1 /* 2 * Tty buffer allocation management 3 */ 4 5 #include <linux/types.h> 6 #include <linux/errno.h> 7 #include <linux/tty.h> 8 #include <linux/tty_driver.h> 9 #include <linux/tty_flip.h> 10 #include <linux/timer.h> 11 #include <linux/string.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/init.h> 15 #include <linux/wait.h> 16 #include <linux/bitops.h> 17 #include <linux/delay.h> 18 #include <linux/module.h> 19 #include <linux/ratelimit.h> 20 21 22 #define MIN_TTYB_SIZE 256 23 #define TTYB_ALIGN_MASK 255 24 25 /* 26 * Byte threshold to limit memory consumption for flip buffers. 27 * The actual memory limit is > 2x this amount. 28 */ 29 #define TTYB_MEM_LIMIT 65536 30 31 /* 32 * We default to dicing tty buffer allocations to this many characters 33 * in order to avoid multiple page allocations. We know the size of 34 * tty_buffer itself but it must also be taken into account that the 35 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation 36 * logic this must match 37 */ 38 39 #define TTY_BUFFER_PAGE (((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF) 40 41 42 /** 43 * tty_buffer_lock_exclusive - gain exclusive access to buffer 44 * tty_buffer_unlock_exclusive - release exclusive access 45 * 46 * @port - tty_port owning the flip buffer 47 * 48 * Guarantees safe use of the line discipline's receive_buf() method by 49 * excluding the buffer work and any pending flush from using the flip 50 * buffer. Data can continue to be added concurrently to the flip buffer 51 * from the driver side. 52 * 53 * On release, the buffer work is restarted if there is data in the 54 * flip buffer 55 */ 56 57 void tty_buffer_lock_exclusive(struct tty_port *port) 58 { 59 struct tty_bufhead *buf = &port->buf; 60 61 atomic_inc(&buf->priority); 62 mutex_lock(&buf->lock); 63 } 64 65 void tty_buffer_unlock_exclusive(struct tty_port *port) 66 { 67 struct tty_bufhead *buf = &port->buf; 68 int restart; 69 70 restart = buf->head->commit != buf->head->read; 71 72 atomic_dec(&buf->priority); 73 mutex_unlock(&buf->lock); 74 if (restart) 75 queue_work(system_unbound_wq, &buf->work); 76 } 77 78 /** 79 * tty_buffer_space_avail - return unused buffer space 80 * @port - tty_port owning the flip buffer 81 * 82 * Returns the # of bytes which can be written by the driver without 83 * reaching the buffer limit. 84 * 85 * Note: this does not guarantee that memory is available to write 86 * the returned # of bytes (use tty_prepare_flip_string_xxx() to 87 * pre-allocate if memory guarantee is required). 88 */ 89 90 int tty_buffer_space_avail(struct tty_port *port) 91 { 92 int space = TTYB_MEM_LIMIT - atomic_read(&port->buf.memory_used); 93 return max(space, 0); 94 } 95 96 static void tty_buffer_reset(struct tty_buffer *p, size_t size) 97 { 98 p->used = 0; 99 p->size = size; 100 p->next = NULL; 101 p->commit = 0; 102 p->read = 0; 103 } 104 105 /** 106 * tty_buffer_free_all - free buffers used by a tty 107 * @tty: tty to free from 108 * 109 * Remove all the buffers pending on a tty whether queued with data 110 * or in the free ring. Must be called when the tty is no longer in use 111 */ 112 113 void tty_buffer_free_all(struct tty_port *port) 114 { 115 struct tty_bufhead *buf = &port->buf; 116 struct tty_buffer *p, *next; 117 struct llist_node *llist; 118 119 while ((p = buf->head) != NULL) { 120 buf->head = p->next; 121 if (p->size > 0) 122 kfree(p); 123 } 124 llist = llist_del_all(&buf->free); 125 llist_for_each_entry_safe(p, next, llist, free) 126 kfree(p); 127 128 tty_buffer_reset(&buf->sentinel, 0); 129 buf->head = &buf->sentinel; 130 buf->tail = &buf->sentinel; 131 132 atomic_set(&buf->memory_used, 0); 133 } 134 135 /** 136 * tty_buffer_alloc - allocate a tty buffer 137 * @tty: tty device 138 * @size: desired size (characters) 139 * 140 * Allocate a new tty buffer to hold the desired number of characters. 141 * We round our buffers off in 256 character chunks to get better 142 * allocation behaviour. 143 * Return NULL if out of memory or the allocation would exceed the 144 * per device queue 145 */ 146 147 static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size) 148 { 149 struct llist_node *free; 150 struct tty_buffer *p; 151 152 /* Round the buffer size out */ 153 size = __ALIGN_MASK(size, TTYB_ALIGN_MASK); 154 155 if (size <= MIN_TTYB_SIZE) { 156 free = llist_del_first(&port->buf.free); 157 if (free) { 158 p = llist_entry(free, struct tty_buffer, free); 159 goto found; 160 } 161 } 162 163 /* Should possibly check if this fails for the largest buffer we 164 have queued and recycle that ? */ 165 if (atomic_read(&port->buf.memory_used) > TTYB_MEM_LIMIT) 166 return NULL; 167 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC); 168 if (p == NULL) 169 return NULL; 170 171 found: 172 tty_buffer_reset(p, size); 173 atomic_add(size, &port->buf.memory_used); 174 return p; 175 } 176 177 /** 178 * tty_buffer_free - free a tty buffer 179 * @tty: tty owning the buffer 180 * @b: the buffer to free 181 * 182 * Free a tty buffer, or add it to the free list according to our 183 * internal strategy 184 */ 185 186 static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b) 187 { 188 struct tty_bufhead *buf = &port->buf; 189 190 /* Dumb strategy for now - should keep some stats */ 191 WARN_ON(atomic_sub_return(b->size, &buf->memory_used) < 0); 192 193 if (b->size > MIN_TTYB_SIZE) 194 kfree(b); 195 else if (b->size > 0) 196 llist_add(&b->free, &buf->free); 197 } 198 199 /** 200 * tty_buffer_flush - flush full tty buffers 201 * @tty: tty to flush 202 * 203 * flush all the buffers containing receive data. If the buffer is 204 * being processed by flush_to_ldisc then we defer the processing 205 * to that function 206 * 207 * Locking: takes buffer lock to ensure single-threaded flip buffer 208 * 'consumer' 209 */ 210 211 void tty_buffer_flush(struct tty_struct *tty) 212 { 213 struct tty_port *port = tty->port; 214 struct tty_bufhead *buf = &port->buf; 215 struct tty_buffer *next; 216 217 atomic_inc(&buf->priority); 218 219 mutex_lock(&buf->lock); 220 while ((next = buf->head->next) != NULL) { 221 tty_buffer_free(port, buf->head); 222 buf->head = next; 223 } 224 buf->head->read = buf->head->commit; 225 atomic_dec(&buf->priority); 226 mutex_unlock(&buf->lock); 227 } 228 229 /** 230 * tty_buffer_request_room - grow tty buffer if needed 231 * @tty: tty structure 232 * @size: size desired 233 * 234 * Make at least size bytes of linear space available for the tty 235 * buffer. If we fail return the size we managed to find. 236 */ 237 int tty_buffer_request_room(struct tty_port *port, size_t size) 238 { 239 struct tty_bufhead *buf = &port->buf; 240 struct tty_buffer *b, *n; 241 int left; 242 243 b = buf->tail; 244 left = b->size - b->used; 245 246 if (left < size) { 247 /* This is the slow path - looking for new buffers to use */ 248 if ((n = tty_buffer_alloc(port, size)) != NULL) { 249 buf->tail = n; 250 b->commit = b->used; 251 smp_mb(); 252 b->next = n; 253 } else 254 size = left; 255 } 256 return size; 257 } 258 EXPORT_SYMBOL_GPL(tty_buffer_request_room); 259 260 /** 261 * tty_insert_flip_string_fixed_flag - Add characters to the tty buffer 262 * @port: tty port 263 * @chars: characters 264 * @flag: flag value for each character 265 * @size: size 266 * 267 * Queue a series of bytes to the tty buffering. All the characters 268 * passed are marked with the supplied flag. Returns the number added. 269 */ 270 271 int tty_insert_flip_string_fixed_flag(struct tty_port *port, 272 const unsigned char *chars, char flag, size_t size) 273 { 274 int copied = 0; 275 do { 276 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 277 int space = tty_buffer_request_room(port, goal); 278 struct tty_buffer *tb = port->buf.tail; 279 if (unlikely(space == 0)) 280 break; 281 memcpy(char_buf_ptr(tb, tb->used), chars, space); 282 memset(flag_buf_ptr(tb, tb->used), flag, space); 283 tb->used += space; 284 copied += space; 285 chars += space; 286 /* There is a small chance that we need to split the data over 287 several buffers. If this is the case we must loop */ 288 } while (unlikely(size > copied)); 289 return copied; 290 } 291 EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag); 292 293 /** 294 * tty_insert_flip_string_flags - Add characters to the tty buffer 295 * @port: tty port 296 * @chars: characters 297 * @flags: flag bytes 298 * @size: size 299 * 300 * Queue a series of bytes to the tty buffering. For each character 301 * the flags array indicates the status of the character. Returns the 302 * number added. 303 */ 304 305 int tty_insert_flip_string_flags(struct tty_port *port, 306 const unsigned char *chars, const char *flags, size_t size) 307 { 308 int copied = 0; 309 do { 310 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 311 int space = tty_buffer_request_room(port, goal); 312 struct tty_buffer *tb = port->buf.tail; 313 if (unlikely(space == 0)) 314 break; 315 memcpy(char_buf_ptr(tb, tb->used), chars, space); 316 memcpy(flag_buf_ptr(tb, tb->used), flags, space); 317 tb->used += space; 318 copied += space; 319 chars += space; 320 flags += space; 321 /* There is a small chance that we need to split the data over 322 several buffers. If this is the case we must loop */ 323 } while (unlikely(size > copied)); 324 return copied; 325 } 326 EXPORT_SYMBOL(tty_insert_flip_string_flags); 327 328 /** 329 * tty_schedule_flip - push characters to ldisc 330 * @port: tty port to push from 331 * 332 * Takes any pending buffers and transfers their ownership to the 333 * ldisc side of the queue. It then schedules those characters for 334 * processing by the line discipline. 335 * Note that this function can only be used when the low_latency flag 336 * is unset. Otherwise the workqueue won't be flushed. 337 */ 338 339 void tty_schedule_flip(struct tty_port *port) 340 { 341 struct tty_bufhead *buf = &port->buf; 342 WARN_ON(port->low_latency); 343 344 buf->tail->commit = buf->tail->used; 345 schedule_work(&buf->work); 346 } 347 EXPORT_SYMBOL(tty_schedule_flip); 348 349 /** 350 * tty_prepare_flip_string - make room for characters 351 * @port: tty port 352 * @chars: return pointer for character write area 353 * @size: desired size 354 * 355 * Prepare a block of space in the buffer for data. Returns the length 356 * available and buffer pointer to the space which is now allocated and 357 * accounted for as ready for normal characters. This is used for drivers 358 * that need their own block copy routines into the buffer. There is no 359 * guarantee the buffer is a DMA target! 360 */ 361 362 int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars, 363 size_t size) 364 { 365 int space = tty_buffer_request_room(port, size); 366 if (likely(space)) { 367 struct tty_buffer *tb = port->buf.tail; 368 *chars = char_buf_ptr(tb, tb->used); 369 memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space); 370 tb->used += space; 371 } 372 return space; 373 } 374 EXPORT_SYMBOL_GPL(tty_prepare_flip_string); 375 376 /** 377 * tty_prepare_flip_string_flags - make room for characters 378 * @port: tty port 379 * @chars: return pointer for character write area 380 * @flags: return pointer for status flag write area 381 * @size: desired size 382 * 383 * Prepare a block of space in the buffer for data. Returns the length 384 * available and buffer pointer to the space which is now allocated and 385 * accounted for as ready for characters. This is used for drivers 386 * that need their own block copy routines into the buffer. There is no 387 * guarantee the buffer is a DMA target! 388 */ 389 390 int tty_prepare_flip_string_flags(struct tty_port *port, 391 unsigned char **chars, char **flags, size_t size) 392 { 393 int space = tty_buffer_request_room(port, size); 394 if (likely(space)) { 395 struct tty_buffer *tb = port->buf.tail; 396 *chars = char_buf_ptr(tb, tb->used); 397 *flags = flag_buf_ptr(tb, tb->used); 398 tb->used += space; 399 } 400 return space; 401 } 402 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags); 403 404 405 static int 406 receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count) 407 { 408 struct tty_ldisc *disc = tty->ldisc; 409 unsigned char *p = char_buf_ptr(head, head->read); 410 char *f = flag_buf_ptr(head, head->read); 411 412 if (disc->ops->receive_buf2) 413 count = disc->ops->receive_buf2(tty, p, f, count); 414 else { 415 count = min_t(int, count, tty->receive_room); 416 if (count) 417 disc->ops->receive_buf(tty, p, f, count); 418 } 419 head->read += count; 420 return count; 421 } 422 423 /** 424 * flush_to_ldisc 425 * @work: tty structure passed from work queue. 426 * 427 * This routine is called out of the software interrupt to flush data 428 * from the buffer chain to the line discipline. 429 * 430 * The receive_buf method is single threaded for each tty instance. 431 * 432 * Locking: takes buffer lock to ensure single-threaded flip buffer 433 * 'consumer' 434 */ 435 436 static void flush_to_ldisc(struct work_struct *work) 437 { 438 struct tty_port *port = container_of(work, struct tty_port, buf.work); 439 struct tty_bufhead *buf = &port->buf; 440 struct tty_struct *tty; 441 struct tty_ldisc *disc; 442 443 tty = port->itty; 444 if (tty == NULL) 445 return; 446 447 disc = tty_ldisc_ref(tty); 448 if (disc == NULL) 449 return; 450 451 mutex_lock(&buf->lock); 452 453 while (1) { 454 struct tty_buffer *head = buf->head; 455 int count; 456 457 /* Ldisc or user is trying to gain exclusive access */ 458 if (atomic_read(&buf->priority)) 459 break; 460 461 count = head->commit - head->read; 462 if (!count) { 463 if (head->next == NULL) 464 break; 465 buf->head = head->next; 466 tty_buffer_free(port, head); 467 continue; 468 } 469 470 count = receive_buf(tty, head, count); 471 if (!count) 472 break; 473 } 474 475 mutex_unlock(&buf->lock); 476 477 tty_ldisc_deref(disc); 478 } 479 480 /** 481 * tty_flush_to_ldisc 482 * @tty: tty to push 483 * 484 * Push the terminal flip buffers to the line discipline. 485 * 486 * Must not be called from IRQ context. 487 */ 488 void tty_flush_to_ldisc(struct tty_struct *tty) 489 { 490 if (!tty->port->low_latency) 491 flush_work(&tty->port->buf.work); 492 } 493 494 /** 495 * tty_flip_buffer_push - terminal 496 * @port: tty port to push 497 * 498 * Queue a push of the terminal flip buffers to the line discipline. This 499 * function must not be called from IRQ context if port->low_latency is 500 * set. 501 * 502 * In the event of the queue being busy for flipping the work will be 503 * held off and retried later. 504 */ 505 506 void tty_flip_buffer_push(struct tty_port *port) 507 { 508 struct tty_bufhead *buf = &port->buf; 509 510 buf->tail->commit = buf->tail->used; 511 512 if (port->low_latency) 513 flush_to_ldisc(&buf->work); 514 else 515 schedule_work(&buf->work); 516 } 517 EXPORT_SYMBOL(tty_flip_buffer_push); 518 519 /** 520 * tty_buffer_init - prepare a tty buffer structure 521 * @tty: tty to initialise 522 * 523 * Set up the initial state of the buffer management for a tty device. 524 * Must be called before the other tty buffer functions are used. 525 */ 526 527 void tty_buffer_init(struct tty_port *port) 528 { 529 struct tty_bufhead *buf = &port->buf; 530 531 mutex_init(&buf->lock); 532 tty_buffer_reset(&buf->sentinel, 0); 533 buf->head = &buf->sentinel; 534 buf->tail = &buf->sentinel; 535 init_llist_head(&buf->free); 536 atomic_set(&buf->memory_used, 0); 537 atomic_set(&buf->priority, 0); 538 INIT_WORK(&buf->work, flush_to_ldisc); 539 } 540