xref: /linux/drivers/tty/tty_io.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400,
127 	/* .c_line = N_TTY, */
128 };
129 
130 EXPORT_SYMBOL(tty_std_termios);
131 
132 /* This list gets poked at by procfs and various bits of boot up code. This
133    could do with some rationalisation such as pulling the tty proc function
134    into this file */
135 
136 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
137 
138 /* Mutex to protect creating and releasing a tty */
139 DEFINE_MUTEX(tty_mutex);
140 
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 							size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 				unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 
158 /**
159  *	free_tty_struct		-	free a disused tty
160  *	@tty: tty struct to free
161  *
162  *	Free the write buffers, tty queue and tty memory itself.
163  *
164  *	Locking: none. Must be called after tty is definitely unused
165  */
166 
167 static void free_tty_struct(struct tty_struct *tty)
168 {
169 	tty_ldisc_deinit(tty);
170 	put_device(tty->dev);
171 	kfree(tty->write_buf);
172 	tty->magic = 0xDEADDEAD;
173 	kfree(tty);
174 }
175 
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty->files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty->files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
213 void tty_free_file(struct file *file)
214 {
215 	struct tty_file_private *priv = file->private_data;
216 
217 	file->private_data = NULL;
218 	kfree(priv);
219 }
220 
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224 	struct tty_file_private *priv = file->private_data;
225 	struct tty_struct *tty = priv->tty;
226 
227 	spin_lock(&tty->files_lock);
228 	list_del(&priv->list);
229 	spin_unlock(&tty->files_lock);
230 	tty_free_file(file);
231 }
232 
233 
234 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235 
236 /**
237  *	tty_name	-	return tty naming
238  *	@tty: tty structure
239  *
240  *	Convert a tty structure into a name. The name reflects the kernel
241  *	naming policy and if udev is in use may not reflect user space
242  *
243  *	Locking: none
244  */
245 
246 const char *tty_name(const struct tty_struct *tty)
247 {
248 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
249 		return "NULL tty";
250 	return tty->name;
251 }
252 
253 EXPORT_SYMBOL(tty_name);
254 
255 const char *tty_driver_name(const struct tty_struct *tty)
256 {
257 	if (!tty || !tty->driver)
258 		return "";
259 	return tty->driver->name;
260 }
261 
262 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
263 			      const char *routine)
264 {
265 #ifdef TTY_PARANOIA_CHECK
266 	if (!tty) {
267 		pr_warn("(%d:%d): %s: NULL tty\n",
268 			imajor(inode), iminor(inode), routine);
269 		return 1;
270 	}
271 	if (tty->magic != TTY_MAGIC) {
272 		pr_warn("(%d:%d): %s: bad magic number\n",
273 			imajor(inode), iminor(inode), routine);
274 		return 1;
275 	}
276 #endif
277 	return 0;
278 }
279 
280 /* Caller must hold tty_lock */
281 static int check_tty_count(struct tty_struct *tty, const char *routine)
282 {
283 #ifdef CHECK_TTY_COUNT
284 	struct list_head *p;
285 	int count = 0;
286 
287 	spin_lock(&tty->files_lock);
288 	list_for_each(p, &tty->tty_files) {
289 		count++;
290 	}
291 	spin_unlock(&tty->files_lock);
292 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
293 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
294 	    tty->link && tty->link->count)
295 		count++;
296 	if (tty->count != count) {
297 		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
298 			 routine, tty->count, count);
299 		return count;
300 	}
301 #endif
302 	return 0;
303 }
304 
305 /**
306  *	get_tty_driver		-	find device of a tty
307  *	@dev_t: device identifier
308  *	@index: returns the index of the tty
309  *
310  *	This routine returns a tty driver structure, given a device number
311  *	and also passes back the index number.
312  *
313  *	Locking: caller must hold tty_mutex
314  */
315 
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 	struct tty_driver *p;
319 
320 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 		dev_t base = MKDEV(p->major, p->minor_start);
322 		if (device < base || device >= base + p->num)
323 			continue;
324 		*index = device - base;
325 		return tty_driver_kref_get(p);
326 	}
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_CONSOLE_POLL
331 
332 /**
333  *	tty_find_polling_driver	-	find device of a polled tty
334  *	@name: name string to match
335  *	@line: pointer to resulting tty line nr
336  *
337  *	This routine returns a tty driver structure, given a name
338  *	and the condition that the tty driver is capable of polled
339  *	operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 	struct tty_driver *p, *res = NULL;
344 	int tty_line = 0;
345 	int len;
346 	char *str, *stp;
347 
348 	for (str = name; *str; str++)
349 		if ((*str >= '0' && *str <= '9') || *str == ',')
350 			break;
351 	if (!*str)
352 		return NULL;
353 
354 	len = str - name;
355 	tty_line = simple_strtoul(str, &str, 10);
356 
357 	mutex_lock(&tty_mutex);
358 	/* Search through the tty devices to look for a match */
359 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 		if (strncmp(name, p->name, len) != 0)
361 			continue;
362 		stp = str;
363 		if (*stp == ',')
364 			stp++;
365 		if (*stp == '\0')
366 			stp = NULL;
367 
368 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 			res = tty_driver_kref_get(p);
371 			*line = tty_line;
372 			break;
373 		}
374 	}
375 	mutex_unlock(&tty_mutex);
376 
377 	return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381 
382 static int is_ignored(int sig)
383 {
384 	return (sigismember(&current->blocked, sig) ||
385 		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
386 }
387 
388 /**
389  *	tty_check_change	-	check for POSIX terminal changes
390  *	@tty: tty to check
391  *
392  *	If we try to write to, or set the state of, a terminal and we're
393  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
394  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
395  *
396  *	Locking: ctrl_lock
397  */
398 
399 int __tty_check_change(struct tty_struct *tty, int sig)
400 {
401 	unsigned long flags;
402 	struct pid *pgrp, *tty_pgrp;
403 	int ret = 0;
404 
405 	if (current->signal->tty != tty)
406 		return 0;
407 
408 	rcu_read_lock();
409 	pgrp = task_pgrp(current);
410 
411 	spin_lock_irqsave(&tty->ctrl_lock, flags);
412 	tty_pgrp = tty->pgrp;
413 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
414 
415 	if (tty_pgrp && pgrp != tty->pgrp) {
416 		if (is_ignored(sig)) {
417 			if (sig == SIGTTIN)
418 				ret = -EIO;
419 		} else if (is_current_pgrp_orphaned())
420 			ret = -EIO;
421 		else {
422 			kill_pgrp(pgrp, sig, 1);
423 			set_thread_flag(TIF_SIGPENDING);
424 			ret = -ERESTARTSYS;
425 		}
426 	}
427 	rcu_read_unlock();
428 
429 	if (!tty_pgrp)
430 		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
431 
432 	return ret;
433 }
434 
435 int tty_check_change(struct tty_struct *tty)
436 {
437 	return __tty_check_change(tty, SIGTTOU);
438 }
439 EXPORT_SYMBOL(tty_check_change);
440 
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442 				size_t count, loff_t *ppos)
443 {
444 	return 0;
445 }
446 
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448 				 size_t count, loff_t *ppos)
449 {
450 	return -EIO;
451 }
452 
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458 
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460 		unsigned long arg)
461 {
462 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464 
465 static long hung_up_tty_compat_ioctl(struct file *file,
466 				     unsigned int cmd, unsigned long arg)
467 {
468 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470 
471 static int hung_up_tty_fasync(int fd, struct file *file, int on)
472 {
473 	return -ENOTTY;
474 }
475 
476 static const struct file_operations tty_fops = {
477 	.llseek		= no_llseek,
478 	.read		= tty_read,
479 	.write		= tty_write,
480 	.poll		= tty_poll,
481 	.unlocked_ioctl	= tty_ioctl,
482 	.compat_ioctl	= tty_compat_ioctl,
483 	.open		= tty_open,
484 	.release	= tty_release,
485 	.fasync		= tty_fasync,
486 };
487 
488 static const struct file_operations console_fops = {
489 	.llseek		= no_llseek,
490 	.read		= tty_read,
491 	.write		= redirected_tty_write,
492 	.poll		= tty_poll,
493 	.unlocked_ioctl	= tty_ioctl,
494 	.compat_ioctl	= tty_compat_ioctl,
495 	.open		= tty_open,
496 	.release	= tty_release,
497 	.fasync		= tty_fasync,
498 };
499 
500 static const struct file_operations hung_up_tty_fops = {
501 	.llseek		= no_llseek,
502 	.read		= hung_up_tty_read,
503 	.write		= hung_up_tty_write,
504 	.poll		= hung_up_tty_poll,
505 	.unlocked_ioctl	= hung_up_tty_ioctl,
506 	.compat_ioctl	= hung_up_tty_compat_ioctl,
507 	.release	= tty_release,
508 	.fasync		= hung_up_tty_fasync,
509 };
510 
511 static DEFINE_SPINLOCK(redirect_lock);
512 static struct file *redirect;
513 
514 
515 void proc_clear_tty(struct task_struct *p)
516 {
517 	unsigned long flags;
518 	struct tty_struct *tty;
519 	spin_lock_irqsave(&p->sighand->siglock, flags);
520 	tty = p->signal->tty;
521 	p->signal->tty = NULL;
522 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
523 	tty_kref_put(tty);
524 }
525 
526 /**
527  * proc_set_tty -  set the controlling terminal
528  *
529  * Only callable by the session leader and only if it does not already have
530  * a controlling terminal.
531  *
532  * Caller must hold:  tty_lock()
533  *		      a readlock on tasklist_lock
534  *		      sighand lock
535  */
536 static void __proc_set_tty(struct tty_struct *tty)
537 {
538 	unsigned long flags;
539 
540 	spin_lock_irqsave(&tty->ctrl_lock, flags);
541 	/*
542 	 * The session and fg pgrp references will be non-NULL if
543 	 * tiocsctty() is stealing the controlling tty
544 	 */
545 	put_pid(tty->session);
546 	put_pid(tty->pgrp);
547 	tty->pgrp = get_pid(task_pgrp(current));
548 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
549 	tty->session = get_pid(task_session(current));
550 	if (current->signal->tty) {
551 		tty_debug(tty, "current tty %s not NULL!!\n",
552 			  current->signal->tty->name);
553 		tty_kref_put(current->signal->tty);
554 	}
555 	put_pid(current->signal->tty_old_pgrp);
556 	current->signal->tty = tty_kref_get(tty);
557 	current->signal->tty_old_pgrp = NULL;
558 }
559 
560 static void proc_set_tty(struct tty_struct *tty)
561 {
562 	spin_lock_irq(&current->sighand->siglock);
563 	__proc_set_tty(tty);
564 	spin_unlock_irq(&current->sighand->siglock);
565 }
566 
567 struct tty_struct *get_current_tty(void)
568 {
569 	struct tty_struct *tty;
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&current->sighand->siglock, flags);
573 	tty = tty_kref_get(current->signal->tty);
574 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
575 	return tty;
576 }
577 EXPORT_SYMBOL_GPL(get_current_tty);
578 
579 static void session_clear_tty(struct pid *session)
580 {
581 	struct task_struct *p;
582 	do_each_pid_task(session, PIDTYPE_SID, p) {
583 		proc_clear_tty(p);
584 	} while_each_pid_task(session, PIDTYPE_SID, p);
585 }
586 
587 /**
588  *	tty_wakeup	-	request more data
589  *	@tty: terminal
590  *
591  *	Internal and external helper for wakeups of tty. This function
592  *	informs the line discipline if present that the driver is ready
593  *	to receive more output data.
594  */
595 
596 void tty_wakeup(struct tty_struct *tty)
597 {
598 	struct tty_ldisc *ld;
599 
600 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
601 		ld = tty_ldisc_ref(tty);
602 		if (ld) {
603 			if (ld->ops->write_wakeup)
604 				ld->ops->write_wakeup(tty);
605 			tty_ldisc_deref(ld);
606 		}
607 	}
608 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
609 }
610 
611 EXPORT_SYMBOL_GPL(tty_wakeup);
612 
613 /**
614  *	tty_signal_session_leader	- sends SIGHUP to session leader
615  *	@tty		controlling tty
616  *	@exit_session	if non-zero, signal all foreground group processes
617  *
618  *	Send SIGHUP and SIGCONT to the session leader and its process group.
619  *	Optionally, signal all processes in the foreground process group.
620  *
621  *	Returns the number of processes in the session with this tty
622  *	as their controlling terminal. This value is used to drop
623  *	tty references for those processes.
624  */
625 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
626 {
627 	struct task_struct *p;
628 	int refs = 0;
629 	struct pid *tty_pgrp = NULL;
630 
631 	read_lock(&tasklist_lock);
632 	if (tty->session) {
633 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
634 			spin_lock_irq(&p->sighand->siglock);
635 			if (p->signal->tty == tty) {
636 				p->signal->tty = NULL;
637 				/* We defer the dereferences outside fo
638 				   the tasklist lock */
639 				refs++;
640 			}
641 			if (!p->signal->leader) {
642 				spin_unlock_irq(&p->sighand->siglock);
643 				continue;
644 			}
645 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
646 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
647 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
648 			spin_lock(&tty->ctrl_lock);
649 			tty_pgrp = get_pid(tty->pgrp);
650 			if (tty->pgrp)
651 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
652 			spin_unlock(&tty->ctrl_lock);
653 			spin_unlock_irq(&p->sighand->siglock);
654 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
655 	}
656 	read_unlock(&tasklist_lock);
657 
658 	if (tty_pgrp) {
659 		if (exit_session)
660 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
661 		put_pid(tty_pgrp);
662 	}
663 
664 	return refs;
665 }
666 
667 /**
668  *	__tty_hangup		-	actual handler for hangup events
669  *	@work: tty device
670  *
671  *	This can be called by a "kworker" kernel thread.  That is process
672  *	synchronous but doesn't hold any locks, so we need to make sure we
673  *	have the appropriate locks for what we're doing.
674  *
675  *	The hangup event clears any pending redirections onto the hung up
676  *	device. It ensures future writes will error and it does the needed
677  *	line discipline hangup and signal delivery. The tty object itself
678  *	remains intact.
679  *
680  *	Locking:
681  *		BTM
682  *		  redirect lock for undoing redirection
683  *		  file list lock for manipulating list of ttys
684  *		  tty_ldiscs_lock from called functions
685  *		  termios_rwsem resetting termios data
686  *		  tasklist_lock to walk task list for hangup event
687  *		    ->siglock to protect ->signal/->sighand
688  */
689 static void __tty_hangup(struct tty_struct *tty, int exit_session)
690 {
691 	struct file *cons_filp = NULL;
692 	struct file *filp, *f = NULL;
693 	struct tty_file_private *priv;
694 	int    closecount = 0, n;
695 	int refs;
696 
697 	if (!tty)
698 		return;
699 
700 
701 	spin_lock(&redirect_lock);
702 	if (redirect && file_tty(redirect) == tty) {
703 		f = redirect;
704 		redirect = NULL;
705 	}
706 	spin_unlock(&redirect_lock);
707 
708 	tty_lock(tty);
709 
710 	if (test_bit(TTY_HUPPED, &tty->flags)) {
711 		tty_unlock(tty);
712 		return;
713 	}
714 
715 	/* inuse_filps is protected by the single tty lock,
716 	   this really needs to change if we want to flush the
717 	   workqueue with the lock held */
718 	check_tty_count(tty, "tty_hangup");
719 
720 	spin_lock(&tty->files_lock);
721 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
722 	list_for_each_entry(priv, &tty->tty_files, list) {
723 		filp = priv->file;
724 		if (filp->f_op->write == redirected_tty_write)
725 			cons_filp = filp;
726 		if (filp->f_op->write != tty_write)
727 			continue;
728 		closecount++;
729 		__tty_fasync(-1, filp, 0);	/* can't block */
730 		filp->f_op = &hung_up_tty_fops;
731 	}
732 	spin_unlock(&tty->files_lock);
733 
734 	refs = tty_signal_session_leader(tty, exit_session);
735 	/* Account for the p->signal references we killed */
736 	while (refs--)
737 		tty_kref_put(tty);
738 
739 	tty_ldisc_hangup(tty, cons_filp != NULL);
740 
741 	spin_lock_irq(&tty->ctrl_lock);
742 	clear_bit(TTY_THROTTLED, &tty->flags);
743 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
744 	put_pid(tty->session);
745 	put_pid(tty->pgrp);
746 	tty->session = NULL;
747 	tty->pgrp = NULL;
748 	tty->ctrl_status = 0;
749 	spin_unlock_irq(&tty->ctrl_lock);
750 
751 	/*
752 	 * If one of the devices matches a console pointer, we
753 	 * cannot just call hangup() because that will cause
754 	 * tty->count and state->count to go out of sync.
755 	 * So we just call close() the right number of times.
756 	 */
757 	if (cons_filp) {
758 		if (tty->ops->close)
759 			for (n = 0; n < closecount; n++)
760 				tty->ops->close(tty, cons_filp);
761 	} else if (tty->ops->hangup)
762 		tty->ops->hangup(tty);
763 	/*
764 	 * We don't want to have driver/ldisc interactions beyond the ones
765 	 * we did here. The driver layer expects no calls after ->hangup()
766 	 * from the ldisc side, which is now guaranteed.
767 	 */
768 	set_bit(TTY_HUPPED, &tty->flags);
769 	tty_unlock(tty);
770 
771 	if (f)
772 		fput(f);
773 }
774 
775 static void do_tty_hangup(struct work_struct *work)
776 {
777 	struct tty_struct *tty =
778 		container_of(work, struct tty_struct, hangup_work);
779 
780 	__tty_hangup(tty, 0);
781 }
782 
783 /**
784  *	tty_hangup		-	trigger a hangup event
785  *	@tty: tty to hangup
786  *
787  *	A carrier loss (virtual or otherwise) has occurred on this like
788  *	schedule a hangup sequence to run after this event.
789  */
790 
791 void tty_hangup(struct tty_struct *tty)
792 {
793 	tty_debug_hangup(tty, "hangup\n");
794 	schedule_work(&tty->hangup_work);
795 }
796 
797 EXPORT_SYMBOL(tty_hangup);
798 
799 /**
800  *	tty_vhangup		-	process vhangup
801  *	@tty: tty to hangup
802  *
803  *	The user has asked via system call for the terminal to be hung up.
804  *	We do this synchronously so that when the syscall returns the process
805  *	is complete. That guarantee is necessary for security reasons.
806  */
807 
808 void tty_vhangup(struct tty_struct *tty)
809 {
810 	tty_debug_hangup(tty, "vhangup\n");
811 	__tty_hangup(tty, 0);
812 }
813 
814 EXPORT_SYMBOL(tty_vhangup);
815 
816 
817 /**
818  *	tty_vhangup_self	-	process vhangup for own ctty
819  *
820  *	Perform a vhangup on the current controlling tty
821  */
822 
823 void tty_vhangup_self(void)
824 {
825 	struct tty_struct *tty;
826 
827 	tty = get_current_tty();
828 	if (tty) {
829 		tty_vhangup(tty);
830 		tty_kref_put(tty);
831 	}
832 }
833 
834 /**
835  *	tty_vhangup_session		-	hangup session leader exit
836  *	@tty: tty to hangup
837  *
838  *	The session leader is exiting and hanging up its controlling terminal.
839  *	Every process in the foreground process group is signalled SIGHUP.
840  *
841  *	We do this synchronously so that when the syscall returns the process
842  *	is complete. That guarantee is necessary for security reasons.
843  */
844 
845 static void tty_vhangup_session(struct tty_struct *tty)
846 {
847 	tty_debug_hangup(tty, "session hangup\n");
848 	__tty_hangup(tty, 1);
849 }
850 
851 /**
852  *	tty_hung_up_p		-	was tty hung up
853  *	@filp: file pointer of tty
854  *
855  *	Return true if the tty has been subject to a vhangup or a carrier
856  *	loss
857  */
858 
859 int tty_hung_up_p(struct file *filp)
860 {
861 	return (filp->f_op == &hung_up_tty_fops);
862 }
863 
864 EXPORT_SYMBOL(tty_hung_up_p);
865 
866 /**
867  *	disassociate_ctty	-	disconnect controlling tty
868  *	@on_exit: true if exiting so need to "hang up" the session
869  *
870  *	This function is typically called only by the session leader, when
871  *	it wants to disassociate itself from its controlling tty.
872  *
873  *	It performs the following functions:
874  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
875  * 	(2)  Clears the tty from being controlling the session
876  * 	(3)  Clears the controlling tty for all processes in the
877  * 		session group.
878  *
879  *	The argument on_exit is set to 1 if called when a process is
880  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
881  *
882  *	Locking:
883  *		BTM is taken for hysterical raisins, and held when
884  *		  called from no_tty().
885  *		  tty_mutex is taken to protect tty
886  *		  ->siglock is taken to protect ->signal/->sighand
887  *		  tasklist_lock is taken to walk process list for sessions
888  *		    ->siglock is taken to protect ->signal/->sighand
889  */
890 
891 void disassociate_ctty(int on_exit)
892 {
893 	struct tty_struct *tty;
894 
895 	if (!current->signal->leader)
896 		return;
897 
898 	tty = get_current_tty();
899 	if (tty) {
900 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
901 			tty_vhangup_session(tty);
902 		} else {
903 			struct pid *tty_pgrp = tty_get_pgrp(tty);
904 			if (tty_pgrp) {
905 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
906 				if (!on_exit)
907 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
908 				put_pid(tty_pgrp);
909 			}
910 		}
911 		tty_kref_put(tty);
912 
913 	} else if (on_exit) {
914 		struct pid *old_pgrp;
915 		spin_lock_irq(&current->sighand->siglock);
916 		old_pgrp = current->signal->tty_old_pgrp;
917 		current->signal->tty_old_pgrp = NULL;
918 		spin_unlock_irq(&current->sighand->siglock);
919 		if (old_pgrp) {
920 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
921 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
922 			put_pid(old_pgrp);
923 		}
924 		return;
925 	}
926 
927 	spin_lock_irq(&current->sighand->siglock);
928 	put_pid(current->signal->tty_old_pgrp);
929 	current->signal->tty_old_pgrp = NULL;
930 
931 	tty = tty_kref_get(current->signal->tty);
932 	if (tty) {
933 		unsigned long flags;
934 		spin_lock_irqsave(&tty->ctrl_lock, flags);
935 		put_pid(tty->session);
936 		put_pid(tty->pgrp);
937 		tty->session = NULL;
938 		tty->pgrp = NULL;
939 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940 		tty_kref_put(tty);
941 	} else
942 		tty_debug_hangup(tty, "no current tty\n");
943 
944 	spin_unlock_irq(&current->sighand->siglock);
945 	/* Now clear signal->tty under the lock */
946 	read_lock(&tasklist_lock);
947 	session_clear_tty(task_session(current));
948 	read_unlock(&tasklist_lock);
949 }
950 
951 /**
952  *
953  *	no_tty	- Ensure the current process does not have a controlling tty
954  */
955 void no_tty(void)
956 {
957 	/* FIXME: Review locking here. The tty_lock never covered any race
958 	   between a new association and proc_clear_tty but possible we need
959 	   to protect against this anyway */
960 	struct task_struct *tsk = current;
961 	disassociate_ctty(0);
962 	proc_clear_tty(tsk);
963 }
964 
965 
966 /**
967  *	stop_tty	-	propagate flow control
968  *	@tty: tty to stop
969  *
970  *	Perform flow control to the driver. May be called
971  *	on an already stopped device and will not re-call the driver
972  *	method.
973  *
974  *	This functionality is used by both the line disciplines for
975  *	halting incoming flow and by the driver. It may therefore be
976  *	called from any context, may be under the tty atomic_write_lock
977  *	but not always.
978  *
979  *	Locking:
980  *		flow_lock
981  */
982 
983 void __stop_tty(struct tty_struct *tty)
984 {
985 	if (tty->stopped)
986 		return;
987 	tty->stopped = 1;
988 	if (tty->ops->stop)
989 		tty->ops->stop(tty);
990 }
991 
992 void stop_tty(struct tty_struct *tty)
993 {
994 	unsigned long flags;
995 
996 	spin_lock_irqsave(&tty->flow_lock, flags);
997 	__stop_tty(tty);
998 	spin_unlock_irqrestore(&tty->flow_lock, flags);
999 }
1000 EXPORT_SYMBOL(stop_tty);
1001 
1002 /**
1003  *	start_tty	-	propagate flow control
1004  *	@tty: tty to start
1005  *
1006  *	Start a tty that has been stopped if at all possible. If this
1007  *	tty was previous stopped and is now being started, the driver
1008  *	start method is invoked and the line discipline woken.
1009  *
1010  *	Locking:
1011  *		flow_lock
1012  */
1013 
1014 void __start_tty(struct tty_struct *tty)
1015 {
1016 	if (!tty->stopped || tty->flow_stopped)
1017 		return;
1018 	tty->stopped = 0;
1019 	if (tty->ops->start)
1020 		tty->ops->start(tty);
1021 	tty_wakeup(tty);
1022 }
1023 
1024 void start_tty(struct tty_struct *tty)
1025 {
1026 	unsigned long flags;
1027 
1028 	spin_lock_irqsave(&tty->flow_lock, flags);
1029 	__start_tty(tty);
1030 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1031 }
1032 EXPORT_SYMBOL(start_tty);
1033 
1034 static void tty_update_time(struct timespec *time)
1035 {
1036 	unsigned long sec = get_seconds();
1037 
1038 	/*
1039 	 * We only care if the two values differ in anything other than the
1040 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1041 	 * the time of the tty device, otherwise it could be construded as a
1042 	 * security leak to let userspace know the exact timing of the tty.
1043 	 */
1044 	if ((sec ^ time->tv_sec) & ~7)
1045 		time->tv_sec = sec;
1046 }
1047 
1048 /**
1049  *	tty_read	-	read method for tty device files
1050  *	@file: pointer to tty file
1051  *	@buf: user buffer
1052  *	@count: size of user buffer
1053  *	@ppos: unused
1054  *
1055  *	Perform the read system call function on this terminal device. Checks
1056  *	for hung up devices before calling the line discipline method.
1057  *
1058  *	Locking:
1059  *		Locks the line discipline internally while needed. Multiple
1060  *	read calls may be outstanding in parallel.
1061  */
1062 
1063 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1064 			loff_t *ppos)
1065 {
1066 	int i;
1067 	struct inode *inode = file_inode(file);
1068 	struct tty_struct *tty = file_tty(file);
1069 	struct tty_ldisc *ld;
1070 
1071 	if (tty_paranoia_check(tty, inode, "tty_read"))
1072 		return -EIO;
1073 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1074 		return -EIO;
1075 
1076 	/* We want to wait for the line discipline to sort out in this
1077 	   situation */
1078 	ld = tty_ldisc_ref_wait(tty);
1079 	if (!ld)
1080 		return hung_up_tty_read(file, buf, count, ppos);
1081 	if (ld->ops->read)
1082 		i = ld->ops->read(tty, file, buf, count);
1083 	else
1084 		i = -EIO;
1085 	tty_ldisc_deref(ld);
1086 
1087 	if (i > 0)
1088 		tty_update_time(&inode->i_atime);
1089 
1090 	return i;
1091 }
1092 
1093 static void tty_write_unlock(struct tty_struct *tty)
1094 {
1095 	mutex_unlock(&tty->atomic_write_lock);
1096 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1097 }
1098 
1099 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1100 {
1101 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1102 		if (ndelay)
1103 			return -EAGAIN;
1104 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1105 			return -ERESTARTSYS;
1106 	}
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Split writes up in sane blocksizes to avoid
1112  * denial-of-service type attacks
1113  */
1114 static inline ssize_t do_tty_write(
1115 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1116 	struct tty_struct *tty,
1117 	struct file *file,
1118 	const char __user *buf,
1119 	size_t count)
1120 {
1121 	ssize_t ret, written = 0;
1122 	unsigned int chunk;
1123 
1124 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1125 	if (ret < 0)
1126 		return ret;
1127 
1128 	/*
1129 	 * We chunk up writes into a temporary buffer. This
1130 	 * simplifies low-level drivers immensely, since they
1131 	 * don't have locking issues and user mode accesses.
1132 	 *
1133 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1134 	 * big chunk-size..
1135 	 *
1136 	 * The default chunk-size is 2kB, because the NTTY
1137 	 * layer has problems with bigger chunks. It will
1138 	 * claim to be able to handle more characters than
1139 	 * it actually does.
1140 	 *
1141 	 * FIXME: This can probably go away now except that 64K chunks
1142 	 * are too likely to fail unless switched to vmalloc...
1143 	 */
1144 	chunk = 2048;
1145 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1146 		chunk = 65536;
1147 	if (count < chunk)
1148 		chunk = count;
1149 
1150 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1151 	if (tty->write_cnt < chunk) {
1152 		unsigned char *buf_chunk;
1153 
1154 		if (chunk < 1024)
1155 			chunk = 1024;
1156 
1157 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1158 		if (!buf_chunk) {
1159 			ret = -ENOMEM;
1160 			goto out;
1161 		}
1162 		kfree(tty->write_buf);
1163 		tty->write_cnt = chunk;
1164 		tty->write_buf = buf_chunk;
1165 	}
1166 
1167 	/* Do the write .. */
1168 	for (;;) {
1169 		size_t size = count;
1170 		if (size > chunk)
1171 			size = chunk;
1172 		ret = -EFAULT;
1173 		if (copy_from_user(tty->write_buf, buf, size))
1174 			break;
1175 		ret = write(tty, file, tty->write_buf, size);
1176 		if (ret <= 0)
1177 			break;
1178 		written += ret;
1179 		buf += ret;
1180 		count -= ret;
1181 		if (!count)
1182 			break;
1183 		ret = -ERESTARTSYS;
1184 		if (signal_pending(current))
1185 			break;
1186 		cond_resched();
1187 	}
1188 	if (written) {
1189 		tty_update_time(&file_inode(file)->i_mtime);
1190 		ret = written;
1191 	}
1192 out:
1193 	tty_write_unlock(tty);
1194 	return ret;
1195 }
1196 
1197 /**
1198  * tty_write_message - write a message to a certain tty, not just the console.
1199  * @tty: the destination tty_struct
1200  * @msg: the message to write
1201  *
1202  * This is used for messages that need to be redirected to a specific tty.
1203  * We don't put it into the syslog queue right now maybe in the future if
1204  * really needed.
1205  *
1206  * We must still hold the BTM and test the CLOSING flag for the moment.
1207  */
1208 
1209 void tty_write_message(struct tty_struct *tty, char *msg)
1210 {
1211 	if (tty) {
1212 		mutex_lock(&tty->atomic_write_lock);
1213 		tty_lock(tty);
1214 		if (tty->ops->write && tty->count > 0)
1215 			tty->ops->write(tty, msg, strlen(msg));
1216 		tty_unlock(tty);
1217 		tty_write_unlock(tty);
1218 	}
1219 	return;
1220 }
1221 
1222 
1223 /**
1224  *	tty_write		-	write method for tty device file
1225  *	@file: tty file pointer
1226  *	@buf: user data to write
1227  *	@count: bytes to write
1228  *	@ppos: unused
1229  *
1230  *	Write data to a tty device via the line discipline.
1231  *
1232  *	Locking:
1233  *		Locks the line discipline as required
1234  *		Writes to the tty driver are serialized by the atomic_write_lock
1235  *	and are then processed in chunks to the device. The line discipline
1236  *	write method will not be invoked in parallel for each device.
1237  */
1238 
1239 static ssize_t tty_write(struct file *file, const char __user *buf,
1240 						size_t count, loff_t *ppos)
1241 {
1242 	struct tty_struct *tty = file_tty(file);
1243  	struct tty_ldisc *ld;
1244 	ssize_t ret;
1245 
1246 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1247 		return -EIO;
1248 	if (!tty || !tty->ops->write ||
1249 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1250 			return -EIO;
1251 	/* Short term debug to catch buggy drivers */
1252 	if (tty->ops->write_room == NULL)
1253 		tty_err(tty, "missing write_room method\n");
1254 	ld = tty_ldisc_ref_wait(tty);
1255 	if (!ld)
1256 		return hung_up_tty_write(file, buf, count, ppos);
1257 	if (!ld->ops->write)
1258 		ret = -EIO;
1259 	else
1260 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1261 	tty_ldisc_deref(ld);
1262 	return ret;
1263 }
1264 
1265 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1266 						size_t count, loff_t *ppos)
1267 {
1268 	struct file *p = NULL;
1269 
1270 	spin_lock(&redirect_lock);
1271 	if (redirect)
1272 		p = get_file(redirect);
1273 	spin_unlock(&redirect_lock);
1274 
1275 	if (p) {
1276 		ssize_t res;
1277 		res = vfs_write(p, buf, count, &p->f_pos);
1278 		fput(p);
1279 		return res;
1280 	}
1281 	return tty_write(file, buf, count, ppos);
1282 }
1283 
1284 /**
1285  *	tty_send_xchar	-	send priority character
1286  *
1287  *	Send a high priority character to the tty even if stopped
1288  *
1289  *	Locking: none for xchar method, write ordering for write method.
1290  */
1291 
1292 int tty_send_xchar(struct tty_struct *tty, char ch)
1293 {
1294 	int	was_stopped = tty->stopped;
1295 
1296 	if (tty->ops->send_xchar) {
1297 		down_read(&tty->termios_rwsem);
1298 		tty->ops->send_xchar(tty, ch);
1299 		up_read(&tty->termios_rwsem);
1300 		return 0;
1301 	}
1302 
1303 	if (tty_write_lock(tty, 0) < 0)
1304 		return -ERESTARTSYS;
1305 
1306 	down_read(&tty->termios_rwsem);
1307 	if (was_stopped)
1308 		start_tty(tty);
1309 	tty->ops->write(tty, &ch, 1);
1310 	if (was_stopped)
1311 		stop_tty(tty);
1312 	up_read(&tty->termios_rwsem);
1313 	tty_write_unlock(tty);
1314 	return 0;
1315 }
1316 
1317 static char ptychar[] = "pqrstuvwxyzabcde";
1318 
1319 /**
1320  *	pty_line_name	-	generate name for a pty
1321  *	@driver: the tty driver in use
1322  *	@index: the minor number
1323  *	@p: output buffer of at least 6 bytes
1324  *
1325  *	Generate a name from a driver reference and write it to the output
1326  *	buffer.
1327  *
1328  *	Locking: None
1329  */
1330 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1331 {
1332 	int i = index + driver->name_base;
1333 	/* ->name is initialized to "ttyp", but "tty" is expected */
1334 	sprintf(p, "%s%c%x",
1335 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1336 		ptychar[i >> 4 & 0xf], i & 0xf);
1337 }
1338 
1339 /**
1340  *	tty_line_name	-	generate name for a tty
1341  *	@driver: the tty driver in use
1342  *	@index: the minor number
1343  *	@p: output buffer of at least 7 bytes
1344  *
1345  *	Generate a name from a driver reference and write it to the output
1346  *	buffer.
1347  *
1348  *	Locking: None
1349  */
1350 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1351 {
1352 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1353 		return sprintf(p, "%s", driver->name);
1354 	else
1355 		return sprintf(p, "%s%d", driver->name,
1356 			       index + driver->name_base);
1357 }
1358 
1359 /**
1360  *	tty_driver_lookup_tty() - find an existing tty, if any
1361  *	@driver: the driver for the tty
1362  *	@idx:	 the minor number
1363  *
1364  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1365  *	driver lookup() method returns an error.
1366  *
1367  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1368  */
1369 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1370 		struct inode *inode, int idx)
1371 {
1372 	struct tty_struct *tty;
1373 
1374 	if (driver->ops->lookup)
1375 		tty = driver->ops->lookup(driver, inode, idx);
1376 	else
1377 		tty = driver->ttys[idx];
1378 
1379 	if (!IS_ERR(tty))
1380 		tty_kref_get(tty);
1381 	return tty;
1382 }
1383 
1384 /**
1385  *	tty_init_termios	-  helper for termios setup
1386  *	@tty: the tty to set up
1387  *
1388  *	Initialise the termios structures for this tty. Thus runs under
1389  *	the tty_mutex currently so we can be relaxed about ordering.
1390  */
1391 
1392 void tty_init_termios(struct tty_struct *tty)
1393 {
1394 	struct ktermios *tp;
1395 	int idx = tty->index;
1396 
1397 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1398 		tty->termios = tty->driver->init_termios;
1399 	else {
1400 		/* Check for lazy saved data */
1401 		tp = tty->driver->termios[idx];
1402 		if (tp != NULL) {
1403 			tty->termios = *tp;
1404 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1405 		} else
1406 			tty->termios = tty->driver->init_termios;
1407 	}
1408 	/* Compatibility until drivers always set this */
1409 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1410 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1411 }
1412 EXPORT_SYMBOL_GPL(tty_init_termios);
1413 
1414 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1415 {
1416 	tty_init_termios(tty);
1417 	tty_driver_kref_get(driver);
1418 	tty->count++;
1419 	driver->ttys[tty->index] = tty;
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(tty_standard_install);
1423 
1424 /**
1425  *	tty_driver_install_tty() - install a tty entry in the driver
1426  *	@driver: the driver for the tty
1427  *	@tty: the tty
1428  *
1429  *	Install a tty object into the driver tables. The tty->index field
1430  *	will be set by the time this is called. This method is responsible
1431  *	for ensuring any need additional structures are allocated and
1432  *	configured.
1433  *
1434  *	Locking: tty_mutex for now
1435  */
1436 static int tty_driver_install_tty(struct tty_driver *driver,
1437 						struct tty_struct *tty)
1438 {
1439 	return driver->ops->install ? driver->ops->install(driver, tty) :
1440 		tty_standard_install(driver, tty);
1441 }
1442 
1443 /**
1444  *	tty_driver_remove_tty() - remove a tty from the driver tables
1445  *	@driver: the driver for the tty
1446  *	@idx:	 the minor number
1447  *
1448  *	Remvoe a tty object from the driver tables. The tty->index field
1449  *	will be set by the time this is called.
1450  *
1451  *	Locking: tty_mutex for now
1452  */
1453 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1454 {
1455 	if (driver->ops->remove)
1456 		driver->ops->remove(driver, tty);
1457 	else
1458 		driver->ttys[tty->index] = NULL;
1459 }
1460 
1461 /*
1462  * 	tty_reopen()	- fast re-open of an open tty
1463  * 	@tty	- the tty to open
1464  *
1465  *	Return 0 on success, -errno on error.
1466  *	Re-opens on master ptys are not allowed and return -EIO.
1467  *
1468  *	Locking: Caller must hold tty_lock
1469  */
1470 static int tty_reopen(struct tty_struct *tty)
1471 {
1472 	struct tty_driver *driver = tty->driver;
1473 
1474 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1475 	    driver->subtype == PTY_TYPE_MASTER)
1476 		return -EIO;
1477 
1478 	if (!tty->count)
1479 		return -EAGAIN;
1480 
1481 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1482 		return -EBUSY;
1483 
1484 	tty->count++;
1485 
1486 	if (!tty->ldisc)
1487 		return tty_ldisc_reinit(tty, tty->termios.c_line);
1488 
1489 	return 0;
1490 }
1491 
1492 /**
1493  *	tty_init_dev		-	initialise a tty device
1494  *	@driver: tty driver we are opening a device on
1495  *	@idx: device index
1496  *	@ret_tty: returned tty structure
1497  *
1498  *	Prepare a tty device. This may not be a "new" clean device but
1499  *	could also be an active device. The pty drivers require special
1500  *	handling because of this.
1501  *
1502  *	Locking:
1503  *		The function is called under the tty_mutex, which
1504  *	protects us from the tty struct or driver itself going away.
1505  *
1506  *	On exit the tty device has the line discipline attached and
1507  *	a reference count of 1. If a pair was created for pty/tty use
1508  *	and the other was a pty master then it too has a reference count of 1.
1509  *
1510  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1511  * failed open.  The new code protects the open with a mutex, so it's
1512  * really quite straightforward.  The mutex locking can probably be
1513  * relaxed for the (most common) case of reopening a tty.
1514  */
1515 
1516 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1517 {
1518 	struct tty_struct *tty;
1519 	int retval;
1520 
1521 	/*
1522 	 * First time open is complex, especially for PTY devices.
1523 	 * This code guarantees that either everything succeeds and the
1524 	 * TTY is ready for operation, or else the table slots are vacated
1525 	 * and the allocated memory released.  (Except that the termios
1526 	 * and locked termios may be retained.)
1527 	 */
1528 
1529 	if (!try_module_get(driver->owner))
1530 		return ERR_PTR(-ENODEV);
1531 
1532 	tty = alloc_tty_struct(driver, idx);
1533 	if (!tty) {
1534 		retval = -ENOMEM;
1535 		goto err_module_put;
1536 	}
1537 
1538 	tty_lock(tty);
1539 	retval = tty_driver_install_tty(driver, tty);
1540 	if (retval < 0)
1541 		goto err_free_tty;
1542 
1543 	if (!tty->port)
1544 		tty->port = driver->ports[idx];
1545 
1546 	WARN_RATELIMIT(!tty->port,
1547 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1548 			__func__, tty->driver->name);
1549 
1550 	tty->port->itty = tty;
1551 
1552 	/*
1553 	 * Structures all installed ... call the ldisc open routines.
1554 	 * If we fail here just call release_tty to clean up.  No need
1555 	 * to decrement the use counts, as release_tty doesn't care.
1556 	 */
1557 	retval = tty_ldisc_setup(tty, tty->link);
1558 	if (retval)
1559 		goto err_release_tty;
1560 	/* Return the tty locked so that it cannot vanish under the caller */
1561 	return tty;
1562 
1563 err_free_tty:
1564 	tty_unlock(tty);
1565 	free_tty_struct(tty);
1566 err_module_put:
1567 	module_put(driver->owner);
1568 	return ERR_PTR(retval);
1569 
1570 	/* call the tty release_tty routine to clean out this slot */
1571 err_release_tty:
1572 	tty_unlock(tty);
1573 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1574 			     retval, idx);
1575 	release_tty(tty, idx);
1576 	return ERR_PTR(retval);
1577 }
1578 
1579 static void tty_free_termios(struct tty_struct *tty)
1580 {
1581 	struct ktermios *tp;
1582 	int idx = tty->index;
1583 
1584 	/* If the port is going to reset then it has no termios to save */
1585 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1586 		return;
1587 
1588 	/* Stash the termios data */
1589 	tp = tty->driver->termios[idx];
1590 	if (tp == NULL) {
1591 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1592 		if (tp == NULL)
1593 			return;
1594 		tty->driver->termios[idx] = tp;
1595 	}
1596 	*tp = tty->termios;
1597 }
1598 
1599 /**
1600  *	tty_flush_works		-	flush all works of a tty/pty pair
1601  *	@tty: tty device to flush works for (or either end of a pty pair)
1602  *
1603  *	Sync flush all works belonging to @tty (and the 'other' tty).
1604  */
1605 static void tty_flush_works(struct tty_struct *tty)
1606 {
1607 	flush_work(&tty->SAK_work);
1608 	flush_work(&tty->hangup_work);
1609 	if (tty->link) {
1610 		flush_work(&tty->link->SAK_work);
1611 		flush_work(&tty->link->hangup_work);
1612 	}
1613 }
1614 
1615 /**
1616  *	release_one_tty		-	release tty structure memory
1617  *	@kref: kref of tty we are obliterating
1618  *
1619  *	Releases memory associated with a tty structure, and clears out the
1620  *	driver table slots. This function is called when a device is no longer
1621  *	in use. It also gets called when setup of a device fails.
1622  *
1623  *	Locking:
1624  *		takes the file list lock internally when working on the list
1625  *	of ttys that the driver keeps.
1626  *
1627  *	This method gets called from a work queue so that the driver private
1628  *	cleanup ops can sleep (needed for USB at least)
1629  */
1630 static void release_one_tty(struct work_struct *work)
1631 {
1632 	struct tty_struct *tty =
1633 		container_of(work, struct tty_struct, hangup_work);
1634 	struct tty_driver *driver = tty->driver;
1635 	struct module *owner = driver->owner;
1636 
1637 	if (tty->ops->cleanup)
1638 		tty->ops->cleanup(tty);
1639 
1640 	tty->magic = 0;
1641 	tty_driver_kref_put(driver);
1642 	module_put(owner);
1643 
1644 	spin_lock(&tty->files_lock);
1645 	list_del_init(&tty->tty_files);
1646 	spin_unlock(&tty->files_lock);
1647 
1648 	put_pid(tty->pgrp);
1649 	put_pid(tty->session);
1650 	free_tty_struct(tty);
1651 }
1652 
1653 static void queue_release_one_tty(struct kref *kref)
1654 {
1655 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1656 
1657 	/* The hangup queue is now free so we can reuse it rather than
1658 	   waste a chunk of memory for each port */
1659 	INIT_WORK(&tty->hangup_work, release_one_tty);
1660 	schedule_work(&tty->hangup_work);
1661 }
1662 
1663 /**
1664  *	tty_kref_put		-	release a tty kref
1665  *	@tty: tty device
1666  *
1667  *	Release a reference to a tty device and if need be let the kref
1668  *	layer destruct the object for us
1669  */
1670 
1671 void tty_kref_put(struct tty_struct *tty)
1672 {
1673 	if (tty)
1674 		kref_put(&tty->kref, queue_release_one_tty);
1675 }
1676 EXPORT_SYMBOL(tty_kref_put);
1677 
1678 /**
1679  *	release_tty		-	release tty structure memory
1680  *
1681  *	Release both @tty and a possible linked partner (think pty pair),
1682  *	and decrement the refcount of the backing module.
1683  *
1684  *	Locking:
1685  *		tty_mutex
1686  *		takes the file list lock internally when working on the list
1687  *	of ttys that the driver keeps.
1688  *
1689  */
1690 static void release_tty(struct tty_struct *tty, int idx)
1691 {
1692 	/* This should always be true but check for the moment */
1693 	WARN_ON(tty->index != idx);
1694 	WARN_ON(!mutex_is_locked(&tty_mutex));
1695 	if (tty->ops->shutdown)
1696 		tty->ops->shutdown(tty);
1697 	tty_free_termios(tty);
1698 	tty_driver_remove_tty(tty->driver, tty);
1699 	tty->port->itty = NULL;
1700 	if (tty->link)
1701 		tty->link->port->itty = NULL;
1702 	tty_buffer_cancel_work(tty->port);
1703 
1704 	tty_kref_put(tty->link);
1705 	tty_kref_put(tty);
1706 }
1707 
1708 /**
1709  *	tty_release_checks - check a tty before real release
1710  *	@tty: tty to check
1711  *	@o_tty: link of @tty (if any)
1712  *	@idx: index of the tty
1713  *
1714  *	Performs some paranoid checking before true release of the @tty.
1715  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1716  */
1717 static int tty_release_checks(struct tty_struct *tty, int idx)
1718 {
1719 #ifdef TTY_PARANOIA_CHECK
1720 	if (idx < 0 || idx >= tty->driver->num) {
1721 		tty_debug(tty, "bad idx %d\n", idx);
1722 		return -1;
1723 	}
1724 
1725 	/* not much to check for devpts */
1726 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1727 		return 0;
1728 
1729 	if (tty != tty->driver->ttys[idx]) {
1730 		tty_debug(tty, "bad driver table[%d] = %p\n",
1731 			  idx, tty->driver->ttys[idx]);
1732 		return -1;
1733 	}
1734 	if (tty->driver->other) {
1735 		struct tty_struct *o_tty = tty->link;
1736 
1737 		if (o_tty != tty->driver->other->ttys[idx]) {
1738 			tty_debug(tty, "bad other table[%d] = %p\n",
1739 				  idx, tty->driver->other->ttys[idx]);
1740 			return -1;
1741 		}
1742 		if (o_tty->link != tty) {
1743 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1744 			return -1;
1745 		}
1746 	}
1747 #endif
1748 	return 0;
1749 }
1750 
1751 /**
1752  *	tty_release		-	vfs callback for close
1753  *	@inode: inode of tty
1754  *	@filp: file pointer for handle to tty
1755  *
1756  *	Called the last time each file handle is closed that references
1757  *	this tty. There may however be several such references.
1758  *
1759  *	Locking:
1760  *		Takes bkl. See tty_release_dev
1761  *
1762  * Even releasing the tty structures is a tricky business.. We have
1763  * to be very careful that the structures are all released at the
1764  * same time, as interrupts might otherwise get the wrong pointers.
1765  *
1766  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1767  * lead to double frees or releasing memory still in use.
1768  */
1769 
1770 int tty_release(struct inode *inode, struct file *filp)
1771 {
1772 	struct tty_struct *tty = file_tty(filp);
1773 	struct tty_struct *o_tty = NULL;
1774 	int	do_sleep, final;
1775 	int	idx;
1776 	long	timeout = 0;
1777 	int	once = 1;
1778 
1779 	if (tty_paranoia_check(tty, inode, __func__))
1780 		return 0;
1781 
1782 	tty_lock(tty);
1783 	check_tty_count(tty, __func__);
1784 
1785 	__tty_fasync(-1, filp, 0);
1786 
1787 	idx = tty->index;
1788 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1789 	    tty->driver->subtype == PTY_TYPE_MASTER)
1790 		o_tty = tty->link;
1791 
1792 	if (tty_release_checks(tty, idx)) {
1793 		tty_unlock(tty);
1794 		return 0;
1795 	}
1796 
1797 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1798 
1799 	if (tty->ops->close)
1800 		tty->ops->close(tty, filp);
1801 
1802 	/* If tty is pty master, lock the slave pty (stable lock order) */
1803 	tty_lock_slave(o_tty);
1804 
1805 	/*
1806 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1807 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1808 	 * wait queues and kick everyone out _before_ actually starting to
1809 	 * close.  This ensures that we won't block while releasing the tty
1810 	 * structure.
1811 	 *
1812 	 * The test for the o_tty closing is necessary, since the master and
1813 	 * slave sides may close in any order.  If the slave side closes out
1814 	 * first, its count will be one, since the master side holds an open.
1815 	 * Thus this test wouldn't be triggered at the time the slave closed,
1816 	 * so we do it now.
1817 	 */
1818 	while (1) {
1819 		do_sleep = 0;
1820 
1821 		if (tty->count <= 1) {
1822 			if (waitqueue_active(&tty->read_wait)) {
1823 				wake_up_poll(&tty->read_wait, POLLIN);
1824 				do_sleep++;
1825 			}
1826 			if (waitqueue_active(&tty->write_wait)) {
1827 				wake_up_poll(&tty->write_wait, POLLOUT);
1828 				do_sleep++;
1829 			}
1830 		}
1831 		if (o_tty && o_tty->count <= 1) {
1832 			if (waitqueue_active(&o_tty->read_wait)) {
1833 				wake_up_poll(&o_tty->read_wait, POLLIN);
1834 				do_sleep++;
1835 			}
1836 			if (waitqueue_active(&o_tty->write_wait)) {
1837 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1838 				do_sleep++;
1839 			}
1840 		}
1841 		if (!do_sleep)
1842 			break;
1843 
1844 		if (once) {
1845 			once = 0;
1846 			tty_warn(tty, "read/write wait queue active!\n");
1847 		}
1848 		schedule_timeout_killable(timeout);
1849 		if (timeout < 120 * HZ)
1850 			timeout = 2 * timeout + 1;
1851 		else
1852 			timeout = MAX_SCHEDULE_TIMEOUT;
1853 	}
1854 
1855 	if (o_tty) {
1856 		if (--o_tty->count < 0) {
1857 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1858 			o_tty->count = 0;
1859 		}
1860 	}
1861 	if (--tty->count < 0) {
1862 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1863 		tty->count = 0;
1864 	}
1865 
1866 	/*
1867 	 * We've decremented tty->count, so we need to remove this file
1868 	 * descriptor off the tty->tty_files list; this serves two
1869 	 * purposes:
1870 	 *  - check_tty_count sees the correct number of file descriptors
1871 	 *    associated with this tty.
1872 	 *  - do_tty_hangup no longer sees this file descriptor as
1873 	 *    something that needs to be handled for hangups.
1874 	 */
1875 	tty_del_file(filp);
1876 
1877 	/*
1878 	 * Perform some housekeeping before deciding whether to return.
1879 	 *
1880 	 * If _either_ side is closing, make sure there aren't any
1881 	 * processes that still think tty or o_tty is their controlling
1882 	 * tty.
1883 	 */
1884 	if (!tty->count) {
1885 		read_lock(&tasklist_lock);
1886 		session_clear_tty(tty->session);
1887 		if (o_tty)
1888 			session_clear_tty(o_tty->session);
1889 		read_unlock(&tasklist_lock);
1890 	}
1891 
1892 	/* check whether both sides are closing ... */
1893 	final = !tty->count && !(o_tty && o_tty->count);
1894 
1895 	tty_unlock_slave(o_tty);
1896 	tty_unlock(tty);
1897 
1898 	/* At this point, the tty->count == 0 should ensure a dead tty
1899 	   cannot be re-opened by a racing opener */
1900 
1901 	if (!final)
1902 		return 0;
1903 
1904 	tty_debug_hangup(tty, "final close\n");
1905 	/*
1906 	 * Ask the line discipline code to release its structures
1907 	 */
1908 	tty_ldisc_release(tty);
1909 
1910 	/* Wait for pending work before tty destruction commmences */
1911 	tty_flush_works(tty);
1912 
1913 	tty_debug_hangup(tty, "freeing structure\n");
1914 	/*
1915 	 * The release_tty function takes care of the details of clearing
1916 	 * the slots and preserving the termios structure. The tty_unlock_pair
1917 	 * should be safe as we keep a kref while the tty is locked (so the
1918 	 * unlock never unlocks a freed tty).
1919 	 */
1920 	mutex_lock(&tty_mutex);
1921 	release_tty(tty, idx);
1922 	mutex_unlock(&tty_mutex);
1923 
1924 	return 0;
1925 }
1926 
1927 /**
1928  *	tty_open_current_tty - get locked tty of current task
1929  *	@device: device number
1930  *	@filp: file pointer to tty
1931  *	@return: locked tty of the current task iff @device is /dev/tty
1932  *
1933  *	Performs a re-open of the current task's controlling tty.
1934  *
1935  *	We cannot return driver and index like for the other nodes because
1936  *	devpts will not work then. It expects inodes to be from devpts FS.
1937  */
1938 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1939 {
1940 	struct tty_struct *tty;
1941 	int retval;
1942 
1943 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1944 		return NULL;
1945 
1946 	tty = get_current_tty();
1947 	if (!tty)
1948 		return ERR_PTR(-ENXIO);
1949 
1950 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1951 	/* noctty = 1; */
1952 	tty_lock(tty);
1953 	tty_kref_put(tty);	/* safe to drop the kref now */
1954 
1955 	retval = tty_reopen(tty);
1956 	if (retval < 0) {
1957 		tty_unlock(tty);
1958 		tty = ERR_PTR(retval);
1959 	}
1960 	return tty;
1961 }
1962 
1963 /**
1964  *	tty_lookup_driver - lookup a tty driver for a given device file
1965  *	@device: device number
1966  *	@filp: file pointer to tty
1967  *	@noctty: set if the device should not become a controlling tty
1968  *	@index: index for the device in the @return driver
1969  *	@return: driver for this inode (with increased refcount)
1970  *
1971  * 	If @return is not erroneous, the caller is responsible to decrement the
1972  * 	refcount by tty_driver_kref_put.
1973  *
1974  *	Locking: tty_mutex protects get_tty_driver
1975  */
1976 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1977 		int *index)
1978 {
1979 	struct tty_driver *driver;
1980 
1981 	switch (device) {
1982 #ifdef CONFIG_VT
1983 	case MKDEV(TTY_MAJOR, 0): {
1984 		extern struct tty_driver *console_driver;
1985 		driver = tty_driver_kref_get(console_driver);
1986 		*index = fg_console;
1987 		break;
1988 	}
1989 #endif
1990 	case MKDEV(TTYAUX_MAJOR, 1): {
1991 		struct tty_driver *console_driver = console_device(index);
1992 		if (console_driver) {
1993 			driver = tty_driver_kref_get(console_driver);
1994 			if (driver) {
1995 				/* Don't let /dev/console block */
1996 				filp->f_flags |= O_NONBLOCK;
1997 				break;
1998 			}
1999 		}
2000 		return ERR_PTR(-ENODEV);
2001 	}
2002 	default:
2003 		driver = get_tty_driver(device, index);
2004 		if (!driver)
2005 			return ERR_PTR(-ENODEV);
2006 		break;
2007 	}
2008 	return driver;
2009 }
2010 
2011 /**
2012  *	tty_open_by_driver	-	open a tty device
2013  *	@device: dev_t of device to open
2014  *	@inode: inode of device file
2015  *	@filp: file pointer to tty
2016  *
2017  *	Performs the driver lookup, checks for a reopen, or otherwise
2018  *	performs the first-time tty initialization.
2019  *
2020  *	Returns the locked initialized or re-opened &tty_struct
2021  *
2022  *	Claims the global tty_mutex to serialize:
2023  *	  - concurrent first-time tty initialization
2024  *	  - concurrent tty driver removal w/ lookup
2025  *	  - concurrent tty removal from driver table
2026  */
2027 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2028 					     struct file *filp)
2029 {
2030 	struct tty_struct *tty;
2031 	struct tty_driver *driver = NULL;
2032 	int index = -1;
2033 	int retval;
2034 
2035 	mutex_lock(&tty_mutex);
2036 	driver = tty_lookup_driver(device, filp, &index);
2037 	if (IS_ERR(driver)) {
2038 		mutex_unlock(&tty_mutex);
2039 		return ERR_CAST(driver);
2040 	}
2041 
2042 	/* check whether we're reopening an existing tty */
2043 	tty = tty_driver_lookup_tty(driver, inode, index);
2044 	if (IS_ERR(tty)) {
2045 		mutex_unlock(&tty_mutex);
2046 		goto out;
2047 	}
2048 
2049 	if (tty) {
2050 		mutex_unlock(&tty_mutex);
2051 		retval = tty_lock_interruptible(tty);
2052 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2053 		if (retval) {
2054 			if (retval == -EINTR)
2055 				retval = -ERESTARTSYS;
2056 			tty = ERR_PTR(retval);
2057 			goto out;
2058 		}
2059 		retval = tty_reopen(tty);
2060 		if (retval < 0) {
2061 			tty_unlock(tty);
2062 			tty = ERR_PTR(retval);
2063 		}
2064 	} else { /* Returns with the tty_lock held for now */
2065 		tty = tty_init_dev(driver, index);
2066 		mutex_unlock(&tty_mutex);
2067 	}
2068 out:
2069 	tty_driver_kref_put(driver);
2070 	return tty;
2071 }
2072 
2073 /**
2074  *	tty_open		-	open a tty device
2075  *	@inode: inode of device file
2076  *	@filp: file pointer to tty
2077  *
2078  *	tty_open and tty_release keep up the tty count that contains the
2079  *	number of opens done on a tty. We cannot use the inode-count, as
2080  *	different inodes might point to the same tty.
2081  *
2082  *	Open-counting is needed for pty masters, as well as for keeping
2083  *	track of serial lines: DTR is dropped when the last close happens.
2084  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2085  *
2086  *	The termios state of a pty is reset on first open so that
2087  *	settings don't persist across reuse.
2088  *
2089  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2090  *		 tty->count should protect the rest.
2091  *		 ->siglock protects ->signal/->sighand
2092  *
2093  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2094  *	tty_mutex
2095  */
2096 
2097 static int tty_open(struct inode *inode, struct file *filp)
2098 {
2099 	struct tty_struct *tty;
2100 	int noctty, retval;
2101 	dev_t device = inode->i_rdev;
2102 	unsigned saved_flags = filp->f_flags;
2103 
2104 	nonseekable_open(inode, filp);
2105 
2106 retry_open:
2107 	retval = tty_alloc_file(filp);
2108 	if (retval)
2109 		return -ENOMEM;
2110 
2111 	tty = tty_open_current_tty(device, filp);
2112 	if (!tty)
2113 		tty = tty_open_by_driver(device, inode, filp);
2114 
2115 	if (IS_ERR(tty)) {
2116 		tty_free_file(filp);
2117 		retval = PTR_ERR(tty);
2118 		if (retval != -EAGAIN || signal_pending(current))
2119 			return retval;
2120 		schedule();
2121 		goto retry_open;
2122 	}
2123 
2124 	tty_add_file(tty, filp);
2125 
2126 	check_tty_count(tty, __func__);
2127 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2128 
2129 	if (tty->ops->open)
2130 		retval = tty->ops->open(tty, filp);
2131 	else
2132 		retval = -ENODEV;
2133 	filp->f_flags = saved_flags;
2134 
2135 	if (retval) {
2136 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2137 
2138 		tty_unlock(tty); /* need to call tty_release without BTM */
2139 		tty_release(inode, filp);
2140 		if (retval != -ERESTARTSYS)
2141 			return retval;
2142 
2143 		if (signal_pending(current))
2144 			return retval;
2145 
2146 		schedule();
2147 		/*
2148 		 * Need to reset f_op in case a hangup happened.
2149 		 */
2150 		if (tty_hung_up_p(filp))
2151 			filp->f_op = &tty_fops;
2152 		goto retry_open;
2153 	}
2154 	clear_bit(TTY_HUPPED, &tty->flags);
2155 
2156 
2157 	read_lock(&tasklist_lock);
2158 	spin_lock_irq(&current->sighand->siglock);
2159 	noctty = (filp->f_flags & O_NOCTTY) ||
2160 			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2161 			device == MKDEV(TTYAUX_MAJOR, 1) ||
2162 			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2163 			 tty->driver->subtype == PTY_TYPE_MASTER);
2164 
2165 	if (!noctty &&
2166 	    current->signal->leader &&
2167 	    !current->signal->tty &&
2168 	    tty->session == NULL) {
2169 		/*
2170 		 * Don't let a process that only has write access to the tty
2171 		 * obtain the privileges associated with having a tty as
2172 		 * controlling terminal (being able to reopen it with full
2173 		 * access through /dev/tty, being able to perform pushback).
2174 		 * Many distributions set the group of all ttys to "tty" and
2175 		 * grant write-only access to all terminals for setgid tty
2176 		 * binaries, which should not imply full privileges on all ttys.
2177 		 *
2178 		 * This could theoretically break old code that performs open()
2179 		 * on a write-only file descriptor. In that case, it might be
2180 		 * necessary to also permit this if
2181 		 * inode_permission(inode, MAY_READ) == 0.
2182 		 */
2183 		if (filp->f_mode & FMODE_READ)
2184 			__proc_set_tty(tty);
2185 	}
2186 	spin_unlock_irq(&current->sighand->siglock);
2187 	read_unlock(&tasklist_lock);
2188 	tty_unlock(tty);
2189 	return 0;
2190 }
2191 
2192 
2193 
2194 /**
2195  *	tty_poll	-	check tty status
2196  *	@filp: file being polled
2197  *	@wait: poll wait structures to update
2198  *
2199  *	Call the line discipline polling method to obtain the poll
2200  *	status of the device.
2201  *
2202  *	Locking: locks called line discipline but ldisc poll method
2203  *	may be re-entered freely by other callers.
2204  */
2205 
2206 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2207 {
2208 	struct tty_struct *tty = file_tty(filp);
2209 	struct tty_ldisc *ld;
2210 	int ret = 0;
2211 
2212 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2213 		return 0;
2214 
2215 	ld = tty_ldisc_ref_wait(tty);
2216 	if (!ld)
2217 		return hung_up_tty_poll(filp, wait);
2218 	if (ld->ops->poll)
2219 		ret = ld->ops->poll(tty, filp, wait);
2220 	tty_ldisc_deref(ld);
2221 	return ret;
2222 }
2223 
2224 static int __tty_fasync(int fd, struct file *filp, int on)
2225 {
2226 	struct tty_struct *tty = file_tty(filp);
2227 	unsigned long flags;
2228 	int retval = 0;
2229 
2230 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2231 		goto out;
2232 
2233 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2234 	if (retval <= 0)
2235 		goto out;
2236 
2237 	if (on) {
2238 		enum pid_type type;
2239 		struct pid *pid;
2240 
2241 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2242 		if (tty->pgrp) {
2243 			pid = tty->pgrp;
2244 			type = PIDTYPE_PGID;
2245 		} else {
2246 			pid = task_pid(current);
2247 			type = PIDTYPE_PID;
2248 		}
2249 		get_pid(pid);
2250 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2251 		__f_setown(filp, pid, type, 0);
2252 		put_pid(pid);
2253 		retval = 0;
2254 	}
2255 out:
2256 	return retval;
2257 }
2258 
2259 static int tty_fasync(int fd, struct file *filp, int on)
2260 {
2261 	struct tty_struct *tty = file_tty(filp);
2262 	int retval = -ENOTTY;
2263 
2264 	tty_lock(tty);
2265 	if (!tty_hung_up_p(filp))
2266 		retval = __tty_fasync(fd, filp, on);
2267 	tty_unlock(tty);
2268 
2269 	return retval;
2270 }
2271 
2272 /**
2273  *	tiocsti			-	fake input character
2274  *	@tty: tty to fake input into
2275  *	@p: pointer to character
2276  *
2277  *	Fake input to a tty device. Does the necessary locking and
2278  *	input management.
2279  *
2280  *	FIXME: does not honour flow control ??
2281  *
2282  *	Locking:
2283  *		Called functions take tty_ldiscs_lock
2284  *		current->signal->tty check is safe without locks
2285  *
2286  *	FIXME: may race normal receive processing
2287  */
2288 
2289 static int tiocsti(struct tty_struct *tty, char __user *p)
2290 {
2291 	char ch, mbz = 0;
2292 	struct tty_ldisc *ld;
2293 
2294 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2295 		return -EPERM;
2296 	if (get_user(ch, p))
2297 		return -EFAULT;
2298 	tty_audit_tiocsti(tty, ch);
2299 	ld = tty_ldisc_ref_wait(tty);
2300 	if (!ld)
2301 		return -EIO;
2302 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2303 	tty_ldisc_deref(ld);
2304 	return 0;
2305 }
2306 
2307 /**
2308  *	tiocgwinsz		-	implement window query ioctl
2309  *	@tty; tty
2310  *	@arg: user buffer for result
2311  *
2312  *	Copies the kernel idea of the window size into the user buffer.
2313  *
2314  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2315  *		is consistent.
2316  */
2317 
2318 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2319 {
2320 	int err;
2321 
2322 	mutex_lock(&tty->winsize_mutex);
2323 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2324 	mutex_unlock(&tty->winsize_mutex);
2325 
2326 	return err ? -EFAULT: 0;
2327 }
2328 
2329 /**
2330  *	tty_do_resize		-	resize event
2331  *	@tty: tty being resized
2332  *	@rows: rows (character)
2333  *	@cols: cols (character)
2334  *
2335  *	Update the termios variables and send the necessary signals to
2336  *	peform a terminal resize correctly
2337  */
2338 
2339 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2340 {
2341 	struct pid *pgrp;
2342 
2343 	/* Lock the tty */
2344 	mutex_lock(&tty->winsize_mutex);
2345 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2346 		goto done;
2347 
2348 	/* Signal the foreground process group */
2349 	pgrp = tty_get_pgrp(tty);
2350 	if (pgrp)
2351 		kill_pgrp(pgrp, SIGWINCH, 1);
2352 	put_pid(pgrp);
2353 
2354 	tty->winsize = *ws;
2355 done:
2356 	mutex_unlock(&tty->winsize_mutex);
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL(tty_do_resize);
2360 
2361 /**
2362  *	tiocswinsz		-	implement window size set ioctl
2363  *	@tty; tty side of tty
2364  *	@arg: user buffer for result
2365  *
2366  *	Copies the user idea of the window size to the kernel. Traditionally
2367  *	this is just advisory information but for the Linux console it
2368  *	actually has driver level meaning and triggers a VC resize.
2369  *
2370  *	Locking:
2371  *		Driver dependent. The default do_resize method takes the
2372  *	tty termios mutex and ctrl_lock. The console takes its own lock
2373  *	then calls into the default method.
2374  */
2375 
2376 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2377 {
2378 	struct winsize tmp_ws;
2379 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2380 		return -EFAULT;
2381 
2382 	if (tty->ops->resize)
2383 		return tty->ops->resize(tty, &tmp_ws);
2384 	else
2385 		return tty_do_resize(tty, &tmp_ws);
2386 }
2387 
2388 /**
2389  *	tioccons	-	allow admin to move logical console
2390  *	@file: the file to become console
2391  *
2392  *	Allow the administrator to move the redirected console device
2393  *
2394  *	Locking: uses redirect_lock to guard the redirect information
2395  */
2396 
2397 static int tioccons(struct file *file)
2398 {
2399 	if (!capable(CAP_SYS_ADMIN))
2400 		return -EPERM;
2401 	if (file->f_op->write == redirected_tty_write) {
2402 		struct file *f;
2403 		spin_lock(&redirect_lock);
2404 		f = redirect;
2405 		redirect = NULL;
2406 		spin_unlock(&redirect_lock);
2407 		if (f)
2408 			fput(f);
2409 		return 0;
2410 	}
2411 	spin_lock(&redirect_lock);
2412 	if (redirect) {
2413 		spin_unlock(&redirect_lock);
2414 		return -EBUSY;
2415 	}
2416 	redirect = get_file(file);
2417 	spin_unlock(&redirect_lock);
2418 	return 0;
2419 }
2420 
2421 /**
2422  *	fionbio		-	non blocking ioctl
2423  *	@file: file to set blocking value
2424  *	@p: user parameter
2425  *
2426  *	Historical tty interfaces had a blocking control ioctl before
2427  *	the generic functionality existed. This piece of history is preserved
2428  *	in the expected tty API of posix OS's.
2429  *
2430  *	Locking: none, the open file handle ensures it won't go away.
2431  */
2432 
2433 static int fionbio(struct file *file, int __user *p)
2434 {
2435 	int nonblock;
2436 
2437 	if (get_user(nonblock, p))
2438 		return -EFAULT;
2439 
2440 	spin_lock(&file->f_lock);
2441 	if (nonblock)
2442 		file->f_flags |= O_NONBLOCK;
2443 	else
2444 		file->f_flags &= ~O_NONBLOCK;
2445 	spin_unlock(&file->f_lock);
2446 	return 0;
2447 }
2448 
2449 /**
2450  *	tiocsctty	-	set controlling tty
2451  *	@tty: tty structure
2452  *	@arg: user argument
2453  *
2454  *	This ioctl is used to manage job control. It permits a session
2455  *	leader to set this tty as the controlling tty for the session.
2456  *
2457  *	Locking:
2458  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2459  *		Takes tasklist_lock internally to walk sessions
2460  *		Takes ->siglock() when updating signal->tty
2461  */
2462 
2463 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2464 {
2465 	int ret = 0;
2466 
2467 	tty_lock(tty);
2468 	read_lock(&tasklist_lock);
2469 
2470 	if (current->signal->leader && (task_session(current) == tty->session))
2471 		goto unlock;
2472 
2473 	/*
2474 	 * The process must be a session leader and
2475 	 * not have a controlling tty already.
2476 	 */
2477 	if (!current->signal->leader || current->signal->tty) {
2478 		ret = -EPERM;
2479 		goto unlock;
2480 	}
2481 
2482 	if (tty->session) {
2483 		/*
2484 		 * This tty is already the controlling
2485 		 * tty for another session group!
2486 		 */
2487 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2488 			/*
2489 			 * Steal it away
2490 			 */
2491 			session_clear_tty(tty->session);
2492 		} else {
2493 			ret = -EPERM;
2494 			goto unlock;
2495 		}
2496 	}
2497 
2498 	/* See the comment in tty_open(). */
2499 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2500 		ret = -EPERM;
2501 		goto unlock;
2502 	}
2503 
2504 	proc_set_tty(tty);
2505 unlock:
2506 	read_unlock(&tasklist_lock);
2507 	tty_unlock(tty);
2508 	return ret;
2509 }
2510 
2511 /**
2512  *	tty_get_pgrp	-	return a ref counted pgrp pid
2513  *	@tty: tty to read
2514  *
2515  *	Returns a refcounted instance of the pid struct for the process
2516  *	group controlling the tty.
2517  */
2518 
2519 struct pid *tty_get_pgrp(struct tty_struct *tty)
2520 {
2521 	unsigned long flags;
2522 	struct pid *pgrp;
2523 
2524 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2525 	pgrp = get_pid(tty->pgrp);
2526 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2527 
2528 	return pgrp;
2529 }
2530 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2531 
2532 /*
2533  * This checks not only the pgrp, but falls back on the pid if no
2534  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2535  * without this...
2536  *
2537  * The caller must hold rcu lock or the tasklist lock.
2538  */
2539 static struct pid *session_of_pgrp(struct pid *pgrp)
2540 {
2541 	struct task_struct *p;
2542 	struct pid *sid = NULL;
2543 
2544 	p = pid_task(pgrp, PIDTYPE_PGID);
2545 	if (p == NULL)
2546 		p = pid_task(pgrp, PIDTYPE_PID);
2547 	if (p != NULL)
2548 		sid = task_session(p);
2549 
2550 	return sid;
2551 }
2552 
2553 /**
2554  *	tiocgpgrp		-	get process group
2555  *	@tty: tty passed by user
2556  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2557  *	@p: returned pid
2558  *
2559  *	Obtain the process group of the tty. If there is no process group
2560  *	return an error.
2561  *
2562  *	Locking: none. Reference to current->signal->tty is safe.
2563  */
2564 
2565 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2566 {
2567 	struct pid *pid;
2568 	int ret;
2569 	/*
2570 	 * (tty == real_tty) is a cheap way of
2571 	 * testing if the tty is NOT a master pty.
2572 	 */
2573 	if (tty == real_tty && current->signal->tty != real_tty)
2574 		return -ENOTTY;
2575 	pid = tty_get_pgrp(real_tty);
2576 	ret =  put_user(pid_vnr(pid), p);
2577 	put_pid(pid);
2578 	return ret;
2579 }
2580 
2581 /**
2582  *	tiocspgrp		-	attempt to set process group
2583  *	@tty: tty passed by user
2584  *	@real_tty: tty side device matching tty passed by user
2585  *	@p: pid pointer
2586  *
2587  *	Set the process group of the tty to the session passed. Only
2588  *	permitted where the tty session is our session.
2589  *
2590  *	Locking: RCU, ctrl lock
2591  */
2592 
2593 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2594 {
2595 	struct pid *pgrp;
2596 	pid_t pgrp_nr;
2597 	int retval = tty_check_change(real_tty);
2598 
2599 	if (retval == -EIO)
2600 		return -ENOTTY;
2601 	if (retval)
2602 		return retval;
2603 	if (!current->signal->tty ||
2604 	    (current->signal->tty != real_tty) ||
2605 	    (real_tty->session != task_session(current)))
2606 		return -ENOTTY;
2607 	if (get_user(pgrp_nr, p))
2608 		return -EFAULT;
2609 	if (pgrp_nr < 0)
2610 		return -EINVAL;
2611 	rcu_read_lock();
2612 	pgrp = find_vpid(pgrp_nr);
2613 	retval = -ESRCH;
2614 	if (!pgrp)
2615 		goto out_unlock;
2616 	retval = -EPERM;
2617 	if (session_of_pgrp(pgrp) != task_session(current))
2618 		goto out_unlock;
2619 	retval = 0;
2620 	spin_lock_irq(&tty->ctrl_lock);
2621 	put_pid(real_tty->pgrp);
2622 	real_tty->pgrp = get_pid(pgrp);
2623 	spin_unlock_irq(&tty->ctrl_lock);
2624 out_unlock:
2625 	rcu_read_unlock();
2626 	return retval;
2627 }
2628 
2629 /**
2630  *	tiocgsid		-	get session id
2631  *	@tty: tty passed by user
2632  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2633  *	@p: pointer to returned session id
2634  *
2635  *	Obtain the session id of the tty. If there is no session
2636  *	return an error.
2637  *
2638  *	Locking: none. Reference to current->signal->tty is safe.
2639  */
2640 
2641 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2642 {
2643 	/*
2644 	 * (tty == real_tty) is a cheap way of
2645 	 * testing if the tty is NOT a master pty.
2646 	*/
2647 	if (tty == real_tty && current->signal->tty != real_tty)
2648 		return -ENOTTY;
2649 	if (!real_tty->session)
2650 		return -ENOTTY;
2651 	return put_user(pid_vnr(real_tty->session), p);
2652 }
2653 
2654 /**
2655  *	tiocsetd	-	set line discipline
2656  *	@tty: tty device
2657  *	@p: pointer to user data
2658  *
2659  *	Set the line discipline according to user request.
2660  *
2661  *	Locking: see tty_set_ldisc, this function is just a helper
2662  */
2663 
2664 static int tiocsetd(struct tty_struct *tty, int __user *p)
2665 {
2666 	int disc;
2667 	int ret;
2668 
2669 	if (get_user(disc, p))
2670 		return -EFAULT;
2671 
2672 	ret = tty_set_ldisc(tty, disc);
2673 
2674 	return ret;
2675 }
2676 
2677 /**
2678  *	tiocgetd	-	get line discipline
2679  *	@tty: tty device
2680  *	@p: pointer to user data
2681  *
2682  *	Retrieves the line discipline id directly from the ldisc.
2683  *
2684  *	Locking: waits for ldisc reference (in case the line discipline
2685  *		is changing or the tty is being hungup)
2686  */
2687 
2688 static int tiocgetd(struct tty_struct *tty, int __user *p)
2689 {
2690 	struct tty_ldisc *ld;
2691 	int ret;
2692 
2693 	ld = tty_ldisc_ref_wait(tty);
2694 	if (!ld)
2695 		return -EIO;
2696 	ret = put_user(ld->ops->num, p);
2697 	tty_ldisc_deref(ld);
2698 	return ret;
2699 }
2700 
2701 /**
2702  *	send_break	-	performed time break
2703  *	@tty: device to break on
2704  *	@duration: timeout in mS
2705  *
2706  *	Perform a timed break on hardware that lacks its own driver level
2707  *	timed break functionality.
2708  *
2709  *	Locking:
2710  *		atomic_write_lock serializes
2711  *
2712  */
2713 
2714 static int send_break(struct tty_struct *tty, unsigned int duration)
2715 {
2716 	int retval;
2717 
2718 	if (tty->ops->break_ctl == NULL)
2719 		return 0;
2720 
2721 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2722 		retval = tty->ops->break_ctl(tty, duration);
2723 	else {
2724 		/* Do the work ourselves */
2725 		if (tty_write_lock(tty, 0) < 0)
2726 			return -EINTR;
2727 		retval = tty->ops->break_ctl(tty, -1);
2728 		if (retval)
2729 			goto out;
2730 		if (!signal_pending(current))
2731 			msleep_interruptible(duration);
2732 		retval = tty->ops->break_ctl(tty, 0);
2733 out:
2734 		tty_write_unlock(tty);
2735 		if (signal_pending(current))
2736 			retval = -EINTR;
2737 	}
2738 	return retval;
2739 }
2740 
2741 /**
2742  *	tty_tiocmget		-	get modem status
2743  *	@tty: tty device
2744  *	@file: user file pointer
2745  *	@p: pointer to result
2746  *
2747  *	Obtain the modem status bits from the tty driver if the feature
2748  *	is supported. Return -EINVAL if it is not available.
2749  *
2750  *	Locking: none (up to the driver)
2751  */
2752 
2753 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2754 {
2755 	int retval = -EINVAL;
2756 
2757 	if (tty->ops->tiocmget) {
2758 		retval = tty->ops->tiocmget(tty);
2759 
2760 		if (retval >= 0)
2761 			retval = put_user(retval, p);
2762 	}
2763 	return retval;
2764 }
2765 
2766 /**
2767  *	tty_tiocmset		-	set modem status
2768  *	@tty: tty device
2769  *	@cmd: command - clear bits, set bits or set all
2770  *	@p: pointer to desired bits
2771  *
2772  *	Set the modem status bits from the tty driver if the feature
2773  *	is supported. Return -EINVAL if it is not available.
2774  *
2775  *	Locking: none (up to the driver)
2776  */
2777 
2778 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2779 	     unsigned __user *p)
2780 {
2781 	int retval;
2782 	unsigned int set, clear, val;
2783 
2784 	if (tty->ops->tiocmset == NULL)
2785 		return -EINVAL;
2786 
2787 	retval = get_user(val, p);
2788 	if (retval)
2789 		return retval;
2790 	set = clear = 0;
2791 	switch (cmd) {
2792 	case TIOCMBIS:
2793 		set = val;
2794 		break;
2795 	case TIOCMBIC:
2796 		clear = val;
2797 		break;
2798 	case TIOCMSET:
2799 		set = val;
2800 		clear = ~val;
2801 		break;
2802 	}
2803 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2804 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2805 	return tty->ops->tiocmset(tty, set, clear);
2806 }
2807 
2808 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2809 {
2810 	int retval = -EINVAL;
2811 	struct serial_icounter_struct icount;
2812 	memset(&icount, 0, sizeof(icount));
2813 	if (tty->ops->get_icount)
2814 		retval = tty->ops->get_icount(tty, &icount);
2815 	if (retval != 0)
2816 		return retval;
2817 	if (copy_to_user(arg, &icount, sizeof(icount)))
2818 		return -EFAULT;
2819 	return 0;
2820 }
2821 
2822 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2823 {
2824 	static DEFINE_RATELIMIT_STATE(depr_flags,
2825 			DEFAULT_RATELIMIT_INTERVAL,
2826 			DEFAULT_RATELIMIT_BURST);
2827 	char comm[TASK_COMM_LEN];
2828 	int flags;
2829 
2830 	if (get_user(flags, &ss->flags))
2831 		return;
2832 
2833 	flags &= ASYNC_DEPRECATED;
2834 
2835 	if (flags && __ratelimit(&depr_flags))
2836 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2837 				__func__, get_task_comm(comm, current), flags);
2838 }
2839 
2840 /*
2841  * if pty, return the slave side (real_tty)
2842  * otherwise, return self
2843  */
2844 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2845 {
2846 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2847 	    tty->driver->subtype == PTY_TYPE_MASTER)
2848 		tty = tty->link;
2849 	return tty;
2850 }
2851 
2852 /*
2853  * Split this up, as gcc can choke on it otherwise..
2854  */
2855 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2856 {
2857 	struct tty_struct *tty = file_tty(file);
2858 	struct tty_struct *real_tty;
2859 	void __user *p = (void __user *)arg;
2860 	int retval;
2861 	struct tty_ldisc *ld;
2862 
2863 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2864 		return -EINVAL;
2865 
2866 	real_tty = tty_pair_get_tty(tty);
2867 
2868 	/*
2869 	 * Factor out some common prep work
2870 	 */
2871 	switch (cmd) {
2872 	case TIOCSETD:
2873 	case TIOCSBRK:
2874 	case TIOCCBRK:
2875 	case TCSBRK:
2876 	case TCSBRKP:
2877 		retval = tty_check_change(tty);
2878 		if (retval)
2879 			return retval;
2880 		if (cmd != TIOCCBRK) {
2881 			tty_wait_until_sent(tty, 0);
2882 			if (signal_pending(current))
2883 				return -EINTR;
2884 		}
2885 		break;
2886 	}
2887 
2888 	/*
2889 	 *	Now do the stuff.
2890 	 */
2891 	switch (cmd) {
2892 	case TIOCSTI:
2893 		return tiocsti(tty, p);
2894 	case TIOCGWINSZ:
2895 		return tiocgwinsz(real_tty, p);
2896 	case TIOCSWINSZ:
2897 		return tiocswinsz(real_tty, p);
2898 	case TIOCCONS:
2899 		return real_tty != tty ? -EINVAL : tioccons(file);
2900 	case FIONBIO:
2901 		return fionbio(file, p);
2902 	case TIOCEXCL:
2903 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2904 		return 0;
2905 	case TIOCNXCL:
2906 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2907 		return 0;
2908 	case TIOCGEXCL:
2909 	{
2910 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2911 		return put_user(excl, (int __user *)p);
2912 	}
2913 	case TIOCNOTTY:
2914 		if (current->signal->tty != tty)
2915 			return -ENOTTY;
2916 		no_tty();
2917 		return 0;
2918 	case TIOCSCTTY:
2919 		return tiocsctty(real_tty, file, arg);
2920 	case TIOCGPGRP:
2921 		return tiocgpgrp(tty, real_tty, p);
2922 	case TIOCSPGRP:
2923 		return tiocspgrp(tty, real_tty, p);
2924 	case TIOCGSID:
2925 		return tiocgsid(tty, real_tty, p);
2926 	case TIOCGETD:
2927 		return tiocgetd(tty, p);
2928 	case TIOCSETD:
2929 		return tiocsetd(tty, p);
2930 	case TIOCVHANGUP:
2931 		if (!capable(CAP_SYS_ADMIN))
2932 			return -EPERM;
2933 		tty_vhangup(tty);
2934 		return 0;
2935 	case TIOCGDEV:
2936 	{
2937 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2938 		return put_user(ret, (unsigned int __user *)p);
2939 	}
2940 	/*
2941 	 * Break handling
2942 	 */
2943 	case TIOCSBRK:	/* Turn break on, unconditionally */
2944 		if (tty->ops->break_ctl)
2945 			return tty->ops->break_ctl(tty, -1);
2946 		return 0;
2947 	case TIOCCBRK:	/* Turn break off, unconditionally */
2948 		if (tty->ops->break_ctl)
2949 			return tty->ops->break_ctl(tty, 0);
2950 		return 0;
2951 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2952 		/* non-zero arg means wait for all output data
2953 		 * to be sent (performed above) but don't send break.
2954 		 * This is used by the tcdrain() termios function.
2955 		 */
2956 		if (!arg)
2957 			return send_break(tty, 250);
2958 		return 0;
2959 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2960 		return send_break(tty, arg ? arg*100 : 250);
2961 
2962 	case TIOCMGET:
2963 		return tty_tiocmget(tty, p);
2964 	case TIOCMSET:
2965 	case TIOCMBIC:
2966 	case TIOCMBIS:
2967 		return tty_tiocmset(tty, cmd, p);
2968 	case TIOCGICOUNT:
2969 		retval = tty_tiocgicount(tty, p);
2970 		/* For the moment allow fall through to the old method */
2971         	if (retval != -EINVAL)
2972 			return retval;
2973 		break;
2974 	case TCFLSH:
2975 		switch (arg) {
2976 		case TCIFLUSH:
2977 		case TCIOFLUSH:
2978 		/* flush tty buffer and allow ldisc to process ioctl */
2979 			tty_buffer_flush(tty, NULL);
2980 			break;
2981 		}
2982 		break;
2983 	case TIOCSSERIAL:
2984 		tty_warn_deprecated_flags(p);
2985 		break;
2986 	}
2987 	if (tty->ops->ioctl) {
2988 		retval = tty->ops->ioctl(tty, cmd, arg);
2989 		if (retval != -ENOIOCTLCMD)
2990 			return retval;
2991 	}
2992 	ld = tty_ldisc_ref_wait(tty);
2993 	if (!ld)
2994 		return hung_up_tty_ioctl(file, cmd, arg);
2995 	retval = -EINVAL;
2996 	if (ld->ops->ioctl) {
2997 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2998 		if (retval == -ENOIOCTLCMD)
2999 			retval = -ENOTTY;
3000 	}
3001 	tty_ldisc_deref(ld);
3002 	return retval;
3003 }
3004 
3005 #ifdef CONFIG_COMPAT
3006 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3007 				unsigned long arg)
3008 {
3009 	struct tty_struct *tty = file_tty(file);
3010 	struct tty_ldisc *ld;
3011 	int retval = -ENOIOCTLCMD;
3012 
3013 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3014 		return -EINVAL;
3015 
3016 	if (tty->ops->compat_ioctl) {
3017 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3018 		if (retval != -ENOIOCTLCMD)
3019 			return retval;
3020 	}
3021 
3022 	ld = tty_ldisc_ref_wait(tty);
3023 	if (!ld)
3024 		return hung_up_tty_compat_ioctl(file, cmd, arg);
3025 	if (ld->ops->compat_ioctl)
3026 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3027 	else
3028 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3029 	tty_ldisc_deref(ld);
3030 
3031 	return retval;
3032 }
3033 #endif
3034 
3035 static int this_tty(const void *t, struct file *file, unsigned fd)
3036 {
3037 	if (likely(file->f_op->read != tty_read))
3038 		return 0;
3039 	return file_tty(file) != t ? 0 : fd + 1;
3040 }
3041 
3042 /*
3043  * This implements the "Secure Attention Key" ---  the idea is to
3044  * prevent trojan horses by killing all processes associated with this
3045  * tty when the user hits the "Secure Attention Key".  Required for
3046  * super-paranoid applications --- see the Orange Book for more details.
3047  *
3048  * This code could be nicer; ideally it should send a HUP, wait a few
3049  * seconds, then send a INT, and then a KILL signal.  But you then
3050  * have to coordinate with the init process, since all processes associated
3051  * with the current tty must be dead before the new getty is allowed
3052  * to spawn.
3053  *
3054  * Now, if it would be correct ;-/ The current code has a nasty hole -
3055  * it doesn't catch files in flight. We may send the descriptor to ourselves
3056  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3057  *
3058  * Nasty bug: do_SAK is being called in interrupt context.  This can
3059  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3060  */
3061 void __do_SAK(struct tty_struct *tty)
3062 {
3063 #ifdef TTY_SOFT_SAK
3064 	tty_hangup(tty);
3065 #else
3066 	struct task_struct *g, *p;
3067 	struct pid *session;
3068 	int		i;
3069 
3070 	if (!tty)
3071 		return;
3072 	session = tty->session;
3073 
3074 	tty_ldisc_flush(tty);
3075 
3076 	tty_driver_flush_buffer(tty);
3077 
3078 	read_lock(&tasklist_lock);
3079 	/* Kill the entire session */
3080 	do_each_pid_task(session, PIDTYPE_SID, p) {
3081 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3082 			   task_pid_nr(p), p->comm);
3083 		send_sig(SIGKILL, p, 1);
3084 	} while_each_pid_task(session, PIDTYPE_SID, p);
3085 
3086 	/* Now kill any processes that happen to have the tty open */
3087 	do_each_thread(g, p) {
3088 		if (p->signal->tty == tty) {
3089 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3090 				   task_pid_nr(p), p->comm);
3091 			send_sig(SIGKILL, p, 1);
3092 			continue;
3093 		}
3094 		task_lock(p);
3095 		i = iterate_fd(p->files, 0, this_tty, tty);
3096 		if (i != 0) {
3097 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3098 				   task_pid_nr(p), p->comm, i - 1);
3099 			force_sig(SIGKILL, p);
3100 		}
3101 		task_unlock(p);
3102 	} while_each_thread(g, p);
3103 	read_unlock(&tasklist_lock);
3104 #endif
3105 }
3106 
3107 static void do_SAK_work(struct work_struct *work)
3108 {
3109 	struct tty_struct *tty =
3110 		container_of(work, struct tty_struct, SAK_work);
3111 	__do_SAK(tty);
3112 }
3113 
3114 /*
3115  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3116  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3117  * the values which we write to it will be identical to the values which it
3118  * already has. --akpm
3119  */
3120 void do_SAK(struct tty_struct *tty)
3121 {
3122 	if (!tty)
3123 		return;
3124 	schedule_work(&tty->SAK_work);
3125 }
3126 
3127 EXPORT_SYMBOL(do_SAK);
3128 
3129 static int dev_match_devt(struct device *dev, const void *data)
3130 {
3131 	const dev_t *devt = data;
3132 	return dev->devt == *devt;
3133 }
3134 
3135 /* Must put_device() after it's unused! */
3136 static struct device *tty_get_device(struct tty_struct *tty)
3137 {
3138 	dev_t devt = tty_devnum(tty);
3139 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3140 }
3141 
3142 
3143 /**
3144  *	alloc_tty_struct
3145  *
3146  *	This subroutine allocates and initializes a tty structure.
3147  *
3148  *	Locking: none - tty in question is not exposed at this point
3149  */
3150 
3151 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3152 {
3153 	struct tty_struct *tty;
3154 
3155 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3156 	if (!tty)
3157 		return NULL;
3158 
3159 	kref_init(&tty->kref);
3160 	tty->magic = TTY_MAGIC;
3161 	tty_ldisc_init(tty);
3162 	tty->session = NULL;
3163 	tty->pgrp = NULL;
3164 	mutex_init(&tty->legacy_mutex);
3165 	mutex_init(&tty->throttle_mutex);
3166 	init_rwsem(&tty->termios_rwsem);
3167 	mutex_init(&tty->winsize_mutex);
3168 	init_ldsem(&tty->ldisc_sem);
3169 	init_waitqueue_head(&tty->write_wait);
3170 	init_waitqueue_head(&tty->read_wait);
3171 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3172 	mutex_init(&tty->atomic_write_lock);
3173 	spin_lock_init(&tty->ctrl_lock);
3174 	spin_lock_init(&tty->flow_lock);
3175 	spin_lock_init(&tty->files_lock);
3176 	INIT_LIST_HEAD(&tty->tty_files);
3177 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3178 
3179 	tty->driver = driver;
3180 	tty->ops = driver->ops;
3181 	tty->index = idx;
3182 	tty_line_name(driver, idx, tty->name);
3183 	tty->dev = tty_get_device(tty);
3184 
3185 	return tty;
3186 }
3187 
3188 /**
3189  *	tty_put_char	-	write one character to a tty
3190  *	@tty: tty
3191  *	@ch: character
3192  *
3193  *	Write one byte to the tty using the provided put_char method
3194  *	if present. Returns the number of characters successfully output.
3195  *
3196  *	Note: the specific put_char operation in the driver layer may go
3197  *	away soon. Don't call it directly, use this method
3198  */
3199 
3200 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3201 {
3202 	if (tty->ops->put_char)
3203 		return tty->ops->put_char(tty, ch);
3204 	return tty->ops->write(tty, &ch, 1);
3205 }
3206 EXPORT_SYMBOL_GPL(tty_put_char);
3207 
3208 struct class *tty_class;
3209 
3210 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3211 		unsigned int index, unsigned int count)
3212 {
3213 	int err;
3214 
3215 	/* init here, since reused cdevs cause crashes */
3216 	driver->cdevs[index] = cdev_alloc();
3217 	if (!driver->cdevs[index])
3218 		return -ENOMEM;
3219 	driver->cdevs[index]->ops = &tty_fops;
3220 	driver->cdevs[index]->owner = driver->owner;
3221 	err = cdev_add(driver->cdevs[index], dev, count);
3222 	if (err)
3223 		kobject_put(&driver->cdevs[index]->kobj);
3224 	return err;
3225 }
3226 
3227 /**
3228  *	tty_register_device - register a tty device
3229  *	@driver: the tty driver that describes the tty device
3230  *	@index: the index in the tty driver for this tty device
3231  *	@device: a struct device that is associated with this tty device.
3232  *		This field is optional, if there is no known struct device
3233  *		for this tty device it can be set to NULL safely.
3234  *
3235  *	Returns a pointer to the struct device for this tty device
3236  *	(or ERR_PTR(-EFOO) on error).
3237  *
3238  *	This call is required to be made to register an individual tty device
3239  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3240  *	that bit is not set, this function should not be called by a tty
3241  *	driver.
3242  *
3243  *	Locking: ??
3244  */
3245 
3246 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3247 				   struct device *device)
3248 {
3249 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3250 }
3251 EXPORT_SYMBOL(tty_register_device);
3252 
3253 static void tty_device_create_release(struct device *dev)
3254 {
3255 	dev_dbg(dev, "releasing...\n");
3256 	kfree(dev);
3257 }
3258 
3259 /**
3260  *	tty_register_device_attr - register a tty device
3261  *	@driver: the tty driver that describes the tty device
3262  *	@index: the index in the tty driver for this tty device
3263  *	@device: a struct device that is associated with this tty device.
3264  *		This field is optional, if there is no known struct device
3265  *		for this tty device it can be set to NULL safely.
3266  *	@drvdata: Driver data to be set to device.
3267  *	@attr_grp: Attribute group to be set on device.
3268  *
3269  *	Returns a pointer to the struct device for this tty device
3270  *	(or ERR_PTR(-EFOO) on error).
3271  *
3272  *	This call is required to be made to register an individual tty device
3273  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3274  *	that bit is not set, this function should not be called by a tty
3275  *	driver.
3276  *
3277  *	Locking: ??
3278  */
3279 struct device *tty_register_device_attr(struct tty_driver *driver,
3280 				   unsigned index, struct device *device,
3281 				   void *drvdata,
3282 				   const struct attribute_group **attr_grp)
3283 {
3284 	char name[64];
3285 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3286 	struct device *dev = NULL;
3287 	int retval = -ENODEV;
3288 	bool cdev = false;
3289 
3290 	if (index >= driver->num) {
3291 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3292 		       driver->name, index);
3293 		return ERR_PTR(-EINVAL);
3294 	}
3295 
3296 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3297 		pty_line_name(driver, index, name);
3298 	else
3299 		tty_line_name(driver, index, name);
3300 
3301 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3302 		retval = tty_cdev_add(driver, devt, index, 1);
3303 		if (retval)
3304 			goto error;
3305 		cdev = true;
3306 	}
3307 
3308 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3309 	if (!dev) {
3310 		retval = -ENOMEM;
3311 		goto error;
3312 	}
3313 
3314 	dev->devt = devt;
3315 	dev->class = tty_class;
3316 	dev->parent = device;
3317 	dev->release = tty_device_create_release;
3318 	dev_set_name(dev, "%s", name);
3319 	dev->groups = attr_grp;
3320 	dev_set_drvdata(dev, drvdata);
3321 
3322 	retval = device_register(dev);
3323 	if (retval)
3324 		goto error;
3325 
3326 	return dev;
3327 
3328 error:
3329 	put_device(dev);
3330 	if (cdev) {
3331 		cdev_del(driver->cdevs[index]);
3332 		driver->cdevs[index] = NULL;
3333 	}
3334 	return ERR_PTR(retval);
3335 }
3336 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3337 
3338 /**
3339  * 	tty_unregister_device - unregister a tty device
3340  * 	@driver: the tty driver that describes the tty device
3341  * 	@index: the index in the tty driver for this tty device
3342  *
3343  * 	If a tty device is registered with a call to tty_register_device() then
3344  *	this function must be called when the tty device is gone.
3345  *
3346  *	Locking: ??
3347  */
3348 
3349 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3350 {
3351 	device_destroy(tty_class,
3352 		MKDEV(driver->major, driver->minor_start) + index);
3353 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3354 		cdev_del(driver->cdevs[index]);
3355 		driver->cdevs[index] = NULL;
3356 	}
3357 }
3358 EXPORT_SYMBOL(tty_unregister_device);
3359 
3360 /**
3361  * __tty_alloc_driver -- allocate tty driver
3362  * @lines: count of lines this driver can handle at most
3363  * @owner: module which is repsonsible for this driver
3364  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3365  *
3366  * This should not be called directly, some of the provided macros should be
3367  * used instead. Use IS_ERR and friends on @retval.
3368  */
3369 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3370 		unsigned long flags)
3371 {
3372 	struct tty_driver *driver;
3373 	unsigned int cdevs = 1;
3374 	int err;
3375 
3376 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3377 		return ERR_PTR(-EINVAL);
3378 
3379 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3380 	if (!driver)
3381 		return ERR_PTR(-ENOMEM);
3382 
3383 	kref_init(&driver->kref);
3384 	driver->magic = TTY_DRIVER_MAGIC;
3385 	driver->num = lines;
3386 	driver->owner = owner;
3387 	driver->flags = flags;
3388 
3389 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3390 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3391 				GFP_KERNEL);
3392 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3393 				GFP_KERNEL);
3394 		if (!driver->ttys || !driver->termios) {
3395 			err = -ENOMEM;
3396 			goto err_free_all;
3397 		}
3398 	}
3399 
3400 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3401 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3402 				GFP_KERNEL);
3403 		if (!driver->ports) {
3404 			err = -ENOMEM;
3405 			goto err_free_all;
3406 		}
3407 		cdevs = lines;
3408 	}
3409 
3410 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3411 	if (!driver->cdevs) {
3412 		err = -ENOMEM;
3413 		goto err_free_all;
3414 	}
3415 
3416 	return driver;
3417 err_free_all:
3418 	kfree(driver->ports);
3419 	kfree(driver->ttys);
3420 	kfree(driver->termios);
3421 	kfree(driver->cdevs);
3422 	kfree(driver);
3423 	return ERR_PTR(err);
3424 }
3425 EXPORT_SYMBOL(__tty_alloc_driver);
3426 
3427 static void destruct_tty_driver(struct kref *kref)
3428 {
3429 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3430 	int i;
3431 	struct ktermios *tp;
3432 
3433 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3434 		/*
3435 		 * Free the termios and termios_locked structures because
3436 		 * we don't want to get memory leaks when modular tty
3437 		 * drivers are removed from the kernel.
3438 		 */
3439 		for (i = 0; i < driver->num; i++) {
3440 			tp = driver->termios[i];
3441 			if (tp) {
3442 				driver->termios[i] = NULL;
3443 				kfree(tp);
3444 			}
3445 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3446 				tty_unregister_device(driver, i);
3447 		}
3448 		proc_tty_unregister_driver(driver);
3449 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3450 			cdev_del(driver->cdevs[0]);
3451 	}
3452 	kfree(driver->cdevs);
3453 	kfree(driver->ports);
3454 	kfree(driver->termios);
3455 	kfree(driver->ttys);
3456 	kfree(driver);
3457 }
3458 
3459 void tty_driver_kref_put(struct tty_driver *driver)
3460 {
3461 	kref_put(&driver->kref, destruct_tty_driver);
3462 }
3463 EXPORT_SYMBOL(tty_driver_kref_put);
3464 
3465 void tty_set_operations(struct tty_driver *driver,
3466 			const struct tty_operations *op)
3467 {
3468 	driver->ops = op;
3469 };
3470 EXPORT_SYMBOL(tty_set_operations);
3471 
3472 void put_tty_driver(struct tty_driver *d)
3473 {
3474 	tty_driver_kref_put(d);
3475 }
3476 EXPORT_SYMBOL(put_tty_driver);
3477 
3478 /*
3479  * Called by a tty driver to register itself.
3480  */
3481 int tty_register_driver(struct tty_driver *driver)
3482 {
3483 	int error;
3484 	int i;
3485 	dev_t dev;
3486 	struct device *d;
3487 
3488 	if (!driver->major) {
3489 		error = alloc_chrdev_region(&dev, driver->minor_start,
3490 						driver->num, driver->name);
3491 		if (!error) {
3492 			driver->major = MAJOR(dev);
3493 			driver->minor_start = MINOR(dev);
3494 		}
3495 	} else {
3496 		dev = MKDEV(driver->major, driver->minor_start);
3497 		error = register_chrdev_region(dev, driver->num, driver->name);
3498 	}
3499 	if (error < 0)
3500 		goto err;
3501 
3502 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3503 		error = tty_cdev_add(driver, dev, 0, driver->num);
3504 		if (error)
3505 			goto err_unreg_char;
3506 	}
3507 
3508 	mutex_lock(&tty_mutex);
3509 	list_add(&driver->tty_drivers, &tty_drivers);
3510 	mutex_unlock(&tty_mutex);
3511 
3512 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3513 		for (i = 0; i < driver->num; i++) {
3514 			d = tty_register_device(driver, i, NULL);
3515 			if (IS_ERR(d)) {
3516 				error = PTR_ERR(d);
3517 				goto err_unreg_devs;
3518 			}
3519 		}
3520 	}
3521 	proc_tty_register_driver(driver);
3522 	driver->flags |= TTY_DRIVER_INSTALLED;
3523 	return 0;
3524 
3525 err_unreg_devs:
3526 	for (i--; i >= 0; i--)
3527 		tty_unregister_device(driver, i);
3528 
3529 	mutex_lock(&tty_mutex);
3530 	list_del(&driver->tty_drivers);
3531 	mutex_unlock(&tty_mutex);
3532 
3533 err_unreg_char:
3534 	unregister_chrdev_region(dev, driver->num);
3535 err:
3536 	return error;
3537 }
3538 EXPORT_SYMBOL(tty_register_driver);
3539 
3540 /*
3541  * Called by a tty driver to unregister itself.
3542  */
3543 int tty_unregister_driver(struct tty_driver *driver)
3544 {
3545 #if 0
3546 	/* FIXME */
3547 	if (driver->refcount)
3548 		return -EBUSY;
3549 #endif
3550 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3551 				driver->num);
3552 	mutex_lock(&tty_mutex);
3553 	list_del(&driver->tty_drivers);
3554 	mutex_unlock(&tty_mutex);
3555 	return 0;
3556 }
3557 
3558 EXPORT_SYMBOL(tty_unregister_driver);
3559 
3560 dev_t tty_devnum(struct tty_struct *tty)
3561 {
3562 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3563 }
3564 EXPORT_SYMBOL(tty_devnum);
3565 
3566 void tty_default_fops(struct file_operations *fops)
3567 {
3568 	*fops = tty_fops;
3569 }
3570 
3571 /*
3572  * Initialize the console device. This is called *early*, so
3573  * we can't necessarily depend on lots of kernel help here.
3574  * Just do some early initializations, and do the complex setup
3575  * later.
3576  */
3577 void __init console_init(void)
3578 {
3579 	initcall_t *call;
3580 
3581 	/* Setup the default TTY line discipline. */
3582 	n_tty_init();
3583 
3584 	/*
3585 	 * set up the console device so that later boot sequences can
3586 	 * inform about problems etc..
3587 	 */
3588 	call = __con_initcall_start;
3589 	while (call < __con_initcall_end) {
3590 		(*call)();
3591 		call++;
3592 	}
3593 }
3594 
3595 static char *tty_devnode(struct device *dev, umode_t *mode)
3596 {
3597 	if (!mode)
3598 		return NULL;
3599 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3600 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3601 		*mode = 0666;
3602 	return NULL;
3603 }
3604 
3605 static int __init tty_class_init(void)
3606 {
3607 	tty_class = class_create(THIS_MODULE, "tty");
3608 	if (IS_ERR(tty_class))
3609 		return PTR_ERR(tty_class);
3610 	tty_class->devnode = tty_devnode;
3611 	return 0;
3612 }
3613 
3614 postcore_initcall(tty_class_init);
3615 
3616 /* 3/2004 jmc: why do these devices exist? */
3617 static struct cdev tty_cdev, console_cdev;
3618 
3619 static ssize_t show_cons_active(struct device *dev,
3620 				struct device_attribute *attr, char *buf)
3621 {
3622 	struct console *cs[16];
3623 	int i = 0;
3624 	struct console *c;
3625 	ssize_t count = 0;
3626 
3627 	console_lock();
3628 	for_each_console(c) {
3629 		if (!c->device)
3630 			continue;
3631 		if (!c->write)
3632 			continue;
3633 		if ((c->flags & CON_ENABLED) == 0)
3634 			continue;
3635 		cs[i++] = c;
3636 		if (i >= ARRAY_SIZE(cs))
3637 			break;
3638 	}
3639 	while (i--) {
3640 		int index = cs[i]->index;
3641 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3642 
3643 		/* don't resolve tty0 as some programs depend on it */
3644 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3645 			count += tty_line_name(drv, index, buf + count);
3646 		else
3647 			count += sprintf(buf + count, "%s%d",
3648 					 cs[i]->name, cs[i]->index);
3649 
3650 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3651 	}
3652 	console_unlock();
3653 
3654 	return count;
3655 }
3656 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3657 
3658 static struct attribute *cons_dev_attrs[] = {
3659 	&dev_attr_active.attr,
3660 	NULL
3661 };
3662 
3663 ATTRIBUTE_GROUPS(cons_dev);
3664 
3665 static struct device *consdev;
3666 
3667 void console_sysfs_notify(void)
3668 {
3669 	if (consdev)
3670 		sysfs_notify(&consdev->kobj, NULL, "active");
3671 }
3672 
3673 /*
3674  * Ok, now we can initialize the rest of the tty devices and can count
3675  * on memory allocations, interrupts etc..
3676  */
3677 int __init tty_init(void)
3678 {
3679 	cdev_init(&tty_cdev, &tty_fops);
3680 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3681 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3682 		panic("Couldn't register /dev/tty driver\n");
3683 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3684 
3685 	cdev_init(&console_cdev, &console_fops);
3686 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3687 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3688 		panic("Couldn't register /dev/console driver\n");
3689 	consdev = device_create_with_groups(tty_class, NULL,
3690 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3691 					    cons_dev_groups, "console");
3692 	if (IS_ERR(consdev))
3693 		consdev = NULL;
3694 
3695 #ifdef CONFIG_VT
3696 	vty_init(&console_fops);
3697 #endif
3698 	return 0;
3699 }
3700 
3701