1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 110 #define TTY_PARANOIA_CHECK 1 111 #define CHECK_TTY_COUNT 1 112 113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 114 .c_iflag = ICRNL | IXON, 115 .c_oflag = OPOST | ONLCR, 116 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 118 ECHOCTL | ECHOKE | IEXTEN, 119 .c_cc = INIT_C_CC, 120 .c_ispeed = 38400, 121 .c_ospeed = 38400 122 }; 123 124 EXPORT_SYMBOL(tty_std_termios); 125 126 /* This list gets poked at by procfs and various bits of boot up code. This 127 could do with some rationalisation such as pulling the tty proc function 128 into this file */ 129 130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 131 132 /* Mutex to protect creating and releasing a tty. This is shared with 133 vt.c for deeply disgusting hack reasons */ 134 DEFINE_MUTEX(tty_mutex); 135 EXPORT_SYMBOL(tty_mutex); 136 137 /* Spinlock to protect the tty->tty_files list */ 138 DEFINE_SPINLOCK(tty_files_lock); 139 140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 142 ssize_t redirected_tty_write(struct file *, const char __user *, 143 size_t, loff_t *); 144 static unsigned int tty_poll(struct file *, poll_table *); 145 static int tty_open(struct inode *, struct file *); 146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 147 #ifdef CONFIG_COMPAT 148 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 149 unsigned long arg); 150 #else 151 #define tty_compat_ioctl NULL 152 #endif 153 static int __tty_fasync(int fd, struct file *filp, int on); 154 static int tty_fasync(int fd, struct file *filp, int on); 155 static void release_tty(struct tty_struct *tty, int idx); 156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 158 159 /** 160 * alloc_tty_struct - allocate a tty object 161 * 162 * Return a new empty tty structure. The data fields have not 163 * been initialized in any way but has been zeroed 164 * 165 * Locking: none 166 */ 167 168 struct tty_struct *alloc_tty_struct(void) 169 { 170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL); 171 } 172 173 /** 174 * free_tty_struct - free a disused tty 175 * @tty: tty struct to free 176 * 177 * Free the write buffers, tty queue and tty memory itself. 178 * 179 * Locking: none. Must be called after tty is definitely unused 180 */ 181 182 void free_tty_struct(struct tty_struct *tty) 183 { 184 if (!tty) 185 return; 186 if (tty->dev) 187 put_device(tty->dev); 188 kfree(tty->write_buf); 189 tty->magic = 0xDEADDEAD; 190 kfree(tty); 191 } 192 193 static inline struct tty_struct *file_tty(struct file *file) 194 { 195 return ((struct tty_file_private *)file->private_data)->tty; 196 } 197 198 int tty_alloc_file(struct file *file) 199 { 200 struct tty_file_private *priv; 201 202 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 203 if (!priv) 204 return -ENOMEM; 205 206 file->private_data = priv; 207 208 return 0; 209 } 210 211 /* Associate a new file with the tty structure */ 212 void tty_add_file(struct tty_struct *tty, struct file *file) 213 { 214 struct tty_file_private *priv = file->private_data; 215 216 priv->tty = tty; 217 priv->file = file; 218 219 spin_lock(&tty_files_lock); 220 list_add(&priv->list, &tty->tty_files); 221 spin_unlock(&tty_files_lock); 222 } 223 224 /** 225 * tty_free_file - free file->private_data 226 * 227 * This shall be used only for fail path handling when tty_add_file was not 228 * called yet. 229 */ 230 void tty_free_file(struct file *file) 231 { 232 struct tty_file_private *priv = file->private_data; 233 234 file->private_data = NULL; 235 kfree(priv); 236 } 237 238 /* Delete file from its tty */ 239 static void tty_del_file(struct file *file) 240 { 241 struct tty_file_private *priv = file->private_data; 242 243 spin_lock(&tty_files_lock); 244 list_del(&priv->list); 245 spin_unlock(&tty_files_lock); 246 tty_free_file(file); 247 } 248 249 250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 251 252 /** 253 * tty_name - return tty naming 254 * @tty: tty structure 255 * @buf: buffer for output 256 * 257 * Convert a tty structure into a name. The name reflects the kernel 258 * naming policy and if udev is in use may not reflect user space 259 * 260 * Locking: none 261 */ 262 263 char *tty_name(struct tty_struct *tty, char *buf) 264 { 265 if (!tty) /* Hmm. NULL pointer. That's fun. */ 266 strcpy(buf, "NULL tty"); 267 else 268 strcpy(buf, tty->name); 269 return buf; 270 } 271 272 EXPORT_SYMBOL(tty_name); 273 274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 275 const char *routine) 276 { 277 #ifdef TTY_PARANOIA_CHECK 278 if (!tty) { 279 printk(KERN_WARNING 280 "null TTY for (%d:%d) in %s\n", 281 imajor(inode), iminor(inode), routine); 282 return 1; 283 } 284 if (tty->magic != TTY_MAGIC) { 285 printk(KERN_WARNING 286 "bad magic number for tty struct (%d:%d) in %s\n", 287 imajor(inode), iminor(inode), routine); 288 return 1; 289 } 290 #endif 291 return 0; 292 } 293 294 static int check_tty_count(struct tty_struct *tty, const char *routine) 295 { 296 #ifdef CHECK_TTY_COUNT 297 struct list_head *p; 298 int count = 0; 299 300 spin_lock(&tty_files_lock); 301 list_for_each(p, &tty->tty_files) { 302 count++; 303 } 304 spin_unlock(&tty_files_lock); 305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 306 tty->driver->subtype == PTY_TYPE_SLAVE && 307 tty->link && tty->link->count) 308 count++; 309 if (tty->count != count) { 310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 311 "!= #fd's(%d) in %s\n", 312 tty->name, tty->count, count, routine); 313 return count; 314 } 315 #endif 316 return 0; 317 } 318 319 /** 320 * get_tty_driver - find device of a tty 321 * @dev_t: device identifier 322 * @index: returns the index of the tty 323 * 324 * This routine returns a tty driver structure, given a device number 325 * and also passes back the index number. 326 * 327 * Locking: caller must hold tty_mutex 328 */ 329 330 static struct tty_driver *get_tty_driver(dev_t device, int *index) 331 { 332 struct tty_driver *p; 333 334 list_for_each_entry(p, &tty_drivers, tty_drivers) { 335 dev_t base = MKDEV(p->major, p->minor_start); 336 if (device < base || device >= base + p->num) 337 continue; 338 *index = device - base; 339 return tty_driver_kref_get(p); 340 } 341 return NULL; 342 } 343 344 #ifdef CONFIG_CONSOLE_POLL 345 346 /** 347 * tty_find_polling_driver - find device of a polled tty 348 * @name: name string to match 349 * @line: pointer to resulting tty line nr 350 * 351 * This routine returns a tty driver structure, given a name 352 * and the condition that the tty driver is capable of polled 353 * operation. 354 */ 355 struct tty_driver *tty_find_polling_driver(char *name, int *line) 356 { 357 struct tty_driver *p, *res = NULL; 358 int tty_line = 0; 359 int len; 360 char *str, *stp; 361 362 for (str = name; *str; str++) 363 if ((*str >= '0' && *str <= '9') || *str == ',') 364 break; 365 if (!*str) 366 return NULL; 367 368 len = str - name; 369 tty_line = simple_strtoul(str, &str, 10); 370 371 mutex_lock(&tty_mutex); 372 /* Search through the tty devices to look for a match */ 373 list_for_each_entry(p, &tty_drivers, tty_drivers) { 374 if (strncmp(name, p->name, len) != 0) 375 continue; 376 stp = str; 377 if (*stp == ',') 378 stp++; 379 if (*stp == '\0') 380 stp = NULL; 381 382 if (tty_line >= 0 && tty_line < p->num && p->ops && 383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 384 res = tty_driver_kref_get(p); 385 *line = tty_line; 386 break; 387 } 388 } 389 mutex_unlock(&tty_mutex); 390 391 return res; 392 } 393 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 394 #endif 395 396 /** 397 * tty_check_change - check for POSIX terminal changes 398 * @tty: tty to check 399 * 400 * If we try to write to, or set the state of, a terminal and we're 401 * not in the foreground, send a SIGTTOU. If the signal is blocked or 402 * ignored, go ahead and perform the operation. (POSIX 7.2) 403 * 404 * Locking: ctrl_lock 405 */ 406 407 int tty_check_change(struct tty_struct *tty) 408 { 409 unsigned long flags; 410 int ret = 0; 411 412 if (current->signal->tty != tty) 413 return 0; 414 415 spin_lock_irqsave(&tty->ctrl_lock, flags); 416 417 if (!tty->pgrp) { 418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 419 goto out_unlock; 420 } 421 if (task_pgrp(current) == tty->pgrp) 422 goto out_unlock; 423 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 424 if (is_ignored(SIGTTOU)) 425 goto out; 426 if (is_current_pgrp_orphaned()) { 427 ret = -EIO; 428 goto out; 429 } 430 kill_pgrp(task_pgrp(current), SIGTTOU, 1); 431 set_thread_flag(TIF_SIGPENDING); 432 ret = -ERESTARTSYS; 433 out: 434 return ret; 435 out_unlock: 436 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 437 return ret; 438 } 439 440 EXPORT_SYMBOL(tty_check_change); 441 442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 443 size_t count, loff_t *ppos) 444 { 445 return 0; 446 } 447 448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 449 size_t count, loff_t *ppos) 450 { 451 return -EIO; 452 } 453 454 /* No kernel lock held - none needed ;) */ 455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 456 { 457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 458 } 459 460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 461 unsigned long arg) 462 { 463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 464 } 465 466 static long hung_up_tty_compat_ioctl(struct file *file, 467 unsigned int cmd, unsigned long arg) 468 { 469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 470 } 471 472 static const struct file_operations tty_fops = { 473 .llseek = no_llseek, 474 .read = tty_read, 475 .write = tty_write, 476 .poll = tty_poll, 477 .unlocked_ioctl = tty_ioctl, 478 .compat_ioctl = tty_compat_ioctl, 479 .open = tty_open, 480 .release = tty_release, 481 .fasync = tty_fasync, 482 }; 483 484 static const struct file_operations console_fops = { 485 .llseek = no_llseek, 486 .read = tty_read, 487 .write = redirected_tty_write, 488 .poll = tty_poll, 489 .unlocked_ioctl = tty_ioctl, 490 .compat_ioctl = tty_compat_ioctl, 491 .open = tty_open, 492 .release = tty_release, 493 .fasync = tty_fasync, 494 }; 495 496 static const struct file_operations hung_up_tty_fops = { 497 .llseek = no_llseek, 498 .read = hung_up_tty_read, 499 .write = hung_up_tty_write, 500 .poll = hung_up_tty_poll, 501 .unlocked_ioctl = hung_up_tty_ioctl, 502 .compat_ioctl = hung_up_tty_compat_ioctl, 503 .release = tty_release, 504 }; 505 506 static DEFINE_SPINLOCK(redirect_lock); 507 static struct file *redirect; 508 509 /** 510 * tty_wakeup - request more data 511 * @tty: terminal 512 * 513 * Internal and external helper for wakeups of tty. This function 514 * informs the line discipline if present that the driver is ready 515 * to receive more output data. 516 */ 517 518 void tty_wakeup(struct tty_struct *tty) 519 { 520 struct tty_ldisc *ld; 521 522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 523 ld = tty_ldisc_ref(tty); 524 if (ld) { 525 if (ld->ops->write_wakeup) 526 ld->ops->write_wakeup(tty); 527 tty_ldisc_deref(ld); 528 } 529 } 530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 531 } 532 533 EXPORT_SYMBOL_GPL(tty_wakeup); 534 535 /** 536 * tty_signal_session_leader - sends SIGHUP to session leader 537 * @tty controlling tty 538 * @exit_session if non-zero, signal all foreground group processes 539 * 540 * Send SIGHUP and SIGCONT to the session leader and its process group. 541 * Optionally, signal all processes in the foreground process group. 542 * 543 * Returns the number of processes in the session with this tty 544 * as their controlling terminal. This value is used to drop 545 * tty references for those processes. 546 */ 547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 548 { 549 struct task_struct *p; 550 int refs = 0; 551 struct pid *tty_pgrp = NULL; 552 553 read_lock(&tasklist_lock); 554 if (tty->session) { 555 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 556 spin_lock_irq(&p->sighand->siglock); 557 if (p->signal->tty == tty) { 558 p->signal->tty = NULL; 559 /* We defer the dereferences outside fo 560 the tasklist lock */ 561 refs++; 562 } 563 if (!p->signal->leader) { 564 spin_unlock_irq(&p->sighand->siglock); 565 continue; 566 } 567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 569 put_pid(p->signal->tty_old_pgrp); /* A noop */ 570 spin_lock(&tty->ctrl_lock); 571 tty_pgrp = get_pid(tty->pgrp); 572 if (tty->pgrp) 573 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 574 spin_unlock(&tty->ctrl_lock); 575 spin_unlock_irq(&p->sighand->siglock); 576 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 577 } 578 read_unlock(&tasklist_lock); 579 580 if (tty_pgrp) { 581 if (exit_session) 582 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 583 put_pid(tty_pgrp); 584 } 585 586 return refs; 587 } 588 589 /** 590 * __tty_hangup - actual handler for hangup events 591 * @work: tty device 592 * 593 * This can be called by a "kworker" kernel thread. That is process 594 * synchronous but doesn't hold any locks, so we need to make sure we 595 * have the appropriate locks for what we're doing. 596 * 597 * The hangup event clears any pending redirections onto the hung up 598 * device. It ensures future writes will error and it does the needed 599 * line discipline hangup and signal delivery. The tty object itself 600 * remains intact. 601 * 602 * Locking: 603 * BTM 604 * redirect lock for undoing redirection 605 * file list lock for manipulating list of ttys 606 * tty_ldisc_lock from called functions 607 * termios_mutex resetting termios data 608 * tasklist_lock to walk task list for hangup event 609 * ->siglock to protect ->signal/->sighand 610 */ 611 static void __tty_hangup(struct tty_struct *tty, int exit_session) 612 { 613 struct file *cons_filp = NULL; 614 struct file *filp, *f = NULL; 615 struct tty_file_private *priv; 616 int closecount = 0, n; 617 int refs; 618 619 if (!tty) 620 return; 621 622 623 spin_lock(&redirect_lock); 624 if (redirect && file_tty(redirect) == tty) { 625 f = redirect; 626 redirect = NULL; 627 } 628 spin_unlock(&redirect_lock); 629 630 tty_lock(tty); 631 632 /* some functions below drop BTM, so we need this bit */ 633 set_bit(TTY_HUPPING, &tty->flags); 634 635 /* inuse_filps is protected by the single tty lock, 636 this really needs to change if we want to flush the 637 workqueue with the lock held */ 638 check_tty_count(tty, "tty_hangup"); 639 640 spin_lock(&tty_files_lock); 641 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 642 list_for_each_entry(priv, &tty->tty_files, list) { 643 filp = priv->file; 644 if (filp->f_op->write == redirected_tty_write) 645 cons_filp = filp; 646 if (filp->f_op->write != tty_write) 647 continue; 648 closecount++; 649 __tty_fasync(-1, filp, 0); /* can't block */ 650 filp->f_op = &hung_up_tty_fops; 651 } 652 spin_unlock(&tty_files_lock); 653 654 refs = tty_signal_session_leader(tty, exit_session); 655 /* Account for the p->signal references we killed */ 656 while (refs--) 657 tty_kref_put(tty); 658 659 /* 660 * it drops BTM and thus races with reopen 661 * we protect the race by TTY_HUPPING 662 */ 663 tty_ldisc_hangup(tty); 664 665 spin_lock_irq(&tty->ctrl_lock); 666 clear_bit(TTY_THROTTLED, &tty->flags); 667 clear_bit(TTY_PUSH, &tty->flags); 668 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 669 put_pid(tty->session); 670 put_pid(tty->pgrp); 671 tty->session = NULL; 672 tty->pgrp = NULL; 673 tty->ctrl_status = 0; 674 spin_unlock_irq(&tty->ctrl_lock); 675 676 /* 677 * If one of the devices matches a console pointer, we 678 * cannot just call hangup() because that will cause 679 * tty->count and state->count to go out of sync. 680 * So we just call close() the right number of times. 681 */ 682 if (cons_filp) { 683 if (tty->ops->close) 684 for (n = 0; n < closecount; n++) 685 tty->ops->close(tty, cons_filp); 686 } else if (tty->ops->hangup) 687 (tty->ops->hangup)(tty); 688 /* 689 * We don't want to have driver/ldisc interactions beyond 690 * the ones we did here. The driver layer expects no 691 * calls after ->hangup() from the ldisc side. However we 692 * can't yet guarantee all that. 693 */ 694 set_bit(TTY_HUPPED, &tty->flags); 695 clear_bit(TTY_HUPPING, &tty->flags); 696 697 tty_unlock(tty); 698 699 if (f) 700 fput(f); 701 } 702 703 static void do_tty_hangup(struct work_struct *work) 704 { 705 struct tty_struct *tty = 706 container_of(work, struct tty_struct, hangup_work); 707 708 __tty_hangup(tty, 0); 709 } 710 711 /** 712 * tty_hangup - trigger a hangup event 713 * @tty: tty to hangup 714 * 715 * A carrier loss (virtual or otherwise) has occurred on this like 716 * schedule a hangup sequence to run after this event. 717 */ 718 719 void tty_hangup(struct tty_struct *tty) 720 { 721 #ifdef TTY_DEBUG_HANGUP 722 char buf[64]; 723 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf)); 724 #endif 725 schedule_work(&tty->hangup_work); 726 } 727 728 EXPORT_SYMBOL(tty_hangup); 729 730 /** 731 * tty_vhangup - process vhangup 732 * @tty: tty to hangup 733 * 734 * The user has asked via system call for the terminal to be hung up. 735 * We do this synchronously so that when the syscall returns the process 736 * is complete. That guarantee is necessary for security reasons. 737 */ 738 739 void tty_vhangup(struct tty_struct *tty) 740 { 741 #ifdef TTY_DEBUG_HANGUP 742 char buf[64]; 743 744 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf)); 745 #endif 746 __tty_hangup(tty, 0); 747 } 748 749 EXPORT_SYMBOL(tty_vhangup); 750 751 752 /** 753 * tty_vhangup_self - process vhangup for own ctty 754 * 755 * Perform a vhangup on the current controlling tty 756 */ 757 758 void tty_vhangup_self(void) 759 { 760 struct tty_struct *tty; 761 762 tty = get_current_tty(); 763 if (tty) { 764 tty_vhangup(tty); 765 tty_kref_put(tty); 766 } 767 } 768 769 /** 770 * tty_vhangup_session - hangup session leader exit 771 * @tty: tty to hangup 772 * 773 * The session leader is exiting and hanging up its controlling terminal. 774 * Every process in the foreground process group is signalled SIGHUP. 775 * 776 * We do this synchronously so that when the syscall returns the process 777 * is complete. That guarantee is necessary for security reasons. 778 */ 779 780 static void tty_vhangup_session(struct tty_struct *tty) 781 { 782 #ifdef TTY_DEBUG_HANGUP 783 char buf[64]; 784 785 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf)); 786 #endif 787 __tty_hangup(tty, 1); 788 } 789 790 /** 791 * tty_hung_up_p - was tty hung up 792 * @filp: file pointer of tty 793 * 794 * Return true if the tty has been subject to a vhangup or a carrier 795 * loss 796 */ 797 798 int tty_hung_up_p(struct file *filp) 799 { 800 return (filp->f_op == &hung_up_tty_fops); 801 } 802 803 EXPORT_SYMBOL(tty_hung_up_p); 804 805 static void session_clear_tty(struct pid *session) 806 { 807 struct task_struct *p; 808 do_each_pid_task(session, PIDTYPE_SID, p) { 809 proc_clear_tty(p); 810 } while_each_pid_task(session, PIDTYPE_SID, p); 811 } 812 813 /** 814 * disassociate_ctty - disconnect controlling tty 815 * @on_exit: true if exiting so need to "hang up" the session 816 * 817 * This function is typically called only by the session leader, when 818 * it wants to disassociate itself from its controlling tty. 819 * 820 * It performs the following functions: 821 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 822 * (2) Clears the tty from being controlling the session 823 * (3) Clears the controlling tty for all processes in the 824 * session group. 825 * 826 * The argument on_exit is set to 1 if called when a process is 827 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 828 * 829 * Locking: 830 * BTM is taken for hysterical raisins, and held when 831 * called from no_tty(). 832 * tty_mutex is taken to protect tty 833 * ->siglock is taken to protect ->signal/->sighand 834 * tasklist_lock is taken to walk process list for sessions 835 * ->siglock is taken to protect ->signal/->sighand 836 */ 837 838 void disassociate_ctty(int on_exit) 839 { 840 struct tty_struct *tty; 841 842 if (!current->signal->leader) 843 return; 844 845 tty = get_current_tty(); 846 if (tty) { 847 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 848 tty_vhangup_session(tty); 849 } else { 850 struct pid *tty_pgrp = tty_get_pgrp(tty); 851 if (tty_pgrp) { 852 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 853 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 854 put_pid(tty_pgrp); 855 } 856 } 857 tty_kref_put(tty); 858 859 } else if (on_exit) { 860 struct pid *old_pgrp; 861 spin_lock_irq(¤t->sighand->siglock); 862 old_pgrp = current->signal->tty_old_pgrp; 863 current->signal->tty_old_pgrp = NULL; 864 spin_unlock_irq(¤t->sighand->siglock); 865 if (old_pgrp) { 866 kill_pgrp(old_pgrp, SIGHUP, on_exit); 867 kill_pgrp(old_pgrp, SIGCONT, on_exit); 868 put_pid(old_pgrp); 869 } 870 return; 871 } 872 873 spin_lock_irq(¤t->sighand->siglock); 874 put_pid(current->signal->tty_old_pgrp); 875 current->signal->tty_old_pgrp = NULL; 876 spin_unlock_irq(¤t->sighand->siglock); 877 878 tty = get_current_tty(); 879 if (tty) { 880 unsigned long flags; 881 spin_lock_irqsave(&tty->ctrl_lock, flags); 882 put_pid(tty->session); 883 put_pid(tty->pgrp); 884 tty->session = NULL; 885 tty->pgrp = NULL; 886 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 887 tty_kref_put(tty); 888 } else { 889 #ifdef TTY_DEBUG_HANGUP 890 printk(KERN_DEBUG "error attempted to write to tty [0x%p]" 891 " = NULL", tty); 892 #endif 893 } 894 895 /* Now clear signal->tty under the lock */ 896 read_lock(&tasklist_lock); 897 session_clear_tty(task_session(current)); 898 read_unlock(&tasklist_lock); 899 } 900 901 /** 902 * 903 * no_tty - Ensure the current process does not have a controlling tty 904 */ 905 void no_tty(void) 906 { 907 /* FIXME: Review locking here. The tty_lock never covered any race 908 between a new association and proc_clear_tty but possible we need 909 to protect against this anyway */ 910 struct task_struct *tsk = current; 911 disassociate_ctty(0); 912 proc_clear_tty(tsk); 913 } 914 915 916 /** 917 * stop_tty - propagate flow control 918 * @tty: tty to stop 919 * 920 * Perform flow control to the driver. For PTY/TTY pairs we 921 * must also propagate the TIOCKPKT status. May be called 922 * on an already stopped device and will not re-call the driver 923 * method. 924 * 925 * This functionality is used by both the line disciplines for 926 * halting incoming flow and by the driver. It may therefore be 927 * called from any context, may be under the tty atomic_write_lock 928 * but not always. 929 * 930 * Locking: 931 * Uses the tty control lock internally 932 */ 933 934 void stop_tty(struct tty_struct *tty) 935 { 936 unsigned long flags; 937 spin_lock_irqsave(&tty->ctrl_lock, flags); 938 if (tty->stopped) { 939 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 940 return; 941 } 942 tty->stopped = 1; 943 if (tty->link && tty->link->packet) { 944 tty->ctrl_status &= ~TIOCPKT_START; 945 tty->ctrl_status |= TIOCPKT_STOP; 946 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 947 } 948 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 949 if (tty->ops->stop) 950 (tty->ops->stop)(tty); 951 } 952 953 EXPORT_SYMBOL(stop_tty); 954 955 /** 956 * start_tty - propagate flow control 957 * @tty: tty to start 958 * 959 * Start a tty that has been stopped if at all possible. Perform 960 * any necessary wakeups and propagate the TIOCPKT status. If this 961 * is the tty was previous stopped and is being started then the 962 * driver start method is invoked and the line discipline woken. 963 * 964 * Locking: 965 * ctrl_lock 966 */ 967 968 void start_tty(struct tty_struct *tty) 969 { 970 unsigned long flags; 971 spin_lock_irqsave(&tty->ctrl_lock, flags); 972 if (!tty->stopped || tty->flow_stopped) { 973 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 974 return; 975 } 976 tty->stopped = 0; 977 if (tty->link && tty->link->packet) { 978 tty->ctrl_status &= ~TIOCPKT_STOP; 979 tty->ctrl_status |= TIOCPKT_START; 980 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 981 } 982 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 983 if (tty->ops->start) 984 (tty->ops->start)(tty); 985 /* If we have a running line discipline it may need kicking */ 986 tty_wakeup(tty); 987 } 988 989 EXPORT_SYMBOL(start_tty); 990 991 /* We limit tty time update visibility to every 8 seconds or so. */ 992 static void tty_update_time(struct timespec *time) 993 { 994 unsigned long sec = get_seconds() & ~7; 995 if ((long)(sec - time->tv_sec) > 0) 996 time->tv_sec = sec; 997 } 998 999 /** 1000 * tty_read - read method for tty device files 1001 * @file: pointer to tty file 1002 * @buf: user buffer 1003 * @count: size of user buffer 1004 * @ppos: unused 1005 * 1006 * Perform the read system call function on this terminal device. Checks 1007 * for hung up devices before calling the line discipline method. 1008 * 1009 * Locking: 1010 * Locks the line discipline internally while needed. Multiple 1011 * read calls may be outstanding in parallel. 1012 */ 1013 1014 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1015 loff_t *ppos) 1016 { 1017 int i; 1018 struct inode *inode = file_inode(file); 1019 struct tty_struct *tty = file_tty(file); 1020 struct tty_ldisc *ld; 1021 1022 if (tty_paranoia_check(tty, inode, "tty_read")) 1023 return -EIO; 1024 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1025 return -EIO; 1026 1027 /* We want to wait for the line discipline to sort out in this 1028 situation */ 1029 ld = tty_ldisc_ref_wait(tty); 1030 if (ld->ops->read) 1031 i = (ld->ops->read)(tty, file, buf, count); 1032 else 1033 i = -EIO; 1034 tty_ldisc_deref(ld); 1035 1036 if (i > 0) 1037 tty_update_time(&inode->i_atime); 1038 1039 return i; 1040 } 1041 1042 void tty_write_unlock(struct tty_struct *tty) 1043 __releases(&tty->atomic_write_lock) 1044 { 1045 mutex_unlock(&tty->atomic_write_lock); 1046 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1047 } 1048 1049 int tty_write_lock(struct tty_struct *tty, int ndelay) 1050 __acquires(&tty->atomic_write_lock) 1051 { 1052 if (!mutex_trylock(&tty->atomic_write_lock)) { 1053 if (ndelay) 1054 return -EAGAIN; 1055 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1056 return -ERESTARTSYS; 1057 } 1058 return 0; 1059 } 1060 1061 /* 1062 * Split writes up in sane blocksizes to avoid 1063 * denial-of-service type attacks 1064 */ 1065 static inline ssize_t do_tty_write( 1066 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1067 struct tty_struct *tty, 1068 struct file *file, 1069 const char __user *buf, 1070 size_t count) 1071 { 1072 ssize_t ret, written = 0; 1073 unsigned int chunk; 1074 1075 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1076 if (ret < 0) 1077 return ret; 1078 1079 /* 1080 * We chunk up writes into a temporary buffer. This 1081 * simplifies low-level drivers immensely, since they 1082 * don't have locking issues and user mode accesses. 1083 * 1084 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1085 * big chunk-size.. 1086 * 1087 * The default chunk-size is 2kB, because the NTTY 1088 * layer has problems with bigger chunks. It will 1089 * claim to be able to handle more characters than 1090 * it actually does. 1091 * 1092 * FIXME: This can probably go away now except that 64K chunks 1093 * are too likely to fail unless switched to vmalloc... 1094 */ 1095 chunk = 2048; 1096 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1097 chunk = 65536; 1098 if (count < chunk) 1099 chunk = count; 1100 1101 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1102 if (tty->write_cnt < chunk) { 1103 unsigned char *buf_chunk; 1104 1105 if (chunk < 1024) 1106 chunk = 1024; 1107 1108 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1109 if (!buf_chunk) { 1110 ret = -ENOMEM; 1111 goto out; 1112 } 1113 kfree(tty->write_buf); 1114 tty->write_cnt = chunk; 1115 tty->write_buf = buf_chunk; 1116 } 1117 1118 /* Do the write .. */ 1119 for (;;) { 1120 size_t size = count; 1121 if (size > chunk) 1122 size = chunk; 1123 ret = -EFAULT; 1124 if (copy_from_user(tty->write_buf, buf, size)) 1125 break; 1126 ret = write(tty, file, tty->write_buf, size); 1127 if (ret <= 0) 1128 break; 1129 written += ret; 1130 buf += ret; 1131 count -= ret; 1132 if (!count) 1133 break; 1134 ret = -ERESTARTSYS; 1135 if (signal_pending(current)) 1136 break; 1137 cond_resched(); 1138 } 1139 if (written) { 1140 tty_update_time(&file_inode(file)->i_mtime); 1141 ret = written; 1142 } 1143 out: 1144 tty_write_unlock(tty); 1145 return ret; 1146 } 1147 1148 /** 1149 * tty_write_message - write a message to a certain tty, not just the console. 1150 * @tty: the destination tty_struct 1151 * @msg: the message to write 1152 * 1153 * This is used for messages that need to be redirected to a specific tty. 1154 * We don't put it into the syslog queue right now maybe in the future if 1155 * really needed. 1156 * 1157 * We must still hold the BTM and test the CLOSING flag for the moment. 1158 */ 1159 1160 void tty_write_message(struct tty_struct *tty, char *msg) 1161 { 1162 if (tty) { 1163 mutex_lock(&tty->atomic_write_lock); 1164 tty_lock(tty); 1165 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) { 1166 tty_unlock(tty); 1167 tty->ops->write(tty, msg, strlen(msg)); 1168 } else 1169 tty_unlock(tty); 1170 tty_write_unlock(tty); 1171 } 1172 return; 1173 } 1174 1175 1176 /** 1177 * tty_write - write method for tty device file 1178 * @file: tty file pointer 1179 * @buf: user data to write 1180 * @count: bytes to write 1181 * @ppos: unused 1182 * 1183 * Write data to a tty device via the line discipline. 1184 * 1185 * Locking: 1186 * Locks the line discipline as required 1187 * Writes to the tty driver are serialized by the atomic_write_lock 1188 * and are then processed in chunks to the device. The line discipline 1189 * write method will not be invoked in parallel for each device. 1190 */ 1191 1192 static ssize_t tty_write(struct file *file, const char __user *buf, 1193 size_t count, loff_t *ppos) 1194 { 1195 struct tty_struct *tty = file_tty(file); 1196 struct tty_ldisc *ld; 1197 ssize_t ret; 1198 1199 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1200 return -EIO; 1201 if (!tty || !tty->ops->write || 1202 (test_bit(TTY_IO_ERROR, &tty->flags))) 1203 return -EIO; 1204 /* Short term debug to catch buggy drivers */ 1205 if (tty->ops->write_room == NULL) 1206 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1207 tty->driver->name); 1208 ld = tty_ldisc_ref_wait(tty); 1209 if (!ld->ops->write) 1210 ret = -EIO; 1211 else 1212 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1213 tty_ldisc_deref(ld); 1214 return ret; 1215 } 1216 1217 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1218 size_t count, loff_t *ppos) 1219 { 1220 struct file *p = NULL; 1221 1222 spin_lock(&redirect_lock); 1223 if (redirect) 1224 p = get_file(redirect); 1225 spin_unlock(&redirect_lock); 1226 1227 if (p) { 1228 ssize_t res; 1229 res = vfs_write(p, buf, count, &p->f_pos); 1230 fput(p); 1231 return res; 1232 } 1233 return tty_write(file, buf, count, ppos); 1234 } 1235 1236 static char ptychar[] = "pqrstuvwxyzabcde"; 1237 1238 /** 1239 * pty_line_name - generate name for a pty 1240 * @driver: the tty driver in use 1241 * @index: the minor number 1242 * @p: output buffer of at least 6 bytes 1243 * 1244 * Generate a name from a driver reference and write it to the output 1245 * buffer. 1246 * 1247 * Locking: None 1248 */ 1249 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1250 { 1251 int i = index + driver->name_base; 1252 /* ->name is initialized to "ttyp", but "tty" is expected */ 1253 sprintf(p, "%s%c%x", 1254 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1255 ptychar[i >> 4 & 0xf], i & 0xf); 1256 } 1257 1258 /** 1259 * tty_line_name - generate name for a tty 1260 * @driver: the tty driver in use 1261 * @index: the minor number 1262 * @p: output buffer of at least 7 bytes 1263 * 1264 * Generate a name from a driver reference and write it to the output 1265 * buffer. 1266 * 1267 * Locking: None 1268 */ 1269 static void tty_line_name(struct tty_driver *driver, int index, char *p) 1270 { 1271 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1272 strcpy(p, driver->name); 1273 else 1274 sprintf(p, "%s%d", driver->name, index + driver->name_base); 1275 } 1276 1277 /** 1278 * tty_driver_lookup_tty() - find an existing tty, if any 1279 * @driver: the driver for the tty 1280 * @idx: the minor number 1281 * 1282 * Return the tty, if found or ERR_PTR() otherwise. 1283 * 1284 * Locking: tty_mutex must be held. If tty is found, the mutex must 1285 * be held until the 'fast-open' is also done. Will change once we 1286 * have refcounting in the driver and per driver locking 1287 */ 1288 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1289 struct inode *inode, int idx) 1290 { 1291 if (driver->ops->lookup) 1292 return driver->ops->lookup(driver, inode, idx); 1293 1294 return driver->ttys[idx]; 1295 } 1296 1297 /** 1298 * tty_init_termios - helper for termios setup 1299 * @tty: the tty to set up 1300 * 1301 * Initialise the termios structures for this tty. Thus runs under 1302 * the tty_mutex currently so we can be relaxed about ordering. 1303 */ 1304 1305 int tty_init_termios(struct tty_struct *tty) 1306 { 1307 struct ktermios *tp; 1308 int idx = tty->index; 1309 1310 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1311 tty->termios = tty->driver->init_termios; 1312 else { 1313 /* Check for lazy saved data */ 1314 tp = tty->driver->termios[idx]; 1315 if (tp != NULL) 1316 tty->termios = *tp; 1317 else 1318 tty->termios = tty->driver->init_termios; 1319 } 1320 /* Compatibility until drivers always set this */ 1321 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1322 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(tty_init_termios); 1326 1327 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1328 { 1329 int ret = tty_init_termios(tty); 1330 if (ret) 1331 return ret; 1332 1333 tty_driver_kref_get(driver); 1334 tty->count++; 1335 driver->ttys[tty->index] = tty; 1336 return 0; 1337 } 1338 EXPORT_SYMBOL_GPL(tty_standard_install); 1339 1340 /** 1341 * tty_driver_install_tty() - install a tty entry in the driver 1342 * @driver: the driver for the tty 1343 * @tty: the tty 1344 * 1345 * Install a tty object into the driver tables. The tty->index field 1346 * will be set by the time this is called. This method is responsible 1347 * for ensuring any need additional structures are allocated and 1348 * configured. 1349 * 1350 * Locking: tty_mutex for now 1351 */ 1352 static int tty_driver_install_tty(struct tty_driver *driver, 1353 struct tty_struct *tty) 1354 { 1355 return driver->ops->install ? driver->ops->install(driver, tty) : 1356 tty_standard_install(driver, tty); 1357 } 1358 1359 /** 1360 * tty_driver_remove_tty() - remove a tty from the driver tables 1361 * @driver: the driver for the tty 1362 * @idx: the minor number 1363 * 1364 * Remvoe a tty object from the driver tables. The tty->index field 1365 * will be set by the time this is called. 1366 * 1367 * Locking: tty_mutex for now 1368 */ 1369 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1370 { 1371 if (driver->ops->remove) 1372 driver->ops->remove(driver, tty); 1373 else 1374 driver->ttys[tty->index] = NULL; 1375 } 1376 1377 /* 1378 * tty_reopen() - fast re-open of an open tty 1379 * @tty - the tty to open 1380 * 1381 * Return 0 on success, -errno on error. 1382 * 1383 * Locking: tty_mutex must be held from the time the tty was found 1384 * till this open completes. 1385 */ 1386 static int tty_reopen(struct tty_struct *tty) 1387 { 1388 struct tty_driver *driver = tty->driver; 1389 1390 if (test_bit(TTY_CLOSING, &tty->flags) || 1391 test_bit(TTY_HUPPING, &tty->flags) || 1392 test_bit(TTY_LDISC_CHANGING, &tty->flags)) 1393 return -EIO; 1394 1395 if (driver->type == TTY_DRIVER_TYPE_PTY && 1396 driver->subtype == PTY_TYPE_MASTER) { 1397 /* 1398 * special case for PTY masters: only one open permitted, 1399 * and the slave side open count is incremented as well. 1400 */ 1401 if (tty->count) 1402 return -EIO; 1403 1404 tty->link->count++; 1405 } 1406 tty->count++; 1407 1408 WARN_ON(!test_bit(TTY_LDISC, &tty->flags)); 1409 1410 return 0; 1411 } 1412 1413 /** 1414 * tty_init_dev - initialise a tty device 1415 * @driver: tty driver we are opening a device on 1416 * @idx: device index 1417 * @ret_tty: returned tty structure 1418 * 1419 * Prepare a tty device. This may not be a "new" clean device but 1420 * could also be an active device. The pty drivers require special 1421 * handling because of this. 1422 * 1423 * Locking: 1424 * The function is called under the tty_mutex, which 1425 * protects us from the tty struct or driver itself going away. 1426 * 1427 * On exit the tty device has the line discipline attached and 1428 * a reference count of 1. If a pair was created for pty/tty use 1429 * and the other was a pty master then it too has a reference count of 1. 1430 * 1431 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1432 * failed open. The new code protects the open with a mutex, so it's 1433 * really quite straightforward. The mutex locking can probably be 1434 * relaxed for the (most common) case of reopening a tty. 1435 */ 1436 1437 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1438 { 1439 struct tty_struct *tty; 1440 int retval; 1441 1442 /* 1443 * First time open is complex, especially for PTY devices. 1444 * This code guarantees that either everything succeeds and the 1445 * TTY is ready for operation, or else the table slots are vacated 1446 * and the allocated memory released. (Except that the termios 1447 * and locked termios may be retained.) 1448 */ 1449 1450 if (!try_module_get(driver->owner)) 1451 return ERR_PTR(-ENODEV); 1452 1453 tty = alloc_tty_struct(); 1454 if (!tty) { 1455 retval = -ENOMEM; 1456 goto err_module_put; 1457 } 1458 initialize_tty_struct(tty, driver, idx); 1459 1460 tty_lock(tty); 1461 retval = tty_driver_install_tty(driver, tty); 1462 if (retval < 0) 1463 goto err_deinit_tty; 1464 1465 if (!tty->port) 1466 tty->port = driver->ports[idx]; 1467 1468 WARN_RATELIMIT(!tty->port, 1469 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1470 __func__, tty->driver->name); 1471 1472 tty->port->itty = tty; 1473 1474 /* 1475 * Structures all installed ... call the ldisc open routines. 1476 * If we fail here just call release_tty to clean up. No need 1477 * to decrement the use counts, as release_tty doesn't care. 1478 */ 1479 retval = tty_ldisc_setup(tty, tty->link); 1480 if (retval) 1481 goto err_release_tty; 1482 /* Return the tty locked so that it cannot vanish under the caller */ 1483 return tty; 1484 1485 err_deinit_tty: 1486 tty_unlock(tty); 1487 deinitialize_tty_struct(tty); 1488 free_tty_struct(tty); 1489 err_module_put: 1490 module_put(driver->owner); 1491 return ERR_PTR(retval); 1492 1493 /* call the tty release_tty routine to clean out this slot */ 1494 err_release_tty: 1495 tty_unlock(tty); 1496 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1497 "clearing slot %d\n", idx); 1498 release_tty(tty, idx); 1499 return ERR_PTR(retval); 1500 } 1501 1502 void tty_free_termios(struct tty_struct *tty) 1503 { 1504 struct ktermios *tp; 1505 int idx = tty->index; 1506 1507 /* If the port is going to reset then it has no termios to save */ 1508 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1509 return; 1510 1511 /* Stash the termios data */ 1512 tp = tty->driver->termios[idx]; 1513 if (tp == NULL) { 1514 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1515 if (tp == NULL) { 1516 pr_warn("tty: no memory to save termios state.\n"); 1517 return; 1518 } 1519 tty->driver->termios[idx] = tp; 1520 } 1521 *tp = tty->termios; 1522 } 1523 EXPORT_SYMBOL(tty_free_termios); 1524 1525 /** 1526 * tty_flush_works - flush all works of a tty 1527 * @tty: tty device to flush works for 1528 * 1529 * Sync flush all works belonging to @tty. 1530 */ 1531 static void tty_flush_works(struct tty_struct *tty) 1532 { 1533 flush_work(&tty->SAK_work); 1534 flush_work(&tty->hangup_work); 1535 } 1536 1537 /** 1538 * release_one_tty - release tty structure memory 1539 * @kref: kref of tty we are obliterating 1540 * 1541 * Releases memory associated with a tty structure, and clears out the 1542 * driver table slots. This function is called when a device is no longer 1543 * in use. It also gets called when setup of a device fails. 1544 * 1545 * Locking: 1546 * takes the file list lock internally when working on the list 1547 * of ttys that the driver keeps. 1548 * 1549 * This method gets called from a work queue so that the driver private 1550 * cleanup ops can sleep (needed for USB at least) 1551 */ 1552 static void release_one_tty(struct work_struct *work) 1553 { 1554 struct tty_struct *tty = 1555 container_of(work, struct tty_struct, hangup_work); 1556 struct tty_driver *driver = tty->driver; 1557 1558 if (tty->ops->cleanup) 1559 tty->ops->cleanup(tty); 1560 1561 tty->magic = 0; 1562 tty_driver_kref_put(driver); 1563 module_put(driver->owner); 1564 1565 spin_lock(&tty_files_lock); 1566 list_del_init(&tty->tty_files); 1567 spin_unlock(&tty_files_lock); 1568 1569 put_pid(tty->pgrp); 1570 put_pid(tty->session); 1571 free_tty_struct(tty); 1572 } 1573 1574 static void queue_release_one_tty(struct kref *kref) 1575 { 1576 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1577 1578 /* The hangup queue is now free so we can reuse it rather than 1579 waste a chunk of memory for each port */ 1580 INIT_WORK(&tty->hangup_work, release_one_tty); 1581 schedule_work(&tty->hangup_work); 1582 } 1583 1584 /** 1585 * tty_kref_put - release a tty kref 1586 * @tty: tty device 1587 * 1588 * Release a reference to a tty device and if need be let the kref 1589 * layer destruct the object for us 1590 */ 1591 1592 void tty_kref_put(struct tty_struct *tty) 1593 { 1594 if (tty) 1595 kref_put(&tty->kref, queue_release_one_tty); 1596 } 1597 EXPORT_SYMBOL(tty_kref_put); 1598 1599 /** 1600 * release_tty - release tty structure memory 1601 * 1602 * Release both @tty and a possible linked partner (think pty pair), 1603 * and decrement the refcount of the backing module. 1604 * 1605 * Locking: 1606 * tty_mutex 1607 * takes the file list lock internally when working on the list 1608 * of ttys that the driver keeps. 1609 * 1610 */ 1611 static void release_tty(struct tty_struct *tty, int idx) 1612 { 1613 /* This should always be true but check for the moment */ 1614 WARN_ON(tty->index != idx); 1615 WARN_ON(!mutex_is_locked(&tty_mutex)); 1616 if (tty->ops->shutdown) 1617 tty->ops->shutdown(tty); 1618 tty_free_termios(tty); 1619 tty_driver_remove_tty(tty->driver, tty); 1620 tty->port->itty = NULL; 1621 if (tty->link) 1622 tty->link->port->itty = NULL; 1623 cancel_work_sync(&tty->port->buf.work); 1624 1625 if (tty->link) 1626 tty_kref_put(tty->link); 1627 tty_kref_put(tty); 1628 } 1629 1630 /** 1631 * tty_release_checks - check a tty before real release 1632 * @tty: tty to check 1633 * @o_tty: link of @tty (if any) 1634 * @idx: index of the tty 1635 * 1636 * Performs some paranoid checking before true release of the @tty. 1637 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1638 */ 1639 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty, 1640 int idx) 1641 { 1642 #ifdef TTY_PARANOIA_CHECK 1643 if (idx < 0 || idx >= tty->driver->num) { 1644 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n", 1645 __func__, tty->name); 1646 return -1; 1647 } 1648 1649 /* not much to check for devpts */ 1650 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1651 return 0; 1652 1653 if (tty != tty->driver->ttys[idx]) { 1654 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n", 1655 __func__, idx, tty->name); 1656 return -1; 1657 } 1658 if (tty->driver->other) { 1659 if (o_tty != tty->driver->other->ttys[idx]) { 1660 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n", 1661 __func__, idx, tty->name); 1662 return -1; 1663 } 1664 if (o_tty->link != tty) { 1665 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__); 1666 return -1; 1667 } 1668 } 1669 #endif 1670 return 0; 1671 } 1672 1673 /** 1674 * tty_release - vfs callback for close 1675 * @inode: inode of tty 1676 * @filp: file pointer for handle to tty 1677 * 1678 * Called the last time each file handle is closed that references 1679 * this tty. There may however be several such references. 1680 * 1681 * Locking: 1682 * Takes bkl. See tty_release_dev 1683 * 1684 * Even releasing the tty structures is a tricky business.. We have 1685 * to be very careful that the structures are all released at the 1686 * same time, as interrupts might otherwise get the wrong pointers. 1687 * 1688 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1689 * lead to double frees or releasing memory still in use. 1690 */ 1691 1692 int tty_release(struct inode *inode, struct file *filp) 1693 { 1694 struct tty_struct *tty = file_tty(filp); 1695 struct tty_struct *o_tty; 1696 int pty_master, tty_closing, o_tty_closing, do_sleep; 1697 int idx; 1698 char buf[64]; 1699 1700 if (tty_paranoia_check(tty, inode, __func__)) 1701 return 0; 1702 1703 tty_lock(tty); 1704 check_tty_count(tty, __func__); 1705 1706 __tty_fasync(-1, filp, 0); 1707 1708 idx = tty->index; 1709 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1710 tty->driver->subtype == PTY_TYPE_MASTER); 1711 /* Review: parallel close */ 1712 o_tty = tty->link; 1713 1714 if (tty_release_checks(tty, o_tty, idx)) { 1715 tty_unlock(tty); 1716 return 0; 1717 } 1718 1719 #ifdef TTY_DEBUG_HANGUP 1720 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__, 1721 tty_name(tty, buf), tty->count); 1722 #endif 1723 1724 if (tty->ops->close) 1725 tty->ops->close(tty, filp); 1726 1727 tty_unlock(tty); 1728 /* 1729 * Sanity check: if tty->count is going to zero, there shouldn't be 1730 * any waiters on tty->read_wait or tty->write_wait. We test the 1731 * wait queues and kick everyone out _before_ actually starting to 1732 * close. This ensures that we won't block while releasing the tty 1733 * structure. 1734 * 1735 * The test for the o_tty closing is necessary, since the master and 1736 * slave sides may close in any order. If the slave side closes out 1737 * first, its count will be one, since the master side holds an open. 1738 * Thus this test wouldn't be triggered at the time the slave closes, 1739 * so we do it now. 1740 * 1741 * Note that it's possible for the tty to be opened again while we're 1742 * flushing out waiters. By recalculating the closing flags before 1743 * each iteration we avoid any problems. 1744 */ 1745 while (1) { 1746 /* Guard against races with tty->count changes elsewhere and 1747 opens on /dev/tty */ 1748 1749 mutex_lock(&tty_mutex); 1750 tty_lock_pair(tty, o_tty); 1751 tty_closing = tty->count <= 1; 1752 o_tty_closing = o_tty && 1753 (o_tty->count <= (pty_master ? 1 : 0)); 1754 do_sleep = 0; 1755 1756 if (tty_closing) { 1757 if (waitqueue_active(&tty->read_wait)) { 1758 wake_up_poll(&tty->read_wait, POLLIN); 1759 do_sleep++; 1760 } 1761 if (waitqueue_active(&tty->write_wait)) { 1762 wake_up_poll(&tty->write_wait, POLLOUT); 1763 do_sleep++; 1764 } 1765 } 1766 if (o_tty_closing) { 1767 if (waitqueue_active(&o_tty->read_wait)) { 1768 wake_up_poll(&o_tty->read_wait, POLLIN); 1769 do_sleep++; 1770 } 1771 if (waitqueue_active(&o_tty->write_wait)) { 1772 wake_up_poll(&o_tty->write_wait, POLLOUT); 1773 do_sleep++; 1774 } 1775 } 1776 if (!do_sleep) 1777 break; 1778 1779 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1780 __func__, tty_name(tty, buf)); 1781 tty_unlock_pair(tty, o_tty); 1782 mutex_unlock(&tty_mutex); 1783 schedule(); 1784 } 1785 1786 /* 1787 * The closing flags are now consistent with the open counts on 1788 * both sides, and we've completed the last operation that could 1789 * block, so it's safe to proceed with closing. 1790 * 1791 * We must *not* drop the tty_mutex until we ensure that a further 1792 * entry into tty_open can not pick up this tty. 1793 */ 1794 if (pty_master) { 1795 if (--o_tty->count < 0) { 1796 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1797 __func__, o_tty->count, tty_name(o_tty, buf)); 1798 o_tty->count = 0; 1799 } 1800 } 1801 if (--tty->count < 0) { 1802 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1803 __func__, tty->count, tty_name(tty, buf)); 1804 tty->count = 0; 1805 } 1806 1807 /* 1808 * We've decremented tty->count, so we need to remove this file 1809 * descriptor off the tty->tty_files list; this serves two 1810 * purposes: 1811 * - check_tty_count sees the correct number of file descriptors 1812 * associated with this tty. 1813 * - do_tty_hangup no longer sees this file descriptor as 1814 * something that needs to be handled for hangups. 1815 */ 1816 tty_del_file(filp); 1817 1818 /* 1819 * Perform some housekeeping before deciding whether to return. 1820 * 1821 * Set the TTY_CLOSING flag if this was the last open. In the 1822 * case of a pty we may have to wait around for the other side 1823 * to close, and TTY_CLOSING makes sure we can't be reopened. 1824 */ 1825 if (tty_closing) 1826 set_bit(TTY_CLOSING, &tty->flags); 1827 if (o_tty_closing) 1828 set_bit(TTY_CLOSING, &o_tty->flags); 1829 1830 /* 1831 * If _either_ side is closing, make sure there aren't any 1832 * processes that still think tty or o_tty is their controlling 1833 * tty. 1834 */ 1835 if (tty_closing || o_tty_closing) { 1836 read_lock(&tasklist_lock); 1837 session_clear_tty(tty->session); 1838 if (o_tty) 1839 session_clear_tty(o_tty->session); 1840 read_unlock(&tasklist_lock); 1841 } 1842 1843 mutex_unlock(&tty_mutex); 1844 tty_unlock_pair(tty, o_tty); 1845 /* At this point the TTY_CLOSING flag should ensure a dead tty 1846 cannot be re-opened by a racing opener */ 1847 1848 /* check whether both sides are closing ... */ 1849 if (!tty_closing || (o_tty && !o_tty_closing)) 1850 return 0; 1851 1852 #ifdef TTY_DEBUG_HANGUP 1853 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf)); 1854 #endif 1855 /* 1856 * Ask the line discipline code to release its structures 1857 */ 1858 tty_ldisc_release(tty, o_tty); 1859 1860 /* Wait for pending work before tty destruction commmences */ 1861 tty_flush_works(tty); 1862 if (o_tty) 1863 tty_flush_works(o_tty); 1864 1865 #ifdef TTY_DEBUG_HANGUP 1866 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf)); 1867 #endif 1868 /* 1869 * The release_tty function takes care of the details of clearing 1870 * the slots and preserving the termios structure. The tty_unlock_pair 1871 * should be safe as we keep a kref while the tty is locked (so the 1872 * unlock never unlocks a freed tty). 1873 */ 1874 mutex_lock(&tty_mutex); 1875 release_tty(tty, idx); 1876 mutex_unlock(&tty_mutex); 1877 1878 return 0; 1879 } 1880 1881 /** 1882 * tty_open_current_tty - get tty of current task for open 1883 * @device: device number 1884 * @filp: file pointer to tty 1885 * @return: tty of the current task iff @device is /dev/tty 1886 * 1887 * We cannot return driver and index like for the other nodes because 1888 * devpts will not work then. It expects inodes to be from devpts FS. 1889 * 1890 * We need to move to returning a refcounted object from all the lookup 1891 * paths including this one. 1892 */ 1893 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1894 { 1895 struct tty_struct *tty; 1896 1897 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1898 return NULL; 1899 1900 tty = get_current_tty(); 1901 if (!tty) 1902 return ERR_PTR(-ENXIO); 1903 1904 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1905 /* noctty = 1; */ 1906 tty_kref_put(tty); 1907 /* FIXME: we put a reference and return a TTY! */ 1908 /* This is only safe because the caller holds tty_mutex */ 1909 return tty; 1910 } 1911 1912 /** 1913 * tty_lookup_driver - lookup a tty driver for a given device file 1914 * @device: device number 1915 * @filp: file pointer to tty 1916 * @noctty: set if the device should not become a controlling tty 1917 * @index: index for the device in the @return driver 1918 * @return: driver for this inode (with increased refcount) 1919 * 1920 * If @return is not erroneous, the caller is responsible to decrement the 1921 * refcount by tty_driver_kref_put. 1922 * 1923 * Locking: tty_mutex protects get_tty_driver 1924 */ 1925 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1926 int *noctty, int *index) 1927 { 1928 struct tty_driver *driver; 1929 1930 switch (device) { 1931 #ifdef CONFIG_VT 1932 case MKDEV(TTY_MAJOR, 0): { 1933 extern struct tty_driver *console_driver; 1934 driver = tty_driver_kref_get(console_driver); 1935 *index = fg_console; 1936 *noctty = 1; 1937 break; 1938 } 1939 #endif 1940 case MKDEV(TTYAUX_MAJOR, 1): { 1941 struct tty_driver *console_driver = console_device(index); 1942 if (console_driver) { 1943 driver = tty_driver_kref_get(console_driver); 1944 if (driver) { 1945 /* Don't let /dev/console block */ 1946 filp->f_flags |= O_NONBLOCK; 1947 *noctty = 1; 1948 break; 1949 } 1950 } 1951 return ERR_PTR(-ENODEV); 1952 } 1953 default: 1954 driver = get_tty_driver(device, index); 1955 if (!driver) 1956 return ERR_PTR(-ENODEV); 1957 break; 1958 } 1959 return driver; 1960 } 1961 1962 /** 1963 * tty_open - open a tty device 1964 * @inode: inode of device file 1965 * @filp: file pointer to tty 1966 * 1967 * tty_open and tty_release keep up the tty count that contains the 1968 * number of opens done on a tty. We cannot use the inode-count, as 1969 * different inodes might point to the same tty. 1970 * 1971 * Open-counting is needed for pty masters, as well as for keeping 1972 * track of serial lines: DTR is dropped when the last close happens. 1973 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1974 * 1975 * The termios state of a pty is reset on first open so that 1976 * settings don't persist across reuse. 1977 * 1978 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1979 * tty->count should protect the rest. 1980 * ->siglock protects ->signal/->sighand 1981 * 1982 * Note: the tty_unlock/lock cases without a ref are only safe due to 1983 * tty_mutex 1984 */ 1985 1986 static int tty_open(struct inode *inode, struct file *filp) 1987 { 1988 struct tty_struct *tty; 1989 int noctty, retval; 1990 struct tty_driver *driver = NULL; 1991 int index; 1992 dev_t device = inode->i_rdev; 1993 unsigned saved_flags = filp->f_flags; 1994 1995 nonseekable_open(inode, filp); 1996 1997 retry_open: 1998 retval = tty_alloc_file(filp); 1999 if (retval) 2000 return -ENOMEM; 2001 2002 noctty = filp->f_flags & O_NOCTTY; 2003 index = -1; 2004 retval = 0; 2005 2006 mutex_lock(&tty_mutex); 2007 /* This is protected by the tty_mutex */ 2008 tty = tty_open_current_tty(device, filp); 2009 if (IS_ERR(tty)) { 2010 retval = PTR_ERR(tty); 2011 goto err_unlock; 2012 } else if (!tty) { 2013 driver = tty_lookup_driver(device, filp, &noctty, &index); 2014 if (IS_ERR(driver)) { 2015 retval = PTR_ERR(driver); 2016 goto err_unlock; 2017 } 2018 2019 /* check whether we're reopening an existing tty */ 2020 tty = tty_driver_lookup_tty(driver, inode, index); 2021 if (IS_ERR(tty)) { 2022 retval = PTR_ERR(tty); 2023 goto err_unlock; 2024 } 2025 } 2026 2027 if (tty) { 2028 tty_lock(tty); 2029 retval = tty_reopen(tty); 2030 if (retval < 0) { 2031 tty_unlock(tty); 2032 tty = ERR_PTR(retval); 2033 } 2034 } else /* Returns with the tty_lock held for now */ 2035 tty = tty_init_dev(driver, index); 2036 2037 mutex_unlock(&tty_mutex); 2038 if (driver) 2039 tty_driver_kref_put(driver); 2040 if (IS_ERR(tty)) { 2041 retval = PTR_ERR(tty); 2042 goto err_file; 2043 } 2044 2045 tty_add_file(tty, filp); 2046 2047 check_tty_count(tty, __func__); 2048 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2049 tty->driver->subtype == PTY_TYPE_MASTER) 2050 noctty = 1; 2051 #ifdef TTY_DEBUG_HANGUP 2052 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name); 2053 #endif 2054 if (tty->ops->open) 2055 retval = tty->ops->open(tty, filp); 2056 else 2057 retval = -ENODEV; 2058 filp->f_flags = saved_flags; 2059 2060 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && 2061 !capable(CAP_SYS_ADMIN)) 2062 retval = -EBUSY; 2063 2064 if (retval) { 2065 #ifdef TTY_DEBUG_HANGUP 2066 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__, 2067 retval, tty->name); 2068 #endif 2069 tty_unlock(tty); /* need to call tty_release without BTM */ 2070 tty_release(inode, filp); 2071 if (retval != -ERESTARTSYS) 2072 return retval; 2073 2074 if (signal_pending(current)) 2075 return retval; 2076 2077 schedule(); 2078 /* 2079 * Need to reset f_op in case a hangup happened. 2080 */ 2081 if (filp->f_op == &hung_up_tty_fops) 2082 filp->f_op = &tty_fops; 2083 goto retry_open; 2084 } 2085 tty_unlock(tty); 2086 2087 2088 mutex_lock(&tty_mutex); 2089 tty_lock(tty); 2090 spin_lock_irq(¤t->sighand->siglock); 2091 if (!noctty && 2092 current->signal->leader && 2093 !current->signal->tty && 2094 tty->session == NULL) 2095 __proc_set_tty(current, tty); 2096 spin_unlock_irq(¤t->sighand->siglock); 2097 tty_unlock(tty); 2098 mutex_unlock(&tty_mutex); 2099 return 0; 2100 err_unlock: 2101 mutex_unlock(&tty_mutex); 2102 /* after locks to avoid deadlock */ 2103 if (!IS_ERR_OR_NULL(driver)) 2104 tty_driver_kref_put(driver); 2105 err_file: 2106 tty_free_file(filp); 2107 return retval; 2108 } 2109 2110 2111 2112 /** 2113 * tty_poll - check tty status 2114 * @filp: file being polled 2115 * @wait: poll wait structures to update 2116 * 2117 * Call the line discipline polling method to obtain the poll 2118 * status of the device. 2119 * 2120 * Locking: locks called line discipline but ldisc poll method 2121 * may be re-entered freely by other callers. 2122 */ 2123 2124 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2125 { 2126 struct tty_struct *tty = file_tty(filp); 2127 struct tty_ldisc *ld; 2128 int ret = 0; 2129 2130 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2131 return 0; 2132 2133 ld = tty_ldisc_ref_wait(tty); 2134 if (ld->ops->poll) 2135 ret = (ld->ops->poll)(tty, filp, wait); 2136 tty_ldisc_deref(ld); 2137 return ret; 2138 } 2139 2140 static int __tty_fasync(int fd, struct file *filp, int on) 2141 { 2142 struct tty_struct *tty = file_tty(filp); 2143 struct tty_ldisc *ldisc; 2144 unsigned long flags; 2145 int retval = 0; 2146 2147 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2148 goto out; 2149 2150 retval = fasync_helper(fd, filp, on, &tty->fasync); 2151 if (retval <= 0) 2152 goto out; 2153 2154 ldisc = tty_ldisc_ref(tty); 2155 if (ldisc) { 2156 if (ldisc->ops->fasync) 2157 ldisc->ops->fasync(tty, on); 2158 tty_ldisc_deref(ldisc); 2159 } 2160 2161 if (on) { 2162 enum pid_type type; 2163 struct pid *pid; 2164 2165 spin_lock_irqsave(&tty->ctrl_lock, flags); 2166 if (tty->pgrp) { 2167 pid = tty->pgrp; 2168 type = PIDTYPE_PGID; 2169 } else { 2170 pid = task_pid(current); 2171 type = PIDTYPE_PID; 2172 } 2173 get_pid(pid); 2174 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2175 retval = __f_setown(filp, pid, type, 0); 2176 put_pid(pid); 2177 } 2178 out: 2179 return retval; 2180 } 2181 2182 static int tty_fasync(int fd, struct file *filp, int on) 2183 { 2184 struct tty_struct *tty = file_tty(filp); 2185 int retval; 2186 2187 tty_lock(tty); 2188 retval = __tty_fasync(fd, filp, on); 2189 tty_unlock(tty); 2190 2191 return retval; 2192 } 2193 2194 /** 2195 * tiocsti - fake input character 2196 * @tty: tty to fake input into 2197 * @p: pointer to character 2198 * 2199 * Fake input to a tty device. Does the necessary locking and 2200 * input management. 2201 * 2202 * FIXME: does not honour flow control ?? 2203 * 2204 * Locking: 2205 * Called functions take tty_ldisc_lock 2206 * current->signal->tty check is safe without locks 2207 * 2208 * FIXME: may race normal receive processing 2209 */ 2210 2211 static int tiocsti(struct tty_struct *tty, char __user *p) 2212 { 2213 char ch, mbz = 0; 2214 struct tty_ldisc *ld; 2215 2216 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2217 return -EPERM; 2218 if (get_user(ch, p)) 2219 return -EFAULT; 2220 tty_audit_tiocsti(tty, ch); 2221 ld = tty_ldisc_ref_wait(tty); 2222 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2223 tty_ldisc_deref(ld); 2224 return 0; 2225 } 2226 2227 /** 2228 * tiocgwinsz - implement window query ioctl 2229 * @tty; tty 2230 * @arg: user buffer for result 2231 * 2232 * Copies the kernel idea of the window size into the user buffer. 2233 * 2234 * Locking: tty->termios_mutex is taken to ensure the winsize data 2235 * is consistent. 2236 */ 2237 2238 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2239 { 2240 int err; 2241 2242 mutex_lock(&tty->termios_mutex); 2243 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2244 mutex_unlock(&tty->termios_mutex); 2245 2246 return err ? -EFAULT: 0; 2247 } 2248 2249 /** 2250 * tty_do_resize - resize event 2251 * @tty: tty being resized 2252 * @rows: rows (character) 2253 * @cols: cols (character) 2254 * 2255 * Update the termios variables and send the necessary signals to 2256 * peform a terminal resize correctly 2257 */ 2258 2259 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2260 { 2261 struct pid *pgrp; 2262 unsigned long flags; 2263 2264 /* Lock the tty */ 2265 mutex_lock(&tty->termios_mutex); 2266 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2267 goto done; 2268 /* Get the PID values and reference them so we can 2269 avoid holding the tty ctrl lock while sending signals */ 2270 spin_lock_irqsave(&tty->ctrl_lock, flags); 2271 pgrp = get_pid(tty->pgrp); 2272 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2273 2274 if (pgrp) 2275 kill_pgrp(pgrp, SIGWINCH, 1); 2276 put_pid(pgrp); 2277 2278 tty->winsize = *ws; 2279 done: 2280 mutex_unlock(&tty->termios_mutex); 2281 return 0; 2282 } 2283 EXPORT_SYMBOL(tty_do_resize); 2284 2285 /** 2286 * tiocswinsz - implement window size set ioctl 2287 * @tty; tty side of tty 2288 * @arg: user buffer for result 2289 * 2290 * Copies the user idea of the window size to the kernel. Traditionally 2291 * this is just advisory information but for the Linux console it 2292 * actually has driver level meaning and triggers a VC resize. 2293 * 2294 * Locking: 2295 * Driver dependent. The default do_resize method takes the 2296 * tty termios mutex and ctrl_lock. The console takes its own lock 2297 * then calls into the default method. 2298 */ 2299 2300 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2301 { 2302 struct winsize tmp_ws; 2303 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2304 return -EFAULT; 2305 2306 if (tty->ops->resize) 2307 return tty->ops->resize(tty, &tmp_ws); 2308 else 2309 return tty_do_resize(tty, &tmp_ws); 2310 } 2311 2312 /** 2313 * tioccons - allow admin to move logical console 2314 * @file: the file to become console 2315 * 2316 * Allow the administrator to move the redirected console device 2317 * 2318 * Locking: uses redirect_lock to guard the redirect information 2319 */ 2320 2321 static int tioccons(struct file *file) 2322 { 2323 if (!capable(CAP_SYS_ADMIN)) 2324 return -EPERM; 2325 if (file->f_op->write == redirected_tty_write) { 2326 struct file *f; 2327 spin_lock(&redirect_lock); 2328 f = redirect; 2329 redirect = NULL; 2330 spin_unlock(&redirect_lock); 2331 if (f) 2332 fput(f); 2333 return 0; 2334 } 2335 spin_lock(&redirect_lock); 2336 if (redirect) { 2337 spin_unlock(&redirect_lock); 2338 return -EBUSY; 2339 } 2340 redirect = get_file(file); 2341 spin_unlock(&redirect_lock); 2342 return 0; 2343 } 2344 2345 /** 2346 * fionbio - non blocking ioctl 2347 * @file: file to set blocking value 2348 * @p: user parameter 2349 * 2350 * Historical tty interfaces had a blocking control ioctl before 2351 * the generic functionality existed. This piece of history is preserved 2352 * in the expected tty API of posix OS's. 2353 * 2354 * Locking: none, the open file handle ensures it won't go away. 2355 */ 2356 2357 static int fionbio(struct file *file, int __user *p) 2358 { 2359 int nonblock; 2360 2361 if (get_user(nonblock, p)) 2362 return -EFAULT; 2363 2364 spin_lock(&file->f_lock); 2365 if (nonblock) 2366 file->f_flags |= O_NONBLOCK; 2367 else 2368 file->f_flags &= ~O_NONBLOCK; 2369 spin_unlock(&file->f_lock); 2370 return 0; 2371 } 2372 2373 /** 2374 * tiocsctty - set controlling tty 2375 * @tty: tty structure 2376 * @arg: user argument 2377 * 2378 * This ioctl is used to manage job control. It permits a session 2379 * leader to set this tty as the controlling tty for the session. 2380 * 2381 * Locking: 2382 * Takes tty_mutex() to protect tty instance 2383 * Takes tasklist_lock internally to walk sessions 2384 * Takes ->siglock() when updating signal->tty 2385 */ 2386 2387 static int tiocsctty(struct tty_struct *tty, int arg) 2388 { 2389 int ret = 0; 2390 if (current->signal->leader && (task_session(current) == tty->session)) 2391 return ret; 2392 2393 mutex_lock(&tty_mutex); 2394 /* 2395 * The process must be a session leader and 2396 * not have a controlling tty already. 2397 */ 2398 if (!current->signal->leader || current->signal->tty) { 2399 ret = -EPERM; 2400 goto unlock; 2401 } 2402 2403 if (tty->session) { 2404 /* 2405 * This tty is already the controlling 2406 * tty for another session group! 2407 */ 2408 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2409 /* 2410 * Steal it away 2411 */ 2412 read_lock(&tasklist_lock); 2413 session_clear_tty(tty->session); 2414 read_unlock(&tasklist_lock); 2415 } else { 2416 ret = -EPERM; 2417 goto unlock; 2418 } 2419 } 2420 proc_set_tty(current, tty); 2421 unlock: 2422 mutex_unlock(&tty_mutex); 2423 return ret; 2424 } 2425 2426 /** 2427 * tty_get_pgrp - return a ref counted pgrp pid 2428 * @tty: tty to read 2429 * 2430 * Returns a refcounted instance of the pid struct for the process 2431 * group controlling the tty. 2432 */ 2433 2434 struct pid *tty_get_pgrp(struct tty_struct *tty) 2435 { 2436 unsigned long flags; 2437 struct pid *pgrp; 2438 2439 spin_lock_irqsave(&tty->ctrl_lock, flags); 2440 pgrp = get_pid(tty->pgrp); 2441 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2442 2443 return pgrp; 2444 } 2445 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2446 2447 /** 2448 * tiocgpgrp - get process group 2449 * @tty: tty passed by user 2450 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2451 * @p: returned pid 2452 * 2453 * Obtain the process group of the tty. If there is no process group 2454 * return an error. 2455 * 2456 * Locking: none. Reference to current->signal->tty is safe. 2457 */ 2458 2459 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2460 { 2461 struct pid *pid; 2462 int ret; 2463 /* 2464 * (tty == real_tty) is a cheap way of 2465 * testing if the tty is NOT a master pty. 2466 */ 2467 if (tty == real_tty && current->signal->tty != real_tty) 2468 return -ENOTTY; 2469 pid = tty_get_pgrp(real_tty); 2470 ret = put_user(pid_vnr(pid), p); 2471 put_pid(pid); 2472 return ret; 2473 } 2474 2475 /** 2476 * tiocspgrp - attempt to set process group 2477 * @tty: tty passed by user 2478 * @real_tty: tty side device matching tty passed by user 2479 * @p: pid pointer 2480 * 2481 * Set the process group of the tty to the session passed. Only 2482 * permitted where the tty session is our session. 2483 * 2484 * Locking: RCU, ctrl lock 2485 */ 2486 2487 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2488 { 2489 struct pid *pgrp; 2490 pid_t pgrp_nr; 2491 int retval = tty_check_change(real_tty); 2492 unsigned long flags; 2493 2494 if (retval == -EIO) 2495 return -ENOTTY; 2496 if (retval) 2497 return retval; 2498 if (!current->signal->tty || 2499 (current->signal->tty != real_tty) || 2500 (real_tty->session != task_session(current))) 2501 return -ENOTTY; 2502 if (get_user(pgrp_nr, p)) 2503 return -EFAULT; 2504 if (pgrp_nr < 0) 2505 return -EINVAL; 2506 rcu_read_lock(); 2507 pgrp = find_vpid(pgrp_nr); 2508 retval = -ESRCH; 2509 if (!pgrp) 2510 goto out_unlock; 2511 retval = -EPERM; 2512 if (session_of_pgrp(pgrp) != task_session(current)) 2513 goto out_unlock; 2514 retval = 0; 2515 spin_lock_irqsave(&tty->ctrl_lock, flags); 2516 put_pid(real_tty->pgrp); 2517 real_tty->pgrp = get_pid(pgrp); 2518 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2519 out_unlock: 2520 rcu_read_unlock(); 2521 return retval; 2522 } 2523 2524 /** 2525 * tiocgsid - get session id 2526 * @tty: tty passed by user 2527 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2528 * @p: pointer to returned session id 2529 * 2530 * Obtain the session id of the tty. If there is no session 2531 * return an error. 2532 * 2533 * Locking: none. Reference to current->signal->tty is safe. 2534 */ 2535 2536 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2537 { 2538 /* 2539 * (tty == real_tty) is a cheap way of 2540 * testing if the tty is NOT a master pty. 2541 */ 2542 if (tty == real_tty && current->signal->tty != real_tty) 2543 return -ENOTTY; 2544 if (!real_tty->session) 2545 return -ENOTTY; 2546 return put_user(pid_vnr(real_tty->session), p); 2547 } 2548 2549 /** 2550 * tiocsetd - set line discipline 2551 * @tty: tty device 2552 * @p: pointer to user data 2553 * 2554 * Set the line discipline according to user request. 2555 * 2556 * Locking: see tty_set_ldisc, this function is just a helper 2557 */ 2558 2559 static int tiocsetd(struct tty_struct *tty, int __user *p) 2560 { 2561 int ldisc; 2562 int ret; 2563 2564 if (get_user(ldisc, p)) 2565 return -EFAULT; 2566 2567 ret = tty_set_ldisc(tty, ldisc); 2568 2569 return ret; 2570 } 2571 2572 /** 2573 * send_break - performed time break 2574 * @tty: device to break on 2575 * @duration: timeout in mS 2576 * 2577 * Perform a timed break on hardware that lacks its own driver level 2578 * timed break functionality. 2579 * 2580 * Locking: 2581 * atomic_write_lock serializes 2582 * 2583 */ 2584 2585 static int send_break(struct tty_struct *tty, unsigned int duration) 2586 { 2587 int retval; 2588 2589 if (tty->ops->break_ctl == NULL) 2590 return 0; 2591 2592 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2593 retval = tty->ops->break_ctl(tty, duration); 2594 else { 2595 /* Do the work ourselves */ 2596 if (tty_write_lock(tty, 0) < 0) 2597 return -EINTR; 2598 retval = tty->ops->break_ctl(tty, -1); 2599 if (retval) 2600 goto out; 2601 if (!signal_pending(current)) 2602 msleep_interruptible(duration); 2603 retval = tty->ops->break_ctl(tty, 0); 2604 out: 2605 tty_write_unlock(tty); 2606 if (signal_pending(current)) 2607 retval = -EINTR; 2608 } 2609 return retval; 2610 } 2611 2612 /** 2613 * tty_tiocmget - get modem status 2614 * @tty: tty device 2615 * @file: user file pointer 2616 * @p: pointer to result 2617 * 2618 * Obtain the modem status bits from the tty driver if the feature 2619 * is supported. Return -EINVAL if it is not available. 2620 * 2621 * Locking: none (up to the driver) 2622 */ 2623 2624 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2625 { 2626 int retval = -EINVAL; 2627 2628 if (tty->ops->tiocmget) { 2629 retval = tty->ops->tiocmget(tty); 2630 2631 if (retval >= 0) 2632 retval = put_user(retval, p); 2633 } 2634 return retval; 2635 } 2636 2637 /** 2638 * tty_tiocmset - set modem status 2639 * @tty: tty device 2640 * @cmd: command - clear bits, set bits or set all 2641 * @p: pointer to desired bits 2642 * 2643 * Set the modem status bits from the tty driver if the feature 2644 * is supported. Return -EINVAL if it is not available. 2645 * 2646 * Locking: none (up to the driver) 2647 */ 2648 2649 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2650 unsigned __user *p) 2651 { 2652 int retval; 2653 unsigned int set, clear, val; 2654 2655 if (tty->ops->tiocmset == NULL) 2656 return -EINVAL; 2657 2658 retval = get_user(val, p); 2659 if (retval) 2660 return retval; 2661 set = clear = 0; 2662 switch (cmd) { 2663 case TIOCMBIS: 2664 set = val; 2665 break; 2666 case TIOCMBIC: 2667 clear = val; 2668 break; 2669 case TIOCMSET: 2670 set = val; 2671 clear = ~val; 2672 break; 2673 } 2674 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2675 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2676 return tty->ops->tiocmset(tty, set, clear); 2677 } 2678 2679 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2680 { 2681 int retval = -EINVAL; 2682 struct serial_icounter_struct icount; 2683 memset(&icount, 0, sizeof(icount)); 2684 if (tty->ops->get_icount) 2685 retval = tty->ops->get_icount(tty, &icount); 2686 if (retval != 0) 2687 return retval; 2688 if (copy_to_user(arg, &icount, sizeof(icount))) 2689 return -EFAULT; 2690 return 0; 2691 } 2692 2693 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2694 { 2695 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2696 tty->driver->subtype == PTY_TYPE_MASTER) 2697 tty = tty->link; 2698 return tty; 2699 } 2700 EXPORT_SYMBOL(tty_pair_get_tty); 2701 2702 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty) 2703 { 2704 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2705 tty->driver->subtype == PTY_TYPE_MASTER) 2706 return tty; 2707 return tty->link; 2708 } 2709 EXPORT_SYMBOL(tty_pair_get_pty); 2710 2711 /* 2712 * Split this up, as gcc can choke on it otherwise.. 2713 */ 2714 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2715 { 2716 struct tty_struct *tty = file_tty(file); 2717 struct tty_struct *real_tty; 2718 void __user *p = (void __user *)arg; 2719 int retval; 2720 struct tty_ldisc *ld; 2721 2722 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2723 return -EINVAL; 2724 2725 real_tty = tty_pair_get_tty(tty); 2726 2727 /* 2728 * Factor out some common prep work 2729 */ 2730 switch (cmd) { 2731 case TIOCSETD: 2732 case TIOCSBRK: 2733 case TIOCCBRK: 2734 case TCSBRK: 2735 case TCSBRKP: 2736 retval = tty_check_change(tty); 2737 if (retval) 2738 return retval; 2739 if (cmd != TIOCCBRK) { 2740 tty_wait_until_sent(tty, 0); 2741 if (signal_pending(current)) 2742 return -EINTR; 2743 } 2744 break; 2745 } 2746 2747 /* 2748 * Now do the stuff. 2749 */ 2750 switch (cmd) { 2751 case TIOCSTI: 2752 return tiocsti(tty, p); 2753 case TIOCGWINSZ: 2754 return tiocgwinsz(real_tty, p); 2755 case TIOCSWINSZ: 2756 return tiocswinsz(real_tty, p); 2757 case TIOCCONS: 2758 return real_tty != tty ? -EINVAL : tioccons(file); 2759 case FIONBIO: 2760 return fionbio(file, p); 2761 case TIOCEXCL: 2762 set_bit(TTY_EXCLUSIVE, &tty->flags); 2763 return 0; 2764 case TIOCNXCL: 2765 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2766 return 0; 2767 case TIOCGEXCL: 2768 { 2769 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2770 return put_user(excl, (int __user *)p); 2771 } 2772 case TIOCNOTTY: 2773 if (current->signal->tty != tty) 2774 return -ENOTTY; 2775 no_tty(); 2776 return 0; 2777 case TIOCSCTTY: 2778 return tiocsctty(tty, arg); 2779 case TIOCGPGRP: 2780 return tiocgpgrp(tty, real_tty, p); 2781 case TIOCSPGRP: 2782 return tiocspgrp(tty, real_tty, p); 2783 case TIOCGSID: 2784 return tiocgsid(tty, real_tty, p); 2785 case TIOCGETD: 2786 return put_user(tty->ldisc->ops->num, (int __user *)p); 2787 case TIOCSETD: 2788 return tiocsetd(tty, p); 2789 case TIOCVHANGUP: 2790 if (!capable(CAP_SYS_ADMIN)) 2791 return -EPERM; 2792 tty_vhangup(tty); 2793 return 0; 2794 case TIOCGDEV: 2795 { 2796 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2797 return put_user(ret, (unsigned int __user *)p); 2798 } 2799 /* 2800 * Break handling 2801 */ 2802 case TIOCSBRK: /* Turn break on, unconditionally */ 2803 if (tty->ops->break_ctl) 2804 return tty->ops->break_ctl(tty, -1); 2805 return 0; 2806 case TIOCCBRK: /* Turn break off, unconditionally */ 2807 if (tty->ops->break_ctl) 2808 return tty->ops->break_ctl(tty, 0); 2809 return 0; 2810 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2811 /* non-zero arg means wait for all output data 2812 * to be sent (performed above) but don't send break. 2813 * This is used by the tcdrain() termios function. 2814 */ 2815 if (!arg) 2816 return send_break(tty, 250); 2817 return 0; 2818 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2819 return send_break(tty, arg ? arg*100 : 250); 2820 2821 case TIOCMGET: 2822 return tty_tiocmget(tty, p); 2823 case TIOCMSET: 2824 case TIOCMBIC: 2825 case TIOCMBIS: 2826 return tty_tiocmset(tty, cmd, p); 2827 case TIOCGICOUNT: 2828 retval = tty_tiocgicount(tty, p); 2829 /* For the moment allow fall through to the old method */ 2830 if (retval != -EINVAL) 2831 return retval; 2832 break; 2833 case TCFLSH: 2834 switch (arg) { 2835 case TCIFLUSH: 2836 case TCIOFLUSH: 2837 /* flush tty buffer and allow ldisc to process ioctl */ 2838 tty_buffer_flush(tty); 2839 break; 2840 } 2841 break; 2842 } 2843 if (tty->ops->ioctl) { 2844 retval = (tty->ops->ioctl)(tty, cmd, arg); 2845 if (retval != -ENOIOCTLCMD) 2846 return retval; 2847 } 2848 ld = tty_ldisc_ref_wait(tty); 2849 retval = -EINVAL; 2850 if (ld->ops->ioctl) { 2851 retval = ld->ops->ioctl(tty, file, cmd, arg); 2852 if (retval == -ENOIOCTLCMD) 2853 retval = -ENOTTY; 2854 } 2855 tty_ldisc_deref(ld); 2856 return retval; 2857 } 2858 2859 #ifdef CONFIG_COMPAT 2860 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2861 unsigned long arg) 2862 { 2863 struct tty_struct *tty = file_tty(file); 2864 struct tty_ldisc *ld; 2865 int retval = -ENOIOCTLCMD; 2866 2867 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2868 return -EINVAL; 2869 2870 if (tty->ops->compat_ioctl) { 2871 retval = (tty->ops->compat_ioctl)(tty, cmd, arg); 2872 if (retval != -ENOIOCTLCMD) 2873 return retval; 2874 } 2875 2876 ld = tty_ldisc_ref_wait(tty); 2877 if (ld->ops->compat_ioctl) 2878 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2879 else 2880 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2881 tty_ldisc_deref(ld); 2882 2883 return retval; 2884 } 2885 #endif 2886 2887 static int this_tty(const void *t, struct file *file, unsigned fd) 2888 { 2889 if (likely(file->f_op->read != tty_read)) 2890 return 0; 2891 return file_tty(file) != t ? 0 : fd + 1; 2892 } 2893 2894 /* 2895 * This implements the "Secure Attention Key" --- the idea is to 2896 * prevent trojan horses by killing all processes associated with this 2897 * tty when the user hits the "Secure Attention Key". Required for 2898 * super-paranoid applications --- see the Orange Book for more details. 2899 * 2900 * This code could be nicer; ideally it should send a HUP, wait a few 2901 * seconds, then send a INT, and then a KILL signal. But you then 2902 * have to coordinate with the init process, since all processes associated 2903 * with the current tty must be dead before the new getty is allowed 2904 * to spawn. 2905 * 2906 * Now, if it would be correct ;-/ The current code has a nasty hole - 2907 * it doesn't catch files in flight. We may send the descriptor to ourselves 2908 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2909 * 2910 * Nasty bug: do_SAK is being called in interrupt context. This can 2911 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2912 */ 2913 void __do_SAK(struct tty_struct *tty) 2914 { 2915 #ifdef TTY_SOFT_SAK 2916 tty_hangup(tty); 2917 #else 2918 struct task_struct *g, *p; 2919 struct pid *session; 2920 int i; 2921 2922 if (!tty) 2923 return; 2924 session = tty->session; 2925 2926 tty_ldisc_flush(tty); 2927 2928 tty_driver_flush_buffer(tty); 2929 2930 read_lock(&tasklist_lock); 2931 /* Kill the entire session */ 2932 do_each_pid_task(session, PIDTYPE_SID, p) { 2933 printk(KERN_NOTICE "SAK: killed process %d" 2934 " (%s): task_session(p)==tty->session\n", 2935 task_pid_nr(p), p->comm); 2936 send_sig(SIGKILL, p, 1); 2937 } while_each_pid_task(session, PIDTYPE_SID, p); 2938 /* Now kill any processes that happen to have the 2939 * tty open. 2940 */ 2941 do_each_thread(g, p) { 2942 if (p->signal->tty == tty) { 2943 printk(KERN_NOTICE "SAK: killed process %d" 2944 " (%s): task_session(p)==tty->session\n", 2945 task_pid_nr(p), p->comm); 2946 send_sig(SIGKILL, p, 1); 2947 continue; 2948 } 2949 task_lock(p); 2950 i = iterate_fd(p->files, 0, this_tty, tty); 2951 if (i != 0) { 2952 printk(KERN_NOTICE "SAK: killed process %d" 2953 " (%s): fd#%d opened to the tty\n", 2954 task_pid_nr(p), p->comm, i - 1); 2955 force_sig(SIGKILL, p); 2956 } 2957 task_unlock(p); 2958 } while_each_thread(g, p); 2959 read_unlock(&tasklist_lock); 2960 #endif 2961 } 2962 2963 static void do_SAK_work(struct work_struct *work) 2964 { 2965 struct tty_struct *tty = 2966 container_of(work, struct tty_struct, SAK_work); 2967 __do_SAK(tty); 2968 } 2969 2970 /* 2971 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2972 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2973 * the values which we write to it will be identical to the values which it 2974 * already has. --akpm 2975 */ 2976 void do_SAK(struct tty_struct *tty) 2977 { 2978 if (!tty) 2979 return; 2980 schedule_work(&tty->SAK_work); 2981 } 2982 2983 EXPORT_SYMBOL(do_SAK); 2984 2985 static int dev_match_devt(struct device *dev, const void *data) 2986 { 2987 const dev_t *devt = data; 2988 return dev->devt == *devt; 2989 } 2990 2991 /* Must put_device() after it's unused! */ 2992 static struct device *tty_get_device(struct tty_struct *tty) 2993 { 2994 dev_t devt = tty_devnum(tty); 2995 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 2996 } 2997 2998 2999 /** 3000 * initialize_tty_struct 3001 * @tty: tty to initialize 3002 * 3003 * This subroutine initializes a tty structure that has been newly 3004 * allocated. 3005 * 3006 * Locking: none - tty in question must not be exposed at this point 3007 */ 3008 3009 void initialize_tty_struct(struct tty_struct *tty, 3010 struct tty_driver *driver, int idx) 3011 { 3012 memset(tty, 0, sizeof(struct tty_struct)); 3013 kref_init(&tty->kref); 3014 tty->magic = TTY_MAGIC; 3015 tty_ldisc_init(tty); 3016 tty->session = NULL; 3017 tty->pgrp = NULL; 3018 mutex_init(&tty->legacy_mutex); 3019 mutex_init(&tty->termios_mutex); 3020 mutex_init(&tty->ldisc_mutex); 3021 init_waitqueue_head(&tty->write_wait); 3022 init_waitqueue_head(&tty->read_wait); 3023 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3024 mutex_init(&tty->atomic_write_lock); 3025 spin_lock_init(&tty->ctrl_lock); 3026 INIT_LIST_HEAD(&tty->tty_files); 3027 INIT_WORK(&tty->SAK_work, do_SAK_work); 3028 3029 tty->driver = driver; 3030 tty->ops = driver->ops; 3031 tty->index = idx; 3032 tty_line_name(driver, idx, tty->name); 3033 tty->dev = tty_get_device(tty); 3034 } 3035 3036 /** 3037 * deinitialize_tty_struct 3038 * @tty: tty to deinitialize 3039 * 3040 * This subroutine deinitializes a tty structure that has been newly 3041 * allocated but tty_release cannot be called on that yet. 3042 * 3043 * Locking: none - tty in question must not be exposed at this point 3044 */ 3045 void deinitialize_tty_struct(struct tty_struct *tty) 3046 { 3047 tty_ldisc_deinit(tty); 3048 } 3049 3050 /** 3051 * tty_put_char - write one character to a tty 3052 * @tty: tty 3053 * @ch: character 3054 * 3055 * Write one byte to the tty using the provided put_char method 3056 * if present. Returns the number of characters successfully output. 3057 * 3058 * Note: the specific put_char operation in the driver layer may go 3059 * away soon. Don't call it directly, use this method 3060 */ 3061 3062 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3063 { 3064 if (tty->ops->put_char) 3065 return tty->ops->put_char(tty, ch); 3066 return tty->ops->write(tty, &ch, 1); 3067 } 3068 EXPORT_SYMBOL_GPL(tty_put_char); 3069 3070 struct class *tty_class; 3071 3072 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3073 unsigned int index, unsigned int count) 3074 { 3075 /* init here, since reused cdevs cause crashes */ 3076 cdev_init(&driver->cdevs[index], &tty_fops); 3077 driver->cdevs[index].owner = driver->owner; 3078 return cdev_add(&driver->cdevs[index], dev, count); 3079 } 3080 3081 /** 3082 * tty_register_device - register a tty device 3083 * @driver: the tty driver that describes the tty device 3084 * @index: the index in the tty driver for this tty device 3085 * @device: a struct device that is associated with this tty device. 3086 * This field is optional, if there is no known struct device 3087 * for this tty device it can be set to NULL safely. 3088 * 3089 * Returns a pointer to the struct device for this tty device 3090 * (or ERR_PTR(-EFOO) on error). 3091 * 3092 * This call is required to be made to register an individual tty device 3093 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3094 * that bit is not set, this function should not be called by a tty 3095 * driver. 3096 * 3097 * Locking: ?? 3098 */ 3099 3100 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3101 struct device *device) 3102 { 3103 return tty_register_device_attr(driver, index, device, NULL, NULL); 3104 } 3105 EXPORT_SYMBOL(tty_register_device); 3106 3107 static void tty_device_create_release(struct device *dev) 3108 { 3109 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3110 kfree(dev); 3111 } 3112 3113 /** 3114 * tty_register_device_attr - register a tty device 3115 * @driver: the tty driver that describes the tty device 3116 * @index: the index in the tty driver for this tty device 3117 * @device: a struct device that is associated with this tty device. 3118 * This field is optional, if there is no known struct device 3119 * for this tty device it can be set to NULL safely. 3120 * @drvdata: Driver data to be set to device. 3121 * @attr_grp: Attribute group to be set on device. 3122 * 3123 * Returns a pointer to the struct device for this tty device 3124 * (or ERR_PTR(-EFOO) on error). 3125 * 3126 * This call is required to be made to register an individual tty device 3127 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3128 * that bit is not set, this function should not be called by a tty 3129 * driver. 3130 * 3131 * Locking: ?? 3132 */ 3133 struct device *tty_register_device_attr(struct tty_driver *driver, 3134 unsigned index, struct device *device, 3135 void *drvdata, 3136 const struct attribute_group **attr_grp) 3137 { 3138 char name[64]; 3139 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3140 struct device *dev = NULL; 3141 int retval = -ENODEV; 3142 bool cdev = false; 3143 3144 if (index >= driver->num) { 3145 printk(KERN_ERR "Attempt to register invalid tty line number " 3146 " (%d).\n", index); 3147 return ERR_PTR(-EINVAL); 3148 } 3149 3150 if (driver->type == TTY_DRIVER_TYPE_PTY) 3151 pty_line_name(driver, index, name); 3152 else 3153 tty_line_name(driver, index, name); 3154 3155 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3156 retval = tty_cdev_add(driver, devt, index, 1); 3157 if (retval) 3158 goto error; 3159 cdev = true; 3160 } 3161 3162 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3163 if (!dev) { 3164 retval = -ENOMEM; 3165 goto error; 3166 } 3167 3168 dev->devt = devt; 3169 dev->class = tty_class; 3170 dev->parent = device; 3171 dev->release = tty_device_create_release; 3172 dev_set_name(dev, "%s", name); 3173 dev->groups = attr_grp; 3174 dev_set_drvdata(dev, drvdata); 3175 3176 retval = device_register(dev); 3177 if (retval) 3178 goto error; 3179 3180 return dev; 3181 3182 error: 3183 put_device(dev); 3184 if (cdev) 3185 cdev_del(&driver->cdevs[index]); 3186 return ERR_PTR(retval); 3187 } 3188 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3189 3190 /** 3191 * tty_unregister_device - unregister a tty device 3192 * @driver: the tty driver that describes the tty device 3193 * @index: the index in the tty driver for this tty device 3194 * 3195 * If a tty device is registered with a call to tty_register_device() then 3196 * this function must be called when the tty device is gone. 3197 * 3198 * Locking: ?? 3199 */ 3200 3201 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3202 { 3203 device_destroy(tty_class, 3204 MKDEV(driver->major, driver->minor_start) + index); 3205 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) 3206 cdev_del(&driver->cdevs[index]); 3207 } 3208 EXPORT_SYMBOL(tty_unregister_device); 3209 3210 /** 3211 * __tty_alloc_driver -- allocate tty driver 3212 * @lines: count of lines this driver can handle at most 3213 * @owner: module which is repsonsible for this driver 3214 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3215 * 3216 * This should not be called directly, some of the provided macros should be 3217 * used instead. Use IS_ERR and friends on @retval. 3218 */ 3219 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3220 unsigned long flags) 3221 { 3222 struct tty_driver *driver; 3223 unsigned int cdevs = 1; 3224 int err; 3225 3226 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3227 return ERR_PTR(-EINVAL); 3228 3229 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3230 if (!driver) 3231 return ERR_PTR(-ENOMEM); 3232 3233 kref_init(&driver->kref); 3234 driver->magic = TTY_DRIVER_MAGIC; 3235 driver->num = lines; 3236 driver->owner = owner; 3237 driver->flags = flags; 3238 3239 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3240 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3241 GFP_KERNEL); 3242 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3243 GFP_KERNEL); 3244 if (!driver->ttys || !driver->termios) { 3245 err = -ENOMEM; 3246 goto err_free_all; 3247 } 3248 } 3249 3250 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3251 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3252 GFP_KERNEL); 3253 if (!driver->ports) { 3254 err = -ENOMEM; 3255 goto err_free_all; 3256 } 3257 cdevs = lines; 3258 } 3259 3260 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3261 if (!driver->cdevs) { 3262 err = -ENOMEM; 3263 goto err_free_all; 3264 } 3265 3266 return driver; 3267 err_free_all: 3268 kfree(driver->ports); 3269 kfree(driver->ttys); 3270 kfree(driver->termios); 3271 kfree(driver); 3272 return ERR_PTR(err); 3273 } 3274 EXPORT_SYMBOL(__tty_alloc_driver); 3275 3276 static void destruct_tty_driver(struct kref *kref) 3277 { 3278 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3279 int i; 3280 struct ktermios *tp; 3281 3282 if (driver->flags & TTY_DRIVER_INSTALLED) { 3283 /* 3284 * Free the termios and termios_locked structures because 3285 * we don't want to get memory leaks when modular tty 3286 * drivers are removed from the kernel. 3287 */ 3288 for (i = 0; i < driver->num; i++) { 3289 tp = driver->termios[i]; 3290 if (tp) { 3291 driver->termios[i] = NULL; 3292 kfree(tp); 3293 } 3294 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3295 tty_unregister_device(driver, i); 3296 } 3297 proc_tty_unregister_driver(driver); 3298 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3299 cdev_del(&driver->cdevs[0]); 3300 } 3301 kfree(driver->cdevs); 3302 kfree(driver->ports); 3303 kfree(driver->termios); 3304 kfree(driver->ttys); 3305 kfree(driver); 3306 } 3307 3308 void tty_driver_kref_put(struct tty_driver *driver) 3309 { 3310 kref_put(&driver->kref, destruct_tty_driver); 3311 } 3312 EXPORT_SYMBOL(tty_driver_kref_put); 3313 3314 void tty_set_operations(struct tty_driver *driver, 3315 const struct tty_operations *op) 3316 { 3317 driver->ops = op; 3318 }; 3319 EXPORT_SYMBOL(tty_set_operations); 3320 3321 void put_tty_driver(struct tty_driver *d) 3322 { 3323 tty_driver_kref_put(d); 3324 } 3325 EXPORT_SYMBOL(put_tty_driver); 3326 3327 /* 3328 * Called by a tty driver to register itself. 3329 */ 3330 int tty_register_driver(struct tty_driver *driver) 3331 { 3332 int error; 3333 int i; 3334 dev_t dev; 3335 struct device *d; 3336 3337 if (!driver->major) { 3338 error = alloc_chrdev_region(&dev, driver->minor_start, 3339 driver->num, driver->name); 3340 if (!error) { 3341 driver->major = MAJOR(dev); 3342 driver->minor_start = MINOR(dev); 3343 } 3344 } else { 3345 dev = MKDEV(driver->major, driver->minor_start); 3346 error = register_chrdev_region(dev, driver->num, driver->name); 3347 } 3348 if (error < 0) 3349 goto err; 3350 3351 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3352 error = tty_cdev_add(driver, dev, 0, driver->num); 3353 if (error) 3354 goto err_unreg_char; 3355 } 3356 3357 mutex_lock(&tty_mutex); 3358 list_add(&driver->tty_drivers, &tty_drivers); 3359 mutex_unlock(&tty_mutex); 3360 3361 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3362 for (i = 0; i < driver->num; i++) { 3363 d = tty_register_device(driver, i, NULL); 3364 if (IS_ERR(d)) { 3365 error = PTR_ERR(d); 3366 goto err_unreg_devs; 3367 } 3368 } 3369 } 3370 proc_tty_register_driver(driver); 3371 driver->flags |= TTY_DRIVER_INSTALLED; 3372 return 0; 3373 3374 err_unreg_devs: 3375 for (i--; i >= 0; i--) 3376 tty_unregister_device(driver, i); 3377 3378 mutex_lock(&tty_mutex); 3379 list_del(&driver->tty_drivers); 3380 mutex_unlock(&tty_mutex); 3381 3382 err_unreg_char: 3383 unregister_chrdev_region(dev, driver->num); 3384 err: 3385 return error; 3386 } 3387 EXPORT_SYMBOL(tty_register_driver); 3388 3389 /* 3390 * Called by a tty driver to unregister itself. 3391 */ 3392 int tty_unregister_driver(struct tty_driver *driver) 3393 { 3394 #if 0 3395 /* FIXME */ 3396 if (driver->refcount) 3397 return -EBUSY; 3398 #endif 3399 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3400 driver->num); 3401 mutex_lock(&tty_mutex); 3402 list_del(&driver->tty_drivers); 3403 mutex_unlock(&tty_mutex); 3404 return 0; 3405 } 3406 3407 EXPORT_SYMBOL(tty_unregister_driver); 3408 3409 dev_t tty_devnum(struct tty_struct *tty) 3410 { 3411 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3412 } 3413 EXPORT_SYMBOL(tty_devnum); 3414 3415 void proc_clear_tty(struct task_struct *p) 3416 { 3417 unsigned long flags; 3418 struct tty_struct *tty; 3419 spin_lock_irqsave(&p->sighand->siglock, flags); 3420 tty = p->signal->tty; 3421 p->signal->tty = NULL; 3422 spin_unlock_irqrestore(&p->sighand->siglock, flags); 3423 tty_kref_put(tty); 3424 } 3425 3426 /* Called under the sighand lock */ 3427 3428 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3429 { 3430 if (tty) { 3431 unsigned long flags; 3432 /* We should not have a session or pgrp to put here but.... */ 3433 spin_lock_irqsave(&tty->ctrl_lock, flags); 3434 put_pid(tty->session); 3435 put_pid(tty->pgrp); 3436 tty->pgrp = get_pid(task_pgrp(tsk)); 3437 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3438 tty->session = get_pid(task_session(tsk)); 3439 if (tsk->signal->tty) { 3440 printk(KERN_DEBUG "tty not NULL!!\n"); 3441 tty_kref_put(tsk->signal->tty); 3442 } 3443 } 3444 put_pid(tsk->signal->tty_old_pgrp); 3445 tsk->signal->tty = tty_kref_get(tty); 3446 tsk->signal->tty_old_pgrp = NULL; 3447 } 3448 3449 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3450 { 3451 spin_lock_irq(&tsk->sighand->siglock); 3452 __proc_set_tty(tsk, tty); 3453 spin_unlock_irq(&tsk->sighand->siglock); 3454 } 3455 3456 struct tty_struct *get_current_tty(void) 3457 { 3458 struct tty_struct *tty; 3459 unsigned long flags; 3460 3461 spin_lock_irqsave(¤t->sighand->siglock, flags); 3462 tty = tty_kref_get(current->signal->tty); 3463 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 3464 return tty; 3465 } 3466 EXPORT_SYMBOL_GPL(get_current_tty); 3467 3468 void tty_default_fops(struct file_operations *fops) 3469 { 3470 *fops = tty_fops; 3471 } 3472 3473 /* 3474 * Initialize the console device. This is called *early*, so 3475 * we can't necessarily depend on lots of kernel help here. 3476 * Just do some early initializations, and do the complex setup 3477 * later. 3478 */ 3479 void __init console_init(void) 3480 { 3481 initcall_t *call; 3482 3483 /* Setup the default TTY line discipline. */ 3484 tty_ldisc_begin(); 3485 3486 /* 3487 * set up the console device so that later boot sequences can 3488 * inform about problems etc.. 3489 */ 3490 call = __con_initcall_start; 3491 while (call < __con_initcall_end) { 3492 (*call)(); 3493 call++; 3494 } 3495 } 3496 3497 static char *tty_devnode(struct device *dev, umode_t *mode) 3498 { 3499 if (!mode) 3500 return NULL; 3501 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3502 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3503 *mode = 0666; 3504 return NULL; 3505 } 3506 3507 static int __init tty_class_init(void) 3508 { 3509 tty_class = class_create(THIS_MODULE, "tty"); 3510 if (IS_ERR(tty_class)) 3511 return PTR_ERR(tty_class); 3512 tty_class->devnode = tty_devnode; 3513 return 0; 3514 } 3515 3516 postcore_initcall(tty_class_init); 3517 3518 /* 3/2004 jmc: why do these devices exist? */ 3519 static struct cdev tty_cdev, console_cdev; 3520 3521 static ssize_t show_cons_active(struct device *dev, 3522 struct device_attribute *attr, char *buf) 3523 { 3524 struct console *cs[16]; 3525 int i = 0; 3526 struct console *c; 3527 ssize_t count = 0; 3528 3529 console_lock(); 3530 for_each_console(c) { 3531 if (!c->device) 3532 continue; 3533 if (!c->write) 3534 continue; 3535 if ((c->flags & CON_ENABLED) == 0) 3536 continue; 3537 cs[i++] = c; 3538 if (i >= ARRAY_SIZE(cs)) 3539 break; 3540 } 3541 while (i--) 3542 count += sprintf(buf + count, "%s%d%c", 3543 cs[i]->name, cs[i]->index, i ? ' ':'\n'); 3544 console_unlock(); 3545 3546 return count; 3547 } 3548 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3549 3550 static struct device *consdev; 3551 3552 void console_sysfs_notify(void) 3553 { 3554 if (consdev) 3555 sysfs_notify(&consdev->kobj, NULL, "active"); 3556 } 3557 3558 /* 3559 * Ok, now we can initialize the rest of the tty devices and can count 3560 * on memory allocations, interrupts etc.. 3561 */ 3562 int __init tty_init(void) 3563 { 3564 cdev_init(&tty_cdev, &tty_fops); 3565 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3566 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3567 panic("Couldn't register /dev/tty driver\n"); 3568 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3569 3570 cdev_init(&console_cdev, &console_fops); 3571 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3572 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3573 panic("Couldn't register /dev/console driver\n"); 3574 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, 3575 "console"); 3576 if (IS_ERR(consdev)) 3577 consdev = NULL; 3578 else 3579 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0); 3580 3581 #ifdef CONFIG_VT 3582 vty_init(&console_fops); 3583 #endif 3584 return 0; 3585 } 3586 3587