1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 #ifdef TTY_DEBUG_HANGUP 110 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 111 #else 112 # define tty_debug_hangup(tty, f, args...) do { } while (0) 113 #endif 114 115 #define TTY_PARANOIA_CHECK 1 116 #define CHECK_TTY_COUNT 1 117 118 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 119 .c_iflag = ICRNL | IXON, 120 .c_oflag = OPOST | ONLCR, 121 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 123 ECHOCTL | ECHOKE | IEXTEN, 124 .c_cc = INIT_C_CC, 125 .c_ispeed = 38400, 126 .c_ospeed = 38400, 127 /* .c_line = N_TTY, */ 128 }; 129 130 EXPORT_SYMBOL(tty_std_termios); 131 132 /* This list gets poked at by procfs and various bits of boot up code. This 133 could do with some rationalisation such as pulling the tty proc function 134 into this file */ 135 136 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 137 138 /* Mutex to protect creating and releasing a tty */ 139 DEFINE_MUTEX(tty_mutex); 140 141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 143 ssize_t redirected_tty_write(struct file *, const char __user *, 144 size_t, loff_t *); 145 static unsigned int tty_poll(struct file *, poll_table *); 146 static int tty_open(struct inode *, struct file *); 147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 148 #ifdef CONFIG_COMPAT 149 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 150 unsigned long arg); 151 #else 152 #define tty_compat_ioctl NULL 153 #endif 154 static int __tty_fasync(int fd, struct file *filp, int on); 155 static int tty_fasync(int fd, struct file *filp, int on); 156 static void release_tty(struct tty_struct *tty, int idx); 157 158 /** 159 * free_tty_struct - free a disused tty 160 * @tty: tty struct to free 161 * 162 * Free the write buffers, tty queue and tty memory itself. 163 * 164 * Locking: none. Must be called after tty is definitely unused 165 */ 166 167 static void free_tty_struct(struct tty_struct *tty) 168 { 169 tty_ldisc_deinit(tty); 170 put_device(tty->dev); 171 kfree(tty->write_buf); 172 tty->magic = 0xDEADDEAD; 173 kfree(tty); 174 } 175 176 static inline struct tty_struct *file_tty(struct file *file) 177 { 178 return ((struct tty_file_private *)file->private_data)->tty; 179 } 180 181 int tty_alloc_file(struct file *file) 182 { 183 struct tty_file_private *priv; 184 185 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 186 if (!priv) 187 return -ENOMEM; 188 189 file->private_data = priv; 190 191 return 0; 192 } 193 194 /* Associate a new file with the tty structure */ 195 void tty_add_file(struct tty_struct *tty, struct file *file) 196 { 197 struct tty_file_private *priv = file->private_data; 198 199 priv->tty = tty; 200 priv->file = file; 201 202 spin_lock(&tty->files_lock); 203 list_add(&priv->list, &tty->tty_files); 204 spin_unlock(&tty->files_lock); 205 } 206 207 /** 208 * tty_free_file - free file->private_data 209 * 210 * This shall be used only for fail path handling when tty_add_file was not 211 * called yet. 212 */ 213 void tty_free_file(struct file *file) 214 { 215 struct tty_file_private *priv = file->private_data; 216 217 file->private_data = NULL; 218 kfree(priv); 219 } 220 221 /* Delete file from its tty */ 222 static void tty_del_file(struct file *file) 223 { 224 struct tty_file_private *priv = file->private_data; 225 struct tty_struct *tty = priv->tty; 226 227 spin_lock(&tty->files_lock); 228 list_del(&priv->list); 229 spin_unlock(&tty->files_lock); 230 tty_free_file(file); 231 } 232 233 234 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 235 236 /** 237 * tty_name - return tty naming 238 * @tty: tty structure 239 * 240 * Convert a tty structure into a name. The name reflects the kernel 241 * naming policy and if udev is in use may not reflect user space 242 * 243 * Locking: none 244 */ 245 246 const char *tty_name(const struct tty_struct *tty) 247 { 248 if (!tty) /* Hmm. NULL pointer. That's fun. */ 249 return "NULL tty"; 250 return tty->name; 251 } 252 253 EXPORT_SYMBOL(tty_name); 254 255 const char *tty_driver_name(const struct tty_struct *tty) 256 { 257 if (!tty || !tty->driver) 258 return ""; 259 return tty->driver->name; 260 } 261 262 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 263 const char *routine) 264 { 265 #ifdef TTY_PARANOIA_CHECK 266 if (!tty) { 267 pr_warn("(%d:%d): %s: NULL tty\n", 268 imajor(inode), iminor(inode), routine); 269 return 1; 270 } 271 if (tty->magic != TTY_MAGIC) { 272 pr_warn("(%d:%d): %s: bad magic number\n", 273 imajor(inode), iminor(inode), routine); 274 return 1; 275 } 276 #endif 277 return 0; 278 } 279 280 /* Caller must hold tty_lock */ 281 static int check_tty_count(struct tty_struct *tty, const char *routine) 282 { 283 #ifdef CHECK_TTY_COUNT 284 struct list_head *p; 285 int count = 0; 286 287 spin_lock(&tty->files_lock); 288 list_for_each(p, &tty->tty_files) { 289 count++; 290 } 291 spin_unlock(&tty->files_lock); 292 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 293 tty->driver->subtype == PTY_TYPE_SLAVE && 294 tty->link && tty->link->count) 295 count++; 296 if (tty->count != count) { 297 tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n", 298 routine, tty->count, count); 299 return count; 300 } 301 #endif 302 return 0; 303 } 304 305 /** 306 * get_tty_driver - find device of a tty 307 * @dev_t: device identifier 308 * @index: returns the index of the tty 309 * 310 * This routine returns a tty driver structure, given a device number 311 * and also passes back the index number. 312 * 313 * Locking: caller must hold tty_mutex 314 */ 315 316 static struct tty_driver *get_tty_driver(dev_t device, int *index) 317 { 318 struct tty_driver *p; 319 320 list_for_each_entry(p, &tty_drivers, tty_drivers) { 321 dev_t base = MKDEV(p->major, p->minor_start); 322 if (device < base || device >= base + p->num) 323 continue; 324 *index = device - base; 325 return tty_driver_kref_get(p); 326 } 327 return NULL; 328 } 329 330 #ifdef CONFIG_CONSOLE_POLL 331 332 /** 333 * tty_find_polling_driver - find device of a polled tty 334 * @name: name string to match 335 * @line: pointer to resulting tty line nr 336 * 337 * This routine returns a tty driver structure, given a name 338 * and the condition that the tty driver is capable of polled 339 * operation. 340 */ 341 struct tty_driver *tty_find_polling_driver(char *name, int *line) 342 { 343 struct tty_driver *p, *res = NULL; 344 int tty_line = 0; 345 int len; 346 char *str, *stp; 347 348 for (str = name; *str; str++) 349 if ((*str >= '0' && *str <= '9') || *str == ',') 350 break; 351 if (!*str) 352 return NULL; 353 354 len = str - name; 355 tty_line = simple_strtoul(str, &str, 10); 356 357 mutex_lock(&tty_mutex); 358 /* Search through the tty devices to look for a match */ 359 list_for_each_entry(p, &tty_drivers, tty_drivers) { 360 if (strncmp(name, p->name, len) != 0) 361 continue; 362 stp = str; 363 if (*stp == ',') 364 stp++; 365 if (*stp == '\0') 366 stp = NULL; 367 368 if (tty_line >= 0 && tty_line < p->num && p->ops && 369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 370 res = tty_driver_kref_get(p); 371 *line = tty_line; 372 break; 373 } 374 } 375 mutex_unlock(&tty_mutex); 376 377 return res; 378 } 379 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 380 #endif 381 382 static int is_ignored(int sig) 383 { 384 return (sigismember(¤t->blocked, sig) || 385 current->sighand->action[sig-1].sa.sa_handler == SIG_IGN); 386 } 387 388 /** 389 * tty_check_change - check for POSIX terminal changes 390 * @tty: tty to check 391 * 392 * If we try to write to, or set the state of, a terminal and we're 393 * not in the foreground, send a SIGTTOU. If the signal is blocked or 394 * ignored, go ahead and perform the operation. (POSIX 7.2) 395 * 396 * Locking: ctrl_lock 397 */ 398 399 int __tty_check_change(struct tty_struct *tty, int sig) 400 { 401 unsigned long flags; 402 struct pid *pgrp, *tty_pgrp; 403 int ret = 0; 404 405 if (current->signal->tty != tty) 406 return 0; 407 408 rcu_read_lock(); 409 pgrp = task_pgrp(current); 410 411 spin_lock_irqsave(&tty->ctrl_lock, flags); 412 tty_pgrp = tty->pgrp; 413 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 414 415 if (tty_pgrp && pgrp != tty->pgrp) { 416 if (is_ignored(sig)) { 417 if (sig == SIGTTIN) 418 ret = -EIO; 419 } else if (is_current_pgrp_orphaned()) 420 ret = -EIO; 421 else { 422 kill_pgrp(pgrp, sig, 1); 423 set_thread_flag(TIF_SIGPENDING); 424 ret = -ERESTARTSYS; 425 } 426 } 427 rcu_read_unlock(); 428 429 if (!tty_pgrp) 430 tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig); 431 432 return ret; 433 } 434 435 int tty_check_change(struct tty_struct *tty) 436 { 437 return __tty_check_change(tty, SIGTTOU); 438 } 439 EXPORT_SYMBOL(tty_check_change); 440 441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 442 size_t count, loff_t *ppos) 443 { 444 return 0; 445 } 446 447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 448 size_t count, loff_t *ppos) 449 { 450 return -EIO; 451 } 452 453 /* No kernel lock held - none needed ;) */ 454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 455 { 456 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 457 } 458 459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 460 unsigned long arg) 461 { 462 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 463 } 464 465 static long hung_up_tty_compat_ioctl(struct file *file, 466 unsigned int cmd, unsigned long arg) 467 { 468 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 469 } 470 471 static int hung_up_tty_fasync(int fd, struct file *file, int on) 472 { 473 return -ENOTTY; 474 } 475 476 static const struct file_operations tty_fops = { 477 .llseek = no_llseek, 478 .read = tty_read, 479 .write = tty_write, 480 .poll = tty_poll, 481 .unlocked_ioctl = tty_ioctl, 482 .compat_ioctl = tty_compat_ioctl, 483 .open = tty_open, 484 .release = tty_release, 485 .fasync = tty_fasync, 486 }; 487 488 static const struct file_operations console_fops = { 489 .llseek = no_llseek, 490 .read = tty_read, 491 .write = redirected_tty_write, 492 .poll = tty_poll, 493 .unlocked_ioctl = tty_ioctl, 494 .compat_ioctl = tty_compat_ioctl, 495 .open = tty_open, 496 .release = tty_release, 497 .fasync = tty_fasync, 498 }; 499 500 static const struct file_operations hung_up_tty_fops = { 501 .llseek = no_llseek, 502 .read = hung_up_tty_read, 503 .write = hung_up_tty_write, 504 .poll = hung_up_tty_poll, 505 .unlocked_ioctl = hung_up_tty_ioctl, 506 .compat_ioctl = hung_up_tty_compat_ioctl, 507 .release = tty_release, 508 .fasync = hung_up_tty_fasync, 509 }; 510 511 static DEFINE_SPINLOCK(redirect_lock); 512 static struct file *redirect; 513 514 515 void proc_clear_tty(struct task_struct *p) 516 { 517 unsigned long flags; 518 struct tty_struct *tty; 519 spin_lock_irqsave(&p->sighand->siglock, flags); 520 tty = p->signal->tty; 521 p->signal->tty = NULL; 522 spin_unlock_irqrestore(&p->sighand->siglock, flags); 523 tty_kref_put(tty); 524 } 525 526 /** 527 * proc_set_tty - set the controlling terminal 528 * 529 * Only callable by the session leader and only if it does not already have 530 * a controlling terminal. 531 * 532 * Caller must hold: tty_lock() 533 * a readlock on tasklist_lock 534 * sighand lock 535 */ 536 static void __proc_set_tty(struct tty_struct *tty) 537 { 538 unsigned long flags; 539 540 spin_lock_irqsave(&tty->ctrl_lock, flags); 541 /* 542 * The session and fg pgrp references will be non-NULL if 543 * tiocsctty() is stealing the controlling tty 544 */ 545 put_pid(tty->session); 546 put_pid(tty->pgrp); 547 tty->pgrp = get_pid(task_pgrp(current)); 548 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 549 tty->session = get_pid(task_session(current)); 550 if (current->signal->tty) { 551 tty_debug(tty, "current tty %s not NULL!!\n", 552 current->signal->tty->name); 553 tty_kref_put(current->signal->tty); 554 } 555 put_pid(current->signal->tty_old_pgrp); 556 current->signal->tty = tty_kref_get(tty); 557 current->signal->tty_old_pgrp = NULL; 558 } 559 560 static void proc_set_tty(struct tty_struct *tty) 561 { 562 spin_lock_irq(¤t->sighand->siglock); 563 __proc_set_tty(tty); 564 spin_unlock_irq(¤t->sighand->siglock); 565 } 566 567 struct tty_struct *get_current_tty(void) 568 { 569 struct tty_struct *tty; 570 unsigned long flags; 571 572 spin_lock_irqsave(¤t->sighand->siglock, flags); 573 tty = tty_kref_get(current->signal->tty); 574 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 575 return tty; 576 } 577 EXPORT_SYMBOL_GPL(get_current_tty); 578 579 static void session_clear_tty(struct pid *session) 580 { 581 struct task_struct *p; 582 do_each_pid_task(session, PIDTYPE_SID, p) { 583 proc_clear_tty(p); 584 } while_each_pid_task(session, PIDTYPE_SID, p); 585 } 586 587 /** 588 * tty_wakeup - request more data 589 * @tty: terminal 590 * 591 * Internal and external helper for wakeups of tty. This function 592 * informs the line discipline if present that the driver is ready 593 * to receive more output data. 594 */ 595 596 void tty_wakeup(struct tty_struct *tty) 597 { 598 struct tty_ldisc *ld; 599 600 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 601 ld = tty_ldisc_ref(tty); 602 if (ld) { 603 if (ld->ops->write_wakeup) 604 ld->ops->write_wakeup(tty); 605 tty_ldisc_deref(ld); 606 } 607 } 608 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 609 } 610 611 EXPORT_SYMBOL_GPL(tty_wakeup); 612 613 /** 614 * tty_signal_session_leader - sends SIGHUP to session leader 615 * @tty controlling tty 616 * @exit_session if non-zero, signal all foreground group processes 617 * 618 * Send SIGHUP and SIGCONT to the session leader and its process group. 619 * Optionally, signal all processes in the foreground process group. 620 * 621 * Returns the number of processes in the session with this tty 622 * as their controlling terminal. This value is used to drop 623 * tty references for those processes. 624 */ 625 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 626 { 627 struct task_struct *p; 628 int refs = 0; 629 struct pid *tty_pgrp = NULL; 630 631 read_lock(&tasklist_lock); 632 if (tty->session) { 633 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 634 spin_lock_irq(&p->sighand->siglock); 635 if (p->signal->tty == tty) { 636 p->signal->tty = NULL; 637 /* We defer the dereferences outside fo 638 the tasklist lock */ 639 refs++; 640 } 641 if (!p->signal->leader) { 642 spin_unlock_irq(&p->sighand->siglock); 643 continue; 644 } 645 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 646 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 647 put_pid(p->signal->tty_old_pgrp); /* A noop */ 648 spin_lock(&tty->ctrl_lock); 649 tty_pgrp = get_pid(tty->pgrp); 650 if (tty->pgrp) 651 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 652 spin_unlock(&tty->ctrl_lock); 653 spin_unlock_irq(&p->sighand->siglock); 654 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 655 } 656 read_unlock(&tasklist_lock); 657 658 if (tty_pgrp) { 659 if (exit_session) 660 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 661 put_pid(tty_pgrp); 662 } 663 664 return refs; 665 } 666 667 /** 668 * __tty_hangup - actual handler for hangup events 669 * @work: tty device 670 * 671 * This can be called by a "kworker" kernel thread. That is process 672 * synchronous but doesn't hold any locks, so we need to make sure we 673 * have the appropriate locks for what we're doing. 674 * 675 * The hangup event clears any pending redirections onto the hung up 676 * device. It ensures future writes will error and it does the needed 677 * line discipline hangup and signal delivery. The tty object itself 678 * remains intact. 679 * 680 * Locking: 681 * BTM 682 * redirect lock for undoing redirection 683 * file list lock for manipulating list of ttys 684 * tty_ldiscs_lock from called functions 685 * termios_rwsem resetting termios data 686 * tasklist_lock to walk task list for hangup event 687 * ->siglock to protect ->signal/->sighand 688 */ 689 static void __tty_hangup(struct tty_struct *tty, int exit_session) 690 { 691 struct file *cons_filp = NULL; 692 struct file *filp, *f = NULL; 693 struct tty_file_private *priv; 694 int closecount = 0, n; 695 int refs; 696 697 if (!tty) 698 return; 699 700 701 spin_lock(&redirect_lock); 702 if (redirect && file_tty(redirect) == tty) { 703 f = redirect; 704 redirect = NULL; 705 } 706 spin_unlock(&redirect_lock); 707 708 tty_lock(tty); 709 710 if (test_bit(TTY_HUPPED, &tty->flags)) { 711 tty_unlock(tty); 712 return; 713 } 714 715 /* inuse_filps is protected by the single tty lock, 716 this really needs to change if we want to flush the 717 workqueue with the lock held */ 718 check_tty_count(tty, "tty_hangup"); 719 720 spin_lock(&tty->files_lock); 721 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 722 list_for_each_entry(priv, &tty->tty_files, list) { 723 filp = priv->file; 724 if (filp->f_op->write == redirected_tty_write) 725 cons_filp = filp; 726 if (filp->f_op->write != tty_write) 727 continue; 728 closecount++; 729 __tty_fasync(-1, filp, 0); /* can't block */ 730 filp->f_op = &hung_up_tty_fops; 731 } 732 spin_unlock(&tty->files_lock); 733 734 refs = tty_signal_session_leader(tty, exit_session); 735 /* Account for the p->signal references we killed */ 736 while (refs--) 737 tty_kref_put(tty); 738 739 tty_ldisc_hangup(tty, cons_filp != NULL); 740 741 spin_lock_irq(&tty->ctrl_lock); 742 clear_bit(TTY_THROTTLED, &tty->flags); 743 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 744 put_pid(tty->session); 745 put_pid(tty->pgrp); 746 tty->session = NULL; 747 tty->pgrp = NULL; 748 tty->ctrl_status = 0; 749 spin_unlock_irq(&tty->ctrl_lock); 750 751 /* 752 * If one of the devices matches a console pointer, we 753 * cannot just call hangup() because that will cause 754 * tty->count and state->count to go out of sync. 755 * So we just call close() the right number of times. 756 */ 757 if (cons_filp) { 758 if (tty->ops->close) 759 for (n = 0; n < closecount; n++) 760 tty->ops->close(tty, cons_filp); 761 } else if (tty->ops->hangup) 762 tty->ops->hangup(tty); 763 /* 764 * We don't want to have driver/ldisc interactions beyond the ones 765 * we did here. The driver layer expects no calls after ->hangup() 766 * from the ldisc side, which is now guaranteed. 767 */ 768 set_bit(TTY_HUPPED, &tty->flags); 769 tty_unlock(tty); 770 771 if (f) 772 fput(f); 773 } 774 775 static void do_tty_hangup(struct work_struct *work) 776 { 777 struct tty_struct *tty = 778 container_of(work, struct tty_struct, hangup_work); 779 780 __tty_hangup(tty, 0); 781 } 782 783 /** 784 * tty_hangup - trigger a hangup event 785 * @tty: tty to hangup 786 * 787 * A carrier loss (virtual or otherwise) has occurred on this like 788 * schedule a hangup sequence to run after this event. 789 */ 790 791 void tty_hangup(struct tty_struct *tty) 792 { 793 tty_debug_hangup(tty, "hangup\n"); 794 schedule_work(&tty->hangup_work); 795 } 796 797 EXPORT_SYMBOL(tty_hangup); 798 799 /** 800 * tty_vhangup - process vhangup 801 * @tty: tty to hangup 802 * 803 * The user has asked via system call for the terminal to be hung up. 804 * We do this synchronously so that when the syscall returns the process 805 * is complete. That guarantee is necessary for security reasons. 806 */ 807 808 void tty_vhangup(struct tty_struct *tty) 809 { 810 tty_debug_hangup(tty, "vhangup\n"); 811 __tty_hangup(tty, 0); 812 } 813 814 EXPORT_SYMBOL(tty_vhangup); 815 816 817 /** 818 * tty_vhangup_self - process vhangup for own ctty 819 * 820 * Perform a vhangup on the current controlling tty 821 */ 822 823 void tty_vhangup_self(void) 824 { 825 struct tty_struct *tty; 826 827 tty = get_current_tty(); 828 if (tty) { 829 tty_vhangup(tty); 830 tty_kref_put(tty); 831 } 832 } 833 834 /** 835 * tty_vhangup_session - hangup session leader exit 836 * @tty: tty to hangup 837 * 838 * The session leader is exiting and hanging up its controlling terminal. 839 * Every process in the foreground process group is signalled SIGHUP. 840 * 841 * We do this synchronously so that when the syscall returns the process 842 * is complete. That guarantee is necessary for security reasons. 843 */ 844 845 static void tty_vhangup_session(struct tty_struct *tty) 846 { 847 tty_debug_hangup(tty, "session hangup\n"); 848 __tty_hangup(tty, 1); 849 } 850 851 /** 852 * tty_hung_up_p - was tty hung up 853 * @filp: file pointer of tty 854 * 855 * Return true if the tty has been subject to a vhangup or a carrier 856 * loss 857 */ 858 859 int tty_hung_up_p(struct file *filp) 860 { 861 return (filp->f_op == &hung_up_tty_fops); 862 } 863 864 EXPORT_SYMBOL(tty_hung_up_p); 865 866 /** 867 * disassociate_ctty - disconnect controlling tty 868 * @on_exit: true if exiting so need to "hang up" the session 869 * 870 * This function is typically called only by the session leader, when 871 * it wants to disassociate itself from its controlling tty. 872 * 873 * It performs the following functions: 874 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 875 * (2) Clears the tty from being controlling the session 876 * (3) Clears the controlling tty for all processes in the 877 * session group. 878 * 879 * The argument on_exit is set to 1 if called when a process is 880 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 881 * 882 * Locking: 883 * BTM is taken for hysterical raisins, and held when 884 * called from no_tty(). 885 * tty_mutex is taken to protect tty 886 * ->siglock is taken to protect ->signal/->sighand 887 * tasklist_lock is taken to walk process list for sessions 888 * ->siglock is taken to protect ->signal/->sighand 889 */ 890 891 void disassociate_ctty(int on_exit) 892 { 893 struct tty_struct *tty; 894 895 if (!current->signal->leader) 896 return; 897 898 tty = get_current_tty(); 899 if (tty) { 900 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 901 tty_vhangup_session(tty); 902 } else { 903 struct pid *tty_pgrp = tty_get_pgrp(tty); 904 if (tty_pgrp) { 905 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 906 if (!on_exit) 907 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 908 put_pid(tty_pgrp); 909 } 910 } 911 tty_kref_put(tty); 912 913 } else if (on_exit) { 914 struct pid *old_pgrp; 915 spin_lock_irq(¤t->sighand->siglock); 916 old_pgrp = current->signal->tty_old_pgrp; 917 current->signal->tty_old_pgrp = NULL; 918 spin_unlock_irq(¤t->sighand->siglock); 919 if (old_pgrp) { 920 kill_pgrp(old_pgrp, SIGHUP, on_exit); 921 kill_pgrp(old_pgrp, SIGCONT, on_exit); 922 put_pid(old_pgrp); 923 } 924 return; 925 } 926 927 spin_lock_irq(¤t->sighand->siglock); 928 put_pid(current->signal->tty_old_pgrp); 929 current->signal->tty_old_pgrp = NULL; 930 931 tty = tty_kref_get(current->signal->tty); 932 if (tty) { 933 unsigned long flags; 934 spin_lock_irqsave(&tty->ctrl_lock, flags); 935 put_pid(tty->session); 936 put_pid(tty->pgrp); 937 tty->session = NULL; 938 tty->pgrp = NULL; 939 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 940 tty_kref_put(tty); 941 } else 942 tty_debug_hangup(tty, "no current tty\n"); 943 944 spin_unlock_irq(¤t->sighand->siglock); 945 /* Now clear signal->tty under the lock */ 946 read_lock(&tasklist_lock); 947 session_clear_tty(task_session(current)); 948 read_unlock(&tasklist_lock); 949 } 950 951 /** 952 * 953 * no_tty - Ensure the current process does not have a controlling tty 954 */ 955 void no_tty(void) 956 { 957 /* FIXME: Review locking here. The tty_lock never covered any race 958 between a new association and proc_clear_tty but possible we need 959 to protect against this anyway */ 960 struct task_struct *tsk = current; 961 disassociate_ctty(0); 962 proc_clear_tty(tsk); 963 } 964 965 966 /** 967 * stop_tty - propagate flow control 968 * @tty: tty to stop 969 * 970 * Perform flow control to the driver. May be called 971 * on an already stopped device and will not re-call the driver 972 * method. 973 * 974 * This functionality is used by both the line disciplines for 975 * halting incoming flow and by the driver. It may therefore be 976 * called from any context, may be under the tty atomic_write_lock 977 * but not always. 978 * 979 * Locking: 980 * flow_lock 981 */ 982 983 void __stop_tty(struct tty_struct *tty) 984 { 985 if (tty->stopped) 986 return; 987 tty->stopped = 1; 988 if (tty->ops->stop) 989 tty->ops->stop(tty); 990 } 991 992 void stop_tty(struct tty_struct *tty) 993 { 994 unsigned long flags; 995 996 spin_lock_irqsave(&tty->flow_lock, flags); 997 __stop_tty(tty); 998 spin_unlock_irqrestore(&tty->flow_lock, flags); 999 } 1000 EXPORT_SYMBOL(stop_tty); 1001 1002 /** 1003 * start_tty - propagate flow control 1004 * @tty: tty to start 1005 * 1006 * Start a tty that has been stopped if at all possible. If this 1007 * tty was previous stopped and is now being started, the driver 1008 * start method is invoked and the line discipline woken. 1009 * 1010 * Locking: 1011 * flow_lock 1012 */ 1013 1014 void __start_tty(struct tty_struct *tty) 1015 { 1016 if (!tty->stopped || tty->flow_stopped) 1017 return; 1018 tty->stopped = 0; 1019 if (tty->ops->start) 1020 tty->ops->start(tty); 1021 tty_wakeup(tty); 1022 } 1023 1024 void start_tty(struct tty_struct *tty) 1025 { 1026 unsigned long flags; 1027 1028 spin_lock_irqsave(&tty->flow_lock, flags); 1029 __start_tty(tty); 1030 spin_unlock_irqrestore(&tty->flow_lock, flags); 1031 } 1032 EXPORT_SYMBOL(start_tty); 1033 1034 static void tty_update_time(struct timespec *time) 1035 { 1036 unsigned long sec = get_seconds(); 1037 1038 /* 1039 * We only care if the two values differ in anything other than the 1040 * lower three bits (i.e every 8 seconds). If so, then we can update 1041 * the time of the tty device, otherwise it could be construded as a 1042 * security leak to let userspace know the exact timing of the tty. 1043 */ 1044 if ((sec ^ time->tv_sec) & ~7) 1045 time->tv_sec = sec; 1046 } 1047 1048 /** 1049 * tty_read - read method for tty device files 1050 * @file: pointer to tty file 1051 * @buf: user buffer 1052 * @count: size of user buffer 1053 * @ppos: unused 1054 * 1055 * Perform the read system call function on this terminal device. Checks 1056 * for hung up devices before calling the line discipline method. 1057 * 1058 * Locking: 1059 * Locks the line discipline internally while needed. Multiple 1060 * read calls may be outstanding in parallel. 1061 */ 1062 1063 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1064 loff_t *ppos) 1065 { 1066 int i; 1067 struct inode *inode = file_inode(file); 1068 struct tty_struct *tty = file_tty(file); 1069 struct tty_ldisc *ld; 1070 1071 if (tty_paranoia_check(tty, inode, "tty_read")) 1072 return -EIO; 1073 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1074 return -EIO; 1075 1076 /* We want to wait for the line discipline to sort out in this 1077 situation */ 1078 ld = tty_ldisc_ref_wait(tty); 1079 if (!ld) 1080 return hung_up_tty_read(file, buf, count, ppos); 1081 if (ld->ops->read) 1082 i = ld->ops->read(tty, file, buf, count); 1083 else 1084 i = -EIO; 1085 tty_ldisc_deref(ld); 1086 1087 if (i > 0) 1088 tty_update_time(&inode->i_atime); 1089 1090 return i; 1091 } 1092 1093 static void tty_write_unlock(struct tty_struct *tty) 1094 { 1095 mutex_unlock(&tty->atomic_write_lock); 1096 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1097 } 1098 1099 static int tty_write_lock(struct tty_struct *tty, int ndelay) 1100 { 1101 if (!mutex_trylock(&tty->atomic_write_lock)) { 1102 if (ndelay) 1103 return -EAGAIN; 1104 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1105 return -ERESTARTSYS; 1106 } 1107 return 0; 1108 } 1109 1110 /* 1111 * Split writes up in sane blocksizes to avoid 1112 * denial-of-service type attacks 1113 */ 1114 static inline ssize_t do_tty_write( 1115 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1116 struct tty_struct *tty, 1117 struct file *file, 1118 const char __user *buf, 1119 size_t count) 1120 { 1121 ssize_t ret, written = 0; 1122 unsigned int chunk; 1123 1124 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1125 if (ret < 0) 1126 return ret; 1127 1128 /* 1129 * We chunk up writes into a temporary buffer. This 1130 * simplifies low-level drivers immensely, since they 1131 * don't have locking issues and user mode accesses. 1132 * 1133 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1134 * big chunk-size.. 1135 * 1136 * The default chunk-size is 2kB, because the NTTY 1137 * layer has problems with bigger chunks. It will 1138 * claim to be able to handle more characters than 1139 * it actually does. 1140 * 1141 * FIXME: This can probably go away now except that 64K chunks 1142 * are too likely to fail unless switched to vmalloc... 1143 */ 1144 chunk = 2048; 1145 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1146 chunk = 65536; 1147 if (count < chunk) 1148 chunk = count; 1149 1150 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1151 if (tty->write_cnt < chunk) { 1152 unsigned char *buf_chunk; 1153 1154 if (chunk < 1024) 1155 chunk = 1024; 1156 1157 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1158 if (!buf_chunk) { 1159 ret = -ENOMEM; 1160 goto out; 1161 } 1162 kfree(tty->write_buf); 1163 tty->write_cnt = chunk; 1164 tty->write_buf = buf_chunk; 1165 } 1166 1167 /* Do the write .. */ 1168 for (;;) { 1169 size_t size = count; 1170 if (size > chunk) 1171 size = chunk; 1172 ret = -EFAULT; 1173 if (copy_from_user(tty->write_buf, buf, size)) 1174 break; 1175 ret = write(tty, file, tty->write_buf, size); 1176 if (ret <= 0) 1177 break; 1178 written += ret; 1179 buf += ret; 1180 count -= ret; 1181 if (!count) 1182 break; 1183 ret = -ERESTARTSYS; 1184 if (signal_pending(current)) 1185 break; 1186 cond_resched(); 1187 } 1188 if (written) { 1189 tty_update_time(&file_inode(file)->i_mtime); 1190 ret = written; 1191 } 1192 out: 1193 tty_write_unlock(tty); 1194 return ret; 1195 } 1196 1197 /** 1198 * tty_write_message - write a message to a certain tty, not just the console. 1199 * @tty: the destination tty_struct 1200 * @msg: the message to write 1201 * 1202 * This is used for messages that need to be redirected to a specific tty. 1203 * We don't put it into the syslog queue right now maybe in the future if 1204 * really needed. 1205 * 1206 * We must still hold the BTM and test the CLOSING flag for the moment. 1207 */ 1208 1209 void tty_write_message(struct tty_struct *tty, char *msg) 1210 { 1211 if (tty) { 1212 mutex_lock(&tty->atomic_write_lock); 1213 tty_lock(tty); 1214 if (tty->ops->write && tty->count > 0) 1215 tty->ops->write(tty, msg, strlen(msg)); 1216 tty_unlock(tty); 1217 tty_write_unlock(tty); 1218 } 1219 return; 1220 } 1221 1222 1223 /** 1224 * tty_write - write method for tty device file 1225 * @file: tty file pointer 1226 * @buf: user data to write 1227 * @count: bytes to write 1228 * @ppos: unused 1229 * 1230 * Write data to a tty device via the line discipline. 1231 * 1232 * Locking: 1233 * Locks the line discipline as required 1234 * Writes to the tty driver are serialized by the atomic_write_lock 1235 * and are then processed in chunks to the device. The line discipline 1236 * write method will not be invoked in parallel for each device. 1237 */ 1238 1239 static ssize_t tty_write(struct file *file, const char __user *buf, 1240 size_t count, loff_t *ppos) 1241 { 1242 struct tty_struct *tty = file_tty(file); 1243 struct tty_ldisc *ld; 1244 ssize_t ret; 1245 1246 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1247 return -EIO; 1248 if (!tty || !tty->ops->write || 1249 (test_bit(TTY_IO_ERROR, &tty->flags))) 1250 return -EIO; 1251 /* Short term debug to catch buggy drivers */ 1252 if (tty->ops->write_room == NULL) 1253 tty_err(tty, "missing write_room method\n"); 1254 ld = tty_ldisc_ref_wait(tty); 1255 if (!ld) 1256 return hung_up_tty_write(file, buf, count, ppos); 1257 if (!ld->ops->write) 1258 ret = -EIO; 1259 else 1260 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1261 tty_ldisc_deref(ld); 1262 return ret; 1263 } 1264 1265 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1266 size_t count, loff_t *ppos) 1267 { 1268 struct file *p = NULL; 1269 1270 spin_lock(&redirect_lock); 1271 if (redirect) 1272 p = get_file(redirect); 1273 spin_unlock(&redirect_lock); 1274 1275 if (p) { 1276 ssize_t res; 1277 res = vfs_write(p, buf, count, &p->f_pos); 1278 fput(p); 1279 return res; 1280 } 1281 return tty_write(file, buf, count, ppos); 1282 } 1283 1284 /** 1285 * tty_send_xchar - send priority character 1286 * 1287 * Send a high priority character to the tty even if stopped 1288 * 1289 * Locking: none for xchar method, write ordering for write method. 1290 */ 1291 1292 int tty_send_xchar(struct tty_struct *tty, char ch) 1293 { 1294 int was_stopped = tty->stopped; 1295 1296 if (tty->ops->send_xchar) { 1297 down_read(&tty->termios_rwsem); 1298 tty->ops->send_xchar(tty, ch); 1299 up_read(&tty->termios_rwsem); 1300 return 0; 1301 } 1302 1303 if (tty_write_lock(tty, 0) < 0) 1304 return -ERESTARTSYS; 1305 1306 down_read(&tty->termios_rwsem); 1307 if (was_stopped) 1308 start_tty(tty); 1309 tty->ops->write(tty, &ch, 1); 1310 if (was_stopped) 1311 stop_tty(tty); 1312 up_read(&tty->termios_rwsem); 1313 tty_write_unlock(tty); 1314 return 0; 1315 } 1316 1317 static char ptychar[] = "pqrstuvwxyzabcde"; 1318 1319 /** 1320 * pty_line_name - generate name for a pty 1321 * @driver: the tty driver in use 1322 * @index: the minor number 1323 * @p: output buffer of at least 6 bytes 1324 * 1325 * Generate a name from a driver reference and write it to the output 1326 * buffer. 1327 * 1328 * Locking: None 1329 */ 1330 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1331 { 1332 int i = index + driver->name_base; 1333 /* ->name is initialized to "ttyp", but "tty" is expected */ 1334 sprintf(p, "%s%c%x", 1335 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1336 ptychar[i >> 4 & 0xf], i & 0xf); 1337 } 1338 1339 /** 1340 * tty_line_name - generate name for a tty 1341 * @driver: the tty driver in use 1342 * @index: the minor number 1343 * @p: output buffer of at least 7 bytes 1344 * 1345 * Generate a name from a driver reference and write it to the output 1346 * buffer. 1347 * 1348 * Locking: None 1349 */ 1350 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1351 { 1352 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1353 return sprintf(p, "%s", driver->name); 1354 else 1355 return sprintf(p, "%s%d", driver->name, 1356 index + driver->name_base); 1357 } 1358 1359 /** 1360 * tty_driver_lookup_tty() - find an existing tty, if any 1361 * @driver: the driver for the tty 1362 * @idx: the minor number 1363 * 1364 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1365 * driver lookup() method returns an error. 1366 * 1367 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1368 */ 1369 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1370 struct inode *inode, int idx) 1371 { 1372 struct tty_struct *tty; 1373 1374 if (driver->ops->lookup) 1375 tty = driver->ops->lookup(driver, inode, idx); 1376 else 1377 tty = driver->ttys[idx]; 1378 1379 if (!IS_ERR(tty)) 1380 tty_kref_get(tty); 1381 return tty; 1382 } 1383 1384 /** 1385 * tty_init_termios - helper for termios setup 1386 * @tty: the tty to set up 1387 * 1388 * Initialise the termios structures for this tty. Thus runs under 1389 * the tty_mutex currently so we can be relaxed about ordering. 1390 */ 1391 1392 void tty_init_termios(struct tty_struct *tty) 1393 { 1394 struct ktermios *tp; 1395 int idx = tty->index; 1396 1397 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1398 tty->termios = tty->driver->init_termios; 1399 else { 1400 /* Check for lazy saved data */ 1401 tp = tty->driver->termios[idx]; 1402 if (tp != NULL) { 1403 tty->termios = *tp; 1404 tty->termios.c_line = tty->driver->init_termios.c_line; 1405 } else 1406 tty->termios = tty->driver->init_termios; 1407 } 1408 /* Compatibility until drivers always set this */ 1409 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1410 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1411 } 1412 EXPORT_SYMBOL_GPL(tty_init_termios); 1413 1414 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1415 { 1416 tty_init_termios(tty); 1417 tty_driver_kref_get(driver); 1418 tty->count++; 1419 driver->ttys[tty->index] = tty; 1420 return 0; 1421 } 1422 EXPORT_SYMBOL_GPL(tty_standard_install); 1423 1424 /** 1425 * tty_driver_install_tty() - install a tty entry in the driver 1426 * @driver: the driver for the tty 1427 * @tty: the tty 1428 * 1429 * Install a tty object into the driver tables. The tty->index field 1430 * will be set by the time this is called. This method is responsible 1431 * for ensuring any need additional structures are allocated and 1432 * configured. 1433 * 1434 * Locking: tty_mutex for now 1435 */ 1436 static int tty_driver_install_tty(struct tty_driver *driver, 1437 struct tty_struct *tty) 1438 { 1439 return driver->ops->install ? driver->ops->install(driver, tty) : 1440 tty_standard_install(driver, tty); 1441 } 1442 1443 /** 1444 * tty_driver_remove_tty() - remove a tty from the driver tables 1445 * @driver: the driver for the tty 1446 * @idx: the minor number 1447 * 1448 * Remvoe a tty object from the driver tables. The tty->index field 1449 * will be set by the time this is called. 1450 * 1451 * Locking: tty_mutex for now 1452 */ 1453 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1454 { 1455 if (driver->ops->remove) 1456 driver->ops->remove(driver, tty); 1457 else 1458 driver->ttys[tty->index] = NULL; 1459 } 1460 1461 /* 1462 * tty_reopen() - fast re-open of an open tty 1463 * @tty - the tty to open 1464 * 1465 * Return 0 on success, -errno on error. 1466 * Re-opens on master ptys are not allowed and return -EIO. 1467 * 1468 * Locking: Caller must hold tty_lock 1469 */ 1470 static int tty_reopen(struct tty_struct *tty) 1471 { 1472 struct tty_driver *driver = tty->driver; 1473 1474 if (driver->type == TTY_DRIVER_TYPE_PTY && 1475 driver->subtype == PTY_TYPE_MASTER) 1476 return -EIO; 1477 1478 if (!tty->count) 1479 return -EAGAIN; 1480 1481 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1482 return -EBUSY; 1483 1484 tty->count++; 1485 1486 if (!tty->ldisc) 1487 return tty_ldisc_reinit(tty, tty->termios.c_line); 1488 1489 return 0; 1490 } 1491 1492 /** 1493 * tty_init_dev - initialise a tty device 1494 * @driver: tty driver we are opening a device on 1495 * @idx: device index 1496 * @ret_tty: returned tty structure 1497 * 1498 * Prepare a tty device. This may not be a "new" clean device but 1499 * could also be an active device. The pty drivers require special 1500 * handling because of this. 1501 * 1502 * Locking: 1503 * The function is called under the tty_mutex, which 1504 * protects us from the tty struct or driver itself going away. 1505 * 1506 * On exit the tty device has the line discipline attached and 1507 * a reference count of 1. If a pair was created for pty/tty use 1508 * and the other was a pty master then it too has a reference count of 1. 1509 * 1510 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1511 * failed open. The new code protects the open with a mutex, so it's 1512 * really quite straightforward. The mutex locking can probably be 1513 * relaxed for the (most common) case of reopening a tty. 1514 */ 1515 1516 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1517 { 1518 struct tty_struct *tty; 1519 int retval; 1520 1521 /* 1522 * First time open is complex, especially for PTY devices. 1523 * This code guarantees that either everything succeeds and the 1524 * TTY is ready for operation, or else the table slots are vacated 1525 * and the allocated memory released. (Except that the termios 1526 * and locked termios may be retained.) 1527 */ 1528 1529 if (!try_module_get(driver->owner)) 1530 return ERR_PTR(-ENODEV); 1531 1532 tty = alloc_tty_struct(driver, idx); 1533 if (!tty) { 1534 retval = -ENOMEM; 1535 goto err_module_put; 1536 } 1537 1538 tty_lock(tty); 1539 retval = tty_driver_install_tty(driver, tty); 1540 if (retval < 0) 1541 goto err_free_tty; 1542 1543 if (!tty->port) 1544 tty->port = driver->ports[idx]; 1545 1546 WARN_RATELIMIT(!tty->port, 1547 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1548 __func__, tty->driver->name); 1549 1550 tty->port->itty = tty; 1551 1552 /* 1553 * Structures all installed ... call the ldisc open routines. 1554 * If we fail here just call release_tty to clean up. No need 1555 * to decrement the use counts, as release_tty doesn't care. 1556 */ 1557 retval = tty_ldisc_setup(tty, tty->link); 1558 if (retval) 1559 goto err_release_tty; 1560 /* Return the tty locked so that it cannot vanish under the caller */ 1561 return tty; 1562 1563 err_free_tty: 1564 tty_unlock(tty); 1565 free_tty_struct(tty); 1566 err_module_put: 1567 module_put(driver->owner); 1568 return ERR_PTR(retval); 1569 1570 /* call the tty release_tty routine to clean out this slot */ 1571 err_release_tty: 1572 tty_unlock(tty); 1573 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1574 retval, idx); 1575 release_tty(tty, idx); 1576 return ERR_PTR(retval); 1577 } 1578 1579 static void tty_free_termios(struct tty_struct *tty) 1580 { 1581 struct ktermios *tp; 1582 int idx = tty->index; 1583 1584 /* If the port is going to reset then it has no termios to save */ 1585 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1586 return; 1587 1588 /* Stash the termios data */ 1589 tp = tty->driver->termios[idx]; 1590 if (tp == NULL) { 1591 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1592 if (tp == NULL) 1593 return; 1594 tty->driver->termios[idx] = tp; 1595 } 1596 *tp = tty->termios; 1597 } 1598 1599 /** 1600 * tty_flush_works - flush all works of a tty/pty pair 1601 * @tty: tty device to flush works for (or either end of a pty pair) 1602 * 1603 * Sync flush all works belonging to @tty (and the 'other' tty). 1604 */ 1605 static void tty_flush_works(struct tty_struct *tty) 1606 { 1607 flush_work(&tty->SAK_work); 1608 flush_work(&tty->hangup_work); 1609 if (tty->link) { 1610 flush_work(&tty->link->SAK_work); 1611 flush_work(&tty->link->hangup_work); 1612 } 1613 } 1614 1615 /** 1616 * release_one_tty - release tty structure memory 1617 * @kref: kref of tty we are obliterating 1618 * 1619 * Releases memory associated with a tty structure, and clears out the 1620 * driver table slots. This function is called when a device is no longer 1621 * in use. It also gets called when setup of a device fails. 1622 * 1623 * Locking: 1624 * takes the file list lock internally when working on the list 1625 * of ttys that the driver keeps. 1626 * 1627 * This method gets called from a work queue so that the driver private 1628 * cleanup ops can sleep (needed for USB at least) 1629 */ 1630 static void release_one_tty(struct work_struct *work) 1631 { 1632 struct tty_struct *tty = 1633 container_of(work, struct tty_struct, hangup_work); 1634 struct tty_driver *driver = tty->driver; 1635 struct module *owner = driver->owner; 1636 1637 if (tty->ops->cleanup) 1638 tty->ops->cleanup(tty); 1639 1640 tty->magic = 0; 1641 tty_driver_kref_put(driver); 1642 module_put(owner); 1643 1644 spin_lock(&tty->files_lock); 1645 list_del_init(&tty->tty_files); 1646 spin_unlock(&tty->files_lock); 1647 1648 put_pid(tty->pgrp); 1649 put_pid(tty->session); 1650 free_tty_struct(tty); 1651 } 1652 1653 static void queue_release_one_tty(struct kref *kref) 1654 { 1655 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1656 1657 /* The hangup queue is now free so we can reuse it rather than 1658 waste a chunk of memory for each port */ 1659 INIT_WORK(&tty->hangup_work, release_one_tty); 1660 schedule_work(&tty->hangup_work); 1661 } 1662 1663 /** 1664 * tty_kref_put - release a tty kref 1665 * @tty: tty device 1666 * 1667 * Release a reference to a tty device and if need be let the kref 1668 * layer destruct the object for us 1669 */ 1670 1671 void tty_kref_put(struct tty_struct *tty) 1672 { 1673 if (tty) 1674 kref_put(&tty->kref, queue_release_one_tty); 1675 } 1676 EXPORT_SYMBOL(tty_kref_put); 1677 1678 /** 1679 * release_tty - release tty structure memory 1680 * 1681 * Release both @tty and a possible linked partner (think pty pair), 1682 * and decrement the refcount of the backing module. 1683 * 1684 * Locking: 1685 * tty_mutex 1686 * takes the file list lock internally when working on the list 1687 * of ttys that the driver keeps. 1688 * 1689 */ 1690 static void release_tty(struct tty_struct *tty, int idx) 1691 { 1692 /* This should always be true but check for the moment */ 1693 WARN_ON(tty->index != idx); 1694 WARN_ON(!mutex_is_locked(&tty_mutex)); 1695 if (tty->ops->shutdown) 1696 tty->ops->shutdown(tty); 1697 tty_free_termios(tty); 1698 tty_driver_remove_tty(tty->driver, tty); 1699 tty->port->itty = NULL; 1700 if (tty->link) 1701 tty->link->port->itty = NULL; 1702 tty_buffer_cancel_work(tty->port); 1703 1704 tty_kref_put(tty->link); 1705 tty_kref_put(tty); 1706 } 1707 1708 /** 1709 * tty_release_checks - check a tty before real release 1710 * @tty: tty to check 1711 * @o_tty: link of @tty (if any) 1712 * @idx: index of the tty 1713 * 1714 * Performs some paranoid checking before true release of the @tty. 1715 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1716 */ 1717 static int tty_release_checks(struct tty_struct *tty, int idx) 1718 { 1719 #ifdef TTY_PARANOIA_CHECK 1720 if (idx < 0 || idx >= tty->driver->num) { 1721 tty_debug(tty, "bad idx %d\n", idx); 1722 return -1; 1723 } 1724 1725 /* not much to check for devpts */ 1726 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1727 return 0; 1728 1729 if (tty != tty->driver->ttys[idx]) { 1730 tty_debug(tty, "bad driver table[%d] = %p\n", 1731 idx, tty->driver->ttys[idx]); 1732 return -1; 1733 } 1734 if (tty->driver->other) { 1735 struct tty_struct *o_tty = tty->link; 1736 1737 if (o_tty != tty->driver->other->ttys[idx]) { 1738 tty_debug(tty, "bad other table[%d] = %p\n", 1739 idx, tty->driver->other->ttys[idx]); 1740 return -1; 1741 } 1742 if (o_tty->link != tty) { 1743 tty_debug(tty, "bad link = %p\n", o_tty->link); 1744 return -1; 1745 } 1746 } 1747 #endif 1748 return 0; 1749 } 1750 1751 /** 1752 * tty_release - vfs callback for close 1753 * @inode: inode of tty 1754 * @filp: file pointer for handle to tty 1755 * 1756 * Called the last time each file handle is closed that references 1757 * this tty. There may however be several such references. 1758 * 1759 * Locking: 1760 * Takes bkl. See tty_release_dev 1761 * 1762 * Even releasing the tty structures is a tricky business.. We have 1763 * to be very careful that the structures are all released at the 1764 * same time, as interrupts might otherwise get the wrong pointers. 1765 * 1766 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1767 * lead to double frees or releasing memory still in use. 1768 */ 1769 1770 int tty_release(struct inode *inode, struct file *filp) 1771 { 1772 struct tty_struct *tty = file_tty(filp); 1773 struct tty_struct *o_tty = NULL; 1774 int do_sleep, final; 1775 int idx; 1776 long timeout = 0; 1777 int once = 1; 1778 1779 if (tty_paranoia_check(tty, inode, __func__)) 1780 return 0; 1781 1782 tty_lock(tty); 1783 check_tty_count(tty, __func__); 1784 1785 __tty_fasync(-1, filp, 0); 1786 1787 idx = tty->index; 1788 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1789 tty->driver->subtype == PTY_TYPE_MASTER) 1790 o_tty = tty->link; 1791 1792 if (tty_release_checks(tty, idx)) { 1793 tty_unlock(tty); 1794 return 0; 1795 } 1796 1797 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1798 1799 if (tty->ops->close) 1800 tty->ops->close(tty, filp); 1801 1802 /* If tty is pty master, lock the slave pty (stable lock order) */ 1803 tty_lock_slave(o_tty); 1804 1805 /* 1806 * Sanity check: if tty->count is going to zero, there shouldn't be 1807 * any waiters on tty->read_wait or tty->write_wait. We test the 1808 * wait queues and kick everyone out _before_ actually starting to 1809 * close. This ensures that we won't block while releasing the tty 1810 * structure. 1811 * 1812 * The test for the o_tty closing is necessary, since the master and 1813 * slave sides may close in any order. If the slave side closes out 1814 * first, its count will be one, since the master side holds an open. 1815 * Thus this test wouldn't be triggered at the time the slave closed, 1816 * so we do it now. 1817 */ 1818 while (1) { 1819 do_sleep = 0; 1820 1821 if (tty->count <= 1) { 1822 if (waitqueue_active(&tty->read_wait)) { 1823 wake_up_poll(&tty->read_wait, POLLIN); 1824 do_sleep++; 1825 } 1826 if (waitqueue_active(&tty->write_wait)) { 1827 wake_up_poll(&tty->write_wait, POLLOUT); 1828 do_sleep++; 1829 } 1830 } 1831 if (o_tty && o_tty->count <= 1) { 1832 if (waitqueue_active(&o_tty->read_wait)) { 1833 wake_up_poll(&o_tty->read_wait, POLLIN); 1834 do_sleep++; 1835 } 1836 if (waitqueue_active(&o_tty->write_wait)) { 1837 wake_up_poll(&o_tty->write_wait, POLLOUT); 1838 do_sleep++; 1839 } 1840 } 1841 if (!do_sleep) 1842 break; 1843 1844 if (once) { 1845 once = 0; 1846 tty_warn(tty, "read/write wait queue active!\n"); 1847 } 1848 schedule_timeout_killable(timeout); 1849 if (timeout < 120 * HZ) 1850 timeout = 2 * timeout + 1; 1851 else 1852 timeout = MAX_SCHEDULE_TIMEOUT; 1853 } 1854 1855 if (o_tty) { 1856 if (--o_tty->count < 0) { 1857 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1858 o_tty->count = 0; 1859 } 1860 } 1861 if (--tty->count < 0) { 1862 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1863 tty->count = 0; 1864 } 1865 1866 /* 1867 * We've decremented tty->count, so we need to remove this file 1868 * descriptor off the tty->tty_files list; this serves two 1869 * purposes: 1870 * - check_tty_count sees the correct number of file descriptors 1871 * associated with this tty. 1872 * - do_tty_hangup no longer sees this file descriptor as 1873 * something that needs to be handled for hangups. 1874 */ 1875 tty_del_file(filp); 1876 1877 /* 1878 * Perform some housekeeping before deciding whether to return. 1879 * 1880 * If _either_ side is closing, make sure there aren't any 1881 * processes that still think tty or o_tty is their controlling 1882 * tty. 1883 */ 1884 if (!tty->count) { 1885 read_lock(&tasklist_lock); 1886 session_clear_tty(tty->session); 1887 if (o_tty) 1888 session_clear_tty(o_tty->session); 1889 read_unlock(&tasklist_lock); 1890 } 1891 1892 /* check whether both sides are closing ... */ 1893 final = !tty->count && !(o_tty && o_tty->count); 1894 1895 tty_unlock_slave(o_tty); 1896 tty_unlock(tty); 1897 1898 /* At this point, the tty->count == 0 should ensure a dead tty 1899 cannot be re-opened by a racing opener */ 1900 1901 if (!final) 1902 return 0; 1903 1904 tty_debug_hangup(tty, "final close\n"); 1905 /* 1906 * Ask the line discipline code to release its structures 1907 */ 1908 tty_ldisc_release(tty); 1909 1910 /* Wait for pending work before tty destruction commmences */ 1911 tty_flush_works(tty); 1912 1913 tty_debug_hangup(tty, "freeing structure\n"); 1914 /* 1915 * The release_tty function takes care of the details of clearing 1916 * the slots and preserving the termios structure. The tty_unlock_pair 1917 * should be safe as we keep a kref while the tty is locked (so the 1918 * unlock never unlocks a freed tty). 1919 */ 1920 mutex_lock(&tty_mutex); 1921 release_tty(tty, idx); 1922 mutex_unlock(&tty_mutex); 1923 1924 return 0; 1925 } 1926 1927 /** 1928 * tty_open_current_tty - get locked tty of current task 1929 * @device: device number 1930 * @filp: file pointer to tty 1931 * @return: locked tty of the current task iff @device is /dev/tty 1932 * 1933 * Performs a re-open of the current task's controlling tty. 1934 * 1935 * We cannot return driver and index like for the other nodes because 1936 * devpts will not work then. It expects inodes to be from devpts FS. 1937 */ 1938 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1939 { 1940 struct tty_struct *tty; 1941 int retval; 1942 1943 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1944 return NULL; 1945 1946 tty = get_current_tty(); 1947 if (!tty) 1948 return ERR_PTR(-ENXIO); 1949 1950 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1951 /* noctty = 1; */ 1952 tty_lock(tty); 1953 tty_kref_put(tty); /* safe to drop the kref now */ 1954 1955 retval = tty_reopen(tty); 1956 if (retval < 0) { 1957 tty_unlock(tty); 1958 tty = ERR_PTR(retval); 1959 } 1960 return tty; 1961 } 1962 1963 /** 1964 * tty_lookup_driver - lookup a tty driver for a given device file 1965 * @device: device number 1966 * @filp: file pointer to tty 1967 * @noctty: set if the device should not become a controlling tty 1968 * @index: index for the device in the @return driver 1969 * @return: driver for this inode (with increased refcount) 1970 * 1971 * If @return is not erroneous, the caller is responsible to decrement the 1972 * refcount by tty_driver_kref_put. 1973 * 1974 * Locking: tty_mutex protects get_tty_driver 1975 */ 1976 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1977 int *index) 1978 { 1979 struct tty_driver *driver; 1980 1981 switch (device) { 1982 #ifdef CONFIG_VT 1983 case MKDEV(TTY_MAJOR, 0): { 1984 extern struct tty_driver *console_driver; 1985 driver = tty_driver_kref_get(console_driver); 1986 *index = fg_console; 1987 break; 1988 } 1989 #endif 1990 case MKDEV(TTYAUX_MAJOR, 1): { 1991 struct tty_driver *console_driver = console_device(index); 1992 if (console_driver) { 1993 driver = tty_driver_kref_get(console_driver); 1994 if (driver) { 1995 /* Don't let /dev/console block */ 1996 filp->f_flags |= O_NONBLOCK; 1997 break; 1998 } 1999 } 2000 return ERR_PTR(-ENODEV); 2001 } 2002 default: 2003 driver = get_tty_driver(device, index); 2004 if (!driver) 2005 return ERR_PTR(-ENODEV); 2006 break; 2007 } 2008 return driver; 2009 } 2010 2011 /** 2012 * tty_open_by_driver - open a tty device 2013 * @device: dev_t of device to open 2014 * @inode: inode of device file 2015 * @filp: file pointer to tty 2016 * 2017 * Performs the driver lookup, checks for a reopen, or otherwise 2018 * performs the first-time tty initialization. 2019 * 2020 * Returns the locked initialized or re-opened &tty_struct 2021 * 2022 * Claims the global tty_mutex to serialize: 2023 * - concurrent first-time tty initialization 2024 * - concurrent tty driver removal w/ lookup 2025 * - concurrent tty removal from driver table 2026 */ 2027 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode, 2028 struct file *filp) 2029 { 2030 struct tty_struct *tty; 2031 struct tty_driver *driver = NULL; 2032 int index = -1; 2033 int retval; 2034 2035 mutex_lock(&tty_mutex); 2036 driver = tty_lookup_driver(device, filp, &index); 2037 if (IS_ERR(driver)) { 2038 mutex_unlock(&tty_mutex); 2039 return ERR_CAST(driver); 2040 } 2041 2042 /* check whether we're reopening an existing tty */ 2043 tty = tty_driver_lookup_tty(driver, inode, index); 2044 if (IS_ERR(tty)) { 2045 mutex_unlock(&tty_mutex); 2046 goto out; 2047 } 2048 2049 if (tty) { 2050 mutex_unlock(&tty_mutex); 2051 retval = tty_lock_interruptible(tty); 2052 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 2053 if (retval) { 2054 if (retval == -EINTR) 2055 retval = -ERESTARTSYS; 2056 tty = ERR_PTR(retval); 2057 goto out; 2058 } 2059 retval = tty_reopen(tty); 2060 if (retval < 0) { 2061 tty_unlock(tty); 2062 tty = ERR_PTR(retval); 2063 } 2064 } else { /* Returns with the tty_lock held for now */ 2065 tty = tty_init_dev(driver, index); 2066 mutex_unlock(&tty_mutex); 2067 } 2068 out: 2069 tty_driver_kref_put(driver); 2070 return tty; 2071 } 2072 2073 /** 2074 * tty_open - open a tty device 2075 * @inode: inode of device file 2076 * @filp: file pointer to tty 2077 * 2078 * tty_open and tty_release keep up the tty count that contains the 2079 * number of opens done on a tty. We cannot use the inode-count, as 2080 * different inodes might point to the same tty. 2081 * 2082 * Open-counting is needed for pty masters, as well as for keeping 2083 * track of serial lines: DTR is dropped when the last close happens. 2084 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2085 * 2086 * The termios state of a pty is reset on first open so that 2087 * settings don't persist across reuse. 2088 * 2089 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2090 * tty->count should protect the rest. 2091 * ->siglock protects ->signal/->sighand 2092 * 2093 * Note: the tty_unlock/lock cases without a ref are only safe due to 2094 * tty_mutex 2095 */ 2096 2097 static int tty_open(struct inode *inode, struct file *filp) 2098 { 2099 struct tty_struct *tty; 2100 int noctty, retval; 2101 dev_t device = inode->i_rdev; 2102 unsigned saved_flags = filp->f_flags; 2103 2104 nonseekable_open(inode, filp); 2105 2106 retry_open: 2107 retval = tty_alloc_file(filp); 2108 if (retval) 2109 return -ENOMEM; 2110 2111 tty = tty_open_current_tty(device, filp); 2112 if (!tty) 2113 tty = tty_open_by_driver(device, inode, filp); 2114 2115 if (IS_ERR(tty)) { 2116 tty_free_file(filp); 2117 retval = PTR_ERR(tty); 2118 if (retval != -EAGAIN || signal_pending(current)) 2119 return retval; 2120 schedule(); 2121 goto retry_open; 2122 } 2123 2124 tty_add_file(tty, filp); 2125 2126 check_tty_count(tty, __func__); 2127 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2128 2129 if (tty->ops->open) 2130 retval = tty->ops->open(tty, filp); 2131 else 2132 retval = -ENODEV; 2133 filp->f_flags = saved_flags; 2134 2135 if (retval) { 2136 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2137 2138 tty_unlock(tty); /* need to call tty_release without BTM */ 2139 tty_release(inode, filp); 2140 if (retval != -ERESTARTSYS) 2141 return retval; 2142 2143 if (signal_pending(current)) 2144 return retval; 2145 2146 schedule(); 2147 /* 2148 * Need to reset f_op in case a hangup happened. 2149 */ 2150 if (tty_hung_up_p(filp)) 2151 filp->f_op = &tty_fops; 2152 goto retry_open; 2153 } 2154 clear_bit(TTY_HUPPED, &tty->flags); 2155 2156 2157 read_lock(&tasklist_lock); 2158 spin_lock_irq(¤t->sighand->siglock); 2159 noctty = (filp->f_flags & O_NOCTTY) || 2160 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2161 device == MKDEV(TTYAUX_MAJOR, 1) || 2162 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2163 tty->driver->subtype == PTY_TYPE_MASTER); 2164 2165 if (!noctty && 2166 current->signal->leader && 2167 !current->signal->tty && 2168 tty->session == NULL) { 2169 /* 2170 * Don't let a process that only has write access to the tty 2171 * obtain the privileges associated with having a tty as 2172 * controlling terminal (being able to reopen it with full 2173 * access through /dev/tty, being able to perform pushback). 2174 * Many distributions set the group of all ttys to "tty" and 2175 * grant write-only access to all terminals for setgid tty 2176 * binaries, which should not imply full privileges on all ttys. 2177 * 2178 * This could theoretically break old code that performs open() 2179 * on a write-only file descriptor. In that case, it might be 2180 * necessary to also permit this if 2181 * inode_permission(inode, MAY_READ) == 0. 2182 */ 2183 if (filp->f_mode & FMODE_READ) 2184 __proc_set_tty(tty); 2185 } 2186 spin_unlock_irq(¤t->sighand->siglock); 2187 read_unlock(&tasklist_lock); 2188 tty_unlock(tty); 2189 return 0; 2190 } 2191 2192 2193 2194 /** 2195 * tty_poll - check tty status 2196 * @filp: file being polled 2197 * @wait: poll wait structures to update 2198 * 2199 * Call the line discipline polling method to obtain the poll 2200 * status of the device. 2201 * 2202 * Locking: locks called line discipline but ldisc poll method 2203 * may be re-entered freely by other callers. 2204 */ 2205 2206 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2207 { 2208 struct tty_struct *tty = file_tty(filp); 2209 struct tty_ldisc *ld; 2210 int ret = 0; 2211 2212 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2213 return 0; 2214 2215 ld = tty_ldisc_ref_wait(tty); 2216 if (!ld) 2217 return hung_up_tty_poll(filp, wait); 2218 if (ld->ops->poll) 2219 ret = ld->ops->poll(tty, filp, wait); 2220 tty_ldisc_deref(ld); 2221 return ret; 2222 } 2223 2224 static int __tty_fasync(int fd, struct file *filp, int on) 2225 { 2226 struct tty_struct *tty = file_tty(filp); 2227 unsigned long flags; 2228 int retval = 0; 2229 2230 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2231 goto out; 2232 2233 retval = fasync_helper(fd, filp, on, &tty->fasync); 2234 if (retval <= 0) 2235 goto out; 2236 2237 if (on) { 2238 enum pid_type type; 2239 struct pid *pid; 2240 2241 spin_lock_irqsave(&tty->ctrl_lock, flags); 2242 if (tty->pgrp) { 2243 pid = tty->pgrp; 2244 type = PIDTYPE_PGID; 2245 } else { 2246 pid = task_pid(current); 2247 type = PIDTYPE_PID; 2248 } 2249 get_pid(pid); 2250 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2251 __f_setown(filp, pid, type, 0); 2252 put_pid(pid); 2253 retval = 0; 2254 } 2255 out: 2256 return retval; 2257 } 2258 2259 static int tty_fasync(int fd, struct file *filp, int on) 2260 { 2261 struct tty_struct *tty = file_tty(filp); 2262 int retval = -ENOTTY; 2263 2264 tty_lock(tty); 2265 if (!tty_hung_up_p(filp)) 2266 retval = __tty_fasync(fd, filp, on); 2267 tty_unlock(tty); 2268 2269 return retval; 2270 } 2271 2272 /** 2273 * tiocsti - fake input character 2274 * @tty: tty to fake input into 2275 * @p: pointer to character 2276 * 2277 * Fake input to a tty device. Does the necessary locking and 2278 * input management. 2279 * 2280 * FIXME: does not honour flow control ?? 2281 * 2282 * Locking: 2283 * Called functions take tty_ldiscs_lock 2284 * current->signal->tty check is safe without locks 2285 * 2286 * FIXME: may race normal receive processing 2287 */ 2288 2289 static int tiocsti(struct tty_struct *tty, char __user *p) 2290 { 2291 char ch, mbz = 0; 2292 struct tty_ldisc *ld; 2293 2294 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2295 return -EPERM; 2296 if (get_user(ch, p)) 2297 return -EFAULT; 2298 tty_audit_tiocsti(tty, ch); 2299 ld = tty_ldisc_ref_wait(tty); 2300 if (!ld) 2301 return -EIO; 2302 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2303 tty_ldisc_deref(ld); 2304 return 0; 2305 } 2306 2307 /** 2308 * tiocgwinsz - implement window query ioctl 2309 * @tty; tty 2310 * @arg: user buffer for result 2311 * 2312 * Copies the kernel idea of the window size into the user buffer. 2313 * 2314 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2315 * is consistent. 2316 */ 2317 2318 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2319 { 2320 int err; 2321 2322 mutex_lock(&tty->winsize_mutex); 2323 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2324 mutex_unlock(&tty->winsize_mutex); 2325 2326 return err ? -EFAULT: 0; 2327 } 2328 2329 /** 2330 * tty_do_resize - resize event 2331 * @tty: tty being resized 2332 * @rows: rows (character) 2333 * @cols: cols (character) 2334 * 2335 * Update the termios variables and send the necessary signals to 2336 * peform a terminal resize correctly 2337 */ 2338 2339 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2340 { 2341 struct pid *pgrp; 2342 2343 /* Lock the tty */ 2344 mutex_lock(&tty->winsize_mutex); 2345 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2346 goto done; 2347 2348 /* Signal the foreground process group */ 2349 pgrp = tty_get_pgrp(tty); 2350 if (pgrp) 2351 kill_pgrp(pgrp, SIGWINCH, 1); 2352 put_pid(pgrp); 2353 2354 tty->winsize = *ws; 2355 done: 2356 mutex_unlock(&tty->winsize_mutex); 2357 return 0; 2358 } 2359 EXPORT_SYMBOL(tty_do_resize); 2360 2361 /** 2362 * tiocswinsz - implement window size set ioctl 2363 * @tty; tty side of tty 2364 * @arg: user buffer for result 2365 * 2366 * Copies the user idea of the window size to the kernel. Traditionally 2367 * this is just advisory information but for the Linux console it 2368 * actually has driver level meaning and triggers a VC resize. 2369 * 2370 * Locking: 2371 * Driver dependent. The default do_resize method takes the 2372 * tty termios mutex and ctrl_lock. The console takes its own lock 2373 * then calls into the default method. 2374 */ 2375 2376 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2377 { 2378 struct winsize tmp_ws; 2379 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2380 return -EFAULT; 2381 2382 if (tty->ops->resize) 2383 return tty->ops->resize(tty, &tmp_ws); 2384 else 2385 return tty_do_resize(tty, &tmp_ws); 2386 } 2387 2388 /** 2389 * tioccons - allow admin to move logical console 2390 * @file: the file to become console 2391 * 2392 * Allow the administrator to move the redirected console device 2393 * 2394 * Locking: uses redirect_lock to guard the redirect information 2395 */ 2396 2397 static int tioccons(struct file *file) 2398 { 2399 if (!capable(CAP_SYS_ADMIN)) 2400 return -EPERM; 2401 if (file->f_op->write == redirected_tty_write) { 2402 struct file *f; 2403 spin_lock(&redirect_lock); 2404 f = redirect; 2405 redirect = NULL; 2406 spin_unlock(&redirect_lock); 2407 if (f) 2408 fput(f); 2409 return 0; 2410 } 2411 spin_lock(&redirect_lock); 2412 if (redirect) { 2413 spin_unlock(&redirect_lock); 2414 return -EBUSY; 2415 } 2416 redirect = get_file(file); 2417 spin_unlock(&redirect_lock); 2418 return 0; 2419 } 2420 2421 /** 2422 * fionbio - non blocking ioctl 2423 * @file: file to set blocking value 2424 * @p: user parameter 2425 * 2426 * Historical tty interfaces had a blocking control ioctl before 2427 * the generic functionality existed. This piece of history is preserved 2428 * in the expected tty API of posix OS's. 2429 * 2430 * Locking: none, the open file handle ensures it won't go away. 2431 */ 2432 2433 static int fionbio(struct file *file, int __user *p) 2434 { 2435 int nonblock; 2436 2437 if (get_user(nonblock, p)) 2438 return -EFAULT; 2439 2440 spin_lock(&file->f_lock); 2441 if (nonblock) 2442 file->f_flags |= O_NONBLOCK; 2443 else 2444 file->f_flags &= ~O_NONBLOCK; 2445 spin_unlock(&file->f_lock); 2446 return 0; 2447 } 2448 2449 /** 2450 * tiocsctty - set controlling tty 2451 * @tty: tty structure 2452 * @arg: user argument 2453 * 2454 * This ioctl is used to manage job control. It permits a session 2455 * leader to set this tty as the controlling tty for the session. 2456 * 2457 * Locking: 2458 * Takes tty_lock() to serialize proc_set_tty() for this tty 2459 * Takes tasklist_lock internally to walk sessions 2460 * Takes ->siglock() when updating signal->tty 2461 */ 2462 2463 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg) 2464 { 2465 int ret = 0; 2466 2467 tty_lock(tty); 2468 read_lock(&tasklist_lock); 2469 2470 if (current->signal->leader && (task_session(current) == tty->session)) 2471 goto unlock; 2472 2473 /* 2474 * The process must be a session leader and 2475 * not have a controlling tty already. 2476 */ 2477 if (!current->signal->leader || current->signal->tty) { 2478 ret = -EPERM; 2479 goto unlock; 2480 } 2481 2482 if (tty->session) { 2483 /* 2484 * This tty is already the controlling 2485 * tty for another session group! 2486 */ 2487 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2488 /* 2489 * Steal it away 2490 */ 2491 session_clear_tty(tty->session); 2492 } else { 2493 ret = -EPERM; 2494 goto unlock; 2495 } 2496 } 2497 2498 /* See the comment in tty_open(). */ 2499 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) { 2500 ret = -EPERM; 2501 goto unlock; 2502 } 2503 2504 proc_set_tty(tty); 2505 unlock: 2506 read_unlock(&tasklist_lock); 2507 tty_unlock(tty); 2508 return ret; 2509 } 2510 2511 /** 2512 * tty_get_pgrp - return a ref counted pgrp pid 2513 * @tty: tty to read 2514 * 2515 * Returns a refcounted instance of the pid struct for the process 2516 * group controlling the tty. 2517 */ 2518 2519 struct pid *tty_get_pgrp(struct tty_struct *tty) 2520 { 2521 unsigned long flags; 2522 struct pid *pgrp; 2523 2524 spin_lock_irqsave(&tty->ctrl_lock, flags); 2525 pgrp = get_pid(tty->pgrp); 2526 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2527 2528 return pgrp; 2529 } 2530 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2531 2532 /* 2533 * This checks not only the pgrp, but falls back on the pid if no 2534 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 2535 * without this... 2536 * 2537 * The caller must hold rcu lock or the tasklist lock. 2538 */ 2539 static struct pid *session_of_pgrp(struct pid *pgrp) 2540 { 2541 struct task_struct *p; 2542 struct pid *sid = NULL; 2543 2544 p = pid_task(pgrp, PIDTYPE_PGID); 2545 if (p == NULL) 2546 p = pid_task(pgrp, PIDTYPE_PID); 2547 if (p != NULL) 2548 sid = task_session(p); 2549 2550 return sid; 2551 } 2552 2553 /** 2554 * tiocgpgrp - get process group 2555 * @tty: tty passed by user 2556 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2557 * @p: returned pid 2558 * 2559 * Obtain the process group of the tty. If there is no process group 2560 * return an error. 2561 * 2562 * Locking: none. Reference to current->signal->tty is safe. 2563 */ 2564 2565 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2566 { 2567 struct pid *pid; 2568 int ret; 2569 /* 2570 * (tty == real_tty) is a cheap way of 2571 * testing if the tty is NOT a master pty. 2572 */ 2573 if (tty == real_tty && current->signal->tty != real_tty) 2574 return -ENOTTY; 2575 pid = tty_get_pgrp(real_tty); 2576 ret = put_user(pid_vnr(pid), p); 2577 put_pid(pid); 2578 return ret; 2579 } 2580 2581 /** 2582 * tiocspgrp - attempt to set process group 2583 * @tty: tty passed by user 2584 * @real_tty: tty side device matching tty passed by user 2585 * @p: pid pointer 2586 * 2587 * Set the process group of the tty to the session passed. Only 2588 * permitted where the tty session is our session. 2589 * 2590 * Locking: RCU, ctrl lock 2591 */ 2592 2593 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2594 { 2595 struct pid *pgrp; 2596 pid_t pgrp_nr; 2597 int retval = tty_check_change(real_tty); 2598 2599 if (retval == -EIO) 2600 return -ENOTTY; 2601 if (retval) 2602 return retval; 2603 if (!current->signal->tty || 2604 (current->signal->tty != real_tty) || 2605 (real_tty->session != task_session(current))) 2606 return -ENOTTY; 2607 if (get_user(pgrp_nr, p)) 2608 return -EFAULT; 2609 if (pgrp_nr < 0) 2610 return -EINVAL; 2611 rcu_read_lock(); 2612 pgrp = find_vpid(pgrp_nr); 2613 retval = -ESRCH; 2614 if (!pgrp) 2615 goto out_unlock; 2616 retval = -EPERM; 2617 if (session_of_pgrp(pgrp) != task_session(current)) 2618 goto out_unlock; 2619 retval = 0; 2620 spin_lock_irq(&tty->ctrl_lock); 2621 put_pid(real_tty->pgrp); 2622 real_tty->pgrp = get_pid(pgrp); 2623 spin_unlock_irq(&tty->ctrl_lock); 2624 out_unlock: 2625 rcu_read_unlock(); 2626 return retval; 2627 } 2628 2629 /** 2630 * tiocgsid - get session id 2631 * @tty: tty passed by user 2632 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2633 * @p: pointer to returned session id 2634 * 2635 * Obtain the session id of the tty. If there is no session 2636 * return an error. 2637 * 2638 * Locking: none. Reference to current->signal->tty is safe. 2639 */ 2640 2641 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2642 { 2643 /* 2644 * (tty == real_tty) is a cheap way of 2645 * testing if the tty is NOT a master pty. 2646 */ 2647 if (tty == real_tty && current->signal->tty != real_tty) 2648 return -ENOTTY; 2649 if (!real_tty->session) 2650 return -ENOTTY; 2651 return put_user(pid_vnr(real_tty->session), p); 2652 } 2653 2654 /** 2655 * tiocsetd - set line discipline 2656 * @tty: tty device 2657 * @p: pointer to user data 2658 * 2659 * Set the line discipline according to user request. 2660 * 2661 * Locking: see tty_set_ldisc, this function is just a helper 2662 */ 2663 2664 static int tiocsetd(struct tty_struct *tty, int __user *p) 2665 { 2666 int disc; 2667 int ret; 2668 2669 if (get_user(disc, p)) 2670 return -EFAULT; 2671 2672 ret = tty_set_ldisc(tty, disc); 2673 2674 return ret; 2675 } 2676 2677 /** 2678 * tiocgetd - get line discipline 2679 * @tty: tty device 2680 * @p: pointer to user data 2681 * 2682 * Retrieves the line discipline id directly from the ldisc. 2683 * 2684 * Locking: waits for ldisc reference (in case the line discipline 2685 * is changing or the tty is being hungup) 2686 */ 2687 2688 static int tiocgetd(struct tty_struct *tty, int __user *p) 2689 { 2690 struct tty_ldisc *ld; 2691 int ret; 2692 2693 ld = tty_ldisc_ref_wait(tty); 2694 if (!ld) 2695 return -EIO; 2696 ret = put_user(ld->ops->num, p); 2697 tty_ldisc_deref(ld); 2698 return ret; 2699 } 2700 2701 /** 2702 * send_break - performed time break 2703 * @tty: device to break on 2704 * @duration: timeout in mS 2705 * 2706 * Perform a timed break on hardware that lacks its own driver level 2707 * timed break functionality. 2708 * 2709 * Locking: 2710 * atomic_write_lock serializes 2711 * 2712 */ 2713 2714 static int send_break(struct tty_struct *tty, unsigned int duration) 2715 { 2716 int retval; 2717 2718 if (tty->ops->break_ctl == NULL) 2719 return 0; 2720 2721 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2722 retval = tty->ops->break_ctl(tty, duration); 2723 else { 2724 /* Do the work ourselves */ 2725 if (tty_write_lock(tty, 0) < 0) 2726 return -EINTR; 2727 retval = tty->ops->break_ctl(tty, -1); 2728 if (retval) 2729 goto out; 2730 if (!signal_pending(current)) 2731 msleep_interruptible(duration); 2732 retval = tty->ops->break_ctl(tty, 0); 2733 out: 2734 tty_write_unlock(tty); 2735 if (signal_pending(current)) 2736 retval = -EINTR; 2737 } 2738 return retval; 2739 } 2740 2741 /** 2742 * tty_tiocmget - get modem status 2743 * @tty: tty device 2744 * @file: user file pointer 2745 * @p: pointer to result 2746 * 2747 * Obtain the modem status bits from the tty driver if the feature 2748 * is supported. Return -EINVAL if it is not available. 2749 * 2750 * Locking: none (up to the driver) 2751 */ 2752 2753 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2754 { 2755 int retval = -EINVAL; 2756 2757 if (tty->ops->tiocmget) { 2758 retval = tty->ops->tiocmget(tty); 2759 2760 if (retval >= 0) 2761 retval = put_user(retval, p); 2762 } 2763 return retval; 2764 } 2765 2766 /** 2767 * tty_tiocmset - set modem status 2768 * @tty: tty device 2769 * @cmd: command - clear bits, set bits or set all 2770 * @p: pointer to desired bits 2771 * 2772 * Set the modem status bits from the tty driver if the feature 2773 * is supported. Return -EINVAL if it is not available. 2774 * 2775 * Locking: none (up to the driver) 2776 */ 2777 2778 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2779 unsigned __user *p) 2780 { 2781 int retval; 2782 unsigned int set, clear, val; 2783 2784 if (tty->ops->tiocmset == NULL) 2785 return -EINVAL; 2786 2787 retval = get_user(val, p); 2788 if (retval) 2789 return retval; 2790 set = clear = 0; 2791 switch (cmd) { 2792 case TIOCMBIS: 2793 set = val; 2794 break; 2795 case TIOCMBIC: 2796 clear = val; 2797 break; 2798 case TIOCMSET: 2799 set = val; 2800 clear = ~val; 2801 break; 2802 } 2803 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2804 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2805 return tty->ops->tiocmset(tty, set, clear); 2806 } 2807 2808 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2809 { 2810 int retval = -EINVAL; 2811 struct serial_icounter_struct icount; 2812 memset(&icount, 0, sizeof(icount)); 2813 if (tty->ops->get_icount) 2814 retval = tty->ops->get_icount(tty, &icount); 2815 if (retval != 0) 2816 return retval; 2817 if (copy_to_user(arg, &icount, sizeof(icount))) 2818 return -EFAULT; 2819 return 0; 2820 } 2821 2822 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2823 { 2824 static DEFINE_RATELIMIT_STATE(depr_flags, 2825 DEFAULT_RATELIMIT_INTERVAL, 2826 DEFAULT_RATELIMIT_BURST); 2827 char comm[TASK_COMM_LEN]; 2828 int flags; 2829 2830 if (get_user(flags, &ss->flags)) 2831 return; 2832 2833 flags &= ASYNC_DEPRECATED; 2834 2835 if (flags && __ratelimit(&depr_flags)) 2836 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2837 __func__, get_task_comm(comm, current), flags); 2838 } 2839 2840 /* 2841 * if pty, return the slave side (real_tty) 2842 * otherwise, return self 2843 */ 2844 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2845 { 2846 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2847 tty->driver->subtype == PTY_TYPE_MASTER) 2848 tty = tty->link; 2849 return tty; 2850 } 2851 2852 /* 2853 * Split this up, as gcc can choke on it otherwise.. 2854 */ 2855 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2856 { 2857 struct tty_struct *tty = file_tty(file); 2858 struct tty_struct *real_tty; 2859 void __user *p = (void __user *)arg; 2860 int retval; 2861 struct tty_ldisc *ld; 2862 2863 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2864 return -EINVAL; 2865 2866 real_tty = tty_pair_get_tty(tty); 2867 2868 /* 2869 * Factor out some common prep work 2870 */ 2871 switch (cmd) { 2872 case TIOCSETD: 2873 case TIOCSBRK: 2874 case TIOCCBRK: 2875 case TCSBRK: 2876 case TCSBRKP: 2877 retval = tty_check_change(tty); 2878 if (retval) 2879 return retval; 2880 if (cmd != TIOCCBRK) { 2881 tty_wait_until_sent(tty, 0); 2882 if (signal_pending(current)) 2883 return -EINTR; 2884 } 2885 break; 2886 } 2887 2888 /* 2889 * Now do the stuff. 2890 */ 2891 switch (cmd) { 2892 case TIOCSTI: 2893 return tiocsti(tty, p); 2894 case TIOCGWINSZ: 2895 return tiocgwinsz(real_tty, p); 2896 case TIOCSWINSZ: 2897 return tiocswinsz(real_tty, p); 2898 case TIOCCONS: 2899 return real_tty != tty ? -EINVAL : tioccons(file); 2900 case FIONBIO: 2901 return fionbio(file, p); 2902 case TIOCEXCL: 2903 set_bit(TTY_EXCLUSIVE, &tty->flags); 2904 return 0; 2905 case TIOCNXCL: 2906 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2907 return 0; 2908 case TIOCGEXCL: 2909 { 2910 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2911 return put_user(excl, (int __user *)p); 2912 } 2913 case TIOCNOTTY: 2914 if (current->signal->tty != tty) 2915 return -ENOTTY; 2916 no_tty(); 2917 return 0; 2918 case TIOCSCTTY: 2919 return tiocsctty(real_tty, file, arg); 2920 case TIOCGPGRP: 2921 return tiocgpgrp(tty, real_tty, p); 2922 case TIOCSPGRP: 2923 return tiocspgrp(tty, real_tty, p); 2924 case TIOCGSID: 2925 return tiocgsid(tty, real_tty, p); 2926 case TIOCGETD: 2927 return tiocgetd(tty, p); 2928 case TIOCSETD: 2929 return tiocsetd(tty, p); 2930 case TIOCVHANGUP: 2931 if (!capable(CAP_SYS_ADMIN)) 2932 return -EPERM; 2933 tty_vhangup(tty); 2934 return 0; 2935 case TIOCGDEV: 2936 { 2937 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2938 return put_user(ret, (unsigned int __user *)p); 2939 } 2940 /* 2941 * Break handling 2942 */ 2943 case TIOCSBRK: /* Turn break on, unconditionally */ 2944 if (tty->ops->break_ctl) 2945 return tty->ops->break_ctl(tty, -1); 2946 return 0; 2947 case TIOCCBRK: /* Turn break off, unconditionally */ 2948 if (tty->ops->break_ctl) 2949 return tty->ops->break_ctl(tty, 0); 2950 return 0; 2951 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2952 /* non-zero arg means wait for all output data 2953 * to be sent (performed above) but don't send break. 2954 * This is used by the tcdrain() termios function. 2955 */ 2956 if (!arg) 2957 return send_break(tty, 250); 2958 return 0; 2959 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2960 return send_break(tty, arg ? arg*100 : 250); 2961 2962 case TIOCMGET: 2963 return tty_tiocmget(tty, p); 2964 case TIOCMSET: 2965 case TIOCMBIC: 2966 case TIOCMBIS: 2967 return tty_tiocmset(tty, cmd, p); 2968 case TIOCGICOUNT: 2969 retval = tty_tiocgicount(tty, p); 2970 /* For the moment allow fall through to the old method */ 2971 if (retval != -EINVAL) 2972 return retval; 2973 break; 2974 case TCFLSH: 2975 switch (arg) { 2976 case TCIFLUSH: 2977 case TCIOFLUSH: 2978 /* flush tty buffer and allow ldisc to process ioctl */ 2979 tty_buffer_flush(tty, NULL); 2980 break; 2981 } 2982 break; 2983 case TIOCSSERIAL: 2984 tty_warn_deprecated_flags(p); 2985 break; 2986 } 2987 if (tty->ops->ioctl) { 2988 retval = tty->ops->ioctl(tty, cmd, arg); 2989 if (retval != -ENOIOCTLCMD) 2990 return retval; 2991 } 2992 ld = tty_ldisc_ref_wait(tty); 2993 if (!ld) 2994 return hung_up_tty_ioctl(file, cmd, arg); 2995 retval = -EINVAL; 2996 if (ld->ops->ioctl) { 2997 retval = ld->ops->ioctl(tty, file, cmd, arg); 2998 if (retval == -ENOIOCTLCMD) 2999 retval = -ENOTTY; 3000 } 3001 tty_ldisc_deref(ld); 3002 return retval; 3003 } 3004 3005 #ifdef CONFIG_COMPAT 3006 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 3007 unsigned long arg) 3008 { 3009 struct tty_struct *tty = file_tty(file); 3010 struct tty_ldisc *ld; 3011 int retval = -ENOIOCTLCMD; 3012 3013 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 3014 return -EINVAL; 3015 3016 if (tty->ops->compat_ioctl) { 3017 retval = tty->ops->compat_ioctl(tty, cmd, arg); 3018 if (retval != -ENOIOCTLCMD) 3019 return retval; 3020 } 3021 3022 ld = tty_ldisc_ref_wait(tty); 3023 if (!ld) 3024 return hung_up_tty_compat_ioctl(file, cmd, arg); 3025 if (ld->ops->compat_ioctl) 3026 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 3027 else 3028 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 3029 tty_ldisc_deref(ld); 3030 3031 return retval; 3032 } 3033 #endif 3034 3035 static int this_tty(const void *t, struct file *file, unsigned fd) 3036 { 3037 if (likely(file->f_op->read != tty_read)) 3038 return 0; 3039 return file_tty(file) != t ? 0 : fd + 1; 3040 } 3041 3042 /* 3043 * This implements the "Secure Attention Key" --- the idea is to 3044 * prevent trojan horses by killing all processes associated with this 3045 * tty when the user hits the "Secure Attention Key". Required for 3046 * super-paranoid applications --- see the Orange Book for more details. 3047 * 3048 * This code could be nicer; ideally it should send a HUP, wait a few 3049 * seconds, then send a INT, and then a KILL signal. But you then 3050 * have to coordinate with the init process, since all processes associated 3051 * with the current tty must be dead before the new getty is allowed 3052 * to spawn. 3053 * 3054 * Now, if it would be correct ;-/ The current code has a nasty hole - 3055 * it doesn't catch files in flight. We may send the descriptor to ourselves 3056 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 3057 * 3058 * Nasty bug: do_SAK is being called in interrupt context. This can 3059 * deadlock. We punt it up to process context. AKPM - 16Mar2001 3060 */ 3061 void __do_SAK(struct tty_struct *tty) 3062 { 3063 #ifdef TTY_SOFT_SAK 3064 tty_hangup(tty); 3065 #else 3066 struct task_struct *g, *p; 3067 struct pid *session; 3068 int i; 3069 3070 if (!tty) 3071 return; 3072 session = tty->session; 3073 3074 tty_ldisc_flush(tty); 3075 3076 tty_driver_flush_buffer(tty); 3077 3078 read_lock(&tasklist_lock); 3079 /* Kill the entire session */ 3080 do_each_pid_task(session, PIDTYPE_SID, p) { 3081 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 3082 task_pid_nr(p), p->comm); 3083 send_sig(SIGKILL, p, 1); 3084 } while_each_pid_task(session, PIDTYPE_SID, p); 3085 3086 /* Now kill any processes that happen to have the tty open */ 3087 do_each_thread(g, p) { 3088 if (p->signal->tty == tty) { 3089 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 3090 task_pid_nr(p), p->comm); 3091 send_sig(SIGKILL, p, 1); 3092 continue; 3093 } 3094 task_lock(p); 3095 i = iterate_fd(p->files, 0, this_tty, tty); 3096 if (i != 0) { 3097 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 3098 task_pid_nr(p), p->comm, i - 1); 3099 force_sig(SIGKILL, p); 3100 } 3101 task_unlock(p); 3102 } while_each_thread(g, p); 3103 read_unlock(&tasklist_lock); 3104 #endif 3105 } 3106 3107 static void do_SAK_work(struct work_struct *work) 3108 { 3109 struct tty_struct *tty = 3110 container_of(work, struct tty_struct, SAK_work); 3111 __do_SAK(tty); 3112 } 3113 3114 /* 3115 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3116 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3117 * the values which we write to it will be identical to the values which it 3118 * already has. --akpm 3119 */ 3120 void do_SAK(struct tty_struct *tty) 3121 { 3122 if (!tty) 3123 return; 3124 schedule_work(&tty->SAK_work); 3125 } 3126 3127 EXPORT_SYMBOL(do_SAK); 3128 3129 static int dev_match_devt(struct device *dev, const void *data) 3130 { 3131 const dev_t *devt = data; 3132 return dev->devt == *devt; 3133 } 3134 3135 /* Must put_device() after it's unused! */ 3136 static struct device *tty_get_device(struct tty_struct *tty) 3137 { 3138 dev_t devt = tty_devnum(tty); 3139 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3140 } 3141 3142 3143 /** 3144 * alloc_tty_struct 3145 * 3146 * This subroutine allocates and initializes a tty structure. 3147 * 3148 * Locking: none - tty in question is not exposed at this point 3149 */ 3150 3151 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3152 { 3153 struct tty_struct *tty; 3154 3155 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3156 if (!tty) 3157 return NULL; 3158 3159 kref_init(&tty->kref); 3160 tty->magic = TTY_MAGIC; 3161 tty_ldisc_init(tty); 3162 tty->session = NULL; 3163 tty->pgrp = NULL; 3164 mutex_init(&tty->legacy_mutex); 3165 mutex_init(&tty->throttle_mutex); 3166 init_rwsem(&tty->termios_rwsem); 3167 mutex_init(&tty->winsize_mutex); 3168 init_ldsem(&tty->ldisc_sem); 3169 init_waitqueue_head(&tty->write_wait); 3170 init_waitqueue_head(&tty->read_wait); 3171 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3172 mutex_init(&tty->atomic_write_lock); 3173 spin_lock_init(&tty->ctrl_lock); 3174 spin_lock_init(&tty->flow_lock); 3175 spin_lock_init(&tty->files_lock); 3176 INIT_LIST_HEAD(&tty->tty_files); 3177 INIT_WORK(&tty->SAK_work, do_SAK_work); 3178 3179 tty->driver = driver; 3180 tty->ops = driver->ops; 3181 tty->index = idx; 3182 tty_line_name(driver, idx, tty->name); 3183 tty->dev = tty_get_device(tty); 3184 3185 return tty; 3186 } 3187 3188 /** 3189 * tty_put_char - write one character to a tty 3190 * @tty: tty 3191 * @ch: character 3192 * 3193 * Write one byte to the tty using the provided put_char method 3194 * if present. Returns the number of characters successfully output. 3195 * 3196 * Note: the specific put_char operation in the driver layer may go 3197 * away soon. Don't call it directly, use this method 3198 */ 3199 3200 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3201 { 3202 if (tty->ops->put_char) 3203 return tty->ops->put_char(tty, ch); 3204 return tty->ops->write(tty, &ch, 1); 3205 } 3206 EXPORT_SYMBOL_GPL(tty_put_char); 3207 3208 struct class *tty_class; 3209 3210 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3211 unsigned int index, unsigned int count) 3212 { 3213 int err; 3214 3215 /* init here, since reused cdevs cause crashes */ 3216 driver->cdevs[index] = cdev_alloc(); 3217 if (!driver->cdevs[index]) 3218 return -ENOMEM; 3219 driver->cdevs[index]->ops = &tty_fops; 3220 driver->cdevs[index]->owner = driver->owner; 3221 err = cdev_add(driver->cdevs[index], dev, count); 3222 if (err) 3223 kobject_put(&driver->cdevs[index]->kobj); 3224 return err; 3225 } 3226 3227 /** 3228 * tty_register_device - register a tty device 3229 * @driver: the tty driver that describes the tty device 3230 * @index: the index in the tty driver for this tty device 3231 * @device: a struct device that is associated with this tty device. 3232 * This field is optional, if there is no known struct device 3233 * for this tty device it can be set to NULL safely. 3234 * 3235 * Returns a pointer to the struct device for this tty device 3236 * (or ERR_PTR(-EFOO) on error). 3237 * 3238 * This call is required to be made to register an individual tty device 3239 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3240 * that bit is not set, this function should not be called by a tty 3241 * driver. 3242 * 3243 * Locking: ?? 3244 */ 3245 3246 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3247 struct device *device) 3248 { 3249 return tty_register_device_attr(driver, index, device, NULL, NULL); 3250 } 3251 EXPORT_SYMBOL(tty_register_device); 3252 3253 static void tty_device_create_release(struct device *dev) 3254 { 3255 dev_dbg(dev, "releasing...\n"); 3256 kfree(dev); 3257 } 3258 3259 /** 3260 * tty_register_device_attr - register a tty device 3261 * @driver: the tty driver that describes the tty device 3262 * @index: the index in the tty driver for this tty device 3263 * @device: a struct device that is associated with this tty device. 3264 * This field is optional, if there is no known struct device 3265 * for this tty device it can be set to NULL safely. 3266 * @drvdata: Driver data to be set to device. 3267 * @attr_grp: Attribute group to be set on device. 3268 * 3269 * Returns a pointer to the struct device for this tty device 3270 * (or ERR_PTR(-EFOO) on error). 3271 * 3272 * This call is required to be made to register an individual tty device 3273 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3274 * that bit is not set, this function should not be called by a tty 3275 * driver. 3276 * 3277 * Locking: ?? 3278 */ 3279 struct device *tty_register_device_attr(struct tty_driver *driver, 3280 unsigned index, struct device *device, 3281 void *drvdata, 3282 const struct attribute_group **attr_grp) 3283 { 3284 char name[64]; 3285 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3286 struct device *dev = NULL; 3287 int retval = -ENODEV; 3288 bool cdev = false; 3289 3290 if (index >= driver->num) { 3291 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 3292 driver->name, index); 3293 return ERR_PTR(-EINVAL); 3294 } 3295 3296 if (driver->type == TTY_DRIVER_TYPE_PTY) 3297 pty_line_name(driver, index, name); 3298 else 3299 tty_line_name(driver, index, name); 3300 3301 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3302 retval = tty_cdev_add(driver, devt, index, 1); 3303 if (retval) 3304 goto error; 3305 cdev = true; 3306 } 3307 3308 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3309 if (!dev) { 3310 retval = -ENOMEM; 3311 goto error; 3312 } 3313 3314 dev->devt = devt; 3315 dev->class = tty_class; 3316 dev->parent = device; 3317 dev->release = tty_device_create_release; 3318 dev_set_name(dev, "%s", name); 3319 dev->groups = attr_grp; 3320 dev_set_drvdata(dev, drvdata); 3321 3322 retval = device_register(dev); 3323 if (retval) 3324 goto error; 3325 3326 return dev; 3327 3328 error: 3329 put_device(dev); 3330 if (cdev) { 3331 cdev_del(driver->cdevs[index]); 3332 driver->cdevs[index] = NULL; 3333 } 3334 return ERR_PTR(retval); 3335 } 3336 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3337 3338 /** 3339 * tty_unregister_device - unregister a tty device 3340 * @driver: the tty driver that describes the tty device 3341 * @index: the index in the tty driver for this tty device 3342 * 3343 * If a tty device is registered with a call to tty_register_device() then 3344 * this function must be called when the tty device is gone. 3345 * 3346 * Locking: ?? 3347 */ 3348 3349 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3350 { 3351 device_destroy(tty_class, 3352 MKDEV(driver->major, driver->minor_start) + index); 3353 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3354 cdev_del(driver->cdevs[index]); 3355 driver->cdevs[index] = NULL; 3356 } 3357 } 3358 EXPORT_SYMBOL(tty_unregister_device); 3359 3360 /** 3361 * __tty_alloc_driver -- allocate tty driver 3362 * @lines: count of lines this driver can handle at most 3363 * @owner: module which is repsonsible for this driver 3364 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3365 * 3366 * This should not be called directly, some of the provided macros should be 3367 * used instead. Use IS_ERR and friends on @retval. 3368 */ 3369 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3370 unsigned long flags) 3371 { 3372 struct tty_driver *driver; 3373 unsigned int cdevs = 1; 3374 int err; 3375 3376 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3377 return ERR_PTR(-EINVAL); 3378 3379 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3380 if (!driver) 3381 return ERR_PTR(-ENOMEM); 3382 3383 kref_init(&driver->kref); 3384 driver->magic = TTY_DRIVER_MAGIC; 3385 driver->num = lines; 3386 driver->owner = owner; 3387 driver->flags = flags; 3388 3389 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3390 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3391 GFP_KERNEL); 3392 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3393 GFP_KERNEL); 3394 if (!driver->ttys || !driver->termios) { 3395 err = -ENOMEM; 3396 goto err_free_all; 3397 } 3398 } 3399 3400 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3401 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3402 GFP_KERNEL); 3403 if (!driver->ports) { 3404 err = -ENOMEM; 3405 goto err_free_all; 3406 } 3407 cdevs = lines; 3408 } 3409 3410 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3411 if (!driver->cdevs) { 3412 err = -ENOMEM; 3413 goto err_free_all; 3414 } 3415 3416 return driver; 3417 err_free_all: 3418 kfree(driver->ports); 3419 kfree(driver->ttys); 3420 kfree(driver->termios); 3421 kfree(driver->cdevs); 3422 kfree(driver); 3423 return ERR_PTR(err); 3424 } 3425 EXPORT_SYMBOL(__tty_alloc_driver); 3426 3427 static void destruct_tty_driver(struct kref *kref) 3428 { 3429 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3430 int i; 3431 struct ktermios *tp; 3432 3433 if (driver->flags & TTY_DRIVER_INSTALLED) { 3434 /* 3435 * Free the termios and termios_locked structures because 3436 * we don't want to get memory leaks when modular tty 3437 * drivers are removed from the kernel. 3438 */ 3439 for (i = 0; i < driver->num; i++) { 3440 tp = driver->termios[i]; 3441 if (tp) { 3442 driver->termios[i] = NULL; 3443 kfree(tp); 3444 } 3445 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3446 tty_unregister_device(driver, i); 3447 } 3448 proc_tty_unregister_driver(driver); 3449 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3450 cdev_del(driver->cdevs[0]); 3451 } 3452 kfree(driver->cdevs); 3453 kfree(driver->ports); 3454 kfree(driver->termios); 3455 kfree(driver->ttys); 3456 kfree(driver); 3457 } 3458 3459 void tty_driver_kref_put(struct tty_driver *driver) 3460 { 3461 kref_put(&driver->kref, destruct_tty_driver); 3462 } 3463 EXPORT_SYMBOL(tty_driver_kref_put); 3464 3465 void tty_set_operations(struct tty_driver *driver, 3466 const struct tty_operations *op) 3467 { 3468 driver->ops = op; 3469 }; 3470 EXPORT_SYMBOL(tty_set_operations); 3471 3472 void put_tty_driver(struct tty_driver *d) 3473 { 3474 tty_driver_kref_put(d); 3475 } 3476 EXPORT_SYMBOL(put_tty_driver); 3477 3478 /* 3479 * Called by a tty driver to register itself. 3480 */ 3481 int tty_register_driver(struct tty_driver *driver) 3482 { 3483 int error; 3484 int i; 3485 dev_t dev; 3486 struct device *d; 3487 3488 if (!driver->major) { 3489 error = alloc_chrdev_region(&dev, driver->minor_start, 3490 driver->num, driver->name); 3491 if (!error) { 3492 driver->major = MAJOR(dev); 3493 driver->minor_start = MINOR(dev); 3494 } 3495 } else { 3496 dev = MKDEV(driver->major, driver->minor_start); 3497 error = register_chrdev_region(dev, driver->num, driver->name); 3498 } 3499 if (error < 0) 3500 goto err; 3501 3502 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3503 error = tty_cdev_add(driver, dev, 0, driver->num); 3504 if (error) 3505 goto err_unreg_char; 3506 } 3507 3508 mutex_lock(&tty_mutex); 3509 list_add(&driver->tty_drivers, &tty_drivers); 3510 mutex_unlock(&tty_mutex); 3511 3512 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3513 for (i = 0; i < driver->num; i++) { 3514 d = tty_register_device(driver, i, NULL); 3515 if (IS_ERR(d)) { 3516 error = PTR_ERR(d); 3517 goto err_unreg_devs; 3518 } 3519 } 3520 } 3521 proc_tty_register_driver(driver); 3522 driver->flags |= TTY_DRIVER_INSTALLED; 3523 return 0; 3524 3525 err_unreg_devs: 3526 for (i--; i >= 0; i--) 3527 tty_unregister_device(driver, i); 3528 3529 mutex_lock(&tty_mutex); 3530 list_del(&driver->tty_drivers); 3531 mutex_unlock(&tty_mutex); 3532 3533 err_unreg_char: 3534 unregister_chrdev_region(dev, driver->num); 3535 err: 3536 return error; 3537 } 3538 EXPORT_SYMBOL(tty_register_driver); 3539 3540 /* 3541 * Called by a tty driver to unregister itself. 3542 */ 3543 int tty_unregister_driver(struct tty_driver *driver) 3544 { 3545 #if 0 3546 /* FIXME */ 3547 if (driver->refcount) 3548 return -EBUSY; 3549 #endif 3550 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3551 driver->num); 3552 mutex_lock(&tty_mutex); 3553 list_del(&driver->tty_drivers); 3554 mutex_unlock(&tty_mutex); 3555 return 0; 3556 } 3557 3558 EXPORT_SYMBOL(tty_unregister_driver); 3559 3560 dev_t tty_devnum(struct tty_struct *tty) 3561 { 3562 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3563 } 3564 EXPORT_SYMBOL(tty_devnum); 3565 3566 void tty_default_fops(struct file_operations *fops) 3567 { 3568 *fops = tty_fops; 3569 } 3570 3571 /* 3572 * Initialize the console device. This is called *early*, so 3573 * we can't necessarily depend on lots of kernel help here. 3574 * Just do some early initializations, and do the complex setup 3575 * later. 3576 */ 3577 void __init console_init(void) 3578 { 3579 initcall_t *call; 3580 3581 /* Setup the default TTY line discipline. */ 3582 n_tty_init(); 3583 3584 /* 3585 * set up the console device so that later boot sequences can 3586 * inform about problems etc.. 3587 */ 3588 call = __con_initcall_start; 3589 while (call < __con_initcall_end) { 3590 (*call)(); 3591 call++; 3592 } 3593 } 3594 3595 static char *tty_devnode(struct device *dev, umode_t *mode) 3596 { 3597 if (!mode) 3598 return NULL; 3599 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3600 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3601 *mode = 0666; 3602 return NULL; 3603 } 3604 3605 static int __init tty_class_init(void) 3606 { 3607 tty_class = class_create(THIS_MODULE, "tty"); 3608 if (IS_ERR(tty_class)) 3609 return PTR_ERR(tty_class); 3610 tty_class->devnode = tty_devnode; 3611 return 0; 3612 } 3613 3614 postcore_initcall(tty_class_init); 3615 3616 /* 3/2004 jmc: why do these devices exist? */ 3617 static struct cdev tty_cdev, console_cdev; 3618 3619 static ssize_t show_cons_active(struct device *dev, 3620 struct device_attribute *attr, char *buf) 3621 { 3622 struct console *cs[16]; 3623 int i = 0; 3624 struct console *c; 3625 ssize_t count = 0; 3626 3627 console_lock(); 3628 for_each_console(c) { 3629 if (!c->device) 3630 continue; 3631 if (!c->write) 3632 continue; 3633 if ((c->flags & CON_ENABLED) == 0) 3634 continue; 3635 cs[i++] = c; 3636 if (i >= ARRAY_SIZE(cs)) 3637 break; 3638 } 3639 while (i--) { 3640 int index = cs[i]->index; 3641 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3642 3643 /* don't resolve tty0 as some programs depend on it */ 3644 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3645 count += tty_line_name(drv, index, buf + count); 3646 else 3647 count += sprintf(buf + count, "%s%d", 3648 cs[i]->name, cs[i]->index); 3649 3650 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3651 } 3652 console_unlock(); 3653 3654 return count; 3655 } 3656 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3657 3658 static struct attribute *cons_dev_attrs[] = { 3659 &dev_attr_active.attr, 3660 NULL 3661 }; 3662 3663 ATTRIBUTE_GROUPS(cons_dev); 3664 3665 static struct device *consdev; 3666 3667 void console_sysfs_notify(void) 3668 { 3669 if (consdev) 3670 sysfs_notify(&consdev->kobj, NULL, "active"); 3671 } 3672 3673 /* 3674 * Ok, now we can initialize the rest of the tty devices and can count 3675 * on memory allocations, interrupts etc.. 3676 */ 3677 int __init tty_init(void) 3678 { 3679 cdev_init(&tty_cdev, &tty_fops); 3680 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3681 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3682 panic("Couldn't register /dev/tty driver\n"); 3683 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3684 3685 cdev_init(&console_cdev, &console_fops); 3686 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3687 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3688 panic("Couldn't register /dev/console driver\n"); 3689 consdev = device_create_with_groups(tty_class, NULL, 3690 MKDEV(TTYAUX_MAJOR, 1), NULL, 3691 cons_dev_groups, "console"); 3692 if (IS_ERR(consdev)) 3693 consdev = NULL; 3694 3695 #ifdef CONFIG_VT 3696 vty_init(&console_fops); 3697 #endif 3698 return 0; 3699 } 3700 3701