xref: /linux/drivers/tty/tty_io.c (revision 48c36c8f9a3e881953bb72deb55623a53795a684)
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *	-- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53  *	-- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68 
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100 
101 #include <linux/uaccess.h>
102 #include <asm/system.h>
103 
104 #include <linux/kbd_kern.h>
105 #include <linux/vt_kern.h>
106 #include <linux/selection.h>
107 
108 #include <linux/kmod.h>
109 #include <linux/nsproxy.h>
110 
111 #undef TTY_DEBUG_HANGUP
112 
113 #define TTY_PARANOIA_CHECK 1
114 #define CHECK_TTY_COUNT 1
115 
116 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
117 	.c_iflag = ICRNL | IXON,
118 	.c_oflag = OPOST | ONLCR,
119 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
120 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
121 		   ECHOCTL | ECHOKE | IEXTEN,
122 	.c_cc = INIT_C_CC,
123 	.c_ispeed = 38400,
124 	.c_ospeed = 38400
125 };
126 
127 EXPORT_SYMBOL(tty_std_termios);
128 
129 /* This list gets poked at by procfs and various bits of boot up code. This
130    could do with some rationalisation such as pulling the tty proc function
131    into this file */
132 
133 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
134 
135 /* Mutex to protect creating and releasing a tty. This is shared with
136    vt.c for deeply disgusting hack reasons */
137 DEFINE_MUTEX(tty_mutex);
138 EXPORT_SYMBOL(tty_mutex);
139 
140 /* Spinlock to protect the tty->tty_files list */
141 DEFINE_SPINLOCK(tty_files_lock);
142 
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146 							size_t, loff_t *);
147 static unsigned int tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 				unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
161 
162 /**
163  *	alloc_tty_struct	-	allocate a tty object
164  *
165  *	Return a new empty tty structure. The data fields have not
166  *	been initialized in any way but has been zeroed
167  *
168  *	Locking: none
169  */
170 
171 struct tty_struct *alloc_tty_struct(void)
172 {
173 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
174 }
175 
176 /**
177  *	free_tty_struct		-	free a disused tty
178  *	@tty: tty struct to free
179  *
180  *	Free the write buffers, tty queue and tty memory itself.
181  *
182  *	Locking: none. Must be called after tty is definitely unused
183  */
184 
185 void free_tty_struct(struct tty_struct *tty)
186 {
187 	if (tty->dev)
188 		put_device(tty->dev);
189 	kfree(tty->write_buf);
190 	tty_buffer_free_all(tty);
191 	kfree(tty);
192 }
193 
194 static inline struct tty_struct *file_tty(struct file *file)
195 {
196 	return ((struct tty_file_private *)file->private_data)->tty;
197 }
198 
199 /* Associate a new file with the tty structure */
200 int tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202 	struct tty_file_private *priv;
203 
204 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
205 	if (!priv)
206 		return -ENOMEM;
207 
208 	priv->tty = tty;
209 	priv->file = file;
210 	file->private_data = priv;
211 
212 	spin_lock(&tty_files_lock);
213 	list_add(&priv->list, &tty->tty_files);
214 	spin_unlock(&tty_files_lock);
215 
216 	return 0;
217 }
218 
219 /* Delete file from its tty */
220 void tty_del_file(struct file *file)
221 {
222 	struct tty_file_private *priv = file->private_data;
223 
224 	spin_lock(&tty_files_lock);
225 	list_del(&priv->list);
226 	spin_unlock(&tty_files_lock);
227 	file->private_data = NULL;
228 	kfree(priv);
229 }
230 
231 
232 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
233 
234 /**
235  *	tty_name	-	return tty naming
236  *	@tty: tty structure
237  *	@buf: buffer for output
238  *
239  *	Convert a tty structure into a name. The name reflects the kernel
240  *	naming policy and if udev is in use may not reflect user space
241  *
242  *	Locking: none
243  */
244 
245 char *tty_name(struct tty_struct *tty, char *buf)
246 {
247 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
248 		strcpy(buf, "NULL tty");
249 	else
250 		strcpy(buf, tty->name);
251 	return buf;
252 }
253 
254 EXPORT_SYMBOL(tty_name);
255 
256 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
257 			      const char *routine)
258 {
259 #ifdef TTY_PARANOIA_CHECK
260 	if (!tty) {
261 		printk(KERN_WARNING
262 			"null TTY for (%d:%d) in %s\n",
263 			imajor(inode), iminor(inode), routine);
264 		return 1;
265 	}
266 	if (tty->magic != TTY_MAGIC) {
267 		printk(KERN_WARNING
268 			"bad magic number for tty struct (%d:%d) in %s\n",
269 			imajor(inode), iminor(inode), routine);
270 		return 1;
271 	}
272 #endif
273 	return 0;
274 }
275 
276 static int check_tty_count(struct tty_struct *tty, const char *routine)
277 {
278 #ifdef CHECK_TTY_COUNT
279 	struct list_head *p;
280 	int count = 0;
281 
282 	spin_lock(&tty_files_lock);
283 	list_for_each(p, &tty->tty_files) {
284 		count++;
285 	}
286 	spin_unlock(&tty_files_lock);
287 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
288 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
289 	    tty->link && tty->link->count)
290 		count++;
291 	if (tty->count != count) {
292 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
293 				    "!= #fd's(%d) in %s\n",
294 		       tty->name, tty->count, count, routine);
295 		return count;
296 	}
297 #endif
298 	return 0;
299 }
300 
301 /**
302  *	get_tty_driver		-	find device of a tty
303  *	@dev_t: device identifier
304  *	@index: returns the index of the tty
305  *
306  *	This routine returns a tty driver structure, given a device number
307  *	and also passes back the index number.
308  *
309  *	Locking: caller must hold tty_mutex
310  */
311 
312 static struct tty_driver *get_tty_driver(dev_t device, int *index)
313 {
314 	struct tty_driver *p;
315 
316 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
317 		dev_t base = MKDEV(p->major, p->minor_start);
318 		if (device < base || device >= base + p->num)
319 			continue;
320 		*index = device - base;
321 		return tty_driver_kref_get(p);
322 	}
323 	return NULL;
324 }
325 
326 #ifdef CONFIG_CONSOLE_POLL
327 
328 /**
329  *	tty_find_polling_driver	-	find device of a polled tty
330  *	@name: name string to match
331  *	@line: pointer to resulting tty line nr
332  *
333  *	This routine returns a tty driver structure, given a name
334  *	and the condition that the tty driver is capable of polled
335  *	operation.
336  */
337 struct tty_driver *tty_find_polling_driver(char *name, int *line)
338 {
339 	struct tty_driver *p, *res = NULL;
340 	int tty_line = 0;
341 	int len;
342 	char *str, *stp;
343 
344 	for (str = name; *str; str++)
345 		if ((*str >= '0' && *str <= '9') || *str == ',')
346 			break;
347 	if (!*str)
348 		return NULL;
349 
350 	len = str - name;
351 	tty_line = simple_strtoul(str, &str, 10);
352 
353 	mutex_lock(&tty_mutex);
354 	/* Search through the tty devices to look for a match */
355 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
356 		if (strncmp(name, p->name, len) != 0)
357 			continue;
358 		stp = str;
359 		if (*stp == ',')
360 			stp++;
361 		if (*stp == '\0')
362 			stp = NULL;
363 
364 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
365 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
366 			res = tty_driver_kref_get(p);
367 			*line = tty_line;
368 			break;
369 		}
370 	}
371 	mutex_unlock(&tty_mutex);
372 
373 	return res;
374 }
375 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
376 #endif
377 
378 /**
379  *	tty_check_change	-	check for POSIX terminal changes
380  *	@tty: tty to check
381  *
382  *	If we try to write to, or set the state of, a terminal and we're
383  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
384  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
385  *
386  *	Locking: ctrl_lock
387  */
388 
389 int tty_check_change(struct tty_struct *tty)
390 {
391 	unsigned long flags;
392 	int ret = 0;
393 
394 	if (current->signal->tty != tty)
395 		return 0;
396 
397 	spin_lock_irqsave(&tty->ctrl_lock, flags);
398 
399 	if (!tty->pgrp) {
400 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
401 		goto out_unlock;
402 	}
403 	if (task_pgrp(current) == tty->pgrp)
404 		goto out_unlock;
405 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
406 	if (is_ignored(SIGTTOU))
407 		goto out;
408 	if (is_current_pgrp_orphaned()) {
409 		ret = -EIO;
410 		goto out;
411 	}
412 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
413 	set_thread_flag(TIF_SIGPENDING);
414 	ret = -ERESTARTSYS;
415 out:
416 	return ret;
417 out_unlock:
418 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
419 	return ret;
420 }
421 
422 EXPORT_SYMBOL(tty_check_change);
423 
424 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
425 				size_t count, loff_t *ppos)
426 {
427 	return 0;
428 }
429 
430 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
431 				 size_t count, loff_t *ppos)
432 {
433 	return -EIO;
434 }
435 
436 /* No kernel lock held - none needed ;) */
437 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
438 {
439 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
440 }
441 
442 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
443 		unsigned long arg)
444 {
445 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
446 }
447 
448 static long hung_up_tty_compat_ioctl(struct file *file,
449 				     unsigned int cmd, unsigned long arg)
450 {
451 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
452 }
453 
454 static const struct file_operations tty_fops = {
455 	.llseek		= no_llseek,
456 	.read		= tty_read,
457 	.write		= tty_write,
458 	.poll		= tty_poll,
459 	.unlocked_ioctl	= tty_ioctl,
460 	.compat_ioctl	= tty_compat_ioctl,
461 	.open		= tty_open,
462 	.release	= tty_release,
463 	.fasync		= tty_fasync,
464 };
465 
466 static const struct file_operations console_fops = {
467 	.llseek		= no_llseek,
468 	.read		= tty_read,
469 	.write		= redirected_tty_write,
470 	.poll		= tty_poll,
471 	.unlocked_ioctl	= tty_ioctl,
472 	.compat_ioctl	= tty_compat_ioctl,
473 	.open		= tty_open,
474 	.release	= tty_release,
475 	.fasync		= tty_fasync,
476 };
477 
478 static const struct file_operations hung_up_tty_fops = {
479 	.llseek		= no_llseek,
480 	.read		= hung_up_tty_read,
481 	.write		= hung_up_tty_write,
482 	.poll		= hung_up_tty_poll,
483 	.unlocked_ioctl	= hung_up_tty_ioctl,
484 	.compat_ioctl	= hung_up_tty_compat_ioctl,
485 	.release	= tty_release,
486 };
487 
488 static DEFINE_SPINLOCK(redirect_lock);
489 static struct file *redirect;
490 
491 /**
492  *	tty_wakeup	-	request more data
493  *	@tty: terminal
494  *
495  *	Internal and external helper for wakeups of tty. This function
496  *	informs the line discipline if present that the driver is ready
497  *	to receive more output data.
498  */
499 
500 void tty_wakeup(struct tty_struct *tty)
501 {
502 	struct tty_ldisc *ld;
503 
504 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
505 		ld = tty_ldisc_ref(tty);
506 		if (ld) {
507 			if (ld->ops->write_wakeup)
508 				ld->ops->write_wakeup(tty);
509 			tty_ldisc_deref(ld);
510 		}
511 	}
512 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
513 }
514 
515 EXPORT_SYMBOL_GPL(tty_wakeup);
516 
517 /**
518  *	__tty_hangup		-	actual handler for hangup events
519  *	@work: tty device
520  *
521  *	This can be called by the "eventd" kernel thread.  That is process
522  *	synchronous but doesn't hold any locks, so we need to make sure we
523  *	have the appropriate locks for what we're doing.
524  *
525  *	The hangup event clears any pending redirections onto the hung up
526  *	device. It ensures future writes will error and it does the needed
527  *	line discipline hangup and signal delivery. The tty object itself
528  *	remains intact.
529  *
530  *	Locking:
531  *		BTM
532  *		  redirect lock for undoing redirection
533  *		  file list lock for manipulating list of ttys
534  *		  tty_ldisc_lock from called functions
535  *		  termios_mutex resetting termios data
536  *		  tasklist_lock to walk task list for hangup event
537  *		    ->siglock to protect ->signal/->sighand
538  */
539 void __tty_hangup(struct tty_struct *tty)
540 {
541 	struct file *cons_filp = NULL;
542 	struct file *filp, *f = NULL;
543 	struct task_struct *p;
544 	struct tty_file_private *priv;
545 	int    closecount = 0, n;
546 	unsigned long flags;
547 	int refs = 0;
548 
549 	if (!tty)
550 		return;
551 
552 
553 	spin_lock(&redirect_lock);
554 	if (redirect && file_tty(redirect) == tty) {
555 		f = redirect;
556 		redirect = NULL;
557 	}
558 	spin_unlock(&redirect_lock);
559 
560 	tty_lock();
561 
562 	/* inuse_filps is protected by the single tty lock,
563 	   this really needs to change if we want to flush the
564 	   workqueue with the lock held */
565 	check_tty_count(tty, "tty_hangup");
566 
567 	spin_lock(&tty_files_lock);
568 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
569 	list_for_each_entry(priv, &tty->tty_files, list) {
570 		filp = priv->file;
571 		if (filp->f_op->write == redirected_tty_write)
572 			cons_filp = filp;
573 		if (filp->f_op->write != tty_write)
574 			continue;
575 		closecount++;
576 		__tty_fasync(-1, filp, 0);	/* can't block */
577 		filp->f_op = &hung_up_tty_fops;
578 	}
579 	spin_unlock(&tty_files_lock);
580 
581 	tty_ldisc_hangup(tty);
582 
583 	read_lock(&tasklist_lock);
584 	if (tty->session) {
585 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
586 			spin_lock_irq(&p->sighand->siglock);
587 			if (p->signal->tty == tty) {
588 				p->signal->tty = NULL;
589 				/* We defer the dereferences outside fo
590 				   the tasklist lock */
591 				refs++;
592 			}
593 			if (!p->signal->leader) {
594 				spin_unlock_irq(&p->sighand->siglock);
595 				continue;
596 			}
597 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
598 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
599 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
600 			spin_lock_irqsave(&tty->ctrl_lock, flags);
601 			if (tty->pgrp)
602 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
603 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
604 			spin_unlock_irq(&p->sighand->siglock);
605 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
606 	}
607 	read_unlock(&tasklist_lock);
608 
609 	spin_lock_irqsave(&tty->ctrl_lock, flags);
610 	clear_bit(TTY_THROTTLED, &tty->flags);
611 	clear_bit(TTY_PUSH, &tty->flags);
612 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
613 	put_pid(tty->session);
614 	put_pid(tty->pgrp);
615 	tty->session = NULL;
616 	tty->pgrp = NULL;
617 	tty->ctrl_status = 0;
618 	set_bit(TTY_HUPPED, &tty->flags);
619 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
620 
621 	/* Account for the p->signal references we killed */
622 	while (refs--)
623 		tty_kref_put(tty);
624 
625 	/*
626 	 * If one of the devices matches a console pointer, we
627 	 * cannot just call hangup() because that will cause
628 	 * tty->count and state->count to go out of sync.
629 	 * So we just call close() the right number of times.
630 	 */
631 	if (cons_filp) {
632 		if (tty->ops->close)
633 			for (n = 0; n < closecount; n++)
634 				tty->ops->close(tty, cons_filp);
635 	} else if (tty->ops->hangup)
636 		(tty->ops->hangup)(tty);
637 	/*
638 	 * We don't want to have driver/ldisc interactions beyond
639 	 * the ones we did here. The driver layer expects no
640 	 * calls after ->hangup() from the ldisc side. However we
641 	 * can't yet guarantee all that.
642 	 */
643 	set_bit(TTY_HUPPED, &tty->flags);
644 	tty_ldisc_enable(tty);
645 
646 	tty_unlock();
647 
648 	if (f)
649 		fput(f);
650 }
651 
652 static void do_tty_hangup(struct work_struct *work)
653 {
654 	struct tty_struct *tty =
655 		container_of(work, struct tty_struct, hangup_work);
656 
657 	__tty_hangup(tty);
658 }
659 
660 /**
661  *	tty_hangup		-	trigger a hangup event
662  *	@tty: tty to hangup
663  *
664  *	A carrier loss (virtual or otherwise) has occurred on this like
665  *	schedule a hangup sequence to run after this event.
666  */
667 
668 void tty_hangup(struct tty_struct *tty)
669 {
670 #ifdef TTY_DEBUG_HANGUP
671 	char	buf[64];
672 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
673 #endif
674 	schedule_work(&tty->hangup_work);
675 }
676 
677 EXPORT_SYMBOL(tty_hangup);
678 
679 /**
680  *	tty_vhangup		-	process vhangup
681  *	@tty: tty to hangup
682  *
683  *	The user has asked via system call for the terminal to be hung up.
684  *	We do this synchronously so that when the syscall returns the process
685  *	is complete. That guarantee is necessary for security reasons.
686  */
687 
688 void tty_vhangup(struct tty_struct *tty)
689 {
690 #ifdef TTY_DEBUG_HANGUP
691 	char	buf[64];
692 
693 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
694 #endif
695 	__tty_hangup(tty);
696 }
697 
698 EXPORT_SYMBOL(tty_vhangup);
699 
700 
701 /**
702  *	tty_vhangup_self	-	process vhangup for own ctty
703  *
704  *	Perform a vhangup on the current controlling tty
705  */
706 
707 void tty_vhangup_self(void)
708 {
709 	struct tty_struct *tty;
710 
711 	tty = get_current_tty();
712 	if (tty) {
713 		tty_vhangup(tty);
714 		tty_kref_put(tty);
715 	}
716 }
717 
718 /**
719  *	tty_hung_up_p		-	was tty hung up
720  *	@filp: file pointer of tty
721  *
722  *	Return true if the tty has been subject to a vhangup or a carrier
723  *	loss
724  */
725 
726 int tty_hung_up_p(struct file *filp)
727 {
728 	return (filp->f_op == &hung_up_tty_fops);
729 }
730 
731 EXPORT_SYMBOL(tty_hung_up_p);
732 
733 static void session_clear_tty(struct pid *session)
734 {
735 	struct task_struct *p;
736 	do_each_pid_task(session, PIDTYPE_SID, p) {
737 		proc_clear_tty(p);
738 	} while_each_pid_task(session, PIDTYPE_SID, p);
739 }
740 
741 /**
742  *	disassociate_ctty	-	disconnect controlling tty
743  *	@on_exit: true if exiting so need to "hang up" the session
744  *
745  *	This function is typically called only by the session leader, when
746  *	it wants to disassociate itself from its controlling tty.
747  *
748  *	It performs the following functions:
749  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
750  * 	(2)  Clears the tty from being controlling the session
751  * 	(3)  Clears the controlling tty for all processes in the
752  * 		session group.
753  *
754  *	The argument on_exit is set to 1 if called when a process is
755  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
756  *
757  *	Locking:
758  *		BTM is taken for hysterical raisins, and held when
759  *		  called from no_tty().
760  *		  tty_mutex is taken to protect tty
761  *		  ->siglock is taken to protect ->signal/->sighand
762  *		  tasklist_lock is taken to walk process list for sessions
763  *		    ->siglock is taken to protect ->signal/->sighand
764  */
765 
766 void disassociate_ctty(int on_exit)
767 {
768 	struct tty_struct *tty;
769 	struct pid *tty_pgrp = NULL;
770 
771 	if (!current->signal->leader)
772 		return;
773 
774 	tty = get_current_tty();
775 	if (tty) {
776 		tty_pgrp = get_pid(tty->pgrp);
777 		if (on_exit) {
778 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
779 				tty_vhangup(tty);
780 		}
781 		tty_kref_put(tty);
782 	} else if (on_exit) {
783 		struct pid *old_pgrp;
784 		spin_lock_irq(&current->sighand->siglock);
785 		old_pgrp = current->signal->tty_old_pgrp;
786 		current->signal->tty_old_pgrp = NULL;
787 		spin_unlock_irq(&current->sighand->siglock);
788 		if (old_pgrp) {
789 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
790 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
791 			put_pid(old_pgrp);
792 		}
793 		return;
794 	}
795 	if (tty_pgrp) {
796 		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
797 		if (!on_exit)
798 			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
799 		put_pid(tty_pgrp);
800 	}
801 
802 	spin_lock_irq(&current->sighand->siglock);
803 	put_pid(current->signal->tty_old_pgrp);
804 	current->signal->tty_old_pgrp = NULL;
805 	spin_unlock_irq(&current->sighand->siglock);
806 
807 	tty = get_current_tty();
808 	if (tty) {
809 		unsigned long flags;
810 		spin_lock_irqsave(&tty->ctrl_lock, flags);
811 		put_pid(tty->session);
812 		put_pid(tty->pgrp);
813 		tty->session = NULL;
814 		tty->pgrp = NULL;
815 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
816 		tty_kref_put(tty);
817 	} else {
818 #ifdef TTY_DEBUG_HANGUP
819 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
820 		       " = NULL", tty);
821 #endif
822 	}
823 
824 	/* Now clear signal->tty under the lock */
825 	read_lock(&tasklist_lock);
826 	session_clear_tty(task_session(current));
827 	read_unlock(&tasklist_lock);
828 }
829 
830 /**
831  *
832  *	no_tty	- Ensure the current process does not have a controlling tty
833  */
834 void no_tty(void)
835 {
836 	struct task_struct *tsk = current;
837 	tty_lock();
838 	disassociate_ctty(0);
839 	tty_unlock();
840 	proc_clear_tty(tsk);
841 }
842 
843 
844 /**
845  *	stop_tty	-	propagate flow control
846  *	@tty: tty to stop
847  *
848  *	Perform flow control to the driver. For PTY/TTY pairs we
849  *	must also propagate the TIOCKPKT status. May be called
850  *	on an already stopped device and will not re-call the driver
851  *	method.
852  *
853  *	This functionality is used by both the line disciplines for
854  *	halting incoming flow and by the driver. It may therefore be
855  *	called from any context, may be under the tty atomic_write_lock
856  *	but not always.
857  *
858  *	Locking:
859  *		Uses the tty control lock internally
860  */
861 
862 void stop_tty(struct tty_struct *tty)
863 {
864 	unsigned long flags;
865 	spin_lock_irqsave(&tty->ctrl_lock, flags);
866 	if (tty->stopped) {
867 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
868 		return;
869 	}
870 	tty->stopped = 1;
871 	if (tty->link && tty->link->packet) {
872 		tty->ctrl_status &= ~TIOCPKT_START;
873 		tty->ctrl_status |= TIOCPKT_STOP;
874 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
875 	}
876 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877 	if (tty->ops->stop)
878 		(tty->ops->stop)(tty);
879 }
880 
881 EXPORT_SYMBOL(stop_tty);
882 
883 /**
884  *	start_tty	-	propagate flow control
885  *	@tty: tty to start
886  *
887  *	Start a tty that has been stopped if at all possible. Perform
888  *	any necessary wakeups and propagate the TIOCPKT status. If this
889  *	is the tty was previous stopped and is being started then the
890  *	driver start method is invoked and the line discipline woken.
891  *
892  *	Locking:
893  *		ctrl_lock
894  */
895 
896 void start_tty(struct tty_struct *tty)
897 {
898 	unsigned long flags;
899 	spin_lock_irqsave(&tty->ctrl_lock, flags);
900 	if (!tty->stopped || tty->flow_stopped) {
901 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
902 		return;
903 	}
904 	tty->stopped = 0;
905 	if (tty->link && tty->link->packet) {
906 		tty->ctrl_status &= ~TIOCPKT_STOP;
907 		tty->ctrl_status |= TIOCPKT_START;
908 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
909 	}
910 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
911 	if (tty->ops->start)
912 		(tty->ops->start)(tty);
913 	/* If we have a running line discipline it may need kicking */
914 	tty_wakeup(tty);
915 }
916 
917 EXPORT_SYMBOL(start_tty);
918 
919 /**
920  *	tty_read	-	read method for tty device files
921  *	@file: pointer to tty file
922  *	@buf: user buffer
923  *	@count: size of user buffer
924  *	@ppos: unused
925  *
926  *	Perform the read system call function on this terminal device. Checks
927  *	for hung up devices before calling the line discipline method.
928  *
929  *	Locking:
930  *		Locks the line discipline internally while needed. Multiple
931  *	read calls may be outstanding in parallel.
932  */
933 
934 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
935 			loff_t *ppos)
936 {
937 	int i;
938 	struct inode *inode = file->f_path.dentry->d_inode;
939 	struct tty_struct *tty = file_tty(file);
940 	struct tty_ldisc *ld;
941 
942 	if (tty_paranoia_check(tty, inode, "tty_read"))
943 		return -EIO;
944 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
945 		return -EIO;
946 
947 	/* We want to wait for the line discipline to sort out in this
948 	   situation */
949 	ld = tty_ldisc_ref_wait(tty);
950 	if (ld->ops->read)
951 		i = (ld->ops->read)(tty, file, buf, count);
952 	else
953 		i = -EIO;
954 	tty_ldisc_deref(ld);
955 	if (i > 0)
956 		inode->i_atime = current_fs_time(inode->i_sb);
957 	return i;
958 }
959 
960 void tty_write_unlock(struct tty_struct *tty)
961 {
962 	mutex_unlock(&tty->atomic_write_lock);
963 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
964 }
965 
966 int tty_write_lock(struct tty_struct *tty, int ndelay)
967 {
968 	if (!mutex_trylock(&tty->atomic_write_lock)) {
969 		if (ndelay)
970 			return -EAGAIN;
971 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
972 			return -ERESTARTSYS;
973 	}
974 	return 0;
975 }
976 
977 /*
978  * Split writes up in sane blocksizes to avoid
979  * denial-of-service type attacks
980  */
981 static inline ssize_t do_tty_write(
982 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
983 	struct tty_struct *tty,
984 	struct file *file,
985 	const char __user *buf,
986 	size_t count)
987 {
988 	ssize_t ret, written = 0;
989 	unsigned int chunk;
990 
991 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
992 	if (ret < 0)
993 		return ret;
994 
995 	/*
996 	 * We chunk up writes into a temporary buffer. This
997 	 * simplifies low-level drivers immensely, since they
998 	 * don't have locking issues and user mode accesses.
999 	 *
1000 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1001 	 * big chunk-size..
1002 	 *
1003 	 * The default chunk-size is 2kB, because the NTTY
1004 	 * layer has problems with bigger chunks. It will
1005 	 * claim to be able to handle more characters than
1006 	 * it actually does.
1007 	 *
1008 	 * FIXME: This can probably go away now except that 64K chunks
1009 	 * are too likely to fail unless switched to vmalloc...
1010 	 */
1011 	chunk = 2048;
1012 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1013 		chunk = 65536;
1014 	if (count < chunk)
1015 		chunk = count;
1016 
1017 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1018 	if (tty->write_cnt < chunk) {
1019 		unsigned char *buf_chunk;
1020 
1021 		if (chunk < 1024)
1022 			chunk = 1024;
1023 
1024 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1025 		if (!buf_chunk) {
1026 			ret = -ENOMEM;
1027 			goto out;
1028 		}
1029 		kfree(tty->write_buf);
1030 		tty->write_cnt = chunk;
1031 		tty->write_buf = buf_chunk;
1032 	}
1033 
1034 	/* Do the write .. */
1035 	for (;;) {
1036 		size_t size = count;
1037 		if (size > chunk)
1038 			size = chunk;
1039 		ret = -EFAULT;
1040 		if (copy_from_user(tty->write_buf, buf, size))
1041 			break;
1042 		ret = write(tty, file, tty->write_buf, size);
1043 		if (ret <= 0)
1044 			break;
1045 		written += ret;
1046 		buf += ret;
1047 		count -= ret;
1048 		if (!count)
1049 			break;
1050 		ret = -ERESTARTSYS;
1051 		if (signal_pending(current))
1052 			break;
1053 		cond_resched();
1054 	}
1055 	if (written) {
1056 		struct inode *inode = file->f_path.dentry->d_inode;
1057 		inode->i_mtime = current_fs_time(inode->i_sb);
1058 		ret = written;
1059 	}
1060 out:
1061 	tty_write_unlock(tty);
1062 	return ret;
1063 }
1064 
1065 /**
1066  * tty_write_message - write a message to a certain tty, not just the console.
1067  * @tty: the destination tty_struct
1068  * @msg: the message to write
1069  *
1070  * This is used for messages that need to be redirected to a specific tty.
1071  * We don't put it into the syslog queue right now maybe in the future if
1072  * really needed.
1073  *
1074  * We must still hold the BTM and test the CLOSING flag for the moment.
1075  */
1076 
1077 void tty_write_message(struct tty_struct *tty, char *msg)
1078 {
1079 	if (tty) {
1080 		mutex_lock(&tty->atomic_write_lock);
1081 		tty_lock();
1082 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1083 			tty_unlock();
1084 			tty->ops->write(tty, msg, strlen(msg));
1085 		} else
1086 			tty_unlock();
1087 		tty_write_unlock(tty);
1088 	}
1089 	return;
1090 }
1091 
1092 
1093 /**
1094  *	tty_write		-	write method for tty device file
1095  *	@file: tty file pointer
1096  *	@buf: user data to write
1097  *	@count: bytes to write
1098  *	@ppos: unused
1099  *
1100  *	Write data to a tty device via the line discipline.
1101  *
1102  *	Locking:
1103  *		Locks the line discipline as required
1104  *		Writes to the tty driver are serialized by the atomic_write_lock
1105  *	and are then processed in chunks to the device. The line discipline
1106  *	write method will not be invoked in parallel for each device.
1107  */
1108 
1109 static ssize_t tty_write(struct file *file, const char __user *buf,
1110 						size_t count, loff_t *ppos)
1111 {
1112 	struct inode *inode = file->f_path.dentry->d_inode;
1113 	struct tty_struct *tty = file_tty(file);
1114  	struct tty_ldisc *ld;
1115 	ssize_t ret;
1116 
1117 	if (tty_paranoia_check(tty, inode, "tty_write"))
1118 		return -EIO;
1119 	if (!tty || !tty->ops->write ||
1120 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1121 			return -EIO;
1122 	/* Short term debug to catch buggy drivers */
1123 	if (tty->ops->write_room == NULL)
1124 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1125 			tty->driver->name);
1126 	ld = tty_ldisc_ref_wait(tty);
1127 	if (!ld->ops->write)
1128 		ret = -EIO;
1129 	else
1130 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1131 	tty_ldisc_deref(ld);
1132 	return ret;
1133 }
1134 
1135 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1136 						size_t count, loff_t *ppos)
1137 {
1138 	struct file *p = NULL;
1139 
1140 	spin_lock(&redirect_lock);
1141 	if (redirect) {
1142 		get_file(redirect);
1143 		p = redirect;
1144 	}
1145 	spin_unlock(&redirect_lock);
1146 
1147 	if (p) {
1148 		ssize_t res;
1149 		res = vfs_write(p, buf, count, &p->f_pos);
1150 		fput(p);
1151 		return res;
1152 	}
1153 	return tty_write(file, buf, count, ppos);
1154 }
1155 
1156 static char ptychar[] = "pqrstuvwxyzabcde";
1157 
1158 /**
1159  *	pty_line_name	-	generate name for a pty
1160  *	@driver: the tty driver in use
1161  *	@index: the minor number
1162  *	@p: output buffer of at least 6 bytes
1163  *
1164  *	Generate a name from a driver reference and write it to the output
1165  *	buffer.
1166  *
1167  *	Locking: None
1168  */
1169 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1170 {
1171 	int i = index + driver->name_base;
1172 	/* ->name is initialized to "ttyp", but "tty" is expected */
1173 	sprintf(p, "%s%c%x",
1174 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1175 		ptychar[i >> 4 & 0xf], i & 0xf);
1176 }
1177 
1178 /**
1179  *	tty_line_name	-	generate name for a tty
1180  *	@driver: the tty driver in use
1181  *	@index: the minor number
1182  *	@p: output buffer of at least 7 bytes
1183  *
1184  *	Generate a name from a driver reference and write it to the output
1185  *	buffer.
1186  *
1187  *	Locking: None
1188  */
1189 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1190 {
1191 	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1192 }
1193 
1194 /**
1195  *	tty_driver_lookup_tty() - find an existing tty, if any
1196  *	@driver: the driver for the tty
1197  *	@idx:	 the minor number
1198  *
1199  *	Return the tty, if found or ERR_PTR() otherwise.
1200  *
1201  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1202  *	be held until the 'fast-open' is also done. Will change once we
1203  *	have refcounting in the driver and per driver locking
1204  */
1205 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1206 		struct inode *inode, int idx)
1207 {
1208 	struct tty_struct *tty;
1209 
1210 	if (driver->ops->lookup)
1211 		return driver->ops->lookup(driver, inode, idx);
1212 
1213 	tty = driver->ttys[idx];
1214 	return tty;
1215 }
1216 
1217 /**
1218  *	tty_init_termios	-  helper for termios setup
1219  *	@tty: the tty to set up
1220  *
1221  *	Initialise the termios structures for this tty. Thus runs under
1222  *	the tty_mutex currently so we can be relaxed about ordering.
1223  */
1224 
1225 int tty_init_termios(struct tty_struct *tty)
1226 {
1227 	struct ktermios *tp;
1228 	int idx = tty->index;
1229 
1230 	tp = tty->driver->termios[idx];
1231 	if (tp == NULL) {
1232 		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1233 		if (tp == NULL)
1234 			return -ENOMEM;
1235 		memcpy(tp, &tty->driver->init_termios,
1236 						sizeof(struct ktermios));
1237 		tty->driver->termios[idx] = tp;
1238 	}
1239 	tty->termios = tp;
1240 	tty->termios_locked = tp + 1;
1241 
1242 	/* Compatibility until drivers always set this */
1243 	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1244 	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(tty_init_termios);
1248 
1249 /**
1250  *	tty_driver_install_tty() - install a tty entry in the driver
1251  *	@driver: the driver for the tty
1252  *	@tty: the tty
1253  *
1254  *	Install a tty object into the driver tables. The tty->index field
1255  *	will be set by the time this is called. This method is responsible
1256  *	for ensuring any need additional structures are allocated and
1257  *	configured.
1258  *
1259  *	Locking: tty_mutex for now
1260  */
1261 static int tty_driver_install_tty(struct tty_driver *driver,
1262 						struct tty_struct *tty)
1263 {
1264 	int idx = tty->index;
1265 	int ret;
1266 
1267 	if (driver->ops->install) {
1268 		ret = driver->ops->install(driver, tty);
1269 		return ret;
1270 	}
1271 
1272 	if (tty_init_termios(tty) == 0) {
1273 		tty_driver_kref_get(driver);
1274 		tty->count++;
1275 		driver->ttys[idx] = tty;
1276 		return 0;
1277 	}
1278 	return -ENOMEM;
1279 }
1280 
1281 /**
1282  *	tty_driver_remove_tty() - remove a tty from the driver tables
1283  *	@driver: the driver for the tty
1284  *	@idx:	 the minor number
1285  *
1286  *	Remvoe a tty object from the driver tables. The tty->index field
1287  *	will be set by the time this is called.
1288  *
1289  *	Locking: tty_mutex for now
1290  */
1291 static void tty_driver_remove_tty(struct tty_driver *driver,
1292 						struct tty_struct *tty)
1293 {
1294 	if (driver->ops->remove)
1295 		driver->ops->remove(driver, tty);
1296 	else
1297 		driver->ttys[tty->index] = NULL;
1298 }
1299 
1300 /*
1301  * 	tty_reopen()	- fast re-open of an open tty
1302  * 	@tty	- the tty to open
1303  *
1304  *	Return 0 on success, -errno on error.
1305  *
1306  *	Locking: tty_mutex must be held from the time the tty was found
1307  *		 till this open completes.
1308  */
1309 static int tty_reopen(struct tty_struct *tty)
1310 {
1311 	struct tty_driver *driver = tty->driver;
1312 
1313 	if (test_bit(TTY_CLOSING, &tty->flags))
1314 		return -EIO;
1315 
1316 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1317 	    driver->subtype == PTY_TYPE_MASTER) {
1318 		/*
1319 		 * special case for PTY masters: only one open permitted,
1320 		 * and the slave side open count is incremented as well.
1321 		 */
1322 		if (tty->count)
1323 			return -EIO;
1324 
1325 		tty->link->count++;
1326 	}
1327 	tty->count++;
1328 	tty->driver = driver; /* N.B. why do this every time?? */
1329 
1330 	mutex_lock(&tty->ldisc_mutex);
1331 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1332 	mutex_unlock(&tty->ldisc_mutex);
1333 
1334 	return 0;
1335 }
1336 
1337 /**
1338  *	tty_init_dev		-	initialise a tty device
1339  *	@driver: tty driver we are opening a device on
1340  *	@idx: device index
1341  *	@ret_tty: returned tty structure
1342  *	@first_ok: ok to open a new device (used by ptmx)
1343  *
1344  *	Prepare a tty device. This may not be a "new" clean device but
1345  *	could also be an active device. The pty drivers require special
1346  *	handling because of this.
1347  *
1348  *	Locking:
1349  *		The function is called under the tty_mutex, which
1350  *	protects us from the tty struct or driver itself going away.
1351  *
1352  *	On exit the tty device has the line discipline attached and
1353  *	a reference count of 1. If a pair was created for pty/tty use
1354  *	and the other was a pty master then it too has a reference count of 1.
1355  *
1356  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1357  * failed open.  The new code protects the open with a mutex, so it's
1358  * really quite straightforward.  The mutex locking can probably be
1359  * relaxed for the (most common) case of reopening a tty.
1360  */
1361 
1362 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1363 								int first_ok)
1364 {
1365 	struct tty_struct *tty;
1366 	int retval;
1367 
1368 	/* Check if pty master is being opened multiple times */
1369 	if (driver->subtype == PTY_TYPE_MASTER &&
1370 		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1371 		return ERR_PTR(-EIO);
1372 	}
1373 
1374 	/*
1375 	 * First time open is complex, especially for PTY devices.
1376 	 * This code guarantees that either everything succeeds and the
1377 	 * TTY is ready for operation, or else the table slots are vacated
1378 	 * and the allocated memory released.  (Except that the termios
1379 	 * and locked termios may be retained.)
1380 	 */
1381 
1382 	if (!try_module_get(driver->owner))
1383 		return ERR_PTR(-ENODEV);
1384 
1385 	tty = alloc_tty_struct();
1386 	if (!tty)
1387 		goto fail_no_mem;
1388 	initialize_tty_struct(tty, driver, idx);
1389 
1390 	retval = tty_driver_install_tty(driver, tty);
1391 	if (retval < 0) {
1392 		free_tty_struct(tty);
1393 		module_put(driver->owner);
1394 		return ERR_PTR(retval);
1395 	}
1396 
1397 	/*
1398 	 * Structures all installed ... call the ldisc open routines.
1399 	 * If we fail here just call release_tty to clean up.  No need
1400 	 * to decrement the use counts, as release_tty doesn't care.
1401 	 */
1402 	retval = tty_ldisc_setup(tty, tty->link);
1403 	if (retval)
1404 		goto release_mem_out;
1405 	return tty;
1406 
1407 fail_no_mem:
1408 	module_put(driver->owner);
1409 	return ERR_PTR(-ENOMEM);
1410 
1411 	/* call the tty release_tty routine to clean out this slot */
1412 release_mem_out:
1413 	if (printk_ratelimit())
1414 		printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1415 				 "clearing slot %d\n", idx);
1416 	release_tty(tty, idx);
1417 	return ERR_PTR(retval);
1418 }
1419 
1420 void tty_free_termios(struct tty_struct *tty)
1421 {
1422 	struct ktermios *tp;
1423 	int idx = tty->index;
1424 	/* Kill this flag and push into drivers for locking etc */
1425 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1426 		/* FIXME: Locking on ->termios array */
1427 		tp = tty->termios;
1428 		tty->driver->termios[idx] = NULL;
1429 		kfree(tp);
1430 	}
1431 }
1432 EXPORT_SYMBOL(tty_free_termios);
1433 
1434 void tty_shutdown(struct tty_struct *tty)
1435 {
1436 	tty_driver_remove_tty(tty->driver, tty);
1437 	tty_free_termios(tty);
1438 }
1439 EXPORT_SYMBOL(tty_shutdown);
1440 
1441 /**
1442  *	release_one_tty		-	release tty structure memory
1443  *	@kref: kref of tty we are obliterating
1444  *
1445  *	Releases memory associated with a tty structure, and clears out the
1446  *	driver table slots. This function is called when a device is no longer
1447  *	in use. It also gets called when setup of a device fails.
1448  *
1449  *	Locking:
1450  *		tty_mutex - sometimes only
1451  *		takes the file list lock internally when working on the list
1452  *	of ttys that the driver keeps.
1453  *
1454  *	This method gets called from a work queue so that the driver private
1455  *	cleanup ops can sleep (needed for USB at least)
1456  */
1457 static void release_one_tty(struct work_struct *work)
1458 {
1459 	struct tty_struct *tty =
1460 		container_of(work, struct tty_struct, hangup_work);
1461 	struct tty_driver *driver = tty->driver;
1462 
1463 	if (tty->ops->cleanup)
1464 		tty->ops->cleanup(tty);
1465 
1466 	tty->magic = 0;
1467 	tty_driver_kref_put(driver);
1468 	module_put(driver->owner);
1469 
1470 	spin_lock(&tty_files_lock);
1471 	list_del_init(&tty->tty_files);
1472 	spin_unlock(&tty_files_lock);
1473 
1474 	put_pid(tty->pgrp);
1475 	put_pid(tty->session);
1476 	free_tty_struct(tty);
1477 }
1478 
1479 static void queue_release_one_tty(struct kref *kref)
1480 {
1481 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1482 
1483 	if (tty->ops->shutdown)
1484 		tty->ops->shutdown(tty);
1485 	else
1486 		tty_shutdown(tty);
1487 
1488 	/* The hangup queue is now free so we can reuse it rather than
1489 	   waste a chunk of memory for each port */
1490 	INIT_WORK(&tty->hangup_work, release_one_tty);
1491 	schedule_work(&tty->hangup_work);
1492 }
1493 
1494 /**
1495  *	tty_kref_put		-	release a tty kref
1496  *	@tty: tty device
1497  *
1498  *	Release a reference to a tty device and if need be let the kref
1499  *	layer destruct the object for us
1500  */
1501 
1502 void tty_kref_put(struct tty_struct *tty)
1503 {
1504 	if (tty)
1505 		kref_put(&tty->kref, queue_release_one_tty);
1506 }
1507 EXPORT_SYMBOL(tty_kref_put);
1508 
1509 /**
1510  *	release_tty		-	release tty structure memory
1511  *
1512  *	Release both @tty and a possible linked partner (think pty pair),
1513  *	and decrement the refcount of the backing module.
1514  *
1515  *	Locking:
1516  *		tty_mutex - sometimes only
1517  *		takes the file list lock internally when working on the list
1518  *	of ttys that the driver keeps.
1519  *		FIXME: should we require tty_mutex is held here ??
1520  *
1521  */
1522 static void release_tty(struct tty_struct *tty, int idx)
1523 {
1524 	/* This should always be true but check for the moment */
1525 	WARN_ON(tty->index != idx);
1526 
1527 	if (tty->link)
1528 		tty_kref_put(tty->link);
1529 	tty_kref_put(tty);
1530 }
1531 
1532 /**
1533  *	tty_release		-	vfs callback for close
1534  *	@inode: inode of tty
1535  *	@filp: file pointer for handle to tty
1536  *
1537  *	Called the last time each file handle is closed that references
1538  *	this tty. There may however be several such references.
1539  *
1540  *	Locking:
1541  *		Takes bkl. See tty_release_dev
1542  *
1543  * Even releasing the tty structures is a tricky business.. We have
1544  * to be very careful that the structures are all released at the
1545  * same time, as interrupts might otherwise get the wrong pointers.
1546  *
1547  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1548  * lead to double frees or releasing memory still in use.
1549  */
1550 
1551 int tty_release(struct inode *inode, struct file *filp)
1552 {
1553 	struct tty_struct *tty = file_tty(filp);
1554 	struct tty_struct *o_tty;
1555 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1556 	int	devpts;
1557 	int	idx;
1558 	char	buf[64];
1559 
1560 	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1561 		return 0;
1562 
1563 	tty_lock();
1564 	check_tty_count(tty, "tty_release_dev");
1565 
1566 	__tty_fasync(-1, filp, 0);
1567 
1568 	idx = tty->index;
1569 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1570 		      tty->driver->subtype == PTY_TYPE_MASTER);
1571 	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1572 	o_tty = tty->link;
1573 
1574 #ifdef TTY_PARANOIA_CHECK
1575 	if (idx < 0 || idx >= tty->driver->num) {
1576 		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1577 				  "free (%s)\n", tty->name);
1578 		tty_unlock();
1579 		return 0;
1580 	}
1581 	if (!devpts) {
1582 		if (tty != tty->driver->ttys[idx]) {
1583 			tty_unlock();
1584 			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1585 			       "for (%s)\n", idx, tty->name);
1586 			return 0;
1587 		}
1588 		if (tty->termios != tty->driver->termios[idx]) {
1589 			tty_unlock();
1590 			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1591 			       "for (%s)\n",
1592 			       idx, tty->name);
1593 			return 0;
1594 		}
1595 	}
1596 #endif
1597 
1598 #ifdef TTY_DEBUG_HANGUP
1599 	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1600 	       tty_name(tty, buf), tty->count);
1601 #endif
1602 
1603 #ifdef TTY_PARANOIA_CHECK
1604 	if (tty->driver->other &&
1605 	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1606 		if (o_tty != tty->driver->other->ttys[idx]) {
1607 			tty_unlock();
1608 			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1609 					  "not o_tty for (%s)\n",
1610 			       idx, tty->name);
1611 			return 0 ;
1612 		}
1613 		if (o_tty->termios != tty->driver->other->termios[idx]) {
1614 			tty_unlock();
1615 			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1616 					  "not o_termios for (%s)\n",
1617 			       idx, tty->name);
1618 			return 0;
1619 		}
1620 		if (o_tty->link != tty) {
1621 			tty_unlock();
1622 			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1623 			return 0;
1624 		}
1625 	}
1626 #endif
1627 	if (tty->ops->close)
1628 		tty->ops->close(tty, filp);
1629 
1630 	tty_unlock();
1631 	/*
1632 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1633 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1634 	 * wait queues and kick everyone out _before_ actually starting to
1635 	 * close.  This ensures that we won't block while releasing the tty
1636 	 * structure.
1637 	 *
1638 	 * The test for the o_tty closing is necessary, since the master and
1639 	 * slave sides may close in any order.  If the slave side closes out
1640 	 * first, its count will be one, since the master side holds an open.
1641 	 * Thus this test wouldn't be triggered at the time the slave closes,
1642 	 * so we do it now.
1643 	 *
1644 	 * Note that it's possible for the tty to be opened again while we're
1645 	 * flushing out waiters.  By recalculating the closing flags before
1646 	 * each iteration we avoid any problems.
1647 	 */
1648 	while (1) {
1649 		/* Guard against races with tty->count changes elsewhere and
1650 		   opens on /dev/tty */
1651 
1652 		mutex_lock(&tty_mutex);
1653 		tty_lock();
1654 		tty_closing = tty->count <= 1;
1655 		o_tty_closing = o_tty &&
1656 			(o_tty->count <= (pty_master ? 1 : 0));
1657 		do_sleep = 0;
1658 
1659 		if (tty_closing) {
1660 			if (waitqueue_active(&tty->read_wait)) {
1661 				wake_up_poll(&tty->read_wait, POLLIN);
1662 				do_sleep++;
1663 			}
1664 			if (waitqueue_active(&tty->write_wait)) {
1665 				wake_up_poll(&tty->write_wait, POLLOUT);
1666 				do_sleep++;
1667 			}
1668 		}
1669 		if (o_tty_closing) {
1670 			if (waitqueue_active(&o_tty->read_wait)) {
1671 				wake_up_poll(&o_tty->read_wait, POLLIN);
1672 				do_sleep++;
1673 			}
1674 			if (waitqueue_active(&o_tty->write_wait)) {
1675 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1676 				do_sleep++;
1677 			}
1678 		}
1679 		if (!do_sleep)
1680 			break;
1681 
1682 		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1683 				    "active!\n", tty_name(tty, buf));
1684 		tty_unlock();
1685 		mutex_unlock(&tty_mutex);
1686 		schedule();
1687 	}
1688 
1689 	/*
1690 	 * The closing flags are now consistent with the open counts on
1691 	 * both sides, and we've completed the last operation that could
1692 	 * block, so it's safe to proceed with closing.
1693 	 */
1694 	if (pty_master) {
1695 		if (--o_tty->count < 0) {
1696 			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1697 					    "(%d) for %s\n",
1698 			       o_tty->count, tty_name(o_tty, buf));
1699 			o_tty->count = 0;
1700 		}
1701 	}
1702 	if (--tty->count < 0) {
1703 		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1704 		       tty->count, tty_name(tty, buf));
1705 		tty->count = 0;
1706 	}
1707 
1708 	/*
1709 	 * We've decremented tty->count, so we need to remove this file
1710 	 * descriptor off the tty->tty_files list; this serves two
1711 	 * purposes:
1712 	 *  - check_tty_count sees the correct number of file descriptors
1713 	 *    associated with this tty.
1714 	 *  - do_tty_hangup no longer sees this file descriptor as
1715 	 *    something that needs to be handled for hangups.
1716 	 */
1717 	tty_del_file(filp);
1718 
1719 	/*
1720 	 * Perform some housekeeping before deciding whether to return.
1721 	 *
1722 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1723 	 * case of a pty we may have to wait around for the other side
1724 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1725 	 */
1726 	if (tty_closing)
1727 		set_bit(TTY_CLOSING, &tty->flags);
1728 	if (o_tty_closing)
1729 		set_bit(TTY_CLOSING, &o_tty->flags);
1730 
1731 	/*
1732 	 * If _either_ side is closing, make sure there aren't any
1733 	 * processes that still think tty or o_tty is their controlling
1734 	 * tty.
1735 	 */
1736 	if (tty_closing || o_tty_closing) {
1737 		read_lock(&tasklist_lock);
1738 		session_clear_tty(tty->session);
1739 		if (o_tty)
1740 			session_clear_tty(o_tty->session);
1741 		read_unlock(&tasklist_lock);
1742 	}
1743 
1744 	mutex_unlock(&tty_mutex);
1745 
1746 	/* check whether both sides are closing ... */
1747 	if (!tty_closing || (o_tty && !o_tty_closing)) {
1748 		tty_unlock();
1749 		return 0;
1750 	}
1751 
1752 #ifdef TTY_DEBUG_HANGUP
1753 	printk(KERN_DEBUG "freeing tty structure...");
1754 #endif
1755 	/*
1756 	 * Ask the line discipline code to release its structures
1757 	 */
1758 	tty_ldisc_release(tty, o_tty);
1759 	/*
1760 	 * The release_tty function takes care of the details of clearing
1761 	 * the slots and preserving the termios structure.
1762 	 */
1763 	release_tty(tty, idx);
1764 
1765 	/* Make this pty number available for reallocation */
1766 	if (devpts)
1767 		devpts_kill_index(inode, idx);
1768 	tty_unlock();
1769 	return 0;
1770 }
1771 
1772 /**
1773  *	tty_open		-	open a tty device
1774  *	@inode: inode of device file
1775  *	@filp: file pointer to tty
1776  *
1777  *	tty_open and tty_release keep up the tty count that contains the
1778  *	number of opens done on a tty. We cannot use the inode-count, as
1779  *	different inodes might point to the same tty.
1780  *
1781  *	Open-counting is needed for pty masters, as well as for keeping
1782  *	track of serial lines: DTR is dropped when the last close happens.
1783  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1784  *
1785  *	The termios state of a pty is reset on first open so that
1786  *	settings don't persist across reuse.
1787  *
1788  *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1789  *		 tty->count should protect the rest.
1790  *		 ->siglock protects ->signal/->sighand
1791  */
1792 
1793 static int tty_open(struct inode *inode, struct file *filp)
1794 {
1795 	struct tty_struct *tty = NULL;
1796 	int noctty, retval;
1797 	struct tty_driver *driver;
1798 	int index;
1799 	dev_t device = inode->i_rdev;
1800 	unsigned saved_flags = filp->f_flags;
1801 
1802 	nonseekable_open(inode, filp);
1803 
1804 retry_open:
1805 	noctty = filp->f_flags & O_NOCTTY;
1806 	index  = -1;
1807 	retval = 0;
1808 
1809 	mutex_lock(&tty_mutex);
1810 	tty_lock();
1811 
1812 	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1813 		tty = get_current_tty();
1814 		if (!tty) {
1815 			tty_unlock();
1816 			mutex_unlock(&tty_mutex);
1817 			return -ENXIO;
1818 		}
1819 		driver = tty_driver_kref_get(tty->driver);
1820 		index = tty->index;
1821 		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1822 		/* noctty = 1; */
1823 		/* FIXME: Should we take a driver reference ? */
1824 		tty_kref_put(tty);
1825 		goto got_driver;
1826 	}
1827 #ifdef CONFIG_VT
1828 	if (device == MKDEV(TTY_MAJOR, 0)) {
1829 		extern struct tty_driver *console_driver;
1830 		driver = tty_driver_kref_get(console_driver);
1831 		index = fg_console;
1832 		noctty = 1;
1833 		goto got_driver;
1834 	}
1835 #endif
1836 	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1837 		struct tty_driver *console_driver = console_device(&index);
1838 		if (console_driver) {
1839 			driver = tty_driver_kref_get(console_driver);
1840 			if (driver) {
1841 				/* Don't let /dev/console block */
1842 				filp->f_flags |= O_NONBLOCK;
1843 				noctty = 1;
1844 				goto got_driver;
1845 			}
1846 		}
1847 		tty_unlock();
1848 		mutex_unlock(&tty_mutex);
1849 		return -ENODEV;
1850 	}
1851 
1852 	driver = get_tty_driver(device, &index);
1853 	if (!driver) {
1854 		tty_unlock();
1855 		mutex_unlock(&tty_mutex);
1856 		return -ENODEV;
1857 	}
1858 got_driver:
1859 	if (!tty) {
1860 		/* check whether we're reopening an existing tty */
1861 		tty = tty_driver_lookup_tty(driver, inode, index);
1862 
1863 		if (IS_ERR(tty)) {
1864 			tty_unlock();
1865 			mutex_unlock(&tty_mutex);
1866 			return PTR_ERR(tty);
1867 		}
1868 	}
1869 
1870 	if (tty) {
1871 		retval = tty_reopen(tty);
1872 		if (retval)
1873 			tty = ERR_PTR(retval);
1874 	} else
1875 		tty = tty_init_dev(driver, index, 0);
1876 
1877 	mutex_unlock(&tty_mutex);
1878 	tty_driver_kref_put(driver);
1879 	if (IS_ERR(tty)) {
1880 		tty_unlock();
1881 		return PTR_ERR(tty);
1882 	}
1883 
1884 	retval = tty_add_file(tty, filp);
1885 	if (retval) {
1886 		tty_unlock();
1887 		return retval;
1888 	}
1889 
1890 	check_tty_count(tty, "tty_open");
1891 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1892 	    tty->driver->subtype == PTY_TYPE_MASTER)
1893 		noctty = 1;
1894 #ifdef TTY_DEBUG_HANGUP
1895 	printk(KERN_DEBUG "opening %s...", tty->name);
1896 #endif
1897 	if (!retval) {
1898 		if (tty->ops->open)
1899 			retval = tty->ops->open(tty, filp);
1900 		else
1901 			retval = -ENODEV;
1902 	}
1903 	filp->f_flags = saved_flags;
1904 
1905 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1906 						!capable(CAP_SYS_ADMIN))
1907 		retval = -EBUSY;
1908 
1909 	if (retval) {
1910 #ifdef TTY_DEBUG_HANGUP
1911 		printk(KERN_DEBUG "error %d in opening %s...", retval,
1912 		       tty->name);
1913 #endif
1914 		tty_unlock(); /* need to call tty_release without BTM */
1915 		tty_release(inode, filp);
1916 		if (retval != -ERESTARTSYS)
1917 			return retval;
1918 
1919 		if (signal_pending(current))
1920 			return retval;
1921 
1922 		schedule();
1923 		/*
1924 		 * Need to reset f_op in case a hangup happened.
1925 		 */
1926 		tty_lock();
1927 		if (filp->f_op == &hung_up_tty_fops)
1928 			filp->f_op = &tty_fops;
1929 		tty_unlock();
1930 		goto retry_open;
1931 	}
1932 	tty_unlock();
1933 
1934 
1935 	mutex_lock(&tty_mutex);
1936 	tty_lock();
1937 	spin_lock_irq(&current->sighand->siglock);
1938 	if (!noctty &&
1939 	    current->signal->leader &&
1940 	    !current->signal->tty &&
1941 	    tty->session == NULL)
1942 		__proc_set_tty(current, tty);
1943 	spin_unlock_irq(&current->sighand->siglock);
1944 	tty_unlock();
1945 	mutex_unlock(&tty_mutex);
1946 	return 0;
1947 }
1948 
1949 
1950 
1951 /**
1952  *	tty_poll	-	check tty status
1953  *	@filp: file being polled
1954  *	@wait: poll wait structures to update
1955  *
1956  *	Call the line discipline polling method to obtain the poll
1957  *	status of the device.
1958  *
1959  *	Locking: locks called line discipline but ldisc poll method
1960  *	may be re-entered freely by other callers.
1961  */
1962 
1963 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1964 {
1965 	struct tty_struct *tty = file_tty(filp);
1966 	struct tty_ldisc *ld;
1967 	int ret = 0;
1968 
1969 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1970 		return 0;
1971 
1972 	ld = tty_ldisc_ref_wait(tty);
1973 	if (ld->ops->poll)
1974 		ret = (ld->ops->poll)(tty, filp, wait);
1975 	tty_ldisc_deref(ld);
1976 	return ret;
1977 }
1978 
1979 static int __tty_fasync(int fd, struct file *filp, int on)
1980 {
1981 	struct tty_struct *tty = file_tty(filp);
1982 	unsigned long flags;
1983 	int retval = 0;
1984 
1985 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1986 		goto out;
1987 
1988 	retval = fasync_helper(fd, filp, on, &tty->fasync);
1989 	if (retval <= 0)
1990 		goto out;
1991 
1992 	if (on) {
1993 		enum pid_type type;
1994 		struct pid *pid;
1995 		if (!waitqueue_active(&tty->read_wait))
1996 			tty->minimum_to_wake = 1;
1997 		spin_lock_irqsave(&tty->ctrl_lock, flags);
1998 		if (tty->pgrp) {
1999 			pid = tty->pgrp;
2000 			type = PIDTYPE_PGID;
2001 		} else {
2002 			pid = task_pid(current);
2003 			type = PIDTYPE_PID;
2004 		}
2005 		get_pid(pid);
2006 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2007 		retval = __f_setown(filp, pid, type, 0);
2008 		put_pid(pid);
2009 		if (retval)
2010 			goto out;
2011 	} else {
2012 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2013 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2014 	}
2015 	retval = 0;
2016 out:
2017 	return retval;
2018 }
2019 
2020 static int tty_fasync(int fd, struct file *filp, int on)
2021 {
2022 	int retval;
2023 	tty_lock();
2024 	retval = __tty_fasync(fd, filp, on);
2025 	tty_unlock();
2026 	return retval;
2027 }
2028 
2029 /**
2030  *	tiocsti			-	fake input character
2031  *	@tty: tty to fake input into
2032  *	@p: pointer to character
2033  *
2034  *	Fake input to a tty device. Does the necessary locking and
2035  *	input management.
2036  *
2037  *	FIXME: does not honour flow control ??
2038  *
2039  *	Locking:
2040  *		Called functions take tty_ldisc_lock
2041  *		current->signal->tty check is safe without locks
2042  *
2043  *	FIXME: may race normal receive processing
2044  */
2045 
2046 static int tiocsti(struct tty_struct *tty, char __user *p)
2047 {
2048 	char ch, mbz = 0;
2049 	struct tty_ldisc *ld;
2050 
2051 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2052 		return -EPERM;
2053 	if (get_user(ch, p))
2054 		return -EFAULT;
2055 	tty_audit_tiocsti(tty, ch);
2056 	ld = tty_ldisc_ref_wait(tty);
2057 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2058 	tty_ldisc_deref(ld);
2059 	return 0;
2060 }
2061 
2062 /**
2063  *	tiocgwinsz		-	implement window query ioctl
2064  *	@tty; tty
2065  *	@arg: user buffer for result
2066  *
2067  *	Copies the kernel idea of the window size into the user buffer.
2068  *
2069  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2070  *		is consistent.
2071  */
2072 
2073 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2074 {
2075 	int err;
2076 
2077 	mutex_lock(&tty->termios_mutex);
2078 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2079 	mutex_unlock(&tty->termios_mutex);
2080 
2081 	return err ? -EFAULT: 0;
2082 }
2083 
2084 /**
2085  *	tty_do_resize		-	resize event
2086  *	@tty: tty being resized
2087  *	@rows: rows (character)
2088  *	@cols: cols (character)
2089  *
2090  *	Update the termios variables and send the necessary signals to
2091  *	peform a terminal resize correctly
2092  */
2093 
2094 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2095 {
2096 	struct pid *pgrp;
2097 	unsigned long flags;
2098 
2099 	/* Lock the tty */
2100 	mutex_lock(&tty->termios_mutex);
2101 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2102 		goto done;
2103 	/* Get the PID values and reference them so we can
2104 	   avoid holding the tty ctrl lock while sending signals */
2105 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2106 	pgrp = get_pid(tty->pgrp);
2107 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2108 
2109 	if (pgrp)
2110 		kill_pgrp(pgrp, SIGWINCH, 1);
2111 	put_pid(pgrp);
2112 
2113 	tty->winsize = *ws;
2114 done:
2115 	mutex_unlock(&tty->termios_mutex);
2116 	return 0;
2117 }
2118 
2119 /**
2120  *	tiocswinsz		-	implement window size set ioctl
2121  *	@tty; tty side of tty
2122  *	@arg: user buffer for result
2123  *
2124  *	Copies the user idea of the window size to the kernel. Traditionally
2125  *	this is just advisory information but for the Linux console it
2126  *	actually has driver level meaning and triggers a VC resize.
2127  *
2128  *	Locking:
2129  *		Driver dependant. The default do_resize method takes the
2130  *	tty termios mutex and ctrl_lock. The console takes its own lock
2131  *	then calls into the default method.
2132  */
2133 
2134 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2135 {
2136 	struct winsize tmp_ws;
2137 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2138 		return -EFAULT;
2139 
2140 	if (tty->ops->resize)
2141 		return tty->ops->resize(tty, &tmp_ws);
2142 	else
2143 		return tty_do_resize(tty, &tmp_ws);
2144 }
2145 
2146 /**
2147  *	tioccons	-	allow admin to move logical console
2148  *	@file: the file to become console
2149  *
2150  *	Allow the adminstrator to move the redirected console device
2151  *
2152  *	Locking: uses redirect_lock to guard the redirect information
2153  */
2154 
2155 static int tioccons(struct file *file)
2156 {
2157 	if (!capable(CAP_SYS_ADMIN))
2158 		return -EPERM;
2159 	if (file->f_op->write == redirected_tty_write) {
2160 		struct file *f;
2161 		spin_lock(&redirect_lock);
2162 		f = redirect;
2163 		redirect = NULL;
2164 		spin_unlock(&redirect_lock);
2165 		if (f)
2166 			fput(f);
2167 		return 0;
2168 	}
2169 	spin_lock(&redirect_lock);
2170 	if (redirect) {
2171 		spin_unlock(&redirect_lock);
2172 		return -EBUSY;
2173 	}
2174 	get_file(file);
2175 	redirect = file;
2176 	spin_unlock(&redirect_lock);
2177 	return 0;
2178 }
2179 
2180 /**
2181  *	fionbio		-	non blocking ioctl
2182  *	@file: file to set blocking value
2183  *	@p: user parameter
2184  *
2185  *	Historical tty interfaces had a blocking control ioctl before
2186  *	the generic functionality existed. This piece of history is preserved
2187  *	in the expected tty API of posix OS's.
2188  *
2189  *	Locking: none, the open file handle ensures it won't go away.
2190  */
2191 
2192 static int fionbio(struct file *file, int __user *p)
2193 {
2194 	int nonblock;
2195 
2196 	if (get_user(nonblock, p))
2197 		return -EFAULT;
2198 
2199 	spin_lock(&file->f_lock);
2200 	if (nonblock)
2201 		file->f_flags |= O_NONBLOCK;
2202 	else
2203 		file->f_flags &= ~O_NONBLOCK;
2204 	spin_unlock(&file->f_lock);
2205 	return 0;
2206 }
2207 
2208 /**
2209  *	tiocsctty	-	set controlling tty
2210  *	@tty: tty structure
2211  *	@arg: user argument
2212  *
2213  *	This ioctl is used to manage job control. It permits a session
2214  *	leader to set this tty as the controlling tty for the session.
2215  *
2216  *	Locking:
2217  *		Takes tty_mutex() to protect tty instance
2218  *		Takes tasklist_lock internally to walk sessions
2219  *		Takes ->siglock() when updating signal->tty
2220  */
2221 
2222 static int tiocsctty(struct tty_struct *tty, int arg)
2223 {
2224 	int ret = 0;
2225 	if (current->signal->leader && (task_session(current) == tty->session))
2226 		return ret;
2227 
2228 	mutex_lock(&tty_mutex);
2229 	/*
2230 	 * The process must be a session leader and
2231 	 * not have a controlling tty already.
2232 	 */
2233 	if (!current->signal->leader || current->signal->tty) {
2234 		ret = -EPERM;
2235 		goto unlock;
2236 	}
2237 
2238 	if (tty->session) {
2239 		/*
2240 		 * This tty is already the controlling
2241 		 * tty for another session group!
2242 		 */
2243 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2244 			/*
2245 			 * Steal it away
2246 			 */
2247 			read_lock(&tasklist_lock);
2248 			session_clear_tty(tty->session);
2249 			read_unlock(&tasklist_lock);
2250 		} else {
2251 			ret = -EPERM;
2252 			goto unlock;
2253 		}
2254 	}
2255 	proc_set_tty(current, tty);
2256 unlock:
2257 	mutex_unlock(&tty_mutex);
2258 	return ret;
2259 }
2260 
2261 /**
2262  *	tty_get_pgrp	-	return a ref counted pgrp pid
2263  *	@tty: tty to read
2264  *
2265  *	Returns a refcounted instance of the pid struct for the process
2266  *	group controlling the tty.
2267  */
2268 
2269 struct pid *tty_get_pgrp(struct tty_struct *tty)
2270 {
2271 	unsigned long flags;
2272 	struct pid *pgrp;
2273 
2274 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2275 	pgrp = get_pid(tty->pgrp);
2276 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2277 
2278 	return pgrp;
2279 }
2280 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2281 
2282 /**
2283  *	tiocgpgrp		-	get process group
2284  *	@tty: tty passed by user
2285  *	@real_tty: tty side of the tty pased by the user if a pty else the tty
2286  *	@p: returned pid
2287  *
2288  *	Obtain the process group of the tty. If there is no process group
2289  *	return an error.
2290  *
2291  *	Locking: none. Reference to current->signal->tty is safe.
2292  */
2293 
2294 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2295 {
2296 	struct pid *pid;
2297 	int ret;
2298 	/*
2299 	 * (tty == real_tty) is a cheap way of
2300 	 * testing if the tty is NOT a master pty.
2301 	 */
2302 	if (tty == real_tty && current->signal->tty != real_tty)
2303 		return -ENOTTY;
2304 	pid = tty_get_pgrp(real_tty);
2305 	ret =  put_user(pid_vnr(pid), p);
2306 	put_pid(pid);
2307 	return ret;
2308 }
2309 
2310 /**
2311  *	tiocspgrp		-	attempt to set process group
2312  *	@tty: tty passed by user
2313  *	@real_tty: tty side device matching tty passed by user
2314  *	@p: pid pointer
2315  *
2316  *	Set the process group of the tty to the session passed. Only
2317  *	permitted where the tty session is our session.
2318  *
2319  *	Locking: RCU, ctrl lock
2320  */
2321 
2322 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2323 {
2324 	struct pid *pgrp;
2325 	pid_t pgrp_nr;
2326 	int retval = tty_check_change(real_tty);
2327 	unsigned long flags;
2328 
2329 	if (retval == -EIO)
2330 		return -ENOTTY;
2331 	if (retval)
2332 		return retval;
2333 	if (!current->signal->tty ||
2334 	    (current->signal->tty != real_tty) ||
2335 	    (real_tty->session != task_session(current)))
2336 		return -ENOTTY;
2337 	if (get_user(pgrp_nr, p))
2338 		return -EFAULT;
2339 	if (pgrp_nr < 0)
2340 		return -EINVAL;
2341 	rcu_read_lock();
2342 	pgrp = find_vpid(pgrp_nr);
2343 	retval = -ESRCH;
2344 	if (!pgrp)
2345 		goto out_unlock;
2346 	retval = -EPERM;
2347 	if (session_of_pgrp(pgrp) != task_session(current))
2348 		goto out_unlock;
2349 	retval = 0;
2350 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2351 	put_pid(real_tty->pgrp);
2352 	real_tty->pgrp = get_pid(pgrp);
2353 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2354 out_unlock:
2355 	rcu_read_unlock();
2356 	return retval;
2357 }
2358 
2359 /**
2360  *	tiocgsid		-	get session id
2361  *	@tty: tty passed by user
2362  *	@real_tty: tty side of the tty pased by the user if a pty else the tty
2363  *	@p: pointer to returned session id
2364  *
2365  *	Obtain the session id of the tty. If there is no session
2366  *	return an error.
2367  *
2368  *	Locking: none. Reference to current->signal->tty is safe.
2369  */
2370 
2371 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2372 {
2373 	/*
2374 	 * (tty == real_tty) is a cheap way of
2375 	 * testing if the tty is NOT a master pty.
2376 	*/
2377 	if (tty == real_tty && current->signal->tty != real_tty)
2378 		return -ENOTTY;
2379 	if (!real_tty->session)
2380 		return -ENOTTY;
2381 	return put_user(pid_vnr(real_tty->session), p);
2382 }
2383 
2384 /**
2385  *	tiocsetd	-	set line discipline
2386  *	@tty: tty device
2387  *	@p: pointer to user data
2388  *
2389  *	Set the line discipline according to user request.
2390  *
2391  *	Locking: see tty_set_ldisc, this function is just a helper
2392  */
2393 
2394 static int tiocsetd(struct tty_struct *tty, int __user *p)
2395 {
2396 	int ldisc;
2397 	int ret;
2398 
2399 	if (get_user(ldisc, p))
2400 		return -EFAULT;
2401 
2402 	ret = tty_set_ldisc(tty, ldisc);
2403 
2404 	return ret;
2405 }
2406 
2407 /**
2408  *	send_break	-	performed time break
2409  *	@tty: device to break on
2410  *	@duration: timeout in mS
2411  *
2412  *	Perform a timed break on hardware that lacks its own driver level
2413  *	timed break functionality.
2414  *
2415  *	Locking:
2416  *		atomic_write_lock serializes
2417  *
2418  */
2419 
2420 static int send_break(struct tty_struct *tty, unsigned int duration)
2421 {
2422 	int retval;
2423 
2424 	if (tty->ops->break_ctl == NULL)
2425 		return 0;
2426 
2427 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2428 		retval = tty->ops->break_ctl(tty, duration);
2429 	else {
2430 		/* Do the work ourselves */
2431 		if (tty_write_lock(tty, 0) < 0)
2432 			return -EINTR;
2433 		retval = tty->ops->break_ctl(tty, -1);
2434 		if (retval)
2435 			goto out;
2436 		if (!signal_pending(current))
2437 			msleep_interruptible(duration);
2438 		retval = tty->ops->break_ctl(tty, 0);
2439 out:
2440 		tty_write_unlock(tty);
2441 		if (signal_pending(current))
2442 			retval = -EINTR;
2443 	}
2444 	return retval;
2445 }
2446 
2447 /**
2448  *	tty_tiocmget		-	get modem status
2449  *	@tty: tty device
2450  *	@file: user file pointer
2451  *	@p: pointer to result
2452  *
2453  *	Obtain the modem status bits from the tty driver if the feature
2454  *	is supported. Return -EINVAL if it is not available.
2455  *
2456  *	Locking: none (up to the driver)
2457  */
2458 
2459 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2460 {
2461 	int retval = -EINVAL;
2462 
2463 	if (tty->ops->tiocmget) {
2464 		retval = tty->ops->tiocmget(tty, file);
2465 
2466 		if (retval >= 0)
2467 			retval = put_user(retval, p);
2468 	}
2469 	return retval;
2470 }
2471 
2472 /**
2473  *	tty_tiocmset		-	set modem status
2474  *	@tty: tty device
2475  *	@file: user file pointer
2476  *	@cmd: command - clear bits, set bits or set all
2477  *	@p: pointer to desired bits
2478  *
2479  *	Set the modem status bits from the tty driver if the feature
2480  *	is supported. Return -EINVAL if it is not available.
2481  *
2482  *	Locking: none (up to the driver)
2483  */
2484 
2485 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2486 	     unsigned __user *p)
2487 {
2488 	int retval;
2489 	unsigned int set, clear, val;
2490 
2491 	if (tty->ops->tiocmset == NULL)
2492 		return -EINVAL;
2493 
2494 	retval = get_user(val, p);
2495 	if (retval)
2496 		return retval;
2497 	set = clear = 0;
2498 	switch (cmd) {
2499 	case TIOCMBIS:
2500 		set = val;
2501 		break;
2502 	case TIOCMBIC:
2503 		clear = val;
2504 		break;
2505 	case TIOCMSET:
2506 		set = val;
2507 		clear = ~val;
2508 		break;
2509 	}
2510 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2511 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2512 	return tty->ops->tiocmset(tty, file, set, clear);
2513 }
2514 
2515 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2516 {
2517 	int retval = -EINVAL;
2518 	struct serial_icounter_struct icount;
2519 	memset(&icount, 0, sizeof(icount));
2520 	if (tty->ops->get_icount)
2521 		retval = tty->ops->get_icount(tty, &icount);
2522 	if (retval != 0)
2523 		return retval;
2524 	if (copy_to_user(arg, &icount, sizeof(icount)))
2525 		return -EFAULT;
2526 	return 0;
2527 }
2528 
2529 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2530 {
2531 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2532 	    tty->driver->subtype == PTY_TYPE_MASTER)
2533 		tty = tty->link;
2534 	return tty;
2535 }
2536 EXPORT_SYMBOL(tty_pair_get_tty);
2537 
2538 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2539 {
2540 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2541 	    tty->driver->subtype == PTY_TYPE_MASTER)
2542 	    return tty;
2543 	return tty->link;
2544 }
2545 EXPORT_SYMBOL(tty_pair_get_pty);
2546 
2547 /*
2548  * Split this up, as gcc can choke on it otherwise..
2549  */
2550 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2551 {
2552 	struct tty_struct *tty = file_tty(file);
2553 	struct tty_struct *real_tty;
2554 	void __user *p = (void __user *)arg;
2555 	int retval;
2556 	struct tty_ldisc *ld;
2557 	struct inode *inode = file->f_dentry->d_inode;
2558 
2559 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2560 		return -EINVAL;
2561 
2562 	real_tty = tty_pair_get_tty(tty);
2563 
2564 	/*
2565 	 * Factor out some common prep work
2566 	 */
2567 	switch (cmd) {
2568 	case TIOCSETD:
2569 	case TIOCSBRK:
2570 	case TIOCCBRK:
2571 	case TCSBRK:
2572 	case TCSBRKP:
2573 		retval = tty_check_change(tty);
2574 		if (retval)
2575 			return retval;
2576 		if (cmd != TIOCCBRK) {
2577 			tty_wait_until_sent(tty, 0);
2578 			if (signal_pending(current))
2579 				return -EINTR;
2580 		}
2581 		break;
2582 	}
2583 
2584 	/*
2585 	 *	Now do the stuff.
2586 	 */
2587 	switch (cmd) {
2588 	case TIOCSTI:
2589 		return tiocsti(tty, p);
2590 	case TIOCGWINSZ:
2591 		return tiocgwinsz(real_tty, p);
2592 	case TIOCSWINSZ:
2593 		return tiocswinsz(real_tty, p);
2594 	case TIOCCONS:
2595 		return real_tty != tty ? -EINVAL : tioccons(file);
2596 	case FIONBIO:
2597 		return fionbio(file, p);
2598 	case TIOCEXCL:
2599 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2600 		return 0;
2601 	case TIOCNXCL:
2602 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2603 		return 0;
2604 	case TIOCNOTTY:
2605 		if (current->signal->tty != tty)
2606 			return -ENOTTY;
2607 		no_tty();
2608 		return 0;
2609 	case TIOCSCTTY:
2610 		return tiocsctty(tty, arg);
2611 	case TIOCGPGRP:
2612 		return tiocgpgrp(tty, real_tty, p);
2613 	case TIOCSPGRP:
2614 		return tiocspgrp(tty, real_tty, p);
2615 	case TIOCGSID:
2616 		return tiocgsid(tty, real_tty, p);
2617 	case TIOCGETD:
2618 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2619 	case TIOCSETD:
2620 		return tiocsetd(tty, p);
2621 	/*
2622 	 * Break handling
2623 	 */
2624 	case TIOCSBRK:	/* Turn break on, unconditionally */
2625 		if (tty->ops->break_ctl)
2626 			return tty->ops->break_ctl(tty, -1);
2627 		return 0;
2628 	case TIOCCBRK:	/* Turn break off, unconditionally */
2629 		if (tty->ops->break_ctl)
2630 			return tty->ops->break_ctl(tty, 0);
2631 		return 0;
2632 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2633 		/* non-zero arg means wait for all output data
2634 		 * to be sent (performed above) but don't send break.
2635 		 * This is used by the tcdrain() termios function.
2636 		 */
2637 		if (!arg)
2638 			return send_break(tty, 250);
2639 		return 0;
2640 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2641 		return send_break(tty, arg ? arg*100 : 250);
2642 
2643 	case TIOCMGET:
2644 		return tty_tiocmget(tty, file, p);
2645 	case TIOCMSET:
2646 	case TIOCMBIC:
2647 	case TIOCMBIS:
2648 		return tty_tiocmset(tty, file, cmd, p);
2649 	case TIOCGICOUNT:
2650 		retval = tty_tiocgicount(tty, p);
2651 		/* For the moment allow fall through to the old method */
2652         	if (retval != -EINVAL)
2653 			return retval;
2654 		break;
2655 	case TCFLSH:
2656 		switch (arg) {
2657 		case TCIFLUSH:
2658 		case TCIOFLUSH:
2659 		/* flush tty buffer and allow ldisc to process ioctl */
2660 			tty_buffer_flush(tty);
2661 			break;
2662 		}
2663 		break;
2664 	}
2665 	if (tty->ops->ioctl) {
2666 		retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2667 		if (retval != -ENOIOCTLCMD)
2668 			return retval;
2669 	}
2670 	ld = tty_ldisc_ref_wait(tty);
2671 	retval = -EINVAL;
2672 	if (ld->ops->ioctl) {
2673 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2674 		if (retval == -ENOIOCTLCMD)
2675 			retval = -EINVAL;
2676 	}
2677 	tty_ldisc_deref(ld);
2678 	return retval;
2679 }
2680 
2681 #ifdef CONFIG_COMPAT
2682 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2683 				unsigned long arg)
2684 {
2685 	struct inode *inode = file->f_dentry->d_inode;
2686 	struct tty_struct *tty = file_tty(file);
2687 	struct tty_ldisc *ld;
2688 	int retval = -ENOIOCTLCMD;
2689 
2690 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2691 		return -EINVAL;
2692 
2693 	if (tty->ops->compat_ioctl) {
2694 		retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2695 		if (retval != -ENOIOCTLCMD)
2696 			return retval;
2697 	}
2698 
2699 	ld = tty_ldisc_ref_wait(tty);
2700 	if (ld->ops->compat_ioctl)
2701 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2702 	tty_ldisc_deref(ld);
2703 
2704 	return retval;
2705 }
2706 #endif
2707 
2708 /*
2709  * This implements the "Secure Attention Key" ---  the idea is to
2710  * prevent trojan horses by killing all processes associated with this
2711  * tty when the user hits the "Secure Attention Key".  Required for
2712  * super-paranoid applications --- see the Orange Book for more details.
2713  *
2714  * This code could be nicer; ideally it should send a HUP, wait a few
2715  * seconds, then send a INT, and then a KILL signal.  But you then
2716  * have to coordinate with the init process, since all processes associated
2717  * with the current tty must be dead before the new getty is allowed
2718  * to spawn.
2719  *
2720  * Now, if it would be correct ;-/ The current code has a nasty hole -
2721  * it doesn't catch files in flight. We may send the descriptor to ourselves
2722  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2723  *
2724  * Nasty bug: do_SAK is being called in interrupt context.  This can
2725  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2726  */
2727 void __do_SAK(struct tty_struct *tty)
2728 {
2729 #ifdef TTY_SOFT_SAK
2730 	tty_hangup(tty);
2731 #else
2732 	struct task_struct *g, *p;
2733 	struct pid *session;
2734 	int		i;
2735 	struct file	*filp;
2736 	struct fdtable *fdt;
2737 
2738 	if (!tty)
2739 		return;
2740 	session = tty->session;
2741 
2742 	tty_ldisc_flush(tty);
2743 
2744 	tty_driver_flush_buffer(tty);
2745 
2746 	read_lock(&tasklist_lock);
2747 	/* Kill the entire session */
2748 	do_each_pid_task(session, PIDTYPE_SID, p) {
2749 		printk(KERN_NOTICE "SAK: killed process %d"
2750 			" (%s): task_session(p)==tty->session\n",
2751 			task_pid_nr(p), p->comm);
2752 		send_sig(SIGKILL, p, 1);
2753 	} while_each_pid_task(session, PIDTYPE_SID, p);
2754 	/* Now kill any processes that happen to have the
2755 	 * tty open.
2756 	 */
2757 	do_each_thread(g, p) {
2758 		if (p->signal->tty == tty) {
2759 			printk(KERN_NOTICE "SAK: killed process %d"
2760 			    " (%s): task_session(p)==tty->session\n",
2761 			    task_pid_nr(p), p->comm);
2762 			send_sig(SIGKILL, p, 1);
2763 			continue;
2764 		}
2765 		task_lock(p);
2766 		if (p->files) {
2767 			/*
2768 			 * We don't take a ref to the file, so we must
2769 			 * hold ->file_lock instead.
2770 			 */
2771 			spin_lock(&p->files->file_lock);
2772 			fdt = files_fdtable(p->files);
2773 			for (i = 0; i < fdt->max_fds; i++) {
2774 				filp = fcheck_files(p->files, i);
2775 				if (!filp)
2776 					continue;
2777 				if (filp->f_op->read == tty_read &&
2778 				    file_tty(filp) == tty) {
2779 					printk(KERN_NOTICE "SAK: killed process %d"
2780 					    " (%s): fd#%d opened to the tty\n",
2781 					    task_pid_nr(p), p->comm, i);
2782 					force_sig(SIGKILL, p);
2783 					break;
2784 				}
2785 			}
2786 			spin_unlock(&p->files->file_lock);
2787 		}
2788 		task_unlock(p);
2789 	} while_each_thread(g, p);
2790 	read_unlock(&tasklist_lock);
2791 #endif
2792 }
2793 
2794 static void do_SAK_work(struct work_struct *work)
2795 {
2796 	struct tty_struct *tty =
2797 		container_of(work, struct tty_struct, SAK_work);
2798 	__do_SAK(tty);
2799 }
2800 
2801 /*
2802  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2803  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2804  * the values which we write to it will be identical to the values which it
2805  * already has. --akpm
2806  */
2807 void do_SAK(struct tty_struct *tty)
2808 {
2809 	if (!tty)
2810 		return;
2811 	schedule_work(&tty->SAK_work);
2812 }
2813 
2814 EXPORT_SYMBOL(do_SAK);
2815 
2816 static int dev_match_devt(struct device *dev, void *data)
2817 {
2818 	dev_t *devt = data;
2819 	return dev->devt == *devt;
2820 }
2821 
2822 /* Must put_device() after it's unused! */
2823 static struct device *tty_get_device(struct tty_struct *tty)
2824 {
2825 	dev_t devt = tty_devnum(tty);
2826 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2827 }
2828 
2829 
2830 /**
2831  *	initialize_tty_struct
2832  *	@tty: tty to initialize
2833  *
2834  *	This subroutine initializes a tty structure that has been newly
2835  *	allocated.
2836  *
2837  *	Locking: none - tty in question must not be exposed at this point
2838  */
2839 
2840 void initialize_tty_struct(struct tty_struct *tty,
2841 		struct tty_driver *driver, int idx)
2842 {
2843 	memset(tty, 0, sizeof(struct tty_struct));
2844 	kref_init(&tty->kref);
2845 	tty->magic = TTY_MAGIC;
2846 	tty_ldisc_init(tty);
2847 	tty->session = NULL;
2848 	tty->pgrp = NULL;
2849 	tty->overrun_time = jiffies;
2850 	tty->buf.head = tty->buf.tail = NULL;
2851 	tty_buffer_init(tty);
2852 	mutex_init(&tty->termios_mutex);
2853 	mutex_init(&tty->ldisc_mutex);
2854 	init_waitqueue_head(&tty->write_wait);
2855 	init_waitqueue_head(&tty->read_wait);
2856 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2857 	mutex_init(&tty->atomic_read_lock);
2858 	mutex_init(&tty->atomic_write_lock);
2859 	mutex_init(&tty->output_lock);
2860 	mutex_init(&tty->echo_lock);
2861 	spin_lock_init(&tty->read_lock);
2862 	spin_lock_init(&tty->ctrl_lock);
2863 	INIT_LIST_HEAD(&tty->tty_files);
2864 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2865 
2866 	tty->driver = driver;
2867 	tty->ops = driver->ops;
2868 	tty->index = idx;
2869 	tty_line_name(driver, idx, tty->name);
2870 	tty->dev = tty_get_device(tty);
2871 }
2872 
2873 /**
2874  *	tty_put_char	-	write one character to a tty
2875  *	@tty: tty
2876  *	@ch: character
2877  *
2878  *	Write one byte to the tty using the provided put_char method
2879  *	if present. Returns the number of characters successfully output.
2880  *
2881  *	Note: the specific put_char operation in the driver layer may go
2882  *	away soon. Don't call it directly, use this method
2883  */
2884 
2885 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2886 {
2887 	if (tty->ops->put_char)
2888 		return tty->ops->put_char(tty, ch);
2889 	return tty->ops->write(tty, &ch, 1);
2890 }
2891 EXPORT_SYMBOL_GPL(tty_put_char);
2892 
2893 struct class *tty_class;
2894 
2895 /**
2896  *	tty_register_device - register a tty device
2897  *	@driver: the tty driver that describes the tty device
2898  *	@index: the index in the tty driver for this tty device
2899  *	@device: a struct device that is associated with this tty device.
2900  *		This field is optional, if there is no known struct device
2901  *		for this tty device it can be set to NULL safely.
2902  *
2903  *	Returns a pointer to the struct device for this tty device
2904  *	(or ERR_PTR(-EFOO) on error).
2905  *
2906  *	This call is required to be made to register an individual tty device
2907  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2908  *	that bit is not set, this function should not be called by a tty
2909  *	driver.
2910  *
2911  *	Locking: ??
2912  */
2913 
2914 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2915 				   struct device *device)
2916 {
2917 	char name[64];
2918 	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2919 
2920 	if (index >= driver->num) {
2921 		printk(KERN_ERR "Attempt to register invalid tty line number "
2922 		       " (%d).\n", index);
2923 		return ERR_PTR(-EINVAL);
2924 	}
2925 
2926 	if (driver->type == TTY_DRIVER_TYPE_PTY)
2927 		pty_line_name(driver, index, name);
2928 	else
2929 		tty_line_name(driver, index, name);
2930 
2931 	return device_create(tty_class, device, dev, NULL, name);
2932 }
2933 EXPORT_SYMBOL(tty_register_device);
2934 
2935 /**
2936  * 	tty_unregister_device - unregister a tty device
2937  * 	@driver: the tty driver that describes the tty device
2938  * 	@index: the index in the tty driver for this tty device
2939  *
2940  * 	If a tty device is registered with a call to tty_register_device() then
2941  *	this function must be called when the tty device is gone.
2942  *
2943  *	Locking: ??
2944  */
2945 
2946 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2947 {
2948 	device_destroy(tty_class,
2949 		MKDEV(driver->major, driver->minor_start) + index);
2950 }
2951 EXPORT_SYMBOL(tty_unregister_device);
2952 
2953 struct tty_driver *alloc_tty_driver(int lines)
2954 {
2955 	struct tty_driver *driver;
2956 
2957 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2958 	if (driver) {
2959 		kref_init(&driver->kref);
2960 		driver->magic = TTY_DRIVER_MAGIC;
2961 		driver->num = lines;
2962 		/* later we'll move allocation of tables here */
2963 	}
2964 	return driver;
2965 }
2966 EXPORT_SYMBOL(alloc_tty_driver);
2967 
2968 static void destruct_tty_driver(struct kref *kref)
2969 {
2970 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2971 	int i;
2972 	struct ktermios *tp;
2973 	void *p;
2974 
2975 	if (driver->flags & TTY_DRIVER_INSTALLED) {
2976 		/*
2977 		 * Free the termios and termios_locked structures because
2978 		 * we don't want to get memory leaks when modular tty
2979 		 * drivers are removed from the kernel.
2980 		 */
2981 		for (i = 0; i < driver->num; i++) {
2982 			tp = driver->termios[i];
2983 			if (tp) {
2984 				driver->termios[i] = NULL;
2985 				kfree(tp);
2986 			}
2987 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2988 				tty_unregister_device(driver, i);
2989 		}
2990 		p = driver->ttys;
2991 		proc_tty_unregister_driver(driver);
2992 		driver->ttys = NULL;
2993 		driver->termios = NULL;
2994 		kfree(p);
2995 		cdev_del(&driver->cdev);
2996 	}
2997 	kfree(driver);
2998 }
2999 
3000 void tty_driver_kref_put(struct tty_driver *driver)
3001 {
3002 	kref_put(&driver->kref, destruct_tty_driver);
3003 }
3004 EXPORT_SYMBOL(tty_driver_kref_put);
3005 
3006 void tty_set_operations(struct tty_driver *driver,
3007 			const struct tty_operations *op)
3008 {
3009 	driver->ops = op;
3010 };
3011 EXPORT_SYMBOL(tty_set_operations);
3012 
3013 void put_tty_driver(struct tty_driver *d)
3014 {
3015 	tty_driver_kref_put(d);
3016 }
3017 EXPORT_SYMBOL(put_tty_driver);
3018 
3019 /*
3020  * Called by a tty driver to register itself.
3021  */
3022 int tty_register_driver(struct tty_driver *driver)
3023 {
3024 	int error;
3025 	int i;
3026 	dev_t dev;
3027 	void **p = NULL;
3028 	struct device *d;
3029 
3030 	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3031 		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3032 		if (!p)
3033 			return -ENOMEM;
3034 	}
3035 
3036 	if (!driver->major) {
3037 		error = alloc_chrdev_region(&dev, driver->minor_start,
3038 						driver->num, driver->name);
3039 		if (!error) {
3040 			driver->major = MAJOR(dev);
3041 			driver->minor_start = MINOR(dev);
3042 		}
3043 	} else {
3044 		dev = MKDEV(driver->major, driver->minor_start);
3045 		error = register_chrdev_region(dev, driver->num, driver->name);
3046 	}
3047 	if (error < 0) {
3048 		kfree(p);
3049 		return error;
3050 	}
3051 
3052 	if (p) {
3053 		driver->ttys = (struct tty_struct **)p;
3054 		driver->termios = (struct ktermios **)(p + driver->num);
3055 	} else {
3056 		driver->ttys = NULL;
3057 		driver->termios = NULL;
3058 	}
3059 
3060 	cdev_init(&driver->cdev, &tty_fops);
3061 	driver->cdev.owner = driver->owner;
3062 	error = cdev_add(&driver->cdev, dev, driver->num);
3063 	if (error) {
3064 		unregister_chrdev_region(dev, driver->num);
3065 		driver->ttys = NULL;
3066 		driver->termios = NULL;
3067 		kfree(p);
3068 		return error;
3069 	}
3070 
3071 	mutex_lock(&tty_mutex);
3072 	list_add(&driver->tty_drivers, &tty_drivers);
3073 	mutex_unlock(&tty_mutex);
3074 
3075 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3076 		for (i = 0; i < driver->num; i++) {
3077 			d = tty_register_device(driver, i, NULL);
3078 			if (IS_ERR(d)) {
3079 				error = PTR_ERR(d);
3080 				goto err;
3081 			}
3082 		}
3083 	}
3084 	proc_tty_register_driver(driver);
3085 	driver->flags |= TTY_DRIVER_INSTALLED;
3086 	return 0;
3087 
3088 err:
3089 	for (i--; i >= 0; i--)
3090 		tty_unregister_device(driver, i);
3091 
3092 	mutex_lock(&tty_mutex);
3093 	list_del(&driver->tty_drivers);
3094 	mutex_unlock(&tty_mutex);
3095 
3096 	unregister_chrdev_region(dev, driver->num);
3097 	driver->ttys = NULL;
3098 	driver->termios = NULL;
3099 	kfree(p);
3100 	return error;
3101 }
3102 
3103 EXPORT_SYMBOL(tty_register_driver);
3104 
3105 /*
3106  * Called by a tty driver to unregister itself.
3107  */
3108 int tty_unregister_driver(struct tty_driver *driver)
3109 {
3110 #if 0
3111 	/* FIXME */
3112 	if (driver->refcount)
3113 		return -EBUSY;
3114 #endif
3115 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3116 				driver->num);
3117 	mutex_lock(&tty_mutex);
3118 	list_del(&driver->tty_drivers);
3119 	mutex_unlock(&tty_mutex);
3120 	return 0;
3121 }
3122 
3123 EXPORT_SYMBOL(tty_unregister_driver);
3124 
3125 dev_t tty_devnum(struct tty_struct *tty)
3126 {
3127 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3128 }
3129 EXPORT_SYMBOL(tty_devnum);
3130 
3131 void proc_clear_tty(struct task_struct *p)
3132 {
3133 	unsigned long flags;
3134 	struct tty_struct *tty;
3135 	spin_lock_irqsave(&p->sighand->siglock, flags);
3136 	tty = p->signal->tty;
3137 	p->signal->tty = NULL;
3138 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3139 	tty_kref_put(tty);
3140 }
3141 
3142 /* Called under the sighand lock */
3143 
3144 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3145 {
3146 	if (tty) {
3147 		unsigned long flags;
3148 		/* We should not have a session or pgrp to put here but.... */
3149 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3150 		put_pid(tty->session);
3151 		put_pid(tty->pgrp);
3152 		tty->pgrp = get_pid(task_pgrp(tsk));
3153 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3154 		tty->session = get_pid(task_session(tsk));
3155 		if (tsk->signal->tty) {
3156 			printk(KERN_DEBUG "tty not NULL!!\n");
3157 			tty_kref_put(tsk->signal->tty);
3158 		}
3159 	}
3160 	put_pid(tsk->signal->tty_old_pgrp);
3161 	tsk->signal->tty = tty_kref_get(tty);
3162 	tsk->signal->tty_old_pgrp = NULL;
3163 }
3164 
3165 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3166 {
3167 	spin_lock_irq(&tsk->sighand->siglock);
3168 	__proc_set_tty(tsk, tty);
3169 	spin_unlock_irq(&tsk->sighand->siglock);
3170 }
3171 
3172 struct tty_struct *get_current_tty(void)
3173 {
3174 	struct tty_struct *tty;
3175 	unsigned long flags;
3176 
3177 	spin_lock_irqsave(&current->sighand->siglock, flags);
3178 	tty = tty_kref_get(current->signal->tty);
3179 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3180 	return tty;
3181 }
3182 EXPORT_SYMBOL_GPL(get_current_tty);
3183 
3184 void tty_default_fops(struct file_operations *fops)
3185 {
3186 	*fops = tty_fops;
3187 }
3188 
3189 /*
3190  * Initialize the console device. This is called *early*, so
3191  * we can't necessarily depend on lots of kernel help here.
3192  * Just do some early initializations, and do the complex setup
3193  * later.
3194  */
3195 void __init console_init(void)
3196 {
3197 	initcall_t *call;
3198 
3199 	/* Setup the default TTY line discipline. */
3200 	tty_ldisc_begin();
3201 
3202 	/*
3203 	 * set up the console device so that later boot sequences can
3204 	 * inform about problems etc..
3205 	 */
3206 	call = __con_initcall_start;
3207 	while (call < __con_initcall_end) {
3208 		(*call)();
3209 		call++;
3210 	}
3211 }
3212 
3213 static char *tty_devnode(struct device *dev, mode_t *mode)
3214 {
3215 	if (!mode)
3216 		return NULL;
3217 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3218 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3219 		*mode = 0666;
3220 	return NULL;
3221 }
3222 
3223 static int __init tty_class_init(void)
3224 {
3225 	tty_class = class_create(THIS_MODULE, "tty");
3226 	if (IS_ERR(tty_class))
3227 		return PTR_ERR(tty_class);
3228 	tty_class->devnode = tty_devnode;
3229 	return 0;
3230 }
3231 
3232 postcore_initcall(tty_class_init);
3233 
3234 /* 3/2004 jmc: why do these devices exist? */
3235 
3236 static struct cdev tty_cdev, console_cdev;
3237 
3238 /*
3239  * Ok, now we can initialize the rest of the tty devices and can count
3240  * on memory allocations, interrupts etc..
3241  */
3242 int __init tty_init(void)
3243 {
3244 	cdev_init(&tty_cdev, &tty_fops);
3245 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3246 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3247 		panic("Couldn't register /dev/tty driver\n");
3248 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3249 			      "tty");
3250 
3251 	cdev_init(&console_cdev, &console_fops);
3252 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3253 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3254 		panic("Couldn't register /dev/console driver\n");
3255 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3256 			      "console");
3257 
3258 #ifdef CONFIG_VT
3259 	vty_init(&console_fops);
3260 #endif
3261 	return 0;
3262 }
3263 
3264