399 			continue;
400 		stp = str;
401 		if (*stp == ',')
402 			stp++;
403 		if (*stp == '\0')
404 			stp = NULL;
405 
406 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
407 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
408 			res = tty_driver_kref_get(p);
409 			*line = tty_line;
410 			break;
411 		}
412 	}
413 	mutex_unlock(&tty_mutex);
414 
415 	return res;
416 }
417 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
418 #endif
419 
420 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
421 {
422 	return 0;
423 }
424 
425 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
426 {
427 	return -EIO;
428 }
429 
430 /* No kernel lock held - none needed ;) */
431 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
432 {
433 	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
434 }
435 
436 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
437 		unsigned long arg)
438 {
439 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
440 }
441 
442 static long hung_up_tty_compat_ioctl(struct file *file,
443 				     unsigned int cmd, unsigned long arg)
444 {
445 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
446 }
447 
448 static int hung_up_tty_fasync(int fd, struct file *file, int on)
449 {
450 	return -ENOTTY;
451 }
452 
453 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
454 {
455 	struct tty_struct *tty = file_tty(file);
456 
457 	if (tty && tty->ops && tty->ops->show_fdinfo)
458 		tty->ops->show_fdinfo(tty, m);
459 }
460 
461 static const struct file_operations tty_fops = {
462 	.llseek		= no_llseek,
463 	.read_iter	= tty_read,
464 	.write_iter	= tty_write,
465 	.splice_read	= copy_splice_read,
466 	.splice_write	= iter_file_splice_write,
467 	.poll		= tty_poll,
468 	.unlocked_ioctl	= tty_ioctl,
469 	.compat_ioctl	= tty_compat_ioctl,
470 	.open		= tty_open,
471 	.release	= tty_release,
472 	.fasync		= tty_fasync,
473 	.show_fdinfo	= tty_show_fdinfo,
474 };
475 
476 static const struct file_operations console_fops = {
477 	.llseek		= no_llseek,
478 	.read_iter	= tty_read,
479 	.write_iter	= redirected_tty_write,
480 	.splice_read	= copy_splice_read,
481 	.splice_write	= iter_file_splice_write,
482 	.poll		= tty_poll,
483 	.unlocked_ioctl	= tty_ioctl,
484 	.compat_ioctl	= tty_compat_ioctl,
485 	.open		= tty_open,
486 	.release	= tty_release,
487 	.fasync		= tty_fasync,
488 };
489 
490 static const struct file_operations hung_up_tty_fops = {
491 	.llseek		= no_llseek,
492 	.read_iter	= hung_up_tty_read,
493 	.write_iter	= hung_up_tty_write,
494 	.poll		= hung_up_tty_poll,
495 	.unlocked_ioctl	= hung_up_tty_ioctl,
496 	.compat_ioctl	= hung_up_tty_compat_ioctl,
497 	.release	= tty_release,
498 	.fasync		= hung_up_tty_fasync,
499 };
500 
501 static DEFINE_SPINLOCK(redirect_lock);
502 static struct file *redirect;
503 
504 /**
505  * tty_wakeup - request more data
506  * @tty: terminal
507  *
508  * Internal and external helper for wakeups of tty. This function informs the
509  * line discipline if present that the driver is ready to receive more output
510  * data.
511  */
512 void tty_wakeup(struct tty_struct *tty)
513 {
514 	struct tty_ldisc *ld;
515 
516 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
517 		ld = tty_ldisc_ref(tty);
518 		if (ld) {
519 			if (ld->ops->write_wakeup)
520 				ld->ops->write_wakeup(tty);
521 			tty_ldisc_deref(ld);
522 		}
523 	}
524 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
525 }
526 EXPORT_SYMBOL_GPL(tty_wakeup);
527 
528 /**
529  * tty_release_redirect - Release a redirect on a pty if present
530  * @tty: tty device
531  *
532  * This is available to the pty code so if the master closes, if the slave is a
533  * redirect it can release the redirect.
534  */
535 static struct file *tty_release_redirect(struct tty_struct *tty)
536 {
537 	struct file *f = NULL;
538 
539 	spin_lock(&redirect_lock);
540 	if (redirect && file_tty(redirect) == tty) {
541 		f = redirect;
542 		redirect = NULL;
543 	}
544 	spin_unlock(&redirect_lock);
545 
546 	return f;
547 }
548 
549 /**
550  * __tty_hangup - actual handler for hangup events
551  * @tty: tty device
552  * @exit_session: if non-zero, signal all foreground group processes
553  *
554  * This can be called by a "kworker" kernel thread. That is process synchronous
555  * but doesn't hold any locks, so we need to make sure we have the appropriate
556  * locks for what we're doing.
557  *
558  * The hangup event clears any pending redirections onto the hung up device. It
559  * ensures future writes will error and it does the needed line discipline
560  * hangup and signal delivery. The tty object itself remains intact.
561  *
562  * Locking:
563  *  * BTM
564  *
565  *   * redirect lock for undoing redirection
566  *   * file list lock for manipulating list of ttys
567  *   * tty_ldiscs_lock from called functions
568  *   * termios_rwsem resetting termios data
569  *   * tasklist_lock to walk task list for hangup event
570  *
571  *    * ->siglock to protect ->signal/->sighand
572  *
573  */
574 static void __tty_hangup(struct tty_struct *tty, int exit_session)
575 {
576 	struct file *cons_filp = NULL;
577 	struct file *filp, *f;
578 	struct tty_file_private *priv;
579 	int    closecount = 0, n;
580 	int refs;
581 
582 	if (!tty)
583 		return;
584 
585 	f = tty_release_redirect(tty);
586 
587 	tty_lock(tty);
588 
589 	if (test_bit(TTY_HUPPED, &tty->flags)) {
590 		tty_unlock(tty);
591 		return;
592 	}
593 
594 	/*
595 	 * Some console devices aren't actually hung up for technical and
596 	 * historical reasons, which can lead to indefinite interruptible
597 	 * sleep in n_tty_read().  The following explicitly tells
598 	 * n_tty_read() to abort readers.
599 	 */
600 	set_bit(TTY_HUPPING, &tty->flags);
601 
602 	/* inuse_filps is protected by the single tty lock,
603 	 * this really needs to change if we want to flush the
604 	 * workqueue with the lock held.
605 	 */
606 	check_tty_count(tty, "tty_hangup");
607 
608 	spin_lock(&tty->files_lock);
609 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
610 	list_for_each_entry(priv, &tty->tty_files, list) {
611 		filp = priv->file;
612 		if (filp->f_op->write_iter == redirected_tty_write)
613 			cons_filp = filp;
614 		if (filp->f_op->write_iter != tty_write)
615 			continue;
616 		closecount++;
617 		__tty_fasync(-1, filp, 0);	/* can't block */
618 		filp->f_op = &hung_up_tty_fops;
619 	}
620 	spin_unlock(&tty->files_lock);
621 
622 	refs = tty_signal_session_leader(tty, exit_session);
623 	/* Account for the p->signal references we killed */
624 	while (refs--)
625 		tty_kref_put(tty);
626 
627 	tty_ldisc_hangup(tty, cons_filp != NULL);
628 
629 	spin_lock_irq(&tty->ctrl.lock);
630 	clear_bit(TTY_THROTTLED, &tty->flags);
631 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
632 	put_pid(tty->ctrl.session);
633 	put_pid(tty->ctrl.pgrp);
634 	tty->ctrl.session = NULL;
635 	tty->ctrl.pgrp = NULL;
636 	tty->ctrl.pktstatus = 0;
637 	spin_unlock_irq(&tty->ctrl.lock);
638 
639 	/*
640 	 * If one of the devices matches a console pointer, we
641 	 * cannot just call hangup() because that will cause
642 	 * tty->count and state->count to go out of sync.
643 	 * So we just call close() the right number of times.
644 	 */
645 	if (cons_filp) {
646 		if (tty->ops->close)
647 			for (n = 0; n < closecount; n++)
648 				tty->ops->close(tty, cons_filp);
649 	} else if (tty->ops->hangup)
650 		tty->ops->hangup(tty);
651 	/*
652 	 * We don't want to have driver/ldisc interactions beyond the ones
653 	 * we did here. The driver layer expects no calls after ->hangup()
654 	 * from the ldisc side, which is now guaranteed.
655 	 */
656 	set_bit(TTY_HUPPED, &tty->flags);
657 	clear_bit(TTY_HUPPING, &tty->flags);
658 	tty_unlock(tty);
659 
660 	if (f)
661 		fput(f);
662 }
663 
664 static void do_tty_hangup(struct work_struct *work)
665 {
666 	struct tty_struct *tty =
667 		container_of(work, struct tty_struct, hangup_work);
668 
669 	__tty_hangup(tty, 0);
670 }
671 
672 /**
673  * tty_hangup - trigger a hangup event
674  * @tty: tty to hangup
675  *
676  * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
677  * hangup sequence to run after this event.
678  */
679 void tty_hangup(struct tty_struct *tty)
680 {
681 	tty_debug_hangup(tty, "hangup\n");
682 	schedule_work(&tty->hangup_work);
683 }
684 EXPORT_SYMBOL(tty_hangup);
685 
686 /**
687  * tty_vhangup - process vhangup
688  * @tty: tty to hangup
689  *
690  * The user has asked via system call for the terminal to be hung up. We do
691  * this synchronously so that when the syscall returns the process is complete.
692  * That guarantee is necessary for security reasons.
693  */
694 void tty_vhangup(struct tty_struct *tty)
695 {
696 	tty_debug_hangup(tty, "vhangup\n");
697 	__tty_hangup(tty, 0);
698 }
699 EXPORT_SYMBOL(tty_vhangup);
700 
701 
702 /**
703  * tty_vhangup_self - process vhangup for own ctty
704  *
705  * Perform a vhangup on the current controlling tty
706  */
707 void tty_vhangup_self(void)
708 {
709 	struct tty_struct *tty;
710 
711 	tty = get_current_tty();
712 	if (tty) {
713 		tty_vhangup(tty);
714 		tty_kref_put(tty);
715 	}
716 }
717 
718 /**
719  * tty_vhangup_session - hangup session leader exit
720  * @tty: tty to hangup
721  *
722  * The session leader is exiting and hanging up its controlling terminal.
723  * Every process in the foreground process group is signalled %SIGHUP.
724  *
725  * We do this synchronously so that when the syscall returns the process is
726  * complete. That guarantee is necessary for security reasons.
727  */
728 void tty_vhangup_session(struct tty_struct *tty)
729 {
730 	tty_debug_hangup(tty, "session hangup\n");
731 	__tty_hangup(tty, 1);
732 }
733 
734 /**
735  * tty_hung_up_p - was tty hung up
736  * @filp: file pointer of tty
737  *
738  * Return: true if the tty has been subject to a vhangup or a carrier loss
739  */
740 int tty_hung_up_p(struct file *filp)
741 {
742 	return (filp && filp->f_op == &hung_up_tty_fops);
743 }
744 EXPORT_SYMBOL(tty_hung_up_p);
745 
746 void __stop_tty(struct tty_struct *tty)
747 {
748 	if (tty->flow.stopped)
749 		return;
750 	tty->flow.stopped = true;
751 	if (tty->ops->stop)
752 		tty->ops->stop(tty);
753 }
754 
755 /**
756  * stop_tty - propagate flow control
757  * @tty: tty to stop
758  *
759  * Perform flow control to the driver. May be called on an already stopped
760  * device and will not re-call the &tty_driver->stop() method.
761  *
762  * This functionality is used by both the line disciplines for halting incoming
763  * flow and by the driver. It may therefore be called from any context, may be
764  * under the tty %atomic_write_lock but not always.
765  *
766  * Locking:
767  *	flow.lock
768  */
769 void stop_tty(struct tty_struct *tty)
770 {
771 	unsigned long flags;
772 
773 	spin_lock_irqsave(&tty->flow.lock, flags);
774 	__stop_tty(tty);
775 	spin_unlock_irqrestore(&tty->flow.lock, flags);
776 }
777 EXPORT_SYMBOL(stop_tty);
778 
779 void __start_tty(struct tty_struct *tty)
780 {
781 	if (!tty->flow.stopped || tty->flow.tco_stopped)
782 		return;
783 	tty->flow.stopped = false;
784 	if (tty->ops->start)
785 		tty->ops->start(tty);
786 	tty_wakeup(tty);
787 }
788 
789 /**
790  * start_tty - propagate flow control
791  * @tty: tty to start
792  *
793  * Start a tty that has been stopped if at all possible. If @tty was previously
794  * stopped and is now being started, the &tty_driver->start() method is invoked
795  * and the line discipline woken.
796  *
797  * Locking:
798  *	flow.lock
799  */
800 void start_tty(struct tty_struct *tty)
801 {
802 	unsigned long flags;
803 
804 	spin_lock_irqsave(&tty->flow.lock, flags);
805 	__start_tty(tty);
806 	spin_unlock_irqrestore(&tty->flow.lock, flags);
807 }
808 EXPORT_SYMBOL(start_tty);
809 
810 static void tty_update_time(struct tty_struct *tty, bool mtime)
811 {
812 	time64_t sec = ktime_get_real_seconds();
813 	struct tty_file_private *priv;
814 
815 	spin_lock(&tty->files_lock);
816 	list_for_each_entry(priv, &tty->tty_files, list) {
817 		struct inode *inode = file_inode(priv->file);
818 		struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode);
819 
820 		/*
821 		 * We only care if the two values differ in anything other than the
822 		 * lower three bits (i.e every 8 seconds).  If so, then we can update
823 		 * the time of the tty device, otherwise it could be construded as a
824 		 * security leak to let userspace know the exact timing of the tty.
825 		 */
826 		if ((sec ^ time.tv_sec) & ~7) {
827 			if (mtime)
828 				inode_set_mtime(inode, sec, 0);
829 			else
830 				inode_set_atime(inode, sec, 0);
831 		}
832 	}
833 	spin_unlock(&tty->files_lock);
834 }
835 
836 /*
837  * Iterate on the ldisc ->read() function until we've gotten all
838  * the data the ldisc has for us.
839  *
840  * The "cookie" is something that the ldisc read function can fill
841  * in to let us know that there is more data to be had.
842  *
843  * We promise to continue to call the ldisc until it stops returning
844  * data or clears the cookie. The cookie may be something that the
845  * ldisc maintains state for and needs to free.
846  */
847 static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
848 				struct file *file, struct iov_iter *to)
849 {
850 	void *cookie = NULL;
851 	unsigned long offset = 0;
852 	ssize_t retval = 0;
853 	size_t copied, count = iov_iter_count(to);
854 	u8 kernel_buf[64];
855 
856 	do {
857 		ssize_t size = min(count, sizeof(kernel_buf));
858 
859 		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
860 		if (!size)
861 			break;
862 
863 		if (size < 0) {
864 			/* Did we have an earlier error (ie -EFAULT)? */
865 			if (retval)
866 				break;
867 			retval = size;
868 
869 			/*
870 			 * -EOVERFLOW means we didn't have enough space
871 			 * for a whole packet, and we shouldn't return
872 			 * a partial result.
873 			 */
874 			if (retval == -EOVERFLOW)
875 				offset = 0;
876 			break;
877 		}
878 
879 		copied = copy_to_iter(kernel_buf, size, to);
880 		offset += copied;
881 		count -= copied;
882 
883 		/*
884 		 * If the user copy failed, we still need to do another ->read()
885 		 * call if we had a cookie to let the ldisc clear up.
886 		 *
887 		 * But make sure size is zeroed.
888 		 */
889 		if (unlikely(copied != size)) {
890 			count = 0;
891 			retval = -EFAULT;
892 		}
893 	} while (cookie);
894 
895 	/* We always clear tty buffer in case they contained passwords */
896 	memzero_explicit(kernel_buf, sizeof(kernel_buf));
897 	return offset ? offset : retval;
898 }
899 
900 
901 /**
902  * tty_read - read method for tty device files
903  * @iocb: kernel I/O control block
904  * @to: destination for the data read
905  *
906  * Perform the read system call function on this terminal device. Checks
907  * for hung up devices before calling the line discipline method.
908  *
909  * Locking:
910  *	Locks the line discipline internally while needed. Multiple read calls
911  *	may be outstanding in parallel.
912  */
913 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
914 {
915 	struct file *file = iocb->ki_filp;
916 	struct inode *inode = file_inode(file);
917 	struct tty_struct *tty = file_tty(file);
918 	struct tty_ldisc *ld;
919 	ssize_t ret;
920 
921 	if (tty_paranoia_check(tty, inode, "tty_read"))
922 		return -EIO;
923 	if (!tty || tty_io_error(tty))
924 		return -EIO;
925 
926 	/* We want to wait for the line discipline to sort out in this
927 	 * situation.
928 	 */
929 	ld = tty_ldisc_ref_wait(tty);
930 	if (!ld)
931 		return hung_up_tty_read(iocb, to);
932 	ret = -EIO;
933 	if (ld->ops->read)
934 		ret = iterate_tty_read(ld, tty, file, to);
935 	tty_ldisc_deref(ld);
936 
937 	if (ret > 0)
938 		tty_update_time(tty, false);
939 
940 	return ret;
941 }
942 
943 void tty_write_unlock(struct tty_struct *tty)
944 {
945 	mutex_unlock(&tty->atomic_write_lock);
946 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
947 }
948 
949 int tty_write_lock(struct tty_struct *tty, bool ndelay)
950 {
951 	if (!mutex_trylock(&tty->atomic_write_lock)) {
952 		if (ndelay)
953 			return -EAGAIN;
954 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
955 			return -ERESTARTSYS;
956 	}
957 	return 0;
958 }
959 
960 /*
961  * Split writes up in sane blocksizes to avoid
962  * denial-of-service type attacks
963  */
964 static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
965 				 struct file *file, struct iov_iter *from)
966 {
967 	size_t chunk, count = iov_iter_count(from);
968 	ssize_t ret, written = 0;
969 
970 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
971 	if (ret < 0)
972 		return ret;
973 
974 	/*
975 	 * We chunk up writes into a temporary buffer. This
976 	 * simplifies low-level drivers immensely, since they
977 	 * don't have locking issues and user mode accesses.
978 	 *
979 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
980 	 * big chunk-size..
981 	 *
982 	 * The default chunk-size is 2kB, because the NTTY
983 	 * layer has problems with bigger chunks. It will
984 	 * claim to be able to handle more characters than
985 	 * it actually does.
986 	 */
987 	chunk = 2048;
988 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
989 		chunk = 65536;
990 	if (count < chunk)
991 		chunk = count;
992 
993 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
994 	if (tty->write_cnt < chunk) {
995 		u8 *buf_chunk;
996 
997 		if (chunk < 1024)
998 			chunk = 1024;
999 
1000 		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1001 		if (!buf_chunk) {
1002 			ret = -ENOMEM;
1003 			goto out;
1004 		}
1005 		kvfree(tty->write_buf);
1006 		tty->write_cnt = chunk;
1007 		tty->write_buf = buf_chunk;
1008 	}
1009 
1010 	/* Do the write .. */
1011 	for (;;) {
1012 		size_t size = min(chunk, count);
1013 
1014 		ret = -EFAULT;
1015 		if (copy_from_iter(tty->write_buf, size, from) != size)
1016 			break;
1017 
1018 		ret = ld->ops->write(tty, file, tty->write_buf, size);
1019 		if (ret <= 0)
1020 			break;
1021 
1022 		written += ret;
1023 		if (ret > size)
1024 			break;
1025 
1026 		/* FIXME! Have Al check this! */
1027 		if (ret != size)
1028 			iov_iter_revert(from, size-ret);
1029 
1030 		count -= ret;
1031 		if (!count)
1032 			break;
1033 		ret = -ERESTARTSYS;
1034 		if (signal_pending(current))
1035 			break;
1036 		cond_resched();
1037 	}
1038 	if (written) {
1039 		tty_update_time(tty, true);
1040 		ret = written;
1041 	}
1042 out:
1043 	tty_write_unlock(tty);
1044 	return ret;
1045 }
1046 
1047 #ifdef CONFIG_PRINT_QUOTA_WARNING
1048 /**
1049  * tty_write_message - write a message to a certain tty, not just the console.
1050  * @tty: the destination tty_struct
1051  * @msg: the message to write
1052  *
1053  * This is used for messages that need to be redirected to a specific tty. We
1054  * don't put it into the syslog queue right now maybe in the future if really
1055  * needed.
1056  *
1057  * We must still hold the BTM and test the CLOSING flag for the moment.
1058  *
1059  * This function is DEPRECATED, do not use in new code.
1060  */
1061 void tty_write_message(struct tty_struct *tty, char *msg)
1062 {
1063 	if (tty) {
1064 		mutex_lock(&tty->atomic_write_lock);
1065 		tty_lock(tty);
1066 		if (tty->ops->write && tty->count > 0)
1067 			tty->ops->write(tty, msg, strlen(msg));
1068 		tty_unlock(tty);
1069 		tty_write_unlock(tty);
1070 	}
1071 }
1072 #endif
1073 
1074 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1075 {
1076 	struct tty_struct *tty = file_tty(file);
1077 	struct tty_ldisc *ld;
1078 	ssize_t ret;
1079 
1080 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1081 		return -EIO;
1082 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1083 		return -EIO;
1084 	/* Short term debug to catch buggy drivers */
1085 	if (tty->ops->write_room == NULL)
1086 		tty_err(tty, "missing write_room method\n");
1087 	ld = tty_ldisc_ref_wait(tty);
1088 	if (!ld)
1089 		return hung_up_tty_write(iocb, from);
1090 	if (!ld->ops->write)
1091 		ret = -EIO;
1092 	else
1093 		ret = iterate_tty_write(ld, tty, file, from);
1094 	tty_ldisc_deref(ld);
1095 	return ret;
1096 }
1097 
1098 /**
1099  * tty_write - write method for tty device file
1100  * @iocb: kernel I/O control block
1101  * @from: iov_iter with data to write
1102  *
1103  * Write data to a tty device via the line discipline.
1104  *
1105  * Locking:
1106  *	Locks the line discipline as required
1107  *	Writes to the tty driver are serialized by the atomic_write_lock
1108  *	and are then processed in chunks to the device. The line
1109  *	discipline write method will not be invoked in parallel for
1110  *	each device.
1111  */
1112 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1113 {
1114 	return file_tty_write(iocb->ki_filp, iocb, from);
1115 }
1116 
1117 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1118 {
1119 	struct file *p = NULL;
1120 
1121 	spin_lock(&redirect_lock);
1122 	if (redirect)
1123 		p = get_file(redirect);
1124 	spin_unlock(&redirect_lock);
1125 
1126 	/*
1127 	 * We know the redirected tty is just another tty, we can
1128 	 * call file_tty_write() directly with that file pointer.
1129 	 */
1130 	if (p) {
1131 		ssize_t res;
1132 
1133 		res = file_tty_write(p, iocb, iter);
1134 		fput(p);
1135 		return res;
1136 	}
1137 	return tty_write(iocb, iter);
1138 }
1139 
1140 /**
1141  * tty_send_xchar - send priority character
1142  * @tty: the tty to send to
1143  * @ch: xchar to send
1144  *
1145  * Send a high priority character to the tty even if stopped.
1146  *
1147  * Locking: none for xchar method, write ordering for write method.
1148  */
1149 int tty_send_xchar(struct tty_struct *tty, u8 ch)
1150 {
1151 	bool was_stopped = tty->flow.stopped;
1152 
1153 	if (tty->ops->send_xchar) {
1154 		down_read(&tty->termios_rwsem);
1155 		tty->ops->send_xchar(tty, ch);
1156 		up_read(&tty->termios_rwsem);
1157 		return 0;
1158 	}
1159 
1160 	if (tty_write_lock(tty, false) < 0)
1161 		return -ERESTARTSYS;
1162 
1163 	down_read(&tty->termios_rwsem);
1164 	if (was_stopped)
1165 		start_tty(tty);
1166 	tty->ops->write(tty, &ch, 1);
1167 	if (was_stopped)
1168 		stop_tty(tty);
1169 	up_read(&tty->termios_rwsem);
1170 	tty_write_unlock(tty);
1171 	return 0;
1172 }
1173 
1174 /**
1175  * pty_line_name - generate name for a pty
1176  * @driver: the tty driver in use
1177  * @index: the minor number
1178  * @p: output buffer of at least 6 bytes
1179  *
1180  * Generate a name from a @driver reference and write it to the output buffer
1181  * @p.
1182  *
1183  * Locking: None
1184  */
1185 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1186 {
1187 	static const char ptychar[] = "pqrstuvwxyzabcde";
1188 	int i = index + driver->name_base;
1189 	/* ->name is initialized to "ttyp", but "tty" is expected */
1190 	sprintf(p, "%s%c%x",
1191 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1192 		ptychar[i >> 4 & 0xf], i & 0xf);
1193 }
1194 
1195 /**
1196  * tty_line_name - generate name for a tty
1197  * @driver: the tty driver in use
1198  * @index: the minor number
1199  * @p: output buffer of at least 7 bytes
1200  *
1201  * Generate a name from a @driver reference and write it to the output buffer
1202  * @p.
1203  *
1204  * Locking: None
1205  */
1206 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1207 {
1208 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1209 		return sprintf(p, "%s", driver->name);
1210 	else
1211 		return sprintf(p, "%s%d", driver->name,
1212 			       index + driver->name_base);
1213 }
1214 
1215 /**
1216  * tty_driver_lookup_tty() - find an existing tty, if any
1217  * @driver: the driver for the tty
1218  * @file: file object
1219  * @idx: the minor number
1220  *
1221  * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1222  * driver lookup() method returns an error.
1223  *
1224  * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1225  */
1226 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1227 		struct file *file, int idx)
1228 {
1229 	struct tty_struct *tty;
1230 
1231 	if (driver->ops->lookup) {
1232 		if (!file)
1233 			tty = ERR_PTR(-EIO);
1234 		else
1235 			tty = driver->ops->lookup(driver, file, idx);
1236 	} else {
1237 		if (idx >= driver->num)
1238 			return ERR_PTR(-EINVAL);
1239 		tty = driver->ttys[idx];
1240 	}
1241 	if (!IS_ERR(tty))
1242 		tty_kref_get(tty);
1243 	return tty;
1244 }
1245 
1246 /**
1247  * tty_init_termios - helper for termios setup
1248  * @tty: the tty to set up
1249  *
1250  * Initialise the termios structure for this tty. This runs under the
1251  * %tty_mutex currently so we can be relaxed about ordering.
1252  */
1253 void tty_init_termios(struct tty_struct *tty)
1254 {
1255 	struct ktermios *tp;
1256 	int idx = tty->index;
1257 
1258 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1259 		tty->termios = tty->driver->init_termios;
1260 	else {
1261 		/* Check for lazy saved data */
1262 		tp = tty->driver->termios[idx];
1263 		if (tp != NULL) {
1264 			tty->termios = *tp;
1265 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1266 		} else
1267 			tty->termios = tty->driver->init_termios;
1268 	}
1269 	/* Compatibility until drivers always set this */
1270 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1271 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1272 }
1273 EXPORT_SYMBOL_GPL(tty_init_termios);
1274 
1275 /**
1276  * tty_standard_install - usual tty->ops->install
1277  * @driver: the driver for the tty
1278  * @tty: the tty
1279  *
1280  * If the @driver overrides @tty->ops->install, it still can call this function
1281  * to perform the standard install operations.
1282  */
1283 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1284 {
1285 	tty_init_termios(tty);
1286 	tty_driver_kref_get(driver);
1287 	tty->count++;
1288 	driver->ttys[tty->index] = tty;
1289 	return 0;
1290 }
1291 EXPORT_SYMBOL_GPL(tty_standard_install);
1292 
1293 /**
1294  * tty_driver_install_tty() - install a tty entry in the driver
1295  * @driver: the driver for the tty
1296  * @tty: the tty
1297  *
1298  * Install a tty object into the driver tables. The @tty->index field will be
1299  * set by the time this is called. This method is responsible for ensuring any
1300  * need additional structures are allocated and configured.
1301  *
1302  * Locking: tty_mutex for now
1303  */
1304 static int tty_driver_install_tty(struct tty_driver *driver,
1305 						struct tty_struct *tty)
1306 {
1307 	return driver->ops->install ? driver->ops->install(driver, tty) :
1308 		tty_standard_install(driver, tty);
1309 }
1310 
1311 /**
1312  * tty_driver_remove_tty() - remove a tty from the driver tables
1313  * @driver: the driver for the tty
1314  * @tty: tty to remove
1315  *
1316  * Remove a tty object from the driver tables. The tty->index field will be set
1317  * by the time this is called.
1318  *
1319  * Locking: tty_mutex for now
1320  */
1321 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1322 {
1323 	if (driver->ops->remove)
1324 		driver->ops->remove(driver, tty);
1325 	else
1326 		driver->ttys[tty->index] = NULL;
1327 }
1328 
1329 /**
1330  * tty_reopen() - fast re-open of an open tty
1331  * @tty: the tty to open
1332  *
1333  * Re-opens on master ptys are not allowed and return -%EIO.
1334  *
1335  * Locking: Caller must hold tty_lock
1336  * Return: 0 on success, -errno on error.
1337  */
1338 static int tty_reopen(struct tty_struct *tty)
1339 {
1340 	struct tty_driver *driver = tty->driver;
1341 	struct tty_ldisc *ld;
1342 	int retval = 0;
1343 
1344 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1345 	    driver->subtype == PTY_TYPE_MASTER)
1346 		return -EIO;
1347 
1348 	if (!tty->count)
1349 		return -EAGAIN;
1350 
1351 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1352 		return -EBUSY;
1353 
1354 	ld = tty_ldisc_ref_wait(tty);
1355 	if (ld) {
1356 		tty_ldisc_deref(ld);
1357 	} else {
1358 		retval = tty_ldisc_lock(tty, 5 * HZ);
1359 		if (retval)
1360 			return retval;
1361 
1362 		if (!tty->ldisc)
1363 			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1364 		tty_ldisc_unlock(tty);
1365 	}
1366 
1367 	if (retval == 0)
1368 		tty->count++;
1369 
1370 	return retval;
1371 }
1372 
1373 /**
1374  * tty_init_dev - initialise a tty device
1375  * @driver: tty driver we are opening a device on
1376  * @idx: device index
1377  *
1378  * Prepare a tty device. This may not be a "new" clean device but could also be
1379  * an active device. The pty drivers require special handling because of this.
1380  *
1381  * Locking:
1382  *	The function is called under the tty_mutex, which protects us from the
1383  *	tty struct or driver itself going away.
1384  *
1385  * On exit the tty device has the line discipline attached and a reference
1386  * count of 1. If a pair was created for pty/tty use and the other was a pty
1387  * master then it too has a reference count of 1.
1388  *
1389  * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1390  * open. The new code protects the open with a mutex, so it's really quite
1391  * straightforward. The mutex locking can probably be relaxed for the (most
1392  * common) case of reopening a tty.
1393  *
1394  * Return: new tty structure
1395  */
1396 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1397 {
1398 	struct tty_struct *tty;
1399 	int retval;
1400 
1401 	/*
1402 	 * First time open is complex, especially for PTY devices.
1403 	 * This code guarantees that either everything succeeds and the
1404 	 * TTY is ready for operation, or else the table slots are vacated
1405 	 * and the allocated memory released.  (Except that the termios
1406 	 * may be retained.)
1407 	 */
1408 
1409 	if (!try_module_get(driver->owner))
1410 		return ERR_PTR(-ENODEV);
1411 
1412 	tty = alloc_tty_struct(driver, idx);
1413 	if (!tty) {
1414 		retval = -ENOMEM;
1415 		goto err_module_put;
1416 	}
1417 
1418 	tty_lock(tty);
1419 	retval = tty_driver_install_tty(driver, tty);
1420 	if (retval < 0)
1421 		goto err_free_tty;
1422 
1423 	if (!tty->port)
1424 		tty->port = driver->ports[idx];
1425 
1426 	if (WARN_RATELIMIT(!tty->port,
1427 			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1428 			__func__, tty->driver->name)) {
1429 		retval = -EINVAL;
1430 		goto err_release_lock;
1431 	}
1432 
1433 	retval = tty_ldisc_lock(tty, 5 * HZ);
1434 	if (retval)
1435 		goto err_release_lock;
1436 	tty->port->itty = tty;
1437 
1438 	/*
1439 	 * Structures all installed ... call the ldisc open routines.
1440 	 * If we fail here just call release_tty to clean up.  No need
1441 	 * to decrement the use counts, as release_tty doesn't care.
1442 	 */
1443 	retval = tty_ldisc_setup(tty, tty->link);
1444 	if (retval)
1445 		goto err_release_tty;
1446 	tty_ldisc_unlock(tty);
1447 	/* Return the tty locked so that it cannot vanish under the caller */
1448 	return tty;
1449 
1450 err_free_tty:
1451 	tty_unlock(tty);
1452 	free_tty_struct(tty);
1453 err_module_put:
1454 	module_put(driver->owner);
1455 	return ERR_PTR(retval);
1456 
1457 	/* call the tty release_tty routine to clean out this slot */
1458 err_release_tty:
1459 	tty_ldisc_unlock(tty);
1460 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1461 			     retval, idx);
1462 err_release_lock:
1463 	tty_unlock(tty);
1464 	release_tty(tty, idx);
1465 	return ERR_PTR(retval);
1466 }
1467 
1468 /**
1469  * tty_save_termios() - save tty termios data in driver table
1470  * @tty: tty whose termios data to save
1471  *
1472  * Locking: Caller guarantees serialisation with tty_init_termios().
1473  */
1474 void tty_save_termios(struct tty_struct *tty)
1475 {
1476 	struct ktermios *tp;
1477 	int idx = tty->index;
1478 
1479 	/* If the port is going to reset then it has no termios to save */
1480 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1481 		return;
1482 
1483 	/* Stash the termios data */
1484 	tp = tty->driver->termios[idx];
1485 	if (tp == NULL) {
1486 		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1487 		if (tp == NULL)
1488 			return;
1489 		tty->driver->termios[idx] = tp;
1490 	}
1491 	*tp = tty->termios;
1492 }
1493 EXPORT_SYMBOL_GPL(tty_save_termios);
1494 
1495 /**
1496  * tty_flush_works - flush all works of a tty/pty pair
1497  * @tty: tty device to flush works for (or either end of a pty pair)
1498  *
1499  * Sync flush all works belonging to @tty (and the 'other' tty).
1500  */
1501 static void tty_flush_works(struct tty_struct *tty)
1502 {
1503 	flush_work(&tty->SAK_work);
1504 	flush_work(&tty->hangup_work);
1505 	if (tty->link) {
1506 		flush_work(&tty->link->SAK_work);
1507 		flush_work(&tty->link->hangup_work);
1508 	}
1509 }
1510 
1511 /**
1512  * release_one_tty - release tty structure memory
1513  * @work: work of tty we are obliterating
1514  *
1515  * Releases memory associated with a tty structure, and clears out the
1516  * driver table slots. This function is called when a device is no longer
1517  * in use. It also gets called when setup of a device fails.
1518  *
1519  * Locking:
1520  *	takes the file list lock internally when working on the list of ttys
1521  *	that the driver keeps.
1522  *
1523  * This method gets called from a work queue so that the driver private
1524  * cleanup ops can sleep (needed for USB at least)
1525  */
1526 static void release_one_tty(struct work_struct *work)
1527 {
1528 	struct tty_struct *tty =
1529 		container_of(work, struct tty_struct, hangup_work);
1530 	struct tty_driver *driver = tty->driver;
1531 	struct module *owner = driver->owner;
1532 
1533 	if (tty->ops->cleanup)
1534 		tty->ops->cleanup(tty);
1535 
1536 	tty_driver_kref_put(driver);
1537 	module_put(owner);
1538 
1539 	spin_lock(&tty->files_lock);
1540 	list_del_init(&tty->tty_files);
1541 	spin_unlock(&tty->files_lock);
1542 
1543 	put_pid(tty->ctrl.pgrp);
1544 	put_pid(tty->ctrl.session);
1545 	free_tty_struct(tty);
1546 }
1547 
1548 static void queue_release_one_tty(struct kref *kref)
1549 {
1550 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1551 
1552 	/* The hangup queue is now free so we can reuse it rather than
1553 	 *  waste a chunk of memory for each port.
1554 	 */
1555 	INIT_WORK(&tty->hangup_work, release_one_tty);
1556 	schedule_work(&tty->hangup_work);
1557 }
1558 
1559 /**
1560  * tty_kref_put - release a tty kref
1561  * @tty: tty device
1562  *
1563  * Release a reference to the @tty device and if need be let the kref layer
1564  * destruct the object for us.
1565  */
1566 void tty_kref_put(struct tty_struct *tty)
1567 {
1568 	if (tty)
1569 		kref_put(&tty->kref, queue_release_one_tty);
1570 }
1571 EXPORT_SYMBOL(tty_kref_put);
1572 
1573 /**
1574  * release_tty - release tty structure memory
1575  * @tty: tty device release
1576  * @idx: index of the tty device release
1577  *
1578  * Release both @tty and a possible linked partner (think pty pair),
1579  * and decrement the refcount of the backing module.
1580  *
1581  * Locking:
1582  *	tty_mutex
1583  *	takes the file list lock internally when working on the list of ttys
1584  *	that the driver keeps.
1585  */
1586 static void release_tty(struct tty_struct *tty, int idx)
1587 {
1588 	/* This should always be true but check for the moment */
1589 	WARN_ON(tty->index != idx);
1590 	WARN_ON(!mutex_is_locked(&tty_mutex));
1591 	if (tty->ops->shutdown)
1592 		tty->ops->shutdown(tty);
1593 	tty_save_termios(tty);
1594 	tty_driver_remove_tty(tty->driver, tty);
1595 	if (tty->port)
1596 		tty->port->itty = NULL;
1597 	if (tty->link)
1598 		tty->link->port->itty = NULL;
1599 	if (tty->port)
1600 		tty_buffer_cancel_work(tty->port);
1601 	if (tty->link)
1602 		tty_buffer_cancel_work(tty->link->port);
1603 
1604 	tty_kref_put(tty->link);
1605 	tty_kref_put(tty);
1606 }
1607 
1608 /**
1609  * tty_release_checks - check a tty before real release
1610  * @tty: tty to check
1611  * @idx: index of the tty
1612  *
1613  * Performs some paranoid checking before true release of the @tty. This is a
1614  * no-op unless %TTY_PARANOIA_CHECK is defined.
1615  */
1616 static int tty_release_checks(struct tty_struct *tty, int idx)
1617 {
1618 #ifdef TTY_PARANOIA_CHECK
1619 	if (idx < 0 || idx >= tty->driver->num) {
1620 		tty_debug(tty, "bad idx %d\n", idx);
1621 		return -1;
1622 	}
1623 
1624 	/* not much to check for devpts */
1625 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1626 		return 0;
1627 
1628 	if (tty != tty->driver->ttys[idx]) {
1629 		tty_debug(tty, "bad driver table[%d] = %p\n",
1630 			  idx, tty->driver->ttys[idx]);
1631 		return -1;
1632 	}
1633 	if (tty->driver->other) {
1634 		struct tty_struct *o_tty = tty->link;
1635 
1636 		if (o_tty != tty->driver->other->ttys[idx]) {
1637 			tty_debug(tty, "bad other table[%d] = %p\n",
1638 				  idx, tty->driver->other->ttys[idx]);
1639 			return -1;
1640 		}
1641 		if (o_tty->link != tty) {
1642 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1643 			return -1;
1644 		}
1645 	}
1646 #endif
1647 	return 0;
1648 }
1649 
1650 /**
1651  * tty_kclose - closes tty opened by tty_kopen
1652  * @tty: tty device
1653  *
1654  * Performs the final steps to release and free a tty device. It is the same as
1655  * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1656  * @tty->port.
1657  */
1658 void tty_kclose(struct tty_struct *tty)
1659 {
1660 	/*
1661 	 * Ask the line discipline code to release its structures
1662 	 */
1663 	tty_ldisc_release(tty);
1664 
1665 	/* Wait for pending work before tty destruction commences */
1666 	tty_flush_works(tty);
1667 
1668 	tty_debug_hangup(tty, "freeing structure\n");
1669 	/*
1670 	 * The release_tty function takes care of the details of clearing
1671 	 * the slots and preserving the termios structure.
1672 	 */
1673 	mutex_lock(&tty_mutex);
1674 	tty_port_set_kopened(tty->port, 0);
1675 	release_tty(tty, tty->index);
1676 	mutex_unlock(&tty_mutex);
1677 }
1678 EXPORT_SYMBOL_GPL(tty_kclose);
1679 
1680 /**
1681  * tty_release_struct - release a tty struct
1682  * @tty: tty device
1683  * @idx: index of the tty
1684  *
1685  * Performs the final steps to release and free a tty device. It is roughly the
1686  * reverse of tty_init_dev().
1687  */
1688 void tty_release_struct(struct tty_struct *tty, int idx)
1689 {
1690 	/*
1691 	 * Ask the line discipline code to release its structures
1692 	 */
1693 	tty_ldisc_release(tty);
1694 
1695 	/* Wait for pending work before tty destruction commmences */
1696 	tty_flush_works(tty);
1697 
1698 	tty_debug_hangup(tty, "freeing structure\n");
1699 	/*
1700 	 * The release_tty function takes care of the details of clearing
1701 	 * the slots and preserving the termios structure.
1702 	 */
1703 	mutex_lock(&tty_mutex);
1704 	release_tty(tty, idx);
1705 	mutex_unlock(&tty_mutex);
1706 }
1707 EXPORT_SYMBOL_GPL(tty_release_struct);
1708 
1709 /**
1710  * tty_release - vfs callback for close
1711  * @inode: inode of tty
1712  * @filp: file pointer for handle to tty
1713  *
1714  * Called the last time each file handle is closed that references this tty.
1715  * There may however be several such references.
1716  *
1717  * Locking:
1718  *	Takes BKL. See tty_release_dev().
1719  *
1720  * Even releasing the tty structures is a tricky business. We have to be very
1721  * careful that the structures are all released at the same time, as interrupts
1722  * might otherwise get the wrong pointers.
1723  *
1724  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1725  * lead to double frees or releasing memory still in use.
1726  */
1727 int tty_release(struct inode *inode, struct file *filp)
1728 {
1729 	struct tty_struct *tty = file_tty(filp);
1730 	struct tty_struct *o_tty = NULL;
1731 	int	do_sleep, final;
1732 	int	idx;
1733 	long	timeout = 0;
1734 	int	once = 1;
1735 
1736 	if (tty_paranoia_check(tty, inode, __func__))
1737 		return 0;
1738 
1739 	tty_lock(tty);
1740 	check_tty_count(tty, __func__);
1741 
1742 	__tty_fasync(-1, filp, 0);
1743 
1744 	idx = tty->index;
1745 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1746 	    tty->driver->subtype == PTY_TYPE_MASTER)
1747 		o_tty = tty->link;
1748 
1749 	if (tty_release_checks(tty, idx)) {
1750 		tty_unlock(tty);
1751 		return 0;
1752 	}
1753 
1754 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1755 
1756 	if (tty->ops->close)
1757 		tty->ops->close(tty, filp);
1758 
1759 	/* If tty is pty master, lock the slave pty (stable lock order) */
1760 	tty_lock_slave(o_tty);
1761 
1762 	/*
1763 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1764 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1765 	 * wait queues and kick everyone out _before_ actually starting to
1766 	 * close.  This ensures that we won't block while releasing the tty
1767 	 * structure.
1768 	 *
1769 	 * The test for the o_tty closing is necessary, since the master and
1770 	 * slave sides may close in any order.  If the slave side closes out
1771 	 * first, its count will be one, since the master side holds an open.
1772 	 * Thus this test wouldn't be triggered at the time the slave closed,
1773 	 * so we do it now.
1774 	 */
1775 	while (1) {
1776 		do_sleep = 0;
1777 
1778 		if (tty->count <= 1) {
1779 			if (waitqueue_active(&tty->read_wait)) {
1780 				wake_up_poll(&tty->read_wait, EPOLLIN);
1781 				do_sleep++;
1782 			}
1783 			if (waitqueue_active(&tty->write_wait)) {
1784 				wake_up_poll(&tty->write_wait, EPOLLOUT);
1785 				do_sleep++;
1786 			}
1787 		}
1788 		if (o_tty && o_tty->count <= 1) {
1789 			if (waitqueue_active(&o_tty->read_wait)) {
1790 				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1791 				do_sleep++;
1792 			}
1793 			if (waitqueue_active(&o_tty->write_wait)) {
1794 				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1795 				do_sleep++;
1796 			}
1797 		}
1798 		if (!do_sleep)
1799 			break;
1800 
1801 		if (once) {
1802 			once = 0;
1803 			tty_warn(tty, "read/write wait queue active!\n");
1804 		}
1805 		schedule_timeout_killable(timeout);
1806 		if (timeout < 120 * HZ)
1807 			timeout = 2 * timeout + 1;
1808 		else
1809 			timeout = MAX_SCHEDULE_TIMEOUT;
1810 	}
1811 
1812 	if (o_tty) {
1813 		if (--o_tty->count < 0) {
1814 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1815 			o_tty->count = 0;
1816 		}
1817 	}
1818 	if (--tty->count < 0) {
1819 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1820 		tty->count = 0;
1821 	}
1822 
1823 	/*
1824 	 * We've decremented tty->count, so we need to remove this file
1825 	 * descriptor off the tty->tty_files list; this serves two
1826 	 * purposes:
1827 	 *  - check_tty_count sees the correct number of file descriptors
1828 	 *    associated with this tty.
1829 	 *  - do_tty_hangup no longer sees this file descriptor as
1830 	 *    something that needs to be handled for hangups.
1831 	 */
1832 	tty_del_file(filp);
1833 
1834 	/*
1835 	 * Perform some housekeeping before deciding whether to return.
1836 	 *
1837 	 * If _either_ side is closing, make sure there aren't any
1838 	 * processes that still think tty or o_tty is their controlling
1839 	 * tty.
1840 	 */
1841 	if (!tty->count) {
1842 		read_lock(&tasklist_lock);
1843 		session_clear_tty(tty->ctrl.session);
1844 		if (o_tty)
1845 			session_clear_tty(o_tty->ctrl.session);
1846 		read_unlock(&tasklist_lock);
1847 	}
1848 
1849 	/* check whether both sides are closing ... */
1850 	final = !tty->count && !(o_tty && o_tty->count);
1851 
1852 	tty_unlock_slave(o_tty);
1853 	tty_unlock(tty);
1854 
1855 	/* At this point, the tty->count == 0 should ensure a dead tty
1856 	 * cannot be re-opened by a racing opener.
1857 	 */
1858 
1859 	if (!final)
1860 		return 0;
1861 
1862 	tty_debug_hangup(tty, "final close\n");
1863 
1864 	tty_release_struct(tty, idx);
1865 	return 0;
1866 }
1867 
1868 /**
1869  * tty_open_current_tty - get locked tty of current task
1870  * @device: device number
1871  * @filp: file pointer to tty
1872  * @return: locked tty of the current task iff @device is /dev/tty
1873  *
1874  * Performs a re-open of the current task's controlling tty.
1875  *
1876  * We cannot return driver and index like for the other nodes because devpts
1877  * will not work then. It expects inodes to be from devpts FS.
1878  */
1879 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1880 {
1881 	struct tty_struct *tty;
1882 	int retval;
1883 
1884 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1885 		return NULL;
1886 
1887 	tty = get_current_tty();
1888 	if (!tty)
1889 		return ERR_PTR(-ENXIO);
1890 
1891 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1892 	/* noctty = 1; */
1893 	tty_lock(tty);
1894 	tty_kref_put(tty);	/* safe to drop the kref now */
1895 
1896 	retval = tty_reopen(tty);
1897 	if (retval < 0) {
1898 		tty_unlock(tty);
1899 		tty = ERR_PTR(retval);
1900 	}
1901 	return tty;
1902 }
1903 
1904 /**
1905  * tty_lookup_driver - lookup a tty driver for a given device file
1906  * @device: device number
1907  * @filp: file pointer to tty
1908  * @index: index for the device in the @return driver
1909  *
1910  * If returned value is not erroneous, the caller is responsible to decrement
1911  * the refcount by tty_driver_kref_put().
1912  *
1913  * Locking: %tty_mutex protects get_tty_driver()
1914  *
1915  * Return: driver for this inode (with increased refcount)
1916  */
1917 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1918 		int *index)
1919 {
1920 	struct tty_driver *driver = NULL;
1921 
1922 	switch (device) {
1923 #ifdef CONFIG_VT
1924 	case MKDEV(TTY_MAJOR, 0): {
1925 		extern struct tty_driver *console_driver;
1926 
1927 		driver = tty_driver_kref_get(console_driver);
1928 		*index = fg_console;
1929 		break;
1930 	}
1931 #endif
1932 	case MKDEV(TTYAUX_MAJOR, 1): {
1933 		struct tty_driver *console_driver = console_device(index);
1934 
1935 		if (console_driver) {
1936 			driver = tty_driver_kref_get(console_driver);
1937 			if (driver && filp) {
1938 				/* Don't let /dev/console block */
1939 				filp->f_flags |= O_NONBLOCK;
1940 				break;
1941 			}
1942 		}
1943 		if (driver)
1944 			tty_driver_kref_put(driver);
1945 		return ERR_PTR(-ENODEV);
1946 	}
1947 	default:
1948 		driver = get_tty_driver(device, index);
1949 		if (!driver)
1950 			return ERR_PTR(-ENODEV);
1951 		break;
1952 	}
1953 	return driver;
1954 }
1955 
1956 static struct tty_struct *tty_kopen(dev_t device, int shared)
1957 {
1958 	struct tty_struct *tty;
1959 	struct tty_driver *driver;
1960 	int index = -1;
1961 
1962 	mutex_lock(&tty_mutex);
1963 	driver = tty_lookup_driver(device, NULL, &index);
1964 	if (IS_ERR(driver)) {
1965 		mutex_unlock(&tty_mutex);
1966 		return ERR_CAST(driver);
1967 	}
1968 
1969 	/* check whether we're reopening an existing tty */
1970 	tty = tty_driver_lookup_tty(driver, NULL, index);
1971 	if (IS_ERR(tty) || shared)
1972 		goto out;
1973 
1974 	if (tty) {
1975 		/* drop kref from tty_driver_lookup_tty() */
1976 		tty_kref_put(tty);
1977 		tty = ERR_PTR(-EBUSY);
1978 	} else { /* tty_init_dev returns tty with the tty_lock held */
1979 		tty = tty_init_dev(driver, index);
1980 		if (IS_ERR(tty))
1981 			goto out;
1982 		tty_port_set_kopened(tty->port, 1);
1983 	}
1984 out:
1985 	mutex_unlock(&tty_mutex);
1986 	tty_driver_kref_put(driver);
1987 	return tty;
1988 }
1989 
1990 /**
1991  * tty_kopen_exclusive - open a tty device for kernel
1992  * @device: dev_t of device to open
1993  *
1994  * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1995  * it's not already opened and performs the first-time tty initialization.
1996  *
1997  * Claims the global %tty_mutex to serialize:
1998  *  * concurrent first-time tty initialization
1999  *  * concurrent tty driver removal w/ lookup
2000  *  * concurrent tty removal from driver table
2001  *
2002  * Return: the locked initialized &tty_struct
2003  */
2004 struct tty_struct *tty_kopen_exclusive(dev_t device)
2005 {
2006 	return tty_kopen(device, 0);
2007 }
2008 EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2009 
2010 /**
2011  * tty_kopen_shared - open a tty device for shared in-kernel use
2012  * @device: dev_t of device to open
2013  *
2014  * Opens an already existing tty for in-kernel use. Compared to
2015  * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2016  *
2017  * Locking: identical to tty_kopen() above.
2018  */
2019 struct tty_struct *tty_kopen_shared(dev_t device)
2020 {
2021 	return tty_kopen(device, 1);
2022 }
2023 EXPORT_SYMBOL_GPL(tty_kopen_shared);
2024 
2025 /**
2026  * tty_open_by_driver - open a tty device
2027  * @device: dev_t of device to open
2028  * @filp: file pointer to tty
2029  *
2030  * Performs the driver lookup, checks for a reopen, or otherwise performs the
2031  * first-time tty initialization.
2032  *
2033  *
2034  * Claims the global tty_mutex to serialize:
2035  *  * concurrent first-time tty initialization
2036  *  * concurrent tty driver removal w/ lookup
2037  *  * concurrent tty removal from driver table
2038  *
2039  * Return: the locked initialized or re-opened &tty_struct
2040  */
2041 static struct tty_struct *tty_open_by_driver(dev_t device,
2042 					     struct file *filp)
2043 {
2044 	struct tty_struct *tty;
2045 	struct tty_driver *driver = NULL;
2046 	int index = -1;
2047 	int retval;
2048 
2049 	mutex_lock(&tty_mutex);
2050 	driver = tty_lookup_driver(device, filp, &index);
2051 	if (IS_ERR(driver)) {
2052 		mutex_unlock(&tty_mutex);
2053 		return ERR_CAST(driver);
2054 	}
2055 
2056 	/* check whether we're reopening an existing tty */
2057 	tty = tty_driver_lookup_tty(driver, filp, index);
2058 	if (IS_ERR(tty)) {
2059 		mutex_unlock(&tty_mutex);
2060 		goto out;
2061 	}
2062 
2063 	if (tty) {
2064 		if (tty_port_kopened(tty->port)) {
2065 			tty_kref_put(tty);
2066 			mutex_unlock(&tty_mutex);
2067 			tty = ERR_PTR(-EBUSY);
2068 			goto out;
2069 		}
2070 		mutex_unlock(&tty_mutex);
2071 		retval = tty_lock_interruptible(tty);
2072 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2073 		if (retval) {
2074 			if (retval == -EINTR)
2075 				retval = -ERESTARTSYS;
2076 			tty = ERR_PTR(retval);
2077 			goto out;
2078 		}
2079 		retval = tty_reopen(tty);
2080 		if (retval < 0) {
2081 			tty_unlock(tty);
2082 			tty = ERR_PTR(retval);
2083 		}
2084 	} else { /* Returns with the tty_lock held for now */
2085 		tty = tty_init_dev(driver, index);
2086 		mutex_unlock(&tty_mutex);
2087 	}
2088 out:
2089 	tty_driver_kref_put(driver);
2090 	return tty;
2091 }
2092 
2093 /**
2094  * tty_open - open a tty device
2095  * @inode: inode of device file
2096  * @filp: file pointer to tty
2097  *
2098  * tty_open() and tty_release() keep up the tty count that contains the number
2099  * of opens done on a tty. We cannot use the inode-count, as different inodes
2100  * might point to the same tty.
2101  *
2102  * Open-counting is needed for pty masters, as well as for keeping track of
2103  * serial lines: DTR is dropped when the last close happens.
2104  * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2105  *
2106  * The termios state of a pty is reset on the first open so that settings don't
2107  * persist across reuse.
2108  *
2109  * Locking:
2110  *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2111  *  * @tty->count should protect the rest.
2112  *  * ->siglock protects ->signal/->sighand
2113  *
2114  * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2115  */
2116 static int tty_open(struct inode *inode, struct file *filp)
2117 {
2118 	struct tty_struct *tty;
2119 	int noctty, retval;
2120 	dev_t device = inode->i_rdev;
2121 	unsigned saved_flags = filp->f_flags;
2122 
2123 	nonseekable_open(inode, filp);
2124 
2125 retry_open:
2126 	retval = tty_alloc_file(filp);
2127 	if (retval)
2128 		return -ENOMEM;
2129 
2130 	tty = tty_open_current_tty(device, filp);
2131 	if (!tty)
2132 		tty = tty_open_by_driver(device, filp);
2133 
2134 	if (IS_ERR(tty)) {
2135 		tty_free_file(filp);
2136 		retval = PTR_ERR(tty);
2137 		if (retval != -EAGAIN || signal_pending(current))
2138 			return retval;
2139 		schedule();
2140 		goto retry_open;
2141 	}
2142 
2143 	tty_add_file(tty, filp);
2144 
2145 	check_tty_count(tty, __func__);
2146 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2147 
2148 	if (tty->ops->open)
2149 		retval = tty->ops->open(tty, filp);
2150 	else
2151 		retval = -ENODEV;
2152 	filp->f_flags = saved_flags;
2153 
2154 	if (retval) {
2155 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2156 
2157 		tty_unlock(tty); /* need to call tty_release without BTM */
2158 		tty_release(inode, filp);
2159 		if (retval != -ERESTARTSYS)
2160 			return retval;
2161 
2162 		if (signal_pending(current))
2163 			return retval;
2164 
2165 		schedule();
2166 		/*
2167 		 * Need to reset f_op in case a hangup happened.
2168 		 */
2169 		if (tty_hung_up_p(filp))
2170 			filp->f_op = &tty_fops;
2171 		goto retry_open;
2172 	}
2173 	clear_bit(TTY_HUPPED, &tty->flags);
2174 
2175 	noctty = (filp->f_flags & O_NOCTTY) ||
2176 		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2177 		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2178 		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2179 		  tty->driver->subtype == PTY_TYPE_MASTER);
2180 	if (!noctty)
2181 		tty_open_proc_set_tty(filp, tty);
2182 	tty_unlock(tty);
2183 	return 0;
2184 }
2185 
2186 
2187 /**
2188  * tty_poll - check tty status
2189  * @filp: file being polled
2190  * @wait: poll wait structures to update
2191  *
2192  * Call the line discipline polling method to obtain the poll status of the
2193  * device.
2194  *
2195  * Locking: locks called line discipline but ldisc poll method may be
2196  * re-entered freely by other callers.
2197  */
2198 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2199 {
2200 	struct tty_struct *tty = file_tty(filp);
2201 	struct tty_ldisc *ld;
2202 	__poll_t ret = 0;
2203 
2204 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2205 		return 0;
2206 
2207 	ld = tty_ldisc_ref_wait(tty);
2208 	if (!ld)
2209 		return hung_up_tty_poll(filp, wait);
2210 	if (ld->ops->poll)
2211 		ret = ld->ops->poll(tty, filp, wait);
2212 	tty_ldisc_deref(ld);
2213 	return ret;
2214 }
2215 
2216 static int __tty_fasync(int fd, struct file *filp, int on)
2217 {
2218 	struct tty_struct *tty = file_tty(filp);
2219 	unsigned long flags;
2220 	int retval = 0;
2221 
2222 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2223 		goto out;
2224 
2225 	if (on) {
2226 		retval = file_f_owner_allocate(filp);
2227 		if (retval)
2228 			goto out;
2229 	}
2230 
2231 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2232 	if (retval <= 0)
2233 		goto out;
2234 
2235 	if (on) {
2236 		enum pid_type type;
2237 		struct pid *pid;
2238 
2239 		spin_lock_irqsave(&tty->ctrl.lock, flags);
2240 		if (tty->ctrl.pgrp) {
2241 			pid = tty->ctrl.pgrp;
2242 			type = PIDTYPE_PGID;
2243 		} else {
2244 			pid = task_pid(current);
2245 			type = PIDTYPE_TGID;
2246 		}
2247 		get_pid(pid);
2248 		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2249 		__f_setown(filp, pid, type, 0);
2250 		put_pid(pid);
2251 		retval = 0;
2252 	}
2253 out:
2254 	return retval;
2255 }
2256 
2257 static int tty_fasync(int fd, struct file *filp, int on)
2258 {
2259 	struct tty_struct *tty = file_tty(filp);
2260 	int retval = -ENOTTY;
2261 
2262 	tty_lock(tty);
2263 	if (!tty_hung_up_p(filp))
2264 		retval = __tty_fasync(fd, filp, on);
2265 	tty_unlock(tty);
2266 
2267 	return retval;
2268 }
2269 
2270 static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2271 /**
2272  * tiocsti - fake input character
2273  * @tty: tty to fake input into
2274  * @p: pointer to character
2275  *
2276  * Fake input to a tty device. Does the necessary locking and input management.
2277  *
2278  * FIXME: does not honour flow control ??
2279  *
2280  * Locking:
2281  *  * Called functions take tty_ldiscs_lock
2282  *  * current->signal->tty check is safe without locks
2283  */
2284 static int tiocsti(struct tty_struct *tty, u8 __user *p)
2285 {
2286 	struct tty_ldisc *ld;
2287 	u8 ch;
2288 
2289 	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2290 		return -EIO;
2291 
2292 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2293 		return -EPERM;
2294 	if (get_user(ch, p))
2295 		return -EFAULT;
2296 	tty_audit_tiocsti(tty, ch);
2297 	ld = tty_ldisc_ref_wait(tty);
2298 	if (!ld)
2299 		return -EIO;
2300 	tty_buffer_lock_exclusive(tty->port);
2301 	if (ld->ops->receive_buf)
2302 		ld->ops->receive_buf(tty, &ch, NULL, 1);
2303 	tty_buffer_unlock_exclusive(tty->port);
2304 	tty_ldisc_deref(ld);
2305 	return 0;
2306 }
2307 
2308 /**
2309  * tiocgwinsz - implement window query ioctl
2310  * @tty: tty
2311  * @arg: user buffer for result
2312  *
2313  * Copies the kernel idea of the window size into the user buffer.
2314  *
2315  * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2316  * consistent.
2317  */
2318 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2319 {
2320 	int err;
2321 
2322 	mutex_lock(&tty->winsize_mutex);
2323 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2324 	mutex_unlock(&tty->winsize_mutex);
2325 
2326 	return err ? -EFAULT : 0;
2327 }
2328 
2329 /**
2330  * tty_do_resize - resize event
2331  * @tty: tty being resized
2332  * @ws: new dimensions
2333  *
2334  * Update the termios variables and send the necessary signals to peform a
2335  * terminal resize correctly.
2336  */
2337 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2338 {
2339 	struct pid *pgrp;
2340 
2341 	/* Lock the tty */
2342 	mutex_lock(&tty->winsize_mutex);
2343 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2344 		goto done;
2345 
2346 	/* Signal the foreground process group */
2347 	pgrp = tty_get_pgrp(tty);
2348 	if (pgrp)
2349 		kill_pgrp(pgrp, SIGWINCH, 1);
2350 	put_pid(pgrp);
2351 
2352 	tty->winsize = *ws;
2353 done:
2354 	mutex_unlock(&tty->winsize_mutex);
2355 	return 0;
2356 }
2357 EXPORT_SYMBOL(tty_do_resize);
2358 
2359 /**
2360  * tiocswinsz - implement window size set ioctl
2361  * @tty: tty side of tty
2362  * @arg: user buffer for result
2363  *
2364  * Copies the user idea of the window size to the kernel. Traditionally this is
2365  * just advisory information but for the Linux console it actually has driver
2366  * level meaning and triggers a VC resize.
2367  *
2368  * Locking:
2369  *	Driver dependent. The default do_resize method takes the tty termios
2370  *	mutex and ctrl.lock. The console takes its own lock then calls into the
2371  *	default method.
2372  */
2373 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2374 {
2375 	struct winsize tmp_ws;
2376 
2377 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2378 		return -EFAULT;
2379 
2380 	if (tty->ops->resize)
2381 		return tty->ops->resize(tty, &tmp_ws);
2382 	else
2383 		return tty_do_resize(tty, &tmp_ws);
2384 }
2385 
2386 /**
2387  * tioccons - allow admin to move logical console
2388  * @file: the file to become console
2389  *
2390  * Allow the administrator to move the redirected console device.
2391  *
2392  * Locking: uses redirect_lock to guard the redirect information
2393  */
2394 static int tioccons(struct file *file)
2395 {
2396 	if (!capable(CAP_SYS_ADMIN))
2397 		return -EPERM;
2398 	if (file->f_op->write_iter == redirected_tty_write) {
2399 		struct file *f;
2400 
2401 		spin_lock(&redirect_lock);
2402 		f = redirect;
2403 		redirect = NULL;
2404 		spin_unlock(&redirect_lock);
2405 		if (f)
2406 			fput(f);
2407 		return 0;
2408 	}
2409 	if (file->f_op->write_iter != tty_write)
2410 		return -ENOTTY;
2411 	if (!(file->f_mode & FMODE_WRITE))
2412 		return -EBADF;
2413 	if (!(file->f_mode & FMODE_CAN_WRITE))
2414 		return -EINVAL;
2415 	spin_lock(&redirect_lock);
2416 	if (redirect) {
2417 		spin_unlock(&redirect_lock);
2418 		return -EBUSY;
2419 	}
2420 	redirect = get_file(file);
2421 	spin_unlock(&redirect_lock);
2422 	return 0;
2423 }
2424 
2425 /**
2426  * tiocsetd - set line discipline
2427  * @tty: tty device
2428  * @p: pointer to user data
2429  *
2430  * Set the line discipline according to user request.
2431  *
2432  * Locking: see tty_set_ldisc(), this function is just a helper
2433  */
2434 static int tiocsetd(struct tty_struct *tty, int __user *p)
2435 {
2436 	int disc;
2437 	int ret;
2438 
2439 	if (get_user(disc, p))
2440 		return -EFAULT;
2441 
2442 	ret = tty_set_ldisc(tty, disc);
2443 
2444 	return ret;
2445 }
2446 
2447 /**
2448  * tiocgetd - get line discipline
2449  * @tty: tty device
2450  * @p: pointer to user data
2451  *
2452  * Retrieves the line discipline id directly from the ldisc.
2453  *
2454  * Locking: waits for ldisc reference (in case the line discipline is changing
2455  * or the @tty is being hungup)
2456  */
2457 static int tiocgetd(struct tty_struct *tty, int __user *p)
2458 {
2459 	struct tty_ldisc *ld;
2460 	int ret;
2461 
2462 	ld = tty_ldisc_ref_wait(tty);
2463 	if (!ld)
2464 		return -EIO;
2465 	ret = put_user(ld->ops->num, p);
2466 	tty_ldisc_deref(ld);
2467 	return ret;
2468 }
2469 
2470 /**
2471  * send_break - performed time break
2472  * @tty: device to break on
2473  * @duration: timeout in mS
2474  *
2475  * Perform a timed break on hardware that lacks its own driver level timed
2476  * break functionality.
2477  *
2478  * Locking:
2479  *	@tty->atomic_write_lock serializes
2480  */
2481 static int send_break(struct tty_struct *tty, unsigned int duration)
2482 {
2483 	int retval;
2484 
2485 	if (tty->ops->break_ctl == NULL)
2486 		return 0;
2487 
2488 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2489 		return tty->ops->break_ctl(tty, duration);
2490 
2491 	/* Do the work ourselves */
2492 	if (tty_write_lock(tty, false) < 0)
2493 		return -EINTR;
2494 
2495 	retval = tty->ops->break_ctl(tty, -1);
2496 	if (!retval) {
2497 		msleep_interruptible(duration);
2498 		retval = tty->ops->break_ctl(tty, 0);
2499 	} else if (retval == -EOPNOTSUPP) {
2500 		/* some drivers can tell only dynamically */
2501 		retval = 0;
2502 	}
2503 	tty_write_unlock(tty);
2504 
2505 	if (signal_pending(current))
2506 		retval = -EINTR;
2507 
2508 	return retval;
2509 }
2510 
2511 /**
2512  * tty_get_tiocm - get tiocm status register
2513  * @tty: tty device
2514  *
2515  * Obtain the modem status bits from the tty driver if the feature
2516  * is supported.
2517  */
2518 int tty_get_tiocm(struct tty_struct *tty)
2519 {
2520 	int retval = -ENOTTY;
2521 
2522 	if (tty->ops->tiocmget)
2523 		retval = tty->ops->tiocmget(tty);
2524 
2525 	return retval;
2526 }
2527 EXPORT_SYMBOL_GPL(tty_get_tiocm);
2528 
2529 /**
2530  * tty_tiocmget - get modem status
2531  * @tty: tty device
2532  * @p: pointer to result
2533  *
2534  * Obtain the modem status bits from the tty driver if the feature is
2535  * supported. Return -%ENOTTY if it is not available.
2536  *
2537  * Locking: none (up to the driver)
2538  */
2539 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2540 {
2541 	int retval;
2542 
2543 	retval = tty_get_tiocm(tty);
2544 	if (retval >= 0)
2545 		retval = put_user(retval, p);
2546 
2547 	return retval;
2548 }
2549 
2550 /**
2551  * tty_tiocmset - set modem status
2552  * @tty: tty device
2553  * @cmd: command - clear bits, set bits or set all
2554  * @p: pointer to desired bits
2555  *
2556  * Set the modem status bits from the tty driver if the feature
2557  * is supported. Return -%ENOTTY if it is not available.
2558  *
2559  * Locking: none (up to the driver)
2560  */
2561 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2562 	     unsigned __user *p)
2563 {
2564 	int retval;
2565 	unsigned int set, clear, val;
2566 
2567 	if (tty->ops->tiocmset == NULL)
2568 		return -ENOTTY;
2569 
2570 	retval = get_user(val, p);
2571 	if (retval)
2572 		return retval;
2573 	set = clear = 0;
2574 	switch (cmd) {
2575 	case TIOCMBIS:
2576 		set = val;
2577 		break;
2578 	case TIOCMBIC:
2579 		clear = val;
2580 		break;
2581 	case TIOCMSET:
2582 		set = val;
2583 		clear = ~val;
2584 		break;
2585 	}
2586 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2587 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2588 	return tty->ops->tiocmset(tty, set, clear);
2589 }
2590 
2591 /**
2592  * tty_get_icount - get tty statistics
2593  * @tty: tty device
2594  * @icount: output parameter
2595  *
2596  * Gets a copy of the @tty's icount statistics.
2597  *
2598  * Locking: none (up to the driver)
2599  */
2600 int tty_get_icount(struct tty_struct *tty,
2601 		   struct serial_icounter_struct *icount)
2602 {
2603 	memset(icount, 0, sizeof(*icount));
2604 
2605 	if (tty->ops->get_icount)
2606 		return tty->ops->get_icount(tty, icount);
2607 	else
2608 		return -ENOTTY;
2609 }
2610 EXPORT_SYMBOL_GPL(tty_get_icount);
2611 
2612 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2613 {
2614 	struct serial_icounter_struct icount;
2615 	int retval;
2616 
2617 	retval = tty_get_icount(tty, &icount);
2618 	if (retval != 0)
2619 		return retval;
2620 
2621 	if (copy_to_user(arg, &icount, sizeof(icount)))
2622 		return -EFAULT;
2623 	return 0;
2624 }
2625 
2626 static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2627 {
2628 	char comm[TASK_COMM_LEN];
2629 	int flags;
2630 
2631 	flags = ss->flags & ASYNC_DEPRECATED;
2632 
2633 	if (flags)
2634 		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2635 				__func__, get_task_comm(comm, current), flags);
2636 
2637 	if (!tty->ops->set_serial)
2638 		return -ENOTTY;
2639 
2640 	return tty->ops->set_serial(tty, ss);
2641 }
2642 
2643 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2644 {
2645 	struct serial_struct v;
2646 
2647 	if (copy_from_user(&v, ss, sizeof(*ss)))
2648 		return -EFAULT;
2649 
2650 	return tty_set_serial(tty, &v);
2651 }
2652 
2653 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2654 {
2655 	struct serial_struct v;
2656 	int err;
2657 
2658 	memset(&v, 0, sizeof(v));
2659 	if (!tty->ops->get_serial)
2660 		return -ENOTTY;
2661 	err = tty->ops->get_serial(tty, &v);
2662 	if (!err && copy_to_user(ss, &v, sizeof(v)))
2663 		err = -EFAULT;
2664 	return err;
2665 }
2666 
2667 /*
2668  * if pty, return the slave side (real_tty)
2669  * otherwise, return self
2670  */
2671 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2672 {
2673 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2674 	    tty->driver->subtype == PTY_TYPE_MASTER)
2675 		tty = tty->link;
2676 	return tty;
2677 }
2678 
2679 /*
2680  * Split this up, as gcc can choke on it otherwise..
2681  */
2682 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2683 {
2684 	struct tty_struct *tty = file_tty(file);
2685 	struct tty_struct *real_tty;
2686 	void __user *p = (void __user *)arg;
2687 	int retval;
2688 	struct tty_ldisc *ld;
2689 
2690 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2691 		return -EINVAL;
2692 
2693 	real_tty = tty_pair_get_tty(tty);
2694 
2695 	/*
2696 	 * Factor out some common prep work
2697 	 */
2698 	switch (cmd) {
2699 	case TIOCSETD:
2700 	case TIOCSBRK:
2701 	case TIOCCBRK:
2702 	case TCSBRK:
2703 	case TCSBRKP:
2704 		retval = tty_check_change(tty);
2705 		if (retval)
2706 			return retval;
2707 		if (cmd != TIOCCBRK) {
2708 			tty_wait_until_sent(tty, 0);
2709 			if (signal_pending(current))
2710 				return -EINTR;
2711 		}
2712 		break;
2713 	}
2714 
2715 	/*
2716 	 *	Now do the stuff.
2717 	 */
2718 	switch (cmd) {
2719 	case TIOCSTI:
2720 		return tiocsti(tty, p);
2721 	case TIOCGWINSZ:
2722 		return tiocgwinsz(real_tty, p);
2723 	case TIOCSWINSZ:
2724 		return tiocswinsz(real_tty, p);
2725 	case TIOCCONS:
2726 		return real_tty != tty ? -EINVAL : tioccons(file);
2727 	case TIOCEXCL:
2728 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2729 		return 0;
2730 	case TIOCNXCL:
2731 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2732 		return 0;
2733 	case TIOCGEXCL:
2734 	{
2735 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2736 
2737 		return put_user(excl, (int __user *)p);
2738 	}
2739 	case TIOCGETD:
2740 		return tiocgetd(tty, p);
2741 	case TIOCSETD:
2742 		return tiocsetd(tty, p);
2743 	case TIOCVHANGUP:
2744 		if (!capable(CAP_SYS_ADMIN))
2745 			return -EPERM;
2746 		tty_vhangup(tty);
2747 		return 0;
2748 	case TIOCGDEV:
2749 	{
2750 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2751 
2752 		return put_user(ret, (unsigned int __user *)p);
2753 	}
2754 	/*
2755 	 * Break handling
2756 	 */
2757 	case TIOCSBRK:	/* Turn break on, unconditionally */
2758 		if (tty->ops->break_ctl)
2759 			return tty->ops->break_ctl(tty, -1);
2760 		return 0;
2761 	case TIOCCBRK:	/* Turn break off, unconditionally */
2762 		if (tty->ops->break_ctl)
2763 			return tty->ops->break_ctl(tty, 0);
2764 		return 0;
2765 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2766 		/* non-zero arg means wait for all output data
2767 		 * to be sent (performed above) but don't send break.
2768 		 * This is used by the tcdrain() termios function.
2769 		 */
2770 		if (!arg)
2771 			return send_break(tty, 250);
2772 		return 0;
2773 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2774 		return send_break(tty, arg ? arg*100 : 250);
2775 
2776 	case TIOCMGET:
2777 		return tty_tiocmget(tty, p);
2778 	case TIOCMSET:
2779 	case TIOCMBIC:
2780 	case TIOCMBIS:
2781 		return tty_tiocmset(tty, cmd, p);
2782 	case TIOCGICOUNT:
2783 		return tty_tiocgicount(tty, p);
2784 	case TCFLSH:
2785 		switch (arg) {
2786 		case TCIFLUSH:
2787 		case TCIOFLUSH:
2788 		/* flush tty buffer and allow ldisc to process ioctl */
2789 			tty_buffer_flush(tty, NULL);
2790 			break;
2791 		}
2792 		break;
2793 	case TIOCSSERIAL:
2794 		return tty_tiocsserial(tty, p);
2795 	case TIOCGSERIAL:
2796 		return tty_tiocgserial(tty, p);
2797 	case TIOCGPTPEER:
2798 		/* Special because the struct file is needed */
2799 		return ptm_open_peer(file, tty, (int)arg);
2800 	default:
2801 		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2802 		if (retval != -ENOIOCTLCMD)
2803 			return retval;
2804 	}
2805 	if (tty->ops->ioctl) {
2806 		retval = tty->ops->ioctl(tty, cmd, arg);
2807 		if (retval != -ENOIOCTLCMD)
2808 			return retval;
2809 	}
2810 	ld = tty_ldisc_ref_wait(tty);
2811 	if (!ld)
2812 		return hung_up_tty_ioctl(file, cmd, arg);
2813 	retval = -EINVAL;
2814 	if (ld->ops->ioctl) {
2815 		retval = ld->ops->ioctl(tty, cmd, arg);
2816 		if (retval == -ENOIOCTLCMD)
2817 			retval = -ENOTTY;
2818 	}
2819 	tty_ldisc_deref(ld);
2820 	return retval;
2821 }
2822 
2823 #ifdef CONFIG_COMPAT
2824 
2825 struct serial_struct32 {
2826 	compat_int_t    type;
2827 	compat_int_t    line;
2828 	compat_uint_t   port;
2829 	compat_int_t    irq;
2830 	compat_int_t    flags;
2831 	compat_int_t    xmit_fifo_size;
2832 	compat_int_t    custom_divisor;
2833 	compat_int_t    baud_base;
2834 	unsigned short  close_delay;
2835 	char    io_type;
2836 	char    reserved_char;
2837 	compat_int_t    hub6;
2838 	unsigned short  closing_wait; /* time to wait before closing */
2839 	unsigned short  closing_wait2; /* no longer used... */
2840 	compat_uint_t   iomem_base;
2841 	unsigned short  iomem_reg_shift;
2842 	unsigned int    port_high;
2843 	/* compat_ulong_t  iomap_base FIXME */
2844 	compat_int_t    reserved;
2845 };
2846 
2847 static int compat_tty_tiocsserial(struct tty_struct *tty,
2848 		struct serial_struct32 __user *ss)
2849 {
2850 	struct serial_struct32 v32;
2851 	struct serial_struct v;
2852 
2853 	if (copy_from_user(&v32, ss, sizeof(*ss)))
2854 		return -EFAULT;
2855 
2856 	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2857 	v.iomem_base = compat_ptr(v32.iomem_base);
2858 	v.iomem_reg_shift = v32.iomem_reg_shift;
2859 	v.port_high = v32.port_high;
2860 	v.iomap_base = 0;
2861 
2862 	return tty_set_serial(tty, &v);
2863 }
2864 
2865 static int compat_tty_tiocgserial(struct tty_struct *tty,
2866 			struct serial_struct32 __user *ss)
2867 {
2868 	struct serial_struct32 v32;
2869 	struct serial_struct v;
2870 	int err;
2871 
2872 	memset(&v, 0, sizeof(v));
2873 	memset(&v32, 0, sizeof(v32));
2874 
2875 	if (!tty->ops->get_serial)
2876 		return -ENOTTY;
2877 	err = tty->ops->get_serial(tty, &v);
2878 	if (!err) {
2879 		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2880 		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2881 			0xfffffff : ptr_to_compat(v.iomem_base);
2882 		v32.iomem_reg_shift = v.iomem_reg_shift;
2883 		v32.port_high = v.port_high;
2884 		if (copy_to_user(ss, &v32, sizeof(v32)))
2885 			err = -EFAULT;
2886 	}
2887 	return err;
2888 }
2889 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2890 				unsigned long arg)
2891 {
2892 	struct tty_struct *tty = file_tty(file);
2893 	struct tty_ldisc *ld;
2894 	int retval = -ENOIOCTLCMD;
2895 
2896 	switch (cmd) {
2897 	case TIOCOUTQ:
2898 	case TIOCSTI:
2899 	case TIOCGWINSZ:
2900 	case TIOCSWINSZ:
2901 	case TIOCGEXCL:
2902 	case TIOCGETD:
2903 	case TIOCSETD:
2904 	case TIOCGDEV:
2905 	case TIOCMGET:
2906 	case TIOCMSET:
2907 	case TIOCMBIC:
2908 	case TIOCMBIS:
2909 	case TIOCGICOUNT:
2910 	case TIOCGPGRP:
2911 	case TIOCSPGRP:
2912 	case TIOCGSID:
2913 	case TIOCSERGETLSR:
2914 	case TIOCGRS485:
2915 	case TIOCSRS485:
2916 #ifdef TIOCGETP
2917 	case TIOCGETP:
2918 	case TIOCSETP:
2919 	case TIOCSETN:
2920 #endif
2921 #ifdef TIOCGETC
2922 	case TIOCGETC:
2923 	case TIOCSETC:
2924 #endif
2925 #ifdef TIOCGLTC
2926 	case TIOCGLTC:
2927 	case TIOCSLTC:
2928 #endif
2929 	case TCSETSF:
2930 	case TCSETSW:
2931 	case TCSETS:
2932 	case TCGETS:
2933 #ifdef TCGETS2
2934 	case TCGETS2:
2935 	case TCSETSF2:
2936 	case TCSETSW2:
2937 	case TCSETS2:
2938 #endif
2939 	case TCGETA:
2940 	case TCSETAF:
2941 	case TCSETAW:
2942 	case TCSETA:
2943 	case TIOCGLCKTRMIOS:
2944 	case TIOCSLCKTRMIOS:
2945 #ifdef TCGETX
2946 	case TCGETX:
2947 	case TCSETX:
2948 	case TCSETXW:
2949 	case TCSETXF:
2950 #endif
2951 	case TIOCGSOFTCAR:
2952 	case TIOCSSOFTCAR:
2953 
2954 	case PPPIOCGCHAN:
2955 	case PPPIOCGUNIT:
2956 		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2957 	case TIOCCONS:
2958 	case TIOCEXCL:
2959 	case TIOCNXCL:
2960 	case TIOCVHANGUP:
2961 	case TIOCSBRK:
2962 	case TIOCCBRK:
2963 	case TCSBRK:
2964 	case TCSBRKP:
2965 	case TCFLSH:
2966 	case TIOCGPTPEER:
2967 	case TIOCNOTTY:
2968 	case TIOCSCTTY:
2969 	case TCXONC:
2970 	case TIOCMIWAIT:
2971 	case TIOCSERCONFIG:
2972 		return tty_ioctl(file, cmd, arg);
2973 	}
2974 
2975 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2976 		return -EINVAL;
2977 
2978 	switch (cmd) {
2979 	case TIOCSSERIAL:
2980 		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2981 	case TIOCGSERIAL:
2982 		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2983 	}
2984 	if (tty->ops->compat_ioctl) {
2985 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2986 		if (retval != -ENOIOCTLCMD)
2987 			return retval;
2988 	}
2989 
2990 	ld = tty_ldisc_ref_wait(tty);
2991 	if (!ld)
2992 		return hung_up_tty_compat_ioctl(file, cmd, arg);
2993 	if (ld->ops->compat_ioctl)
2994 		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2995 	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2996 		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2997 				arg);
2998 	tty_ldisc_deref(ld);
2999 
3000 	return retval;
3001 }
3002 #endif
3003 
3004 static int this_tty(const void *t, struct file *file, unsigned fd)
3005 {
3006 	if (likely(file->f_op->read_iter != tty_read))
3007 		return 0;
3008 	return file_tty(file) != t ? 0 : fd + 1;
3009 }
3010 
3011 /*
3012  * This implements the "Secure Attention Key" ---  the idea is to
3013  * prevent trojan horses by killing all processes associated with this
3014  * tty when the user hits the "Secure Attention Key".  Required for
3015  * super-paranoid applications --- see the Orange Book for more details.
3016  *
3017  * This code could be nicer; ideally it should send a HUP, wait a few
3018  * seconds, then send a INT, and then a KILL signal.  But you then
3019  * have to coordinate with the init process, since all processes associated
3020  * with the current tty must be dead before the new getty is allowed
3021  * to spawn.
3022  *
3023  * Now, if it would be correct ;-/ The current code has a nasty hole -
3024  * it doesn't catch files in flight. We may send the descriptor to ourselves
3025  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3026  *
3027  * Nasty bug: do_SAK is being called in interrupt context.  This can
3028  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3029  */
3030 void __do_SAK(struct tty_struct *tty)
3031 {
3032 	struct task_struct *g, *p;
3033 	struct pid *session;
3034 	int i;
3035 	unsigned long flags;
3036 
3037 	spin_lock_irqsave(&tty->ctrl.lock, flags);
3038 	session = get_pid(tty->ctrl.session);
3039 	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3040 
3041 	tty_ldisc_flush(tty);
3042 
3043 	tty_driver_flush_buffer(tty);
3044 
3045 	read_lock(&tasklist_lock);
3046 	/* Kill the entire session */
3047 	do_each_pid_task(session, PIDTYPE_SID, p) {
3048 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3049 			   task_pid_nr(p), p->comm);
3050 		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3051 	} while_each_pid_task(session, PIDTYPE_SID, p);
3052 
3053 	/* Now kill any processes that happen to have the tty open */
3054 	for_each_process_thread(g, p) {
3055 		if (p->signal->tty == tty) {
3056 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3057 				   task_pid_nr(p), p->comm);
3058 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3059 					PIDTYPE_SID);
3060 			continue;
3061 		}
3062 		task_lock(p);
3063 		i = iterate_fd(p->files, 0, this_tty, tty);
3064 		if (i != 0) {
3065 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3066 				   task_pid_nr(p), p->comm, i - 1);
3067 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3068 					PIDTYPE_SID);
3069 		}
3070 		task_unlock(p);
3071 	}
3072 	read_unlock(&tasklist_lock);
3073 	put_pid(session);
3074 }
3075 
3076 static void do_SAK_work(struct work_struct *work)
3077 {
3078 	struct tty_struct *tty =
3079 		container_of(work, struct tty_struct, SAK_work);
3080 	__do_SAK(tty);
3081 }
3082 
3083 /*
3084  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3085  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3086  * the values which we write to it will be identical to the values which it
3087  * already has. --akpm
3088  */
3089 void do_SAK(struct tty_struct *tty)
3090 {
3091 	if (!tty)
3092 		return;
3093 	schedule_work(&tty->SAK_work);
3094 }
3095 EXPORT_SYMBOL(do_SAK);
3096 
3097 /* Must put_device() after it's unused! */
3098 static struct device *tty_get_device(struct tty_struct *tty)
3099 {
3100 	dev_t devt = tty_devnum(tty);
3101 
3102 	return class_find_device_by_devt(&tty_class, devt);
3103 }
3104 
3105 
3106 /**
3107  * alloc_tty_struct - allocate a new tty
3108  * @driver: driver which will handle the returned tty
3109  * @idx: minor of the tty
3110  *
3111  * This subroutine allocates and initializes a tty structure.
3112  *
3113  * Locking: none - @tty in question is not exposed at this point
3114  */
3115 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3116 {
3117 	struct tty_struct *tty;
3118 
3119 	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3120 	if (!tty)
3121 		return NULL;
3122 
3123 	kref_init(&tty->kref);
3124 	if (tty_ldisc_init(tty)) {
3125 		kfree(tty);
3126 		return NULL;
3127 	}
3128 	tty->ctrl.session = NULL;
3129 	tty->ctrl.pgrp = NULL;
3130 	mutex_init(&tty->legacy_mutex);
3131 	mutex_init(&tty->throttle_mutex);
3132 	init_rwsem(&tty->termios_rwsem);
3133 	mutex_init(&tty->winsize_mutex);
3134 	init_ldsem(&tty->ldisc_sem);
3135 	init_waitqueue_head(&tty->write_wait);
3136 	init_waitqueue_head(&tty->read_wait);
3137 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3138 	mutex_init(&tty->atomic_write_lock);
3139 	spin_lock_init(&tty->ctrl.lock);
3140 	spin_lock_init(&tty->flow.lock);
3141 	spin_lock_init(&tty->files_lock);
3142 	INIT_LIST_HEAD(&tty->tty_files);
3143 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3144 
3145 	tty->driver = driver;
3146 	tty->ops = driver->ops;
3147 	tty->index = idx;
3148 	tty_line_name(driver, idx, tty->name);
3149 	tty->dev = tty_get_device(tty);
3150 
3151 	return tty;
3152 }
3153 
3154 /**
3155  * tty_put_char - write one character to a tty
3156  * @tty: tty
3157  * @ch: character to write
3158  *
3159  * Write one byte to the @tty using the provided @tty->ops->put_char() method
3160  * if present.
3161  *
3162  * Note: the specific put_char operation in the driver layer may go
3163  * away soon. Don't call it directly, use this method
3164  *
3165  * Return: the number of characters successfully output.
3166  */
3167 int tty_put_char(struct tty_struct *tty, u8 ch)
3168 {
3169 	if (tty->ops->put_char)
3170 		return tty->ops->put_char(tty, ch);
3171 	return tty->ops->write(tty, &ch, 1);
3172 }
3173 EXPORT_SYMBOL_GPL(tty_put_char);
3174 
3175 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3176 		unsigned int index, unsigned int count)
3177 {
3178 	int err;
3179 
3180 	/* init here, since reused cdevs cause crashes */
3181 	driver->cdevs[index] = cdev_alloc();
3182 	if (!driver->cdevs[index])
3183 		return -ENOMEM;
3184 	driver->cdevs[index]->ops = &tty_fops;
3185 	driver->cdevs[index]->owner = driver->owner;
3186 	err = cdev_add(driver->cdevs[index], dev, count);
3187 	if (err)
3188 		kobject_put(&driver->cdevs[index]->kobj);
3189 	return err;
3190 }
3191 
3192 /**
3193  * tty_register_device - register a tty device
3194  * @driver: the tty driver that describes the tty device
3195  * @index: the index in the tty driver for this tty device
3196  * @device: a struct device that is associated with this tty device.
3197  *	This field is optional, if there is no known struct device
3198  *	for this tty device it can be set to NULL safely.
3199  *
3200  * This call is required to be made to register an individual tty device
3201  * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3202  * that bit is not set, this function should not be called by a tty
3203  * driver.
3204  *
3205  * Locking: ??
3206  *
3207  * Return: A pointer to the struct device for this tty device (or
3208  * ERR_PTR(-EFOO) on error).
3209  */
3210 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3211 				   struct device *device)
3212 {
3213 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3214 }
3215 EXPORT_SYMBOL(tty_register_device);
3216 
3217 static void tty_device_create_release(struct device *dev)
3218 {
3219 	dev_dbg(dev, "releasing...\n");
3220 	kfree(dev);
3221 }
3222 
3223 /**
3224  * tty_register_device_attr - register a tty device
3225  * @driver: the tty driver that describes the tty device
3226  * @index: the index in the tty driver for this tty device
3227  * @device: a struct device that is associated with this tty device.
3228  *	This field is optional, if there is no known struct device
3229  *	for this tty device it can be set to %NULL safely.
3230  * @drvdata: Driver data to be set to device.
3231  * @attr_grp: Attribute group to be set on device.
3232  *
3233  * This call is required to be made to register an individual tty device if the
3234  * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3235  * not set, this function should not be called by a tty driver.
3236  *
3237  * Locking: ??
3238  *
3239  * Return: A pointer to the struct device for this tty device (or
3240  * ERR_PTR(-EFOO) on error).
3241  */
3242 struct device *tty_register_device_attr(struct tty_driver *driver,
3243 				   unsigned index, struct device *device,
3244 				   void *drvdata,
3245 				   const struct attribute_group **attr_grp)
3246 {
3247 	char name[64];
3248 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3249 	struct ktermios *tp;
3250 	struct device *dev;
3251 	int retval;
3252 
3253 	if (index >= driver->num) {
3254 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3255 		       driver->name, index);
3256 		return ERR_PTR(-EINVAL);
3257 	}
3258 
3259 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3260 		pty_line_name(driver, index, name);
3261 	else
3262 		tty_line_name(driver, index, name);
3263 
3264 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3265 	if (!dev)
3266 		return ERR_PTR(-ENOMEM);
3267 
3268 	dev->devt = devt;
3269 	dev->class = &tty_class;
3270 	dev->parent = device;
3271 	dev->release = tty_device_create_release;
3272 	dev_set_name(dev, "%s", name);
3273 	dev->groups = attr_grp;
3274 	dev_set_drvdata(dev, drvdata);
3275 
3276 	dev_set_uevent_suppress(dev, 1);
3277 
3278 	retval = device_register(dev);
3279 	if (retval)
3280 		goto err_put;
3281 
3282 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3283 		/*
3284 		 * Free any saved termios data so that the termios state is
3285 		 * reset when reusing a minor number.
3286 		 */
3287 		tp = driver->termios[index];
3288 		if (tp) {
3289 			driver->termios[index] = NULL;
3290 			kfree(tp);
3291 		}
3292 
3293 		retval = tty_cdev_add(driver, devt, index, 1);
3294 		if (retval)
3295 			goto err_del;
3296 	}
3297 
3298 	dev_set_uevent_suppress(dev, 0);
3299 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3300 
3301 	return dev;
3302 
3303 err_del:
3304 	device_del(dev);
3305 err_put:
3306 	put_device(dev);
3307 
3308 	return ERR_PTR(retval);
3309 }
3310 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3311 
3312 /**
3313  * tty_unregister_device - unregister a tty device
3314  * @driver: the tty driver that describes the tty device
3315  * @index: the index in the tty driver for this tty device
3316  *
3317  * If a tty device is registered with a call to tty_register_device() then
3318  * this function must be called when the tty device is gone.
3319  *
3320  * Locking: ??
3321  */
3322 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3323 {
3324 	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3325 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3326 		cdev_del(driver->cdevs[index]);
3327 		driver->cdevs[index] = NULL;
3328 	}
3329 }
3330 EXPORT_SYMBOL(tty_unregister_device);
3331 
3332 /**
3333  * __tty_alloc_driver - allocate tty driver
3334  * @lines: count of lines this driver can handle at most
3335  * @owner: module which is responsible for this driver
3336  * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3337  *
3338  * This should not be called directly, some of the provided macros should be
3339  * used instead. Use IS_ERR() and friends on @retval.
3340  */
3341 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3342 		unsigned long flags)
3343 {
3344 	struct tty_driver *driver;
3345 	unsigned int cdevs = 1;
3346 	int err;
3347 
3348 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3349 		return ERR_PTR(-EINVAL);
3350 
3351 	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3352 	if (!driver)
3353 		return ERR_PTR(-ENOMEM);
3354 
3355 	kref_init(&driver->kref);
3356 	driver->num = lines;
3357 	driver->owner = owner;
3358 	driver->flags = flags;
3359 
3360 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3361 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3362 				GFP_KERNEL);
3363 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3364 				GFP_KERNEL);
3365 		if (!driver->ttys || !driver->termios) {
3366 			err = -ENOMEM;
3367 			goto err_free_all;
3368 		}
3369 	}
3370 
3371 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3372 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3373 				GFP_KERNEL);
3374 		if (!driver->ports) {
3375 			err = -ENOMEM;
3376 			goto err_free_all;
3377 		}
3378 		cdevs = lines;
3379 	}
3380 
3381 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3382 	if (!driver->cdevs) {
3383 		err = -ENOMEM;
3384 		goto err_free_all;
3385 	}
3386 
3387 	return driver;
3388 err_free_all:
3389 	kfree(driver->ports);
3390 	kfree(driver->ttys);
3391 	kfree(driver->termios);
3392 	kfree(driver->cdevs);
3393 	kfree(driver);
3394 	return ERR_PTR(err);
3395 }
3396 EXPORT_SYMBOL(__tty_alloc_driver);
3397 
3398 static void destruct_tty_driver(struct kref *kref)
3399 {
3400 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3401 	int i;
3402 	struct ktermios *tp;
3403 
3404 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3405 		for (i = 0; i < driver->num; i++) {
3406 			tp = driver->termios[i];
3407 			if (tp) {
3408 				driver->termios[i] = NULL;
3409 				kfree(tp);
3410 			}
3411 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3412 				tty_unregister_device(driver, i);
3413 		}
3414 		proc_tty_unregister_driver(driver);
3415 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3416 			cdev_del(driver->cdevs[0]);
3417 	}
3418 	kfree(driver->cdevs);
3419 	kfree(driver->ports);
3420 	kfree(driver->termios);
3421 	kfree(driver->ttys);
3422 	kfree(driver);
3423 }
3424 
3425 /**
3426  * tty_driver_kref_put - drop a reference to a tty driver
3427  * @driver: driver of which to drop the reference
3428  *
3429  * The final put will destroy and free up the driver.
3430  */
3431 void tty_driver_kref_put(struct tty_driver *driver)
3432 {
3433 	kref_put(&driver->kref, destruct_tty_driver);
3434 }
3435 EXPORT_SYMBOL(tty_driver_kref_put);
3436 
3437 /**
3438  * tty_register_driver - register a tty driver
3439  * @driver: driver to register
3440  *
3441  * Called by a tty driver to register itself.
3442  */
3443 int tty_register_driver(struct tty_driver *driver)
3444 {
3445 	int error;
3446 	int i;
3447 	dev_t dev;
3448 	struct device *d;
3449 
3450 	if (!driver->major) {
3451 		error = alloc_chrdev_region(&dev, driver->minor_start,
3452 						driver->num, driver->name);
3453 		if (!error) {
3454 			driver->major = MAJOR(dev);
3455 			driver->minor_start = MINOR(dev);
3456 		}
3457 	} else {
3458 		dev = MKDEV(driver->major, driver->minor_start);
3459 		error = register_chrdev_region(dev, driver->num, driver->name);
3460 	}
3461 	if (error < 0)
3462 		goto err;
3463 
3464 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3465 		error = tty_cdev_add(driver, dev, 0, driver->num);
3466 		if (error)
3467 			goto err_unreg_char;
3468 	}
3469 
3470 	mutex_lock(&tty_mutex);
3471 	list_add(&driver->tty_drivers, &tty_drivers);
3472 	mutex_unlock(&tty_mutex);
3473 
3474 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3475 		for (i = 0; i < driver->num; i++) {
3476 			d = tty_register_device(driver, i, NULL);
3477 			if (IS_ERR(d)) {
3478 				error = PTR_ERR(d);
3479 				goto err_unreg_devs;
3480 			}
3481 		}
3482 	}
3483 	proc_tty_register_driver(driver);
3484 	driver->flags |= TTY_DRIVER_INSTALLED;
3485 	return 0;
3486 
3487 err_unreg_devs:
3488 	for (i--; i >= 0; i--)
3489 		tty_unregister_device(driver, i);
3490 
3491 	mutex_lock(&tty_mutex);
3492 	list_del(&driver->tty_drivers);
3493 	mutex_unlock(&tty_mutex);
3494 
3495 err_unreg_char:
3496 	unregister_chrdev_region(dev, driver->num);
3497 err:
3498 	return error;
3499 }
3500 EXPORT_SYMBOL(tty_register_driver);
3501 
3502 /**
3503  * tty_unregister_driver - unregister a tty driver
3504  * @driver: driver to unregister
3505  *
3506  * Called by a tty driver to unregister itself.
3507  */
3508 void tty_unregister_driver(struct tty_driver *driver)
3509 {
3510 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3511 				driver->num);
3512 	mutex_lock(&tty_mutex);
3513 	list_del(&driver->tty_drivers);
3514 	mutex_unlock(&tty_mutex);
3515 }
3516 EXPORT_SYMBOL(tty_unregister_driver);
3517 
3518 dev_t tty_devnum(struct tty_struct *tty)
3519 {
3520 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3521 }
3522 EXPORT_SYMBOL(tty_devnum);
3523 
3524 void tty_default_fops(struct file_operations *fops)
3525 {
3526 	*fops = tty_fops;
3527 }
3528 
3529 static char *tty_devnode(const struct device *dev, umode_t *mode)
3530 {
3531 	if (!mode)
3532 		return NULL;
3533 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3534 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3535 		*mode = 0666;
3536 	return NULL;
3537 }
3538 
3539 const struct class tty_class = {
3540 	.name		= "tty",
3541 	.devnode	= tty_devnode,
3542 };
3543 
3544 static int __init tty_class_init(void)
3545 {
3546 	return class_register(&tty_class);
3547 }
3548 
3549 postcore_initcall(tty_class_init);
3550 
3551 /* 3/2004 jmc: why do these devices exist? */
3552 static struct cdev tty_cdev, console_cdev;
3553 
3554 static ssize_t show_cons_active(struct device *dev,
3555 				struct device_attribute *attr, char *buf)
3556 {
3557 	struct console *cs[16];
3558 	int i = 0;
3559 	struct console *c;
3560 	ssize_t count = 0;
3561 
3562 	/*
3563 	 * Hold the console_list_lock to guarantee that no consoles are
3564 	 * unregistered until all console processing is complete.
3565 	 * This also allows safe traversal of the console list and
3566 	 * race-free reading of @flags.
3567 	 */
3568 	console_list_lock();
3569 
3570 	for_each_console(c) {
3571 		if (!c->device)
3572 			continue;
3573 		if (!(c->flags & CON_NBCON) && !c->write)
3574 			continue;
3575 		if ((c->flags & CON_ENABLED) == 0)
3576 			continue;
3577 		cs[i++] = c;
3578 		if (i >= ARRAY_SIZE(cs))
3579 			break;
3580 	}
3581 
3582 	/*
3583 	 * Take console_lock to serialize device() callback with
3584 	 * other console operations. For example, fg_console is
3585 	 * modified under console_lock when switching vt.
3586 	 */
3587 	console_lock();
3588 	while (i--) {
3589 		int index = cs[i]->index;
3590 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3591 
3592 		/* don't resolve tty0 as some programs depend on it */
3593 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3594 			count += tty_line_name(drv, index, buf + count);
3595 		else
3596 			count += sprintf(buf + count, "%s%d",
3597 					 cs[i]->name, cs[i]->index);
3598 
3599 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3600 	}
3601 	console_unlock();
3602 
3603 	console_list_unlock();
3604 
3605 	return count;
3606 }
3607 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3608 
3609 static struct attribute *cons_dev_attrs[] = {
3610 	&dev_attr_active.attr,
3611 	NULL
3612 };
3613 
3614 ATTRIBUTE_GROUPS(cons_dev);
3615 
3616 static struct device *consdev;
3617 
3618 void console_sysfs_notify(void)
3619 {
3620 	if (consdev)
3621 		sysfs_notify(&consdev->kobj, NULL, "active");
3622 }
3623 
3624 static struct ctl_table tty_table[] = {
3625 	{
3626 		.procname	= "legacy_tiocsti",
3627 		.data		= &tty_legacy_tiocsti,
3628 		.maxlen		= sizeof(tty_legacy_tiocsti),
3629 		.mode		= 0644,
3630 		.proc_handler	= proc_dobool,
3631 	},
3632 	{
3633 		.procname	= "ldisc_autoload",
3634 		.data		= &tty_ldisc_autoload,
3635 		.maxlen		= sizeof(tty_ldisc_autoload),
3636 		.mode		= 0644,
3637 		.proc_handler	= proc_dointvec,
3638 		.extra1		= SYSCTL_ZERO,
3639 		.extra2		= SYSCTL_ONE,
3640 	},
3641 };
3642 
3643 /*
3644  * Ok, now we can initialize the rest of the tty devices and can count
3645  * on memory allocations, interrupts etc..
3646  */
3647 int __init tty_init(void)
3648 {
3649 	register_sysctl_init("dev/tty", tty_table);
3650 	cdev_init(&tty_cdev, &tty_fops);
3651 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3652 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3653 		panic("Couldn't register /dev/tty driver\n");
3654 	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3655 
3656 	cdev_init(&console_cdev, &console_fops);
3657 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3658 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3659 		panic("Couldn't register /dev/console driver\n");
3660 	consdev = device_create_with_groups(&tty_class, NULL,
3661 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3662 					    cons_dev_groups, "console");
3663 	if (IS_ERR(consdev))
3664 		consdev = NULL;
3665 
3666 #ifdef CONFIG_VT
3667 	vty_init(&console_fops);
3668 #endif
3669 	return 0;
3670 }
3671