xref: /linux/drivers/tty/tty_io.c (revision 2c1ba398ac9da3305815f6ae8e95ae2b9fd3b5ff)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101 
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105 
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108 
109 #undef TTY_DEBUG_HANGUP
110 
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113 
114 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
115 	.c_iflag = ICRNL | IXON,
116 	.c_oflag = OPOST | ONLCR,
117 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
118 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119 		   ECHOCTL | ECHOKE | IEXTEN,
120 	.c_cc = INIT_C_CC,
121 	.c_ispeed = 38400,
122 	.c_ospeed = 38400
123 };
124 
125 EXPORT_SYMBOL(tty_std_termios);
126 
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130 
131 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
132 
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137 
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140 
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 							size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 				unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 
160 /**
161  *	alloc_tty_struct	-	allocate a tty object
162  *
163  *	Return a new empty tty structure. The data fields have not
164  *	been initialized in any way but has been zeroed
165  *
166  *	Locking: none
167  */
168 
169 struct tty_struct *alloc_tty_struct(void)
170 {
171 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173 
174 /**
175  *	free_tty_struct		-	free a disused tty
176  *	@tty: tty struct to free
177  *
178  *	Free the write buffers, tty queue and tty memory itself.
179  *
180  *	Locking: none. Must be called after tty is definitely unused
181  */
182 
183 void free_tty_struct(struct tty_struct *tty)
184 {
185 	if (tty->dev)
186 		put_device(tty->dev);
187 	kfree(tty->write_buf);
188 	tty_buffer_free_all(tty);
189 	kfree(tty);
190 }
191 
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194 	return ((struct tty_file_private *)file->private_data)->tty;
195 }
196 
197 /* Associate a new file with the tty structure */
198 int tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200 	struct tty_file_private *priv;
201 
202 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	priv->tty = tty;
207 	priv->file = file;
208 	file->private_data = priv;
209 
210 	spin_lock(&tty_files_lock);
211 	list_add(&priv->list, &tty->tty_files);
212 	spin_unlock(&tty_files_lock);
213 
214 	return 0;
215 }
216 
217 /* Delete file from its tty */
218 void tty_del_file(struct file *file)
219 {
220 	struct tty_file_private *priv = file->private_data;
221 
222 	spin_lock(&tty_files_lock);
223 	list_del(&priv->list);
224 	spin_unlock(&tty_files_lock);
225 	file->private_data = NULL;
226 	kfree(priv);
227 }
228 
229 
230 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
231 
232 /**
233  *	tty_name	-	return tty naming
234  *	@tty: tty structure
235  *	@buf: buffer for output
236  *
237  *	Convert a tty structure into a name. The name reflects the kernel
238  *	naming policy and if udev is in use may not reflect user space
239  *
240  *	Locking: none
241  */
242 
243 char *tty_name(struct tty_struct *tty, char *buf)
244 {
245 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
246 		strcpy(buf, "NULL tty");
247 	else
248 		strcpy(buf, tty->name);
249 	return buf;
250 }
251 
252 EXPORT_SYMBOL(tty_name);
253 
254 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
255 			      const char *routine)
256 {
257 #ifdef TTY_PARANOIA_CHECK
258 	if (!tty) {
259 		printk(KERN_WARNING
260 			"null TTY for (%d:%d) in %s\n",
261 			imajor(inode), iminor(inode), routine);
262 		return 1;
263 	}
264 	if (tty->magic != TTY_MAGIC) {
265 		printk(KERN_WARNING
266 			"bad magic number for tty struct (%d:%d) in %s\n",
267 			imajor(inode), iminor(inode), routine);
268 		return 1;
269 	}
270 #endif
271 	return 0;
272 }
273 
274 static int check_tty_count(struct tty_struct *tty, const char *routine)
275 {
276 #ifdef CHECK_TTY_COUNT
277 	struct list_head *p;
278 	int count = 0;
279 
280 	spin_lock(&tty_files_lock);
281 	list_for_each(p, &tty->tty_files) {
282 		count++;
283 	}
284 	spin_unlock(&tty_files_lock);
285 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
286 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
287 	    tty->link && tty->link->count)
288 		count++;
289 	if (tty->count != count) {
290 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
291 				    "!= #fd's(%d) in %s\n",
292 		       tty->name, tty->count, count, routine);
293 		return count;
294 	}
295 #endif
296 	return 0;
297 }
298 
299 /**
300  *	get_tty_driver		-	find device of a tty
301  *	@dev_t: device identifier
302  *	@index: returns the index of the tty
303  *
304  *	This routine returns a tty driver structure, given a device number
305  *	and also passes back the index number.
306  *
307  *	Locking: caller must hold tty_mutex
308  */
309 
310 static struct tty_driver *get_tty_driver(dev_t device, int *index)
311 {
312 	struct tty_driver *p;
313 
314 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
315 		dev_t base = MKDEV(p->major, p->minor_start);
316 		if (device < base || device >= base + p->num)
317 			continue;
318 		*index = device - base;
319 		return tty_driver_kref_get(p);
320 	}
321 	return NULL;
322 }
323 
324 #ifdef CONFIG_CONSOLE_POLL
325 
326 /**
327  *	tty_find_polling_driver	-	find device of a polled tty
328  *	@name: name string to match
329  *	@line: pointer to resulting tty line nr
330  *
331  *	This routine returns a tty driver structure, given a name
332  *	and the condition that the tty driver is capable of polled
333  *	operation.
334  */
335 struct tty_driver *tty_find_polling_driver(char *name, int *line)
336 {
337 	struct tty_driver *p, *res = NULL;
338 	int tty_line = 0;
339 	int len;
340 	char *str, *stp;
341 
342 	for (str = name; *str; str++)
343 		if ((*str >= '0' && *str <= '9') || *str == ',')
344 			break;
345 	if (!*str)
346 		return NULL;
347 
348 	len = str - name;
349 	tty_line = simple_strtoul(str, &str, 10);
350 
351 	mutex_lock(&tty_mutex);
352 	/* Search through the tty devices to look for a match */
353 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
354 		if (strncmp(name, p->name, len) != 0)
355 			continue;
356 		stp = str;
357 		if (*stp == ',')
358 			stp++;
359 		if (*stp == '\0')
360 			stp = NULL;
361 
362 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
363 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
364 			res = tty_driver_kref_get(p);
365 			*line = tty_line;
366 			break;
367 		}
368 	}
369 	mutex_unlock(&tty_mutex);
370 
371 	return res;
372 }
373 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
374 #endif
375 
376 /**
377  *	tty_check_change	-	check for POSIX terminal changes
378  *	@tty: tty to check
379  *
380  *	If we try to write to, or set the state of, a terminal and we're
381  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
382  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
383  *
384  *	Locking: ctrl_lock
385  */
386 
387 int tty_check_change(struct tty_struct *tty)
388 {
389 	unsigned long flags;
390 	int ret = 0;
391 
392 	if (current->signal->tty != tty)
393 		return 0;
394 
395 	spin_lock_irqsave(&tty->ctrl_lock, flags);
396 
397 	if (!tty->pgrp) {
398 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
399 		goto out_unlock;
400 	}
401 	if (task_pgrp(current) == tty->pgrp)
402 		goto out_unlock;
403 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
404 	if (is_ignored(SIGTTOU))
405 		goto out;
406 	if (is_current_pgrp_orphaned()) {
407 		ret = -EIO;
408 		goto out;
409 	}
410 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
411 	set_thread_flag(TIF_SIGPENDING);
412 	ret = -ERESTARTSYS;
413 out:
414 	return ret;
415 out_unlock:
416 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
417 	return ret;
418 }
419 
420 EXPORT_SYMBOL(tty_check_change);
421 
422 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
423 				size_t count, loff_t *ppos)
424 {
425 	return 0;
426 }
427 
428 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
429 				 size_t count, loff_t *ppos)
430 {
431 	return -EIO;
432 }
433 
434 /* No kernel lock held - none needed ;) */
435 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
436 {
437 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
438 }
439 
440 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
441 		unsigned long arg)
442 {
443 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
444 }
445 
446 static long hung_up_tty_compat_ioctl(struct file *file,
447 				     unsigned int cmd, unsigned long arg)
448 {
449 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451 
452 static const struct file_operations tty_fops = {
453 	.llseek		= no_llseek,
454 	.read		= tty_read,
455 	.write		= tty_write,
456 	.poll		= tty_poll,
457 	.unlocked_ioctl	= tty_ioctl,
458 	.compat_ioctl	= tty_compat_ioctl,
459 	.open		= tty_open,
460 	.release	= tty_release,
461 	.fasync		= tty_fasync,
462 };
463 
464 static const struct file_operations console_fops = {
465 	.llseek		= no_llseek,
466 	.read		= tty_read,
467 	.write		= redirected_tty_write,
468 	.poll		= tty_poll,
469 	.unlocked_ioctl	= tty_ioctl,
470 	.compat_ioctl	= tty_compat_ioctl,
471 	.open		= tty_open,
472 	.release	= tty_release,
473 	.fasync		= tty_fasync,
474 };
475 
476 static const struct file_operations hung_up_tty_fops = {
477 	.llseek		= no_llseek,
478 	.read		= hung_up_tty_read,
479 	.write		= hung_up_tty_write,
480 	.poll		= hung_up_tty_poll,
481 	.unlocked_ioctl	= hung_up_tty_ioctl,
482 	.compat_ioctl	= hung_up_tty_compat_ioctl,
483 	.release	= tty_release,
484 };
485 
486 static DEFINE_SPINLOCK(redirect_lock);
487 static struct file *redirect;
488 
489 /**
490  *	tty_wakeup	-	request more data
491  *	@tty: terminal
492  *
493  *	Internal and external helper for wakeups of tty. This function
494  *	informs the line discipline if present that the driver is ready
495  *	to receive more output data.
496  */
497 
498 void tty_wakeup(struct tty_struct *tty)
499 {
500 	struct tty_ldisc *ld;
501 
502 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
503 		ld = tty_ldisc_ref(tty);
504 		if (ld) {
505 			if (ld->ops->write_wakeup)
506 				ld->ops->write_wakeup(tty);
507 			tty_ldisc_deref(ld);
508 		}
509 	}
510 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
511 }
512 
513 EXPORT_SYMBOL_GPL(tty_wakeup);
514 
515 /**
516  *	__tty_hangup		-	actual handler for hangup events
517  *	@work: tty device
518  *
519  *	This can be called by the "eventd" kernel thread.  That is process
520  *	synchronous but doesn't hold any locks, so we need to make sure we
521  *	have the appropriate locks for what we're doing.
522  *
523  *	The hangup event clears any pending redirections onto the hung up
524  *	device. It ensures future writes will error and it does the needed
525  *	line discipline hangup and signal delivery. The tty object itself
526  *	remains intact.
527  *
528  *	Locking:
529  *		BTM
530  *		  redirect lock for undoing redirection
531  *		  file list lock for manipulating list of ttys
532  *		  tty_ldisc_lock from called functions
533  *		  termios_mutex resetting termios data
534  *		  tasklist_lock to walk task list for hangup event
535  *		    ->siglock to protect ->signal/->sighand
536  */
537 void __tty_hangup(struct tty_struct *tty)
538 {
539 	struct file *cons_filp = NULL;
540 	struct file *filp, *f = NULL;
541 	struct task_struct *p;
542 	struct tty_file_private *priv;
543 	int    closecount = 0, n;
544 	unsigned long flags;
545 	int refs = 0;
546 
547 	if (!tty)
548 		return;
549 
550 
551 	spin_lock(&redirect_lock);
552 	if (redirect && file_tty(redirect) == tty) {
553 		f = redirect;
554 		redirect = NULL;
555 	}
556 	spin_unlock(&redirect_lock);
557 
558 	tty_lock();
559 
560 	/* some functions below drop BTM, so we need this bit */
561 	set_bit(TTY_HUPPING, &tty->flags);
562 
563 	/* inuse_filps is protected by the single tty lock,
564 	   this really needs to change if we want to flush the
565 	   workqueue with the lock held */
566 	check_tty_count(tty, "tty_hangup");
567 
568 	spin_lock(&tty_files_lock);
569 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
570 	list_for_each_entry(priv, &tty->tty_files, list) {
571 		filp = priv->file;
572 		if (filp->f_op->write == redirected_tty_write)
573 			cons_filp = filp;
574 		if (filp->f_op->write != tty_write)
575 			continue;
576 		closecount++;
577 		__tty_fasync(-1, filp, 0);	/* can't block */
578 		filp->f_op = &hung_up_tty_fops;
579 	}
580 	spin_unlock(&tty_files_lock);
581 
582 	/*
583 	 * it drops BTM and thus races with reopen
584 	 * we protect the race by TTY_HUPPING
585 	 */
586 	tty_ldisc_hangup(tty);
587 
588 	read_lock(&tasklist_lock);
589 	if (tty->session) {
590 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
591 			spin_lock_irq(&p->sighand->siglock);
592 			if (p->signal->tty == tty) {
593 				p->signal->tty = NULL;
594 				/* We defer the dereferences outside fo
595 				   the tasklist lock */
596 				refs++;
597 			}
598 			if (!p->signal->leader) {
599 				spin_unlock_irq(&p->sighand->siglock);
600 				continue;
601 			}
602 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
603 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
604 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
605 			spin_lock_irqsave(&tty->ctrl_lock, flags);
606 			if (tty->pgrp)
607 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
608 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
609 			spin_unlock_irq(&p->sighand->siglock);
610 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
611 	}
612 	read_unlock(&tasklist_lock);
613 
614 	spin_lock_irqsave(&tty->ctrl_lock, flags);
615 	clear_bit(TTY_THROTTLED, &tty->flags);
616 	clear_bit(TTY_PUSH, &tty->flags);
617 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
618 	put_pid(tty->session);
619 	put_pid(tty->pgrp);
620 	tty->session = NULL;
621 	tty->pgrp = NULL;
622 	tty->ctrl_status = 0;
623 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
624 
625 	/* Account for the p->signal references we killed */
626 	while (refs--)
627 		tty_kref_put(tty);
628 
629 	/*
630 	 * If one of the devices matches a console pointer, we
631 	 * cannot just call hangup() because that will cause
632 	 * tty->count and state->count to go out of sync.
633 	 * So we just call close() the right number of times.
634 	 */
635 	if (cons_filp) {
636 		if (tty->ops->close)
637 			for (n = 0; n < closecount; n++)
638 				tty->ops->close(tty, cons_filp);
639 	} else if (tty->ops->hangup)
640 		(tty->ops->hangup)(tty);
641 	/*
642 	 * We don't want to have driver/ldisc interactions beyond
643 	 * the ones we did here. The driver layer expects no
644 	 * calls after ->hangup() from the ldisc side. However we
645 	 * can't yet guarantee all that.
646 	 */
647 	set_bit(TTY_HUPPED, &tty->flags);
648 	clear_bit(TTY_HUPPING, &tty->flags);
649 	tty_ldisc_enable(tty);
650 
651 	tty_unlock();
652 
653 	if (f)
654 		fput(f);
655 }
656 
657 static void do_tty_hangup(struct work_struct *work)
658 {
659 	struct tty_struct *tty =
660 		container_of(work, struct tty_struct, hangup_work);
661 
662 	__tty_hangup(tty);
663 }
664 
665 /**
666  *	tty_hangup		-	trigger a hangup event
667  *	@tty: tty to hangup
668  *
669  *	A carrier loss (virtual or otherwise) has occurred on this like
670  *	schedule a hangup sequence to run after this event.
671  */
672 
673 void tty_hangup(struct tty_struct *tty)
674 {
675 #ifdef TTY_DEBUG_HANGUP
676 	char	buf[64];
677 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
678 #endif
679 	schedule_work(&tty->hangup_work);
680 }
681 
682 EXPORT_SYMBOL(tty_hangup);
683 
684 /**
685  *	tty_vhangup		-	process vhangup
686  *	@tty: tty to hangup
687  *
688  *	The user has asked via system call for the terminal to be hung up.
689  *	We do this synchronously so that when the syscall returns the process
690  *	is complete. That guarantee is necessary for security reasons.
691  */
692 
693 void tty_vhangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696 	char	buf[64];
697 
698 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
699 #endif
700 	__tty_hangup(tty);
701 }
702 
703 EXPORT_SYMBOL(tty_vhangup);
704 
705 
706 /**
707  *	tty_vhangup_self	-	process vhangup for own ctty
708  *
709  *	Perform a vhangup on the current controlling tty
710  */
711 
712 void tty_vhangup_self(void)
713 {
714 	struct tty_struct *tty;
715 
716 	tty = get_current_tty();
717 	if (tty) {
718 		tty_vhangup(tty);
719 		tty_kref_put(tty);
720 	}
721 }
722 
723 /**
724  *	tty_hung_up_p		-	was tty hung up
725  *	@filp: file pointer of tty
726  *
727  *	Return true if the tty has been subject to a vhangup or a carrier
728  *	loss
729  */
730 
731 int tty_hung_up_p(struct file *filp)
732 {
733 	return (filp->f_op == &hung_up_tty_fops);
734 }
735 
736 EXPORT_SYMBOL(tty_hung_up_p);
737 
738 static void session_clear_tty(struct pid *session)
739 {
740 	struct task_struct *p;
741 	do_each_pid_task(session, PIDTYPE_SID, p) {
742 		proc_clear_tty(p);
743 	} while_each_pid_task(session, PIDTYPE_SID, p);
744 }
745 
746 /**
747  *	disassociate_ctty	-	disconnect controlling tty
748  *	@on_exit: true if exiting so need to "hang up" the session
749  *
750  *	This function is typically called only by the session leader, when
751  *	it wants to disassociate itself from its controlling tty.
752  *
753  *	It performs the following functions:
754  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
755  * 	(2)  Clears the tty from being controlling the session
756  * 	(3)  Clears the controlling tty for all processes in the
757  * 		session group.
758  *
759  *	The argument on_exit is set to 1 if called when a process is
760  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
761  *
762  *	Locking:
763  *		BTM is taken for hysterical raisins, and held when
764  *		  called from no_tty().
765  *		  tty_mutex is taken to protect tty
766  *		  ->siglock is taken to protect ->signal/->sighand
767  *		  tasklist_lock is taken to walk process list for sessions
768  *		    ->siglock is taken to protect ->signal/->sighand
769  */
770 
771 void disassociate_ctty(int on_exit)
772 {
773 	struct tty_struct *tty;
774 	struct pid *tty_pgrp = NULL;
775 
776 	if (!current->signal->leader)
777 		return;
778 
779 	tty = get_current_tty();
780 	if (tty) {
781 		tty_pgrp = get_pid(tty->pgrp);
782 		if (on_exit) {
783 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
784 				tty_vhangup(tty);
785 		}
786 		tty_kref_put(tty);
787 	} else if (on_exit) {
788 		struct pid *old_pgrp;
789 		spin_lock_irq(&current->sighand->siglock);
790 		old_pgrp = current->signal->tty_old_pgrp;
791 		current->signal->tty_old_pgrp = NULL;
792 		spin_unlock_irq(&current->sighand->siglock);
793 		if (old_pgrp) {
794 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
795 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
796 			put_pid(old_pgrp);
797 		}
798 		return;
799 	}
800 	if (tty_pgrp) {
801 		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
802 		if (!on_exit)
803 			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
804 		put_pid(tty_pgrp);
805 	}
806 
807 	spin_lock_irq(&current->sighand->siglock);
808 	put_pid(current->signal->tty_old_pgrp);
809 	current->signal->tty_old_pgrp = NULL;
810 	spin_unlock_irq(&current->sighand->siglock);
811 
812 	tty = get_current_tty();
813 	if (tty) {
814 		unsigned long flags;
815 		spin_lock_irqsave(&tty->ctrl_lock, flags);
816 		put_pid(tty->session);
817 		put_pid(tty->pgrp);
818 		tty->session = NULL;
819 		tty->pgrp = NULL;
820 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
821 		tty_kref_put(tty);
822 	} else {
823 #ifdef TTY_DEBUG_HANGUP
824 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
825 		       " = NULL", tty);
826 #endif
827 	}
828 
829 	/* Now clear signal->tty under the lock */
830 	read_lock(&tasklist_lock);
831 	session_clear_tty(task_session(current));
832 	read_unlock(&tasklist_lock);
833 }
834 
835 /**
836  *
837  *	no_tty	- Ensure the current process does not have a controlling tty
838  */
839 void no_tty(void)
840 {
841 	struct task_struct *tsk = current;
842 	tty_lock();
843 	disassociate_ctty(0);
844 	tty_unlock();
845 	proc_clear_tty(tsk);
846 }
847 
848 
849 /**
850  *	stop_tty	-	propagate flow control
851  *	@tty: tty to stop
852  *
853  *	Perform flow control to the driver. For PTY/TTY pairs we
854  *	must also propagate the TIOCKPKT status. May be called
855  *	on an already stopped device and will not re-call the driver
856  *	method.
857  *
858  *	This functionality is used by both the line disciplines for
859  *	halting incoming flow and by the driver. It may therefore be
860  *	called from any context, may be under the tty atomic_write_lock
861  *	but not always.
862  *
863  *	Locking:
864  *		Uses the tty control lock internally
865  */
866 
867 void stop_tty(struct tty_struct *tty)
868 {
869 	unsigned long flags;
870 	spin_lock_irqsave(&tty->ctrl_lock, flags);
871 	if (tty->stopped) {
872 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
873 		return;
874 	}
875 	tty->stopped = 1;
876 	if (tty->link && tty->link->packet) {
877 		tty->ctrl_status &= ~TIOCPKT_START;
878 		tty->ctrl_status |= TIOCPKT_STOP;
879 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
880 	}
881 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
882 	if (tty->ops->stop)
883 		(tty->ops->stop)(tty);
884 }
885 
886 EXPORT_SYMBOL(stop_tty);
887 
888 /**
889  *	start_tty	-	propagate flow control
890  *	@tty: tty to start
891  *
892  *	Start a tty that has been stopped if at all possible. Perform
893  *	any necessary wakeups and propagate the TIOCPKT status. If this
894  *	is the tty was previous stopped and is being started then the
895  *	driver start method is invoked and the line discipline woken.
896  *
897  *	Locking:
898  *		ctrl_lock
899  */
900 
901 void start_tty(struct tty_struct *tty)
902 {
903 	unsigned long flags;
904 	spin_lock_irqsave(&tty->ctrl_lock, flags);
905 	if (!tty->stopped || tty->flow_stopped) {
906 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
907 		return;
908 	}
909 	tty->stopped = 0;
910 	if (tty->link && tty->link->packet) {
911 		tty->ctrl_status &= ~TIOCPKT_STOP;
912 		tty->ctrl_status |= TIOCPKT_START;
913 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
914 	}
915 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
916 	if (tty->ops->start)
917 		(tty->ops->start)(tty);
918 	/* If we have a running line discipline it may need kicking */
919 	tty_wakeup(tty);
920 }
921 
922 EXPORT_SYMBOL(start_tty);
923 
924 /**
925  *	tty_read	-	read method for tty device files
926  *	@file: pointer to tty file
927  *	@buf: user buffer
928  *	@count: size of user buffer
929  *	@ppos: unused
930  *
931  *	Perform the read system call function on this terminal device. Checks
932  *	for hung up devices before calling the line discipline method.
933  *
934  *	Locking:
935  *		Locks the line discipline internally while needed. Multiple
936  *	read calls may be outstanding in parallel.
937  */
938 
939 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
940 			loff_t *ppos)
941 {
942 	int i;
943 	struct inode *inode = file->f_path.dentry->d_inode;
944 	struct tty_struct *tty = file_tty(file);
945 	struct tty_ldisc *ld;
946 
947 	if (tty_paranoia_check(tty, inode, "tty_read"))
948 		return -EIO;
949 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
950 		return -EIO;
951 
952 	/* We want to wait for the line discipline to sort out in this
953 	   situation */
954 	ld = tty_ldisc_ref_wait(tty);
955 	if (ld->ops->read)
956 		i = (ld->ops->read)(tty, file, buf, count);
957 	else
958 		i = -EIO;
959 	tty_ldisc_deref(ld);
960 	if (i > 0)
961 		inode->i_atime = current_fs_time(inode->i_sb);
962 	return i;
963 }
964 
965 void tty_write_unlock(struct tty_struct *tty)
966 	__releases(&tty->atomic_write_lock)
967 {
968 	mutex_unlock(&tty->atomic_write_lock);
969 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
970 }
971 
972 int tty_write_lock(struct tty_struct *tty, int ndelay)
973 	__acquires(&tty->atomic_write_lock)
974 {
975 	if (!mutex_trylock(&tty->atomic_write_lock)) {
976 		if (ndelay)
977 			return -EAGAIN;
978 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
979 			return -ERESTARTSYS;
980 	}
981 	return 0;
982 }
983 
984 /*
985  * Split writes up in sane blocksizes to avoid
986  * denial-of-service type attacks
987  */
988 static inline ssize_t do_tty_write(
989 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
990 	struct tty_struct *tty,
991 	struct file *file,
992 	const char __user *buf,
993 	size_t count)
994 {
995 	ssize_t ret, written = 0;
996 	unsigned int chunk;
997 
998 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
999 	if (ret < 0)
1000 		return ret;
1001 
1002 	/*
1003 	 * We chunk up writes into a temporary buffer. This
1004 	 * simplifies low-level drivers immensely, since they
1005 	 * don't have locking issues and user mode accesses.
1006 	 *
1007 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008 	 * big chunk-size..
1009 	 *
1010 	 * The default chunk-size is 2kB, because the NTTY
1011 	 * layer has problems with bigger chunks. It will
1012 	 * claim to be able to handle more characters than
1013 	 * it actually does.
1014 	 *
1015 	 * FIXME: This can probably go away now except that 64K chunks
1016 	 * are too likely to fail unless switched to vmalloc...
1017 	 */
1018 	chunk = 2048;
1019 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020 		chunk = 65536;
1021 	if (count < chunk)
1022 		chunk = count;
1023 
1024 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025 	if (tty->write_cnt < chunk) {
1026 		unsigned char *buf_chunk;
1027 
1028 		if (chunk < 1024)
1029 			chunk = 1024;
1030 
1031 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032 		if (!buf_chunk) {
1033 			ret = -ENOMEM;
1034 			goto out;
1035 		}
1036 		kfree(tty->write_buf);
1037 		tty->write_cnt = chunk;
1038 		tty->write_buf = buf_chunk;
1039 	}
1040 
1041 	/* Do the write .. */
1042 	for (;;) {
1043 		size_t size = count;
1044 		if (size > chunk)
1045 			size = chunk;
1046 		ret = -EFAULT;
1047 		if (copy_from_user(tty->write_buf, buf, size))
1048 			break;
1049 		ret = write(tty, file, tty->write_buf, size);
1050 		if (ret <= 0)
1051 			break;
1052 		written += ret;
1053 		buf += ret;
1054 		count -= ret;
1055 		if (!count)
1056 			break;
1057 		ret = -ERESTARTSYS;
1058 		if (signal_pending(current))
1059 			break;
1060 		cond_resched();
1061 	}
1062 	if (written) {
1063 		struct inode *inode = file->f_path.dentry->d_inode;
1064 		inode->i_mtime = current_fs_time(inode->i_sb);
1065 		ret = written;
1066 	}
1067 out:
1068 	tty_write_unlock(tty);
1069 	return ret;
1070 }
1071 
1072 /**
1073  * tty_write_message - write a message to a certain tty, not just the console.
1074  * @tty: the destination tty_struct
1075  * @msg: the message to write
1076  *
1077  * This is used for messages that need to be redirected to a specific tty.
1078  * We don't put it into the syslog queue right now maybe in the future if
1079  * really needed.
1080  *
1081  * We must still hold the BTM and test the CLOSING flag for the moment.
1082  */
1083 
1084 void tty_write_message(struct tty_struct *tty, char *msg)
1085 {
1086 	if (tty) {
1087 		mutex_lock(&tty->atomic_write_lock);
1088 		tty_lock();
1089 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090 			tty_unlock();
1091 			tty->ops->write(tty, msg, strlen(msg));
1092 		} else
1093 			tty_unlock();
1094 		tty_write_unlock(tty);
1095 	}
1096 	return;
1097 }
1098 
1099 
1100 /**
1101  *	tty_write		-	write method for tty device file
1102  *	@file: tty file pointer
1103  *	@buf: user data to write
1104  *	@count: bytes to write
1105  *	@ppos: unused
1106  *
1107  *	Write data to a tty device via the line discipline.
1108  *
1109  *	Locking:
1110  *		Locks the line discipline as required
1111  *		Writes to the tty driver are serialized by the atomic_write_lock
1112  *	and are then processed in chunks to the device. The line discipline
1113  *	write method will not be invoked in parallel for each device.
1114  */
1115 
1116 static ssize_t tty_write(struct file *file, const char __user *buf,
1117 						size_t count, loff_t *ppos)
1118 {
1119 	struct inode *inode = file->f_path.dentry->d_inode;
1120 	struct tty_struct *tty = file_tty(file);
1121  	struct tty_ldisc *ld;
1122 	ssize_t ret;
1123 
1124 	if (tty_paranoia_check(tty, inode, "tty_write"))
1125 		return -EIO;
1126 	if (!tty || !tty->ops->write ||
1127 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1128 			return -EIO;
1129 	/* Short term debug to catch buggy drivers */
1130 	if (tty->ops->write_room == NULL)
1131 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132 			tty->driver->name);
1133 	ld = tty_ldisc_ref_wait(tty);
1134 	if (!ld->ops->write)
1135 		ret = -EIO;
1136 	else
1137 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138 	tty_ldisc_deref(ld);
1139 	return ret;
1140 }
1141 
1142 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143 						size_t count, loff_t *ppos)
1144 {
1145 	struct file *p = NULL;
1146 
1147 	spin_lock(&redirect_lock);
1148 	if (redirect) {
1149 		get_file(redirect);
1150 		p = redirect;
1151 	}
1152 	spin_unlock(&redirect_lock);
1153 
1154 	if (p) {
1155 		ssize_t res;
1156 		res = vfs_write(p, buf, count, &p->f_pos);
1157 		fput(p);
1158 		return res;
1159 	}
1160 	return tty_write(file, buf, count, ppos);
1161 }
1162 
1163 static char ptychar[] = "pqrstuvwxyzabcde";
1164 
1165 /**
1166  *	pty_line_name	-	generate name for a pty
1167  *	@driver: the tty driver in use
1168  *	@index: the minor number
1169  *	@p: output buffer of at least 6 bytes
1170  *
1171  *	Generate a name from a driver reference and write it to the output
1172  *	buffer.
1173  *
1174  *	Locking: None
1175  */
1176 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177 {
1178 	int i = index + driver->name_base;
1179 	/* ->name is initialized to "ttyp", but "tty" is expected */
1180 	sprintf(p, "%s%c%x",
1181 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182 		ptychar[i >> 4 & 0xf], i & 0xf);
1183 }
1184 
1185 /**
1186  *	tty_line_name	-	generate name for a tty
1187  *	@driver: the tty driver in use
1188  *	@index: the minor number
1189  *	@p: output buffer of at least 7 bytes
1190  *
1191  *	Generate a name from a driver reference and write it to the output
1192  *	buffer.
1193  *
1194  *	Locking: None
1195  */
1196 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197 {
1198 	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1199 }
1200 
1201 /**
1202  *	tty_driver_lookup_tty() - find an existing tty, if any
1203  *	@driver: the driver for the tty
1204  *	@idx:	 the minor number
1205  *
1206  *	Return the tty, if found or ERR_PTR() otherwise.
1207  *
1208  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1209  *	be held until the 'fast-open' is also done. Will change once we
1210  *	have refcounting in the driver and per driver locking
1211  */
1212 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213 		struct inode *inode, int idx)
1214 {
1215 	struct tty_struct *tty;
1216 
1217 	if (driver->ops->lookup)
1218 		return driver->ops->lookup(driver, inode, idx);
1219 
1220 	tty = driver->ttys[idx];
1221 	return tty;
1222 }
1223 
1224 /**
1225  *	tty_init_termios	-  helper for termios setup
1226  *	@tty: the tty to set up
1227  *
1228  *	Initialise the termios structures for this tty. Thus runs under
1229  *	the tty_mutex currently so we can be relaxed about ordering.
1230  */
1231 
1232 int tty_init_termios(struct tty_struct *tty)
1233 {
1234 	struct ktermios *tp;
1235 	int idx = tty->index;
1236 
1237 	tp = tty->driver->termios[idx];
1238 	if (tp == NULL) {
1239 		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240 		if (tp == NULL)
1241 			return -ENOMEM;
1242 		memcpy(tp, &tty->driver->init_termios,
1243 						sizeof(struct ktermios));
1244 		tty->driver->termios[idx] = tp;
1245 	}
1246 	tty->termios = tp;
1247 	tty->termios_locked = tp + 1;
1248 
1249 	/* Compatibility until drivers always set this */
1250 	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251 	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252 	return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(tty_init_termios);
1255 
1256 /**
1257  *	tty_driver_install_tty() - install a tty entry in the driver
1258  *	@driver: the driver for the tty
1259  *	@tty: the tty
1260  *
1261  *	Install a tty object into the driver tables. The tty->index field
1262  *	will be set by the time this is called. This method is responsible
1263  *	for ensuring any need additional structures are allocated and
1264  *	configured.
1265  *
1266  *	Locking: tty_mutex for now
1267  */
1268 static int tty_driver_install_tty(struct tty_driver *driver,
1269 						struct tty_struct *tty)
1270 {
1271 	int idx = tty->index;
1272 	int ret;
1273 
1274 	if (driver->ops->install) {
1275 		ret = driver->ops->install(driver, tty);
1276 		return ret;
1277 	}
1278 
1279 	if (tty_init_termios(tty) == 0) {
1280 		tty_driver_kref_get(driver);
1281 		tty->count++;
1282 		driver->ttys[idx] = tty;
1283 		return 0;
1284 	}
1285 	return -ENOMEM;
1286 }
1287 
1288 /**
1289  *	tty_driver_remove_tty() - remove a tty from the driver tables
1290  *	@driver: the driver for the tty
1291  *	@idx:	 the minor number
1292  *
1293  *	Remvoe a tty object from the driver tables. The tty->index field
1294  *	will be set by the time this is called.
1295  *
1296  *	Locking: tty_mutex for now
1297  */
1298 static void tty_driver_remove_tty(struct tty_driver *driver,
1299 						struct tty_struct *tty)
1300 {
1301 	if (driver->ops->remove)
1302 		driver->ops->remove(driver, tty);
1303 	else
1304 		driver->ttys[tty->index] = NULL;
1305 }
1306 
1307 /*
1308  * 	tty_reopen()	- fast re-open of an open tty
1309  * 	@tty	- the tty to open
1310  *
1311  *	Return 0 on success, -errno on error.
1312  *
1313  *	Locking: tty_mutex must be held from the time the tty was found
1314  *		 till this open completes.
1315  */
1316 static int tty_reopen(struct tty_struct *tty)
1317 {
1318 	struct tty_driver *driver = tty->driver;
1319 
1320 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1321 			test_bit(TTY_HUPPING, &tty->flags) ||
1322 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1323 		return -EIO;
1324 
1325 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1326 	    driver->subtype == PTY_TYPE_MASTER) {
1327 		/*
1328 		 * special case for PTY masters: only one open permitted,
1329 		 * and the slave side open count is incremented as well.
1330 		 */
1331 		if (tty->count)
1332 			return -EIO;
1333 
1334 		tty->link->count++;
1335 	}
1336 	tty->count++;
1337 	tty->driver = driver; /* N.B. why do this every time?? */
1338 
1339 	mutex_lock(&tty->ldisc_mutex);
1340 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1341 	mutex_unlock(&tty->ldisc_mutex);
1342 
1343 	return 0;
1344 }
1345 
1346 /**
1347  *	tty_init_dev		-	initialise a tty device
1348  *	@driver: tty driver we are opening a device on
1349  *	@idx: device index
1350  *	@ret_tty: returned tty structure
1351  *	@first_ok: ok to open a new device (used by ptmx)
1352  *
1353  *	Prepare a tty device. This may not be a "new" clean device but
1354  *	could also be an active device. The pty drivers require special
1355  *	handling because of this.
1356  *
1357  *	Locking:
1358  *		The function is called under the tty_mutex, which
1359  *	protects us from the tty struct or driver itself going away.
1360  *
1361  *	On exit the tty device has the line discipline attached and
1362  *	a reference count of 1. If a pair was created for pty/tty use
1363  *	and the other was a pty master then it too has a reference count of 1.
1364  *
1365  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1366  * failed open.  The new code protects the open with a mutex, so it's
1367  * really quite straightforward.  The mutex locking can probably be
1368  * relaxed for the (most common) case of reopening a tty.
1369  */
1370 
1371 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1372 								int first_ok)
1373 {
1374 	struct tty_struct *tty;
1375 	int retval;
1376 
1377 	/* Check if pty master is being opened multiple times */
1378 	if (driver->subtype == PTY_TYPE_MASTER &&
1379 		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1380 		return ERR_PTR(-EIO);
1381 	}
1382 
1383 	/*
1384 	 * First time open is complex, especially for PTY devices.
1385 	 * This code guarantees that either everything succeeds and the
1386 	 * TTY is ready for operation, or else the table slots are vacated
1387 	 * and the allocated memory released.  (Except that the termios
1388 	 * and locked termios may be retained.)
1389 	 */
1390 
1391 	if (!try_module_get(driver->owner))
1392 		return ERR_PTR(-ENODEV);
1393 
1394 	tty = alloc_tty_struct();
1395 	if (!tty) {
1396 		retval = -ENOMEM;
1397 		goto err_module_put;
1398 	}
1399 	initialize_tty_struct(tty, driver, idx);
1400 
1401 	retval = tty_driver_install_tty(driver, tty);
1402 	if (retval < 0)
1403 		goto err_deinit_tty;
1404 
1405 	/*
1406 	 * Structures all installed ... call the ldisc open routines.
1407 	 * If we fail here just call release_tty to clean up.  No need
1408 	 * to decrement the use counts, as release_tty doesn't care.
1409 	 */
1410 	retval = tty_ldisc_setup(tty, tty->link);
1411 	if (retval)
1412 		goto err_release_tty;
1413 	return tty;
1414 
1415 err_deinit_tty:
1416 	deinitialize_tty_struct(tty);
1417 	free_tty_struct(tty);
1418 err_module_put:
1419 	module_put(driver->owner);
1420 	return ERR_PTR(retval);
1421 
1422 	/* call the tty release_tty routine to clean out this slot */
1423 err_release_tty:
1424 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1425 				 "clearing slot %d\n", idx);
1426 	release_tty(tty, idx);
1427 	return ERR_PTR(retval);
1428 }
1429 
1430 void tty_free_termios(struct tty_struct *tty)
1431 {
1432 	struct ktermios *tp;
1433 	int idx = tty->index;
1434 	/* Kill this flag and push into drivers for locking etc */
1435 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1436 		/* FIXME: Locking on ->termios array */
1437 		tp = tty->termios;
1438 		tty->driver->termios[idx] = NULL;
1439 		kfree(tp);
1440 	}
1441 }
1442 EXPORT_SYMBOL(tty_free_termios);
1443 
1444 void tty_shutdown(struct tty_struct *tty)
1445 {
1446 	tty_driver_remove_tty(tty->driver, tty);
1447 	tty_free_termios(tty);
1448 }
1449 EXPORT_SYMBOL(tty_shutdown);
1450 
1451 /**
1452  *	release_one_tty		-	release tty structure memory
1453  *	@kref: kref of tty we are obliterating
1454  *
1455  *	Releases memory associated with a tty structure, and clears out the
1456  *	driver table slots. This function is called when a device is no longer
1457  *	in use. It also gets called when setup of a device fails.
1458  *
1459  *	Locking:
1460  *		tty_mutex - sometimes only
1461  *		takes the file list lock internally when working on the list
1462  *	of ttys that the driver keeps.
1463  *
1464  *	This method gets called from a work queue so that the driver private
1465  *	cleanup ops can sleep (needed for USB at least)
1466  */
1467 static void release_one_tty(struct work_struct *work)
1468 {
1469 	struct tty_struct *tty =
1470 		container_of(work, struct tty_struct, hangup_work);
1471 	struct tty_driver *driver = tty->driver;
1472 
1473 	if (tty->ops->cleanup)
1474 		tty->ops->cleanup(tty);
1475 
1476 	tty->magic = 0;
1477 	tty_driver_kref_put(driver);
1478 	module_put(driver->owner);
1479 
1480 	spin_lock(&tty_files_lock);
1481 	list_del_init(&tty->tty_files);
1482 	spin_unlock(&tty_files_lock);
1483 
1484 	put_pid(tty->pgrp);
1485 	put_pid(tty->session);
1486 	free_tty_struct(tty);
1487 }
1488 
1489 static void queue_release_one_tty(struct kref *kref)
1490 {
1491 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1492 
1493 	if (tty->ops->shutdown)
1494 		tty->ops->shutdown(tty);
1495 	else
1496 		tty_shutdown(tty);
1497 
1498 	/* The hangup queue is now free so we can reuse it rather than
1499 	   waste a chunk of memory for each port */
1500 	INIT_WORK(&tty->hangup_work, release_one_tty);
1501 	schedule_work(&tty->hangup_work);
1502 }
1503 
1504 /**
1505  *	tty_kref_put		-	release a tty kref
1506  *	@tty: tty device
1507  *
1508  *	Release a reference to a tty device and if need be let the kref
1509  *	layer destruct the object for us
1510  */
1511 
1512 void tty_kref_put(struct tty_struct *tty)
1513 {
1514 	if (tty)
1515 		kref_put(&tty->kref, queue_release_one_tty);
1516 }
1517 EXPORT_SYMBOL(tty_kref_put);
1518 
1519 /**
1520  *	release_tty		-	release tty structure memory
1521  *
1522  *	Release both @tty and a possible linked partner (think pty pair),
1523  *	and decrement the refcount of the backing module.
1524  *
1525  *	Locking:
1526  *		tty_mutex - sometimes only
1527  *		takes the file list lock internally when working on the list
1528  *	of ttys that the driver keeps.
1529  *		FIXME: should we require tty_mutex is held here ??
1530  *
1531  */
1532 static void release_tty(struct tty_struct *tty, int idx)
1533 {
1534 	/* This should always be true but check for the moment */
1535 	WARN_ON(tty->index != idx);
1536 
1537 	if (tty->link)
1538 		tty_kref_put(tty->link);
1539 	tty_kref_put(tty);
1540 }
1541 
1542 /**
1543  *	tty_release		-	vfs callback for close
1544  *	@inode: inode of tty
1545  *	@filp: file pointer for handle to tty
1546  *
1547  *	Called the last time each file handle is closed that references
1548  *	this tty. There may however be several such references.
1549  *
1550  *	Locking:
1551  *		Takes bkl. See tty_release_dev
1552  *
1553  * Even releasing the tty structures is a tricky business.. We have
1554  * to be very careful that the structures are all released at the
1555  * same time, as interrupts might otherwise get the wrong pointers.
1556  *
1557  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1558  * lead to double frees or releasing memory still in use.
1559  */
1560 
1561 int tty_release(struct inode *inode, struct file *filp)
1562 {
1563 	struct tty_struct *tty = file_tty(filp);
1564 	struct tty_struct *o_tty;
1565 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1566 	int	devpts;
1567 	int	idx;
1568 	char	buf[64];
1569 
1570 	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1571 		return 0;
1572 
1573 	tty_lock();
1574 	check_tty_count(tty, "tty_release_dev");
1575 
1576 	__tty_fasync(-1, filp, 0);
1577 
1578 	idx = tty->index;
1579 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1580 		      tty->driver->subtype == PTY_TYPE_MASTER);
1581 	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1582 	o_tty = tty->link;
1583 
1584 #ifdef TTY_PARANOIA_CHECK
1585 	if (idx < 0 || idx >= tty->driver->num) {
1586 		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1587 				  "free (%s)\n", tty->name);
1588 		tty_unlock();
1589 		return 0;
1590 	}
1591 	if (!devpts) {
1592 		if (tty != tty->driver->ttys[idx]) {
1593 			tty_unlock();
1594 			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1595 			       "for (%s)\n", idx, tty->name);
1596 			return 0;
1597 		}
1598 		if (tty->termios != tty->driver->termios[idx]) {
1599 			tty_unlock();
1600 			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1601 			       "for (%s)\n",
1602 			       idx, tty->name);
1603 			return 0;
1604 		}
1605 	}
1606 #endif
1607 
1608 #ifdef TTY_DEBUG_HANGUP
1609 	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1610 	       tty_name(tty, buf), tty->count);
1611 #endif
1612 
1613 #ifdef TTY_PARANOIA_CHECK
1614 	if (tty->driver->other &&
1615 	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1616 		if (o_tty != tty->driver->other->ttys[idx]) {
1617 			tty_unlock();
1618 			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1619 					  "not o_tty for (%s)\n",
1620 			       idx, tty->name);
1621 			return 0 ;
1622 		}
1623 		if (o_tty->termios != tty->driver->other->termios[idx]) {
1624 			tty_unlock();
1625 			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1626 					  "not o_termios for (%s)\n",
1627 			       idx, tty->name);
1628 			return 0;
1629 		}
1630 		if (o_tty->link != tty) {
1631 			tty_unlock();
1632 			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1633 			return 0;
1634 		}
1635 	}
1636 #endif
1637 	if (tty->ops->close)
1638 		tty->ops->close(tty, filp);
1639 
1640 	tty_unlock();
1641 	/*
1642 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1643 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1644 	 * wait queues and kick everyone out _before_ actually starting to
1645 	 * close.  This ensures that we won't block while releasing the tty
1646 	 * structure.
1647 	 *
1648 	 * The test for the o_tty closing is necessary, since the master and
1649 	 * slave sides may close in any order.  If the slave side closes out
1650 	 * first, its count will be one, since the master side holds an open.
1651 	 * Thus this test wouldn't be triggered at the time the slave closes,
1652 	 * so we do it now.
1653 	 *
1654 	 * Note that it's possible for the tty to be opened again while we're
1655 	 * flushing out waiters.  By recalculating the closing flags before
1656 	 * each iteration we avoid any problems.
1657 	 */
1658 	while (1) {
1659 		/* Guard against races with tty->count changes elsewhere and
1660 		   opens on /dev/tty */
1661 
1662 		mutex_lock(&tty_mutex);
1663 		tty_lock();
1664 		tty_closing = tty->count <= 1;
1665 		o_tty_closing = o_tty &&
1666 			(o_tty->count <= (pty_master ? 1 : 0));
1667 		do_sleep = 0;
1668 
1669 		if (tty_closing) {
1670 			if (waitqueue_active(&tty->read_wait)) {
1671 				wake_up_poll(&tty->read_wait, POLLIN);
1672 				do_sleep++;
1673 			}
1674 			if (waitqueue_active(&tty->write_wait)) {
1675 				wake_up_poll(&tty->write_wait, POLLOUT);
1676 				do_sleep++;
1677 			}
1678 		}
1679 		if (o_tty_closing) {
1680 			if (waitqueue_active(&o_tty->read_wait)) {
1681 				wake_up_poll(&o_tty->read_wait, POLLIN);
1682 				do_sleep++;
1683 			}
1684 			if (waitqueue_active(&o_tty->write_wait)) {
1685 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1686 				do_sleep++;
1687 			}
1688 		}
1689 		if (!do_sleep)
1690 			break;
1691 
1692 		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1693 				    "active!\n", tty_name(tty, buf));
1694 		tty_unlock();
1695 		mutex_unlock(&tty_mutex);
1696 		schedule();
1697 	}
1698 
1699 	/*
1700 	 * The closing flags are now consistent with the open counts on
1701 	 * both sides, and we've completed the last operation that could
1702 	 * block, so it's safe to proceed with closing.
1703 	 */
1704 	if (pty_master) {
1705 		if (--o_tty->count < 0) {
1706 			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1707 					    "(%d) for %s\n",
1708 			       o_tty->count, tty_name(o_tty, buf));
1709 			o_tty->count = 0;
1710 		}
1711 	}
1712 	if (--tty->count < 0) {
1713 		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1714 		       tty->count, tty_name(tty, buf));
1715 		tty->count = 0;
1716 	}
1717 
1718 	/*
1719 	 * We've decremented tty->count, so we need to remove this file
1720 	 * descriptor off the tty->tty_files list; this serves two
1721 	 * purposes:
1722 	 *  - check_tty_count sees the correct number of file descriptors
1723 	 *    associated with this tty.
1724 	 *  - do_tty_hangup no longer sees this file descriptor as
1725 	 *    something that needs to be handled for hangups.
1726 	 */
1727 	tty_del_file(filp);
1728 
1729 	/*
1730 	 * Perform some housekeeping before deciding whether to return.
1731 	 *
1732 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1733 	 * case of a pty we may have to wait around for the other side
1734 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1735 	 */
1736 	if (tty_closing)
1737 		set_bit(TTY_CLOSING, &tty->flags);
1738 	if (o_tty_closing)
1739 		set_bit(TTY_CLOSING, &o_tty->flags);
1740 
1741 	/*
1742 	 * If _either_ side is closing, make sure there aren't any
1743 	 * processes that still think tty or o_tty is their controlling
1744 	 * tty.
1745 	 */
1746 	if (tty_closing || o_tty_closing) {
1747 		read_lock(&tasklist_lock);
1748 		session_clear_tty(tty->session);
1749 		if (o_tty)
1750 			session_clear_tty(o_tty->session);
1751 		read_unlock(&tasklist_lock);
1752 	}
1753 
1754 	mutex_unlock(&tty_mutex);
1755 
1756 	/* check whether both sides are closing ... */
1757 	if (!tty_closing || (o_tty && !o_tty_closing)) {
1758 		tty_unlock();
1759 		return 0;
1760 	}
1761 
1762 #ifdef TTY_DEBUG_HANGUP
1763 	printk(KERN_DEBUG "freeing tty structure...");
1764 #endif
1765 	/*
1766 	 * Ask the line discipline code to release its structures
1767 	 */
1768 	tty_ldisc_release(tty, o_tty);
1769 	/*
1770 	 * The release_tty function takes care of the details of clearing
1771 	 * the slots and preserving the termios structure.
1772 	 */
1773 	release_tty(tty, idx);
1774 
1775 	/* Make this pty number available for reallocation */
1776 	if (devpts)
1777 		devpts_kill_index(inode, idx);
1778 	tty_unlock();
1779 	return 0;
1780 }
1781 
1782 /**
1783  *	tty_open		-	open a tty device
1784  *	@inode: inode of device file
1785  *	@filp: file pointer to tty
1786  *
1787  *	tty_open and tty_release keep up the tty count that contains the
1788  *	number of opens done on a tty. We cannot use the inode-count, as
1789  *	different inodes might point to the same tty.
1790  *
1791  *	Open-counting is needed for pty masters, as well as for keeping
1792  *	track of serial lines: DTR is dropped when the last close happens.
1793  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1794  *
1795  *	The termios state of a pty is reset on first open so that
1796  *	settings don't persist across reuse.
1797  *
1798  *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1799  *		 tty->count should protect the rest.
1800  *		 ->siglock protects ->signal/->sighand
1801  */
1802 
1803 static int tty_open(struct inode *inode, struct file *filp)
1804 {
1805 	struct tty_struct *tty = NULL;
1806 	int noctty, retval;
1807 	struct tty_driver *driver;
1808 	int index;
1809 	dev_t device = inode->i_rdev;
1810 	unsigned saved_flags = filp->f_flags;
1811 
1812 	nonseekable_open(inode, filp);
1813 
1814 retry_open:
1815 	noctty = filp->f_flags & O_NOCTTY;
1816 	index  = -1;
1817 	retval = 0;
1818 
1819 	mutex_lock(&tty_mutex);
1820 	tty_lock();
1821 
1822 	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1823 		tty = get_current_tty();
1824 		if (!tty) {
1825 			tty_unlock();
1826 			mutex_unlock(&tty_mutex);
1827 			return -ENXIO;
1828 		}
1829 		driver = tty_driver_kref_get(tty->driver);
1830 		index = tty->index;
1831 		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1832 		/* noctty = 1; */
1833 		/* FIXME: Should we take a driver reference ? */
1834 		tty_kref_put(tty);
1835 		goto got_driver;
1836 	}
1837 #ifdef CONFIG_VT
1838 	if (device == MKDEV(TTY_MAJOR, 0)) {
1839 		extern struct tty_driver *console_driver;
1840 		driver = tty_driver_kref_get(console_driver);
1841 		index = fg_console;
1842 		noctty = 1;
1843 		goto got_driver;
1844 	}
1845 #endif
1846 	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1847 		struct tty_driver *console_driver = console_device(&index);
1848 		if (console_driver) {
1849 			driver = tty_driver_kref_get(console_driver);
1850 			if (driver) {
1851 				/* Don't let /dev/console block */
1852 				filp->f_flags |= O_NONBLOCK;
1853 				noctty = 1;
1854 				goto got_driver;
1855 			}
1856 		}
1857 		tty_unlock();
1858 		mutex_unlock(&tty_mutex);
1859 		return -ENODEV;
1860 	}
1861 
1862 	driver = get_tty_driver(device, &index);
1863 	if (!driver) {
1864 		tty_unlock();
1865 		mutex_unlock(&tty_mutex);
1866 		return -ENODEV;
1867 	}
1868 got_driver:
1869 	if (!tty) {
1870 		/* check whether we're reopening an existing tty */
1871 		tty = tty_driver_lookup_tty(driver, inode, index);
1872 
1873 		if (IS_ERR(tty)) {
1874 			tty_unlock();
1875 			mutex_unlock(&tty_mutex);
1876 			return PTR_ERR(tty);
1877 		}
1878 	}
1879 
1880 	if (tty) {
1881 		retval = tty_reopen(tty);
1882 		if (retval)
1883 			tty = ERR_PTR(retval);
1884 	} else
1885 		tty = tty_init_dev(driver, index, 0);
1886 
1887 	mutex_unlock(&tty_mutex);
1888 	tty_driver_kref_put(driver);
1889 	if (IS_ERR(tty)) {
1890 		tty_unlock();
1891 		return PTR_ERR(tty);
1892 	}
1893 
1894 	retval = tty_add_file(tty, filp);
1895 	if (retval) {
1896 		tty_unlock();
1897 		tty_release(inode, filp);
1898 		return retval;
1899 	}
1900 
1901 	check_tty_count(tty, "tty_open");
1902 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1903 	    tty->driver->subtype == PTY_TYPE_MASTER)
1904 		noctty = 1;
1905 #ifdef TTY_DEBUG_HANGUP
1906 	printk(KERN_DEBUG "opening %s...", tty->name);
1907 #endif
1908 	if (tty->ops->open)
1909 		retval = tty->ops->open(tty, filp);
1910 	else
1911 		retval = -ENODEV;
1912 	filp->f_flags = saved_flags;
1913 
1914 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1915 						!capable(CAP_SYS_ADMIN))
1916 		retval = -EBUSY;
1917 
1918 	if (retval) {
1919 #ifdef TTY_DEBUG_HANGUP
1920 		printk(KERN_DEBUG "error %d in opening %s...", retval,
1921 		       tty->name);
1922 #endif
1923 		tty_unlock(); /* need to call tty_release without BTM */
1924 		tty_release(inode, filp);
1925 		if (retval != -ERESTARTSYS)
1926 			return retval;
1927 
1928 		if (signal_pending(current))
1929 			return retval;
1930 
1931 		schedule();
1932 		/*
1933 		 * Need to reset f_op in case a hangup happened.
1934 		 */
1935 		tty_lock();
1936 		if (filp->f_op == &hung_up_tty_fops)
1937 			filp->f_op = &tty_fops;
1938 		tty_unlock();
1939 		goto retry_open;
1940 	}
1941 	tty_unlock();
1942 
1943 
1944 	mutex_lock(&tty_mutex);
1945 	tty_lock();
1946 	spin_lock_irq(&current->sighand->siglock);
1947 	if (!noctty &&
1948 	    current->signal->leader &&
1949 	    !current->signal->tty &&
1950 	    tty->session == NULL)
1951 		__proc_set_tty(current, tty);
1952 	spin_unlock_irq(&current->sighand->siglock);
1953 	tty_unlock();
1954 	mutex_unlock(&tty_mutex);
1955 	return 0;
1956 }
1957 
1958 
1959 
1960 /**
1961  *	tty_poll	-	check tty status
1962  *	@filp: file being polled
1963  *	@wait: poll wait structures to update
1964  *
1965  *	Call the line discipline polling method to obtain the poll
1966  *	status of the device.
1967  *
1968  *	Locking: locks called line discipline but ldisc poll method
1969  *	may be re-entered freely by other callers.
1970  */
1971 
1972 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1973 {
1974 	struct tty_struct *tty = file_tty(filp);
1975 	struct tty_ldisc *ld;
1976 	int ret = 0;
1977 
1978 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1979 		return 0;
1980 
1981 	ld = tty_ldisc_ref_wait(tty);
1982 	if (ld->ops->poll)
1983 		ret = (ld->ops->poll)(tty, filp, wait);
1984 	tty_ldisc_deref(ld);
1985 	return ret;
1986 }
1987 
1988 static int __tty_fasync(int fd, struct file *filp, int on)
1989 {
1990 	struct tty_struct *tty = file_tty(filp);
1991 	unsigned long flags;
1992 	int retval = 0;
1993 
1994 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1995 		goto out;
1996 
1997 	retval = fasync_helper(fd, filp, on, &tty->fasync);
1998 	if (retval <= 0)
1999 		goto out;
2000 
2001 	if (on) {
2002 		enum pid_type type;
2003 		struct pid *pid;
2004 		if (!waitqueue_active(&tty->read_wait))
2005 			tty->minimum_to_wake = 1;
2006 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2007 		if (tty->pgrp) {
2008 			pid = tty->pgrp;
2009 			type = PIDTYPE_PGID;
2010 		} else {
2011 			pid = task_pid(current);
2012 			type = PIDTYPE_PID;
2013 		}
2014 		get_pid(pid);
2015 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2016 		retval = __f_setown(filp, pid, type, 0);
2017 		put_pid(pid);
2018 		if (retval)
2019 			goto out;
2020 	} else {
2021 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2022 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2023 	}
2024 	retval = 0;
2025 out:
2026 	return retval;
2027 }
2028 
2029 static int tty_fasync(int fd, struct file *filp, int on)
2030 {
2031 	int retval;
2032 	tty_lock();
2033 	retval = __tty_fasync(fd, filp, on);
2034 	tty_unlock();
2035 	return retval;
2036 }
2037 
2038 /**
2039  *	tiocsti			-	fake input character
2040  *	@tty: tty to fake input into
2041  *	@p: pointer to character
2042  *
2043  *	Fake input to a tty device. Does the necessary locking and
2044  *	input management.
2045  *
2046  *	FIXME: does not honour flow control ??
2047  *
2048  *	Locking:
2049  *		Called functions take tty_ldisc_lock
2050  *		current->signal->tty check is safe without locks
2051  *
2052  *	FIXME: may race normal receive processing
2053  */
2054 
2055 static int tiocsti(struct tty_struct *tty, char __user *p)
2056 {
2057 	char ch, mbz = 0;
2058 	struct tty_ldisc *ld;
2059 
2060 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2061 		return -EPERM;
2062 	if (get_user(ch, p))
2063 		return -EFAULT;
2064 	tty_audit_tiocsti(tty, ch);
2065 	ld = tty_ldisc_ref_wait(tty);
2066 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2067 	tty_ldisc_deref(ld);
2068 	return 0;
2069 }
2070 
2071 /**
2072  *	tiocgwinsz		-	implement window query ioctl
2073  *	@tty; tty
2074  *	@arg: user buffer for result
2075  *
2076  *	Copies the kernel idea of the window size into the user buffer.
2077  *
2078  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2079  *		is consistent.
2080  */
2081 
2082 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2083 {
2084 	int err;
2085 
2086 	mutex_lock(&tty->termios_mutex);
2087 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2088 	mutex_unlock(&tty->termios_mutex);
2089 
2090 	return err ? -EFAULT: 0;
2091 }
2092 
2093 /**
2094  *	tty_do_resize		-	resize event
2095  *	@tty: tty being resized
2096  *	@rows: rows (character)
2097  *	@cols: cols (character)
2098  *
2099  *	Update the termios variables and send the necessary signals to
2100  *	peform a terminal resize correctly
2101  */
2102 
2103 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2104 {
2105 	struct pid *pgrp;
2106 	unsigned long flags;
2107 
2108 	/* Lock the tty */
2109 	mutex_lock(&tty->termios_mutex);
2110 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2111 		goto done;
2112 	/* Get the PID values and reference them so we can
2113 	   avoid holding the tty ctrl lock while sending signals */
2114 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2115 	pgrp = get_pid(tty->pgrp);
2116 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2117 
2118 	if (pgrp)
2119 		kill_pgrp(pgrp, SIGWINCH, 1);
2120 	put_pid(pgrp);
2121 
2122 	tty->winsize = *ws;
2123 done:
2124 	mutex_unlock(&tty->termios_mutex);
2125 	return 0;
2126 }
2127 
2128 /**
2129  *	tiocswinsz		-	implement window size set ioctl
2130  *	@tty; tty side of tty
2131  *	@arg: user buffer for result
2132  *
2133  *	Copies the user idea of the window size to the kernel. Traditionally
2134  *	this is just advisory information but for the Linux console it
2135  *	actually has driver level meaning and triggers a VC resize.
2136  *
2137  *	Locking:
2138  *		Driver dependent. The default do_resize method takes the
2139  *	tty termios mutex and ctrl_lock. The console takes its own lock
2140  *	then calls into the default method.
2141  */
2142 
2143 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2144 {
2145 	struct winsize tmp_ws;
2146 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2147 		return -EFAULT;
2148 
2149 	if (tty->ops->resize)
2150 		return tty->ops->resize(tty, &tmp_ws);
2151 	else
2152 		return tty_do_resize(tty, &tmp_ws);
2153 }
2154 
2155 /**
2156  *	tioccons	-	allow admin to move logical console
2157  *	@file: the file to become console
2158  *
2159  *	Allow the administrator to move the redirected console device
2160  *
2161  *	Locking: uses redirect_lock to guard the redirect information
2162  */
2163 
2164 static int tioccons(struct file *file)
2165 {
2166 	if (!capable(CAP_SYS_ADMIN))
2167 		return -EPERM;
2168 	if (file->f_op->write == redirected_tty_write) {
2169 		struct file *f;
2170 		spin_lock(&redirect_lock);
2171 		f = redirect;
2172 		redirect = NULL;
2173 		spin_unlock(&redirect_lock);
2174 		if (f)
2175 			fput(f);
2176 		return 0;
2177 	}
2178 	spin_lock(&redirect_lock);
2179 	if (redirect) {
2180 		spin_unlock(&redirect_lock);
2181 		return -EBUSY;
2182 	}
2183 	get_file(file);
2184 	redirect = file;
2185 	spin_unlock(&redirect_lock);
2186 	return 0;
2187 }
2188 
2189 /**
2190  *	fionbio		-	non blocking ioctl
2191  *	@file: file to set blocking value
2192  *	@p: user parameter
2193  *
2194  *	Historical tty interfaces had a blocking control ioctl before
2195  *	the generic functionality existed. This piece of history is preserved
2196  *	in the expected tty API of posix OS's.
2197  *
2198  *	Locking: none, the open file handle ensures it won't go away.
2199  */
2200 
2201 static int fionbio(struct file *file, int __user *p)
2202 {
2203 	int nonblock;
2204 
2205 	if (get_user(nonblock, p))
2206 		return -EFAULT;
2207 
2208 	spin_lock(&file->f_lock);
2209 	if (nonblock)
2210 		file->f_flags |= O_NONBLOCK;
2211 	else
2212 		file->f_flags &= ~O_NONBLOCK;
2213 	spin_unlock(&file->f_lock);
2214 	return 0;
2215 }
2216 
2217 /**
2218  *	tiocsctty	-	set controlling tty
2219  *	@tty: tty structure
2220  *	@arg: user argument
2221  *
2222  *	This ioctl is used to manage job control. It permits a session
2223  *	leader to set this tty as the controlling tty for the session.
2224  *
2225  *	Locking:
2226  *		Takes tty_mutex() to protect tty instance
2227  *		Takes tasklist_lock internally to walk sessions
2228  *		Takes ->siglock() when updating signal->tty
2229  */
2230 
2231 static int tiocsctty(struct tty_struct *tty, int arg)
2232 {
2233 	int ret = 0;
2234 	if (current->signal->leader && (task_session(current) == tty->session))
2235 		return ret;
2236 
2237 	mutex_lock(&tty_mutex);
2238 	/*
2239 	 * The process must be a session leader and
2240 	 * not have a controlling tty already.
2241 	 */
2242 	if (!current->signal->leader || current->signal->tty) {
2243 		ret = -EPERM;
2244 		goto unlock;
2245 	}
2246 
2247 	if (tty->session) {
2248 		/*
2249 		 * This tty is already the controlling
2250 		 * tty for another session group!
2251 		 */
2252 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2253 			/*
2254 			 * Steal it away
2255 			 */
2256 			read_lock(&tasklist_lock);
2257 			session_clear_tty(tty->session);
2258 			read_unlock(&tasklist_lock);
2259 		} else {
2260 			ret = -EPERM;
2261 			goto unlock;
2262 		}
2263 	}
2264 	proc_set_tty(current, tty);
2265 unlock:
2266 	mutex_unlock(&tty_mutex);
2267 	return ret;
2268 }
2269 
2270 /**
2271  *	tty_get_pgrp	-	return a ref counted pgrp pid
2272  *	@tty: tty to read
2273  *
2274  *	Returns a refcounted instance of the pid struct for the process
2275  *	group controlling the tty.
2276  */
2277 
2278 struct pid *tty_get_pgrp(struct tty_struct *tty)
2279 {
2280 	unsigned long flags;
2281 	struct pid *pgrp;
2282 
2283 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2284 	pgrp = get_pid(tty->pgrp);
2285 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2286 
2287 	return pgrp;
2288 }
2289 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2290 
2291 /**
2292  *	tiocgpgrp		-	get process group
2293  *	@tty: tty passed by user
2294  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2295  *	@p: returned pid
2296  *
2297  *	Obtain the process group of the tty. If there is no process group
2298  *	return an error.
2299  *
2300  *	Locking: none. Reference to current->signal->tty is safe.
2301  */
2302 
2303 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2304 {
2305 	struct pid *pid;
2306 	int ret;
2307 	/*
2308 	 * (tty == real_tty) is a cheap way of
2309 	 * testing if the tty is NOT a master pty.
2310 	 */
2311 	if (tty == real_tty && current->signal->tty != real_tty)
2312 		return -ENOTTY;
2313 	pid = tty_get_pgrp(real_tty);
2314 	ret =  put_user(pid_vnr(pid), p);
2315 	put_pid(pid);
2316 	return ret;
2317 }
2318 
2319 /**
2320  *	tiocspgrp		-	attempt to set process group
2321  *	@tty: tty passed by user
2322  *	@real_tty: tty side device matching tty passed by user
2323  *	@p: pid pointer
2324  *
2325  *	Set the process group of the tty to the session passed. Only
2326  *	permitted where the tty session is our session.
2327  *
2328  *	Locking: RCU, ctrl lock
2329  */
2330 
2331 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2332 {
2333 	struct pid *pgrp;
2334 	pid_t pgrp_nr;
2335 	int retval = tty_check_change(real_tty);
2336 	unsigned long flags;
2337 
2338 	if (retval == -EIO)
2339 		return -ENOTTY;
2340 	if (retval)
2341 		return retval;
2342 	if (!current->signal->tty ||
2343 	    (current->signal->tty != real_tty) ||
2344 	    (real_tty->session != task_session(current)))
2345 		return -ENOTTY;
2346 	if (get_user(pgrp_nr, p))
2347 		return -EFAULT;
2348 	if (pgrp_nr < 0)
2349 		return -EINVAL;
2350 	rcu_read_lock();
2351 	pgrp = find_vpid(pgrp_nr);
2352 	retval = -ESRCH;
2353 	if (!pgrp)
2354 		goto out_unlock;
2355 	retval = -EPERM;
2356 	if (session_of_pgrp(pgrp) != task_session(current))
2357 		goto out_unlock;
2358 	retval = 0;
2359 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2360 	put_pid(real_tty->pgrp);
2361 	real_tty->pgrp = get_pid(pgrp);
2362 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2363 out_unlock:
2364 	rcu_read_unlock();
2365 	return retval;
2366 }
2367 
2368 /**
2369  *	tiocgsid		-	get session id
2370  *	@tty: tty passed by user
2371  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2372  *	@p: pointer to returned session id
2373  *
2374  *	Obtain the session id of the tty. If there is no session
2375  *	return an error.
2376  *
2377  *	Locking: none. Reference to current->signal->tty is safe.
2378  */
2379 
2380 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2381 {
2382 	/*
2383 	 * (tty == real_tty) is a cheap way of
2384 	 * testing if the tty is NOT a master pty.
2385 	*/
2386 	if (tty == real_tty && current->signal->tty != real_tty)
2387 		return -ENOTTY;
2388 	if (!real_tty->session)
2389 		return -ENOTTY;
2390 	return put_user(pid_vnr(real_tty->session), p);
2391 }
2392 
2393 /**
2394  *	tiocsetd	-	set line discipline
2395  *	@tty: tty device
2396  *	@p: pointer to user data
2397  *
2398  *	Set the line discipline according to user request.
2399  *
2400  *	Locking: see tty_set_ldisc, this function is just a helper
2401  */
2402 
2403 static int tiocsetd(struct tty_struct *tty, int __user *p)
2404 {
2405 	int ldisc;
2406 	int ret;
2407 
2408 	if (get_user(ldisc, p))
2409 		return -EFAULT;
2410 
2411 	ret = tty_set_ldisc(tty, ldisc);
2412 
2413 	return ret;
2414 }
2415 
2416 /**
2417  *	send_break	-	performed time break
2418  *	@tty: device to break on
2419  *	@duration: timeout in mS
2420  *
2421  *	Perform a timed break on hardware that lacks its own driver level
2422  *	timed break functionality.
2423  *
2424  *	Locking:
2425  *		atomic_write_lock serializes
2426  *
2427  */
2428 
2429 static int send_break(struct tty_struct *tty, unsigned int duration)
2430 {
2431 	int retval;
2432 
2433 	if (tty->ops->break_ctl == NULL)
2434 		return 0;
2435 
2436 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2437 		retval = tty->ops->break_ctl(tty, duration);
2438 	else {
2439 		/* Do the work ourselves */
2440 		if (tty_write_lock(tty, 0) < 0)
2441 			return -EINTR;
2442 		retval = tty->ops->break_ctl(tty, -1);
2443 		if (retval)
2444 			goto out;
2445 		if (!signal_pending(current))
2446 			msleep_interruptible(duration);
2447 		retval = tty->ops->break_ctl(tty, 0);
2448 out:
2449 		tty_write_unlock(tty);
2450 		if (signal_pending(current))
2451 			retval = -EINTR;
2452 	}
2453 	return retval;
2454 }
2455 
2456 /**
2457  *	tty_tiocmget		-	get modem status
2458  *	@tty: tty device
2459  *	@file: user file pointer
2460  *	@p: pointer to result
2461  *
2462  *	Obtain the modem status bits from the tty driver if the feature
2463  *	is supported. Return -EINVAL if it is not available.
2464  *
2465  *	Locking: none (up to the driver)
2466  */
2467 
2468 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2469 {
2470 	int retval = -EINVAL;
2471 
2472 	if (tty->ops->tiocmget) {
2473 		retval = tty->ops->tiocmget(tty);
2474 
2475 		if (retval >= 0)
2476 			retval = put_user(retval, p);
2477 	}
2478 	return retval;
2479 }
2480 
2481 /**
2482  *	tty_tiocmset		-	set modem status
2483  *	@tty: tty device
2484  *	@cmd: command - clear bits, set bits or set all
2485  *	@p: pointer to desired bits
2486  *
2487  *	Set the modem status bits from the tty driver if the feature
2488  *	is supported. Return -EINVAL if it is not available.
2489  *
2490  *	Locking: none (up to the driver)
2491  */
2492 
2493 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2494 	     unsigned __user *p)
2495 {
2496 	int retval;
2497 	unsigned int set, clear, val;
2498 
2499 	if (tty->ops->tiocmset == NULL)
2500 		return -EINVAL;
2501 
2502 	retval = get_user(val, p);
2503 	if (retval)
2504 		return retval;
2505 	set = clear = 0;
2506 	switch (cmd) {
2507 	case TIOCMBIS:
2508 		set = val;
2509 		break;
2510 	case TIOCMBIC:
2511 		clear = val;
2512 		break;
2513 	case TIOCMSET:
2514 		set = val;
2515 		clear = ~val;
2516 		break;
2517 	}
2518 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2520 	return tty->ops->tiocmset(tty, set, clear);
2521 }
2522 
2523 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2524 {
2525 	int retval = -EINVAL;
2526 	struct serial_icounter_struct icount;
2527 	memset(&icount, 0, sizeof(icount));
2528 	if (tty->ops->get_icount)
2529 		retval = tty->ops->get_icount(tty, &icount);
2530 	if (retval != 0)
2531 		return retval;
2532 	if (copy_to_user(arg, &icount, sizeof(icount)))
2533 		return -EFAULT;
2534 	return 0;
2535 }
2536 
2537 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2538 {
2539 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2540 	    tty->driver->subtype == PTY_TYPE_MASTER)
2541 		tty = tty->link;
2542 	return tty;
2543 }
2544 EXPORT_SYMBOL(tty_pair_get_tty);
2545 
2546 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2547 {
2548 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2549 	    tty->driver->subtype == PTY_TYPE_MASTER)
2550 	    return tty;
2551 	return tty->link;
2552 }
2553 EXPORT_SYMBOL(tty_pair_get_pty);
2554 
2555 /*
2556  * Split this up, as gcc can choke on it otherwise..
2557  */
2558 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2559 {
2560 	struct tty_struct *tty = file_tty(file);
2561 	struct tty_struct *real_tty;
2562 	void __user *p = (void __user *)arg;
2563 	int retval;
2564 	struct tty_ldisc *ld;
2565 	struct inode *inode = file->f_dentry->d_inode;
2566 
2567 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2568 		return -EINVAL;
2569 
2570 	real_tty = tty_pair_get_tty(tty);
2571 
2572 	/*
2573 	 * Factor out some common prep work
2574 	 */
2575 	switch (cmd) {
2576 	case TIOCSETD:
2577 	case TIOCSBRK:
2578 	case TIOCCBRK:
2579 	case TCSBRK:
2580 	case TCSBRKP:
2581 		retval = tty_check_change(tty);
2582 		if (retval)
2583 			return retval;
2584 		if (cmd != TIOCCBRK) {
2585 			tty_wait_until_sent(tty, 0);
2586 			if (signal_pending(current))
2587 				return -EINTR;
2588 		}
2589 		break;
2590 	}
2591 
2592 	/*
2593 	 *	Now do the stuff.
2594 	 */
2595 	switch (cmd) {
2596 	case TIOCSTI:
2597 		return tiocsti(tty, p);
2598 	case TIOCGWINSZ:
2599 		return tiocgwinsz(real_tty, p);
2600 	case TIOCSWINSZ:
2601 		return tiocswinsz(real_tty, p);
2602 	case TIOCCONS:
2603 		return real_tty != tty ? -EINVAL : tioccons(file);
2604 	case FIONBIO:
2605 		return fionbio(file, p);
2606 	case TIOCEXCL:
2607 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2608 		return 0;
2609 	case TIOCNXCL:
2610 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2611 		return 0;
2612 	case TIOCNOTTY:
2613 		if (current->signal->tty != tty)
2614 			return -ENOTTY;
2615 		no_tty();
2616 		return 0;
2617 	case TIOCSCTTY:
2618 		return tiocsctty(tty, arg);
2619 	case TIOCGPGRP:
2620 		return tiocgpgrp(tty, real_tty, p);
2621 	case TIOCSPGRP:
2622 		return tiocspgrp(tty, real_tty, p);
2623 	case TIOCGSID:
2624 		return tiocgsid(tty, real_tty, p);
2625 	case TIOCGETD:
2626 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2627 	case TIOCSETD:
2628 		return tiocsetd(tty, p);
2629 	case TIOCVHANGUP:
2630 		if (!capable(CAP_SYS_ADMIN))
2631 			return -EPERM;
2632 		tty_vhangup(tty);
2633 		return 0;
2634 	case TIOCGDEV:
2635 	{
2636 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2637 		return put_user(ret, (unsigned int __user *)p);
2638 	}
2639 	/*
2640 	 * Break handling
2641 	 */
2642 	case TIOCSBRK:	/* Turn break on, unconditionally */
2643 		if (tty->ops->break_ctl)
2644 			return tty->ops->break_ctl(tty, -1);
2645 		return 0;
2646 	case TIOCCBRK:	/* Turn break off, unconditionally */
2647 		if (tty->ops->break_ctl)
2648 			return tty->ops->break_ctl(tty, 0);
2649 		return 0;
2650 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2651 		/* non-zero arg means wait for all output data
2652 		 * to be sent (performed above) but don't send break.
2653 		 * This is used by the tcdrain() termios function.
2654 		 */
2655 		if (!arg)
2656 			return send_break(tty, 250);
2657 		return 0;
2658 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2659 		return send_break(tty, arg ? arg*100 : 250);
2660 
2661 	case TIOCMGET:
2662 		return tty_tiocmget(tty, p);
2663 	case TIOCMSET:
2664 	case TIOCMBIC:
2665 	case TIOCMBIS:
2666 		return tty_tiocmset(tty, cmd, p);
2667 	case TIOCGICOUNT:
2668 		retval = tty_tiocgicount(tty, p);
2669 		/* For the moment allow fall through to the old method */
2670         	if (retval != -EINVAL)
2671 			return retval;
2672 		break;
2673 	case TCFLSH:
2674 		switch (arg) {
2675 		case TCIFLUSH:
2676 		case TCIOFLUSH:
2677 		/* flush tty buffer and allow ldisc to process ioctl */
2678 			tty_buffer_flush(tty);
2679 			break;
2680 		}
2681 		break;
2682 	}
2683 	if (tty->ops->ioctl) {
2684 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2685 		if (retval != -ENOIOCTLCMD)
2686 			return retval;
2687 	}
2688 	ld = tty_ldisc_ref_wait(tty);
2689 	retval = -EINVAL;
2690 	if (ld->ops->ioctl) {
2691 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2692 		if (retval == -ENOIOCTLCMD)
2693 			retval = -EINVAL;
2694 	}
2695 	tty_ldisc_deref(ld);
2696 	return retval;
2697 }
2698 
2699 #ifdef CONFIG_COMPAT
2700 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2701 				unsigned long arg)
2702 {
2703 	struct inode *inode = file->f_dentry->d_inode;
2704 	struct tty_struct *tty = file_tty(file);
2705 	struct tty_ldisc *ld;
2706 	int retval = -ENOIOCTLCMD;
2707 
2708 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2709 		return -EINVAL;
2710 
2711 	if (tty->ops->compat_ioctl) {
2712 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2713 		if (retval != -ENOIOCTLCMD)
2714 			return retval;
2715 	}
2716 
2717 	ld = tty_ldisc_ref_wait(tty);
2718 	if (ld->ops->compat_ioctl)
2719 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2720 	tty_ldisc_deref(ld);
2721 
2722 	return retval;
2723 }
2724 #endif
2725 
2726 /*
2727  * This implements the "Secure Attention Key" ---  the idea is to
2728  * prevent trojan horses by killing all processes associated with this
2729  * tty when the user hits the "Secure Attention Key".  Required for
2730  * super-paranoid applications --- see the Orange Book for more details.
2731  *
2732  * This code could be nicer; ideally it should send a HUP, wait a few
2733  * seconds, then send a INT, and then a KILL signal.  But you then
2734  * have to coordinate with the init process, since all processes associated
2735  * with the current tty must be dead before the new getty is allowed
2736  * to spawn.
2737  *
2738  * Now, if it would be correct ;-/ The current code has a nasty hole -
2739  * it doesn't catch files in flight. We may send the descriptor to ourselves
2740  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2741  *
2742  * Nasty bug: do_SAK is being called in interrupt context.  This can
2743  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2744  */
2745 void __do_SAK(struct tty_struct *tty)
2746 {
2747 #ifdef TTY_SOFT_SAK
2748 	tty_hangup(tty);
2749 #else
2750 	struct task_struct *g, *p;
2751 	struct pid *session;
2752 	int		i;
2753 	struct file	*filp;
2754 	struct fdtable *fdt;
2755 
2756 	if (!tty)
2757 		return;
2758 	session = tty->session;
2759 
2760 	tty_ldisc_flush(tty);
2761 
2762 	tty_driver_flush_buffer(tty);
2763 
2764 	read_lock(&tasklist_lock);
2765 	/* Kill the entire session */
2766 	do_each_pid_task(session, PIDTYPE_SID, p) {
2767 		printk(KERN_NOTICE "SAK: killed process %d"
2768 			" (%s): task_session(p)==tty->session\n",
2769 			task_pid_nr(p), p->comm);
2770 		send_sig(SIGKILL, p, 1);
2771 	} while_each_pid_task(session, PIDTYPE_SID, p);
2772 	/* Now kill any processes that happen to have the
2773 	 * tty open.
2774 	 */
2775 	do_each_thread(g, p) {
2776 		if (p->signal->tty == tty) {
2777 			printk(KERN_NOTICE "SAK: killed process %d"
2778 			    " (%s): task_session(p)==tty->session\n",
2779 			    task_pid_nr(p), p->comm);
2780 			send_sig(SIGKILL, p, 1);
2781 			continue;
2782 		}
2783 		task_lock(p);
2784 		if (p->files) {
2785 			/*
2786 			 * We don't take a ref to the file, so we must
2787 			 * hold ->file_lock instead.
2788 			 */
2789 			spin_lock(&p->files->file_lock);
2790 			fdt = files_fdtable(p->files);
2791 			for (i = 0; i < fdt->max_fds; i++) {
2792 				filp = fcheck_files(p->files, i);
2793 				if (!filp)
2794 					continue;
2795 				if (filp->f_op->read == tty_read &&
2796 				    file_tty(filp) == tty) {
2797 					printk(KERN_NOTICE "SAK: killed process %d"
2798 					    " (%s): fd#%d opened to the tty\n",
2799 					    task_pid_nr(p), p->comm, i);
2800 					force_sig(SIGKILL, p);
2801 					break;
2802 				}
2803 			}
2804 			spin_unlock(&p->files->file_lock);
2805 		}
2806 		task_unlock(p);
2807 	} while_each_thread(g, p);
2808 	read_unlock(&tasklist_lock);
2809 #endif
2810 }
2811 
2812 static void do_SAK_work(struct work_struct *work)
2813 {
2814 	struct tty_struct *tty =
2815 		container_of(work, struct tty_struct, SAK_work);
2816 	__do_SAK(tty);
2817 }
2818 
2819 /*
2820  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2821  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2822  * the values which we write to it will be identical to the values which it
2823  * already has. --akpm
2824  */
2825 void do_SAK(struct tty_struct *tty)
2826 {
2827 	if (!tty)
2828 		return;
2829 	schedule_work(&tty->SAK_work);
2830 }
2831 
2832 EXPORT_SYMBOL(do_SAK);
2833 
2834 static int dev_match_devt(struct device *dev, void *data)
2835 {
2836 	dev_t *devt = data;
2837 	return dev->devt == *devt;
2838 }
2839 
2840 /* Must put_device() after it's unused! */
2841 static struct device *tty_get_device(struct tty_struct *tty)
2842 {
2843 	dev_t devt = tty_devnum(tty);
2844 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2845 }
2846 
2847 
2848 /**
2849  *	initialize_tty_struct
2850  *	@tty: tty to initialize
2851  *
2852  *	This subroutine initializes a tty structure that has been newly
2853  *	allocated.
2854  *
2855  *	Locking: none - tty in question must not be exposed at this point
2856  */
2857 
2858 void initialize_tty_struct(struct tty_struct *tty,
2859 		struct tty_driver *driver, int idx)
2860 {
2861 	memset(tty, 0, sizeof(struct tty_struct));
2862 	kref_init(&tty->kref);
2863 	tty->magic = TTY_MAGIC;
2864 	tty_ldisc_init(tty);
2865 	tty->session = NULL;
2866 	tty->pgrp = NULL;
2867 	tty->overrun_time = jiffies;
2868 	tty->buf.head = tty->buf.tail = NULL;
2869 	tty_buffer_init(tty);
2870 	mutex_init(&tty->termios_mutex);
2871 	mutex_init(&tty->ldisc_mutex);
2872 	init_waitqueue_head(&tty->write_wait);
2873 	init_waitqueue_head(&tty->read_wait);
2874 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2875 	mutex_init(&tty->atomic_read_lock);
2876 	mutex_init(&tty->atomic_write_lock);
2877 	mutex_init(&tty->output_lock);
2878 	mutex_init(&tty->echo_lock);
2879 	spin_lock_init(&tty->read_lock);
2880 	spin_lock_init(&tty->ctrl_lock);
2881 	INIT_LIST_HEAD(&tty->tty_files);
2882 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2883 
2884 	tty->driver = driver;
2885 	tty->ops = driver->ops;
2886 	tty->index = idx;
2887 	tty_line_name(driver, idx, tty->name);
2888 	tty->dev = tty_get_device(tty);
2889 }
2890 
2891 /**
2892  *	deinitialize_tty_struct
2893  *	@tty: tty to deinitialize
2894  *
2895  *	This subroutine deinitializes a tty structure that has been newly
2896  *	allocated but tty_release cannot be called on that yet.
2897  *
2898  *	Locking: none - tty in question must not be exposed at this point
2899  */
2900 void deinitialize_tty_struct(struct tty_struct *tty)
2901 {
2902 	tty_ldisc_deinit(tty);
2903 }
2904 
2905 /**
2906  *	tty_put_char	-	write one character to a tty
2907  *	@tty: tty
2908  *	@ch: character
2909  *
2910  *	Write one byte to the tty using the provided put_char method
2911  *	if present. Returns the number of characters successfully output.
2912  *
2913  *	Note: the specific put_char operation in the driver layer may go
2914  *	away soon. Don't call it directly, use this method
2915  */
2916 
2917 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2918 {
2919 	if (tty->ops->put_char)
2920 		return tty->ops->put_char(tty, ch);
2921 	return tty->ops->write(tty, &ch, 1);
2922 }
2923 EXPORT_SYMBOL_GPL(tty_put_char);
2924 
2925 struct class *tty_class;
2926 
2927 /**
2928  *	tty_register_device - register a tty device
2929  *	@driver: the tty driver that describes the tty device
2930  *	@index: the index in the tty driver for this tty device
2931  *	@device: a struct device that is associated with this tty device.
2932  *		This field is optional, if there is no known struct device
2933  *		for this tty device it can be set to NULL safely.
2934  *
2935  *	Returns a pointer to the struct device for this tty device
2936  *	(or ERR_PTR(-EFOO) on error).
2937  *
2938  *	This call is required to be made to register an individual tty device
2939  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2940  *	that bit is not set, this function should not be called by a tty
2941  *	driver.
2942  *
2943  *	Locking: ??
2944  */
2945 
2946 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2947 				   struct device *device)
2948 {
2949 	char name[64];
2950 	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2951 
2952 	if (index >= driver->num) {
2953 		printk(KERN_ERR "Attempt to register invalid tty line number "
2954 		       " (%d).\n", index);
2955 		return ERR_PTR(-EINVAL);
2956 	}
2957 
2958 	if (driver->type == TTY_DRIVER_TYPE_PTY)
2959 		pty_line_name(driver, index, name);
2960 	else
2961 		tty_line_name(driver, index, name);
2962 
2963 	return device_create(tty_class, device, dev, NULL, name);
2964 }
2965 EXPORT_SYMBOL(tty_register_device);
2966 
2967 /**
2968  * 	tty_unregister_device - unregister a tty device
2969  * 	@driver: the tty driver that describes the tty device
2970  * 	@index: the index in the tty driver for this tty device
2971  *
2972  * 	If a tty device is registered with a call to tty_register_device() then
2973  *	this function must be called when the tty device is gone.
2974  *
2975  *	Locking: ??
2976  */
2977 
2978 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2979 {
2980 	device_destroy(tty_class,
2981 		MKDEV(driver->major, driver->minor_start) + index);
2982 }
2983 EXPORT_SYMBOL(tty_unregister_device);
2984 
2985 struct tty_driver *alloc_tty_driver(int lines)
2986 {
2987 	struct tty_driver *driver;
2988 
2989 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2990 	if (driver) {
2991 		kref_init(&driver->kref);
2992 		driver->magic = TTY_DRIVER_MAGIC;
2993 		driver->num = lines;
2994 		/* later we'll move allocation of tables here */
2995 	}
2996 	return driver;
2997 }
2998 EXPORT_SYMBOL(alloc_tty_driver);
2999 
3000 static void destruct_tty_driver(struct kref *kref)
3001 {
3002 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3003 	int i;
3004 	struct ktermios *tp;
3005 	void *p;
3006 
3007 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3008 		/*
3009 		 * Free the termios and termios_locked structures because
3010 		 * we don't want to get memory leaks when modular tty
3011 		 * drivers are removed from the kernel.
3012 		 */
3013 		for (i = 0; i < driver->num; i++) {
3014 			tp = driver->termios[i];
3015 			if (tp) {
3016 				driver->termios[i] = NULL;
3017 				kfree(tp);
3018 			}
3019 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3020 				tty_unregister_device(driver, i);
3021 		}
3022 		p = driver->ttys;
3023 		proc_tty_unregister_driver(driver);
3024 		driver->ttys = NULL;
3025 		driver->termios = NULL;
3026 		kfree(p);
3027 		cdev_del(&driver->cdev);
3028 	}
3029 	kfree(driver);
3030 }
3031 
3032 void tty_driver_kref_put(struct tty_driver *driver)
3033 {
3034 	kref_put(&driver->kref, destruct_tty_driver);
3035 }
3036 EXPORT_SYMBOL(tty_driver_kref_put);
3037 
3038 void tty_set_operations(struct tty_driver *driver,
3039 			const struct tty_operations *op)
3040 {
3041 	driver->ops = op;
3042 };
3043 EXPORT_SYMBOL(tty_set_operations);
3044 
3045 void put_tty_driver(struct tty_driver *d)
3046 {
3047 	tty_driver_kref_put(d);
3048 }
3049 EXPORT_SYMBOL(put_tty_driver);
3050 
3051 /*
3052  * Called by a tty driver to register itself.
3053  */
3054 int tty_register_driver(struct tty_driver *driver)
3055 {
3056 	int error;
3057 	int i;
3058 	dev_t dev;
3059 	void **p = NULL;
3060 	struct device *d;
3061 
3062 	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3063 		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3064 		if (!p)
3065 			return -ENOMEM;
3066 	}
3067 
3068 	if (!driver->major) {
3069 		error = alloc_chrdev_region(&dev, driver->minor_start,
3070 						driver->num, driver->name);
3071 		if (!error) {
3072 			driver->major = MAJOR(dev);
3073 			driver->minor_start = MINOR(dev);
3074 		}
3075 	} else {
3076 		dev = MKDEV(driver->major, driver->minor_start);
3077 		error = register_chrdev_region(dev, driver->num, driver->name);
3078 	}
3079 	if (error < 0) {
3080 		kfree(p);
3081 		return error;
3082 	}
3083 
3084 	if (p) {
3085 		driver->ttys = (struct tty_struct **)p;
3086 		driver->termios = (struct ktermios **)(p + driver->num);
3087 	} else {
3088 		driver->ttys = NULL;
3089 		driver->termios = NULL;
3090 	}
3091 
3092 	cdev_init(&driver->cdev, &tty_fops);
3093 	driver->cdev.owner = driver->owner;
3094 	error = cdev_add(&driver->cdev, dev, driver->num);
3095 	if (error) {
3096 		unregister_chrdev_region(dev, driver->num);
3097 		driver->ttys = NULL;
3098 		driver->termios = NULL;
3099 		kfree(p);
3100 		return error;
3101 	}
3102 
3103 	mutex_lock(&tty_mutex);
3104 	list_add(&driver->tty_drivers, &tty_drivers);
3105 	mutex_unlock(&tty_mutex);
3106 
3107 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3108 		for (i = 0; i < driver->num; i++) {
3109 			d = tty_register_device(driver, i, NULL);
3110 			if (IS_ERR(d)) {
3111 				error = PTR_ERR(d);
3112 				goto err;
3113 			}
3114 		}
3115 	}
3116 	proc_tty_register_driver(driver);
3117 	driver->flags |= TTY_DRIVER_INSTALLED;
3118 	return 0;
3119 
3120 err:
3121 	for (i--; i >= 0; i--)
3122 		tty_unregister_device(driver, i);
3123 
3124 	mutex_lock(&tty_mutex);
3125 	list_del(&driver->tty_drivers);
3126 	mutex_unlock(&tty_mutex);
3127 
3128 	unregister_chrdev_region(dev, driver->num);
3129 	driver->ttys = NULL;
3130 	driver->termios = NULL;
3131 	kfree(p);
3132 	return error;
3133 }
3134 
3135 EXPORT_SYMBOL(tty_register_driver);
3136 
3137 /*
3138  * Called by a tty driver to unregister itself.
3139  */
3140 int tty_unregister_driver(struct tty_driver *driver)
3141 {
3142 #if 0
3143 	/* FIXME */
3144 	if (driver->refcount)
3145 		return -EBUSY;
3146 #endif
3147 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3148 				driver->num);
3149 	mutex_lock(&tty_mutex);
3150 	list_del(&driver->tty_drivers);
3151 	mutex_unlock(&tty_mutex);
3152 	return 0;
3153 }
3154 
3155 EXPORT_SYMBOL(tty_unregister_driver);
3156 
3157 dev_t tty_devnum(struct tty_struct *tty)
3158 {
3159 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3160 }
3161 EXPORT_SYMBOL(tty_devnum);
3162 
3163 void proc_clear_tty(struct task_struct *p)
3164 {
3165 	unsigned long flags;
3166 	struct tty_struct *tty;
3167 	spin_lock_irqsave(&p->sighand->siglock, flags);
3168 	tty = p->signal->tty;
3169 	p->signal->tty = NULL;
3170 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3171 	tty_kref_put(tty);
3172 }
3173 
3174 /* Called under the sighand lock */
3175 
3176 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3177 {
3178 	if (tty) {
3179 		unsigned long flags;
3180 		/* We should not have a session or pgrp to put here but.... */
3181 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3182 		put_pid(tty->session);
3183 		put_pid(tty->pgrp);
3184 		tty->pgrp = get_pid(task_pgrp(tsk));
3185 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3186 		tty->session = get_pid(task_session(tsk));
3187 		if (tsk->signal->tty) {
3188 			printk(KERN_DEBUG "tty not NULL!!\n");
3189 			tty_kref_put(tsk->signal->tty);
3190 		}
3191 	}
3192 	put_pid(tsk->signal->tty_old_pgrp);
3193 	tsk->signal->tty = tty_kref_get(tty);
3194 	tsk->signal->tty_old_pgrp = NULL;
3195 }
3196 
3197 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3198 {
3199 	spin_lock_irq(&tsk->sighand->siglock);
3200 	__proc_set_tty(tsk, tty);
3201 	spin_unlock_irq(&tsk->sighand->siglock);
3202 }
3203 
3204 struct tty_struct *get_current_tty(void)
3205 {
3206 	struct tty_struct *tty;
3207 	unsigned long flags;
3208 
3209 	spin_lock_irqsave(&current->sighand->siglock, flags);
3210 	tty = tty_kref_get(current->signal->tty);
3211 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3212 	return tty;
3213 }
3214 EXPORT_SYMBOL_GPL(get_current_tty);
3215 
3216 void tty_default_fops(struct file_operations *fops)
3217 {
3218 	*fops = tty_fops;
3219 }
3220 
3221 /*
3222  * Initialize the console device. This is called *early*, so
3223  * we can't necessarily depend on lots of kernel help here.
3224  * Just do some early initializations, and do the complex setup
3225  * later.
3226  */
3227 void __init console_init(void)
3228 {
3229 	initcall_t *call;
3230 
3231 	/* Setup the default TTY line discipline. */
3232 	tty_ldisc_begin();
3233 
3234 	/*
3235 	 * set up the console device so that later boot sequences can
3236 	 * inform about problems etc..
3237 	 */
3238 	call = __con_initcall_start;
3239 	while (call < __con_initcall_end) {
3240 		(*call)();
3241 		call++;
3242 	}
3243 }
3244 
3245 static char *tty_devnode(struct device *dev, mode_t *mode)
3246 {
3247 	if (!mode)
3248 		return NULL;
3249 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3250 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3251 		*mode = 0666;
3252 	return NULL;
3253 }
3254 
3255 static int __init tty_class_init(void)
3256 {
3257 	tty_class = class_create(THIS_MODULE, "tty");
3258 	if (IS_ERR(tty_class))
3259 		return PTR_ERR(tty_class);
3260 	tty_class->devnode = tty_devnode;
3261 	return 0;
3262 }
3263 
3264 postcore_initcall(tty_class_init);
3265 
3266 /* 3/2004 jmc: why do these devices exist? */
3267 static struct cdev tty_cdev, console_cdev;
3268 
3269 static ssize_t show_cons_active(struct device *dev,
3270 				struct device_attribute *attr, char *buf)
3271 {
3272 	struct console *cs[16];
3273 	int i = 0;
3274 	struct console *c;
3275 	ssize_t count = 0;
3276 
3277 	console_lock();
3278 	for_each_console(c) {
3279 		if (!c->device)
3280 			continue;
3281 		if (!c->write)
3282 			continue;
3283 		if ((c->flags & CON_ENABLED) == 0)
3284 			continue;
3285 		cs[i++] = c;
3286 		if (i >= ARRAY_SIZE(cs))
3287 			break;
3288 	}
3289 	while (i--)
3290 		count += sprintf(buf + count, "%s%d%c",
3291 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3292 	console_unlock();
3293 
3294 	return count;
3295 }
3296 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3297 
3298 static struct device *consdev;
3299 
3300 void console_sysfs_notify(void)
3301 {
3302 	if (consdev)
3303 		sysfs_notify(&consdev->kobj, NULL, "active");
3304 }
3305 
3306 /*
3307  * Ok, now we can initialize the rest of the tty devices and can count
3308  * on memory allocations, interrupts etc..
3309  */
3310 int __init tty_init(void)
3311 {
3312 	cdev_init(&tty_cdev, &tty_fops);
3313 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3314 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3315 		panic("Couldn't register /dev/tty driver\n");
3316 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3317 
3318 	cdev_init(&console_cdev, &console_fops);
3319 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3320 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3321 		panic("Couldn't register /dev/console driver\n");
3322 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3323 			      "console");
3324 	if (IS_ERR(consdev))
3325 		consdev = NULL;
3326 	else
3327 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3328 
3329 #ifdef CONFIG_VT
3330 	vty_init(&console_fops);
3331 #endif
3332 	return 0;
3333 }
3334 
3335