1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Tty buffer allocation management 4 */ 5 6 #include <linux/types.h> 7 #include <linux/errno.h> 8 #include <linux/tty.h> 9 #include <linux/tty_driver.h> 10 #include <linux/tty_flip.h> 11 #include <linux/timer.h> 12 #include <linux/string.h> 13 #include <linux/slab.h> 14 #include <linux/sched.h> 15 #include <linux/wait.h> 16 #include <linux/bitops.h> 17 #include <linux/delay.h> 18 #include <linux/module.h> 19 #include <linux/ratelimit.h> 20 21 22 #define MIN_TTYB_SIZE 256 23 #define TTYB_ALIGN_MASK 255 24 25 /* 26 * Byte threshold to limit memory consumption for flip buffers. 27 * The actual memory limit is > 2x this amount. 28 */ 29 #define TTYB_DEFAULT_MEM_LIMIT 65536 30 31 /* 32 * We default to dicing tty buffer allocations to this many characters 33 * in order to avoid multiple page allocations. We know the size of 34 * tty_buffer itself but it must also be taken into account that the 35 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation 36 * logic this must match 37 */ 38 39 #define TTY_BUFFER_PAGE (((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF) 40 41 /** 42 * tty_buffer_lock_exclusive - gain exclusive access to buffer 43 * tty_buffer_unlock_exclusive - release exclusive access 44 * 45 * @port - tty_port owning the flip buffer 46 * 47 * Guarantees safe use of the line discipline's receive_buf() method by 48 * excluding the buffer work and any pending flush from using the flip 49 * buffer. Data can continue to be added concurrently to the flip buffer 50 * from the driver side. 51 * 52 * On release, the buffer work is restarted if there is data in the 53 * flip buffer 54 */ 55 56 void tty_buffer_lock_exclusive(struct tty_port *port) 57 { 58 struct tty_bufhead *buf = &port->buf; 59 60 atomic_inc(&buf->priority); 61 mutex_lock(&buf->lock); 62 } 63 EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive); 64 65 void tty_buffer_unlock_exclusive(struct tty_port *port) 66 { 67 struct tty_bufhead *buf = &port->buf; 68 int restart; 69 70 restart = buf->head->commit != buf->head->read; 71 72 atomic_dec(&buf->priority); 73 mutex_unlock(&buf->lock); 74 if (restart) 75 queue_work(system_unbound_wq, &buf->work); 76 } 77 EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive); 78 79 /** 80 * tty_buffer_space_avail - return unused buffer space 81 * @port - tty_port owning the flip buffer 82 * 83 * Returns the # of bytes which can be written by the driver without 84 * reaching the buffer limit. 85 * 86 * Note: this does not guarantee that memory is available to write 87 * the returned # of bytes (use tty_prepare_flip_string_xxx() to 88 * pre-allocate if memory guarantee is required). 89 */ 90 91 int tty_buffer_space_avail(struct tty_port *port) 92 { 93 int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used); 94 return max(space, 0); 95 } 96 EXPORT_SYMBOL_GPL(tty_buffer_space_avail); 97 98 static void tty_buffer_reset(struct tty_buffer *p, size_t size) 99 { 100 p->used = 0; 101 p->size = size; 102 p->next = NULL; 103 p->commit = 0; 104 p->read = 0; 105 p->flags = 0; 106 } 107 108 /** 109 * tty_buffer_free_all - free buffers used by a tty 110 * @tty: tty to free from 111 * 112 * Remove all the buffers pending on a tty whether queued with data 113 * or in the free ring. Must be called when the tty is no longer in use 114 */ 115 116 void tty_buffer_free_all(struct tty_port *port) 117 { 118 struct tty_bufhead *buf = &port->buf; 119 struct tty_buffer *p, *next; 120 struct llist_node *llist; 121 122 while ((p = buf->head) != NULL) { 123 buf->head = p->next; 124 if (p->size > 0) 125 kfree(p); 126 } 127 llist = llist_del_all(&buf->free); 128 llist_for_each_entry_safe(p, next, llist, free) 129 kfree(p); 130 131 tty_buffer_reset(&buf->sentinel, 0); 132 buf->head = &buf->sentinel; 133 buf->tail = &buf->sentinel; 134 135 atomic_set(&buf->mem_used, 0); 136 } 137 138 /** 139 * tty_buffer_alloc - allocate a tty buffer 140 * @tty: tty device 141 * @size: desired size (characters) 142 * 143 * Allocate a new tty buffer to hold the desired number of characters. 144 * We round our buffers off in 256 character chunks to get better 145 * allocation behaviour. 146 * Return NULL if out of memory or the allocation would exceed the 147 * per device queue 148 */ 149 150 static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size) 151 { 152 struct llist_node *free; 153 struct tty_buffer *p; 154 155 /* Round the buffer size out */ 156 size = __ALIGN_MASK(size, TTYB_ALIGN_MASK); 157 158 if (size <= MIN_TTYB_SIZE) { 159 free = llist_del_first(&port->buf.free); 160 if (free) { 161 p = llist_entry(free, struct tty_buffer, free); 162 goto found; 163 } 164 } 165 166 /* Should possibly check if this fails for the largest buffer we 167 have queued and recycle that ? */ 168 if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit) 169 return NULL; 170 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC); 171 if (p == NULL) 172 return NULL; 173 174 found: 175 tty_buffer_reset(p, size); 176 atomic_add(size, &port->buf.mem_used); 177 return p; 178 } 179 180 /** 181 * tty_buffer_free - free a tty buffer 182 * @tty: tty owning the buffer 183 * @b: the buffer to free 184 * 185 * Free a tty buffer, or add it to the free list according to our 186 * internal strategy 187 */ 188 189 static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b) 190 { 191 struct tty_bufhead *buf = &port->buf; 192 193 /* Dumb strategy for now - should keep some stats */ 194 WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0); 195 196 if (b->size > MIN_TTYB_SIZE) 197 kfree(b); 198 else if (b->size > 0) 199 llist_add(&b->free, &buf->free); 200 } 201 202 /** 203 * tty_buffer_flush - flush full tty buffers 204 * @tty: tty to flush 205 * @ld: optional ldisc ptr (must be referenced) 206 * 207 * flush all the buffers containing receive data. If ld != NULL, 208 * flush the ldisc input buffer. 209 * 210 * Locking: takes buffer lock to ensure single-threaded flip buffer 211 * 'consumer' 212 */ 213 214 void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld) 215 { 216 struct tty_port *port = tty->port; 217 struct tty_bufhead *buf = &port->buf; 218 struct tty_buffer *next; 219 220 atomic_inc(&buf->priority); 221 222 mutex_lock(&buf->lock); 223 /* paired w/ release in __tty_buffer_request_room; ensures there are 224 * no pending memory accesses to the freed buffer 225 */ 226 while ((next = smp_load_acquire(&buf->head->next)) != NULL) { 227 tty_buffer_free(port, buf->head); 228 buf->head = next; 229 } 230 buf->head->read = buf->head->commit; 231 232 if (ld && ld->ops->flush_buffer) 233 ld->ops->flush_buffer(tty); 234 235 atomic_dec(&buf->priority); 236 mutex_unlock(&buf->lock); 237 } 238 239 /** 240 * tty_buffer_request_room - grow tty buffer if needed 241 * @tty: tty structure 242 * @size: size desired 243 * @flags: buffer flags if new buffer allocated (default = 0) 244 * 245 * Make at least size bytes of linear space available for the tty 246 * buffer. If we fail return the size we managed to find. 247 * 248 * Will change over to a new buffer if the current buffer is encoded as 249 * TTY_NORMAL (so has no flags buffer) and the new buffer requires 250 * a flags buffer. 251 */ 252 static int __tty_buffer_request_room(struct tty_port *port, size_t size, 253 int flags) 254 { 255 struct tty_bufhead *buf = &port->buf; 256 struct tty_buffer *b, *n; 257 int left, change; 258 259 b = buf->tail; 260 if (b->flags & TTYB_NORMAL) 261 left = 2 * b->size - b->used; 262 else 263 left = b->size - b->used; 264 265 change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL); 266 if (change || left < size) { 267 /* This is the slow path - looking for new buffers to use */ 268 n = tty_buffer_alloc(port, size); 269 if (n != NULL) { 270 n->flags = flags; 271 buf->tail = n; 272 /* paired w/ acquire in flush_to_ldisc(); ensures 273 * flush_to_ldisc() sees buffer data. 274 */ 275 smp_store_release(&b->commit, b->used); 276 /* paired w/ acquire in flush_to_ldisc(); ensures the 277 * latest commit value can be read before the head is 278 * advanced to the next buffer 279 */ 280 smp_store_release(&b->next, n); 281 } else if (change) 282 size = 0; 283 else 284 size = left; 285 } 286 return size; 287 } 288 289 int tty_buffer_request_room(struct tty_port *port, size_t size) 290 { 291 return __tty_buffer_request_room(port, size, 0); 292 } 293 EXPORT_SYMBOL_GPL(tty_buffer_request_room); 294 295 /** 296 * tty_insert_flip_string_fixed_flag - Add characters to the tty buffer 297 * @port: tty port 298 * @chars: characters 299 * @flag: flag value for each character 300 * @size: size 301 * 302 * Queue a series of bytes to the tty buffering. All the characters 303 * passed are marked with the supplied flag. Returns the number added. 304 */ 305 306 int tty_insert_flip_string_fixed_flag(struct tty_port *port, 307 const unsigned char *chars, char flag, size_t size) 308 { 309 int copied = 0; 310 do { 311 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 312 int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0; 313 int space = __tty_buffer_request_room(port, goal, flags); 314 struct tty_buffer *tb = port->buf.tail; 315 if (unlikely(space == 0)) 316 break; 317 memcpy(char_buf_ptr(tb, tb->used), chars, space); 318 if (~tb->flags & TTYB_NORMAL) 319 memset(flag_buf_ptr(tb, tb->used), flag, space); 320 tb->used += space; 321 copied += space; 322 chars += space; 323 /* There is a small chance that we need to split the data over 324 several buffers. If this is the case we must loop */ 325 } while (unlikely(size > copied)); 326 return copied; 327 } 328 EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag); 329 330 /** 331 * tty_insert_flip_string_flags - Add characters to the tty buffer 332 * @port: tty port 333 * @chars: characters 334 * @flags: flag bytes 335 * @size: size 336 * 337 * Queue a series of bytes to the tty buffering. For each character 338 * the flags array indicates the status of the character. Returns the 339 * number added. 340 */ 341 342 int tty_insert_flip_string_flags(struct tty_port *port, 343 const unsigned char *chars, const char *flags, size_t size) 344 { 345 int copied = 0; 346 do { 347 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 348 int space = tty_buffer_request_room(port, goal); 349 struct tty_buffer *tb = port->buf.tail; 350 if (unlikely(space == 0)) 351 break; 352 memcpy(char_buf_ptr(tb, tb->used), chars, space); 353 memcpy(flag_buf_ptr(tb, tb->used), flags, space); 354 tb->used += space; 355 copied += space; 356 chars += space; 357 flags += space; 358 /* There is a small chance that we need to split the data over 359 several buffers. If this is the case we must loop */ 360 } while (unlikely(size > copied)); 361 return copied; 362 } 363 EXPORT_SYMBOL(tty_insert_flip_string_flags); 364 365 /** 366 * __tty_insert_flip_char - Add one character to the tty buffer 367 * @port: tty port 368 * @ch: character 369 * @flag: flag byte 370 * 371 * Queue a single byte to the tty buffering, with an optional flag. 372 * This is the slow path of tty_insert_flip_char. 373 */ 374 int __tty_insert_flip_char(struct tty_port *port, unsigned char ch, char flag) 375 { 376 struct tty_buffer *tb; 377 int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0; 378 379 if (!__tty_buffer_request_room(port, 1, flags)) 380 return 0; 381 382 tb = port->buf.tail; 383 if (~tb->flags & TTYB_NORMAL) 384 *flag_buf_ptr(tb, tb->used) = flag; 385 *char_buf_ptr(tb, tb->used++) = ch; 386 387 return 1; 388 } 389 EXPORT_SYMBOL(__tty_insert_flip_char); 390 391 /** 392 * tty_schedule_flip - push characters to ldisc 393 * @port: tty port to push from 394 * 395 * Takes any pending buffers and transfers their ownership to the 396 * ldisc side of the queue. It then schedules those characters for 397 * processing by the line discipline. 398 */ 399 400 void tty_schedule_flip(struct tty_port *port) 401 { 402 struct tty_bufhead *buf = &port->buf; 403 404 /* paired w/ acquire in flush_to_ldisc(); ensures 405 * flush_to_ldisc() sees buffer data. 406 */ 407 smp_store_release(&buf->tail->commit, buf->tail->used); 408 queue_work(system_unbound_wq, &buf->work); 409 } 410 EXPORT_SYMBOL(tty_schedule_flip); 411 412 /** 413 * tty_prepare_flip_string - make room for characters 414 * @port: tty port 415 * @chars: return pointer for character write area 416 * @size: desired size 417 * 418 * Prepare a block of space in the buffer for data. Returns the length 419 * available and buffer pointer to the space which is now allocated and 420 * accounted for as ready for normal characters. This is used for drivers 421 * that need their own block copy routines into the buffer. There is no 422 * guarantee the buffer is a DMA target! 423 */ 424 425 int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars, 426 size_t size) 427 { 428 int space = __tty_buffer_request_room(port, size, TTYB_NORMAL); 429 if (likely(space)) { 430 struct tty_buffer *tb = port->buf.tail; 431 *chars = char_buf_ptr(tb, tb->used); 432 if (~tb->flags & TTYB_NORMAL) 433 memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space); 434 tb->used += space; 435 } 436 return space; 437 } 438 EXPORT_SYMBOL_GPL(tty_prepare_flip_string); 439 440 /** 441 * tty_ldisc_receive_buf - forward data to line discipline 442 * @ld: line discipline to process input 443 * @p: char buffer 444 * @f: TTY_* flags buffer 445 * @count: number of bytes to process 446 * 447 * Callers other than flush_to_ldisc() need to exclude the kworker 448 * from concurrent use of the line discipline, see paste_selection(). 449 * 450 * Returns the number of bytes processed 451 */ 452 int tty_ldisc_receive_buf(struct tty_ldisc *ld, const unsigned char *p, 453 char *f, int count) 454 { 455 if (ld->ops->receive_buf2) 456 count = ld->ops->receive_buf2(ld->tty, p, f, count); 457 else { 458 count = min_t(int, count, ld->tty->receive_room); 459 if (count && ld->ops->receive_buf) 460 ld->ops->receive_buf(ld->tty, p, f, count); 461 } 462 return count; 463 } 464 EXPORT_SYMBOL_GPL(tty_ldisc_receive_buf); 465 466 static int 467 receive_buf(struct tty_port *port, struct tty_buffer *head, int count) 468 { 469 unsigned char *p = char_buf_ptr(head, head->read); 470 char *f = NULL; 471 472 if (~head->flags & TTYB_NORMAL) 473 f = flag_buf_ptr(head, head->read); 474 475 return port->client_ops->receive_buf(port, p, f, count); 476 } 477 478 /** 479 * flush_to_ldisc 480 * @work: tty structure passed from work queue. 481 * 482 * This routine is called out of the software interrupt to flush data 483 * from the buffer chain to the line discipline. 484 * 485 * The receive_buf method is single threaded for each tty instance. 486 * 487 * Locking: takes buffer lock to ensure single-threaded flip buffer 488 * 'consumer' 489 */ 490 491 static void flush_to_ldisc(struct work_struct *work) 492 { 493 struct tty_port *port = container_of(work, struct tty_port, buf.work); 494 struct tty_bufhead *buf = &port->buf; 495 496 mutex_lock(&buf->lock); 497 498 while (1) { 499 struct tty_buffer *head = buf->head; 500 struct tty_buffer *next; 501 int count; 502 503 /* Ldisc or user is trying to gain exclusive access */ 504 if (atomic_read(&buf->priority)) 505 break; 506 507 /* paired w/ release in __tty_buffer_request_room(); 508 * ensures commit value read is not stale if the head 509 * is advancing to the next buffer 510 */ 511 next = smp_load_acquire(&head->next); 512 /* paired w/ release in __tty_buffer_request_room() or in 513 * tty_buffer_flush(); ensures we see the committed buffer data 514 */ 515 count = smp_load_acquire(&head->commit) - head->read; 516 if (!count) { 517 if (next == NULL) 518 break; 519 buf->head = next; 520 tty_buffer_free(port, head); 521 continue; 522 } 523 524 count = receive_buf(port, head, count); 525 if (!count) 526 break; 527 head->read += count; 528 } 529 530 mutex_unlock(&buf->lock); 531 532 } 533 534 /** 535 * tty_flip_buffer_push - terminal 536 * @port: tty port to push 537 * 538 * Queue a push of the terminal flip buffers to the line discipline. 539 * Can be called from IRQ/atomic context. 540 * 541 * In the event of the queue being busy for flipping the work will be 542 * held off and retried later. 543 */ 544 545 void tty_flip_buffer_push(struct tty_port *port) 546 { 547 tty_schedule_flip(port); 548 } 549 EXPORT_SYMBOL(tty_flip_buffer_push); 550 551 /** 552 * tty_buffer_init - prepare a tty buffer structure 553 * @tty: tty to initialise 554 * 555 * Set up the initial state of the buffer management for a tty device. 556 * Must be called before the other tty buffer functions are used. 557 */ 558 559 void tty_buffer_init(struct tty_port *port) 560 { 561 struct tty_bufhead *buf = &port->buf; 562 563 mutex_init(&buf->lock); 564 tty_buffer_reset(&buf->sentinel, 0); 565 buf->head = &buf->sentinel; 566 buf->tail = &buf->sentinel; 567 init_llist_head(&buf->free); 568 atomic_set(&buf->mem_used, 0); 569 atomic_set(&buf->priority, 0); 570 INIT_WORK(&buf->work, flush_to_ldisc); 571 buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT; 572 } 573 574 /** 575 * tty_buffer_set_limit - change the tty buffer memory limit 576 * @port: tty port to change 577 * 578 * Change the tty buffer memory limit. 579 * Must be called before the other tty buffer functions are used. 580 */ 581 582 int tty_buffer_set_limit(struct tty_port *port, int limit) 583 { 584 if (limit < MIN_TTYB_SIZE) 585 return -EINVAL; 586 port->buf.mem_limit = limit; 587 return 0; 588 } 589 EXPORT_SYMBOL_GPL(tty_buffer_set_limit); 590 591 /* slave ptys can claim nested buffer lock when handling BRK and INTR */ 592 void tty_buffer_set_lock_subclass(struct tty_port *port) 593 { 594 lockdep_set_subclass(&port->buf.lock, TTY_LOCK_SLAVE); 595 } 596 597 bool tty_buffer_restart_work(struct tty_port *port) 598 { 599 return queue_work(system_unbound_wq, &port->buf.work); 600 } 601 602 bool tty_buffer_cancel_work(struct tty_port *port) 603 { 604 return cancel_work_sync(&port->buf.work); 605 } 606 607 void tty_buffer_flush_work(struct tty_port *port) 608 { 609 flush_work(&port->buf.work); 610 } 611