xref: /linux/drivers/tty/synclink_gt.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Device driver for Microgate SyncLink GT serial adapters.
3  *
4  * written by Paul Fulghum for Microgate Corporation
5  * paulkf@microgate.com
6  *
7  * Microgate and SyncLink are trademarks of Microgate Corporation
8  *
9  * This code is released under the GNU General Public License (GPL)
10  *
11  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
12  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
13  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
14  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
15  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
16  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
17  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
18  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
19  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
20  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
21  * OF THE POSSIBILITY OF SUCH DAMAGE.
22  */
23 
24 /*
25  * DEBUG OUTPUT DEFINITIONS
26  *
27  * uncomment lines below to enable specific types of debug output
28  *
29  * DBGINFO   information - most verbose output
30  * DBGERR    serious errors
31  * DBGBH     bottom half service routine debugging
32  * DBGISR    interrupt service routine debugging
33  * DBGDATA   output receive and transmit data
34  * DBGTBUF   output transmit DMA buffers and registers
35  * DBGRBUF   output receive DMA buffers and registers
36  */
37 
38 #define DBGINFO(fmt) if (debug_level >= DEBUG_LEVEL_INFO) printk fmt
39 #define DBGERR(fmt) if (debug_level >= DEBUG_LEVEL_ERROR) printk fmt
40 #define DBGBH(fmt) if (debug_level >= DEBUG_LEVEL_BH) printk fmt
41 #define DBGISR(fmt) if (debug_level >= DEBUG_LEVEL_ISR) printk fmt
42 #define DBGDATA(info, buf, size, label) if (debug_level >= DEBUG_LEVEL_DATA) trace_block((info), (buf), (size), (label))
43 /*#define DBGTBUF(info) dump_tbufs(info)*/
44 /*#define DBGRBUF(info) dump_rbufs(info)*/
45 
46 
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/signal.h>
50 #include <linux/sched.h>
51 #include <linux/timer.h>
52 #include <linux/interrupt.h>
53 #include <linux/pci.h>
54 #include <linux/tty.h>
55 #include <linux/tty_flip.h>
56 #include <linux/serial.h>
57 #include <linux/major.h>
58 #include <linux/string.h>
59 #include <linux/fcntl.h>
60 #include <linux/ptrace.h>
61 #include <linux/ioport.h>
62 #include <linux/mm.h>
63 #include <linux/seq_file.h>
64 #include <linux/slab.h>
65 #include <linux/netdevice.h>
66 #include <linux/vmalloc.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/ioctl.h>
70 #include <linux/termios.h>
71 #include <linux/bitops.h>
72 #include <linux/workqueue.h>
73 #include <linux/hdlc.h>
74 #include <linux/synclink.h>
75 
76 #include <asm/io.h>
77 #include <asm/irq.h>
78 #include <asm/dma.h>
79 #include <asm/types.h>
80 #include <linux/uaccess.h>
81 
82 #if defined(CONFIG_HDLC) || (defined(CONFIG_HDLC_MODULE) && defined(CONFIG_SYNCLINK_GT_MODULE))
83 #define SYNCLINK_GENERIC_HDLC 1
84 #else
85 #define SYNCLINK_GENERIC_HDLC 0
86 #endif
87 
88 /*
89  * module identification
90  */
91 static char *driver_name     = "SyncLink GT";
92 static char *slgt_driver_name = "synclink_gt";
93 static char *tty_dev_prefix  = "ttySLG";
94 MODULE_LICENSE("GPL");
95 #define MGSL_MAGIC 0x5401
96 #define MAX_DEVICES 32
97 
98 static struct pci_device_id pci_table[] = {
99 	{PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
100 	{PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT2_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
101 	{PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT4_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
102 	{PCI_VENDOR_ID_MICROGATE, SYNCLINK_AC_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
103 	{0,}, /* terminate list */
104 };
105 MODULE_DEVICE_TABLE(pci, pci_table);
106 
107 static int  init_one(struct pci_dev *dev,const struct pci_device_id *ent);
108 static void remove_one(struct pci_dev *dev);
109 static struct pci_driver pci_driver = {
110 	.name		= "synclink_gt",
111 	.id_table	= pci_table,
112 	.probe		= init_one,
113 	.remove		= remove_one,
114 };
115 
116 static bool pci_registered;
117 
118 /*
119  * module configuration and status
120  */
121 static struct slgt_info *slgt_device_list;
122 static int slgt_device_count;
123 
124 static int ttymajor;
125 static int debug_level;
126 static int maxframe[MAX_DEVICES];
127 
128 module_param(ttymajor, int, 0);
129 module_param(debug_level, int, 0);
130 module_param_array(maxframe, int, NULL, 0);
131 
132 MODULE_PARM_DESC(ttymajor, "TTY major device number override: 0=auto assigned");
133 MODULE_PARM_DESC(debug_level, "Debug syslog output: 0=disabled, 1 to 5=increasing detail");
134 MODULE_PARM_DESC(maxframe, "Maximum frame size used by device (4096 to 65535)");
135 
136 /*
137  * tty support and callbacks
138  */
139 static struct tty_driver *serial_driver;
140 
141 static int  open(struct tty_struct *tty, struct file * filp);
142 static void close(struct tty_struct *tty, struct file * filp);
143 static void hangup(struct tty_struct *tty);
144 static void set_termios(struct tty_struct *tty, struct ktermios *old_termios);
145 
146 static int  write(struct tty_struct *tty, const unsigned char *buf, int count);
147 static int put_char(struct tty_struct *tty, unsigned char ch);
148 static void send_xchar(struct tty_struct *tty, char ch);
149 static void wait_until_sent(struct tty_struct *tty, int timeout);
150 static int  write_room(struct tty_struct *tty);
151 static void flush_chars(struct tty_struct *tty);
152 static void flush_buffer(struct tty_struct *tty);
153 static void tx_hold(struct tty_struct *tty);
154 static void tx_release(struct tty_struct *tty);
155 
156 static int  ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg);
157 static int  chars_in_buffer(struct tty_struct *tty);
158 static void throttle(struct tty_struct * tty);
159 static void unthrottle(struct tty_struct * tty);
160 static int set_break(struct tty_struct *tty, int break_state);
161 
162 /*
163  * generic HDLC support and callbacks
164  */
165 #if SYNCLINK_GENERIC_HDLC
166 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
167 static void hdlcdev_tx_done(struct slgt_info *info);
168 static void hdlcdev_rx(struct slgt_info *info, char *buf, int size);
169 static int  hdlcdev_init(struct slgt_info *info);
170 static void hdlcdev_exit(struct slgt_info *info);
171 #endif
172 
173 
174 /*
175  * device specific structures, macros and functions
176  */
177 
178 #define SLGT_MAX_PORTS 4
179 #define SLGT_REG_SIZE  256
180 
181 /*
182  * conditional wait facility
183  */
184 struct cond_wait {
185 	struct cond_wait *next;
186 	wait_queue_head_t q;
187 	wait_queue_t wait;
188 	unsigned int data;
189 };
190 static void init_cond_wait(struct cond_wait *w, unsigned int data);
191 static void add_cond_wait(struct cond_wait **head, struct cond_wait *w);
192 static void remove_cond_wait(struct cond_wait **head, struct cond_wait *w);
193 static void flush_cond_wait(struct cond_wait **head);
194 
195 /*
196  * DMA buffer descriptor and access macros
197  */
198 struct slgt_desc
199 {
200 	__le16 count;
201 	__le16 status;
202 	__le32 pbuf;  /* physical address of data buffer */
203 	__le32 next;  /* physical address of next descriptor */
204 
205 	/* driver book keeping */
206 	char *buf;          /* virtual  address of data buffer */
207     	unsigned int pdesc; /* physical address of this descriptor */
208 	dma_addr_t buf_dma_addr;
209 	unsigned short buf_count;
210 };
211 
212 #define set_desc_buffer(a,b) (a).pbuf = cpu_to_le32((unsigned int)(b))
213 #define set_desc_next(a,b) (a).next   = cpu_to_le32((unsigned int)(b))
214 #define set_desc_count(a,b)(a).count  = cpu_to_le16((unsigned short)(b))
215 #define set_desc_eof(a,b)  (a).status = cpu_to_le16((b) ? (le16_to_cpu((a).status) | BIT0) : (le16_to_cpu((a).status) & ~BIT0))
216 #define set_desc_status(a, b) (a).status = cpu_to_le16((unsigned short)(b))
217 #define desc_count(a)      (le16_to_cpu((a).count))
218 #define desc_status(a)     (le16_to_cpu((a).status))
219 #define desc_complete(a)   (le16_to_cpu((a).status) & BIT15)
220 #define desc_eof(a)        (le16_to_cpu((a).status) & BIT2)
221 #define desc_crc_error(a)  (le16_to_cpu((a).status) & BIT1)
222 #define desc_abort(a)      (le16_to_cpu((a).status) & BIT0)
223 #define desc_residue(a)    ((le16_to_cpu((a).status) & 0x38) >> 3)
224 
225 struct _input_signal_events {
226 	int ri_up;
227 	int ri_down;
228 	int dsr_up;
229 	int dsr_down;
230 	int dcd_up;
231 	int dcd_down;
232 	int cts_up;
233 	int cts_down;
234 };
235 
236 /*
237  * device instance data structure
238  */
239 struct slgt_info {
240 	void *if_ptr;		/* General purpose pointer (used by SPPP) */
241 	struct tty_port port;
242 
243 	struct slgt_info *next_device;	/* device list link */
244 
245 	int magic;
246 
247 	char device_name[25];
248 	struct pci_dev *pdev;
249 
250 	int port_count;  /* count of ports on adapter */
251 	int adapter_num; /* adapter instance number */
252 	int port_num;    /* port instance number */
253 
254 	/* array of pointers to port contexts on this adapter */
255 	struct slgt_info *port_array[SLGT_MAX_PORTS];
256 
257 	int			line;		/* tty line instance number */
258 
259 	struct mgsl_icount	icount;
260 
261 	int			timeout;
262 	int			x_char;		/* xon/xoff character */
263 	unsigned int		read_status_mask;
264 	unsigned int 		ignore_status_mask;
265 
266 	wait_queue_head_t	status_event_wait_q;
267 	wait_queue_head_t	event_wait_q;
268 	struct timer_list	tx_timer;
269 	struct timer_list	rx_timer;
270 
271 	unsigned int            gpio_present;
272 	struct cond_wait        *gpio_wait_q;
273 
274 	spinlock_t lock;	/* spinlock for synchronizing with ISR */
275 
276 	struct work_struct task;
277 	u32 pending_bh;
278 	bool bh_requested;
279 	bool bh_running;
280 
281 	int isr_overflow;
282 	bool irq_requested;	/* true if IRQ requested */
283 	bool irq_occurred;	/* for diagnostics use */
284 
285 	/* device configuration */
286 
287 	unsigned int bus_type;
288 	unsigned int irq_level;
289 	unsigned long irq_flags;
290 
291 	unsigned char __iomem * reg_addr;  /* memory mapped registers address */
292 	u32 phys_reg_addr;
293 	bool reg_addr_requested;
294 
295 	MGSL_PARAMS params;       /* communications parameters */
296 	u32 idle_mode;
297 	u32 max_frame_size;       /* as set by device config */
298 
299 	unsigned int rbuf_fill_level;
300 	unsigned int rx_pio;
301 	unsigned int if_mode;
302 	unsigned int base_clock;
303 	unsigned int xsync;
304 	unsigned int xctrl;
305 
306 	/* device status */
307 
308 	bool rx_enabled;
309 	bool rx_restart;
310 
311 	bool tx_enabled;
312 	bool tx_active;
313 
314 	unsigned char signals;    /* serial signal states */
315 	int init_error;  /* initialization error */
316 
317 	unsigned char *tx_buf;
318 	int tx_count;
319 
320 	char *flag_buf;
321 	bool drop_rts_on_tx_done;
322 	struct	_input_signal_events	input_signal_events;
323 
324 	int dcd_chkcount;	/* check counts to prevent */
325 	int cts_chkcount;	/* too many IRQs if a signal */
326 	int dsr_chkcount;	/* is floating */
327 	int ri_chkcount;
328 
329 	char *bufs;		/* virtual address of DMA buffer lists */
330 	dma_addr_t bufs_dma_addr; /* physical address of buffer descriptors */
331 
332 	unsigned int rbuf_count;
333 	struct slgt_desc *rbufs;
334 	unsigned int rbuf_current;
335 	unsigned int rbuf_index;
336 	unsigned int rbuf_fill_index;
337 	unsigned short rbuf_fill_count;
338 
339 	unsigned int tbuf_count;
340 	struct slgt_desc *tbufs;
341 	unsigned int tbuf_current;
342 	unsigned int tbuf_start;
343 
344 	unsigned char *tmp_rbuf;
345 	unsigned int tmp_rbuf_count;
346 
347 	/* SPPP/Cisco HDLC device parts */
348 
349 	int netcount;
350 	spinlock_t netlock;
351 #if SYNCLINK_GENERIC_HDLC
352 	struct net_device *netdev;
353 #endif
354 
355 };
356 
357 static MGSL_PARAMS default_params = {
358 	.mode            = MGSL_MODE_HDLC,
359 	.loopback        = 0,
360 	.flags           = HDLC_FLAG_UNDERRUN_ABORT15,
361 	.encoding        = HDLC_ENCODING_NRZI_SPACE,
362 	.clock_speed     = 0,
363 	.addr_filter     = 0xff,
364 	.crc_type        = HDLC_CRC_16_CCITT,
365 	.preamble_length = HDLC_PREAMBLE_LENGTH_8BITS,
366 	.preamble        = HDLC_PREAMBLE_PATTERN_NONE,
367 	.data_rate       = 9600,
368 	.data_bits       = 8,
369 	.stop_bits       = 1,
370 	.parity          = ASYNC_PARITY_NONE
371 };
372 
373 
374 #define BH_RECEIVE  1
375 #define BH_TRANSMIT 2
376 #define BH_STATUS   4
377 #define IO_PIN_SHUTDOWN_LIMIT 100
378 
379 #define DMABUFSIZE 256
380 #define DESC_LIST_SIZE 4096
381 
382 #define MASK_PARITY  BIT1
383 #define MASK_FRAMING BIT0
384 #define MASK_BREAK   BIT14
385 #define MASK_OVERRUN BIT4
386 
387 #define GSR   0x00 /* global status */
388 #define JCR   0x04 /* JTAG control */
389 #define IODR  0x08 /* GPIO direction */
390 #define IOER  0x0c /* GPIO interrupt enable */
391 #define IOVR  0x10 /* GPIO value */
392 #define IOSR  0x14 /* GPIO interrupt status */
393 #define TDR   0x80 /* tx data */
394 #define RDR   0x80 /* rx data */
395 #define TCR   0x82 /* tx control */
396 #define TIR   0x84 /* tx idle */
397 #define TPR   0x85 /* tx preamble */
398 #define RCR   0x86 /* rx control */
399 #define VCR   0x88 /* V.24 control */
400 #define CCR   0x89 /* clock control */
401 #define BDR   0x8a /* baud divisor */
402 #define SCR   0x8c /* serial control */
403 #define SSR   0x8e /* serial status */
404 #define RDCSR 0x90 /* rx DMA control/status */
405 #define TDCSR 0x94 /* tx DMA control/status */
406 #define RDDAR 0x98 /* rx DMA descriptor address */
407 #define TDDAR 0x9c /* tx DMA descriptor address */
408 #define XSR   0x40 /* extended sync pattern */
409 #define XCR   0x44 /* extended control */
410 
411 #define RXIDLE      BIT14
412 #define RXBREAK     BIT14
413 #define IRQ_TXDATA  BIT13
414 #define IRQ_TXIDLE  BIT12
415 #define IRQ_TXUNDER BIT11 /* HDLC */
416 #define IRQ_RXDATA  BIT10
417 #define IRQ_RXIDLE  BIT9  /* HDLC */
418 #define IRQ_RXBREAK BIT9  /* async */
419 #define IRQ_RXOVER  BIT8
420 #define IRQ_DSR     BIT7
421 #define IRQ_CTS     BIT6
422 #define IRQ_DCD     BIT5
423 #define IRQ_RI      BIT4
424 #define IRQ_ALL     0x3ff0
425 #define IRQ_MASTER  BIT0
426 
427 #define slgt_irq_on(info, mask) \
428 	wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) | (mask)))
429 #define slgt_irq_off(info, mask) \
430 	wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) & ~(mask)))
431 
432 static __u8  rd_reg8(struct slgt_info *info, unsigned int addr);
433 static void  wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value);
434 static __u16 rd_reg16(struct slgt_info *info, unsigned int addr);
435 static void  wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value);
436 static __u32 rd_reg32(struct slgt_info *info, unsigned int addr);
437 static void  wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value);
438 
439 static void  msc_set_vcr(struct slgt_info *info);
440 
441 static int  startup(struct slgt_info *info);
442 static int  block_til_ready(struct tty_struct *tty, struct file * filp,struct slgt_info *info);
443 static void shutdown(struct slgt_info *info);
444 static void program_hw(struct slgt_info *info);
445 static void change_params(struct slgt_info *info);
446 
447 static int  register_test(struct slgt_info *info);
448 static int  irq_test(struct slgt_info *info);
449 static int  loopback_test(struct slgt_info *info);
450 static int  adapter_test(struct slgt_info *info);
451 
452 static void reset_adapter(struct slgt_info *info);
453 static void reset_port(struct slgt_info *info);
454 static void async_mode(struct slgt_info *info);
455 static void sync_mode(struct slgt_info *info);
456 
457 static void rx_stop(struct slgt_info *info);
458 static void rx_start(struct slgt_info *info);
459 static void reset_rbufs(struct slgt_info *info);
460 static void free_rbufs(struct slgt_info *info, unsigned int first, unsigned int last);
461 static void rdma_reset(struct slgt_info *info);
462 static bool rx_get_frame(struct slgt_info *info);
463 static bool rx_get_buf(struct slgt_info *info);
464 
465 static void tx_start(struct slgt_info *info);
466 static void tx_stop(struct slgt_info *info);
467 static void tx_set_idle(struct slgt_info *info);
468 static unsigned int free_tbuf_count(struct slgt_info *info);
469 static unsigned int tbuf_bytes(struct slgt_info *info);
470 static void reset_tbufs(struct slgt_info *info);
471 static void tdma_reset(struct slgt_info *info);
472 static bool tx_load(struct slgt_info *info, const char *buf, unsigned int count);
473 
474 static void get_signals(struct slgt_info *info);
475 static void set_signals(struct slgt_info *info);
476 static void enable_loopback(struct slgt_info *info);
477 static void set_rate(struct slgt_info *info, u32 data_rate);
478 
479 static int  bh_action(struct slgt_info *info);
480 static void bh_handler(struct work_struct *work);
481 static void bh_transmit(struct slgt_info *info);
482 static void isr_serial(struct slgt_info *info);
483 static void isr_rdma(struct slgt_info *info);
484 static void isr_txeom(struct slgt_info *info, unsigned short status);
485 static void isr_tdma(struct slgt_info *info);
486 
487 static int  alloc_dma_bufs(struct slgt_info *info);
488 static void free_dma_bufs(struct slgt_info *info);
489 static int  alloc_desc(struct slgt_info *info);
490 static void free_desc(struct slgt_info *info);
491 static int  alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count);
492 static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count);
493 
494 static int  alloc_tmp_rbuf(struct slgt_info *info);
495 static void free_tmp_rbuf(struct slgt_info *info);
496 
497 static void tx_timeout(unsigned long context);
498 static void rx_timeout(unsigned long context);
499 
500 /*
501  * ioctl handlers
502  */
503 static int  get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount);
504 static int  get_params(struct slgt_info *info, MGSL_PARAMS __user *params);
505 static int  set_params(struct slgt_info *info, MGSL_PARAMS __user *params);
506 static int  get_txidle(struct slgt_info *info, int __user *idle_mode);
507 static int  set_txidle(struct slgt_info *info, int idle_mode);
508 static int  tx_enable(struct slgt_info *info, int enable);
509 static int  tx_abort(struct slgt_info *info);
510 static int  rx_enable(struct slgt_info *info, int enable);
511 static int  modem_input_wait(struct slgt_info *info,int arg);
512 static int  wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr);
513 static int  tiocmget(struct tty_struct *tty);
514 static int  tiocmset(struct tty_struct *tty,
515 				unsigned int set, unsigned int clear);
516 static int set_break(struct tty_struct *tty, int break_state);
517 static int  get_interface(struct slgt_info *info, int __user *if_mode);
518 static int  set_interface(struct slgt_info *info, int if_mode);
519 static int  set_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
520 static int  get_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
521 static int  wait_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
522 static int  get_xsync(struct slgt_info *info, int __user *if_mode);
523 static int  set_xsync(struct slgt_info *info, int if_mode);
524 static int  get_xctrl(struct slgt_info *info, int __user *if_mode);
525 static int  set_xctrl(struct slgt_info *info, int if_mode);
526 
527 /*
528  * driver functions
529  */
530 static void add_device(struct slgt_info *info);
531 static void device_init(int adapter_num, struct pci_dev *pdev);
532 static int  claim_resources(struct slgt_info *info);
533 static void release_resources(struct slgt_info *info);
534 
535 /*
536  * DEBUG OUTPUT CODE
537  */
538 #ifndef DBGINFO
539 #define DBGINFO(fmt)
540 #endif
541 #ifndef DBGERR
542 #define DBGERR(fmt)
543 #endif
544 #ifndef DBGBH
545 #define DBGBH(fmt)
546 #endif
547 #ifndef DBGISR
548 #define DBGISR(fmt)
549 #endif
550 
551 #ifdef DBGDATA
552 static void trace_block(struct slgt_info *info, const char *data, int count, const char *label)
553 {
554 	int i;
555 	int linecount;
556 	printk("%s %s data:\n",info->device_name, label);
557 	while(count) {
558 		linecount = (count > 16) ? 16 : count;
559 		for(i=0; i < linecount; i++)
560 			printk("%02X ",(unsigned char)data[i]);
561 		for(;i<17;i++)
562 			printk("   ");
563 		for(i=0;i<linecount;i++) {
564 			if (data[i]>=040 && data[i]<=0176)
565 				printk("%c",data[i]);
566 			else
567 				printk(".");
568 		}
569 		printk("\n");
570 		data  += linecount;
571 		count -= linecount;
572 	}
573 }
574 #else
575 #define DBGDATA(info, buf, size, label)
576 #endif
577 
578 #ifdef DBGTBUF
579 static void dump_tbufs(struct slgt_info *info)
580 {
581 	int i;
582 	printk("tbuf_current=%d\n", info->tbuf_current);
583 	for (i=0 ; i < info->tbuf_count ; i++) {
584 		printk("%d: count=%04X status=%04X\n",
585 			i, le16_to_cpu(info->tbufs[i].count), le16_to_cpu(info->tbufs[i].status));
586 	}
587 }
588 #else
589 #define DBGTBUF(info)
590 #endif
591 
592 #ifdef DBGRBUF
593 static void dump_rbufs(struct slgt_info *info)
594 {
595 	int i;
596 	printk("rbuf_current=%d\n", info->rbuf_current);
597 	for (i=0 ; i < info->rbuf_count ; i++) {
598 		printk("%d: count=%04X status=%04X\n",
599 			i, le16_to_cpu(info->rbufs[i].count), le16_to_cpu(info->rbufs[i].status));
600 	}
601 }
602 #else
603 #define DBGRBUF(info)
604 #endif
605 
606 static inline int sanity_check(struct slgt_info *info, char *devname, const char *name)
607 {
608 #ifdef SANITY_CHECK
609 	if (!info) {
610 		printk("null struct slgt_info for (%s) in %s\n", devname, name);
611 		return 1;
612 	}
613 	if (info->magic != MGSL_MAGIC) {
614 		printk("bad magic number struct slgt_info (%s) in %s\n", devname, name);
615 		return 1;
616 	}
617 #else
618 	if (!info)
619 		return 1;
620 #endif
621 	return 0;
622 }
623 
624 /**
625  * line discipline callback wrappers
626  *
627  * The wrappers maintain line discipline references
628  * while calling into the line discipline.
629  *
630  * ldisc_receive_buf  - pass receive data to line discipline
631  */
632 static void ldisc_receive_buf(struct tty_struct *tty,
633 			      const __u8 *data, char *flags, int count)
634 {
635 	struct tty_ldisc *ld;
636 	if (!tty)
637 		return;
638 	ld = tty_ldisc_ref(tty);
639 	if (ld) {
640 		if (ld->ops->receive_buf)
641 			ld->ops->receive_buf(tty, data, flags, count);
642 		tty_ldisc_deref(ld);
643 	}
644 }
645 
646 /* tty callbacks */
647 
648 static int open(struct tty_struct *tty, struct file *filp)
649 {
650 	struct slgt_info *info;
651 	int retval, line;
652 	unsigned long flags;
653 
654 	line = tty->index;
655 	if (line >= slgt_device_count) {
656 		DBGERR(("%s: open with invalid line #%d.\n", driver_name, line));
657 		return -ENODEV;
658 	}
659 
660 	info = slgt_device_list;
661 	while(info && info->line != line)
662 		info = info->next_device;
663 	if (sanity_check(info, tty->name, "open"))
664 		return -ENODEV;
665 	if (info->init_error) {
666 		DBGERR(("%s init error=%d\n", info->device_name, info->init_error));
667 		return -ENODEV;
668 	}
669 
670 	tty->driver_data = info;
671 	info->port.tty = tty;
672 
673 	DBGINFO(("%s open, old ref count = %d\n", info->device_name, info->port.count));
674 
675 	mutex_lock(&info->port.mutex);
676 	info->port.low_latency = (info->port.flags & ASYNC_LOW_LATENCY) ? 1 : 0;
677 
678 	spin_lock_irqsave(&info->netlock, flags);
679 	if (info->netcount) {
680 		retval = -EBUSY;
681 		spin_unlock_irqrestore(&info->netlock, flags);
682 		mutex_unlock(&info->port.mutex);
683 		goto cleanup;
684 	}
685 	info->port.count++;
686 	spin_unlock_irqrestore(&info->netlock, flags);
687 
688 	if (info->port.count == 1) {
689 		/* 1st open on this device, init hardware */
690 		retval = startup(info);
691 		if (retval < 0) {
692 			mutex_unlock(&info->port.mutex);
693 			goto cleanup;
694 		}
695 	}
696 	mutex_unlock(&info->port.mutex);
697 	retval = block_til_ready(tty, filp, info);
698 	if (retval) {
699 		DBGINFO(("%s block_til_ready rc=%d\n", info->device_name, retval));
700 		goto cleanup;
701 	}
702 
703 	retval = 0;
704 
705 cleanup:
706 	if (retval) {
707 		if (tty->count == 1)
708 			info->port.tty = NULL; /* tty layer will release tty struct */
709 		if(info->port.count)
710 			info->port.count--;
711 	}
712 
713 	DBGINFO(("%s open rc=%d\n", info->device_name, retval));
714 	return retval;
715 }
716 
717 static void close(struct tty_struct *tty, struct file *filp)
718 {
719 	struct slgt_info *info = tty->driver_data;
720 
721 	if (sanity_check(info, tty->name, "close"))
722 		return;
723 	DBGINFO(("%s close entry, count=%d\n", info->device_name, info->port.count));
724 
725 	if (tty_port_close_start(&info->port, tty, filp) == 0)
726 		goto cleanup;
727 
728 	mutex_lock(&info->port.mutex);
729 	if (tty_port_initialized(&info->port))
730  		wait_until_sent(tty, info->timeout);
731 	flush_buffer(tty);
732 	tty_ldisc_flush(tty);
733 
734 	shutdown(info);
735 	mutex_unlock(&info->port.mutex);
736 
737 	tty_port_close_end(&info->port, tty);
738 	info->port.tty = NULL;
739 cleanup:
740 	DBGINFO(("%s close exit, count=%d\n", tty->driver->name, info->port.count));
741 }
742 
743 static void hangup(struct tty_struct *tty)
744 {
745 	struct slgt_info *info = tty->driver_data;
746 	unsigned long flags;
747 
748 	if (sanity_check(info, tty->name, "hangup"))
749 		return;
750 	DBGINFO(("%s hangup\n", info->device_name));
751 
752 	flush_buffer(tty);
753 
754 	mutex_lock(&info->port.mutex);
755 	shutdown(info);
756 
757 	spin_lock_irqsave(&info->port.lock, flags);
758 	info->port.count = 0;
759 	info->port.tty = NULL;
760 	spin_unlock_irqrestore(&info->port.lock, flags);
761 	tty_port_set_active(&info->port, 0);
762 	mutex_unlock(&info->port.mutex);
763 
764 	wake_up_interruptible(&info->port.open_wait);
765 }
766 
767 static void set_termios(struct tty_struct *tty, struct ktermios *old_termios)
768 {
769 	struct slgt_info *info = tty->driver_data;
770 	unsigned long flags;
771 
772 	DBGINFO(("%s set_termios\n", tty->driver->name));
773 
774 	change_params(info);
775 
776 	/* Handle transition to B0 status */
777 	if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
778 		info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
779 		spin_lock_irqsave(&info->lock,flags);
780 		set_signals(info);
781 		spin_unlock_irqrestore(&info->lock,flags);
782 	}
783 
784 	/* Handle transition away from B0 status */
785 	if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
786 		info->signals |= SerialSignal_DTR;
787 		if (!C_CRTSCTS(tty) || !tty_throttled(tty))
788 			info->signals |= SerialSignal_RTS;
789 		spin_lock_irqsave(&info->lock,flags);
790 	 	set_signals(info);
791 		spin_unlock_irqrestore(&info->lock,flags);
792 	}
793 
794 	/* Handle turning off CRTSCTS */
795 	if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) {
796 		tty->hw_stopped = 0;
797 		tx_release(tty);
798 	}
799 }
800 
801 static void update_tx_timer(struct slgt_info *info)
802 {
803 	/*
804 	 * use worst case speed of 1200bps to calculate transmit timeout
805 	 * based on data in buffers (tbuf_bytes) and FIFO (128 bytes)
806 	 */
807 	if (info->params.mode == MGSL_MODE_HDLC) {
808 		int timeout  = (tbuf_bytes(info) * 7) + 1000;
809 		mod_timer(&info->tx_timer, jiffies + msecs_to_jiffies(timeout));
810 	}
811 }
812 
813 static int write(struct tty_struct *tty,
814 		 const unsigned char *buf, int count)
815 {
816 	int ret = 0;
817 	struct slgt_info *info = tty->driver_data;
818 	unsigned long flags;
819 
820 	if (sanity_check(info, tty->name, "write"))
821 		return -EIO;
822 
823 	DBGINFO(("%s write count=%d\n", info->device_name, count));
824 
825 	if (!info->tx_buf || (count > info->max_frame_size))
826 		return -EIO;
827 
828 	if (!count || tty->stopped || tty->hw_stopped)
829 		return 0;
830 
831 	spin_lock_irqsave(&info->lock, flags);
832 
833 	if (info->tx_count) {
834 		/* send accumulated data from send_char() */
835 		if (!tx_load(info, info->tx_buf, info->tx_count))
836 			goto cleanup;
837 		info->tx_count = 0;
838 	}
839 
840 	if (tx_load(info, buf, count))
841 		ret = count;
842 
843 cleanup:
844 	spin_unlock_irqrestore(&info->lock, flags);
845 	DBGINFO(("%s write rc=%d\n", info->device_name, ret));
846 	return ret;
847 }
848 
849 static int put_char(struct tty_struct *tty, unsigned char ch)
850 {
851 	struct slgt_info *info = tty->driver_data;
852 	unsigned long flags;
853 	int ret = 0;
854 
855 	if (sanity_check(info, tty->name, "put_char"))
856 		return 0;
857 	DBGINFO(("%s put_char(%d)\n", info->device_name, ch));
858 	if (!info->tx_buf)
859 		return 0;
860 	spin_lock_irqsave(&info->lock,flags);
861 	if (info->tx_count < info->max_frame_size) {
862 		info->tx_buf[info->tx_count++] = ch;
863 		ret = 1;
864 	}
865 	spin_unlock_irqrestore(&info->lock,flags);
866 	return ret;
867 }
868 
869 static void send_xchar(struct tty_struct *tty, char ch)
870 {
871 	struct slgt_info *info = tty->driver_data;
872 	unsigned long flags;
873 
874 	if (sanity_check(info, tty->name, "send_xchar"))
875 		return;
876 	DBGINFO(("%s send_xchar(%d)\n", info->device_name, ch));
877 	info->x_char = ch;
878 	if (ch) {
879 		spin_lock_irqsave(&info->lock,flags);
880 		if (!info->tx_enabled)
881 		 	tx_start(info);
882 		spin_unlock_irqrestore(&info->lock,flags);
883 	}
884 }
885 
886 static void wait_until_sent(struct tty_struct *tty, int timeout)
887 {
888 	struct slgt_info *info = tty->driver_data;
889 	unsigned long orig_jiffies, char_time;
890 
891 	if (!info )
892 		return;
893 	if (sanity_check(info, tty->name, "wait_until_sent"))
894 		return;
895 	DBGINFO(("%s wait_until_sent entry\n", info->device_name));
896 	if (!tty_port_initialized(&info->port))
897 		goto exit;
898 
899 	orig_jiffies = jiffies;
900 
901 	/* Set check interval to 1/5 of estimated time to
902 	 * send a character, and make it at least 1. The check
903 	 * interval should also be less than the timeout.
904 	 * Note: use tight timings here to satisfy the NIST-PCTS.
905 	 */
906 
907 	if (info->params.data_rate) {
908 	       	char_time = info->timeout/(32 * 5);
909 		if (!char_time)
910 			char_time++;
911 	} else
912 		char_time = 1;
913 
914 	if (timeout)
915 		char_time = min_t(unsigned long, char_time, timeout);
916 
917 	while (info->tx_active) {
918 		msleep_interruptible(jiffies_to_msecs(char_time));
919 		if (signal_pending(current))
920 			break;
921 		if (timeout && time_after(jiffies, orig_jiffies + timeout))
922 			break;
923 	}
924 exit:
925 	DBGINFO(("%s wait_until_sent exit\n", info->device_name));
926 }
927 
928 static int write_room(struct tty_struct *tty)
929 {
930 	struct slgt_info *info = tty->driver_data;
931 	int ret;
932 
933 	if (sanity_check(info, tty->name, "write_room"))
934 		return 0;
935 	ret = (info->tx_active) ? 0 : HDLC_MAX_FRAME_SIZE;
936 	DBGINFO(("%s write_room=%d\n", info->device_name, ret));
937 	return ret;
938 }
939 
940 static void flush_chars(struct tty_struct *tty)
941 {
942 	struct slgt_info *info = tty->driver_data;
943 	unsigned long flags;
944 
945 	if (sanity_check(info, tty->name, "flush_chars"))
946 		return;
947 	DBGINFO(("%s flush_chars entry tx_count=%d\n", info->device_name, info->tx_count));
948 
949 	if (info->tx_count <= 0 || tty->stopped ||
950 	    tty->hw_stopped || !info->tx_buf)
951 		return;
952 
953 	DBGINFO(("%s flush_chars start transmit\n", info->device_name));
954 
955 	spin_lock_irqsave(&info->lock,flags);
956 	if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count))
957 		info->tx_count = 0;
958 	spin_unlock_irqrestore(&info->lock,flags);
959 }
960 
961 static void flush_buffer(struct tty_struct *tty)
962 {
963 	struct slgt_info *info = tty->driver_data;
964 	unsigned long flags;
965 
966 	if (sanity_check(info, tty->name, "flush_buffer"))
967 		return;
968 	DBGINFO(("%s flush_buffer\n", info->device_name));
969 
970 	spin_lock_irqsave(&info->lock, flags);
971 	info->tx_count = 0;
972 	spin_unlock_irqrestore(&info->lock, flags);
973 
974 	tty_wakeup(tty);
975 }
976 
977 /*
978  * throttle (stop) transmitter
979  */
980 static void tx_hold(struct tty_struct *tty)
981 {
982 	struct slgt_info *info = tty->driver_data;
983 	unsigned long flags;
984 
985 	if (sanity_check(info, tty->name, "tx_hold"))
986 		return;
987 	DBGINFO(("%s tx_hold\n", info->device_name));
988 	spin_lock_irqsave(&info->lock,flags);
989 	if (info->tx_enabled && info->params.mode == MGSL_MODE_ASYNC)
990 	 	tx_stop(info);
991 	spin_unlock_irqrestore(&info->lock,flags);
992 }
993 
994 /*
995  * release (start) transmitter
996  */
997 static void tx_release(struct tty_struct *tty)
998 {
999 	struct slgt_info *info = tty->driver_data;
1000 	unsigned long flags;
1001 
1002 	if (sanity_check(info, tty->name, "tx_release"))
1003 		return;
1004 	DBGINFO(("%s tx_release\n", info->device_name));
1005 	spin_lock_irqsave(&info->lock, flags);
1006 	if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count))
1007 		info->tx_count = 0;
1008 	spin_unlock_irqrestore(&info->lock, flags);
1009 }
1010 
1011 /*
1012  * Service an IOCTL request
1013  *
1014  * Arguments
1015  *
1016  * 	tty	pointer to tty instance data
1017  * 	cmd	IOCTL command code
1018  * 	arg	command argument/context
1019  *
1020  * Return 0 if success, otherwise error code
1021  */
1022 static int ioctl(struct tty_struct *tty,
1023 		 unsigned int cmd, unsigned long arg)
1024 {
1025 	struct slgt_info *info = tty->driver_data;
1026 	void __user *argp = (void __user *)arg;
1027 	int ret;
1028 
1029 	if (sanity_check(info, tty->name, "ioctl"))
1030 		return -ENODEV;
1031 	DBGINFO(("%s ioctl() cmd=%08X\n", info->device_name, cmd));
1032 
1033 	if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1034 	    (cmd != TIOCMIWAIT)) {
1035 		if (tty_io_error(tty))
1036 		    return -EIO;
1037 	}
1038 
1039 	switch (cmd) {
1040 	case MGSL_IOCWAITEVENT:
1041 		return wait_mgsl_event(info, argp);
1042 	case TIOCMIWAIT:
1043 		return modem_input_wait(info,(int)arg);
1044 	case MGSL_IOCSGPIO:
1045 		return set_gpio(info, argp);
1046 	case MGSL_IOCGGPIO:
1047 		return get_gpio(info, argp);
1048 	case MGSL_IOCWAITGPIO:
1049 		return wait_gpio(info, argp);
1050 	case MGSL_IOCGXSYNC:
1051 		return get_xsync(info, argp);
1052 	case MGSL_IOCSXSYNC:
1053 		return set_xsync(info, (int)arg);
1054 	case MGSL_IOCGXCTRL:
1055 		return get_xctrl(info, argp);
1056 	case MGSL_IOCSXCTRL:
1057 		return set_xctrl(info, (int)arg);
1058 	}
1059 	mutex_lock(&info->port.mutex);
1060 	switch (cmd) {
1061 	case MGSL_IOCGPARAMS:
1062 		ret = get_params(info, argp);
1063 		break;
1064 	case MGSL_IOCSPARAMS:
1065 		ret = set_params(info, argp);
1066 		break;
1067 	case MGSL_IOCGTXIDLE:
1068 		ret = get_txidle(info, argp);
1069 		break;
1070 	case MGSL_IOCSTXIDLE:
1071 		ret = set_txidle(info, (int)arg);
1072 		break;
1073 	case MGSL_IOCTXENABLE:
1074 		ret = tx_enable(info, (int)arg);
1075 		break;
1076 	case MGSL_IOCRXENABLE:
1077 		ret = rx_enable(info, (int)arg);
1078 		break;
1079 	case MGSL_IOCTXABORT:
1080 		ret = tx_abort(info);
1081 		break;
1082 	case MGSL_IOCGSTATS:
1083 		ret = get_stats(info, argp);
1084 		break;
1085 	case MGSL_IOCGIF:
1086 		ret = get_interface(info, argp);
1087 		break;
1088 	case MGSL_IOCSIF:
1089 		ret = set_interface(info,(int)arg);
1090 		break;
1091 	default:
1092 		ret = -ENOIOCTLCMD;
1093 	}
1094 	mutex_unlock(&info->port.mutex);
1095 	return ret;
1096 }
1097 
1098 static int get_icount(struct tty_struct *tty,
1099 				struct serial_icounter_struct *icount)
1100 
1101 {
1102 	struct slgt_info *info = tty->driver_data;
1103 	struct mgsl_icount cnow;	/* kernel counter temps */
1104 	unsigned long flags;
1105 
1106 	spin_lock_irqsave(&info->lock,flags);
1107 	cnow = info->icount;
1108 	spin_unlock_irqrestore(&info->lock,flags);
1109 
1110 	icount->cts = cnow.cts;
1111 	icount->dsr = cnow.dsr;
1112 	icount->rng = cnow.rng;
1113 	icount->dcd = cnow.dcd;
1114 	icount->rx = cnow.rx;
1115 	icount->tx = cnow.tx;
1116 	icount->frame = cnow.frame;
1117 	icount->overrun = cnow.overrun;
1118 	icount->parity = cnow.parity;
1119 	icount->brk = cnow.brk;
1120 	icount->buf_overrun = cnow.buf_overrun;
1121 
1122 	return 0;
1123 }
1124 
1125 /*
1126  * support for 32 bit ioctl calls on 64 bit systems
1127  */
1128 #ifdef CONFIG_COMPAT
1129 static long get_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *user_params)
1130 {
1131 	struct MGSL_PARAMS32 tmp_params;
1132 
1133 	DBGINFO(("%s get_params32\n", info->device_name));
1134 	memset(&tmp_params, 0, sizeof(tmp_params));
1135 	tmp_params.mode            = (compat_ulong_t)info->params.mode;
1136 	tmp_params.loopback        = info->params.loopback;
1137 	tmp_params.flags           = info->params.flags;
1138 	tmp_params.encoding        = info->params.encoding;
1139 	tmp_params.clock_speed     = (compat_ulong_t)info->params.clock_speed;
1140 	tmp_params.addr_filter     = info->params.addr_filter;
1141 	tmp_params.crc_type        = info->params.crc_type;
1142 	tmp_params.preamble_length = info->params.preamble_length;
1143 	tmp_params.preamble        = info->params.preamble;
1144 	tmp_params.data_rate       = (compat_ulong_t)info->params.data_rate;
1145 	tmp_params.data_bits       = info->params.data_bits;
1146 	tmp_params.stop_bits       = info->params.stop_bits;
1147 	tmp_params.parity          = info->params.parity;
1148 	if (copy_to_user(user_params, &tmp_params, sizeof(struct MGSL_PARAMS32)))
1149 		return -EFAULT;
1150 	return 0;
1151 }
1152 
1153 static long set_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *new_params)
1154 {
1155 	struct MGSL_PARAMS32 tmp_params;
1156 
1157 	DBGINFO(("%s set_params32\n", info->device_name));
1158 	if (copy_from_user(&tmp_params, new_params, sizeof(struct MGSL_PARAMS32)))
1159 		return -EFAULT;
1160 
1161 	spin_lock(&info->lock);
1162 	if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) {
1163 		info->base_clock = tmp_params.clock_speed;
1164 	} else {
1165 		info->params.mode            = tmp_params.mode;
1166 		info->params.loopback        = tmp_params.loopback;
1167 		info->params.flags           = tmp_params.flags;
1168 		info->params.encoding        = tmp_params.encoding;
1169 		info->params.clock_speed     = tmp_params.clock_speed;
1170 		info->params.addr_filter     = tmp_params.addr_filter;
1171 		info->params.crc_type        = tmp_params.crc_type;
1172 		info->params.preamble_length = tmp_params.preamble_length;
1173 		info->params.preamble        = tmp_params.preamble;
1174 		info->params.data_rate       = tmp_params.data_rate;
1175 		info->params.data_bits       = tmp_params.data_bits;
1176 		info->params.stop_bits       = tmp_params.stop_bits;
1177 		info->params.parity          = tmp_params.parity;
1178 	}
1179 	spin_unlock(&info->lock);
1180 
1181 	program_hw(info);
1182 
1183 	return 0;
1184 }
1185 
1186 static long slgt_compat_ioctl(struct tty_struct *tty,
1187 			 unsigned int cmd, unsigned long arg)
1188 {
1189 	struct slgt_info *info = tty->driver_data;
1190 	int rc = -ENOIOCTLCMD;
1191 
1192 	if (sanity_check(info, tty->name, "compat_ioctl"))
1193 		return -ENODEV;
1194 	DBGINFO(("%s compat_ioctl() cmd=%08X\n", info->device_name, cmd));
1195 
1196 	switch (cmd) {
1197 
1198 	case MGSL_IOCSPARAMS32:
1199 		rc = set_params32(info, compat_ptr(arg));
1200 		break;
1201 
1202 	case MGSL_IOCGPARAMS32:
1203 		rc = get_params32(info, compat_ptr(arg));
1204 		break;
1205 
1206 	case MGSL_IOCGPARAMS:
1207 	case MGSL_IOCSPARAMS:
1208 	case MGSL_IOCGTXIDLE:
1209 	case MGSL_IOCGSTATS:
1210 	case MGSL_IOCWAITEVENT:
1211 	case MGSL_IOCGIF:
1212 	case MGSL_IOCSGPIO:
1213 	case MGSL_IOCGGPIO:
1214 	case MGSL_IOCWAITGPIO:
1215 	case MGSL_IOCGXSYNC:
1216 	case MGSL_IOCGXCTRL:
1217 	case MGSL_IOCSTXIDLE:
1218 	case MGSL_IOCTXENABLE:
1219 	case MGSL_IOCRXENABLE:
1220 	case MGSL_IOCTXABORT:
1221 	case TIOCMIWAIT:
1222 	case MGSL_IOCSIF:
1223 	case MGSL_IOCSXSYNC:
1224 	case MGSL_IOCSXCTRL:
1225 		rc = ioctl(tty, cmd, arg);
1226 		break;
1227 	}
1228 
1229 	DBGINFO(("%s compat_ioctl() cmd=%08X rc=%d\n", info->device_name, cmd, rc));
1230 	return rc;
1231 }
1232 #else
1233 #define slgt_compat_ioctl NULL
1234 #endif /* ifdef CONFIG_COMPAT */
1235 
1236 /*
1237  * proc fs support
1238  */
1239 static inline void line_info(struct seq_file *m, struct slgt_info *info)
1240 {
1241 	char stat_buf[30];
1242 	unsigned long flags;
1243 
1244 	seq_printf(m, "%s: IO=%08X IRQ=%d MaxFrameSize=%u\n",
1245 		      info->device_name, info->phys_reg_addr,
1246 		      info->irq_level, info->max_frame_size);
1247 
1248 	/* output current serial signal states */
1249 	spin_lock_irqsave(&info->lock,flags);
1250 	get_signals(info);
1251 	spin_unlock_irqrestore(&info->lock,flags);
1252 
1253 	stat_buf[0] = 0;
1254 	stat_buf[1] = 0;
1255 	if (info->signals & SerialSignal_RTS)
1256 		strcat(stat_buf, "|RTS");
1257 	if (info->signals & SerialSignal_CTS)
1258 		strcat(stat_buf, "|CTS");
1259 	if (info->signals & SerialSignal_DTR)
1260 		strcat(stat_buf, "|DTR");
1261 	if (info->signals & SerialSignal_DSR)
1262 		strcat(stat_buf, "|DSR");
1263 	if (info->signals & SerialSignal_DCD)
1264 		strcat(stat_buf, "|CD");
1265 	if (info->signals & SerialSignal_RI)
1266 		strcat(stat_buf, "|RI");
1267 
1268 	if (info->params.mode != MGSL_MODE_ASYNC) {
1269 		seq_printf(m, "\tHDLC txok:%d rxok:%d",
1270 			       info->icount.txok, info->icount.rxok);
1271 		if (info->icount.txunder)
1272 			seq_printf(m, " txunder:%d", info->icount.txunder);
1273 		if (info->icount.txabort)
1274 			seq_printf(m, " txabort:%d", info->icount.txabort);
1275 		if (info->icount.rxshort)
1276 			seq_printf(m, " rxshort:%d", info->icount.rxshort);
1277 		if (info->icount.rxlong)
1278 			seq_printf(m, " rxlong:%d", info->icount.rxlong);
1279 		if (info->icount.rxover)
1280 			seq_printf(m, " rxover:%d", info->icount.rxover);
1281 		if (info->icount.rxcrc)
1282 			seq_printf(m, " rxcrc:%d", info->icount.rxcrc);
1283 	} else {
1284 		seq_printf(m, "\tASYNC tx:%d rx:%d",
1285 			       info->icount.tx, info->icount.rx);
1286 		if (info->icount.frame)
1287 			seq_printf(m, " fe:%d", info->icount.frame);
1288 		if (info->icount.parity)
1289 			seq_printf(m, " pe:%d", info->icount.parity);
1290 		if (info->icount.brk)
1291 			seq_printf(m, " brk:%d", info->icount.brk);
1292 		if (info->icount.overrun)
1293 			seq_printf(m, " oe:%d", info->icount.overrun);
1294 	}
1295 
1296 	/* Append serial signal status to end */
1297 	seq_printf(m, " %s\n", stat_buf+1);
1298 
1299 	seq_printf(m, "\ttxactive=%d bh_req=%d bh_run=%d pending_bh=%x\n",
1300 		       info->tx_active,info->bh_requested,info->bh_running,
1301 		       info->pending_bh);
1302 }
1303 
1304 /* Called to print information about devices
1305  */
1306 static int synclink_gt_proc_show(struct seq_file *m, void *v)
1307 {
1308 	struct slgt_info *info;
1309 
1310 	seq_puts(m, "synclink_gt driver\n");
1311 
1312 	info = slgt_device_list;
1313 	while( info ) {
1314 		line_info(m, info);
1315 		info = info->next_device;
1316 	}
1317 	return 0;
1318 }
1319 
1320 static int synclink_gt_proc_open(struct inode *inode, struct file *file)
1321 {
1322 	return single_open(file, synclink_gt_proc_show, NULL);
1323 }
1324 
1325 static const struct file_operations synclink_gt_proc_fops = {
1326 	.owner		= THIS_MODULE,
1327 	.open		= synclink_gt_proc_open,
1328 	.read		= seq_read,
1329 	.llseek		= seq_lseek,
1330 	.release	= single_release,
1331 };
1332 
1333 /*
1334  * return count of bytes in transmit buffer
1335  */
1336 static int chars_in_buffer(struct tty_struct *tty)
1337 {
1338 	struct slgt_info *info = tty->driver_data;
1339 	int count;
1340 	if (sanity_check(info, tty->name, "chars_in_buffer"))
1341 		return 0;
1342 	count = tbuf_bytes(info);
1343 	DBGINFO(("%s chars_in_buffer()=%d\n", info->device_name, count));
1344 	return count;
1345 }
1346 
1347 /*
1348  * signal remote device to throttle send data (our receive data)
1349  */
1350 static void throttle(struct tty_struct * tty)
1351 {
1352 	struct slgt_info *info = tty->driver_data;
1353 	unsigned long flags;
1354 
1355 	if (sanity_check(info, tty->name, "throttle"))
1356 		return;
1357 	DBGINFO(("%s throttle\n", info->device_name));
1358 	if (I_IXOFF(tty))
1359 		send_xchar(tty, STOP_CHAR(tty));
1360  	if (C_CRTSCTS(tty)) {
1361 		spin_lock_irqsave(&info->lock,flags);
1362 		info->signals &= ~SerialSignal_RTS;
1363 	 	set_signals(info);
1364 		spin_unlock_irqrestore(&info->lock,flags);
1365 	}
1366 }
1367 
1368 /*
1369  * signal remote device to stop throttling send data (our receive data)
1370  */
1371 static void unthrottle(struct tty_struct * tty)
1372 {
1373 	struct slgt_info *info = tty->driver_data;
1374 	unsigned long flags;
1375 
1376 	if (sanity_check(info, tty->name, "unthrottle"))
1377 		return;
1378 	DBGINFO(("%s unthrottle\n", info->device_name));
1379 	if (I_IXOFF(tty)) {
1380 		if (info->x_char)
1381 			info->x_char = 0;
1382 		else
1383 			send_xchar(tty, START_CHAR(tty));
1384 	}
1385  	if (C_CRTSCTS(tty)) {
1386 		spin_lock_irqsave(&info->lock,flags);
1387 		info->signals |= SerialSignal_RTS;
1388 	 	set_signals(info);
1389 		spin_unlock_irqrestore(&info->lock,flags);
1390 	}
1391 }
1392 
1393 /*
1394  * set or clear transmit break condition
1395  * break_state	-1=set break condition, 0=clear
1396  */
1397 static int set_break(struct tty_struct *tty, int break_state)
1398 {
1399 	struct slgt_info *info = tty->driver_data;
1400 	unsigned short value;
1401 	unsigned long flags;
1402 
1403 	if (sanity_check(info, tty->name, "set_break"))
1404 		return -EINVAL;
1405 	DBGINFO(("%s set_break(%d)\n", info->device_name, break_state));
1406 
1407 	spin_lock_irqsave(&info->lock,flags);
1408 	value = rd_reg16(info, TCR);
1409  	if (break_state == -1)
1410 		value |= BIT6;
1411 	else
1412 		value &= ~BIT6;
1413 	wr_reg16(info, TCR, value);
1414 	spin_unlock_irqrestore(&info->lock,flags);
1415 	return 0;
1416 }
1417 
1418 #if SYNCLINK_GENERIC_HDLC
1419 
1420 /**
1421  * called by generic HDLC layer when protocol selected (PPP, frame relay, etc.)
1422  * set encoding and frame check sequence (FCS) options
1423  *
1424  * dev       pointer to network device structure
1425  * encoding  serial encoding setting
1426  * parity    FCS setting
1427  *
1428  * returns 0 if success, otherwise error code
1429  */
1430 static int hdlcdev_attach(struct net_device *dev, unsigned short encoding,
1431 			  unsigned short parity)
1432 {
1433 	struct slgt_info *info = dev_to_port(dev);
1434 	unsigned char  new_encoding;
1435 	unsigned short new_crctype;
1436 
1437 	/* return error if TTY interface open */
1438 	if (info->port.count)
1439 		return -EBUSY;
1440 
1441 	DBGINFO(("%s hdlcdev_attach\n", info->device_name));
1442 
1443 	switch (encoding)
1444 	{
1445 	case ENCODING_NRZ:        new_encoding = HDLC_ENCODING_NRZ; break;
1446 	case ENCODING_NRZI:       new_encoding = HDLC_ENCODING_NRZI_SPACE; break;
1447 	case ENCODING_FM_MARK:    new_encoding = HDLC_ENCODING_BIPHASE_MARK; break;
1448 	case ENCODING_FM_SPACE:   new_encoding = HDLC_ENCODING_BIPHASE_SPACE; break;
1449 	case ENCODING_MANCHESTER: new_encoding = HDLC_ENCODING_BIPHASE_LEVEL; break;
1450 	default: return -EINVAL;
1451 	}
1452 
1453 	switch (parity)
1454 	{
1455 	case PARITY_NONE:            new_crctype = HDLC_CRC_NONE; break;
1456 	case PARITY_CRC16_PR1_CCITT: new_crctype = HDLC_CRC_16_CCITT; break;
1457 	case PARITY_CRC32_PR1_CCITT: new_crctype = HDLC_CRC_32_CCITT; break;
1458 	default: return -EINVAL;
1459 	}
1460 
1461 	info->params.encoding = new_encoding;
1462 	info->params.crc_type = new_crctype;
1463 
1464 	/* if network interface up, reprogram hardware */
1465 	if (info->netcount)
1466 		program_hw(info);
1467 
1468 	return 0;
1469 }
1470 
1471 /**
1472  * called by generic HDLC layer to send frame
1473  *
1474  * skb  socket buffer containing HDLC frame
1475  * dev  pointer to network device structure
1476  */
1477 static netdev_tx_t hdlcdev_xmit(struct sk_buff *skb,
1478 				      struct net_device *dev)
1479 {
1480 	struct slgt_info *info = dev_to_port(dev);
1481 	unsigned long flags;
1482 
1483 	DBGINFO(("%s hdlc_xmit\n", dev->name));
1484 
1485 	if (!skb->len)
1486 		return NETDEV_TX_OK;
1487 
1488 	/* stop sending until this frame completes */
1489 	netif_stop_queue(dev);
1490 
1491 	/* update network statistics */
1492 	dev->stats.tx_packets++;
1493 	dev->stats.tx_bytes += skb->len;
1494 
1495 	/* save start time for transmit timeout detection */
1496 	netif_trans_update(dev);
1497 
1498 	spin_lock_irqsave(&info->lock, flags);
1499 	tx_load(info, skb->data, skb->len);
1500 	spin_unlock_irqrestore(&info->lock, flags);
1501 
1502 	/* done with socket buffer, so free it */
1503 	dev_kfree_skb(skb);
1504 
1505 	return NETDEV_TX_OK;
1506 }
1507 
1508 /**
1509  * called by network layer when interface enabled
1510  * claim resources and initialize hardware
1511  *
1512  * dev  pointer to network device structure
1513  *
1514  * returns 0 if success, otherwise error code
1515  */
1516 static int hdlcdev_open(struct net_device *dev)
1517 {
1518 	struct slgt_info *info = dev_to_port(dev);
1519 	int rc;
1520 	unsigned long flags;
1521 
1522 	if (!try_module_get(THIS_MODULE))
1523 		return -EBUSY;
1524 
1525 	DBGINFO(("%s hdlcdev_open\n", dev->name));
1526 
1527 	/* generic HDLC layer open processing */
1528 	rc = hdlc_open(dev);
1529 	if (rc)
1530 		return rc;
1531 
1532 	/* arbitrate between network and tty opens */
1533 	spin_lock_irqsave(&info->netlock, flags);
1534 	if (info->port.count != 0 || info->netcount != 0) {
1535 		DBGINFO(("%s hdlc_open busy\n", dev->name));
1536 		spin_unlock_irqrestore(&info->netlock, flags);
1537 		return -EBUSY;
1538 	}
1539 	info->netcount=1;
1540 	spin_unlock_irqrestore(&info->netlock, flags);
1541 
1542 	/* claim resources and init adapter */
1543 	if ((rc = startup(info)) != 0) {
1544 		spin_lock_irqsave(&info->netlock, flags);
1545 		info->netcount=0;
1546 		spin_unlock_irqrestore(&info->netlock, flags);
1547 		return rc;
1548 	}
1549 
1550 	/* assert RTS and DTR, apply hardware settings */
1551 	info->signals |= SerialSignal_RTS | SerialSignal_DTR;
1552 	program_hw(info);
1553 
1554 	/* enable network layer transmit */
1555 	netif_trans_update(dev);
1556 	netif_start_queue(dev);
1557 
1558 	/* inform generic HDLC layer of current DCD status */
1559 	spin_lock_irqsave(&info->lock, flags);
1560 	get_signals(info);
1561 	spin_unlock_irqrestore(&info->lock, flags);
1562 	if (info->signals & SerialSignal_DCD)
1563 		netif_carrier_on(dev);
1564 	else
1565 		netif_carrier_off(dev);
1566 	return 0;
1567 }
1568 
1569 /**
1570  * called by network layer when interface is disabled
1571  * shutdown hardware and release resources
1572  *
1573  * dev  pointer to network device structure
1574  *
1575  * returns 0 if success, otherwise error code
1576  */
1577 static int hdlcdev_close(struct net_device *dev)
1578 {
1579 	struct slgt_info *info = dev_to_port(dev);
1580 	unsigned long flags;
1581 
1582 	DBGINFO(("%s hdlcdev_close\n", dev->name));
1583 
1584 	netif_stop_queue(dev);
1585 
1586 	/* shutdown adapter and release resources */
1587 	shutdown(info);
1588 
1589 	hdlc_close(dev);
1590 
1591 	spin_lock_irqsave(&info->netlock, flags);
1592 	info->netcount=0;
1593 	spin_unlock_irqrestore(&info->netlock, flags);
1594 
1595 	module_put(THIS_MODULE);
1596 	return 0;
1597 }
1598 
1599 /**
1600  * called by network layer to process IOCTL call to network device
1601  *
1602  * dev  pointer to network device structure
1603  * ifr  pointer to network interface request structure
1604  * cmd  IOCTL command code
1605  *
1606  * returns 0 if success, otherwise error code
1607  */
1608 static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1609 {
1610 	const size_t size = sizeof(sync_serial_settings);
1611 	sync_serial_settings new_line;
1612 	sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1613 	struct slgt_info *info = dev_to_port(dev);
1614 	unsigned int flags;
1615 
1616 	DBGINFO(("%s hdlcdev_ioctl\n", dev->name));
1617 
1618 	/* return error if TTY interface open */
1619 	if (info->port.count)
1620 		return -EBUSY;
1621 
1622 	if (cmd != SIOCWANDEV)
1623 		return hdlc_ioctl(dev, ifr, cmd);
1624 
1625 	memset(&new_line, 0, sizeof(new_line));
1626 
1627 	switch(ifr->ifr_settings.type) {
1628 	case IF_GET_IFACE: /* return current sync_serial_settings */
1629 
1630 		ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1631 		if (ifr->ifr_settings.size < size) {
1632 			ifr->ifr_settings.size = size; /* data size wanted */
1633 			return -ENOBUFS;
1634 		}
1635 
1636 		flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
1637 					      HDLC_FLAG_RXC_BRG    | HDLC_FLAG_RXC_TXCPIN |
1638 					      HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
1639 					      HDLC_FLAG_TXC_BRG    | HDLC_FLAG_TXC_RXCPIN);
1640 
1641 		switch (flags){
1642 		case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN): new_line.clock_type = CLOCK_EXT; break;
1643 		case (HDLC_FLAG_RXC_BRG    | HDLC_FLAG_TXC_BRG):    new_line.clock_type = CLOCK_INT; break;
1644 		case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG):    new_line.clock_type = CLOCK_TXINT; break;
1645 		case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN): new_line.clock_type = CLOCK_TXFROMRX; break;
1646 		default: new_line.clock_type = CLOCK_DEFAULT;
1647 		}
1648 
1649 		new_line.clock_rate = info->params.clock_speed;
1650 		new_line.loopback   = info->params.loopback ? 1:0;
1651 
1652 		if (copy_to_user(line, &new_line, size))
1653 			return -EFAULT;
1654 		return 0;
1655 
1656 	case IF_IFACE_SYNC_SERIAL: /* set sync_serial_settings */
1657 
1658 		if(!capable(CAP_NET_ADMIN))
1659 			return -EPERM;
1660 		if (copy_from_user(&new_line, line, size))
1661 			return -EFAULT;
1662 
1663 		switch (new_line.clock_type)
1664 		{
1665 		case CLOCK_EXT:      flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN; break;
1666 		case CLOCK_TXFROMRX: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN; break;
1667 		case CLOCK_INT:      flags = HDLC_FLAG_RXC_BRG    | HDLC_FLAG_TXC_BRG;    break;
1668 		case CLOCK_TXINT:    flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG;    break;
1669 		case CLOCK_DEFAULT:  flags = info->params.flags &
1670 					     (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
1671 					      HDLC_FLAG_RXC_BRG    | HDLC_FLAG_RXC_TXCPIN |
1672 					      HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
1673 					      HDLC_FLAG_TXC_BRG    | HDLC_FLAG_TXC_RXCPIN); break;
1674 		default: return -EINVAL;
1675 		}
1676 
1677 		if (new_line.loopback != 0 && new_line.loopback != 1)
1678 			return -EINVAL;
1679 
1680 		info->params.flags &= ~(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
1681 					HDLC_FLAG_RXC_BRG    | HDLC_FLAG_RXC_TXCPIN |
1682 					HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
1683 					HDLC_FLAG_TXC_BRG    | HDLC_FLAG_TXC_RXCPIN);
1684 		info->params.flags |= flags;
1685 
1686 		info->params.loopback = new_line.loopback;
1687 
1688 		if (flags & (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG))
1689 			info->params.clock_speed = new_line.clock_rate;
1690 		else
1691 			info->params.clock_speed = 0;
1692 
1693 		/* if network interface up, reprogram hardware */
1694 		if (info->netcount)
1695 			program_hw(info);
1696 		return 0;
1697 
1698 	default:
1699 		return hdlc_ioctl(dev, ifr, cmd);
1700 	}
1701 }
1702 
1703 /**
1704  * called by network layer when transmit timeout is detected
1705  *
1706  * dev  pointer to network device structure
1707  */
1708 static void hdlcdev_tx_timeout(struct net_device *dev)
1709 {
1710 	struct slgt_info *info = dev_to_port(dev);
1711 	unsigned long flags;
1712 
1713 	DBGINFO(("%s hdlcdev_tx_timeout\n", dev->name));
1714 
1715 	dev->stats.tx_errors++;
1716 	dev->stats.tx_aborted_errors++;
1717 
1718 	spin_lock_irqsave(&info->lock,flags);
1719 	tx_stop(info);
1720 	spin_unlock_irqrestore(&info->lock,flags);
1721 
1722 	netif_wake_queue(dev);
1723 }
1724 
1725 /**
1726  * called by device driver when transmit completes
1727  * reenable network layer transmit if stopped
1728  *
1729  * info  pointer to device instance information
1730  */
1731 static void hdlcdev_tx_done(struct slgt_info *info)
1732 {
1733 	if (netif_queue_stopped(info->netdev))
1734 		netif_wake_queue(info->netdev);
1735 }
1736 
1737 /**
1738  * called by device driver when frame received
1739  * pass frame to network layer
1740  *
1741  * info  pointer to device instance information
1742  * buf   pointer to buffer contianing frame data
1743  * size  count of data bytes in buf
1744  */
1745 static void hdlcdev_rx(struct slgt_info *info, char *buf, int size)
1746 {
1747 	struct sk_buff *skb = dev_alloc_skb(size);
1748 	struct net_device *dev = info->netdev;
1749 
1750 	DBGINFO(("%s hdlcdev_rx\n", dev->name));
1751 
1752 	if (skb == NULL) {
1753 		DBGERR(("%s: can't alloc skb, drop packet\n", dev->name));
1754 		dev->stats.rx_dropped++;
1755 		return;
1756 	}
1757 
1758 	memcpy(skb_put(skb, size), buf, size);
1759 
1760 	skb->protocol = hdlc_type_trans(skb, dev);
1761 
1762 	dev->stats.rx_packets++;
1763 	dev->stats.rx_bytes += size;
1764 
1765 	netif_rx(skb);
1766 }
1767 
1768 static const struct net_device_ops hdlcdev_ops = {
1769 	.ndo_open       = hdlcdev_open,
1770 	.ndo_stop       = hdlcdev_close,
1771 	.ndo_start_xmit = hdlc_start_xmit,
1772 	.ndo_do_ioctl   = hdlcdev_ioctl,
1773 	.ndo_tx_timeout = hdlcdev_tx_timeout,
1774 };
1775 
1776 /**
1777  * called by device driver when adding device instance
1778  * do generic HDLC initialization
1779  *
1780  * info  pointer to device instance information
1781  *
1782  * returns 0 if success, otherwise error code
1783  */
1784 static int hdlcdev_init(struct slgt_info *info)
1785 {
1786 	int rc;
1787 	struct net_device *dev;
1788 	hdlc_device *hdlc;
1789 
1790 	/* allocate and initialize network and HDLC layer objects */
1791 
1792 	dev = alloc_hdlcdev(info);
1793 	if (!dev) {
1794 		printk(KERN_ERR "%s hdlc device alloc failure\n", info->device_name);
1795 		return -ENOMEM;
1796 	}
1797 
1798 	/* for network layer reporting purposes only */
1799 	dev->mem_start = info->phys_reg_addr;
1800 	dev->mem_end   = info->phys_reg_addr + SLGT_REG_SIZE - 1;
1801 	dev->irq       = info->irq_level;
1802 
1803 	/* network layer callbacks and settings */
1804 	dev->netdev_ops	    = &hdlcdev_ops;
1805 	dev->watchdog_timeo = 10 * HZ;
1806 	dev->tx_queue_len   = 50;
1807 
1808 	/* generic HDLC layer callbacks and settings */
1809 	hdlc         = dev_to_hdlc(dev);
1810 	hdlc->attach = hdlcdev_attach;
1811 	hdlc->xmit   = hdlcdev_xmit;
1812 
1813 	/* register objects with HDLC layer */
1814 	rc = register_hdlc_device(dev);
1815 	if (rc) {
1816 		printk(KERN_WARNING "%s:unable to register hdlc device\n",__FILE__);
1817 		free_netdev(dev);
1818 		return rc;
1819 	}
1820 
1821 	info->netdev = dev;
1822 	return 0;
1823 }
1824 
1825 /**
1826  * called by device driver when removing device instance
1827  * do generic HDLC cleanup
1828  *
1829  * info  pointer to device instance information
1830  */
1831 static void hdlcdev_exit(struct slgt_info *info)
1832 {
1833 	unregister_hdlc_device(info->netdev);
1834 	free_netdev(info->netdev);
1835 	info->netdev = NULL;
1836 }
1837 
1838 #endif /* ifdef CONFIG_HDLC */
1839 
1840 /*
1841  * get async data from rx DMA buffers
1842  */
1843 static void rx_async(struct slgt_info *info)
1844 {
1845  	struct mgsl_icount *icount = &info->icount;
1846 	unsigned int start, end;
1847 	unsigned char *p;
1848 	unsigned char status;
1849 	struct slgt_desc *bufs = info->rbufs;
1850 	int i, count;
1851 	int chars = 0;
1852 	int stat;
1853 	unsigned char ch;
1854 
1855 	start = end = info->rbuf_current;
1856 
1857 	while(desc_complete(bufs[end])) {
1858 		count = desc_count(bufs[end]) - info->rbuf_index;
1859 		p     = bufs[end].buf + info->rbuf_index;
1860 
1861 		DBGISR(("%s rx_async count=%d\n", info->device_name, count));
1862 		DBGDATA(info, p, count, "rx");
1863 
1864 		for(i=0 ; i < count; i+=2, p+=2) {
1865 			ch = *p;
1866 			icount->rx++;
1867 
1868 			stat = 0;
1869 
1870 			status = *(p + 1) & (BIT1 + BIT0);
1871 			if (status) {
1872 				if (status & BIT1)
1873 					icount->parity++;
1874 				else if (status & BIT0)
1875 					icount->frame++;
1876 				/* discard char if tty control flags say so */
1877 				if (status & info->ignore_status_mask)
1878 					continue;
1879 				if (status & BIT1)
1880 					stat = TTY_PARITY;
1881 				else if (status & BIT0)
1882 					stat = TTY_FRAME;
1883 			}
1884 			tty_insert_flip_char(&info->port, ch, stat);
1885 			chars++;
1886 		}
1887 
1888 		if (i < count) {
1889 			/* receive buffer not completed */
1890 			info->rbuf_index += i;
1891 			mod_timer(&info->rx_timer, jiffies + 1);
1892 			break;
1893 		}
1894 
1895 		info->rbuf_index = 0;
1896 		free_rbufs(info, end, end);
1897 
1898 		if (++end == info->rbuf_count)
1899 			end = 0;
1900 
1901 		/* if entire list searched then no frame available */
1902 		if (end == start)
1903 			break;
1904 	}
1905 
1906 	if (chars)
1907 		tty_flip_buffer_push(&info->port);
1908 }
1909 
1910 /*
1911  * return next bottom half action to perform
1912  */
1913 static int bh_action(struct slgt_info *info)
1914 {
1915 	unsigned long flags;
1916 	int rc;
1917 
1918 	spin_lock_irqsave(&info->lock,flags);
1919 
1920 	if (info->pending_bh & BH_RECEIVE) {
1921 		info->pending_bh &= ~BH_RECEIVE;
1922 		rc = BH_RECEIVE;
1923 	} else if (info->pending_bh & BH_TRANSMIT) {
1924 		info->pending_bh &= ~BH_TRANSMIT;
1925 		rc = BH_TRANSMIT;
1926 	} else if (info->pending_bh & BH_STATUS) {
1927 		info->pending_bh &= ~BH_STATUS;
1928 		rc = BH_STATUS;
1929 	} else {
1930 		/* Mark BH routine as complete */
1931 		info->bh_running = false;
1932 		info->bh_requested = false;
1933 		rc = 0;
1934 	}
1935 
1936 	spin_unlock_irqrestore(&info->lock,flags);
1937 
1938 	return rc;
1939 }
1940 
1941 /*
1942  * perform bottom half processing
1943  */
1944 static void bh_handler(struct work_struct *work)
1945 {
1946 	struct slgt_info *info = container_of(work, struct slgt_info, task);
1947 	int action;
1948 
1949 	info->bh_running = true;
1950 
1951 	while((action = bh_action(info))) {
1952 		switch (action) {
1953 		case BH_RECEIVE:
1954 			DBGBH(("%s bh receive\n", info->device_name));
1955 			switch(info->params.mode) {
1956 			case MGSL_MODE_ASYNC:
1957 				rx_async(info);
1958 				break;
1959 			case MGSL_MODE_HDLC:
1960 				while(rx_get_frame(info));
1961 				break;
1962 			case MGSL_MODE_RAW:
1963 			case MGSL_MODE_MONOSYNC:
1964 			case MGSL_MODE_BISYNC:
1965 			case MGSL_MODE_XSYNC:
1966 				while(rx_get_buf(info));
1967 				break;
1968 			}
1969 			/* restart receiver if rx DMA buffers exhausted */
1970 			if (info->rx_restart)
1971 				rx_start(info);
1972 			break;
1973 		case BH_TRANSMIT:
1974 			bh_transmit(info);
1975 			break;
1976 		case BH_STATUS:
1977 			DBGBH(("%s bh status\n", info->device_name));
1978 			info->ri_chkcount = 0;
1979 			info->dsr_chkcount = 0;
1980 			info->dcd_chkcount = 0;
1981 			info->cts_chkcount = 0;
1982 			break;
1983 		default:
1984 			DBGBH(("%s unknown action\n", info->device_name));
1985 			break;
1986 		}
1987 	}
1988 	DBGBH(("%s bh_handler exit\n", info->device_name));
1989 }
1990 
1991 static void bh_transmit(struct slgt_info *info)
1992 {
1993 	struct tty_struct *tty = info->port.tty;
1994 
1995 	DBGBH(("%s bh_transmit\n", info->device_name));
1996 	if (tty)
1997 		tty_wakeup(tty);
1998 }
1999 
2000 static void dsr_change(struct slgt_info *info, unsigned short status)
2001 {
2002 	if (status & BIT3) {
2003 		info->signals |= SerialSignal_DSR;
2004 		info->input_signal_events.dsr_up++;
2005 	} else {
2006 		info->signals &= ~SerialSignal_DSR;
2007 		info->input_signal_events.dsr_down++;
2008 	}
2009 	DBGISR(("dsr_change %s signals=%04X\n", info->device_name, info->signals));
2010 	if ((info->dsr_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
2011 		slgt_irq_off(info, IRQ_DSR);
2012 		return;
2013 	}
2014 	info->icount.dsr++;
2015 	wake_up_interruptible(&info->status_event_wait_q);
2016 	wake_up_interruptible(&info->event_wait_q);
2017 	info->pending_bh |= BH_STATUS;
2018 }
2019 
2020 static void cts_change(struct slgt_info *info, unsigned short status)
2021 {
2022 	if (status & BIT2) {
2023 		info->signals |= SerialSignal_CTS;
2024 		info->input_signal_events.cts_up++;
2025 	} else {
2026 		info->signals &= ~SerialSignal_CTS;
2027 		info->input_signal_events.cts_down++;
2028 	}
2029 	DBGISR(("cts_change %s signals=%04X\n", info->device_name, info->signals));
2030 	if ((info->cts_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
2031 		slgt_irq_off(info, IRQ_CTS);
2032 		return;
2033 	}
2034 	info->icount.cts++;
2035 	wake_up_interruptible(&info->status_event_wait_q);
2036 	wake_up_interruptible(&info->event_wait_q);
2037 	info->pending_bh |= BH_STATUS;
2038 
2039 	if (tty_port_cts_enabled(&info->port)) {
2040 		if (info->port.tty) {
2041 			if (info->port.tty->hw_stopped) {
2042 				if (info->signals & SerialSignal_CTS) {
2043 		 			info->port.tty->hw_stopped = 0;
2044 					info->pending_bh |= BH_TRANSMIT;
2045 					return;
2046 				}
2047 			} else {
2048 				if (!(info->signals & SerialSignal_CTS))
2049 		 			info->port.tty->hw_stopped = 1;
2050 			}
2051 		}
2052 	}
2053 }
2054 
2055 static void dcd_change(struct slgt_info *info, unsigned short status)
2056 {
2057 	if (status & BIT1) {
2058 		info->signals |= SerialSignal_DCD;
2059 		info->input_signal_events.dcd_up++;
2060 	} else {
2061 		info->signals &= ~SerialSignal_DCD;
2062 		info->input_signal_events.dcd_down++;
2063 	}
2064 	DBGISR(("dcd_change %s signals=%04X\n", info->device_name, info->signals));
2065 	if ((info->dcd_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
2066 		slgt_irq_off(info, IRQ_DCD);
2067 		return;
2068 	}
2069 	info->icount.dcd++;
2070 #if SYNCLINK_GENERIC_HDLC
2071 	if (info->netcount) {
2072 		if (info->signals & SerialSignal_DCD)
2073 			netif_carrier_on(info->netdev);
2074 		else
2075 			netif_carrier_off(info->netdev);
2076 	}
2077 #endif
2078 	wake_up_interruptible(&info->status_event_wait_q);
2079 	wake_up_interruptible(&info->event_wait_q);
2080 	info->pending_bh |= BH_STATUS;
2081 
2082 	if (tty_port_check_carrier(&info->port)) {
2083 		if (info->signals & SerialSignal_DCD)
2084 			wake_up_interruptible(&info->port.open_wait);
2085 		else {
2086 			if (info->port.tty)
2087 				tty_hangup(info->port.tty);
2088 		}
2089 	}
2090 }
2091 
2092 static void ri_change(struct slgt_info *info, unsigned short status)
2093 {
2094 	if (status & BIT0) {
2095 		info->signals |= SerialSignal_RI;
2096 		info->input_signal_events.ri_up++;
2097 	} else {
2098 		info->signals &= ~SerialSignal_RI;
2099 		info->input_signal_events.ri_down++;
2100 	}
2101 	DBGISR(("ri_change %s signals=%04X\n", info->device_name, info->signals));
2102 	if ((info->ri_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
2103 		slgt_irq_off(info, IRQ_RI);
2104 		return;
2105 	}
2106 	info->icount.rng++;
2107 	wake_up_interruptible(&info->status_event_wait_q);
2108 	wake_up_interruptible(&info->event_wait_q);
2109 	info->pending_bh |= BH_STATUS;
2110 }
2111 
2112 static void isr_rxdata(struct slgt_info *info)
2113 {
2114 	unsigned int count = info->rbuf_fill_count;
2115 	unsigned int i = info->rbuf_fill_index;
2116 	unsigned short reg;
2117 
2118 	while (rd_reg16(info, SSR) & IRQ_RXDATA) {
2119 		reg = rd_reg16(info, RDR);
2120 		DBGISR(("isr_rxdata %s RDR=%04X\n", info->device_name, reg));
2121 		if (desc_complete(info->rbufs[i])) {
2122 			/* all buffers full */
2123 			rx_stop(info);
2124 			info->rx_restart = 1;
2125 			continue;
2126 		}
2127 		info->rbufs[i].buf[count++] = (unsigned char)reg;
2128 		/* async mode saves status byte to buffer for each data byte */
2129 		if (info->params.mode == MGSL_MODE_ASYNC)
2130 			info->rbufs[i].buf[count++] = (unsigned char)(reg >> 8);
2131 		if (count == info->rbuf_fill_level || (reg & BIT10)) {
2132 			/* buffer full or end of frame */
2133 			set_desc_count(info->rbufs[i], count);
2134 			set_desc_status(info->rbufs[i], BIT15 | (reg >> 8));
2135 			info->rbuf_fill_count = count = 0;
2136 			if (++i == info->rbuf_count)
2137 				i = 0;
2138 			info->pending_bh |= BH_RECEIVE;
2139 		}
2140 	}
2141 
2142 	info->rbuf_fill_index = i;
2143 	info->rbuf_fill_count = count;
2144 }
2145 
2146 static void isr_serial(struct slgt_info *info)
2147 {
2148 	unsigned short status = rd_reg16(info, SSR);
2149 
2150 	DBGISR(("%s isr_serial status=%04X\n", info->device_name, status));
2151 
2152 	wr_reg16(info, SSR, status); /* clear pending */
2153 
2154 	info->irq_occurred = true;
2155 
2156 	if (info->params.mode == MGSL_MODE_ASYNC) {
2157 		if (status & IRQ_TXIDLE) {
2158 			if (info->tx_active)
2159 				isr_txeom(info, status);
2160 		}
2161 		if (info->rx_pio && (status & IRQ_RXDATA))
2162 			isr_rxdata(info);
2163 		if ((status & IRQ_RXBREAK) && (status & RXBREAK)) {
2164 			info->icount.brk++;
2165 			/* process break detection if tty control allows */
2166 			if (info->port.tty) {
2167 				if (!(status & info->ignore_status_mask)) {
2168 					if (info->read_status_mask & MASK_BREAK) {
2169 						tty_insert_flip_char(&info->port, 0, TTY_BREAK);
2170 						if (info->port.flags & ASYNC_SAK)
2171 							do_SAK(info->port.tty);
2172 					}
2173 				}
2174 			}
2175 		}
2176 	} else {
2177 		if (status & (IRQ_TXIDLE + IRQ_TXUNDER))
2178 			isr_txeom(info, status);
2179 		if (info->rx_pio && (status & IRQ_RXDATA))
2180 			isr_rxdata(info);
2181 		if (status & IRQ_RXIDLE) {
2182 			if (status & RXIDLE)
2183 				info->icount.rxidle++;
2184 			else
2185 				info->icount.exithunt++;
2186 			wake_up_interruptible(&info->event_wait_q);
2187 		}
2188 
2189 		if (status & IRQ_RXOVER)
2190 			rx_start(info);
2191 	}
2192 
2193 	if (status & IRQ_DSR)
2194 		dsr_change(info, status);
2195 	if (status & IRQ_CTS)
2196 		cts_change(info, status);
2197 	if (status & IRQ_DCD)
2198 		dcd_change(info, status);
2199 	if (status & IRQ_RI)
2200 		ri_change(info, status);
2201 }
2202 
2203 static void isr_rdma(struct slgt_info *info)
2204 {
2205 	unsigned int status = rd_reg32(info, RDCSR);
2206 
2207 	DBGISR(("%s isr_rdma status=%08x\n", info->device_name, status));
2208 
2209 	/* RDCSR (rx DMA control/status)
2210 	 *
2211 	 * 31..07  reserved
2212 	 * 06      save status byte to DMA buffer
2213 	 * 05      error
2214 	 * 04      eol (end of list)
2215 	 * 03      eob (end of buffer)
2216 	 * 02      IRQ enable
2217 	 * 01      reset
2218 	 * 00      enable
2219 	 */
2220 	wr_reg32(info, RDCSR, status);	/* clear pending */
2221 
2222 	if (status & (BIT5 + BIT4)) {
2223 		DBGISR(("%s isr_rdma rx_restart=1\n", info->device_name));
2224 		info->rx_restart = true;
2225 	}
2226 	info->pending_bh |= BH_RECEIVE;
2227 }
2228 
2229 static void isr_tdma(struct slgt_info *info)
2230 {
2231 	unsigned int status = rd_reg32(info, TDCSR);
2232 
2233 	DBGISR(("%s isr_tdma status=%08x\n", info->device_name, status));
2234 
2235 	/* TDCSR (tx DMA control/status)
2236 	 *
2237 	 * 31..06  reserved
2238 	 * 05      error
2239 	 * 04      eol (end of list)
2240 	 * 03      eob (end of buffer)
2241 	 * 02      IRQ enable
2242 	 * 01      reset
2243 	 * 00      enable
2244 	 */
2245 	wr_reg32(info, TDCSR, status);	/* clear pending */
2246 
2247 	if (status & (BIT5 + BIT4 + BIT3)) {
2248 		// another transmit buffer has completed
2249 		// run bottom half to get more send data from user
2250 		info->pending_bh |= BH_TRANSMIT;
2251 	}
2252 }
2253 
2254 /*
2255  * return true if there are unsent tx DMA buffers, otherwise false
2256  *
2257  * if there are unsent buffers then info->tbuf_start
2258  * is set to index of first unsent buffer
2259  */
2260 static bool unsent_tbufs(struct slgt_info *info)
2261 {
2262 	unsigned int i = info->tbuf_current;
2263 	bool rc = false;
2264 
2265 	/*
2266 	 * search backwards from last loaded buffer (precedes tbuf_current)
2267 	 * for first unsent buffer (desc_count > 0)
2268 	 */
2269 
2270 	do {
2271 		if (i)
2272 			i--;
2273 		else
2274 			i = info->tbuf_count - 1;
2275 		if (!desc_count(info->tbufs[i]))
2276 			break;
2277 		info->tbuf_start = i;
2278 		rc = true;
2279 	} while (i != info->tbuf_current);
2280 
2281 	return rc;
2282 }
2283 
2284 static void isr_txeom(struct slgt_info *info, unsigned short status)
2285 {
2286 	DBGISR(("%s txeom status=%04x\n", info->device_name, status));
2287 
2288 	slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER);
2289 	tdma_reset(info);
2290 	if (status & IRQ_TXUNDER) {
2291 		unsigned short val = rd_reg16(info, TCR);
2292 		wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */
2293 		wr_reg16(info, TCR, val); /* clear reset bit */
2294 	}
2295 
2296 	if (info->tx_active) {
2297 		if (info->params.mode != MGSL_MODE_ASYNC) {
2298 			if (status & IRQ_TXUNDER)
2299 				info->icount.txunder++;
2300 			else if (status & IRQ_TXIDLE)
2301 				info->icount.txok++;
2302 		}
2303 
2304 		if (unsent_tbufs(info)) {
2305 			tx_start(info);
2306 			update_tx_timer(info);
2307 			return;
2308 		}
2309 		info->tx_active = false;
2310 
2311 		del_timer(&info->tx_timer);
2312 
2313 		if (info->params.mode != MGSL_MODE_ASYNC && info->drop_rts_on_tx_done) {
2314 			info->signals &= ~SerialSignal_RTS;
2315 			info->drop_rts_on_tx_done = false;
2316 			set_signals(info);
2317 		}
2318 
2319 #if SYNCLINK_GENERIC_HDLC
2320 		if (info->netcount)
2321 			hdlcdev_tx_done(info);
2322 		else
2323 #endif
2324 		{
2325 			if (info->port.tty && (info->port.tty->stopped || info->port.tty->hw_stopped)) {
2326 				tx_stop(info);
2327 				return;
2328 			}
2329 			info->pending_bh |= BH_TRANSMIT;
2330 		}
2331 	}
2332 }
2333 
2334 static void isr_gpio(struct slgt_info *info, unsigned int changed, unsigned int state)
2335 {
2336 	struct cond_wait *w, *prev;
2337 
2338 	/* wake processes waiting for specific transitions */
2339 	for (w = info->gpio_wait_q, prev = NULL ; w != NULL ; w = w->next) {
2340 		if (w->data & changed) {
2341 			w->data = state;
2342 			wake_up_interruptible(&w->q);
2343 			if (prev != NULL)
2344 				prev->next = w->next;
2345 			else
2346 				info->gpio_wait_q = w->next;
2347 		} else
2348 			prev = w;
2349 	}
2350 }
2351 
2352 /* interrupt service routine
2353  *
2354  * 	irq	interrupt number
2355  * 	dev_id	device ID supplied during interrupt registration
2356  */
2357 static irqreturn_t slgt_interrupt(int dummy, void *dev_id)
2358 {
2359 	struct slgt_info *info = dev_id;
2360 	unsigned int gsr;
2361 	unsigned int i;
2362 
2363 	DBGISR(("slgt_interrupt irq=%d entry\n", info->irq_level));
2364 
2365 	while((gsr = rd_reg32(info, GSR) & 0xffffff00)) {
2366 		DBGISR(("%s gsr=%08x\n", info->device_name, gsr));
2367 		info->irq_occurred = true;
2368 		for(i=0; i < info->port_count ; i++) {
2369 			if (info->port_array[i] == NULL)
2370 				continue;
2371 			spin_lock(&info->port_array[i]->lock);
2372 			if (gsr & (BIT8 << i))
2373 				isr_serial(info->port_array[i]);
2374 			if (gsr & (BIT16 << (i*2)))
2375 				isr_rdma(info->port_array[i]);
2376 			if (gsr & (BIT17 << (i*2)))
2377 				isr_tdma(info->port_array[i]);
2378 			spin_unlock(&info->port_array[i]->lock);
2379 		}
2380 	}
2381 
2382 	if (info->gpio_present) {
2383 		unsigned int state;
2384 		unsigned int changed;
2385 		spin_lock(&info->lock);
2386 		while ((changed = rd_reg32(info, IOSR)) != 0) {
2387 			DBGISR(("%s iosr=%08x\n", info->device_name, changed));
2388 			/* read latched state of GPIO signals */
2389 			state = rd_reg32(info, IOVR);
2390 			/* clear pending GPIO interrupt bits */
2391 			wr_reg32(info, IOSR, changed);
2392 			for (i=0 ; i < info->port_count ; i++) {
2393 				if (info->port_array[i] != NULL)
2394 					isr_gpio(info->port_array[i], changed, state);
2395 			}
2396 		}
2397 		spin_unlock(&info->lock);
2398 	}
2399 
2400 	for(i=0; i < info->port_count ; i++) {
2401 		struct slgt_info *port = info->port_array[i];
2402 		if (port == NULL)
2403 			continue;
2404 		spin_lock(&port->lock);
2405 		if ((port->port.count || port->netcount) &&
2406 		    port->pending_bh && !port->bh_running &&
2407 		    !port->bh_requested) {
2408 			DBGISR(("%s bh queued\n", port->device_name));
2409 			schedule_work(&port->task);
2410 			port->bh_requested = true;
2411 		}
2412 		spin_unlock(&port->lock);
2413 	}
2414 
2415 	DBGISR(("slgt_interrupt irq=%d exit\n", info->irq_level));
2416 	return IRQ_HANDLED;
2417 }
2418 
2419 static int startup(struct slgt_info *info)
2420 {
2421 	DBGINFO(("%s startup\n", info->device_name));
2422 
2423 	if (tty_port_initialized(&info->port))
2424 		return 0;
2425 
2426 	if (!info->tx_buf) {
2427 		info->tx_buf = kmalloc(info->max_frame_size, GFP_KERNEL);
2428 		if (!info->tx_buf) {
2429 			DBGERR(("%s can't allocate tx buffer\n", info->device_name));
2430 			return -ENOMEM;
2431 		}
2432 	}
2433 
2434 	info->pending_bh = 0;
2435 
2436 	memset(&info->icount, 0, sizeof(info->icount));
2437 
2438 	/* program hardware for current parameters */
2439 	change_params(info);
2440 
2441 	if (info->port.tty)
2442 		clear_bit(TTY_IO_ERROR, &info->port.tty->flags);
2443 
2444 	tty_port_set_initialized(&info->port, 1);
2445 
2446 	return 0;
2447 }
2448 
2449 /*
2450  *  called by close() and hangup() to shutdown hardware
2451  */
2452 static void shutdown(struct slgt_info *info)
2453 {
2454 	unsigned long flags;
2455 
2456 	if (!tty_port_initialized(&info->port))
2457 		return;
2458 
2459 	DBGINFO(("%s shutdown\n", info->device_name));
2460 
2461 	/* clear status wait queue because status changes */
2462 	/* can't happen after shutting down the hardware */
2463 	wake_up_interruptible(&info->status_event_wait_q);
2464 	wake_up_interruptible(&info->event_wait_q);
2465 
2466 	del_timer_sync(&info->tx_timer);
2467 	del_timer_sync(&info->rx_timer);
2468 
2469 	kfree(info->tx_buf);
2470 	info->tx_buf = NULL;
2471 
2472 	spin_lock_irqsave(&info->lock,flags);
2473 
2474 	tx_stop(info);
2475 	rx_stop(info);
2476 
2477 	slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
2478 
2479  	if (!info->port.tty || info->port.tty->termios.c_cflag & HUPCL) {
2480 		info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
2481 		set_signals(info);
2482 	}
2483 
2484 	flush_cond_wait(&info->gpio_wait_q);
2485 
2486 	spin_unlock_irqrestore(&info->lock,flags);
2487 
2488 	if (info->port.tty)
2489 		set_bit(TTY_IO_ERROR, &info->port.tty->flags);
2490 
2491 	tty_port_set_initialized(&info->port, 0);
2492 }
2493 
2494 static void program_hw(struct slgt_info *info)
2495 {
2496 	unsigned long flags;
2497 
2498 	spin_lock_irqsave(&info->lock,flags);
2499 
2500 	rx_stop(info);
2501 	tx_stop(info);
2502 
2503 	if (info->params.mode != MGSL_MODE_ASYNC ||
2504 	    info->netcount)
2505 		sync_mode(info);
2506 	else
2507 		async_mode(info);
2508 
2509 	set_signals(info);
2510 
2511 	info->dcd_chkcount = 0;
2512 	info->cts_chkcount = 0;
2513 	info->ri_chkcount = 0;
2514 	info->dsr_chkcount = 0;
2515 
2516 	slgt_irq_on(info, IRQ_DCD | IRQ_CTS | IRQ_DSR | IRQ_RI);
2517 	get_signals(info);
2518 
2519 	if (info->netcount ||
2520 	    (info->port.tty && info->port.tty->termios.c_cflag & CREAD))
2521 		rx_start(info);
2522 
2523 	spin_unlock_irqrestore(&info->lock,flags);
2524 }
2525 
2526 /*
2527  * reconfigure adapter based on new parameters
2528  */
2529 static void change_params(struct slgt_info *info)
2530 {
2531 	unsigned cflag;
2532 	int bits_per_char;
2533 
2534 	if (!info->port.tty)
2535 		return;
2536 	DBGINFO(("%s change_params\n", info->device_name));
2537 
2538 	cflag = info->port.tty->termios.c_cflag;
2539 
2540 	/* if B0 rate (hangup) specified then negate RTS and DTR */
2541 	/* otherwise assert RTS and DTR */
2542  	if (cflag & CBAUD)
2543 		info->signals |= SerialSignal_RTS | SerialSignal_DTR;
2544 	else
2545 		info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
2546 
2547 	/* byte size and parity */
2548 
2549 	switch (cflag & CSIZE) {
2550 	case CS5: info->params.data_bits = 5; break;
2551 	case CS6: info->params.data_bits = 6; break;
2552 	case CS7: info->params.data_bits = 7; break;
2553 	case CS8: info->params.data_bits = 8; break;
2554 	default:  info->params.data_bits = 7; break;
2555 	}
2556 
2557 	info->params.stop_bits = (cflag & CSTOPB) ? 2 : 1;
2558 
2559 	if (cflag & PARENB)
2560 		info->params.parity = (cflag & PARODD) ? ASYNC_PARITY_ODD : ASYNC_PARITY_EVEN;
2561 	else
2562 		info->params.parity = ASYNC_PARITY_NONE;
2563 
2564 	/* calculate number of jiffies to transmit a full
2565 	 * FIFO (32 bytes) at specified data rate
2566 	 */
2567 	bits_per_char = info->params.data_bits +
2568 			info->params.stop_bits + 1;
2569 
2570 	info->params.data_rate = tty_get_baud_rate(info->port.tty);
2571 
2572 	if (info->params.data_rate) {
2573 		info->timeout = (32*HZ*bits_per_char) /
2574 				info->params.data_rate;
2575 	}
2576 	info->timeout += HZ/50;		/* Add .02 seconds of slop */
2577 
2578 	tty_port_set_cts_flow(&info->port, cflag & CRTSCTS);
2579 	tty_port_set_check_carrier(&info->port, ~cflag & CLOCAL);
2580 
2581 	/* process tty input control flags */
2582 
2583 	info->read_status_mask = IRQ_RXOVER;
2584 	if (I_INPCK(info->port.tty))
2585 		info->read_status_mask |= MASK_PARITY | MASK_FRAMING;
2586  	if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty))
2587  		info->read_status_mask |= MASK_BREAK;
2588 	if (I_IGNPAR(info->port.tty))
2589 		info->ignore_status_mask |= MASK_PARITY | MASK_FRAMING;
2590 	if (I_IGNBRK(info->port.tty)) {
2591 		info->ignore_status_mask |= MASK_BREAK;
2592 		/* If ignoring parity and break indicators, ignore
2593 		 * overruns too.  (For real raw support).
2594 		 */
2595 		if (I_IGNPAR(info->port.tty))
2596 			info->ignore_status_mask |= MASK_OVERRUN;
2597 	}
2598 
2599 	program_hw(info);
2600 }
2601 
2602 static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount)
2603 {
2604 	DBGINFO(("%s get_stats\n",  info->device_name));
2605 	if (!user_icount) {
2606 		memset(&info->icount, 0, sizeof(info->icount));
2607 	} else {
2608 		if (copy_to_user(user_icount, &info->icount, sizeof(struct mgsl_icount)))
2609 			return -EFAULT;
2610 	}
2611 	return 0;
2612 }
2613 
2614 static int get_params(struct slgt_info *info, MGSL_PARAMS __user *user_params)
2615 {
2616 	DBGINFO(("%s get_params\n", info->device_name));
2617 	if (copy_to_user(user_params, &info->params, sizeof(MGSL_PARAMS)))
2618 		return -EFAULT;
2619 	return 0;
2620 }
2621 
2622 static int set_params(struct slgt_info *info, MGSL_PARAMS __user *new_params)
2623 {
2624  	unsigned long flags;
2625 	MGSL_PARAMS tmp_params;
2626 
2627 	DBGINFO(("%s set_params\n", info->device_name));
2628 	if (copy_from_user(&tmp_params, new_params, sizeof(MGSL_PARAMS)))
2629 		return -EFAULT;
2630 
2631 	spin_lock_irqsave(&info->lock, flags);
2632 	if (tmp_params.mode == MGSL_MODE_BASE_CLOCK)
2633 		info->base_clock = tmp_params.clock_speed;
2634 	else
2635 		memcpy(&info->params, &tmp_params, sizeof(MGSL_PARAMS));
2636 	spin_unlock_irqrestore(&info->lock, flags);
2637 
2638 	program_hw(info);
2639 
2640 	return 0;
2641 }
2642 
2643 static int get_txidle(struct slgt_info *info, int __user *idle_mode)
2644 {
2645 	DBGINFO(("%s get_txidle=%d\n", info->device_name, info->idle_mode));
2646 	if (put_user(info->idle_mode, idle_mode))
2647 		return -EFAULT;
2648 	return 0;
2649 }
2650 
2651 static int set_txidle(struct slgt_info *info, int idle_mode)
2652 {
2653  	unsigned long flags;
2654 	DBGINFO(("%s set_txidle(%d)\n", info->device_name, idle_mode));
2655 	spin_lock_irqsave(&info->lock,flags);
2656 	info->idle_mode = idle_mode;
2657 	if (info->params.mode != MGSL_MODE_ASYNC)
2658 		tx_set_idle(info);
2659 	spin_unlock_irqrestore(&info->lock,flags);
2660 	return 0;
2661 }
2662 
2663 static int tx_enable(struct slgt_info *info, int enable)
2664 {
2665  	unsigned long flags;
2666 	DBGINFO(("%s tx_enable(%d)\n", info->device_name, enable));
2667 	spin_lock_irqsave(&info->lock,flags);
2668 	if (enable) {
2669 		if (!info->tx_enabled)
2670 			tx_start(info);
2671 	} else {
2672 		if (info->tx_enabled)
2673 			tx_stop(info);
2674 	}
2675 	spin_unlock_irqrestore(&info->lock,flags);
2676 	return 0;
2677 }
2678 
2679 /*
2680  * abort transmit HDLC frame
2681  */
2682 static int tx_abort(struct slgt_info *info)
2683 {
2684  	unsigned long flags;
2685 	DBGINFO(("%s tx_abort\n", info->device_name));
2686 	spin_lock_irqsave(&info->lock,flags);
2687 	tdma_reset(info);
2688 	spin_unlock_irqrestore(&info->lock,flags);
2689 	return 0;
2690 }
2691 
2692 static int rx_enable(struct slgt_info *info, int enable)
2693 {
2694  	unsigned long flags;
2695 	unsigned int rbuf_fill_level;
2696 	DBGINFO(("%s rx_enable(%08x)\n", info->device_name, enable));
2697 	spin_lock_irqsave(&info->lock,flags);
2698 	/*
2699 	 * enable[31..16] = receive DMA buffer fill level
2700 	 * 0 = noop (leave fill level unchanged)
2701 	 * fill level must be multiple of 4 and <= buffer size
2702 	 */
2703 	rbuf_fill_level = ((unsigned int)enable) >> 16;
2704 	if (rbuf_fill_level) {
2705 		if ((rbuf_fill_level > DMABUFSIZE) || (rbuf_fill_level % 4)) {
2706 			spin_unlock_irqrestore(&info->lock, flags);
2707 			return -EINVAL;
2708 		}
2709 		info->rbuf_fill_level = rbuf_fill_level;
2710 		if (rbuf_fill_level < 128)
2711 			info->rx_pio = 1; /* PIO mode */
2712 		else
2713 			info->rx_pio = 0; /* DMA mode */
2714 		rx_stop(info); /* restart receiver to use new fill level */
2715 	}
2716 
2717 	/*
2718 	 * enable[1..0] = receiver enable command
2719 	 * 0 = disable
2720 	 * 1 = enable
2721 	 * 2 = enable or force hunt mode if already enabled
2722 	 */
2723 	enable &= 3;
2724 	if (enable) {
2725 		if (!info->rx_enabled)
2726 			rx_start(info);
2727 		else if (enable == 2) {
2728 			/* force hunt mode (write 1 to RCR[3]) */
2729 			wr_reg16(info, RCR, rd_reg16(info, RCR) | BIT3);
2730 		}
2731 	} else {
2732 		if (info->rx_enabled)
2733 			rx_stop(info);
2734 	}
2735 	spin_unlock_irqrestore(&info->lock,flags);
2736 	return 0;
2737 }
2738 
2739 /*
2740  *  wait for specified event to occur
2741  */
2742 static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr)
2743 {
2744  	unsigned long flags;
2745 	int s;
2746 	int rc=0;
2747 	struct mgsl_icount cprev, cnow;
2748 	int events;
2749 	int mask;
2750 	struct	_input_signal_events oldsigs, newsigs;
2751 	DECLARE_WAITQUEUE(wait, current);
2752 
2753 	if (get_user(mask, mask_ptr))
2754 		return -EFAULT;
2755 
2756 	DBGINFO(("%s wait_mgsl_event(%d)\n", info->device_name, mask));
2757 
2758 	spin_lock_irqsave(&info->lock,flags);
2759 
2760 	/* return immediately if state matches requested events */
2761 	get_signals(info);
2762 	s = info->signals;
2763 
2764 	events = mask &
2765 		( ((s & SerialSignal_DSR) ? MgslEvent_DsrActive:MgslEvent_DsrInactive) +
2766  		  ((s & SerialSignal_DCD) ? MgslEvent_DcdActive:MgslEvent_DcdInactive) +
2767 		  ((s & SerialSignal_CTS) ? MgslEvent_CtsActive:MgslEvent_CtsInactive) +
2768 		  ((s & SerialSignal_RI)  ? MgslEvent_RiActive :MgslEvent_RiInactive) );
2769 	if (events) {
2770 		spin_unlock_irqrestore(&info->lock,flags);
2771 		goto exit;
2772 	}
2773 
2774 	/* save current irq counts */
2775 	cprev = info->icount;
2776 	oldsigs = info->input_signal_events;
2777 
2778 	/* enable hunt and idle irqs if needed */
2779 	if (mask & (MgslEvent_ExitHuntMode+MgslEvent_IdleReceived)) {
2780 		unsigned short val = rd_reg16(info, SCR);
2781 		if (!(val & IRQ_RXIDLE))
2782 			wr_reg16(info, SCR, (unsigned short)(val | IRQ_RXIDLE));
2783 	}
2784 
2785 	set_current_state(TASK_INTERRUPTIBLE);
2786 	add_wait_queue(&info->event_wait_q, &wait);
2787 
2788 	spin_unlock_irqrestore(&info->lock,flags);
2789 
2790 	for(;;) {
2791 		schedule();
2792 		if (signal_pending(current)) {
2793 			rc = -ERESTARTSYS;
2794 			break;
2795 		}
2796 
2797 		/* get current irq counts */
2798 		spin_lock_irqsave(&info->lock,flags);
2799 		cnow = info->icount;
2800 		newsigs = info->input_signal_events;
2801 		set_current_state(TASK_INTERRUPTIBLE);
2802 		spin_unlock_irqrestore(&info->lock,flags);
2803 
2804 		/* if no change, wait aborted for some reason */
2805 		if (newsigs.dsr_up   == oldsigs.dsr_up   &&
2806 		    newsigs.dsr_down == oldsigs.dsr_down &&
2807 		    newsigs.dcd_up   == oldsigs.dcd_up   &&
2808 		    newsigs.dcd_down == oldsigs.dcd_down &&
2809 		    newsigs.cts_up   == oldsigs.cts_up   &&
2810 		    newsigs.cts_down == oldsigs.cts_down &&
2811 		    newsigs.ri_up    == oldsigs.ri_up    &&
2812 		    newsigs.ri_down  == oldsigs.ri_down  &&
2813 		    cnow.exithunt    == cprev.exithunt   &&
2814 		    cnow.rxidle      == cprev.rxidle) {
2815 			rc = -EIO;
2816 			break;
2817 		}
2818 
2819 		events = mask &
2820 			( (newsigs.dsr_up   != oldsigs.dsr_up   ? MgslEvent_DsrActive:0)   +
2821 			  (newsigs.dsr_down != oldsigs.dsr_down ? MgslEvent_DsrInactive:0) +
2822 			  (newsigs.dcd_up   != oldsigs.dcd_up   ? MgslEvent_DcdActive:0)   +
2823 			  (newsigs.dcd_down != oldsigs.dcd_down ? MgslEvent_DcdInactive:0) +
2824 			  (newsigs.cts_up   != oldsigs.cts_up   ? MgslEvent_CtsActive:0)   +
2825 			  (newsigs.cts_down != oldsigs.cts_down ? MgslEvent_CtsInactive:0) +
2826 			  (newsigs.ri_up    != oldsigs.ri_up    ? MgslEvent_RiActive:0)    +
2827 			  (newsigs.ri_down  != oldsigs.ri_down  ? MgslEvent_RiInactive:0)  +
2828 			  (cnow.exithunt    != cprev.exithunt   ? MgslEvent_ExitHuntMode:0) +
2829 			  (cnow.rxidle      != cprev.rxidle     ? MgslEvent_IdleReceived:0) );
2830 		if (events)
2831 			break;
2832 
2833 		cprev = cnow;
2834 		oldsigs = newsigs;
2835 	}
2836 
2837 	remove_wait_queue(&info->event_wait_q, &wait);
2838 	set_current_state(TASK_RUNNING);
2839 
2840 
2841 	if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) {
2842 		spin_lock_irqsave(&info->lock,flags);
2843 		if (!waitqueue_active(&info->event_wait_q)) {
2844 			/* disable enable exit hunt mode/idle rcvd IRQs */
2845 			wr_reg16(info, SCR,
2846 				(unsigned short)(rd_reg16(info, SCR) & ~IRQ_RXIDLE));
2847 		}
2848 		spin_unlock_irqrestore(&info->lock,flags);
2849 	}
2850 exit:
2851 	if (rc == 0)
2852 		rc = put_user(events, mask_ptr);
2853 	return rc;
2854 }
2855 
2856 static int get_interface(struct slgt_info *info, int __user *if_mode)
2857 {
2858 	DBGINFO(("%s get_interface=%x\n", info->device_name, info->if_mode));
2859 	if (put_user(info->if_mode, if_mode))
2860 		return -EFAULT;
2861 	return 0;
2862 }
2863 
2864 static int set_interface(struct slgt_info *info, int if_mode)
2865 {
2866  	unsigned long flags;
2867 	unsigned short val;
2868 
2869 	DBGINFO(("%s set_interface=%x)\n", info->device_name, if_mode));
2870 	spin_lock_irqsave(&info->lock,flags);
2871 	info->if_mode = if_mode;
2872 
2873 	msc_set_vcr(info);
2874 
2875 	/* TCR (tx control) 07  1=RTS driver control */
2876 	val = rd_reg16(info, TCR);
2877 	if (info->if_mode & MGSL_INTERFACE_RTS_EN)
2878 		val |= BIT7;
2879 	else
2880 		val &= ~BIT7;
2881 	wr_reg16(info, TCR, val);
2882 
2883 	spin_unlock_irqrestore(&info->lock,flags);
2884 	return 0;
2885 }
2886 
2887 static int get_xsync(struct slgt_info *info, int __user *xsync)
2888 {
2889 	DBGINFO(("%s get_xsync=%x\n", info->device_name, info->xsync));
2890 	if (put_user(info->xsync, xsync))
2891 		return -EFAULT;
2892 	return 0;
2893 }
2894 
2895 /*
2896  * set extended sync pattern (1 to 4 bytes) for extended sync mode
2897  *
2898  * sync pattern is contained in least significant bytes of value
2899  * most significant byte of sync pattern is oldest (1st sent/detected)
2900  */
2901 static int set_xsync(struct slgt_info *info, int xsync)
2902 {
2903 	unsigned long flags;
2904 
2905 	DBGINFO(("%s set_xsync=%x)\n", info->device_name, xsync));
2906 	spin_lock_irqsave(&info->lock, flags);
2907 	info->xsync = xsync;
2908 	wr_reg32(info, XSR, xsync);
2909 	spin_unlock_irqrestore(&info->lock, flags);
2910 	return 0;
2911 }
2912 
2913 static int get_xctrl(struct slgt_info *info, int __user *xctrl)
2914 {
2915 	DBGINFO(("%s get_xctrl=%x\n", info->device_name, info->xctrl));
2916 	if (put_user(info->xctrl, xctrl))
2917 		return -EFAULT;
2918 	return 0;
2919 }
2920 
2921 /*
2922  * set extended control options
2923  *
2924  * xctrl[31:19] reserved, must be zero
2925  * xctrl[18:17] extended sync pattern length in bytes
2926  *              00 = 1 byte  in xsr[7:0]
2927  *              01 = 2 bytes in xsr[15:0]
2928  *              10 = 3 bytes in xsr[23:0]
2929  *              11 = 4 bytes in xsr[31:0]
2930  * xctrl[16]    1 = enable terminal count, 0=disabled
2931  * xctrl[15:0]  receive terminal count for fixed length packets
2932  *              value is count minus one (0 = 1 byte packet)
2933  *              when terminal count is reached, receiver
2934  *              automatically returns to hunt mode and receive
2935  *              FIFO contents are flushed to DMA buffers with
2936  *              end of frame (EOF) status
2937  */
2938 static int set_xctrl(struct slgt_info *info, int xctrl)
2939 {
2940 	unsigned long flags;
2941 
2942 	DBGINFO(("%s set_xctrl=%x)\n", info->device_name, xctrl));
2943 	spin_lock_irqsave(&info->lock, flags);
2944 	info->xctrl = xctrl;
2945 	wr_reg32(info, XCR, xctrl);
2946 	spin_unlock_irqrestore(&info->lock, flags);
2947 	return 0;
2948 }
2949 
2950 /*
2951  * set general purpose IO pin state and direction
2952  *
2953  * user_gpio fields:
2954  * state   each bit indicates a pin state
2955  * smask   set bit indicates pin state to set
2956  * dir     each bit indicates a pin direction (0=input, 1=output)
2957  * dmask   set bit indicates pin direction to set
2958  */
2959 static int set_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
2960 {
2961  	unsigned long flags;
2962 	struct gpio_desc gpio;
2963 	__u32 data;
2964 
2965 	if (!info->gpio_present)
2966 		return -EINVAL;
2967 	if (copy_from_user(&gpio, user_gpio, sizeof(gpio)))
2968 		return -EFAULT;
2969 	DBGINFO(("%s set_gpio state=%08x smask=%08x dir=%08x dmask=%08x\n",
2970 		 info->device_name, gpio.state, gpio.smask,
2971 		 gpio.dir, gpio.dmask));
2972 
2973 	spin_lock_irqsave(&info->port_array[0]->lock, flags);
2974 	if (gpio.dmask) {
2975 		data = rd_reg32(info, IODR);
2976 		data |= gpio.dmask & gpio.dir;
2977 		data &= ~(gpio.dmask & ~gpio.dir);
2978 		wr_reg32(info, IODR, data);
2979 	}
2980 	if (gpio.smask) {
2981 		data = rd_reg32(info, IOVR);
2982 		data |= gpio.smask & gpio.state;
2983 		data &= ~(gpio.smask & ~gpio.state);
2984 		wr_reg32(info, IOVR, data);
2985 	}
2986 	spin_unlock_irqrestore(&info->port_array[0]->lock, flags);
2987 
2988 	return 0;
2989 }
2990 
2991 /*
2992  * get general purpose IO pin state and direction
2993  */
2994 static int get_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
2995 {
2996 	struct gpio_desc gpio;
2997 	if (!info->gpio_present)
2998 		return -EINVAL;
2999 	gpio.state = rd_reg32(info, IOVR);
3000 	gpio.smask = 0xffffffff;
3001 	gpio.dir   = rd_reg32(info, IODR);
3002 	gpio.dmask = 0xffffffff;
3003 	if (copy_to_user(user_gpio, &gpio, sizeof(gpio)))
3004 		return -EFAULT;
3005 	DBGINFO(("%s get_gpio state=%08x dir=%08x\n",
3006 		 info->device_name, gpio.state, gpio.dir));
3007 	return 0;
3008 }
3009 
3010 /*
3011  * conditional wait facility
3012  */
3013 static void init_cond_wait(struct cond_wait *w, unsigned int data)
3014 {
3015 	init_waitqueue_head(&w->q);
3016 	init_waitqueue_entry(&w->wait, current);
3017 	w->data = data;
3018 }
3019 
3020 static void add_cond_wait(struct cond_wait **head, struct cond_wait *w)
3021 {
3022 	set_current_state(TASK_INTERRUPTIBLE);
3023 	add_wait_queue(&w->q, &w->wait);
3024 	w->next = *head;
3025 	*head = w;
3026 }
3027 
3028 static void remove_cond_wait(struct cond_wait **head, struct cond_wait *cw)
3029 {
3030 	struct cond_wait *w, *prev;
3031 	remove_wait_queue(&cw->q, &cw->wait);
3032 	set_current_state(TASK_RUNNING);
3033 	for (w = *head, prev = NULL ; w != NULL ; prev = w, w = w->next) {
3034 		if (w == cw) {
3035 			if (prev != NULL)
3036 				prev->next = w->next;
3037 			else
3038 				*head = w->next;
3039 			break;
3040 		}
3041 	}
3042 }
3043 
3044 static void flush_cond_wait(struct cond_wait **head)
3045 {
3046 	while (*head != NULL) {
3047 		wake_up_interruptible(&(*head)->q);
3048 		*head = (*head)->next;
3049 	}
3050 }
3051 
3052 /*
3053  * wait for general purpose I/O pin(s) to enter specified state
3054  *
3055  * user_gpio fields:
3056  * state - bit indicates target pin state
3057  * smask - set bit indicates watched pin
3058  *
3059  * The wait ends when at least one watched pin enters the specified
3060  * state. When 0 (no error) is returned, user_gpio->state is set to the
3061  * state of all GPIO pins when the wait ends.
3062  *
3063  * Note: Each pin may be a dedicated input, dedicated output, or
3064  * configurable input/output. The number and configuration of pins
3065  * varies with the specific adapter model. Only input pins (dedicated
3066  * or configured) can be monitored with this function.
3067  */
3068 static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
3069 {
3070  	unsigned long flags;
3071 	int rc = 0;
3072 	struct gpio_desc gpio;
3073 	struct cond_wait wait;
3074 	u32 state;
3075 
3076 	if (!info->gpio_present)
3077 		return -EINVAL;
3078 	if (copy_from_user(&gpio, user_gpio, sizeof(gpio)))
3079 		return -EFAULT;
3080 	DBGINFO(("%s wait_gpio() state=%08x smask=%08x\n",
3081 		 info->device_name, gpio.state, gpio.smask));
3082 	/* ignore output pins identified by set IODR bit */
3083 	if ((gpio.smask &= ~rd_reg32(info, IODR)) == 0)
3084 		return -EINVAL;
3085 	init_cond_wait(&wait, gpio.smask);
3086 
3087 	spin_lock_irqsave(&info->port_array[0]->lock, flags);
3088 	/* enable interrupts for watched pins */
3089 	wr_reg32(info, IOER, rd_reg32(info, IOER) | gpio.smask);
3090 	/* get current pin states */
3091 	state = rd_reg32(info, IOVR);
3092 
3093 	if (gpio.smask & ~(state ^ gpio.state)) {
3094 		/* already in target state */
3095 		gpio.state = state;
3096 	} else {
3097 		/* wait for target state */
3098 		add_cond_wait(&info->gpio_wait_q, &wait);
3099 		spin_unlock_irqrestore(&info->port_array[0]->lock, flags);
3100 		schedule();
3101 		if (signal_pending(current))
3102 			rc = -ERESTARTSYS;
3103 		else
3104 			gpio.state = wait.data;
3105 		spin_lock_irqsave(&info->port_array[0]->lock, flags);
3106 		remove_cond_wait(&info->gpio_wait_q, &wait);
3107 	}
3108 
3109 	/* disable all GPIO interrupts if no waiting processes */
3110 	if (info->gpio_wait_q == NULL)
3111 		wr_reg32(info, IOER, 0);
3112 	spin_unlock_irqrestore(&info->port_array[0]->lock, flags);
3113 
3114 	if ((rc == 0) && copy_to_user(user_gpio, &gpio, sizeof(gpio)))
3115 		rc = -EFAULT;
3116 	return rc;
3117 }
3118 
3119 static int modem_input_wait(struct slgt_info *info,int arg)
3120 {
3121  	unsigned long flags;
3122 	int rc;
3123 	struct mgsl_icount cprev, cnow;
3124 	DECLARE_WAITQUEUE(wait, current);
3125 
3126 	/* save current irq counts */
3127 	spin_lock_irqsave(&info->lock,flags);
3128 	cprev = info->icount;
3129 	add_wait_queue(&info->status_event_wait_q, &wait);
3130 	set_current_state(TASK_INTERRUPTIBLE);
3131 	spin_unlock_irqrestore(&info->lock,flags);
3132 
3133 	for(;;) {
3134 		schedule();
3135 		if (signal_pending(current)) {
3136 			rc = -ERESTARTSYS;
3137 			break;
3138 		}
3139 
3140 		/* get new irq counts */
3141 		spin_lock_irqsave(&info->lock,flags);
3142 		cnow = info->icount;
3143 		set_current_state(TASK_INTERRUPTIBLE);
3144 		spin_unlock_irqrestore(&info->lock,flags);
3145 
3146 		/* if no change, wait aborted for some reason */
3147 		if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr &&
3148 		    cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) {
3149 			rc = -EIO;
3150 			break;
3151 		}
3152 
3153 		/* check for change in caller specified modem input */
3154 		if ((arg & TIOCM_RNG && cnow.rng != cprev.rng) ||
3155 		    (arg & TIOCM_DSR && cnow.dsr != cprev.dsr) ||
3156 		    (arg & TIOCM_CD  && cnow.dcd != cprev.dcd) ||
3157 		    (arg & TIOCM_CTS && cnow.cts != cprev.cts)) {
3158 			rc = 0;
3159 			break;
3160 		}
3161 
3162 		cprev = cnow;
3163 	}
3164 	remove_wait_queue(&info->status_event_wait_q, &wait);
3165 	set_current_state(TASK_RUNNING);
3166 	return rc;
3167 }
3168 
3169 /*
3170  *  return state of serial control and status signals
3171  */
3172 static int tiocmget(struct tty_struct *tty)
3173 {
3174 	struct slgt_info *info = tty->driver_data;
3175 	unsigned int result;
3176  	unsigned long flags;
3177 
3178 	spin_lock_irqsave(&info->lock,flags);
3179  	get_signals(info);
3180 	spin_unlock_irqrestore(&info->lock,flags);
3181 
3182 	result = ((info->signals & SerialSignal_RTS) ? TIOCM_RTS:0) +
3183 		((info->signals & SerialSignal_DTR) ? TIOCM_DTR:0) +
3184 		((info->signals & SerialSignal_DCD) ? TIOCM_CAR:0) +
3185 		((info->signals & SerialSignal_RI)  ? TIOCM_RNG:0) +
3186 		((info->signals & SerialSignal_DSR) ? TIOCM_DSR:0) +
3187 		((info->signals & SerialSignal_CTS) ? TIOCM_CTS:0);
3188 
3189 	DBGINFO(("%s tiocmget value=%08X\n", info->device_name, result));
3190 	return result;
3191 }
3192 
3193 /*
3194  * set modem control signals (DTR/RTS)
3195  *
3196  * 	cmd	signal command: TIOCMBIS = set bit TIOCMBIC = clear bit
3197  *		TIOCMSET = set/clear signal values
3198  * 	value	bit mask for command
3199  */
3200 static int tiocmset(struct tty_struct *tty,
3201 		    unsigned int set, unsigned int clear)
3202 {
3203 	struct slgt_info *info = tty->driver_data;
3204  	unsigned long flags;
3205 
3206 	DBGINFO(("%s tiocmset(%x,%x)\n", info->device_name, set, clear));
3207 
3208 	if (set & TIOCM_RTS)
3209 		info->signals |= SerialSignal_RTS;
3210 	if (set & TIOCM_DTR)
3211 		info->signals |= SerialSignal_DTR;
3212 	if (clear & TIOCM_RTS)
3213 		info->signals &= ~SerialSignal_RTS;
3214 	if (clear & TIOCM_DTR)
3215 		info->signals &= ~SerialSignal_DTR;
3216 
3217 	spin_lock_irqsave(&info->lock,flags);
3218  	set_signals(info);
3219 	spin_unlock_irqrestore(&info->lock,flags);
3220 	return 0;
3221 }
3222 
3223 static int carrier_raised(struct tty_port *port)
3224 {
3225 	unsigned long flags;
3226 	struct slgt_info *info = container_of(port, struct slgt_info, port);
3227 
3228 	spin_lock_irqsave(&info->lock,flags);
3229  	get_signals(info);
3230 	spin_unlock_irqrestore(&info->lock,flags);
3231 	return (info->signals & SerialSignal_DCD) ? 1 : 0;
3232 }
3233 
3234 static void dtr_rts(struct tty_port *port, int on)
3235 {
3236 	unsigned long flags;
3237 	struct slgt_info *info = container_of(port, struct slgt_info, port);
3238 
3239 	spin_lock_irqsave(&info->lock,flags);
3240 	if (on)
3241 		info->signals |= SerialSignal_RTS | SerialSignal_DTR;
3242 	else
3243 		info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
3244  	set_signals(info);
3245 	spin_unlock_irqrestore(&info->lock,flags);
3246 }
3247 
3248 
3249 /*
3250  *  block current process until the device is ready to open
3251  */
3252 static int block_til_ready(struct tty_struct *tty, struct file *filp,
3253 			   struct slgt_info *info)
3254 {
3255 	DECLARE_WAITQUEUE(wait, current);
3256 	int		retval;
3257 	bool		do_clocal = false;
3258 	unsigned long	flags;
3259 	int		cd;
3260 	struct tty_port *port = &info->port;
3261 
3262 	DBGINFO(("%s block_til_ready\n", tty->driver->name));
3263 
3264 	if (filp->f_flags & O_NONBLOCK || tty_io_error(tty)) {
3265 		/* nonblock mode is set or port is not enabled */
3266 		tty_port_set_active(port, 1);
3267 		return 0;
3268 	}
3269 
3270 	if (C_CLOCAL(tty))
3271 		do_clocal = true;
3272 
3273 	/* Wait for carrier detect and the line to become
3274 	 * free (i.e., not in use by the callout).  While we are in
3275 	 * this loop, port->count is dropped by one, so that
3276 	 * close() knows when to free things.  We restore it upon
3277 	 * exit, either normal or abnormal.
3278 	 */
3279 
3280 	retval = 0;
3281 	add_wait_queue(&port->open_wait, &wait);
3282 
3283 	spin_lock_irqsave(&info->lock, flags);
3284 	port->count--;
3285 	spin_unlock_irqrestore(&info->lock, flags);
3286 	port->blocked_open++;
3287 
3288 	while (1) {
3289 		if (C_BAUD(tty) && tty_port_initialized(port))
3290 			tty_port_raise_dtr_rts(port);
3291 
3292 		set_current_state(TASK_INTERRUPTIBLE);
3293 
3294 		if (tty_hung_up_p(filp) || !tty_port_initialized(port)) {
3295 			retval = (port->flags & ASYNC_HUP_NOTIFY) ?
3296 					-EAGAIN : -ERESTARTSYS;
3297 			break;
3298 		}
3299 
3300 		cd = tty_port_carrier_raised(port);
3301 		if (do_clocal || cd)
3302 			break;
3303 
3304 		if (signal_pending(current)) {
3305 			retval = -ERESTARTSYS;
3306 			break;
3307 		}
3308 
3309 		DBGINFO(("%s block_til_ready wait\n", tty->driver->name));
3310 		tty_unlock(tty);
3311 		schedule();
3312 		tty_lock(tty);
3313 	}
3314 
3315 	set_current_state(TASK_RUNNING);
3316 	remove_wait_queue(&port->open_wait, &wait);
3317 
3318 	if (!tty_hung_up_p(filp))
3319 		port->count++;
3320 	port->blocked_open--;
3321 
3322 	if (!retval)
3323 		tty_port_set_active(port, 1);
3324 
3325 	DBGINFO(("%s block_til_ready ready, rc=%d\n", tty->driver->name, retval));
3326 	return retval;
3327 }
3328 
3329 /*
3330  * allocate buffers used for calling line discipline receive_buf
3331  * directly in synchronous mode
3332  * note: add 5 bytes to max frame size to allow appending
3333  * 32-bit CRC and status byte when configured to do so
3334  */
3335 static int alloc_tmp_rbuf(struct slgt_info *info)
3336 {
3337 	info->tmp_rbuf = kmalloc(info->max_frame_size + 5, GFP_KERNEL);
3338 	if (info->tmp_rbuf == NULL)
3339 		return -ENOMEM;
3340 	/* unused flag buffer to satisfy receive_buf calling interface */
3341 	info->flag_buf = kzalloc(info->max_frame_size + 5, GFP_KERNEL);
3342 	if (!info->flag_buf) {
3343 		kfree(info->tmp_rbuf);
3344 		info->tmp_rbuf = NULL;
3345 		return -ENOMEM;
3346 	}
3347 	return 0;
3348 }
3349 
3350 static void free_tmp_rbuf(struct slgt_info *info)
3351 {
3352 	kfree(info->tmp_rbuf);
3353 	info->tmp_rbuf = NULL;
3354 	kfree(info->flag_buf);
3355 	info->flag_buf = NULL;
3356 }
3357 
3358 /*
3359  * allocate DMA descriptor lists.
3360  */
3361 static int alloc_desc(struct slgt_info *info)
3362 {
3363 	unsigned int i;
3364 	unsigned int pbufs;
3365 
3366 	/* allocate memory to hold descriptor lists */
3367 	info->bufs = pci_zalloc_consistent(info->pdev, DESC_LIST_SIZE,
3368 					   &info->bufs_dma_addr);
3369 	if (info->bufs == NULL)
3370 		return -ENOMEM;
3371 
3372 	info->rbufs = (struct slgt_desc*)info->bufs;
3373 	info->tbufs = ((struct slgt_desc*)info->bufs) + info->rbuf_count;
3374 
3375 	pbufs = (unsigned int)info->bufs_dma_addr;
3376 
3377 	/*
3378 	 * Build circular lists of descriptors
3379 	 */
3380 
3381 	for (i=0; i < info->rbuf_count; i++) {
3382 		/* physical address of this descriptor */
3383 		info->rbufs[i].pdesc = pbufs + (i * sizeof(struct slgt_desc));
3384 
3385 		/* physical address of next descriptor */
3386 		if (i == info->rbuf_count - 1)
3387 			info->rbufs[i].next = cpu_to_le32(pbufs);
3388 		else
3389 			info->rbufs[i].next = cpu_to_le32(pbufs + ((i+1) * sizeof(struct slgt_desc)));
3390 		set_desc_count(info->rbufs[i], DMABUFSIZE);
3391 	}
3392 
3393 	for (i=0; i < info->tbuf_count; i++) {
3394 		/* physical address of this descriptor */
3395 		info->tbufs[i].pdesc = pbufs + ((info->rbuf_count + i) * sizeof(struct slgt_desc));
3396 
3397 		/* physical address of next descriptor */
3398 		if (i == info->tbuf_count - 1)
3399 			info->tbufs[i].next = cpu_to_le32(pbufs + info->rbuf_count * sizeof(struct slgt_desc));
3400 		else
3401 			info->tbufs[i].next = cpu_to_le32(pbufs + ((info->rbuf_count + i + 1) * sizeof(struct slgt_desc)));
3402 	}
3403 
3404 	return 0;
3405 }
3406 
3407 static void free_desc(struct slgt_info *info)
3408 {
3409 	if (info->bufs != NULL) {
3410 		pci_free_consistent(info->pdev, DESC_LIST_SIZE, info->bufs, info->bufs_dma_addr);
3411 		info->bufs  = NULL;
3412 		info->rbufs = NULL;
3413 		info->tbufs = NULL;
3414 	}
3415 }
3416 
3417 static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count)
3418 {
3419 	int i;
3420 	for (i=0; i < count; i++) {
3421 		if ((bufs[i].buf = pci_alloc_consistent(info->pdev, DMABUFSIZE, &bufs[i].buf_dma_addr)) == NULL)
3422 			return -ENOMEM;
3423 		bufs[i].pbuf  = cpu_to_le32((unsigned int)bufs[i].buf_dma_addr);
3424 	}
3425 	return 0;
3426 }
3427 
3428 static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count)
3429 {
3430 	int i;
3431 	for (i=0; i < count; i++) {
3432 		if (bufs[i].buf == NULL)
3433 			continue;
3434 		pci_free_consistent(info->pdev, DMABUFSIZE, bufs[i].buf, bufs[i].buf_dma_addr);
3435 		bufs[i].buf = NULL;
3436 	}
3437 }
3438 
3439 static int alloc_dma_bufs(struct slgt_info *info)
3440 {
3441 	info->rbuf_count = 32;
3442 	info->tbuf_count = 32;
3443 
3444 	if (alloc_desc(info) < 0 ||
3445 	    alloc_bufs(info, info->rbufs, info->rbuf_count) < 0 ||
3446 	    alloc_bufs(info, info->tbufs, info->tbuf_count) < 0 ||
3447 	    alloc_tmp_rbuf(info) < 0) {
3448 		DBGERR(("%s DMA buffer alloc fail\n", info->device_name));
3449 		return -ENOMEM;
3450 	}
3451 	reset_rbufs(info);
3452 	return 0;
3453 }
3454 
3455 static void free_dma_bufs(struct slgt_info *info)
3456 {
3457 	if (info->bufs) {
3458 		free_bufs(info, info->rbufs, info->rbuf_count);
3459 		free_bufs(info, info->tbufs, info->tbuf_count);
3460 		free_desc(info);
3461 	}
3462 	free_tmp_rbuf(info);
3463 }
3464 
3465 static int claim_resources(struct slgt_info *info)
3466 {
3467 	if (request_mem_region(info->phys_reg_addr, SLGT_REG_SIZE, "synclink_gt") == NULL) {
3468 		DBGERR(("%s reg addr conflict, addr=%08X\n",
3469 			info->device_name, info->phys_reg_addr));
3470 		info->init_error = DiagStatus_AddressConflict;
3471 		goto errout;
3472 	}
3473 	else
3474 		info->reg_addr_requested = true;
3475 
3476 	info->reg_addr = ioremap_nocache(info->phys_reg_addr, SLGT_REG_SIZE);
3477 	if (!info->reg_addr) {
3478 		DBGERR(("%s can't map device registers, addr=%08X\n",
3479 			info->device_name, info->phys_reg_addr));
3480 		info->init_error = DiagStatus_CantAssignPciResources;
3481 		goto errout;
3482 	}
3483 	return 0;
3484 
3485 errout:
3486 	release_resources(info);
3487 	return -ENODEV;
3488 }
3489 
3490 static void release_resources(struct slgt_info *info)
3491 {
3492 	if (info->irq_requested) {
3493 		free_irq(info->irq_level, info);
3494 		info->irq_requested = false;
3495 	}
3496 
3497 	if (info->reg_addr_requested) {
3498 		release_mem_region(info->phys_reg_addr, SLGT_REG_SIZE);
3499 		info->reg_addr_requested = false;
3500 	}
3501 
3502 	if (info->reg_addr) {
3503 		iounmap(info->reg_addr);
3504 		info->reg_addr = NULL;
3505 	}
3506 }
3507 
3508 /* Add the specified device instance data structure to the
3509  * global linked list of devices and increment the device count.
3510  */
3511 static void add_device(struct slgt_info *info)
3512 {
3513 	char *devstr;
3514 
3515 	info->next_device = NULL;
3516 	info->line = slgt_device_count;
3517 	sprintf(info->device_name, "%s%d", tty_dev_prefix, info->line);
3518 
3519 	if (info->line < MAX_DEVICES) {
3520 		if (maxframe[info->line])
3521 			info->max_frame_size = maxframe[info->line];
3522 	}
3523 
3524 	slgt_device_count++;
3525 
3526 	if (!slgt_device_list)
3527 		slgt_device_list = info;
3528 	else {
3529 		struct slgt_info *current_dev = slgt_device_list;
3530 		while(current_dev->next_device)
3531 			current_dev = current_dev->next_device;
3532 		current_dev->next_device = info;
3533 	}
3534 
3535 	if (info->max_frame_size < 4096)
3536 		info->max_frame_size = 4096;
3537 	else if (info->max_frame_size > 65535)
3538 		info->max_frame_size = 65535;
3539 
3540 	switch(info->pdev->device) {
3541 	case SYNCLINK_GT_DEVICE_ID:
3542 		devstr = "GT";
3543 		break;
3544 	case SYNCLINK_GT2_DEVICE_ID:
3545 		devstr = "GT2";
3546 		break;
3547 	case SYNCLINK_GT4_DEVICE_ID:
3548 		devstr = "GT4";
3549 		break;
3550 	case SYNCLINK_AC_DEVICE_ID:
3551 		devstr = "AC";
3552 		info->params.mode = MGSL_MODE_ASYNC;
3553 		break;
3554 	default:
3555 		devstr = "(unknown model)";
3556 	}
3557 	printk("SyncLink %s %s IO=%08x IRQ=%d MaxFrameSize=%u\n",
3558 		devstr, info->device_name, info->phys_reg_addr,
3559 		info->irq_level, info->max_frame_size);
3560 
3561 #if SYNCLINK_GENERIC_HDLC
3562 	hdlcdev_init(info);
3563 #endif
3564 }
3565 
3566 static const struct tty_port_operations slgt_port_ops = {
3567 	.carrier_raised = carrier_raised,
3568 	.dtr_rts = dtr_rts,
3569 };
3570 
3571 /*
3572  *  allocate device instance structure, return NULL on failure
3573  */
3574 static struct slgt_info *alloc_dev(int adapter_num, int port_num, struct pci_dev *pdev)
3575 {
3576 	struct slgt_info *info;
3577 
3578 	info = kzalloc(sizeof(struct slgt_info), GFP_KERNEL);
3579 
3580 	if (!info) {
3581 		DBGERR(("%s device alloc failed adapter=%d port=%d\n",
3582 			driver_name, adapter_num, port_num));
3583 	} else {
3584 		tty_port_init(&info->port);
3585 		info->port.ops = &slgt_port_ops;
3586 		info->magic = MGSL_MAGIC;
3587 		INIT_WORK(&info->task, bh_handler);
3588 		info->max_frame_size = 4096;
3589 		info->base_clock = 14745600;
3590 		info->rbuf_fill_level = DMABUFSIZE;
3591 		info->port.close_delay = 5*HZ/10;
3592 		info->port.closing_wait = 30*HZ;
3593 		init_waitqueue_head(&info->status_event_wait_q);
3594 		init_waitqueue_head(&info->event_wait_q);
3595 		spin_lock_init(&info->netlock);
3596 		memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS));
3597 		info->idle_mode = HDLC_TXIDLE_FLAGS;
3598 		info->adapter_num = adapter_num;
3599 		info->port_num = port_num;
3600 
3601 		setup_timer(&info->tx_timer, tx_timeout, (unsigned long)info);
3602 		setup_timer(&info->rx_timer, rx_timeout, (unsigned long)info);
3603 
3604 		/* Copy configuration info to device instance data */
3605 		info->pdev = pdev;
3606 		info->irq_level = pdev->irq;
3607 		info->phys_reg_addr = pci_resource_start(pdev,0);
3608 
3609 		info->bus_type = MGSL_BUS_TYPE_PCI;
3610 		info->irq_flags = IRQF_SHARED;
3611 
3612 		info->init_error = -1; /* assume error, set to 0 on successful init */
3613 	}
3614 
3615 	return info;
3616 }
3617 
3618 static void device_init(int adapter_num, struct pci_dev *pdev)
3619 {
3620 	struct slgt_info *port_array[SLGT_MAX_PORTS];
3621 	int i;
3622 	int port_count = 1;
3623 
3624 	if (pdev->device == SYNCLINK_GT2_DEVICE_ID)
3625 		port_count = 2;
3626 	else if (pdev->device == SYNCLINK_GT4_DEVICE_ID)
3627 		port_count = 4;
3628 
3629 	/* allocate device instances for all ports */
3630 	for (i=0; i < port_count; ++i) {
3631 		port_array[i] = alloc_dev(adapter_num, i, pdev);
3632 		if (port_array[i] == NULL) {
3633 			for (--i; i >= 0; --i) {
3634 				tty_port_destroy(&port_array[i]->port);
3635 				kfree(port_array[i]);
3636 			}
3637 			return;
3638 		}
3639 	}
3640 
3641 	/* give copy of port_array to all ports and add to device list  */
3642 	for (i=0; i < port_count; ++i) {
3643 		memcpy(port_array[i]->port_array, port_array, sizeof(port_array));
3644 		add_device(port_array[i]);
3645 		port_array[i]->port_count = port_count;
3646 		spin_lock_init(&port_array[i]->lock);
3647 	}
3648 
3649 	/* Allocate and claim adapter resources */
3650 	if (!claim_resources(port_array[0])) {
3651 
3652 		alloc_dma_bufs(port_array[0]);
3653 
3654 		/* copy resource information from first port to others */
3655 		for (i = 1; i < port_count; ++i) {
3656 			port_array[i]->irq_level = port_array[0]->irq_level;
3657 			port_array[i]->reg_addr  = port_array[0]->reg_addr;
3658 			alloc_dma_bufs(port_array[i]);
3659 		}
3660 
3661 		if (request_irq(port_array[0]->irq_level,
3662 					slgt_interrupt,
3663 					port_array[0]->irq_flags,
3664 					port_array[0]->device_name,
3665 					port_array[0]) < 0) {
3666 			DBGERR(("%s request_irq failed IRQ=%d\n",
3667 				port_array[0]->device_name,
3668 				port_array[0]->irq_level));
3669 		} else {
3670 			port_array[0]->irq_requested = true;
3671 			adapter_test(port_array[0]);
3672 			for (i=1 ; i < port_count ; i++) {
3673 				port_array[i]->init_error = port_array[0]->init_error;
3674 				port_array[i]->gpio_present = port_array[0]->gpio_present;
3675 			}
3676 		}
3677 	}
3678 
3679 	for (i = 0; i < port_count; ++i) {
3680 		struct slgt_info *info = port_array[i];
3681 		tty_port_register_device(&info->port, serial_driver, info->line,
3682 				&info->pdev->dev);
3683 	}
3684 }
3685 
3686 static int init_one(struct pci_dev *dev,
3687 			      const struct pci_device_id *ent)
3688 {
3689 	if (pci_enable_device(dev)) {
3690 		printk("error enabling pci device %p\n", dev);
3691 		return -EIO;
3692 	}
3693 	pci_set_master(dev);
3694 	device_init(slgt_device_count, dev);
3695 	return 0;
3696 }
3697 
3698 static void remove_one(struct pci_dev *dev)
3699 {
3700 }
3701 
3702 static const struct tty_operations ops = {
3703 	.open = open,
3704 	.close = close,
3705 	.write = write,
3706 	.put_char = put_char,
3707 	.flush_chars = flush_chars,
3708 	.write_room = write_room,
3709 	.chars_in_buffer = chars_in_buffer,
3710 	.flush_buffer = flush_buffer,
3711 	.ioctl = ioctl,
3712 	.compat_ioctl = slgt_compat_ioctl,
3713 	.throttle = throttle,
3714 	.unthrottle = unthrottle,
3715 	.send_xchar = send_xchar,
3716 	.break_ctl = set_break,
3717 	.wait_until_sent = wait_until_sent,
3718 	.set_termios = set_termios,
3719 	.stop = tx_hold,
3720 	.start = tx_release,
3721 	.hangup = hangup,
3722 	.tiocmget = tiocmget,
3723 	.tiocmset = tiocmset,
3724 	.get_icount = get_icount,
3725 	.proc_fops = &synclink_gt_proc_fops,
3726 };
3727 
3728 static void slgt_cleanup(void)
3729 {
3730 	int rc;
3731 	struct slgt_info *info;
3732 	struct slgt_info *tmp;
3733 
3734 	printk(KERN_INFO "unload %s\n", driver_name);
3735 
3736 	if (serial_driver) {
3737 		for (info=slgt_device_list ; info != NULL ; info=info->next_device)
3738 			tty_unregister_device(serial_driver, info->line);
3739 		rc = tty_unregister_driver(serial_driver);
3740 		if (rc)
3741 			DBGERR(("tty_unregister_driver error=%d\n", rc));
3742 		put_tty_driver(serial_driver);
3743 	}
3744 
3745 	/* reset devices */
3746 	info = slgt_device_list;
3747 	while(info) {
3748 		reset_port(info);
3749 		info = info->next_device;
3750 	}
3751 
3752 	/* release devices */
3753 	info = slgt_device_list;
3754 	while(info) {
3755 #if SYNCLINK_GENERIC_HDLC
3756 		hdlcdev_exit(info);
3757 #endif
3758 		free_dma_bufs(info);
3759 		free_tmp_rbuf(info);
3760 		if (info->port_num == 0)
3761 			release_resources(info);
3762 		tmp = info;
3763 		info = info->next_device;
3764 		tty_port_destroy(&tmp->port);
3765 		kfree(tmp);
3766 	}
3767 
3768 	if (pci_registered)
3769 		pci_unregister_driver(&pci_driver);
3770 }
3771 
3772 /*
3773  *  Driver initialization entry point.
3774  */
3775 static int __init slgt_init(void)
3776 {
3777 	int rc;
3778 
3779 	printk(KERN_INFO "%s\n", driver_name);
3780 
3781 	serial_driver = alloc_tty_driver(MAX_DEVICES);
3782 	if (!serial_driver) {
3783 		printk("%s can't allocate tty driver\n", driver_name);
3784 		return -ENOMEM;
3785 	}
3786 
3787 	/* Initialize the tty_driver structure */
3788 
3789 	serial_driver->driver_name = slgt_driver_name;
3790 	serial_driver->name = tty_dev_prefix;
3791 	serial_driver->major = ttymajor;
3792 	serial_driver->minor_start = 64;
3793 	serial_driver->type = TTY_DRIVER_TYPE_SERIAL;
3794 	serial_driver->subtype = SERIAL_TYPE_NORMAL;
3795 	serial_driver->init_termios = tty_std_termios;
3796 	serial_driver->init_termios.c_cflag =
3797 		B9600 | CS8 | CREAD | HUPCL | CLOCAL;
3798 	serial_driver->init_termios.c_ispeed = 9600;
3799 	serial_driver->init_termios.c_ospeed = 9600;
3800 	serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
3801 	tty_set_operations(serial_driver, &ops);
3802 	if ((rc = tty_register_driver(serial_driver)) < 0) {
3803 		DBGERR(("%s can't register serial driver\n", driver_name));
3804 		put_tty_driver(serial_driver);
3805 		serial_driver = NULL;
3806 		goto error;
3807 	}
3808 
3809 	printk(KERN_INFO "%s, tty major#%d\n",
3810 	       driver_name, serial_driver->major);
3811 
3812 	slgt_device_count = 0;
3813 	if ((rc = pci_register_driver(&pci_driver)) < 0) {
3814 		printk("%s pci_register_driver error=%d\n", driver_name, rc);
3815 		goto error;
3816 	}
3817 	pci_registered = true;
3818 
3819 	if (!slgt_device_list)
3820 		printk("%s no devices found\n",driver_name);
3821 
3822 	return 0;
3823 
3824 error:
3825 	slgt_cleanup();
3826 	return rc;
3827 }
3828 
3829 static void __exit slgt_exit(void)
3830 {
3831 	slgt_cleanup();
3832 }
3833 
3834 module_init(slgt_init);
3835 module_exit(slgt_exit);
3836 
3837 /*
3838  * register access routines
3839  */
3840 
3841 #define CALC_REGADDR() \
3842 	unsigned long reg_addr = ((unsigned long)info->reg_addr) + addr; \
3843 	if (addr >= 0x80) \
3844 		reg_addr += (info->port_num) * 32; \
3845 	else if (addr >= 0x40)	\
3846 		reg_addr += (info->port_num) * 16;
3847 
3848 static __u8 rd_reg8(struct slgt_info *info, unsigned int addr)
3849 {
3850 	CALC_REGADDR();
3851 	return readb((void __iomem *)reg_addr);
3852 }
3853 
3854 static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value)
3855 {
3856 	CALC_REGADDR();
3857 	writeb(value, (void __iomem *)reg_addr);
3858 }
3859 
3860 static __u16 rd_reg16(struct slgt_info *info, unsigned int addr)
3861 {
3862 	CALC_REGADDR();
3863 	return readw((void __iomem *)reg_addr);
3864 }
3865 
3866 static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value)
3867 {
3868 	CALC_REGADDR();
3869 	writew(value, (void __iomem *)reg_addr);
3870 }
3871 
3872 static __u32 rd_reg32(struct slgt_info *info, unsigned int addr)
3873 {
3874 	CALC_REGADDR();
3875 	return readl((void __iomem *)reg_addr);
3876 }
3877 
3878 static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value)
3879 {
3880 	CALC_REGADDR();
3881 	writel(value, (void __iomem *)reg_addr);
3882 }
3883 
3884 static void rdma_reset(struct slgt_info *info)
3885 {
3886 	unsigned int i;
3887 
3888 	/* set reset bit */
3889 	wr_reg32(info, RDCSR, BIT1);
3890 
3891 	/* wait for enable bit cleared */
3892 	for(i=0 ; i < 1000 ; i++)
3893 		if (!(rd_reg32(info, RDCSR) & BIT0))
3894 			break;
3895 }
3896 
3897 static void tdma_reset(struct slgt_info *info)
3898 {
3899 	unsigned int i;
3900 
3901 	/* set reset bit */
3902 	wr_reg32(info, TDCSR, BIT1);
3903 
3904 	/* wait for enable bit cleared */
3905 	for(i=0 ; i < 1000 ; i++)
3906 		if (!(rd_reg32(info, TDCSR) & BIT0))
3907 			break;
3908 }
3909 
3910 /*
3911  * enable internal loopback
3912  * TxCLK and RxCLK are generated from BRG
3913  * and TxD is looped back to RxD internally.
3914  */
3915 static void enable_loopback(struct slgt_info *info)
3916 {
3917 	/* SCR (serial control) BIT2=loopback enable */
3918 	wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT2));
3919 
3920 	if (info->params.mode != MGSL_MODE_ASYNC) {
3921 		/* CCR (clock control)
3922 		 * 07..05  tx clock source (010 = BRG)
3923 		 * 04..02  rx clock source (010 = BRG)
3924 		 * 01      auxclk enable   (0 = disable)
3925 		 * 00      BRG enable      (1 = enable)
3926 		 *
3927 		 * 0100 1001
3928 		 */
3929 		wr_reg8(info, CCR, 0x49);
3930 
3931 		/* set speed if available, otherwise use default */
3932 		if (info->params.clock_speed)
3933 			set_rate(info, info->params.clock_speed);
3934 		else
3935 			set_rate(info, 3686400);
3936 	}
3937 }
3938 
3939 /*
3940  *  set baud rate generator to specified rate
3941  */
3942 static void set_rate(struct slgt_info *info, u32 rate)
3943 {
3944 	unsigned int div;
3945 	unsigned int osc = info->base_clock;
3946 
3947 	/* div = osc/rate - 1
3948 	 *
3949 	 * Round div up if osc/rate is not integer to
3950 	 * force to next slowest rate.
3951 	 */
3952 
3953 	if (rate) {
3954 		div = osc/rate;
3955 		if (!(osc % rate) && div)
3956 			div--;
3957 		wr_reg16(info, BDR, (unsigned short)div);
3958 	}
3959 }
3960 
3961 static void rx_stop(struct slgt_info *info)
3962 {
3963 	unsigned short val;
3964 
3965 	/* disable and reset receiver */
3966 	val = rd_reg16(info, RCR) & ~BIT1;          /* clear enable bit */
3967 	wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */
3968 	wr_reg16(info, RCR, val);                  /* clear reset bit */
3969 
3970 	slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA + IRQ_RXIDLE);
3971 
3972 	/* clear pending rx interrupts */
3973 	wr_reg16(info, SSR, IRQ_RXIDLE + IRQ_RXOVER);
3974 
3975 	rdma_reset(info);
3976 
3977 	info->rx_enabled = false;
3978 	info->rx_restart = false;
3979 }
3980 
3981 static void rx_start(struct slgt_info *info)
3982 {
3983 	unsigned short val;
3984 
3985 	slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA);
3986 
3987 	/* clear pending rx overrun IRQ */
3988 	wr_reg16(info, SSR, IRQ_RXOVER);
3989 
3990 	/* reset and disable receiver */
3991 	val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */
3992 	wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */
3993 	wr_reg16(info, RCR, val);                  /* clear reset bit */
3994 
3995 	rdma_reset(info);
3996 	reset_rbufs(info);
3997 
3998 	if (info->rx_pio) {
3999 		/* rx request when rx FIFO not empty */
4000 		wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) & ~BIT14));
4001 		slgt_irq_on(info, IRQ_RXDATA);
4002 		if (info->params.mode == MGSL_MODE_ASYNC) {
4003 			/* enable saving of rx status */
4004 			wr_reg32(info, RDCSR, BIT6);
4005 		}
4006 	} else {
4007 		/* rx request when rx FIFO half full */
4008 		wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT14));
4009 		/* set 1st descriptor address */
4010 		wr_reg32(info, RDDAR, info->rbufs[0].pdesc);
4011 
4012 		if (info->params.mode != MGSL_MODE_ASYNC) {
4013 			/* enable rx DMA and DMA interrupt */
4014 			wr_reg32(info, RDCSR, (BIT2 + BIT0));
4015 		} else {
4016 			/* enable saving of rx status, rx DMA and DMA interrupt */
4017 			wr_reg32(info, RDCSR, (BIT6 + BIT2 + BIT0));
4018 		}
4019 	}
4020 
4021 	slgt_irq_on(info, IRQ_RXOVER);
4022 
4023 	/* enable receiver */
4024 	wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | BIT1));
4025 
4026 	info->rx_restart = false;
4027 	info->rx_enabled = true;
4028 }
4029 
4030 static void tx_start(struct slgt_info *info)
4031 {
4032 	if (!info->tx_enabled) {
4033 		wr_reg16(info, TCR,
4034 			 (unsigned short)((rd_reg16(info, TCR) | BIT1) & ~BIT2));
4035 		info->tx_enabled = true;
4036 	}
4037 
4038 	if (desc_count(info->tbufs[info->tbuf_start])) {
4039 		info->drop_rts_on_tx_done = false;
4040 
4041 		if (info->params.mode != MGSL_MODE_ASYNC) {
4042 			if (info->params.flags & HDLC_FLAG_AUTO_RTS) {
4043 				get_signals(info);
4044 				if (!(info->signals & SerialSignal_RTS)) {
4045 					info->signals |= SerialSignal_RTS;
4046 					set_signals(info);
4047 					info->drop_rts_on_tx_done = true;
4048 				}
4049 			}
4050 
4051 			slgt_irq_off(info, IRQ_TXDATA);
4052 			slgt_irq_on(info, IRQ_TXUNDER + IRQ_TXIDLE);
4053 			/* clear tx idle and underrun status bits */
4054 			wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER));
4055 		} else {
4056 			slgt_irq_off(info, IRQ_TXDATA);
4057 			slgt_irq_on(info, IRQ_TXIDLE);
4058 			/* clear tx idle status bit */
4059 			wr_reg16(info, SSR, IRQ_TXIDLE);
4060 		}
4061 		/* set 1st descriptor address and start DMA */
4062 		wr_reg32(info, TDDAR, info->tbufs[info->tbuf_start].pdesc);
4063 		wr_reg32(info, TDCSR, BIT2 + BIT0);
4064 		info->tx_active = true;
4065 	}
4066 }
4067 
4068 static void tx_stop(struct slgt_info *info)
4069 {
4070 	unsigned short val;
4071 
4072 	del_timer(&info->tx_timer);
4073 
4074 	tdma_reset(info);
4075 
4076 	/* reset and disable transmitter */
4077 	val = rd_reg16(info, TCR) & ~BIT1;          /* clear enable bit */
4078 	wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */
4079 
4080 	slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER);
4081 
4082 	/* clear tx idle and underrun status bit */
4083 	wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER));
4084 
4085 	reset_tbufs(info);
4086 
4087 	info->tx_enabled = false;
4088 	info->tx_active = false;
4089 }
4090 
4091 static void reset_port(struct slgt_info *info)
4092 {
4093 	if (!info->reg_addr)
4094 		return;
4095 
4096 	tx_stop(info);
4097 	rx_stop(info);
4098 
4099 	info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
4100 	set_signals(info);
4101 
4102 	slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
4103 }
4104 
4105 static void reset_adapter(struct slgt_info *info)
4106 {
4107 	int i;
4108 	for (i=0; i < info->port_count; ++i) {
4109 		if (info->port_array[i])
4110 			reset_port(info->port_array[i]);
4111 	}
4112 }
4113 
4114 static void async_mode(struct slgt_info *info)
4115 {
4116   	unsigned short val;
4117 
4118 	slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
4119 	tx_stop(info);
4120 	rx_stop(info);
4121 
4122 	/* TCR (tx control)
4123 	 *
4124 	 * 15..13  mode, 010=async
4125 	 * 12..10  encoding, 000=NRZ
4126 	 * 09      parity enable
4127 	 * 08      1=odd parity, 0=even parity
4128 	 * 07      1=RTS driver control
4129 	 * 06      1=break enable
4130 	 * 05..04  character length
4131 	 *         00=5 bits
4132 	 *         01=6 bits
4133 	 *         10=7 bits
4134 	 *         11=8 bits
4135 	 * 03      0=1 stop bit, 1=2 stop bits
4136 	 * 02      reset
4137 	 * 01      enable
4138 	 * 00      auto-CTS enable
4139 	 */
4140 	val = 0x4000;
4141 
4142 	if (info->if_mode & MGSL_INTERFACE_RTS_EN)
4143 		val |= BIT7;
4144 
4145 	if (info->params.parity != ASYNC_PARITY_NONE) {
4146 		val |= BIT9;
4147 		if (info->params.parity == ASYNC_PARITY_ODD)
4148 			val |= BIT8;
4149 	}
4150 
4151 	switch (info->params.data_bits)
4152 	{
4153 	case 6: val |= BIT4; break;
4154 	case 7: val |= BIT5; break;
4155 	case 8: val |= BIT5 + BIT4; break;
4156 	}
4157 
4158 	if (info->params.stop_bits != 1)
4159 		val |= BIT3;
4160 
4161 	if (info->params.flags & HDLC_FLAG_AUTO_CTS)
4162 		val |= BIT0;
4163 
4164 	wr_reg16(info, TCR, val);
4165 
4166 	/* RCR (rx control)
4167 	 *
4168 	 * 15..13  mode, 010=async
4169 	 * 12..10  encoding, 000=NRZ
4170 	 * 09      parity enable
4171 	 * 08      1=odd parity, 0=even parity
4172 	 * 07..06  reserved, must be 0
4173 	 * 05..04  character length
4174 	 *         00=5 bits
4175 	 *         01=6 bits
4176 	 *         10=7 bits
4177 	 *         11=8 bits
4178 	 * 03      reserved, must be zero
4179 	 * 02      reset
4180 	 * 01      enable
4181 	 * 00      auto-DCD enable
4182 	 */
4183 	val = 0x4000;
4184 
4185 	if (info->params.parity != ASYNC_PARITY_NONE) {
4186 		val |= BIT9;
4187 		if (info->params.parity == ASYNC_PARITY_ODD)
4188 			val |= BIT8;
4189 	}
4190 
4191 	switch (info->params.data_bits)
4192 	{
4193 	case 6: val |= BIT4; break;
4194 	case 7: val |= BIT5; break;
4195 	case 8: val |= BIT5 + BIT4; break;
4196 	}
4197 
4198 	if (info->params.flags & HDLC_FLAG_AUTO_DCD)
4199 		val |= BIT0;
4200 
4201 	wr_reg16(info, RCR, val);
4202 
4203 	/* CCR (clock control)
4204 	 *
4205 	 * 07..05  011 = tx clock source is BRG/16
4206 	 * 04..02  010 = rx clock source is BRG
4207 	 * 01      0 = auxclk disabled
4208 	 * 00      1 = BRG enabled
4209 	 *
4210 	 * 0110 1001
4211 	 */
4212 	wr_reg8(info, CCR, 0x69);
4213 
4214 	msc_set_vcr(info);
4215 
4216 	/* SCR (serial control)
4217 	 *
4218 	 * 15  1=tx req on FIFO half empty
4219 	 * 14  1=rx req on FIFO half full
4220 	 * 13  tx data  IRQ enable
4221 	 * 12  tx idle  IRQ enable
4222 	 * 11  rx break on IRQ enable
4223 	 * 10  rx data  IRQ enable
4224 	 * 09  rx break off IRQ enable
4225 	 * 08  overrun  IRQ enable
4226 	 * 07  DSR      IRQ enable
4227 	 * 06  CTS      IRQ enable
4228 	 * 05  DCD      IRQ enable
4229 	 * 04  RI       IRQ enable
4230 	 * 03  0=16x sampling, 1=8x sampling
4231 	 * 02  1=txd->rxd internal loopback enable
4232 	 * 01  reserved, must be zero
4233 	 * 00  1=master IRQ enable
4234 	 */
4235 	val = BIT15 + BIT14 + BIT0;
4236 	/* JCR[8] : 1 = x8 async mode feature available */
4237 	if ((rd_reg32(info, JCR) & BIT8) && info->params.data_rate &&
4238 	    ((info->base_clock < (info->params.data_rate * 16)) ||
4239 	     (info->base_clock % (info->params.data_rate * 16)))) {
4240 		/* use 8x sampling */
4241 		val |= BIT3;
4242 		set_rate(info, info->params.data_rate * 8);
4243 	} else {
4244 		/* use 16x sampling */
4245 		set_rate(info, info->params.data_rate * 16);
4246 	}
4247 	wr_reg16(info, SCR, val);
4248 
4249 	slgt_irq_on(info, IRQ_RXBREAK | IRQ_RXOVER);
4250 
4251 	if (info->params.loopback)
4252 		enable_loopback(info);
4253 }
4254 
4255 static void sync_mode(struct slgt_info *info)
4256 {
4257 	unsigned short val;
4258 
4259 	slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
4260 	tx_stop(info);
4261 	rx_stop(info);
4262 
4263 	/* TCR (tx control)
4264 	 *
4265 	 * 15..13  mode
4266 	 *         000=HDLC/SDLC
4267 	 *         001=raw bit synchronous
4268 	 *         010=asynchronous/isochronous
4269 	 *         011=monosync byte synchronous
4270 	 *         100=bisync byte synchronous
4271 	 *         101=xsync byte synchronous
4272 	 * 12..10  encoding
4273 	 * 09      CRC enable
4274 	 * 08      CRC32
4275 	 * 07      1=RTS driver control
4276 	 * 06      preamble enable
4277 	 * 05..04  preamble length
4278 	 * 03      share open/close flag
4279 	 * 02      reset
4280 	 * 01      enable
4281 	 * 00      auto-CTS enable
4282 	 */
4283 	val = BIT2;
4284 
4285 	switch(info->params.mode) {
4286 	case MGSL_MODE_XSYNC:
4287 		val |= BIT15 + BIT13;
4288 		break;
4289 	case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break;
4290 	case MGSL_MODE_BISYNC:   val |= BIT15; break;
4291 	case MGSL_MODE_RAW:      val |= BIT13; break;
4292 	}
4293 	if (info->if_mode & MGSL_INTERFACE_RTS_EN)
4294 		val |= BIT7;
4295 
4296 	switch(info->params.encoding)
4297 	{
4298 	case HDLC_ENCODING_NRZB:          val |= BIT10; break;
4299 	case HDLC_ENCODING_NRZI_MARK:     val |= BIT11; break;
4300 	case HDLC_ENCODING_NRZI:          val |= BIT11 + BIT10; break;
4301 	case HDLC_ENCODING_BIPHASE_MARK:  val |= BIT12; break;
4302 	case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break;
4303 	case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break;
4304 	case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break;
4305 	}
4306 
4307 	switch (info->params.crc_type & HDLC_CRC_MASK)
4308 	{
4309 	case HDLC_CRC_16_CCITT: val |= BIT9; break;
4310 	case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break;
4311 	}
4312 
4313 	if (info->params.preamble != HDLC_PREAMBLE_PATTERN_NONE)
4314 		val |= BIT6;
4315 
4316 	switch (info->params.preamble_length)
4317 	{
4318 	case HDLC_PREAMBLE_LENGTH_16BITS: val |= BIT5; break;
4319 	case HDLC_PREAMBLE_LENGTH_32BITS: val |= BIT4; break;
4320 	case HDLC_PREAMBLE_LENGTH_64BITS: val |= BIT5 + BIT4; break;
4321 	}
4322 
4323 	if (info->params.flags & HDLC_FLAG_AUTO_CTS)
4324 		val |= BIT0;
4325 
4326 	wr_reg16(info, TCR, val);
4327 
4328 	/* TPR (transmit preamble) */
4329 
4330 	switch (info->params.preamble)
4331 	{
4332 	case HDLC_PREAMBLE_PATTERN_FLAGS: val = 0x7e; break;
4333 	case HDLC_PREAMBLE_PATTERN_ONES:  val = 0xff; break;
4334 	case HDLC_PREAMBLE_PATTERN_ZEROS: val = 0x00; break;
4335 	case HDLC_PREAMBLE_PATTERN_10:    val = 0x55; break;
4336 	case HDLC_PREAMBLE_PATTERN_01:    val = 0xaa; break;
4337 	default:                          val = 0x7e; break;
4338 	}
4339 	wr_reg8(info, TPR, (unsigned char)val);
4340 
4341 	/* RCR (rx control)
4342 	 *
4343 	 * 15..13  mode
4344 	 *         000=HDLC/SDLC
4345 	 *         001=raw bit synchronous
4346 	 *         010=asynchronous/isochronous
4347 	 *         011=monosync byte synchronous
4348 	 *         100=bisync byte synchronous
4349 	 *         101=xsync byte synchronous
4350 	 * 12..10  encoding
4351 	 * 09      CRC enable
4352 	 * 08      CRC32
4353 	 * 07..03  reserved, must be 0
4354 	 * 02      reset
4355 	 * 01      enable
4356 	 * 00      auto-DCD enable
4357 	 */
4358 	val = 0;
4359 
4360 	switch(info->params.mode) {
4361 	case MGSL_MODE_XSYNC:
4362 		val |= BIT15 + BIT13;
4363 		break;
4364 	case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break;
4365 	case MGSL_MODE_BISYNC:   val |= BIT15; break;
4366 	case MGSL_MODE_RAW:      val |= BIT13; break;
4367 	}
4368 
4369 	switch(info->params.encoding)
4370 	{
4371 	case HDLC_ENCODING_NRZB:          val |= BIT10; break;
4372 	case HDLC_ENCODING_NRZI_MARK:     val |= BIT11; break;
4373 	case HDLC_ENCODING_NRZI:          val |= BIT11 + BIT10; break;
4374 	case HDLC_ENCODING_BIPHASE_MARK:  val |= BIT12; break;
4375 	case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break;
4376 	case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break;
4377 	case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break;
4378 	}
4379 
4380 	switch (info->params.crc_type & HDLC_CRC_MASK)
4381 	{
4382 	case HDLC_CRC_16_CCITT: val |= BIT9; break;
4383 	case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break;
4384 	}
4385 
4386 	if (info->params.flags & HDLC_FLAG_AUTO_DCD)
4387 		val |= BIT0;
4388 
4389 	wr_reg16(info, RCR, val);
4390 
4391 	/* CCR (clock control)
4392 	 *
4393 	 * 07..05  tx clock source
4394 	 * 04..02  rx clock source
4395 	 * 01      auxclk enable
4396 	 * 00      BRG enable
4397 	 */
4398 	val = 0;
4399 
4400 	if (info->params.flags & HDLC_FLAG_TXC_BRG)
4401 	{
4402 		// when RxC source is DPLL, BRG generates 16X DPLL
4403 		// reference clock, so take TxC from BRG/16 to get
4404 		// transmit clock at actual data rate
4405 		if (info->params.flags & HDLC_FLAG_RXC_DPLL)
4406 			val |= BIT6 + BIT5;	/* 011, txclk = BRG/16 */
4407 		else
4408 			val |= BIT6;	/* 010, txclk = BRG */
4409 	}
4410 	else if (info->params.flags & HDLC_FLAG_TXC_DPLL)
4411 		val |= BIT7;	/* 100, txclk = DPLL Input */
4412 	else if (info->params.flags & HDLC_FLAG_TXC_RXCPIN)
4413 		val |= BIT5;	/* 001, txclk = RXC Input */
4414 
4415 	if (info->params.flags & HDLC_FLAG_RXC_BRG)
4416 		val |= BIT3;	/* 010, rxclk = BRG */
4417 	else if (info->params.flags & HDLC_FLAG_RXC_DPLL)
4418 		val |= BIT4;	/* 100, rxclk = DPLL */
4419 	else if (info->params.flags & HDLC_FLAG_RXC_TXCPIN)
4420 		val |= BIT2;	/* 001, rxclk = TXC Input */
4421 
4422 	if (info->params.clock_speed)
4423 		val |= BIT1 + BIT0;
4424 
4425 	wr_reg8(info, CCR, (unsigned char)val);
4426 
4427 	if (info->params.flags & (HDLC_FLAG_TXC_DPLL + HDLC_FLAG_RXC_DPLL))
4428 	{
4429 		// program DPLL mode
4430 		switch(info->params.encoding)
4431 		{
4432 		case HDLC_ENCODING_BIPHASE_MARK:
4433 		case HDLC_ENCODING_BIPHASE_SPACE:
4434 			val = BIT7; break;
4435 		case HDLC_ENCODING_BIPHASE_LEVEL:
4436 		case HDLC_ENCODING_DIFF_BIPHASE_LEVEL:
4437 			val = BIT7 + BIT6; break;
4438 		default: val = BIT6;	// NRZ encodings
4439 		}
4440 		wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | val));
4441 
4442 		// DPLL requires a 16X reference clock from BRG
4443 		set_rate(info, info->params.clock_speed * 16);
4444 	}
4445 	else
4446 		set_rate(info, info->params.clock_speed);
4447 
4448 	tx_set_idle(info);
4449 
4450 	msc_set_vcr(info);
4451 
4452 	/* SCR (serial control)
4453 	 *
4454 	 * 15  1=tx req on FIFO half empty
4455 	 * 14  1=rx req on FIFO half full
4456 	 * 13  tx data  IRQ enable
4457 	 * 12  tx idle  IRQ enable
4458 	 * 11  underrun IRQ enable
4459 	 * 10  rx data  IRQ enable
4460 	 * 09  rx idle  IRQ enable
4461 	 * 08  overrun  IRQ enable
4462 	 * 07  DSR      IRQ enable
4463 	 * 06  CTS      IRQ enable
4464 	 * 05  DCD      IRQ enable
4465 	 * 04  RI       IRQ enable
4466 	 * 03  reserved, must be zero
4467 	 * 02  1=txd->rxd internal loopback enable
4468 	 * 01  reserved, must be zero
4469 	 * 00  1=master IRQ enable
4470 	 */
4471 	wr_reg16(info, SCR, BIT15 + BIT14 + BIT0);
4472 
4473 	if (info->params.loopback)
4474 		enable_loopback(info);
4475 }
4476 
4477 /*
4478  *  set transmit idle mode
4479  */
4480 static void tx_set_idle(struct slgt_info *info)
4481 {
4482 	unsigned char val;
4483 	unsigned short tcr;
4484 
4485 	/* if preamble enabled (tcr[6] == 1) then tx idle size = 8 bits
4486 	 * else tcr[5:4] = tx idle size: 00 = 8 bits, 01 = 16 bits
4487 	 */
4488 	tcr = rd_reg16(info, TCR);
4489 	if (info->idle_mode & HDLC_TXIDLE_CUSTOM_16) {
4490 		/* disable preamble, set idle size to 16 bits */
4491 		tcr = (tcr & ~(BIT6 + BIT5)) | BIT4;
4492 		/* MSB of 16 bit idle specified in tx preamble register (TPR) */
4493 		wr_reg8(info, TPR, (unsigned char)((info->idle_mode >> 8) & 0xff));
4494 	} else if (!(tcr & BIT6)) {
4495 		/* preamble is disabled, set idle size to 8 bits */
4496 		tcr &= ~(BIT5 + BIT4);
4497 	}
4498 	wr_reg16(info, TCR, tcr);
4499 
4500 	if (info->idle_mode & (HDLC_TXIDLE_CUSTOM_8 | HDLC_TXIDLE_CUSTOM_16)) {
4501 		/* LSB of custom tx idle specified in tx idle register */
4502 		val = (unsigned char)(info->idle_mode & 0xff);
4503 	} else {
4504 		/* standard 8 bit idle patterns */
4505 		switch(info->idle_mode)
4506 		{
4507 		case HDLC_TXIDLE_FLAGS:          val = 0x7e; break;
4508 		case HDLC_TXIDLE_ALT_ZEROS_ONES:
4509 		case HDLC_TXIDLE_ALT_MARK_SPACE: val = 0xaa; break;
4510 		case HDLC_TXIDLE_ZEROS:
4511 		case HDLC_TXIDLE_SPACE:          val = 0x00; break;
4512 		default:                         val = 0xff;
4513 		}
4514 	}
4515 
4516 	wr_reg8(info, TIR, val);
4517 }
4518 
4519 /*
4520  * get state of V24 status (input) signals
4521  */
4522 static void get_signals(struct slgt_info *info)
4523 {
4524 	unsigned short status = rd_reg16(info, SSR);
4525 
4526 	/* clear all serial signals except RTS and DTR */
4527 	info->signals &= SerialSignal_RTS | SerialSignal_DTR;
4528 
4529 	if (status & BIT3)
4530 		info->signals |= SerialSignal_DSR;
4531 	if (status & BIT2)
4532 		info->signals |= SerialSignal_CTS;
4533 	if (status & BIT1)
4534 		info->signals |= SerialSignal_DCD;
4535 	if (status & BIT0)
4536 		info->signals |= SerialSignal_RI;
4537 }
4538 
4539 /*
4540  * set V.24 Control Register based on current configuration
4541  */
4542 static void msc_set_vcr(struct slgt_info *info)
4543 {
4544 	unsigned char val = 0;
4545 
4546 	/* VCR (V.24 control)
4547 	 *
4548 	 * 07..04  serial IF select
4549 	 * 03      DTR
4550 	 * 02      RTS
4551 	 * 01      LL
4552 	 * 00      RL
4553 	 */
4554 
4555 	switch(info->if_mode & MGSL_INTERFACE_MASK)
4556 	{
4557 	case MGSL_INTERFACE_RS232:
4558 		val |= BIT5; /* 0010 */
4559 		break;
4560 	case MGSL_INTERFACE_V35:
4561 		val |= BIT7 + BIT6 + BIT5; /* 1110 */
4562 		break;
4563 	case MGSL_INTERFACE_RS422:
4564 		val |= BIT6; /* 0100 */
4565 		break;
4566 	}
4567 
4568 	if (info->if_mode & MGSL_INTERFACE_MSB_FIRST)
4569 		val |= BIT4;
4570 	if (info->signals & SerialSignal_DTR)
4571 		val |= BIT3;
4572 	if (info->signals & SerialSignal_RTS)
4573 		val |= BIT2;
4574 	if (info->if_mode & MGSL_INTERFACE_LL)
4575 		val |= BIT1;
4576 	if (info->if_mode & MGSL_INTERFACE_RL)
4577 		val |= BIT0;
4578 	wr_reg8(info, VCR, val);
4579 }
4580 
4581 /*
4582  * set state of V24 control (output) signals
4583  */
4584 static void set_signals(struct slgt_info *info)
4585 {
4586 	unsigned char val = rd_reg8(info, VCR);
4587 	if (info->signals & SerialSignal_DTR)
4588 		val |= BIT3;
4589 	else
4590 		val &= ~BIT3;
4591 	if (info->signals & SerialSignal_RTS)
4592 		val |= BIT2;
4593 	else
4594 		val &= ~BIT2;
4595 	wr_reg8(info, VCR, val);
4596 }
4597 
4598 /*
4599  * free range of receive DMA buffers (i to last)
4600  */
4601 static void free_rbufs(struct slgt_info *info, unsigned int i, unsigned int last)
4602 {
4603 	int done = 0;
4604 
4605 	while(!done) {
4606 		/* reset current buffer for reuse */
4607 		info->rbufs[i].status = 0;
4608 		set_desc_count(info->rbufs[i], info->rbuf_fill_level);
4609 		if (i == last)
4610 			done = 1;
4611 		if (++i == info->rbuf_count)
4612 			i = 0;
4613 	}
4614 	info->rbuf_current = i;
4615 }
4616 
4617 /*
4618  * mark all receive DMA buffers as free
4619  */
4620 static void reset_rbufs(struct slgt_info *info)
4621 {
4622 	free_rbufs(info, 0, info->rbuf_count - 1);
4623 	info->rbuf_fill_index = 0;
4624 	info->rbuf_fill_count = 0;
4625 }
4626 
4627 /*
4628  * pass receive HDLC frame to upper layer
4629  *
4630  * return true if frame available, otherwise false
4631  */
4632 static bool rx_get_frame(struct slgt_info *info)
4633 {
4634 	unsigned int start, end;
4635 	unsigned short status;
4636 	unsigned int framesize = 0;
4637 	unsigned long flags;
4638 	struct tty_struct *tty = info->port.tty;
4639 	unsigned char addr_field = 0xff;
4640 	unsigned int crc_size = 0;
4641 
4642 	switch (info->params.crc_type & HDLC_CRC_MASK) {
4643 	case HDLC_CRC_16_CCITT: crc_size = 2; break;
4644 	case HDLC_CRC_32_CCITT: crc_size = 4; break;
4645 	}
4646 
4647 check_again:
4648 
4649 	framesize = 0;
4650 	addr_field = 0xff;
4651 	start = end = info->rbuf_current;
4652 
4653 	for (;;) {
4654 		if (!desc_complete(info->rbufs[end]))
4655 			goto cleanup;
4656 
4657 		if (framesize == 0 && info->params.addr_filter != 0xff)
4658 			addr_field = info->rbufs[end].buf[0];
4659 
4660 		framesize += desc_count(info->rbufs[end]);
4661 
4662 		if (desc_eof(info->rbufs[end]))
4663 			break;
4664 
4665 		if (++end == info->rbuf_count)
4666 			end = 0;
4667 
4668 		if (end == info->rbuf_current) {
4669 			if (info->rx_enabled){
4670 				spin_lock_irqsave(&info->lock,flags);
4671 				rx_start(info);
4672 				spin_unlock_irqrestore(&info->lock,flags);
4673 			}
4674 			goto cleanup;
4675 		}
4676 	}
4677 
4678 	/* status
4679 	 *
4680 	 * 15      buffer complete
4681 	 * 14..06  reserved
4682 	 * 05..04  residue
4683 	 * 02      eof (end of frame)
4684 	 * 01      CRC error
4685 	 * 00      abort
4686 	 */
4687 	status = desc_status(info->rbufs[end]);
4688 
4689 	/* ignore CRC bit if not using CRC (bit is undefined) */
4690 	if ((info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_NONE)
4691 		status &= ~BIT1;
4692 
4693 	if (framesize == 0 ||
4694 		 (addr_field != 0xff && addr_field != info->params.addr_filter)) {
4695 		free_rbufs(info, start, end);
4696 		goto check_again;
4697 	}
4698 
4699 	if (framesize < (2 + crc_size) || status & BIT0) {
4700 		info->icount.rxshort++;
4701 		framesize = 0;
4702 	} else if (status & BIT1) {
4703 		info->icount.rxcrc++;
4704 		if (!(info->params.crc_type & HDLC_CRC_RETURN_EX))
4705 			framesize = 0;
4706 	}
4707 
4708 #if SYNCLINK_GENERIC_HDLC
4709 	if (framesize == 0) {
4710 		info->netdev->stats.rx_errors++;
4711 		info->netdev->stats.rx_frame_errors++;
4712 	}
4713 #endif
4714 
4715 	DBGBH(("%s rx frame status=%04X size=%d\n",
4716 		info->device_name, status, framesize));
4717 	DBGDATA(info, info->rbufs[start].buf, min_t(int, framesize, info->rbuf_fill_level), "rx");
4718 
4719 	if (framesize) {
4720 		if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) {
4721 			framesize -= crc_size;
4722 			crc_size = 0;
4723 		}
4724 
4725 		if (framesize > info->max_frame_size + crc_size)
4726 			info->icount.rxlong++;
4727 		else {
4728 			/* copy dma buffer(s) to contiguous temp buffer */
4729 			int copy_count = framesize;
4730 			int i = start;
4731 			unsigned char *p = info->tmp_rbuf;
4732 			info->tmp_rbuf_count = framesize;
4733 
4734 			info->icount.rxok++;
4735 
4736 			while(copy_count) {
4737 				int partial_count = min_t(int, copy_count, info->rbuf_fill_level);
4738 				memcpy(p, info->rbufs[i].buf, partial_count);
4739 				p += partial_count;
4740 				copy_count -= partial_count;
4741 				if (++i == info->rbuf_count)
4742 					i = 0;
4743 			}
4744 
4745 			if (info->params.crc_type & HDLC_CRC_RETURN_EX) {
4746 				*p = (status & BIT1) ? RX_CRC_ERROR : RX_OK;
4747 				framesize++;
4748 			}
4749 
4750 #if SYNCLINK_GENERIC_HDLC
4751 			if (info->netcount)
4752 				hdlcdev_rx(info,info->tmp_rbuf, framesize);
4753 			else
4754 #endif
4755 				ldisc_receive_buf(tty, info->tmp_rbuf, info->flag_buf, framesize);
4756 		}
4757 	}
4758 	free_rbufs(info, start, end);
4759 	return true;
4760 
4761 cleanup:
4762 	return false;
4763 }
4764 
4765 /*
4766  * pass receive buffer (RAW synchronous mode) to tty layer
4767  * return true if buffer available, otherwise false
4768  */
4769 static bool rx_get_buf(struct slgt_info *info)
4770 {
4771 	unsigned int i = info->rbuf_current;
4772 	unsigned int count;
4773 
4774 	if (!desc_complete(info->rbufs[i]))
4775 		return false;
4776 	count = desc_count(info->rbufs[i]);
4777 	switch(info->params.mode) {
4778 	case MGSL_MODE_MONOSYNC:
4779 	case MGSL_MODE_BISYNC:
4780 	case MGSL_MODE_XSYNC:
4781 		/* ignore residue in byte synchronous modes */
4782 		if (desc_residue(info->rbufs[i]))
4783 			count--;
4784 		break;
4785 	}
4786 	DBGDATA(info, info->rbufs[i].buf, count, "rx");
4787 	DBGINFO(("rx_get_buf size=%d\n", count));
4788 	if (count)
4789 		ldisc_receive_buf(info->port.tty, info->rbufs[i].buf,
4790 				  info->flag_buf, count);
4791 	free_rbufs(info, i, i);
4792 	return true;
4793 }
4794 
4795 static void reset_tbufs(struct slgt_info *info)
4796 {
4797 	unsigned int i;
4798 	info->tbuf_current = 0;
4799 	for (i=0 ; i < info->tbuf_count ; i++) {
4800 		info->tbufs[i].status = 0;
4801 		info->tbufs[i].count  = 0;
4802 	}
4803 }
4804 
4805 /*
4806  * return number of free transmit DMA buffers
4807  */
4808 static unsigned int free_tbuf_count(struct slgt_info *info)
4809 {
4810 	unsigned int count = 0;
4811 	unsigned int i = info->tbuf_current;
4812 
4813 	do
4814 	{
4815 		if (desc_count(info->tbufs[i]))
4816 			break; /* buffer in use */
4817 		++count;
4818 		if (++i == info->tbuf_count)
4819 			i=0;
4820 	} while (i != info->tbuf_current);
4821 
4822 	/* if tx DMA active, last zero count buffer is in use */
4823 	if (count && (rd_reg32(info, TDCSR) & BIT0))
4824 		--count;
4825 
4826 	return count;
4827 }
4828 
4829 /*
4830  * return number of bytes in unsent transmit DMA buffers
4831  * and the serial controller tx FIFO
4832  */
4833 static unsigned int tbuf_bytes(struct slgt_info *info)
4834 {
4835 	unsigned int total_count = 0;
4836 	unsigned int i = info->tbuf_current;
4837 	unsigned int reg_value;
4838 	unsigned int count;
4839 	unsigned int active_buf_count = 0;
4840 
4841 	/*
4842 	 * Add descriptor counts for all tx DMA buffers.
4843 	 * If count is zero (cleared by DMA controller after read),
4844 	 * the buffer is complete or is actively being read from.
4845 	 *
4846 	 * Record buf_count of last buffer with zero count starting
4847 	 * from current ring position. buf_count is mirror
4848 	 * copy of count and is not cleared by serial controller.
4849 	 * If DMA controller is active, that buffer is actively
4850 	 * being read so add to total.
4851 	 */
4852 	do {
4853 		count = desc_count(info->tbufs[i]);
4854 		if (count)
4855 			total_count += count;
4856 		else if (!total_count)
4857 			active_buf_count = info->tbufs[i].buf_count;
4858 		if (++i == info->tbuf_count)
4859 			i = 0;
4860 	} while (i != info->tbuf_current);
4861 
4862 	/* read tx DMA status register */
4863 	reg_value = rd_reg32(info, TDCSR);
4864 
4865 	/* if tx DMA active, last zero count buffer is in use */
4866 	if (reg_value & BIT0)
4867 		total_count += active_buf_count;
4868 
4869 	/* add tx FIFO count = reg_value[15..8] */
4870 	total_count += (reg_value >> 8) & 0xff;
4871 
4872 	/* if transmitter active add one byte for shift register */
4873 	if (info->tx_active)
4874 		total_count++;
4875 
4876 	return total_count;
4877 }
4878 
4879 /*
4880  * load data into transmit DMA buffer ring and start transmitter if needed
4881  * return true if data accepted, otherwise false (buffers full)
4882  */
4883 static bool tx_load(struct slgt_info *info, const char *buf, unsigned int size)
4884 {
4885 	unsigned short count;
4886 	unsigned int i;
4887 	struct slgt_desc *d;
4888 
4889 	/* check required buffer space */
4890 	if (DIV_ROUND_UP(size, DMABUFSIZE) > free_tbuf_count(info))
4891 		return false;
4892 
4893 	DBGDATA(info, buf, size, "tx");
4894 
4895 	/*
4896 	 * copy data to one or more DMA buffers in circular ring
4897 	 * tbuf_start   = first buffer for this data
4898 	 * tbuf_current = next free buffer
4899 	 *
4900 	 * Copy all data before making data visible to DMA controller by
4901 	 * setting descriptor count of the first buffer.
4902 	 * This prevents an active DMA controller from reading the first DMA
4903 	 * buffers of a frame and stopping before the final buffers are filled.
4904 	 */
4905 
4906 	info->tbuf_start = i = info->tbuf_current;
4907 
4908 	while (size) {
4909 		d = &info->tbufs[i];
4910 
4911 		count = (unsigned short)((size > DMABUFSIZE) ? DMABUFSIZE : size);
4912 		memcpy(d->buf, buf, count);
4913 
4914 		size -= count;
4915 		buf  += count;
4916 
4917 		/*
4918 		 * set EOF bit for last buffer of HDLC frame or
4919 		 * for every buffer in raw mode
4920 		 */
4921 		if ((!size && info->params.mode == MGSL_MODE_HDLC) ||
4922 		    info->params.mode == MGSL_MODE_RAW)
4923 			set_desc_eof(*d, 1);
4924 		else
4925 			set_desc_eof(*d, 0);
4926 
4927 		/* set descriptor count for all but first buffer */
4928 		if (i != info->tbuf_start)
4929 			set_desc_count(*d, count);
4930 		d->buf_count = count;
4931 
4932 		if (++i == info->tbuf_count)
4933 			i = 0;
4934 	}
4935 
4936 	info->tbuf_current = i;
4937 
4938 	/* set first buffer count to make new data visible to DMA controller */
4939 	d = &info->tbufs[info->tbuf_start];
4940 	set_desc_count(*d, d->buf_count);
4941 
4942 	/* start transmitter if needed and update transmit timeout */
4943 	if (!info->tx_active)
4944 		tx_start(info);
4945 	update_tx_timer(info);
4946 
4947 	return true;
4948 }
4949 
4950 static int register_test(struct slgt_info *info)
4951 {
4952 	static unsigned short patterns[] =
4953 		{0x0000, 0xffff, 0xaaaa, 0x5555, 0x6969, 0x9696};
4954 	static unsigned int count = ARRAY_SIZE(patterns);
4955 	unsigned int i;
4956 	int rc = 0;
4957 
4958 	for (i=0 ; i < count ; i++) {
4959 		wr_reg16(info, TIR, patterns[i]);
4960 		wr_reg16(info, BDR, patterns[(i+1)%count]);
4961 		if ((rd_reg16(info, TIR) != patterns[i]) ||
4962 		    (rd_reg16(info, BDR) != patterns[(i+1)%count])) {
4963 			rc = -ENODEV;
4964 			break;
4965 		}
4966 	}
4967 	info->gpio_present = (rd_reg32(info, JCR) & BIT5) ? 1 : 0;
4968 	info->init_error = rc ? 0 : DiagStatus_AddressFailure;
4969 	return rc;
4970 }
4971 
4972 static int irq_test(struct slgt_info *info)
4973 {
4974 	unsigned long timeout;
4975 	unsigned long flags;
4976 	struct tty_struct *oldtty = info->port.tty;
4977 	u32 speed = info->params.data_rate;
4978 
4979 	info->params.data_rate = 921600;
4980 	info->port.tty = NULL;
4981 
4982 	spin_lock_irqsave(&info->lock, flags);
4983 	async_mode(info);
4984 	slgt_irq_on(info, IRQ_TXIDLE);
4985 
4986 	/* enable transmitter */
4987 	wr_reg16(info, TCR,
4988 		(unsigned short)(rd_reg16(info, TCR) | BIT1));
4989 
4990 	/* write one byte and wait for tx idle */
4991 	wr_reg16(info, TDR, 0);
4992 
4993 	/* assume failure */
4994 	info->init_error = DiagStatus_IrqFailure;
4995 	info->irq_occurred = false;
4996 
4997 	spin_unlock_irqrestore(&info->lock, flags);
4998 
4999 	timeout=100;
5000 	while(timeout-- && !info->irq_occurred)
5001 		msleep_interruptible(10);
5002 
5003 	spin_lock_irqsave(&info->lock,flags);
5004 	reset_port(info);
5005 	spin_unlock_irqrestore(&info->lock,flags);
5006 
5007 	info->params.data_rate = speed;
5008 	info->port.tty = oldtty;
5009 
5010 	info->init_error = info->irq_occurred ? 0 : DiagStatus_IrqFailure;
5011 	return info->irq_occurred ? 0 : -ENODEV;
5012 }
5013 
5014 static int loopback_test_rx(struct slgt_info *info)
5015 {
5016 	unsigned char *src, *dest;
5017 	int count;
5018 
5019 	if (desc_complete(info->rbufs[0])) {
5020 		count = desc_count(info->rbufs[0]);
5021 		src   = info->rbufs[0].buf;
5022 		dest  = info->tmp_rbuf;
5023 
5024 		for( ; count ; count-=2, src+=2) {
5025 			/* src=data byte (src+1)=status byte */
5026 			if (!(*(src+1) & (BIT9 + BIT8))) {
5027 				*dest = *src;
5028 				dest++;
5029 				info->tmp_rbuf_count++;
5030 			}
5031 		}
5032 		DBGDATA(info, info->tmp_rbuf, info->tmp_rbuf_count, "rx");
5033 		return 1;
5034 	}
5035 	return 0;
5036 }
5037 
5038 static int loopback_test(struct slgt_info *info)
5039 {
5040 #define TESTFRAMESIZE 20
5041 
5042 	unsigned long timeout;
5043 	u16 count = TESTFRAMESIZE;
5044 	unsigned char buf[TESTFRAMESIZE];
5045 	int rc = -ENODEV;
5046 	unsigned long flags;
5047 
5048 	struct tty_struct *oldtty = info->port.tty;
5049 	MGSL_PARAMS params;
5050 
5051 	memcpy(&params, &info->params, sizeof(params));
5052 
5053 	info->params.mode = MGSL_MODE_ASYNC;
5054 	info->params.data_rate = 921600;
5055 	info->params.loopback = 1;
5056 	info->port.tty = NULL;
5057 
5058 	/* build and send transmit frame */
5059 	for (count = 0; count < TESTFRAMESIZE; ++count)
5060 		buf[count] = (unsigned char)count;
5061 
5062 	info->tmp_rbuf_count = 0;
5063 	memset(info->tmp_rbuf, 0, TESTFRAMESIZE);
5064 
5065 	/* program hardware for HDLC and enabled receiver */
5066 	spin_lock_irqsave(&info->lock,flags);
5067 	async_mode(info);
5068 	rx_start(info);
5069 	tx_load(info, buf, count);
5070 	spin_unlock_irqrestore(&info->lock, flags);
5071 
5072 	/* wait for receive complete */
5073 	for (timeout = 100; timeout; --timeout) {
5074 		msleep_interruptible(10);
5075 		if (loopback_test_rx(info)) {
5076 			rc = 0;
5077 			break;
5078 		}
5079 	}
5080 
5081 	/* verify received frame length and contents */
5082 	if (!rc && (info->tmp_rbuf_count != count ||
5083 		  memcmp(buf, info->tmp_rbuf, count))) {
5084 		rc = -ENODEV;
5085 	}
5086 
5087 	spin_lock_irqsave(&info->lock,flags);
5088 	reset_adapter(info);
5089 	spin_unlock_irqrestore(&info->lock,flags);
5090 
5091 	memcpy(&info->params, &params, sizeof(info->params));
5092 	info->port.tty = oldtty;
5093 
5094 	info->init_error = rc ? DiagStatus_DmaFailure : 0;
5095 	return rc;
5096 }
5097 
5098 static int adapter_test(struct slgt_info *info)
5099 {
5100 	DBGINFO(("testing %s\n", info->device_name));
5101 	if (register_test(info) < 0) {
5102 		printk("register test failure %s addr=%08X\n",
5103 			info->device_name, info->phys_reg_addr);
5104 	} else if (irq_test(info) < 0) {
5105 		printk("IRQ test failure %s IRQ=%d\n",
5106 			info->device_name, info->irq_level);
5107 	} else if (loopback_test(info) < 0) {
5108 		printk("loopback test failure %s\n", info->device_name);
5109 	}
5110 	return info->init_error;
5111 }
5112 
5113 /*
5114  * transmit timeout handler
5115  */
5116 static void tx_timeout(unsigned long context)
5117 {
5118 	struct slgt_info *info = (struct slgt_info*)context;
5119 	unsigned long flags;
5120 
5121 	DBGINFO(("%s tx_timeout\n", info->device_name));
5122 	if(info->tx_active && info->params.mode == MGSL_MODE_HDLC) {
5123 		info->icount.txtimeout++;
5124 	}
5125 	spin_lock_irqsave(&info->lock,flags);
5126 	tx_stop(info);
5127 	spin_unlock_irqrestore(&info->lock,flags);
5128 
5129 #if SYNCLINK_GENERIC_HDLC
5130 	if (info->netcount)
5131 		hdlcdev_tx_done(info);
5132 	else
5133 #endif
5134 		bh_transmit(info);
5135 }
5136 
5137 /*
5138  * receive buffer polling timer
5139  */
5140 static void rx_timeout(unsigned long context)
5141 {
5142 	struct slgt_info *info = (struct slgt_info*)context;
5143 	unsigned long flags;
5144 
5145 	DBGINFO(("%s rx_timeout\n", info->device_name));
5146 	spin_lock_irqsave(&info->lock, flags);
5147 	info->pending_bh |= BH_RECEIVE;
5148 	spin_unlock_irqrestore(&info->lock, flags);
5149 	bh_handler(&info->task);
5150 }
5151 
5152