1 /* 2 * Device driver for Microgate SyncLink GT serial adapters. 3 * 4 * written by Paul Fulghum for Microgate Corporation 5 * paulkf@microgate.com 6 * 7 * Microgate and SyncLink are trademarks of Microgate Corporation 8 * 9 * This code is released under the GNU General Public License (GPL) 10 * 11 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 12 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 13 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 14 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 15 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 16 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 17 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 19 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 20 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 21 * OF THE POSSIBILITY OF SUCH DAMAGE. 22 */ 23 24 /* 25 * DEBUG OUTPUT DEFINITIONS 26 * 27 * uncomment lines below to enable specific types of debug output 28 * 29 * DBGINFO information - most verbose output 30 * DBGERR serious errors 31 * DBGBH bottom half service routine debugging 32 * DBGISR interrupt service routine debugging 33 * DBGDATA output receive and transmit data 34 * DBGTBUF output transmit DMA buffers and registers 35 * DBGRBUF output receive DMA buffers and registers 36 */ 37 38 #define DBGINFO(fmt) if (debug_level >= DEBUG_LEVEL_INFO) printk fmt 39 #define DBGERR(fmt) if (debug_level >= DEBUG_LEVEL_ERROR) printk fmt 40 #define DBGBH(fmt) if (debug_level >= DEBUG_LEVEL_BH) printk fmt 41 #define DBGISR(fmt) if (debug_level >= DEBUG_LEVEL_ISR) printk fmt 42 #define DBGDATA(info, buf, size, label) if (debug_level >= DEBUG_LEVEL_DATA) trace_block((info), (buf), (size), (label)) 43 /*#define DBGTBUF(info) dump_tbufs(info)*/ 44 /*#define DBGRBUF(info) dump_rbufs(info)*/ 45 46 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/signal.h> 50 #include <linux/sched.h> 51 #include <linux/timer.h> 52 #include <linux/interrupt.h> 53 #include <linux/pci.h> 54 #include <linux/tty.h> 55 #include <linux/tty_flip.h> 56 #include <linux/serial.h> 57 #include <linux/major.h> 58 #include <linux/string.h> 59 #include <linux/fcntl.h> 60 #include <linux/ptrace.h> 61 #include <linux/ioport.h> 62 #include <linux/mm.h> 63 #include <linux/seq_file.h> 64 #include <linux/slab.h> 65 #include <linux/netdevice.h> 66 #include <linux/vmalloc.h> 67 #include <linux/init.h> 68 #include <linux/delay.h> 69 #include <linux/ioctl.h> 70 #include <linux/termios.h> 71 #include <linux/bitops.h> 72 #include <linux/workqueue.h> 73 #include <linux/hdlc.h> 74 #include <linux/synclink.h> 75 76 #include <asm/io.h> 77 #include <asm/irq.h> 78 #include <asm/dma.h> 79 #include <asm/types.h> 80 #include <asm/uaccess.h> 81 82 #if defined(CONFIG_HDLC) || (defined(CONFIG_HDLC_MODULE) && defined(CONFIG_SYNCLINK_GT_MODULE)) 83 #define SYNCLINK_GENERIC_HDLC 1 84 #else 85 #define SYNCLINK_GENERIC_HDLC 0 86 #endif 87 88 /* 89 * module identification 90 */ 91 static char *driver_name = "SyncLink GT"; 92 static char *slgt_driver_name = "synclink_gt"; 93 static char *tty_dev_prefix = "ttySLG"; 94 MODULE_LICENSE("GPL"); 95 #define MGSL_MAGIC 0x5401 96 #define MAX_DEVICES 32 97 98 static struct pci_device_id pci_table[] = { 99 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 100 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT2_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 101 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT4_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 102 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_AC_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 103 {0,}, /* terminate list */ 104 }; 105 MODULE_DEVICE_TABLE(pci, pci_table); 106 107 static int init_one(struct pci_dev *dev,const struct pci_device_id *ent); 108 static void remove_one(struct pci_dev *dev); 109 static struct pci_driver pci_driver = { 110 .name = "synclink_gt", 111 .id_table = pci_table, 112 .probe = init_one, 113 .remove = remove_one, 114 }; 115 116 static bool pci_registered; 117 118 /* 119 * module configuration and status 120 */ 121 static struct slgt_info *slgt_device_list; 122 static int slgt_device_count; 123 124 static int ttymajor; 125 static int debug_level; 126 static int maxframe[MAX_DEVICES]; 127 128 module_param(ttymajor, int, 0); 129 module_param(debug_level, int, 0); 130 module_param_array(maxframe, int, NULL, 0); 131 132 MODULE_PARM_DESC(ttymajor, "TTY major device number override: 0=auto assigned"); 133 MODULE_PARM_DESC(debug_level, "Debug syslog output: 0=disabled, 1 to 5=increasing detail"); 134 MODULE_PARM_DESC(maxframe, "Maximum frame size used by device (4096 to 65535)"); 135 136 /* 137 * tty support and callbacks 138 */ 139 static struct tty_driver *serial_driver; 140 141 static int open(struct tty_struct *tty, struct file * filp); 142 static void close(struct tty_struct *tty, struct file * filp); 143 static void hangup(struct tty_struct *tty); 144 static void set_termios(struct tty_struct *tty, struct ktermios *old_termios); 145 146 static int write(struct tty_struct *tty, const unsigned char *buf, int count); 147 static int put_char(struct tty_struct *tty, unsigned char ch); 148 static void send_xchar(struct tty_struct *tty, char ch); 149 static void wait_until_sent(struct tty_struct *tty, int timeout); 150 static int write_room(struct tty_struct *tty); 151 static void flush_chars(struct tty_struct *tty); 152 static void flush_buffer(struct tty_struct *tty); 153 static void tx_hold(struct tty_struct *tty); 154 static void tx_release(struct tty_struct *tty); 155 156 static int ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg); 157 static int chars_in_buffer(struct tty_struct *tty); 158 static void throttle(struct tty_struct * tty); 159 static void unthrottle(struct tty_struct * tty); 160 static int set_break(struct tty_struct *tty, int break_state); 161 162 /* 163 * generic HDLC support and callbacks 164 */ 165 #if SYNCLINK_GENERIC_HDLC 166 #define dev_to_port(D) (dev_to_hdlc(D)->priv) 167 static void hdlcdev_tx_done(struct slgt_info *info); 168 static void hdlcdev_rx(struct slgt_info *info, char *buf, int size); 169 static int hdlcdev_init(struct slgt_info *info); 170 static void hdlcdev_exit(struct slgt_info *info); 171 #endif 172 173 174 /* 175 * device specific structures, macros and functions 176 */ 177 178 #define SLGT_MAX_PORTS 4 179 #define SLGT_REG_SIZE 256 180 181 /* 182 * conditional wait facility 183 */ 184 struct cond_wait { 185 struct cond_wait *next; 186 wait_queue_head_t q; 187 wait_queue_t wait; 188 unsigned int data; 189 }; 190 static void init_cond_wait(struct cond_wait *w, unsigned int data); 191 static void add_cond_wait(struct cond_wait **head, struct cond_wait *w); 192 static void remove_cond_wait(struct cond_wait **head, struct cond_wait *w); 193 static void flush_cond_wait(struct cond_wait **head); 194 195 /* 196 * DMA buffer descriptor and access macros 197 */ 198 struct slgt_desc 199 { 200 __le16 count; 201 __le16 status; 202 __le32 pbuf; /* physical address of data buffer */ 203 __le32 next; /* physical address of next descriptor */ 204 205 /* driver book keeping */ 206 char *buf; /* virtual address of data buffer */ 207 unsigned int pdesc; /* physical address of this descriptor */ 208 dma_addr_t buf_dma_addr; 209 unsigned short buf_count; 210 }; 211 212 #define set_desc_buffer(a,b) (a).pbuf = cpu_to_le32((unsigned int)(b)) 213 #define set_desc_next(a,b) (a).next = cpu_to_le32((unsigned int)(b)) 214 #define set_desc_count(a,b)(a).count = cpu_to_le16((unsigned short)(b)) 215 #define set_desc_eof(a,b) (a).status = cpu_to_le16((b) ? (le16_to_cpu((a).status) | BIT0) : (le16_to_cpu((a).status) & ~BIT0)) 216 #define set_desc_status(a, b) (a).status = cpu_to_le16((unsigned short)(b)) 217 #define desc_count(a) (le16_to_cpu((a).count)) 218 #define desc_status(a) (le16_to_cpu((a).status)) 219 #define desc_complete(a) (le16_to_cpu((a).status) & BIT15) 220 #define desc_eof(a) (le16_to_cpu((a).status) & BIT2) 221 #define desc_crc_error(a) (le16_to_cpu((a).status) & BIT1) 222 #define desc_abort(a) (le16_to_cpu((a).status) & BIT0) 223 #define desc_residue(a) ((le16_to_cpu((a).status) & 0x38) >> 3) 224 225 struct _input_signal_events { 226 int ri_up; 227 int ri_down; 228 int dsr_up; 229 int dsr_down; 230 int dcd_up; 231 int dcd_down; 232 int cts_up; 233 int cts_down; 234 }; 235 236 /* 237 * device instance data structure 238 */ 239 struct slgt_info { 240 void *if_ptr; /* General purpose pointer (used by SPPP) */ 241 struct tty_port port; 242 243 struct slgt_info *next_device; /* device list link */ 244 245 int magic; 246 247 char device_name[25]; 248 struct pci_dev *pdev; 249 250 int port_count; /* count of ports on adapter */ 251 int adapter_num; /* adapter instance number */ 252 int port_num; /* port instance number */ 253 254 /* array of pointers to port contexts on this adapter */ 255 struct slgt_info *port_array[SLGT_MAX_PORTS]; 256 257 int line; /* tty line instance number */ 258 259 struct mgsl_icount icount; 260 261 int timeout; 262 int x_char; /* xon/xoff character */ 263 unsigned int read_status_mask; 264 unsigned int ignore_status_mask; 265 266 wait_queue_head_t status_event_wait_q; 267 wait_queue_head_t event_wait_q; 268 struct timer_list tx_timer; 269 struct timer_list rx_timer; 270 271 unsigned int gpio_present; 272 struct cond_wait *gpio_wait_q; 273 274 spinlock_t lock; /* spinlock for synchronizing with ISR */ 275 276 struct work_struct task; 277 u32 pending_bh; 278 bool bh_requested; 279 bool bh_running; 280 281 int isr_overflow; 282 bool irq_requested; /* true if IRQ requested */ 283 bool irq_occurred; /* for diagnostics use */ 284 285 /* device configuration */ 286 287 unsigned int bus_type; 288 unsigned int irq_level; 289 unsigned long irq_flags; 290 291 unsigned char __iomem * reg_addr; /* memory mapped registers address */ 292 u32 phys_reg_addr; 293 bool reg_addr_requested; 294 295 MGSL_PARAMS params; /* communications parameters */ 296 u32 idle_mode; 297 u32 max_frame_size; /* as set by device config */ 298 299 unsigned int rbuf_fill_level; 300 unsigned int rx_pio; 301 unsigned int if_mode; 302 unsigned int base_clock; 303 unsigned int xsync; 304 unsigned int xctrl; 305 306 /* device status */ 307 308 bool rx_enabled; 309 bool rx_restart; 310 311 bool tx_enabled; 312 bool tx_active; 313 314 unsigned char signals; /* serial signal states */ 315 int init_error; /* initialization error */ 316 317 unsigned char *tx_buf; 318 int tx_count; 319 320 char *flag_buf; 321 bool drop_rts_on_tx_done; 322 struct _input_signal_events input_signal_events; 323 324 int dcd_chkcount; /* check counts to prevent */ 325 int cts_chkcount; /* too many IRQs if a signal */ 326 int dsr_chkcount; /* is floating */ 327 int ri_chkcount; 328 329 char *bufs; /* virtual address of DMA buffer lists */ 330 dma_addr_t bufs_dma_addr; /* physical address of buffer descriptors */ 331 332 unsigned int rbuf_count; 333 struct slgt_desc *rbufs; 334 unsigned int rbuf_current; 335 unsigned int rbuf_index; 336 unsigned int rbuf_fill_index; 337 unsigned short rbuf_fill_count; 338 339 unsigned int tbuf_count; 340 struct slgt_desc *tbufs; 341 unsigned int tbuf_current; 342 unsigned int tbuf_start; 343 344 unsigned char *tmp_rbuf; 345 unsigned int tmp_rbuf_count; 346 347 /* SPPP/Cisco HDLC device parts */ 348 349 int netcount; 350 spinlock_t netlock; 351 #if SYNCLINK_GENERIC_HDLC 352 struct net_device *netdev; 353 #endif 354 355 }; 356 357 static MGSL_PARAMS default_params = { 358 .mode = MGSL_MODE_HDLC, 359 .loopback = 0, 360 .flags = HDLC_FLAG_UNDERRUN_ABORT15, 361 .encoding = HDLC_ENCODING_NRZI_SPACE, 362 .clock_speed = 0, 363 .addr_filter = 0xff, 364 .crc_type = HDLC_CRC_16_CCITT, 365 .preamble_length = HDLC_PREAMBLE_LENGTH_8BITS, 366 .preamble = HDLC_PREAMBLE_PATTERN_NONE, 367 .data_rate = 9600, 368 .data_bits = 8, 369 .stop_bits = 1, 370 .parity = ASYNC_PARITY_NONE 371 }; 372 373 374 #define BH_RECEIVE 1 375 #define BH_TRANSMIT 2 376 #define BH_STATUS 4 377 #define IO_PIN_SHUTDOWN_LIMIT 100 378 379 #define DMABUFSIZE 256 380 #define DESC_LIST_SIZE 4096 381 382 #define MASK_PARITY BIT1 383 #define MASK_FRAMING BIT0 384 #define MASK_BREAK BIT14 385 #define MASK_OVERRUN BIT4 386 387 #define GSR 0x00 /* global status */ 388 #define JCR 0x04 /* JTAG control */ 389 #define IODR 0x08 /* GPIO direction */ 390 #define IOER 0x0c /* GPIO interrupt enable */ 391 #define IOVR 0x10 /* GPIO value */ 392 #define IOSR 0x14 /* GPIO interrupt status */ 393 #define TDR 0x80 /* tx data */ 394 #define RDR 0x80 /* rx data */ 395 #define TCR 0x82 /* tx control */ 396 #define TIR 0x84 /* tx idle */ 397 #define TPR 0x85 /* tx preamble */ 398 #define RCR 0x86 /* rx control */ 399 #define VCR 0x88 /* V.24 control */ 400 #define CCR 0x89 /* clock control */ 401 #define BDR 0x8a /* baud divisor */ 402 #define SCR 0x8c /* serial control */ 403 #define SSR 0x8e /* serial status */ 404 #define RDCSR 0x90 /* rx DMA control/status */ 405 #define TDCSR 0x94 /* tx DMA control/status */ 406 #define RDDAR 0x98 /* rx DMA descriptor address */ 407 #define TDDAR 0x9c /* tx DMA descriptor address */ 408 #define XSR 0x40 /* extended sync pattern */ 409 #define XCR 0x44 /* extended control */ 410 411 #define RXIDLE BIT14 412 #define RXBREAK BIT14 413 #define IRQ_TXDATA BIT13 414 #define IRQ_TXIDLE BIT12 415 #define IRQ_TXUNDER BIT11 /* HDLC */ 416 #define IRQ_RXDATA BIT10 417 #define IRQ_RXIDLE BIT9 /* HDLC */ 418 #define IRQ_RXBREAK BIT9 /* async */ 419 #define IRQ_RXOVER BIT8 420 #define IRQ_DSR BIT7 421 #define IRQ_CTS BIT6 422 #define IRQ_DCD BIT5 423 #define IRQ_RI BIT4 424 #define IRQ_ALL 0x3ff0 425 #define IRQ_MASTER BIT0 426 427 #define slgt_irq_on(info, mask) \ 428 wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) | (mask))) 429 #define slgt_irq_off(info, mask) \ 430 wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) & ~(mask))) 431 432 static __u8 rd_reg8(struct slgt_info *info, unsigned int addr); 433 static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value); 434 static __u16 rd_reg16(struct slgt_info *info, unsigned int addr); 435 static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value); 436 static __u32 rd_reg32(struct slgt_info *info, unsigned int addr); 437 static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value); 438 439 static void msc_set_vcr(struct slgt_info *info); 440 441 static int startup(struct slgt_info *info); 442 static int block_til_ready(struct tty_struct *tty, struct file * filp,struct slgt_info *info); 443 static void shutdown(struct slgt_info *info); 444 static void program_hw(struct slgt_info *info); 445 static void change_params(struct slgt_info *info); 446 447 static int register_test(struct slgt_info *info); 448 static int irq_test(struct slgt_info *info); 449 static int loopback_test(struct slgt_info *info); 450 static int adapter_test(struct slgt_info *info); 451 452 static void reset_adapter(struct slgt_info *info); 453 static void reset_port(struct slgt_info *info); 454 static void async_mode(struct slgt_info *info); 455 static void sync_mode(struct slgt_info *info); 456 457 static void rx_stop(struct slgt_info *info); 458 static void rx_start(struct slgt_info *info); 459 static void reset_rbufs(struct slgt_info *info); 460 static void free_rbufs(struct slgt_info *info, unsigned int first, unsigned int last); 461 static void rdma_reset(struct slgt_info *info); 462 static bool rx_get_frame(struct slgt_info *info); 463 static bool rx_get_buf(struct slgt_info *info); 464 465 static void tx_start(struct slgt_info *info); 466 static void tx_stop(struct slgt_info *info); 467 static void tx_set_idle(struct slgt_info *info); 468 static unsigned int free_tbuf_count(struct slgt_info *info); 469 static unsigned int tbuf_bytes(struct slgt_info *info); 470 static void reset_tbufs(struct slgt_info *info); 471 static void tdma_reset(struct slgt_info *info); 472 static bool tx_load(struct slgt_info *info, const char *buf, unsigned int count); 473 474 static void get_signals(struct slgt_info *info); 475 static void set_signals(struct slgt_info *info); 476 static void enable_loopback(struct slgt_info *info); 477 static void set_rate(struct slgt_info *info, u32 data_rate); 478 479 static int bh_action(struct slgt_info *info); 480 static void bh_handler(struct work_struct *work); 481 static void bh_transmit(struct slgt_info *info); 482 static void isr_serial(struct slgt_info *info); 483 static void isr_rdma(struct slgt_info *info); 484 static void isr_txeom(struct slgt_info *info, unsigned short status); 485 static void isr_tdma(struct slgt_info *info); 486 487 static int alloc_dma_bufs(struct slgt_info *info); 488 static void free_dma_bufs(struct slgt_info *info); 489 static int alloc_desc(struct slgt_info *info); 490 static void free_desc(struct slgt_info *info); 491 static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count); 492 static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count); 493 494 static int alloc_tmp_rbuf(struct slgt_info *info); 495 static void free_tmp_rbuf(struct slgt_info *info); 496 497 static void tx_timeout(unsigned long context); 498 static void rx_timeout(unsigned long context); 499 500 /* 501 * ioctl handlers 502 */ 503 static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount); 504 static int get_params(struct slgt_info *info, MGSL_PARAMS __user *params); 505 static int set_params(struct slgt_info *info, MGSL_PARAMS __user *params); 506 static int get_txidle(struct slgt_info *info, int __user *idle_mode); 507 static int set_txidle(struct slgt_info *info, int idle_mode); 508 static int tx_enable(struct slgt_info *info, int enable); 509 static int tx_abort(struct slgt_info *info); 510 static int rx_enable(struct slgt_info *info, int enable); 511 static int modem_input_wait(struct slgt_info *info,int arg); 512 static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr); 513 static int tiocmget(struct tty_struct *tty); 514 static int tiocmset(struct tty_struct *tty, 515 unsigned int set, unsigned int clear); 516 static int set_break(struct tty_struct *tty, int break_state); 517 static int get_interface(struct slgt_info *info, int __user *if_mode); 518 static int set_interface(struct slgt_info *info, int if_mode); 519 static int set_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); 520 static int get_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); 521 static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); 522 static int get_xsync(struct slgt_info *info, int __user *if_mode); 523 static int set_xsync(struct slgt_info *info, int if_mode); 524 static int get_xctrl(struct slgt_info *info, int __user *if_mode); 525 static int set_xctrl(struct slgt_info *info, int if_mode); 526 527 /* 528 * driver functions 529 */ 530 static void add_device(struct slgt_info *info); 531 static void device_init(int adapter_num, struct pci_dev *pdev); 532 static int claim_resources(struct slgt_info *info); 533 static void release_resources(struct slgt_info *info); 534 535 /* 536 * DEBUG OUTPUT CODE 537 */ 538 #ifndef DBGINFO 539 #define DBGINFO(fmt) 540 #endif 541 #ifndef DBGERR 542 #define DBGERR(fmt) 543 #endif 544 #ifndef DBGBH 545 #define DBGBH(fmt) 546 #endif 547 #ifndef DBGISR 548 #define DBGISR(fmt) 549 #endif 550 551 #ifdef DBGDATA 552 static void trace_block(struct slgt_info *info, const char *data, int count, const char *label) 553 { 554 int i; 555 int linecount; 556 printk("%s %s data:\n",info->device_name, label); 557 while(count) { 558 linecount = (count > 16) ? 16 : count; 559 for(i=0; i < linecount; i++) 560 printk("%02X ",(unsigned char)data[i]); 561 for(;i<17;i++) 562 printk(" "); 563 for(i=0;i<linecount;i++) { 564 if (data[i]>=040 && data[i]<=0176) 565 printk("%c",data[i]); 566 else 567 printk("."); 568 } 569 printk("\n"); 570 data += linecount; 571 count -= linecount; 572 } 573 } 574 #else 575 #define DBGDATA(info, buf, size, label) 576 #endif 577 578 #ifdef DBGTBUF 579 static void dump_tbufs(struct slgt_info *info) 580 { 581 int i; 582 printk("tbuf_current=%d\n", info->tbuf_current); 583 for (i=0 ; i < info->tbuf_count ; i++) { 584 printk("%d: count=%04X status=%04X\n", 585 i, le16_to_cpu(info->tbufs[i].count), le16_to_cpu(info->tbufs[i].status)); 586 } 587 } 588 #else 589 #define DBGTBUF(info) 590 #endif 591 592 #ifdef DBGRBUF 593 static void dump_rbufs(struct slgt_info *info) 594 { 595 int i; 596 printk("rbuf_current=%d\n", info->rbuf_current); 597 for (i=0 ; i < info->rbuf_count ; i++) { 598 printk("%d: count=%04X status=%04X\n", 599 i, le16_to_cpu(info->rbufs[i].count), le16_to_cpu(info->rbufs[i].status)); 600 } 601 } 602 #else 603 #define DBGRBUF(info) 604 #endif 605 606 static inline int sanity_check(struct slgt_info *info, char *devname, const char *name) 607 { 608 #ifdef SANITY_CHECK 609 if (!info) { 610 printk("null struct slgt_info for (%s) in %s\n", devname, name); 611 return 1; 612 } 613 if (info->magic != MGSL_MAGIC) { 614 printk("bad magic number struct slgt_info (%s) in %s\n", devname, name); 615 return 1; 616 } 617 #else 618 if (!info) 619 return 1; 620 #endif 621 return 0; 622 } 623 624 /** 625 * line discipline callback wrappers 626 * 627 * The wrappers maintain line discipline references 628 * while calling into the line discipline. 629 * 630 * ldisc_receive_buf - pass receive data to line discipline 631 */ 632 static void ldisc_receive_buf(struct tty_struct *tty, 633 const __u8 *data, char *flags, int count) 634 { 635 struct tty_ldisc *ld; 636 if (!tty) 637 return; 638 ld = tty_ldisc_ref(tty); 639 if (ld) { 640 if (ld->ops->receive_buf) 641 ld->ops->receive_buf(tty, data, flags, count); 642 tty_ldisc_deref(ld); 643 } 644 } 645 646 /* tty callbacks */ 647 648 static int open(struct tty_struct *tty, struct file *filp) 649 { 650 struct slgt_info *info; 651 int retval, line; 652 unsigned long flags; 653 654 line = tty->index; 655 if (line >= slgt_device_count) { 656 DBGERR(("%s: open with invalid line #%d.\n", driver_name, line)); 657 return -ENODEV; 658 } 659 660 info = slgt_device_list; 661 while(info && info->line != line) 662 info = info->next_device; 663 if (sanity_check(info, tty->name, "open")) 664 return -ENODEV; 665 if (info->init_error) { 666 DBGERR(("%s init error=%d\n", info->device_name, info->init_error)); 667 return -ENODEV; 668 } 669 670 tty->driver_data = info; 671 info->port.tty = tty; 672 673 DBGINFO(("%s open, old ref count = %d\n", info->device_name, info->port.count)); 674 675 mutex_lock(&info->port.mutex); 676 info->port.low_latency = (info->port.flags & ASYNC_LOW_LATENCY) ? 1 : 0; 677 678 spin_lock_irqsave(&info->netlock, flags); 679 if (info->netcount) { 680 retval = -EBUSY; 681 spin_unlock_irqrestore(&info->netlock, flags); 682 mutex_unlock(&info->port.mutex); 683 goto cleanup; 684 } 685 info->port.count++; 686 spin_unlock_irqrestore(&info->netlock, flags); 687 688 if (info->port.count == 1) { 689 /* 1st open on this device, init hardware */ 690 retval = startup(info); 691 if (retval < 0) { 692 mutex_unlock(&info->port.mutex); 693 goto cleanup; 694 } 695 } 696 mutex_unlock(&info->port.mutex); 697 retval = block_til_ready(tty, filp, info); 698 if (retval) { 699 DBGINFO(("%s block_til_ready rc=%d\n", info->device_name, retval)); 700 goto cleanup; 701 } 702 703 retval = 0; 704 705 cleanup: 706 if (retval) { 707 if (tty->count == 1) 708 info->port.tty = NULL; /* tty layer will release tty struct */ 709 if(info->port.count) 710 info->port.count--; 711 } 712 713 DBGINFO(("%s open rc=%d\n", info->device_name, retval)); 714 return retval; 715 } 716 717 static void close(struct tty_struct *tty, struct file *filp) 718 { 719 struct slgt_info *info = tty->driver_data; 720 721 if (sanity_check(info, tty->name, "close")) 722 return; 723 DBGINFO(("%s close entry, count=%d\n", info->device_name, info->port.count)); 724 725 if (tty_port_close_start(&info->port, tty, filp) == 0) 726 goto cleanup; 727 728 mutex_lock(&info->port.mutex); 729 if (info->port.flags & ASYNC_INITIALIZED) 730 wait_until_sent(tty, info->timeout); 731 flush_buffer(tty); 732 tty_ldisc_flush(tty); 733 734 shutdown(info); 735 mutex_unlock(&info->port.mutex); 736 737 tty_port_close_end(&info->port, tty); 738 info->port.tty = NULL; 739 cleanup: 740 DBGINFO(("%s close exit, count=%d\n", tty->driver->name, info->port.count)); 741 } 742 743 static void hangup(struct tty_struct *tty) 744 { 745 struct slgt_info *info = tty->driver_data; 746 unsigned long flags; 747 748 if (sanity_check(info, tty->name, "hangup")) 749 return; 750 DBGINFO(("%s hangup\n", info->device_name)); 751 752 flush_buffer(tty); 753 754 mutex_lock(&info->port.mutex); 755 shutdown(info); 756 757 spin_lock_irqsave(&info->port.lock, flags); 758 info->port.count = 0; 759 info->port.tty = NULL; 760 spin_unlock_irqrestore(&info->port.lock, flags); 761 tty_port_set_active(&info->port, 0); 762 mutex_unlock(&info->port.mutex); 763 764 wake_up_interruptible(&info->port.open_wait); 765 } 766 767 static void set_termios(struct tty_struct *tty, struct ktermios *old_termios) 768 { 769 struct slgt_info *info = tty->driver_data; 770 unsigned long flags; 771 772 DBGINFO(("%s set_termios\n", tty->driver->name)); 773 774 change_params(info); 775 776 /* Handle transition to B0 status */ 777 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) { 778 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 779 spin_lock_irqsave(&info->lock,flags); 780 set_signals(info); 781 spin_unlock_irqrestore(&info->lock,flags); 782 } 783 784 /* Handle transition away from B0 status */ 785 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) { 786 info->signals |= SerialSignal_DTR; 787 if (!C_CRTSCTS(tty) || !tty_throttled(tty)) 788 info->signals |= SerialSignal_RTS; 789 spin_lock_irqsave(&info->lock,flags); 790 set_signals(info); 791 spin_unlock_irqrestore(&info->lock,flags); 792 } 793 794 /* Handle turning off CRTSCTS */ 795 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) { 796 tty->hw_stopped = 0; 797 tx_release(tty); 798 } 799 } 800 801 static void update_tx_timer(struct slgt_info *info) 802 { 803 /* 804 * use worst case speed of 1200bps to calculate transmit timeout 805 * based on data in buffers (tbuf_bytes) and FIFO (128 bytes) 806 */ 807 if (info->params.mode == MGSL_MODE_HDLC) { 808 int timeout = (tbuf_bytes(info) * 7) + 1000; 809 mod_timer(&info->tx_timer, jiffies + msecs_to_jiffies(timeout)); 810 } 811 } 812 813 static int write(struct tty_struct *tty, 814 const unsigned char *buf, int count) 815 { 816 int ret = 0; 817 struct slgt_info *info = tty->driver_data; 818 unsigned long flags; 819 820 if (sanity_check(info, tty->name, "write")) 821 return -EIO; 822 823 DBGINFO(("%s write count=%d\n", info->device_name, count)); 824 825 if (!info->tx_buf || (count > info->max_frame_size)) 826 return -EIO; 827 828 if (!count || tty->stopped || tty->hw_stopped) 829 return 0; 830 831 spin_lock_irqsave(&info->lock, flags); 832 833 if (info->tx_count) { 834 /* send accumulated data from send_char() */ 835 if (!tx_load(info, info->tx_buf, info->tx_count)) 836 goto cleanup; 837 info->tx_count = 0; 838 } 839 840 if (tx_load(info, buf, count)) 841 ret = count; 842 843 cleanup: 844 spin_unlock_irqrestore(&info->lock, flags); 845 DBGINFO(("%s write rc=%d\n", info->device_name, ret)); 846 return ret; 847 } 848 849 static int put_char(struct tty_struct *tty, unsigned char ch) 850 { 851 struct slgt_info *info = tty->driver_data; 852 unsigned long flags; 853 int ret = 0; 854 855 if (sanity_check(info, tty->name, "put_char")) 856 return 0; 857 DBGINFO(("%s put_char(%d)\n", info->device_name, ch)); 858 if (!info->tx_buf) 859 return 0; 860 spin_lock_irqsave(&info->lock,flags); 861 if (info->tx_count < info->max_frame_size) { 862 info->tx_buf[info->tx_count++] = ch; 863 ret = 1; 864 } 865 spin_unlock_irqrestore(&info->lock,flags); 866 return ret; 867 } 868 869 static void send_xchar(struct tty_struct *tty, char ch) 870 { 871 struct slgt_info *info = tty->driver_data; 872 unsigned long flags; 873 874 if (sanity_check(info, tty->name, "send_xchar")) 875 return; 876 DBGINFO(("%s send_xchar(%d)\n", info->device_name, ch)); 877 info->x_char = ch; 878 if (ch) { 879 spin_lock_irqsave(&info->lock,flags); 880 if (!info->tx_enabled) 881 tx_start(info); 882 spin_unlock_irqrestore(&info->lock,flags); 883 } 884 } 885 886 static void wait_until_sent(struct tty_struct *tty, int timeout) 887 { 888 struct slgt_info *info = tty->driver_data; 889 unsigned long orig_jiffies, char_time; 890 891 if (!info ) 892 return; 893 if (sanity_check(info, tty->name, "wait_until_sent")) 894 return; 895 DBGINFO(("%s wait_until_sent entry\n", info->device_name)); 896 if (!(info->port.flags & ASYNC_INITIALIZED)) 897 goto exit; 898 899 orig_jiffies = jiffies; 900 901 /* Set check interval to 1/5 of estimated time to 902 * send a character, and make it at least 1. The check 903 * interval should also be less than the timeout. 904 * Note: use tight timings here to satisfy the NIST-PCTS. 905 */ 906 907 if (info->params.data_rate) { 908 char_time = info->timeout/(32 * 5); 909 if (!char_time) 910 char_time++; 911 } else 912 char_time = 1; 913 914 if (timeout) 915 char_time = min_t(unsigned long, char_time, timeout); 916 917 while (info->tx_active) { 918 msleep_interruptible(jiffies_to_msecs(char_time)); 919 if (signal_pending(current)) 920 break; 921 if (timeout && time_after(jiffies, orig_jiffies + timeout)) 922 break; 923 } 924 exit: 925 DBGINFO(("%s wait_until_sent exit\n", info->device_name)); 926 } 927 928 static int write_room(struct tty_struct *tty) 929 { 930 struct slgt_info *info = tty->driver_data; 931 int ret; 932 933 if (sanity_check(info, tty->name, "write_room")) 934 return 0; 935 ret = (info->tx_active) ? 0 : HDLC_MAX_FRAME_SIZE; 936 DBGINFO(("%s write_room=%d\n", info->device_name, ret)); 937 return ret; 938 } 939 940 static void flush_chars(struct tty_struct *tty) 941 { 942 struct slgt_info *info = tty->driver_data; 943 unsigned long flags; 944 945 if (sanity_check(info, tty->name, "flush_chars")) 946 return; 947 DBGINFO(("%s flush_chars entry tx_count=%d\n", info->device_name, info->tx_count)); 948 949 if (info->tx_count <= 0 || tty->stopped || 950 tty->hw_stopped || !info->tx_buf) 951 return; 952 953 DBGINFO(("%s flush_chars start transmit\n", info->device_name)); 954 955 spin_lock_irqsave(&info->lock,flags); 956 if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count)) 957 info->tx_count = 0; 958 spin_unlock_irqrestore(&info->lock,flags); 959 } 960 961 static void flush_buffer(struct tty_struct *tty) 962 { 963 struct slgt_info *info = tty->driver_data; 964 unsigned long flags; 965 966 if (sanity_check(info, tty->name, "flush_buffer")) 967 return; 968 DBGINFO(("%s flush_buffer\n", info->device_name)); 969 970 spin_lock_irqsave(&info->lock, flags); 971 info->tx_count = 0; 972 spin_unlock_irqrestore(&info->lock, flags); 973 974 tty_wakeup(tty); 975 } 976 977 /* 978 * throttle (stop) transmitter 979 */ 980 static void tx_hold(struct tty_struct *tty) 981 { 982 struct slgt_info *info = tty->driver_data; 983 unsigned long flags; 984 985 if (sanity_check(info, tty->name, "tx_hold")) 986 return; 987 DBGINFO(("%s tx_hold\n", info->device_name)); 988 spin_lock_irqsave(&info->lock,flags); 989 if (info->tx_enabled && info->params.mode == MGSL_MODE_ASYNC) 990 tx_stop(info); 991 spin_unlock_irqrestore(&info->lock,flags); 992 } 993 994 /* 995 * release (start) transmitter 996 */ 997 static void tx_release(struct tty_struct *tty) 998 { 999 struct slgt_info *info = tty->driver_data; 1000 unsigned long flags; 1001 1002 if (sanity_check(info, tty->name, "tx_release")) 1003 return; 1004 DBGINFO(("%s tx_release\n", info->device_name)); 1005 spin_lock_irqsave(&info->lock, flags); 1006 if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count)) 1007 info->tx_count = 0; 1008 spin_unlock_irqrestore(&info->lock, flags); 1009 } 1010 1011 /* 1012 * Service an IOCTL request 1013 * 1014 * Arguments 1015 * 1016 * tty pointer to tty instance data 1017 * cmd IOCTL command code 1018 * arg command argument/context 1019 * 1020 * Return 0 if success, otherwise error code 1021 */ 1022 static int ioctl(struct tty_struct *tty, 1023 unsigned int cmd, unsigned long arg) 1024 { 1025 struct slgt_info *info = tty->driver_data; 1026 void __user *argp = (void __user *)arg; 1027 int ret; 1028 1029 if (sanity_check(info, tty->name, "ioctl")) 1030 return -ENODEV; 1031 DBGINFO(("%s ioctl() cmd=%08X\n", info->device_name, cmd)); 1032 1033 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && 1034 (cmd != TIOCMIWAIT)) { 1035 if (tty_io_error(tty)) 1036 return -EIO; 1037 } 1038 1039 switch (cmd) { 1040 case MGSL_IOCWAITEVENT: 1041 return wait_mgsl_event(info, argp); 1042 case TIOCMIWAIT: 1043 return modem_input_wait(info,(int)arg); 1044 case MGSL_IOCSGPIO: 1045 return set_gpio(info, argp); 1046 case MGSL_IOCGGPIO: 1047 return get_gpio(info, argp); 1048 case MGSL_IOCWAITGPIO: 1049 return wait_gpio(info, argp); 1050 case MGSL_IOCGXSYNC: 1051 return get_xsync(info, argp); 1052 case MGSL_IOCSXSYNC: 1053 return set_xsync(info, (int)arg); 1054 case MGSL_IOCGXCTRL: 1055 return get_xctrl(info, argp); 1056 case MGSL_IOCSXCTRL: 1057 return set_xctrl(info, (int)arg); 1058 } 1059 mutex_lock(&info->port.mutex); 1060 switch (cmd) { 1061 case MGSL_IOCGPARAMS: 1062 ret = get_params(info, argp); 1063 break; 1064 case MGSL_IOCSPARAMS: 1065 ret = set_params(info, argp); 1066 break; 1067 case MGSL_IOCGTXIDLE: 1068 ret = get_txidle(info, argp); 1069 break; 1070 case MGSL_IOCSTXIDLE: 1071 ret = set_txidle(info, (int)arg); 1072 break; 1073 case MGSL_IOCTXENABLE: 1074 ret = tx_enable(info, (int)arg); 1075 break; 1076 case MGSL_IOCRXENABLE: 1077 ret = rx_enable(info, (int)arg); 1078 break; 1079 case MGSL_IOCTXABORT: 1080 ret = tx_abort(info); 1081 break; 1082 case MGSL_IOCGSTATS: 1083 ret = get_stats(info, argp); 1084 break; 1085 case MGSL_IOCGIF: 1086 ret = get_interface(info, argp); 1087 break; 1088 case MGSL_IOCSIF: 1089 ret = set_interface(info,(int)arg); 1090 break; 1091 default: 1092 ret = -ENOIOCTLCMD; 1093 } 1094 mutex_unlock(&info->port.mutex); 1095 return ret; 1096 } 1097 1098 static int get_icount(struct tty_struct *tty, 1099 struct serial_icounter_struct *icount) 1100 1101 { 1102 struct slgt_info *info = tty->driver_data; 1103 struct mgsl_icount cnow; /* kernel counter temps */ 1104 unsigned long flags; 1105 1106 spin_lock_irqsave(&info->lock,flags); 1107 cnow = info->icount; 1108 spin_unlock_irqrestore(&info->lock,flags); 1109 1110 icount->cts = cnow.cts; 1111 icount->dsr = cnow.dsr; 1112 icount->rng = cnow.rng; 1113 icount->dcd = cnow.dcd; 1114 icount->rx = cnow.rx; 1115 icount->tx = cnow.tx; 1116 icount->frame = cnow.frame; 1117 icount->overrun = cnow.overrun; 1118 icount->parity = cnow.parity; 1119 icount->brk = cnow.brk; 1120 icount->buf_overrun = cnow.buf_overrun; 1121 1122 return 0; 1123 } 1124 1125 /* 1126 * support for 32 bit ioctl calls on 64 bit systems 1127 */ 1128 #ifdef CONFIG_COMPAT 1129 static long get_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *user_params) 1130 { 1131 struct MGSL_PARAMS32 tmp_params; 1132 1133 DBGINFO(("%s get_params32\n", info->device_name)); 1134 memset(&tmp_params, 0, sizeof(tmp_params)); 1135 tmp_params.mode = (compat_ulong_t)info->params.mode; 1136 tmp_params.loopback = info->params.loopback; 1137 tmp_params.flags = info->params.flags; 1138 tmp_params.encoding = info->params.encoding; 1139 tmp_params.clock_speed = (compat_ulong_t)info->params.clock_speed; 1140 tmp_params.addr_filter = info->params.addr_filter; 1141 tmp_params.crc_type = info->params.crc_type; 1142 tmp_params.preamble_length = info->params.preamble_length; 1143 tmp_params.preamble = info->params.preamble; 1144 tmp_params.data_rate = (compat_ulong_t)info->params.data_rate; 1145 tmp_params.data_bits = info->params.data_bits; 1146 tmp_params.stop_bits = info->params.stop_bits; 1147 tmp_params.parity = info->params.parity; 1148 if (copy_to_user(user_params, &tmp_params, sizeof(struct MGSL_PARAMS32))) 1149 return -EFAULT; 1150 return 0; 1151 } 1152 1153 static long set_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *new_params) 1154 { 1155 struct MGSL_PARAMS32 tmp_params; 1156 1157 DBGINFO(("%s set_params32\n", info->device_name)); 1158 if (copy_from_user(&tmp_params, new_params, sizeof(struct MGSL_PARAMS32))) 1159 return -EFAULT; 1160 1161 spin_lock(&info->lock); 1162 if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) { 1163 info->base_clock = tmp_params.clock_speed; 1164 } else { 1165 info->params.mode = tmp_params.mode; 1166 info->params.loopback = tmp_params.loopback; 1167 info->params.flags = tmp_params.flags; 1168 info->params.encoding = tmp_params.encoding; 1169 info->params.clock_speed = tmp_params.clock_speed; 1170 info->params.addr_filter = tmp_params.addr_filter; 1171 info->params.crc_type = tmp_params.crc_type; 1172 info->params.preamble_length = tmp_params.preamble_length; 1173 info->params.preamble = tmp_params.preamble; 1174 info->params.data_rate = tmp_params.data_rate; 1175 info->params.data_bits = tmp_params.data_bits; 1176 info->params.stop_bits = tmp_params.stop_bits; 1177 info->params.parity = tmp_params.parity; 1178 } 1179 spin_unlock(&info->lock); 1180 1181 program_hw(info); 1182 1183 return 0; 1184 } 1185 1186 static long slgt_compat_ioctl(struct tty_struct *tty, 1187 unsigned int cmd, unsigned long arg) 1188 { 1189 struct slgt_info *info = tty->driver_data; 1190 int rc = -ENOIOCTLCMD; 1191 1192 if (sanity_check(info, tty->name, "compat_ioctl")) 1193 return -ENODEV; 1194 DBGINFO(("%s compat_ioctl() cmd=%08X\n", info->device_name, cmd)); 1195 1196 switch (cmd) { 1197 1198 case MGSL_IOCSPARAMS32: 1199 rc = set_params32(info, compat_ptr(arg)); 1200 break; 1201 1202 case MGSL_IOCGPARAMS32: 1203 rc = get_params32(info, compat_ptr(arg)); 1204 break; 1205 1206 case MGSL_IOCGPARAMS: 1207 case MGSL_IOCSPARAMS: 1208 case MGSL_IOCGTXIDLE: 1209 case MGSL_IOCGSTATS: 1210 case MGSL_IOCWAITEVENT: 1211 case MGSL_IOCGIF: 1212 case MGSL_IOCSGPIO: 1213 case MGSL_IOCGGPIO: 1214 case MGSL_IOCWAITGPIO: 1215 case MGSL_IOCGXSYNC: 1216 case MGSL_IOCGXCTRL: 1217 case MGSL_IOCSTXIDLE: 1218 case MGSL_IOCTXENABLE: 1219 case MGSL_IOCRXENABLE: 1220 case MGSL_IOCTXABORT: 1221 case TIOCMIWAIT: 1222 case MGSL_IOCSIF: 1223 case MGSL_IOCSXSYNC: 1224 case MGSL_IOCSXCTRL: 1225 rc = ioctl(tty, cmd, arg); 1226 break; 1227 } 1228 1229 DBGINFO(("%s compat_ioctl() cmd=%08X rc=%d\n", info->device_name, cmd, rc)); 1230 return rc; 1231 } 1232 #else 1233 #define slgt_compat_ioctl NULL 1234 #endif /* ifdef CONFIG_COMPAT */ 1235 1236 /* 1237 * proc fs support 1238 */ 1239 static inline void line_info(struct seq_file *m, struct slgt_info *info) 1240 { 1241 char stat_buf[30]; 1242 unsigned long flags; 1243 1244 seq_printf(m, "%s: IO=%08X IRQ=%d MaxFrameSize=%u\n", 1245 info->device_name, info->phys_reg_addr, 1246 info->irq_level, info->max_frame_size); 1247 1248 /* output current serial signal states */ 1249 spin_lock_irqsave(&info->lock,flags); 1250 get_signals(info); 1251 spin_unlock_irqrestore(&info->lock,flags); 1252 1253 stat_buf[0] = 0; 1254 stat_buf[1] = 0; 1255 if (info->signals & SerialSignal_RTS) 1256 strcat(stat_buf, "|RTS"); 1257 if (info->signals & SerialSignal_CTS) 1258 strcat(stat_buf, "|CTS"); 1259 if (info->signals & SerialSignal_DTR) 1260 strcat(stat_buf, "|DTR"); 1261 if (info->signals & SerialSignal_DSR) 1262 strcat(stat_buf, "|DSR"); 1263 if (info->signals & SerialSignal_DCD) 1264 strcat(stat_buf, "|CD"); 1265 if (info->signals & SerialSignal_RI) 1266 strcat(stat_buf, "|RI"); 1267 1268 if (info->params.mode != MGSL_MODE_ASYNC) { 1269 seq_printf(m, "\tHDLC txok:%d rxok:%d", 1270 info->icount.txok, info->icount.rxok); 1271 if (info->icount.txunder) 1272 seq_printf(m, " txunder:%d", info->icount.txunder); 1273 if (info->icount.txabort) 1274 seq_printf(m, " txabort:%d", info->icount.txabort); 1275 if (info->icount.rxshort) 1276 seq_printf(m, " rxshort:%d", info->icount.rxshort); 1277 if (info->icount.rxlong) 1278 seq_printf(m, " rxlong:%d", info->icount.rxlong); 1279 if (info->icount.rxover) 1280 seq_printf(m, " rxover:%d", info->icount.rxover); 1281 if (info->icount.rxcrc) 1282 seq_printf(m, " rxcrc:%d", info->icount.rxcrc); 1283 } else { 1284 seq_printf(m, "\tASYNC tx:%d rx:%d", 1285 info->icount.tx, info->icount.rx); 1286 if (info->icount.frame) 1287 seq_printf(m, " fe:%d", info->icount.frame); 1288 if (info->icount.parity) 1289 seq_printf(m, " pe:%d", info->icount.parity); 1290 if (info->icount.brk) 1291 seq_printf(m, " brk:%d", info->icount.brk); 1292 if (info->icount.overrun) 1293 seq_printf(m, " oe:%d", info->icount.overrun); 1294 } 1295 1296 /* Append serial signal status to end */ 1297 seq_printf(m, " %s\n", stat_buf+1); 1298 1299 seq_printf(m, "\ttxactive=%d bh_req=%d bh_run=%d pending_bh=%x\n", 1300 info->tx_active,info->bh_requested,info->bh_running, 1301 info->pending_bh); 1302 } 1303 1304 /* Called to print information about devices 1305 */ 1306 static int synclink_gt_proc_show(struct seq_file *m, void *v) 1307 { 1308 struct slgt_info *info; 1309 1310 seq_puts(m, "synclink_gt driver\n"); 1311 1312 info = slgt_device_list; 1313 while( info ) { 1314 line_info(m, info); 1315 info = info->next_device; 1316 } 1317 return 0; 1318 } 1319 1320 static int synclink_gt_proc_open(struct inode *inode, struct file *file) 1321 { 1322 return single_open(file, synclink_gt_proc_show, NULL); 1323 } 1324 1325 static const struct file_operations synclink_gt_proc_fops = { 1326 .owner = THIS_MODULE, 1327 .open = synclink_gt_proc_open, 1328 .read = seq_read, 1329 .llseek = seq_lseek, 1330 .release = single_release, 1331 }; 1332 1333 /* 1334 * return count of bytes in transmit buffer 1335 */ 1336 static int chars_in_buffer(struct tty_struct *tty) 1337 { 1338 struct slgt_info *info = tty->driver_data; 1339 int count; 1340 if (sanity_check(info, tty->name, "chars_in_buffer")) 1341 return 0; 1342 count = tbuf_bytes(info); 1343 DBGINFO(("%s chars_in_buffer()=%d\n", info->device_name, count)); 1344 return count; 1345 } 1346 1347 /* 1348 * signal remote device to throttle send data (our receive data) 1349 */ 1350 static void throttle(struct tty_struct * tty) 1351 { 1352 struct slgt_info *info = tty->driver_data; 1353 unsigned long flags; 1354 1355 if (sanity_check(info, tty->name, "throttle")) 1356 return; 1357 DBGINFO(("%s throttle\n", info->device_name)); 1358 if (I_IXOFF(tty)) 1359 send_xchar(tty, STOP_CHAR(tty)); 1360 if (C_CRTSCTS(tty)) { 1361 spin_lock_irqsave(&info->lock,flags); 1362 info->signals &= ~SerialSignal_RTS; 1363 set_signals(info); 1364 spin_unlock_irqrestore(&info->lock,flags); 1365 } 1366 } 1367 1368 /* 1369 * signal remote device to stop throttling send data (our receive data) 1370 */ 1371 static void unthrottle(struct tty_struct * tty) 1372 { 1373 struct slgt_info *info = tty->driver_data; 1374 unsigned long flags; 1375 1376 if (sanity_check(info, tty->name, "unthrottle")) 1377 return; 1378 DBGINFO(("%s unthrottle\n", info->device_name)); 1379 if (I_IXOFF(tty)) { 1380 if (info->x_char) 1381 info->x_char = 0; 1382 else 1383 send_xchar(tty, START_CHAR(tty)); 1384 } 1385 if (C_CRTSCTS(tty)) { 1386 spin_lock_irqsave(&info->lock,flags); 1387 info->signals |= SerialSignal_RTS; 1388 set_signals(info); 1389 spin_unlock_irqrestore(&info->lock,flags); 1390 } 1391 } 1392 1393 /* 1394 * set or clear transmit break condition 1395 * break_state -1=set break condition, 0=clear 1396 */ 1397 static int set_break(struct tty_struct *tty, int break_state) 1398 { 1399 struct slgt_info *info = tty->driver_data; 1400 unsigned short value; 1401 unsigned long flags; 1402 1403 if (sanity_check(info, tty->name, "set_break")) 1404 return -EINVAL; 1405 DBGINFO(("%s set_break(%d)\n", info->device_name, break_state)); 1406 1407 spin_lock_irqsave(&info->lock,flags); 1408 value = rd_reg16(info, TCR); 1409 if (break_state == -1) 1410 value |= BIT6; 1411 else 1412 value &= ~BIT6; 1413 wr_reg16(info, TCR, value); 1414 spin_unlock_irqrestore(&info->lock,flags); 1415 return 0; 1416 } 1417 1418 #if SYNCLINK_GENERIC_HDLC 1419 1420 /** 1421 * called by generic HDLC layer when protocol selected (PPP, frame relay, etc.) 1422 * set encoding and frame check sequence (FCS) options 1423 * 1424 * dev pointer to network device structure 1425 * encoding serial encoding setting 1426 * parity FCS setting 1427 * 1428 * returns 0 if success, otherwise error code 1429 */ 1430 static int hdlcdev_attach(struct net_device *dev, unsigned short encoding, 1431 unsigned short parity) 1432 { 1433 struct slgt_info *info = dev_to_port(dev); 1434 unsigned char new_encoding; 1435 unsigned short new_crctype; 1436 1437 /* return error if TTY interface open */ 1438 if (info->port.count) 1439 return -EBUSY; 1440 1441 DBGINFO(("%s hdlcdev_attach\n", info->device_name)); 1442 1443 switch (encoding) 1444 { 1445 case ENCODING_NRZ: new_encoding = HDLC_ENCODING_NRZ; break; 1446 case ENCODING_NRZI: new_encoding = HDLC_ENCODING_NRZI_SPACE; break; 1447 case ENCODING_FM_MARK: new_encoding = HDLC_ENCODING_BIPHASE_MARK; break; 1448 case ENCODING_FM_SPACE: new_encoding = HDLC_ENCODING_BIPHASE_SPACE; break; 1449 case ENCODING_MANCHESTER: new_encoding = HDLC_ENCODING_BIPHASE_LEVEL; break; 1450 default: return -EINVAL; 1451 } 1452 1453 switch (parity) 1454 { 1455 case PARITY_NONE: new_crctype = HDLC_CRC_NONE; break; 1456 case PARITY_CRC16_PR1_CCITT: new_crctype = HDLC_CRC_16_CCITT; break; 1457 case PARITY_CRC32_PR1_CCITT: new_crctype = HDLC_CRC_32_CCITT; break; 1458 default: return -EINVAL; 1459 } 1460 1461 info->params.encoding = new_encoding; 1462 info->params.crc_type = new_crctype; 1463 1464 /* if network interface up, reprogram hardware */ 1465 if (info->netcount) 1466 program_hw(info); 1467 1468 return 0; 1469 } 1470 1471 /** 1472 * called by generic HDLC layer to send frame 1473 * 1474 * skb socket buffer containing HDLC frame 1475 * dev pointer to network device structure 1476 */ 1477 static netdev_tx_t hdlcdev_xmit(struct sk_buff *skb, 1478 struct net_device *dev) 1479 { 1480 struct slgt_info *info = dev_to_port(dev); 1481 unsigned long flags; 1482 1483 DBGINFO(("%s hdlc_xmit\n", dev->name)); 1484 1485 if (!skb->len) 1486 return NETDEV_TX_OK; 1487 1488 /* stop sending until this frame completes */ 1489 netif_stop_queue(dev); 1490 1491 /* update network statistics */ 1492 dev->stats.tx_packets++; 1493 dev->stats.tx_bytes += skb->len; 1494 1495 /* save start time for transmit timeout detection */ 1496 dev->trans_start = jiffies; 1497 1498 spin_lock_irqsave(&info->lock, flags); 1499 tx_load(info, skb->data, skb->len); 1500 spin_unlock_irqrestore(&info->lock, flags); 1501 1502 /* done with socket buffer, so free it */ 1503 dev_kfree_skb(skb); 1504 1505 return NETDEV_TX_OK; 1506 } 1507 1508 /** 1509 * called by network layer when interface enabled 1510 * claim resources and initialize hardware 1511 * 1512 * dev pointer to network device structure 1513 * 1514 * returns 0 if success, otherwise error code 1515 */ 1516 static int hdlcdev_open(struct net_device *dev) 1517 { 1518 struct slgt_info *info = dev_to_port(dev); 1519 int rc; 1520 unsigned long flags; 1521 1522 if (!try_module_get(THIS_MODULE)) 1523 return -EBUSY; 1524 1525 DBGINFO(("%s hdlcdev_open\n", dev->name)); 1526 1527 /* generic HDLC layer open processing */ 1528 rc = hdlc_open(dev); 1529 if (rc) 1530 return rc; 1531 1532 /* arbitrate between network and tty opens */ 1533 spin_lock_irqsave(&info->netlock, flags); 1534 if (info->port.count != 0 || info->netcount != 0) { 1535 DBGINFO(("%s hdlc_open busy\n", dev->name)); 1536 spin_unlock_irqrestore(&info->netlock, flags); 1537 return -EBUSY; 1538 } 1539 info->netcount=1; 1540 spin_unlock_irqrestore(&info->netlock, flags); 1541 1542 /* claim resources and init adapter */ 1543 if ((rc = startup(info)) != 0) { 1544 spin_lock_irqsave(&info->netlock, flags); 1545 info->netcount=0; 1546 spin_unlock_irqrestore(&info->netlock, flags); 1547 return rc; 1548 } 1549 1550 /* assert RTS and DTR, apply hardware settings */ 1551 info->signals |= SerialSignal_RTS | SerialSignal_DTR; 1552 program_hw(info); 1553 1554 /* enable network layer transmit */ 1555 dev->trans_start = jiffies; 1556 netif_start_queue(dev); 1557 1558 /* inform generic HDLC layer of current DCD status */ 1559 spin_lock_irqsave(&info->lock, flags); 1560 get_signals(info); 1561 spin_unlock_irqrestore(&info->lock, flags); 1562 if (info->signals & SerialSignal_DCD) 1563 netif_carrier_on(dev); 1564 else 1565 netif_carrier_off(dev); 1566 return 0; 1567 } 1568 1569 /** 1570 * called by network layer when interface is disabled 1571 * shutdown hardware and release resources 1572 * 1573 * dev pointer to network device structure 1574 * 1575 * returns 0 if success, otherwise error code 1576 */ 1577 static int hdlcdev_close(struct net_device *dev) 1578 { 1579 struct slgt_info *info = dev_to_port(dev); 1580 unsigned long flags; 1581 1582 DBGINFO(("%s hdlcdev_close\n", dev->name)); 1583 1584 netif_stop_queue(dev); 1585 1586 /* shutdown adapter and release resources */ 1587 shutdown(info); 1588 1589 hdlc_close(dev); 1590 1591 spin_lock_irqsave(&info->netlock, flags); 1592 info->netcount=0; 1593 spin_unlock_irqrestore(&info->netlock, flags); 1594 1595 module_put(THIS_MODULE); 1596 return 0; 1597 } 1598 1599 /** 1600 * called by network layer to process IOCTL call to network device 1601 * 1602 * dev pointer to network device structure 1603 * ifr pointer to network interface request structure 1604 * cmd IOCTL command code 1605 * 1606 * returns 0 if success, otherwise error code 1607 */ 1608 static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1609 { 1610 const size_t size = sizeof(sync_serial_settings); 1611 sync_serial_settings new_line; 1612 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; 1613 struct slgt_info *info = dev_to_port(dev); 1614 unsigned int flags; 1615 1616 DBGINFO(("%s hdlcdev_ioctl\n", dev->name)); 1617 1618 /* return error if TTY interface open */ 1619 if (info->port.count) 1620 return -EBUSY; 1621 1622 if (cmd != SIOCWANDEV) 1623 return hdlc_ioctl(dev, ifr, cmd); 1624 1625 memset(&new_line, 0, sizeof(new_line)); 1626 1627 switch(ifr->ifr_settings.type) { 1628 case IF_GET_IFACE: /* return current sync_serial_settings */ 1629 1630 ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL; 1631 if (ifr->ifr_settings.size < size) { 1632 ifr->ifr_settings.size = size; /* data size wanted */ 1633 return -ENOBUFS; 1634 } 1635 1636 flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | 1637 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | 1638 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | 1639 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); 1640 1641 switch (flags){ 1642 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN): new_line.clock_type = CLOCK_EXT; break; 1643 case (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_INT; break; 1644 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_TXINT; break; 1645 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN): new_line.clock_type = CLOCK_TXFROMRX; break; 1646 default: new_line.clock_type = CLOCK_DEFAULT; 1647 } 1648 1649 new_line.clock_rate = info->params.clock_speed; 1650 new_line.loopback = info->params.loopback ? 1:0; 1651 1652 if (copy_to_user(line, &new_line, size)) 1653 return -EFAULT; 1654 return 0; 1655 1656 case IF_IFACE_SYNC_SERIAL: /* set sync_serial_settings */ 1657 1658 if(!capable(CAP_NET_ADMIN)) 1659 return -EPERM; 1660 if (copy_from_user(&new_line, line, size)) 1661 return -EFAULT; 1662 1663 switch (new_line.clock_type) 1664 { 1665 case CLOCK_EXT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN; break; 1666 case CLOCK_TXFROMRX: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN; break; 1667 case CLOCK_INT: flags = HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG; break; 1668 case CLOCK_TXINT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG; break; 1669 case CLOCK_DEFAULT: flags = info->params.flags & 1670 (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | 1671 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | 1672 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | 1673 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); break; 1674 default: return -EINVAL; 1675 } 1676 1677 if (new_line.loopback != 0 && new_line.loopback != 1) 1678 return -EINVAL; 1679 1680 info->params.flags &= ~(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | 1681 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | 1682 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | 1683 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); 1684 info->params.flags |= flags; 1685 1686 info->params.loopback = new_line.loopback; 1687 1688 if (flags & (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG)) 1689 info->params.clock_speed = new_line.clock_rate; 1690 else 1691 info->params.clock_speed = 0; 1692 1693 /* if network interface up, reprogram hardware */ 1694 if (info->netcount) 1695 program_hw(info); 1696 return 0; 1697 1698 default: 1699 return hdlc_ioctl(dev, ifr, cmd); 1700 } 1701 } 1702 1703 /** 1704 * called by network layer when transmit timeout is detected 1705 * 1706 * dev pointer to network device structure 1707 */ 1708 static void hdlcdev_tx_timeout(struct net_device *dev) 1709 { 1710 struct slgt_info *info = dev_to_port(dev); 1711 unsigned long flags; 1712 1713 DBGINFO(("%s hdlcdev_tx_timeout\n", dev->name)); 1714 1715 dev->stats.tx_errors++; 1716 dev->stats.tx_aborted_errors++; 1717 1718 spin_lock_irqsave(&info->lock,flags); 1719 tx_stop(info); 1720 spin_unlock_irqrestore(&info->lock,flags); 1721 1722 netif_wake_queue(dev); 1723 } 1724 1725 /** 1726 * called by device driver when transmit completes 1727 * reenable network layer transmit if stopped 1728 * 1729 * info pointer to device instance information 1730 */ 1731 static void hdlcdev_tx_done(struct slgt_info *info) 1732 { 1733 if (netif_queue_stopped(info->netdev)) 1734 netif_wake_queue(info->netdev); 1735 } 1736 1737 /** 1738 * called by device driver when frame received 1739 * pass frame to network layer 1740 * 1741 * info pointer to device instance information 1742 * buf pointer to buffer contianing frame data 1743 * size count of data bytes in buf 1744 */ 1745 static void hdlcdev_rx(struct slgt_info *info, char *buf, int size) 1746 { 1747 struct sk_buff *skb = dev_alloc_skb(size); 1748 struct net_device *dev = info->netdev; 1749 1750 DBGINFO(("%s hdlcdev_rx\n", dev->name)); 1751 1752 if (skb == NULL) { 1753 DBGERR(("%s: can't alloc skb, drop packet\n", dev->name)); 1754 dev->stats.rx_dropped++; 1755 return; 1756 } 1757 1758 memcpy(skb_put(skb, size), buf, size); 1759 1760 skb->protocol = hdlc_type_trans(skb, dev); 1761 1762 dev->stats.rx_packets++; 1763 dev->stats.rx_bytes += size; 1764 1765 netif_rx(skb); 1766 } 1767 1768 static const struct net_device_ops hdlcdev_ops = { 1769 .ndo_open = hdlcdev_open, 1770 .ndo_stop = hdlcdev_close, 1771 .ndo_change_mtu = hdlc_change_mtu, 1772 .ndo_start_xmit = hdlc_start_xmit, 1773 .ndo_do_ioctl = hdlcdev_ioctl, 1774 .ndo_tx_timeout = hdlcdev_tx_timeout, 1775 }; 1776 1777 /** 1778 * called by device driver when adding device instance 1779 * do generic HDLC initialization 1780 * 1781 * info pointer to device instance information 1782 * 1783 * returns 0 if success, otherwise error code 1784 */ 1785 static int hdlcdev_init(struct slgt_info *info) 1786 { 1787 int rc; 1788 struct net_device *dev; 1789 hdlc_device *hdlc; 1790 1791 /* allocate and initialize network and HDLC layer objects */ 1792 1793 dev = alloc_hdlcdev(info); 1794 if (!dev) { 1795 printk(KERN_ERR "%s hdlc device alloc failure\n", info->device_name); 1796 return -ENOMEM; 1797 } 1798 1799 /* for network layer reporting purposes only */ 1800 dev->mem_start = info->phys_reg_addr; 1801 dev->mem_end = info->phys_reg_addr + SLGT_REG_SIZE - 1; 1802 dev->irq = info->irq_level; 1803 1804 /* network layer callbacks and settings */ 1805 dev->netdev_ops = &hdlcdev_ops; 1806 dev->watchdog_timeo = 10 * HZ; 1807 dev->tx_queue_len = 50; 1808 1809 /* generic HDLC layer callbacks and settings */ 1810 hdlc = dev_to_hdlc(dev); 1811 hdlc->attach = hdlcdev_attach; 1812 hdlc->xmit = hdlcdev_xmit; 1813 1814 /* register objects with HDLC layer */ 1815 rc = register_hdlc_device(dev); 1816 if (rc) { 1817 printk(KERN_WARNING "%s:unable to register hdlc device\n",__FILE__); 1818 free_netdev(dev); 1819 return rc; 1820 } 1821 1822 info->netdev = dev; 1823 return 0; 1824 } 1825 1826 /** 1827 * called by device driver when removing device instance 1828 * do generic HDLC cleanup 1829 * 1830 * info pointer to device instance information 1831 */ 1832 static void hdlcdev_exit(struct slgt_info *info) 1833 { 1834 unregister_hdlc_device(info->netdev); 1835 free_netdev(info->netdev); 1836 info->netdev = NULL; 1837 } 1838 1839 #endif /* ifdef CONFIG_HDLC */ 1840 1841 /* 1842 * get async data from rx DMA buffers 1843 */ 1844 static void rx_async(struct slgt_info *info) 1845 { 1846 struct mgsl_icount *icount = &info->icount; 1847 unsigned int start, end; 1848 unsigned char *p; 1849 unsigned char status; 1850 struct slgt_desc *bufs = info->rbufs; 1851 int i, count; 1852 int chars = 0; 1853 int stat; 1854 unsigned char ch; 1855 1856 start = end = info->rbuf_current; 1857 1858 while(desc_complete(bufs[end])) { 1859 count = desc_count(bufs[end]) - info->rbuf_index; 1860 p = bufs[end].buf + info->rbuf_index; 1861 1862 DBGISR(("%s rx_async count=%d\n", info->device_name, count)); 1863 DBGDATA(info, p, count, "rx"); 1864 1865 for(i=0 ; i < count; i+=2, p+=2) { 1866 ch = *p; 1867 icount->rx++; 1868 1869 stat = 0; 1870 1871 status = *(p + 1) & (BIT1 + BIT0); 1872 if (status) { 1873 if (status & BIT1) 1874 icount->parity++; 1875 else if (status & BIT0) 1876 icount->frame++; 1877 /* discard char if tty control flags say so */ 1878 if (status & info->ignore_status_mask) 1879 continue; 1880 if (status & BIT1) 1881 stat = TTY_PARITY; 1882 else if (status & BIT0) 1883 stat = TTY_FRAME; 1884 } 1885 tty_insert_flip_char(&info->port, ch, stat); 1886 chars++; 1887 } 1888 1889 if (i < count) { 1890 /* receive buffer not completed */ 1891 info->rbuf_index += i; 1892 mod_timer(&info->rx_timer, jiffies + 1); 1893 break; 1894 } 1895 1896 info->rbuf_index = 0; 1897 free_rbufs(info, end, end); 1898 1899 if (++end == info->rbuf_count) 1900 end = 0; 1901 1902 /* if entire list searched then no frame available */ 1903 if (end == start) 1904 break; 1905 } 1906 1907 if (chars) 1908 tty_flip_buffer_push(&info->port); 1909 } 1910 1911 /* 1912 * return next bottom half action to perform 1913 */ 1914 static int bh_action(struct slgt_info *info) 1915 { 1916 unsigned long flags; 1917 int rc; 1918 1919 spin_lock_irqsave(&info->lock,flags); 1920 1921 if (info->pending_bh & BH_RECEIVE) { 1922 info->pending_bh &= ~BH_RECEIVE; 1923 rc = BH_RECEIVE; 1924 } else if (info->pending_bh & BH_TRANSMIT) { 1925 info->pending_bh &= ~BH_TRANSMIT; 1926 rc = BH_TRANSMIT; 1927 } else if (info->pending_bh & BH_STATUS) { 1928 info->pending_bh &= ~BH_STATUS; 1929 rc = BH_STATUS; 1930 } else { 1931 /* Mark BH routine as complete */ 1932 info->bh_running = false; 1933 info->bh_requested = false; 1934 rc = 0; 1935 } 1936 1937 spin_unlock_irqrestore(&info->lock,flags); 1938 1939 return rc; 1940 } 1941 1942 /* 1943 * perform bottom half processing 1944 */ 1945 static void bh_handler(struct work_struct *work) 1946 { 1947 struct slgt_info *info = container_of(work, struct slgt_info, task); 1948 int action; 1949 1950 info->bh_running = true; 1951 1952 while((action = bh_action(info))) { 1953 switch (action) { 1954 case BH_RECEIVE: 1955 DBGBH(("%s bh receive\n", info->device_name)); 1956 switch(info->params.mode) { 1957 case MGSL_MODE_ASYNC: 1958 rx_async(info); 1959 break; 1960 case MGSL_MODE_HDLC: 1961 while(rx_get_frame(info)); 1962 break; 1963 case MGSL_MODE_RAW: 1964 case MGSL_MODE_MONOSYNC: 1965 case MGSL_MODE_BISYNC: 1966 case MGSL_MODE_XSYNC: 1967 while(rx_get_buf(info)); 1968 break; 1969 } 1970 /* restart receiver if rx DMA buffers exhausted */ 1971 if (info->rx_restart) 1972 rx_start(info); 1973 break; 1974 case BH_TRANSMIT: 1975 bh_transmit(info); 1976 break; 1977 case BH_STATUS: 1978 DBGBH(("%s bh status\n", info->device_name)); 1979 info->ri_chkcount = 0; 1980 info->dsr_chkcount = 0; 1981 info->dcd_chkcount = 0; 1982 info->cts_chkcount = 0; 1983 break; 1984 default: 1985 DBGBH(("%s unknown action\n", info->device_name)); 1986 break; 1987 } 1988 } 1989 DBGBH(("%s bh_handler exit\n", info->device_name)); 1990 } 1991 1992 static void bh_transmit(struct slgt_info *info) 1993 { 1994 struct tty_struct *tty = info->port.tty; 1995 1996 DBGBH(("%s bh_transmit\n", info->device_name)); 1997 if (tty) 1998 tty_wakeup(tty); 1999 } 2000 2001 static void dsr_change(struct slgt_info *info, unsigned short status) 2002 { 2003 if (status & BIT3) { 2004 info->signals |= SerialSignal_DSR; 2005 info->input_signal_events.dsr_up++; 2006 } else { 2007 info->signals &= ~SerialSignal_DSR; 2008 info->input_signal_events.dsr_down++; 2009 } 2010 DBGISR(("dsr_change %s signals=%04X\n", info->device_name, info->signals)); 2011 if ((info->dsr_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 2012 slgt_irq_off(info, IRQ_DSR); 2013 return; 2014 } 2015 info->icount.dsr++; 2016 wake_up_interruptible(&info->status_event_wait_q); 2017 wake_up_interruptible(&info->event_wait_q); 2018 info->pending_bh |= BH_STATUS; 2019 } 2020 2021 static void cts_change(struct slgt_info *info, unsigned short status) 2022 { 2023 if (status & BIT2) { 2024 info->signals |= SerialSignal_CTS; 2025 info->input_signal_events.cts_up++; 2026 } else { 2027 info->signals &= ~SerialSignal_CTS; 2028 info->input_signal_events.cts_down++; 2029 } 2030 DBGISR(("cts_change %s signals=%04X\n", info->device_name, info->signals)); 2031 if ((info->cts_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 2032 slgt_irq_off(info, IRQ_CTS); 2033 return; 2034 } 2035 info->icount.cts++; 2036 wake_up_interruptible(&info->status_event_wait_q); 2037 wake_up_interruptible(&info->event_wait_q); 2038 info->pending_bh |= BH_STATUS; 2039 2040 if (tty_port_cts_enabled(&info->port)) { 2041 if (info->port.tty) { 2042 if (info->port.tty->hw_stopped) { 2043 if (info->signals & SerialSignal_CTS) { 2044 info->port.tty->hw_stopped = 0; 2045 info->pending_bh |= BH_TRANSMIT; 2046 return; 2047 } 2048 } else { 2049 if (!(info->signals & SerialSignal_CTS)) 2050 info->port.tty->hw_stopped = 1; 2051 } 2052 } 2053 } 2054 } 2055 2056 static void dcd_change(struct slgt_info *info, unsigned short status) 2057 { 2058 if (status & BIT1) { 2059 info->signals |= SerialSignal_DCD; 2060 info->input_signal_events.dcd_up++; 2061 } else { 2062 info->signals &= ~SerialSignal_DCD; 2063 info->input_signal_events.dcd_down++; 2064 } 2065 DBGISR(("dcd_change %s signals=%04X\n", info->device_name, info->signals)); 2066 if ((info->dcd_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 2067 slgt_irq_off(info, IRQ_DCD); 2068 return; 2069 } 2070 info->icount.dcd++; 2071 #if SYNCLINK_GENERIC_HDLC 2072 if (info->netcount) { 2073 if (info->signals & SerialSignal_DCD) 2074 netif_carrier_on(info->netdev); 2075 else 2076 netif_carrier_off(info->netdev); 2077 } 2078 #endif 2079 wake_up_interruptible(&info->status_event_wait_q); 2080 wake_up_interruptible(&info->event_wait_q); 2081 info->pending_bh |= BH_STATUS; 2082 2083 if (info->port.flags & ASYNC_CHECK_CD) { 2084 if (info->signals & SerialSignal_DCD) 2085 wake_up_interruptible(&info->port.open_wait); 2086 else { 2087 if (info->port.tty) 2088 tty_hangup(info->port.tty); 2089 } 2090 } 2091 } 2092 2093 static void ri_change(struct slgt_info *info, unsigned short status) 2094 { 2095 if (status & BIT0) { 2096 info->signals |= SerialSignal_RI; 2097 info->input_signal_events.ri_up++; 2098 } else { 2099 info->signals &= ~SerialSignal_RI; 2100 info->input_signal_events.ri_down++; 2101 } 2102 DBGISR(("ri_change %s signals=%04X\n", info->device_name, info->signals)); 2103 if ((info->ri_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 2104 slgt_irq_off(info, IRQ_RI); 2105 return; 2106 } 2107 info->icount.rng++; 2108 wake_up_interruptible(&info->status_event_wait_q); 2109 wake_up_interruptible(&info->event_wait_q); 2110 info->pending_bh |= BH_STATUS; 2111 } 2112 2113 static void isr_rxdata(struct slgt_info *info) 2114 { 2115 unsigned int count = info->rbuf_fill_count; 2116 unsigned int i = info->rbuf_fill_index; 2117 unsigned short reg; 2118 2119 while (rd_reg16(info, SSR) & IRQ_RXDATA) { 2120 reg = rd_reg16(info, RDR); 2121 DBGISR(("isr_rxdata %s RDR=%04X\n", info->device_name, reg)); 2122 if (desc_complete(info->rbufs[i])) { 2123 /* all buffers full */ 2124 rx_stop(info); 2125 info->rx_restart = 1; 2126 continue; 2127 } 2128 info->rbufs[i].buf[count++] = (unsigned char)reg; 2129 /* async mode saves status byte to buffer for each data byte */ 2130 if (info->params.mode == MGSL_MODE_ASYNC) 2131 info->rbufs[i].buf[count++] = (unsigned char)(reg >> 8); 2132 if (count == info->rbuf_fill_level || (reg & BIT10)) { 2133 /* buffer full or end of frame */ 2134 set_desc_count(info->rbufs[i], count); 2135 set_desc_status(info->rbufs[i], BIT15 | (reg >> 8)); 2136 info->rbuf_fill_count = count = 0; 2137 if (++i == info->rbuf_count) 2138 i = 0; 2139 info->pending_bh |= BH_RECEIVE; 2140 } 2141 } 2142 2143 info->rbuf_fill_index = i; 2144 info->rbuf_fill_count = count; 2145 } 2146 2147 static void isr_serial(struct slgt_info *info) 2148 { 2149 unsigned short status = rd_reg16(info, SSR); 2150 2151 DBGISR(("%s isr_serial status=%04X\n", info->device_name, status)); 2152 2153 wr_reg16(info, SSR, status); /* clear pending */ 2154 2155 info->irq_occurred = true; 2156 2157 if (info->params.mode == MGSL_MODE_ASYNC) { 2158 if (status & IRQ_TXIDLE) { 2159 if (info->tx_active) 2160 isr_txeom(info, status); 2161 } 2162 if (info->rx_pio && (status & IRQ_RXDATA)) 2163 isr_rxdata(info); 2164 if ((status & IRQ_RXBREAK) && (status & RXBREAK)) { 2165 info->icount.brk++; 2166 /* process break detection if tty control allows */ 2167 if (info->port.tty) { 2168 if (!(status & info->ignore_status_mask)) { 2169 if (info->read_status_mask & MASK_BREAK) { 2170 tty_insert_flip_char(&info->port, 0, TTY_BREAK); 2171 if (info->port.flags & ASYNC_SAK) 2172 do_SAK(info->port.tty); 2173 } 2174 } 2175 } 2176 } 2177 } else { 2178 if (status & (IRQ_TXIDLE + IRQ_TXUNDER)) 2179 isr_txeom(info, status); 2180 if (info->rx_pio && (status & IRQ_RXDATA)) 2181 isr_rxdata(info); 2182 if (status & IRQ_RXIDLE) { 2183 if (status & RXIDLE) 2184 info->icount.rxidle++; 2185 else 2186 info->icount.exithunt++; 2187 wake_up_interruptible(&info->event_wait_q); 2188 } 2189 2190 if (status & IRQ_RXOVER) 2191 rx_start(info); 2192 } 2193 2194 if (status & IRQ_DSR) 2195 dsr_change(info, status); 2196 if (status & IRQ_CTS) 2197 cts_change(info, status); 2198 if (status & IRQ_DCD) 2199 dcd_change(info, status); 2200 if (status & IRQ_RI) 2201 ri_change(info, status); 2202 } 2203 2204 static void isr_rdma(struct slgt_info *info) 2205 { 2206 unsigned int status = rd_reg32(info, RDCSR); 2207 2208 DBGISR(("%s isr_rdma status=%08x\n", info->device_name, status)); 2209 2210 /* RDCSR (rx DMA control/status) 2211 * 2212 * 31..07 reserved 2213 * 06 save status byte to DMA buffer 2214 * 05 error 2215 * 04 eol (end of list) 2216 * 03 eob (end of buffer) 2217 * 02 IRQ enable 2218 * 01 reset 2219 * 00 enable 2220 */ 2221 wr_reg32(info, RDCSR, status); /* clear pending */ 2222 2223 if (status & (BIT5 + BIT4)) { 2224 DBGISR(("%s isr_rdma rx_restart=1\n", info->device_name)); 2225 info->rx_restart = true; 2226 } 2227 info->pending_bh |= BH_RECEIVE; 2228 } 2229 2230 static void isr_tdma(struct slgt_info *info) 2231 { 2232 unsigned int status = rd_reg32(info, TDCSR); 2233 2234 DBGISR(("%s isr_tdma status=%08x\n", info->device_name, status)); 2235 2236 /* TDCSR (tx DMA control/status) 2237 * 2238 * 31..06 reserved 2239 * 05 error 2240 * 04 eol (end of list) 2241 * 03 eob (end of buffer) 2242 * 02 IRQ enable 2243 * 01 reset 2244 * 00 enable 2245 */ 2246 wr_reg32(info, TDCSR, status); /* clear pending */ 2247 2248 if (status & (BIT5 + BIT4 + BIT3)) { 2249 // another transmit buffer has completed 2250 // run bottom half to get more send data from user 2251 info->pending_bh |= BH_TRANSMIT; 2252 } 2253 } 2254 2255 /* 2256 * return true if there are unsent tx DMA buffers, otherwise false 2257 * 2258 * if there are unsent buffers then info->tbuf_start 2259 * is set to index of first unsent buffer 2260 */ 2261 static bool unsent_tbufs(struct slgt_info *info) 2262 { 2263 unsigned int i = info->tbuf_current; 2264 bool rc = false; 2265 2266 /* 2267 * search backwards from last loaded buffer (precedes tbuf_current) 2268 * for first unsent buffer (desc_count > 0) 2269 */ 2270 2271 do { 2272 if (i) 2273 i--; 2274 else 2275 i = info->tbuf_count - 1; 2276 if (!desc_count(info->tbufs[i])) 2277 break; 2278 info->tbuf_start = i; 2279 rc = true; 2280 } while (i != info->tbuf_current); 2281 2282 return rc; 2283 } 2284 2285 static void isr_txeom(struct slgt_info *info, unsigned short status) 2286 { 2287 DBGISR(("%s txeom status=%04x\n", info->device_name, status)); 2288 2289 slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER); 2290 tdma_reset(info); 2291 if (status & IRQ_TXUNDER) { 2292 unsigned short val = rd_reg16(info, TCR); 2293 wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */ 2294 wr_reg16(info, TCR, val); /* clear reset bit */ 2295 } 2296 2297 if (info->tx_active) { 2298 if (info->params.mode != MGSL_MODE_ASYNC) { 2299 if (status & IRQ_TXUNDER) 2300 info->icount.txunder++; 2301 else if (status & IRQ_TXIDLE) 2302 info->icount.txok++; 2303 } 2304 2305 if (unsent_tbufs(info)) { 2306 tx_start(info); 2307 update_tx_timer(info); 2308 return; 2309 } 2310 info->tx_active = false; 2311 2312 del_timer(&info->tx_timer); 2313 2314 if (info->params.mode != MGSL_MODE_ASYNC && info->drop_rts_on_tx_done) { 2315 info->signals &= ~SerialSignal_RTS; 2316 info->drop_rts_on_tx_done = false; 2317 set_signals(info); 2318 } 2319 2320 #if SYNCLINK_GENERIC_HDLC 2321 if (info->netcount) 2322 hdlcdev_tx_done(info); 2323 else 2324 #endif 2325 { 2326 if (info->port.tty && (info->port.tty->stopped || info->port.tty->hw_stopped)) { 2327 tx_stop(info); 2328 return; 2329 } 2330 info->pending_bh |= BH_TRANSMIT; 2331 } 2332 } 2333 } 2334 2335 static void isr_gpio(struct slgt_info *info, unsigned int changed, unsigned int state) 2336 { 2337 struct cond_wait *w, *prev; 2338 2339 /* wake processes waiting for specific transitions */ 2340 for (w = info->gpio_wait_q, prev = NULL ; w != NULL ; w = w->next) { 2341 if (w->data & changed) { 2342 w->data = state; 2343 wake_up_interruptible(&w->q); 2344 if (prev != NULL) 2345 prev->next = w->next; 2346 else 2347 info->gpio_wait_q = w->next; 2348 } else 2349 prev = w; 2350 } 2351 } 2352 2353 /* interrupt service routine 2354 * 2355 * irq interrupt number 2356 * dev_id device ID supplied during interrupt registration 2357 */ 2358 static irqreturn_t slgt_interrupt(int dummy, void *dev_id) 2359 { 2360 struct slgt_info *info = dev_id; 2361 unsigned int gsr; 2362 unsigned int i; 2363 2364 DBGISR(("slgt_interrupt irq=%d entry\n", info->irq_level)); 2365 2366 while((gsr = rd_reg32(info, GSR) & 0xffffff00)) { 2367 DBGISR(("%s gsr=%08x\n", info->device_name, gsr)); 2368 info->irq_occurred = true; 2369 for(i=0; i < info->port_count ; i++) { 2370 if (info->port_array[i] == NULL) 2371 continue; 2372 spin_lock(&info->port_array[i]->lock); 2373 if (gsr & (BIT8 << i)) 2374 isr_serial(info->port_array[i]); 2375 if (gsr & (BIT16 << (i*2))) 2376 isr_rdma(info->port_array[i]); 2377 if (gsr & (BIT17 << (i*2))) 2378 isr_tdma(info->port_array[i]); 2379 spin_unlock(&info->port_array[i]->lock); 2380 } 2381 } 2382 2383 if (info->gpio_present) { 2384 unsigned int state; 2385 unsigned int changed; 2386 spin_lock(&info->lock); 2387 while ((changed = rd_reg32(info, IOSR)) != 0) { 2388 DBGISR(("%s iosr=%08x\n", info->device_name, changed)); 2389 /* read latched state of GPIO signals */ 2390 state = rd_reg32(info, IOVR); 2391 /* clear pending GPIO interrupt bits */ 2392 wr_reg32(info, IOSR, changed); 2393 for (i=0 ; i < info->port_count ; i++) { 2394 if (info->port_array[i] != NULL) 2395 isr_gpio(info->port_array[i], changed, state); 2396 } 2397 } 2398 spin_unlock(&info->lock); 2399 } 2400 2401 for(i=0; i < info->port_count ; i++) { 2402 struct slgt_info *port = info->port_array[i]; 2403 if (port == NULL) 2404 continue; 2405 spin_lock(&port->lock); 2406 if ((port->port.count || port->netcount) && 2407 port->pending_bh && !port->bh_running && 2408 !port->bh_requested) { 2409 DBGISR(("%s bh queued\n", port->device_name)); 2410 schedule_work(&port->task); 2411 port->bh_requested = true; 2412 } 2413 spin_unlock(&port->lock); 2414 } 2415 2416 DBGISR(("slgt_interrupt irq=%d exit\n", info->irq_level)); 2417 return IRQ_HANDLED; 2418 } 2419 2420 static int startup(struct slgt_info *info) 2421 { 2422 DBGINFO(("%s startup\n", info->device_name)); 2423 2424 if (info->port.flags & ASYNC_INITIALIZED) 2425 return 0; 2426 2427 if (!info->tx_buf) { 2428 info->tx_buf = kmalloc(info->max_frame_size, GFP_KERNEL); 2429 if (!info->tx_buf) { 2430 DBGERR(("%s can't allocate tx buffer\n", info->device_name)); 2431 return -ENOMEM; 2432 } 2433 } 2434 2435 info->pending_bh = 0; 2436 2437 memset(&info->icount, 0, sizeof(info->icount)); 2438 2439 /* program hardware for current parameters */ 2440 change_params(info); 2441 2442 if (info->port.tty) 2443 clear_bit(TTY_IO_ERROR, &info->port.tty->flags); 2444 2445 info->port.flags |= ASYNC_INITIALIZED; 2446 2447 return 0; 2448 } 2449 2450 /* 2451 * called by close() and hangup() to shutdown hardware 2452 */ 2453 static void shutdown(struct slgt_info *info) 2454 { 2455 unsigned long flags; 2456 2457 if (!(info->port.flags & ASYNC_INITIALIZED)) 2458 return; 2459 2460 DBGINFO(("%s shutdown\n", info->device_name)); 2461 2462 /* clear status wait queue because status changes */ 2463 /* can't happen after shutting down the hardware */ 2464 wake_up_interruptible(&info->status_event_wait_q); 2465 wake_up_interruptible(&info->event_wait_q); 2466 2467 del_timer_sync(&info->tx_timer); 2468 del_timer_sync(&info->rx_timer); 2469 2470 kfree(info->tx_buf); 2471 info->tx_buf = NULL; 2472 2473 spin_lock_irqsave(&info->lock,flags); 2474 2475 tx_stop(info); 2476 rx_stop(info); 2477 2478 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 2479 2480 if (!info->port.tty || info->port.tty->termios.c_cflag & HUPCL) { 2481 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 2482 set_signals(info); 2483 } 2484 2485 flush_cond_wait(&info->gpio_wait_q); 2486 2487 spin_unlock_irqrestore(&info->lock,flags); 2488 2489 if (info->port.tty) 2490 set_bit(TTY_IO_ERROR, &info->port.tty->flags); 2491 2492 info->port.flags &= ~ASYNC_INITIALIZED; 2493 } 2494 2495 static void program_hw(struct slgt_info *info) 2496 { 2497 unsigned long flags; 2498 2499 spin_lock_irqsave(&info->lock,flags); 2500 2501 rx_stop(info); 2502 tx_stop(info); 2503 2504 if (info->params.mode != MGSL_MODE_ASYNC || 2505 info->netcount) 2506 sync_mode(info); 2507 else 2508 async_mode(info); 2509 2510 set_signals(info); 2511 2512 info->dcd_chkcount = 0; 2513 info->cts_chkcount = 0; 2514 info->ri_chkcount = 0; 2515 info->dsr_chkcount = 0; 2516 2517 slgt_irq_on(info, IRQ_DCD | IRQ_CTS | IRQ_DSR | IRQ_RI); 2518 get_signals(info); 2519 2520 if (info->netcount || 2521 (info->port.tty && info->port.tty->termios.c_cflag & CREAD)) 2522 rx_start(info); 2523 2524 spin_unlock_irqrestore(&info->lock,flags); 2525 } 2526 2527 /* 2528 * reconfigure adapter based on new parameters 2529 */ 2530 static void change_params(struct slgt_info *info) 2531 { 2532 unsigned cflag; 2533 int bits_per_char; 2534 2535 if (!info->port.tty) 2536 return; 2537 DBGINFO(("%s change_params\n", info->device_name)); 2538 2539 cflag = info->port.tty->termios.c_cflag; 2540 2541 /* if B0 rate (hangup) specified then negate RTS and DTR */ 2542 /* otherwise assert RTS and DTR */ 2543 if (cflag & CBAUD) 2544 info->signals |= SerialSignal_RTS | SerialSignal_DTR; 2545 else 2546 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 2547 2548 /* byte size and parity */ 2549 2550 switch (cflag & CSIZE) { 2551 case CS5: info->params.data_bits = 5; break; 2552 case CS6: info->params.data_bits = 6; break; 2553 case CS7: info->params.data_bits = 7; break; 2554 case CS8: info->params.data_bits = 8; break; 2555 default: info->params.data_bits = 7; break; 2556 } 2557 2558 info->params.stop_bits = (cflag & CSTOPB) ? 2 : 1; 2559 2560 if (cflag & PARENB) 2561 info->params.parity = (cflag & PARODD) ? ASYNC_PARITY_ODD : ASYNC_PARITY_EVEN; 2562 else 2563 info->params.parity = ASYNC_PARITY_NONE; 2564 2565 /* calculate number of jiffies to transmit a full 2566 * FIFO (32 bytes) at specified data rate 2567 */ 2568 bits_per_char = info->params.data_bits + 2569 info->params.stop_bits + 1; 2570 2571 info->params.data_rate = tty_get_baud_rate(info->port.tty); 2572 2573 if (info->params.data_rate) { 2574 info->timeout = (32*HZ*bits_per_char) / 2575 info->params.data_rate; 2576 } 2577 info->timeout += HZ/50; /* Add .02 seconds of slop */ 2578 2579 tty_port_set_cts_flow(&info->port, cflag & CRTSCTS); 2580 2581 if (cflag & CLOCAL) 2582 info->port.flags &= ~ASYNC_CHECK_CD; 2583 else 2584 info->port.flags |= ASYNC_CHECK_CD; 2585 2586 /* process tty input control flags */ 2587 2588 info->read_status_mask = IRQ_RXOVER; 2589 if (I_INPCK(info->port.tty)) 2590 info->read_status_mask |= MASK_PARITY | MASK_FRAMING; 2591 if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty)) 2592 info->read_status_mask |= MASK_BREAK; 2593 if (I_IGNPAR(info->port.tty)) 2594 info->ignore_status_mask |= MASK_PARITY | MASK_FRAMING; 2595 if (I_IGNBRK(info->port.tty)) { 2596 info->ignore_status_mask |= MASK_BREAK; 2597 /* If ignoring parity and break indicators, ignore 2598 * overruns too. (For real raw support). 2599 */ 2600 if (I_IGNPAR(info->port.tty)) 2601 info->ignore_status_mask |= MASK_OVERRUN; 2602 } 2603 2604 program_hw(info); 2605 } 2606 2607 static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount) 2608 { 2609 DBGINFO(("%s get_stats\n", info->device_name)); 2610 if (!user_icount) { 2611 memset(&info->icount, 0, sizeof(info->icount)); 2612 } else { 2613 if (copy_to_user(user_icount, &info->icount, sizeof(struct mgsl_icount))) 2614 return -EFAULT; 2615 } 2616 return 0; 2617 } 2618 2619 static int get_params(struct slgt_info *info, MGSL_PARAMS __user *user_params) 2620 { 2621 DBGINFO(("%s get_params\n", info->device_name)); 2622 if (copy_to_user(user_params, &info->params, sizeof(MGSL_PARAMS))) 2623 return -EFAULT; 2624 return 0; 2625 } 2626 2627 static int set_params(struct slgt_info *info, MGSL_PARAMS __user *new_params) 2628 { 2629 unsigned long flags; 2630 MGSL_PARAMS tmp_params; 2631 2632 DBGINFO(("%s set_params\n", info->device_name)); 2633 if (copy_from_user(&tmp_params, new_params, sizeof(MGSL_PARAMS))) 2634 return -EFAULT; 2635 2636 spin_lock_irqsave(&info->lock, flags); 2637 if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) 2638 info->base_clock = tmp_params.clock_speed; 2639 else 2640 memcpy(&info->params, &tmp_params, sizeof(MGSL_PARAMS)); 2641 spin_unlock_irqrestore(&info->lock, flags); 2642 2643 program_hw(info); 2644 2645 return 0; 2646 } 2647 2648 static int get_txidle(struct slgt_info *info, int __user *idle_mode) 2649 { 2650 DBGINFO(("%s get_txidle=%d\n", info->device_name, info->idle_mode)); 2651 if (put_user(info->idle_mode, idle_mode)) 2652 return -EFAULT; 2653 return 0; 2654 } 2655 2656 static int set_txidle(struct slgt_info *info, int idle_mode) 2657 { 2658 unsigned long flags; 2659 DBGINFO(("%s set_txidle(%d)\n", info->device_name, idle_mode)); 2660 spin_lock_irqsave(&info->lock,flags); 2661 info->idle_mode = idle_mode; 2662 if (info->params.mode != MGSL_MODE_ASYNC) 2663 tx_set_idle(info); 2664 spin_unlock_irqrestore(&info->lock,flags); 2665 return 0; 2666 } 2667 2668 static int tx_enable(struct slgt_info *info, int enable) 2669 { 2670 unsigned long flags; 2671 DBGINFO(("%s tx_enable(%d)\n", info->device_name, enable)); 2672 spin_lock_irqsave(&info->lock,flags); 2673 if (enable) { 2674 if (!info->tx_enabled) 2675 tx_start(info); 2676 } else { 2677 if (info->tx_enabled) 2678 tx_stop(info); 2679 } 2680 spin_unlock_irqrestore(&info->lock,flags); 2681 return 0; 2682 } 2683 2684 /* 2685 * abort transmit HDLC frame 2686 */ 2687 static int tx_abort(struct slgt_info *info) 2688 { 2689 unsigned long flags; 2690 DBGINFO(("%s tx_abort\n", info->device_name)); 2691 spin_lock_irqsave(&info->lock,flags); 2692 tdma_reset(info); 2693 spin_unlock_irqrestore(&info->lock,flags); 2694 return 0; 2695 } 2696 2697 static int rx_enable(struct slgt_info *info, int enable) 2698 { 2699 unsigned long flags; 2700 unsigned int rbuf_fill_level; 2701 DBGINFO(("%s rx_enable(%08x)\n", info->device_name, enable)); 2702 spin_lock_irqsave(&info->lock,flags); 2703 /* 2704 * enable[31..16] = receive DMA buffer fill level 2705 * 0 = noop (leave fill level unchanged) 2706 * fill level must be multiple of 4 and <= buffer size 2707 */ 2708 rbuf_fill_level = ((unsigned int)enable) >> 16; 2709 if (rbuf_fill_level) { 2710 if ((rbuf_fill_level > DMABUFSIZE) || (rbuf_fill_level % 4)) { 2711 spin_unlock_irqrestore(&info->lock, flags); 2712 return -EINVAL; 2713 } 2714 info->rbuf_fill_level = rbuf_fill_level; 2715 if (rbuf_fill_level < 128) 2716 info->rx_pio = 1; /* PIO mode */ 2717 else 2718 info->rx_pio = 0; /* DMA mode */ 2719 rx_stop(info); /* restart receiver to use new fill level */ 2720 } 2721 2722 /* 2723 * enable[1..0] = receiver enable command 2724 * 0 = disable 2725 * 1 = enable 2726 * 2 = enable or force hunt mode if already enabled 2727 */ 2728 enable &= 3; 2729 if (enable) { 2730 if (!info->rx_enabled) 2731 rx_start(info); 2732 else if (enable == 2) { 2733 /* force hunt mode (write 1 to RCR[3]) */ 2734 wr_reg16(info, RCR, rd_reg16(info, RCR) | BIT3); 2735 } 2736 } else { 2737 if (info->rx_enabled) 2738 rx_stop(info); 2739 } 2740 spin_unlock_irqrestore(&info->lock,flags); 2741 return 0; 2742 } 2743 2744 /* 2745 * wait for specified event to occur 2746 */ 2747 static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr) 2748 { 2749 unsigned long flags; 2750 int s; 2751 int rc=0; 2752 struct mgsl_icount cprev, cnow; 2753 int events; 2754 int mask; 2755 struct _input_signal_events oldsigs, newsigs; 2756 DECLARE_WAITQUEUE(wait, current); 2757 2758 if (get_user(mask, mask_ptr)) 2759 return -EFAULT; 2760 2761 DBGINFO(("%s wait_mgsl_event(%d)\n", info->device_name, mask)); 2762 2763 spin_lock_irqsave(&info->lock,flags); 2764 2765 /* return immediately if state matches requested events */ 2766 get_signals(info); 2767 s = info->signals; 2768 2769 events = mask & 2770 ( ((s & SerialSignal_DSR) ? MgslEvent_DsrActive:MgslEvent_DsrInactive) + 2771 ((s & SerialSignal_DCD) ? MgslEvent_DcdActive:MgslEvent_DcdInactive) + 2772 ((s & SerialSignal_CTS) ? MgslEvent_CtsActive:MgslEvent_CtsInactive) + 2773 ((s & SerialSignal_RI) ? MgslEvent_RiActive :MgslEvent_RiInactive) ); 2774 if (events) { 2775 spin_unlock_irqrestore(&info->lock,flags); 2776 goto exit; 2777 } 2778 2779 /* save current irq counts */ 2780 cprev = info->icount; 2781 oldsigs = info->input_signal_events; 2782 2783 /* enable hunt and idle irqs if needed */ 2784 if (mask & (MgslEvent_ExitHuntMode+MgslEvent_IdleReceived)) { 2785 unsigned short val = rd_reg16(info, SCR); 2786 if (!(val & IRQ_RXIDLE)) 2787 wr_reg16(info, SCR, (unsigned short)(val | IRQ_RXIDLE)); 2788 } 2789 2790 set_current_state(TASK_INTERRUPTIBLE); 2791 add_wait_queue(&info->event_wait_q, &wait); 2792 2793 spin_unlock_irqrestore(&info->lock,flags); 2794 2795 for(;;) { 2796 schedule(); 2797 if (signal_pending(current)) { 2798 rc = -ERESTARTSYS; 2799 break; 2800 } 2801 2802 /* get current irq counts */ 2803 spin_lock_irqsave(&info->lock,flags); 2804 cnow = info->icount; 2805 newsigs = info->input_signal_events; 2806 set_current_state(TASK_INTERRUPTIBLE); 2807 spin_unlock_irqrestore(&info->lock,flags); 2808 2809 /* if no change, wait aborted for some reason */ 2810 if (newsigs.dsr_up == oldsigs.dsr_up && 2811 newsigs.dsr_down == oldsigs.dsr_down && 2812 newsigs.dcd_up == oldsigs.dcd_up && 2813 newsigs.dcd_down == oldsigs.dcd_down && 2814 newsigs.cts_up == oldsigs.cts_up && 2815 newsigs.cts_down == oldsigs.cts_down && 2816 newsigs.ri_up == oldsigs.ri_up && 2817 newsigs.ri_down == oldsigs.ri_down && 2818 cnow.exithunt == cprev.exithunt && 2819 cnow.rxidle == cprev.rxidle) { 2820 rc = -EIO; 2821 break; 2822 } 2823 2824 events = mask & 2825 ( (newsigs.dsr_up != oldsigs.dsr_up ? MgslEvent_DsrActive:0) + 2826 (newsigs.dsr_down != oldsigs.dsr_down ? MgslEvent_DsrInactive:0) + 2827 (newsigs.dcd_up != oldsigs.dcd_up ? MgslEvent_DcdActive:0) + 2828 (newsigs.dcd_down != oldsigs.dcd_down ? MgslEvent_DcdInactive:0) + 2829 (newsigs.cts_up != oldsigs.cts_up ? MgslEvent_CtsActive:0) + 2830 (newsigs.cts_down != oldsigs.cts_down ? MgslEvent_CtsInactive:0) + 2831 (newsigs.ri_up != oldsigs.ri_up ? MgslEvent_RiActive:0) + 2832 (newsigs.ri_down != oldsigs.ri_down ? MgslEvent_RiInactive:0) + 2833 (cnow.exithunt != cprev.exithunt ? MgslEvent_ExitHuntMode:0) + 2834 (cnow.rxidle != cprev.rxidle ? MgslEvent_IdleReceived:0) ); 2835 if (events) 2836 break; 2837 2838 cprev = cnow; 2839 oldsigs = newsigs; 2840 } 2841 2842 remove_wait_queue(&info->event_wait_q, &wait); 2843 set_current_state(TASK_RUNNING); 2844 2845 2846 if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) { 2847 spin_lock_irqsave(&info->lock,flags); 2848 if (!waitqueue_active(&info->event_wait_q)) { 2849 /* disable enable exit hunt mode/idle rcvd IRQs */ 2850 wr_reg16(info, SCR, 2851 (unsigned short)(rd_reg16(info, SCR) & ~IRQ_RXIDLE)); 2852 } 2853 spin_unlock_irqrestore(&info->lock,flags); 2854 } 2855 exit: 2856 if (rc == 0) 2857 rc = put_user(events, mask_ptr); 2858 return rc; 2859 } 2860 2861 static int get_interface(struct slgt_info *info, int __user *if_mode) 2862 { 2863 DBGINFO(("%s get_interface=%x\n", info->device_name, info->if_mode)); 2864 if (put_user(info->if_mode, if_mode)) 2865 return -EFAULT; 2866 return 0; 2867 } 2868 2869 static int set_interface(struct slgt_info *info, int if_mode) 2870 { 2871 unsigned long flags; 2872 unsigned short val; 2873 2874 DBGINFO(("%s set_interface=%x)\n", info->device_name, if_mode)); 2875 spin_lock_irqsave(&info->lock,flags); 2876 info->if_mode = if_mode; 2877 2878 msc_set_vcr(info); 2879 2880 /* TCR (tx control) 07 1=RTS driver control */ 2881 val = rd_reg16(info, TCR); 2882 if (info->if_mode & MGSL_INTERFACE_RTS_EN) 2883 val |= BIT7; 2884 else 2885 val &= ~BIT7; 2886 wr_reg16(info, TCR, val); 2887 2888 spin_unlock_irqrestore(&info->lock,flags); 2889 return 0; 2890 } 2891 2892 static int get_xsync(struct slgt_info *info, int __user *xsync) 2893 { 2894 DBGINFO(("%s get_xsync=%x\n", info->device_name, info->xsync)); 2895 if (put_user(info->xsync, xsync)) 2896 return -EFAULT; 2897 return 0; 2898 } 2899 2900 /* 2901 * set extended sync pattern (1 to 4 bytes) for extended sync mode 2902 * 2903 * sync pattern is contained in least significant bytes of value 2904 * most significant byte of sync pattern is oldest (1st sent/detected) 2905 */ 2906 static int set_xsync(struct slgt_info *info, int xsync) 2907 { 2908 unsigned long flags; 2909 2910 DBGINFO(("%s set_xsync=%x)\n", info->device_name, xsync)); 2911 spin_lock_irqsave(&info->lock, flags); 2912 info->xsync = xsync; 2913 wr_reg32(info, XSR, xsync); 2914 spin_unlock_irqrestore(&info->lock, flags); 2915 return 0; 2916 } 2917 2918 static int get_xctrl(struct slgt_info *info, int __user *xctrl) 2919 { 2920 DBGINFO(("%s get_xctrl=%x\n", info->device_name, info->xctrl)); 2921 if (put_user(info->xctrl, xctrl)) 2922 return -EFAULT; 2923 return 0; 2924 } 2925 2926 /* 2927 * set extended control options 2928 * 2929 * xctrl[31:19] reserved, must be zero 2930 * xctrl[18:17] extended sync pattern length in bytes 2931 * 00 = 1 byte in xsr[7:0] 2932 * 01 = 2 bytes in xsr[15:0] 2933 * 10 = 3 bytes in xsr[23:0] 2934 * 11 = 4 bytes in xsr[31:0] 2935 * xctrl[16] 1 = enable terminal count, 0=disabled 2936 * xctrl[15:0] receive terminal count for fixed length packets 2937 * value is count minus one (0 = 1 byte packet) 2938 * when terminal count is reached, receiver 2939 * automatically returns to hunt mode and receive 2940 * FIFO contents are flushed to DMA buffers with 2941 * end of frame (EOF) status 2942 */ 2943 static int set_xctrl(struct slgt_info *info, int xctrl) 2944 { 2945 unsigned long flags; 2946 2947 DBGINFO(("%s set_xctrl=%x)\n", info->device_name, xctrl)); 2948 spin_lock_irqsave(&info->lock, flags); 2949 info->xctrl = xctrl; 2950 wr_reg32(info, XCR, xctrl); 2951 spin_unlock_irqrestore(&info->lock, flags); 2952 return 0; 2953 } 2954 2955 /* 2956 * set general purpose IO pin state and direction 2957 * 2958 * user_gpio fields: 2959 * state each bit indicates a pin state 2960 * smask set bit indicates pin state to set 2961 * dir each bit indicates a pin direction (0=input, 1=output) 2962 * dmask set bit indicates pin direction to set 2963 */ 2964 static int set_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) 2965 { 2966 unsigned long flags; 2967 struct gpio_desc gpio; 2968 __u32 data; 2969 2970 if (!info->gpio_present) 2971 return -EINVAL; 2972 if (copy_from_user(&gpio, user_gpio, sizeof(gpio))) 2973 return -EFAULT; 2974 DBGINFO(("%s set_gpio state=%08x smask=%08x dir=%08x dmask=%08x\n", 2975 info->device_name, gpio.state, gpio.smask, 2976 gpio.dir, gpio.dmask)); 2977 2978 spin_lock_irqsave(&info->port_array[0]->lock, flags); 2979 if (gpio.dmask) { 2980 data = rd_reg32(info, IODR); 2981 data |= gpio.dmask & gpio.dir; 2982 data &= ~(gpio.dmask & ~gpio.dir); 2983 wr_reg32(info, IODR, data); 2984 } 2985 if (gpio.smask) { 2986 data = rd_reg32(info, IOVR); 2987 data |= gpio.smask & gpio.state; 2988 data &= ~(gpio.smask & ~gpio.state); 2989 wr_reg32(info, IOVR, data); 2990 } 2991 spin_unlock_irqrestore(&info->port_array[0]->lock, flags); 2992 2993 return 0; 2994 } 2995 2996 /* 2997 * get general purpose IO pin state and direction 2998 */ 2999 static int get_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) 3000 { 3001 struct gpio_desc gpio; 3002 if (!info->gpio_present) 3003 return -EINVAL; 3004 gpio.state = rd_reg32(info, IOVR); 3005 gpio.smask = 0xffffffff; 3006 gpio.dir = rd_reg32(info, IODR); 3007 gpio.dmask = 0xffffffff; 3008 if (copy_to_user(user_gpio, &gpio, sizeof(gpio))) 3009 return -EFAULT; 3010 DBGINFO(("%s get_gpio state=%08x dir=%08x\n", 3011 info->device_name, gpio.state, gpio.dir)); 3012 return 0; 3013 } 3014 3015 /* 3016 * conditional wait facility 3017 */ 3018 static void init_cond_wait(struct cond_wait *w, unsigned int data) 3019 { 3020 init_waitqueue_head(&w->q); 3021 init_waitqueue_entry(&w->wait, current); 3022 w->data = data; 3023 } 3024 3025 static void add_cond_wait(struct cond_wait **head, struct cond_wait *w) 3026 { 3027 set_current_state(TASK_INTERRUPTIBLE); 3028 add_wait_queue(&w->q, &w->wait); 3029 w->next = *head; 3030 *head = w; 3031 } 3032 3033 static void remove_cond_wait(struct cond_wait **head, struct cond_wait *cw) 3034 { 3035 struct cond_wait *w, *prev; 3036 remove_wait_queue(&cw->q, &cw->wait); 3037 set_current_state(TASK_RUNNING); 3038 for (w = *head, prev = NULL ; w != NULL ; prev = w, w = w->next) { 3039 if (w == cw) { 3040 if (prev != NULL) 3041 prev->next = w->next; 3042 else 3043 *head = w->next; 3044 break; 3045 } 3046 } 3047 } 3048 3049 static void flush_cond_wait(struct cond_wait **head) 3050 { 3051 while (*head != NULL) { 3052 wake_up_interruptible(&(*head)->q); 3053 *head = (*head)->next; 3054 } 3055 } 3056 3057 /* 3058 * wait for general purpose I/O pin(s) to enter specified state 3059 * 3060 * user_gpio fields: 3061 * state - bit indicates target pin state 3062 * smask - set bit indicates watched pin 3063 * 3064 * The wait ends when at least one watched pin enters the specified 3065 * state. When 0 (no error) is returned, user_gpio->state is set to the 3066 * state of all GPIO pins when the wait ends. 3067 * 3068 * Note: Each pin may be a dedicated input, dedicated output, or 3069 * configurable input/output. The number and configuration of pins 3070 * varies with the specific adapter model. Only input pins (dedicated 3071 * or configured) can be monitored with this function. 3072 */ 3073 static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) 3074 { 3075 unsigned long flags; 3076 int rc = 0; 3077 struct gpio_desc gpio; 3078 struct cond_wait wait; 3079 u32 state; 3080 3081 if (!info->gpio_present) 3082 return -EINVAL; 3083 if (copy_from_user(&gpio, user_gpio, sizeof(gpio))) 3084 return -EFAULT; 3085 DBGINFO(("%s wait_gpio() state=%08x smask=%08x\n", 3086 info->device_name, gpio.state, gpio.smask)); 3087 /* ignore output pins identified by set IODR bit */ 3088 if ((gpio.smask &= ~rd_reg32(info, IODR)) == 0) 3089 return -EINVAL; 3090 init_cond_wait(&wait, gpio.smask); 3091 3092 spin_lock_irqsave(&info->port_array[0]->lock, flags); 3093 /* enable interrupts for watched pins */ 3094 wr_reg32(info, IOER, rd_reg32(info, IOER) | gpio.smask); 3095 /* get current pin states */ 3096 state = rd_reg32(info, IOVR); 3097 3098 if (gpio.smask & ~(state ^ gpio.state)) { 3099 /* already in target state */ 3100 gpio.state = state; 3101 } else { 3102 /* wait for target state */ 3103 add_cond_wait(&info->gpio_wait_q, &wait); 3104 spin_unlock_irqrestore(&info->port_array[0]->lock, flags); 3105 schedule(); 3106 if (signal_pending(current)) 3107 rc = -ERESTARTSYS; 3108 else 3109 gpio.state = wait.data; 3110 spin_lock_irqsave(&info->port_array[0]->lock, flags); 3111 remove_cond_wait(&info->gpio_wait_q, &wait); 3112 } 3113 3114 /* disable all GPIO interrupts if no waiting processes */ 3115 if (info->gpio_wait_q == NULL) 3116 wr_reg32(info, IOER, 0); 3117 spin_unlock_irqrestore(&info->port_array[0]->lock, flags); 3118 3119 if ((rc == 0) && copy_to_user(user_gpio, &gpio, sizeof(gpio))) 3120 rc = -EFAULT; 3121 return rc; 3122 } 3123 3124 static int modem_input_wait(struct slgt_info *info,int arg) 3125 { 3126 unsigned long flags; 3127 int rc; 3128 struct mgsl_icount cprev, cnow; 3129 DECLARE_WAITQUEUE(wait, current); 3130 3131 /* save current irq counts */ 3132 spin_lock_irqsave(&info->lock,flags); 3133 cprev = info->icount; 3134 add_wait_queue(&info->status_event_wait_q, &wait); 3135 set_current_state(TASK_INTERRUPTIBLE); 3136 spin_unlock_irqrestore(&info->lock,flags); 3137 3138 for(;;) { 3139 schedule(); 3140 if (signal_pending(current)) { 3141 rc = -ERESTARTSYS; 3142 break; 3143 } 3144 3145 /* get new irq counts */ 3146 spin_lock_irqsave(&info->lock,flags); 3147 cnow = info->icount; 3148 set_current_state(TASK_INTERRUPTIBLE); 3149 spin_unlock_irqrestore(&info->lock,flags); 3150 3151 /* if no change, wait aborted for some reason */ 3152 if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && 3153 cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) { 3154 rc = -EIO; 3155 break; 3156 } 3157 3158 /* check for change in caller specified modem input */ 3159 if ((arg & TIOCM_RNG && cnow.rng != cprev.rng) || 3160 (arg & TIOCM_DSR && cnow.dsr != cprev.dsr) || 3161 (arg & TIOCM_CD && cnow.dcd != cprev.dcd) || 3162 (arg & TIOCM_CTS && cnow.cts != cprev.cts)) { 3163 rc = 0; 3164 break; 3165 } 3166 3167 cprev = cnow; 3168 } 3169 remove_wait_queue(&info->status_event_wait_q, &wait); 3170 set_current_state(TASK_RUNNING); 3171 return rc; 3172 } 3173 3174 /* 3175 * return state of serial control and status signals 3176 */ 3177 static int tiocmget(struct tty_struct *tty) 3178 { 3179 struct slgt_info *info = tty->driver_data; 3180 unsigned int result; 3181 unsigned long flags; 3182 3183 spin_lock_irqsave(&info->lock,flags); 3184 get_signals(info); 3185 spin_unlock_irqrestore(&info->lock,flags); 3186 3187 result = ((info->signals & SerialSignal_RTS) ? TIOCM_RTS:0) + 3188 ((info->signals & SerialSignal_DTR) ? TIOCM_DTR:0) + 3189 ((info->signals & SerialSignal_DCD) ? TIOCM_CAR:0) + 3190 ((info->signals & SerialSignal_RI) ? TIOCM_RNG:0) + 3191 ((info->signals & SerialSignal_DSR) ? TIOCM_DSR:0) + 3192 ((info->signals & SerialSignal_CTS) ? TIOCM_CTS:0); 3193 3194 DBGINFO(("%s tiocmget value=%08X\n", info->device_name, result)); 3195 return result; 3196 } 3197 3198 /* 3199 * set modem control signals (DTR/RTS) 3200 * 3201 * cmd signal command: TIOCMBIS = set bit TIOCMBIC = clear bit 3202 * TIOCMSET = set/clear signal values 3203 * value bit mask for command 3204 */ 3205 static int tiocmset(struct tty_struct *tty, 3206 unsigned int set, unsigned int clear) 3207 { 3208 struct slgt_info *info = tty->driver_data; 3209 unsigned long flags; 3210 3211 DBGINFO(("%s tiocmset(%x,%x)\n", info->device_name, set, clear)); 3212 3213 if (set & TIOCM_RTS) 3214 info->signals |= SerialSignal_RTS; 3215 if (set & TIOCM_DTR) 3216 info->signals |= SerialSignal_DTR; 3217 if (clear & TIOCM_RTS) 3218 info->signals &= ~SerialSignal_RTS; 3219 if (clear & TIOCM_DTR) 3220 info->signals &= ~SerialSignal_DTR; 3221 3222 spin_lock_irqsave(&info->lock,flags); 3223 set_signals(info); 3224 spin_unlock_irqrestore(&info->lock,flags); 3225 return 0; 3226 } 3227 3228 static int carrier_raised(struct tty_port *port) 3229 { 3230 unsigned long flags; 3231 struct slgt_info *info = container_of(port, struct slgt_info, port); 3232 3233 spin_lock_irqsave(&info->lock,flags); 3234 get_signals(info); 3235 spin_unlock_irqrestore(&info->lock,flags); 3236 return (info->signals & SerialSignal_DCD) ? 1 : 0; 3237 } 3238 3239 static void dtr_rts(struct tty_port *port, int on) 3240 { 3241 unsigned long flags; 3242 struct slgt_info *info = container_of(port, struct slgt_info, port); 3243 3244 spin_lock_irqsave(&info->lock,flags); 3245 if (on) 3246 info->signals |= SerialSignal_RTS | SerialSignal_DTR; 3247 else 3248 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 3249 set_signals(info); 3250 spin_unlock_irqrestore(&info->lock,flags); 3251 } 3252 3253 3254 /* 3255 * block current process until the device is ready to open 3256 */ 3257 static int block_til_ready(struct tty_struct *tty, struct file *filp, 3258 struct slgt_info *info) 3259 { 3260 DECLARE_WAITQUEUE(wait, current); 3261 int retval; 3262 bool do_clocal = false; 3263 unsigned long flags; 3264 int cd; 3265 struct tty_port *port = &info->port; 3266 3267 DBGINFO(("%s block_til_ready\n", tty->driver->name)); 3268 3269 if (filp->f_flags & O_NONBLOCK || tty_io_error(tty)) { 3270 /* nonblock mode is set or port is not enabled */ 3271 tty_port_set_active(port, 1); 3272 return 0; 3273 } 3274 3275 if (C_CLOCAL(tty)) 3276 do_clocal = true; 3277 3278 /* Wait for carrier detect and the line to become 3279 * free (i.e., not in use by the callout). While we are in 3280 * this loop, port->count is dropped by one, so that 3281 * close() knows when to free things. We restore it upon 3282 * exit, either normal or abnormal. 3283 */ 3284 3285 retval = 0; 3286 add_wait_queue(&port->open_wait, &wait); 3287 3288 spin_lock_irqsave(&info->lock, flags); 3289 port->count--; 3290 spin_unlock_irqrestore(&info->lock, flags); 3291 port->blocked_open++; 3292 3293 while (1) { 3294 if (C_BAUD(tty) && test_bit(ASYNCB_INITIALIZED, &port->flags)) 3295 tty_port_raise_dtr_rts(port); 3296 3297 set_current_state(TASK_INTERRUPTIBLE); 3298 3299 if (tty_hung_up_p(filp) || !(port->flags & ASYNC_INITIALIZED)){ 3300 retval = (port->flags & ASYNC_HUP_NOTIFY) ? 3301 -EAGAIN : -ERESTARTSYS; 3302 break; 3303 } 3304 3305 cd = tty_port_carrier_raised(port); 3306 if (do_clocal || cd) 3307 break; 3308 3309 if (signal_pending(current)) { 3310 retval = -ERESTARTSYS; 3311 break; 3312 } 3313 3314 DBGINFO(("%s block_til_ready wait\n", tty->driver->name)); 3315 tty_unlock(tty); 3316 schedule(); 3317 tty_lock(tty); 3318 } 3319 3320 set_current_state(TASK_RUNNING); 3321 remove_wait_queue(&port->open_wait, &wait); 3322 3323 if (!tty_hung_up_p(filp)) 3324 port->count++; 3325 port->blocked_open--; 3326 3327 if (!retval) 3328 tty_port_set_active(port, 1); 3329 3330 DBGINFO(("%s block_til_ready ready, rc=%d\n", tty->driver->name, retval)); 3331 return retval; 3332 } 3333 3334 /* 3335 * allocate buffers used for calling line discipline receive_buf 3336 * directly in synchronous mode 3337 * note: add 5 bytes to max frame size to allow appending 3338 * 32-bit CRC and status byte when configured to do so 3339 */ 3340 static int alloc_tmp_rbuf(struct slgt_info *info) 3341 { 3342 info->tmp_rbuf = kmalloc(info->max_frame_size + 5, GFP_KERNEL); 3343 if (info->tmp_rbuf == NULL) 3344 return -ENOMEM; 3345 /* unused flag buffer to satisfy receive_buf calling interface */ 3346 info->flag_buf = kzalloc(info->max_frame_size + 5, GFP_KERNEL); 3347 if (!info->flag_buf) { 3348 kfree(info->tmp_rbuf); 3349 info->tmp_rbuf = NULL; 3350 return -ENOMEM; 3351 } 3352 return 0; 3353 } 3354 3355 static void free_tmp_rbuf(struct slgt_info *info) 3356 { 3357 kfree(info->tmp_rbuf); 3358 info->tmp_rbuf = NULL; 3359 kfree(info->flag_buf); 3360 info->flag_buf = NULL; 3361 } 3362 3363 /* 3364 * allocate DMA descriptor lists. 3365 */ 3366 static int alloc_desc(struct slgt_info *info) 3367 { 3368 unsigned int i; 3369 unsigned int pbufs; 3370 3371 /* allocate memory to hold descriptor lists */ 3372 info->bufs = pci_zalloc_consistent(info->pdev, DESC_LIST_SIZE, 3373 &info->bufs_dma_addr); 3374 if (info->bufs == NULL) 3375 return -ENOMEM; 3376 3377 info->rbufs = (struct slgt_desc*)info->bufs; 3378 info->tbufs = ((struct slgt_desc*)info->bufs) + info->rbuf_count; 3379 3380 pbufs = (unsigned int)info->bufs_dma_addr; 3381 3382 /* 3383 * Build circular lists of descriptors 3384 */ 3385 3386 for (i=0; i < info->rbuf_count; i++) { 3387 /* physical address of this descriptor */ 3388 info->rbufs[i].pdesc = pbufs + (i * sizeof(struct slgt_desc)); 3389 3390 /* physical address of next descriptor */ 3391 if (i == info->rbuf_count - 1) 3392 info->rbufs[i].next = cpu_to_le32(pbufs); 3393 else 3394 info->rbufs[i].next = cpu_to_le32(pbufs + ((i+1) * sizeof(struct slgt_desc))); 3395 set_desc_count(info->rbufs[i], DMABUFSIZE); 3396 } 3397 3398 for (i=0; i < info->tbuf_count; i++) { 3399 /* physical address of this descriptor */ 3400 info->tbufs[i].pdesc = pbufs + ((info->rbuf_count + i) * sizeof(struct slgt_desc)); 3401 3402 /* physical address of next descriptor */ 3403 if (i == info->tbuf_count - 1) 3404 info->tbufs[i].next = cpu_to_le32(pbufs + info->rbuf_count * sizeof(struct slgt_desc)); 3405 else 3406 info->tbufs[i].next = cpu_to_le32(pbufs + ((info->rbuf_count + i + 1) * sizeof(struct slgt_desc))); 3407 } 3408 3409 return 0; 3410 } 3411 3412 static void free_desc(struct slgt_info *info) 3413 { 3414 if (info->bufs != NULL) { 3415 pci_free_consistent(info->pdev, DESC_LIST_SIZE, info->bufs, info->bufs_dma_addr); 3416 info->bufs = NULL; 3417 info->rbufs = NULL; 3418 info->tbufs = NULL; 3419 } 3420 } 3421 3422 static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count) 3423 { 3424 int i; 3425 for (i=0; i < count; i++) { 3426 if ((bufs[i].buf = pci_alloc_consistent(info->pdev, DMABUFSIZE, &bufs[i].buf_dma_addr)) == NULL) 3427 return -ENOMEM; 3428 bufs[i].pbuf = cpu_to_le32((unsigned int)bufs[i].buf_dma_addr); 3429 } 3430 return 0; 3431 } 3432 3433 static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count) 3434 { 3435 int i; 3436 for (i=0; i < count; i++) { 3437 if (bufs[i].buf == NULL) 3438 continue; 3439 pci_free_consistent(info->pdev, DMABUFSIZE, bufs[i].buf, bufs[i].buf_dma_addr); 3440 bufs[i].buf = NULL; 3441 } 3442 } 3443 3444 static int alloc_dma_bufs(struct slgt_info *info) 3445 { 3446 info->rbuf_count = 32; 3447 info->tbuf_count = 32; 3448 3449 if (alloc_desc(info) < 0 || 3450 alloc_bufs(info, info->rbufs, info->rbuf_count) < 0 || 3451 alloc_bufs(info, info->tbufs, info->tbuf_count) < 0 || 3452 alloc_tmp_rbuf(info) < 0) { 3453 DBGERR(("%s DMA buffer alloc fail\n", info->device_name)); 3454 return -ENOMEM; 3455 } 3456 reset_rbufs(info); 3457 return 0; 3458 } 3459 3460 static void free_dma_bufs(struct slgt_info *info) 3461 { 3462 if (info->bufs) { 3463 free_bufs(info, info->rbufs, info->rbuf_count); 3464 free_bufs(info, info->tbufs, info->tbuf_count); 3465 free_desc(info); 3466 } 3467 free_tmp_rbuf(info); 3468 } 3469 3470 static int claim_resources(struct slgt_info *info) 3471 { 3472 if (request_mem_region(info->phys_reg_addr, SLGT_REG_SIZE, "synclink_gt") == NULL) { 3473 DBGERR(("%s reg addr conflict, addr=%08X\n", 3474 info->device_name, info->phys_reg_addr)); 3475 info->init_error = DiagStatus_AddressConflict; 3476 goto errout; 3477 } 3478 else 3479 info->reg_addr_requested = true; 3480 3481 info->reg_addr = ioremap_nocache(info->phys_reg_addr, SLGT_REG_SIZE); 3482 if (!info->reg_addr) { 3483 DBGERR(("%s can't map device registers, addr=%08X\n", 3484 info->device_name, info->phys_reg_addr)); 3485 info->init_error = DiagStatus_CantAssignPciResources; 3486 goto errout; 3487 } 3488 return 0; 3489 3490 errout: 3491 release_resources(info); 3492 return -ENODEV; 3493 } 3494 3495 static void release_resources(struct slgt_info *info) 3496 { 3497 if (info->irq_requested) { 3498 free_irq(info->irq_level, info); 3499 info->irq_requested = false; 3500 } 3501 3502 if (info->reg_addr_requested) { 3503 release_mem_region(info->phys_reg_addr, SLGT_REG_SIZE); 3504 info->reg_addr_requested = false; 3505 } 3506 3507 if (info->reg_addr) { 3508 iounmap(info->reg_addr); 3509 info->reg_addr = NULL; 3510 } 3511 } 3512 3513 /* Add the specified device instance data structure to the 3514 * global linked list of devices and increment the device count. 3515 */ 3516 static void add_device(struct slgt_info *info) 3517 { 3518 char *devstr; 3519 3520 info->next_device = NULL; 3521 info->line = slgt_device_count; 3522 sprintf(info->device_name, "%s%d", tty_dev_prefix, info->line); 3523 3524 if (info->line < MAX_DEVICES) { 3525 if (maxframe[info->line]) 3526 info->max_frame_size = maxframe[info->line]; 3527 } 3528 3529 slgt_device_count++; 3530 3531 if (!slgt_device_list) 3532 slgt_device_list = info; 3533 else { 3534 struct slgt_info *current_dev = slgt_device_list; 3535 while(current_dev->next_device) 3536 current_dev = current_dev->next_device; 3537 current_dev->next_device = info; 3538 } 3539 3540 if (info->max_frame_size < 4096) 3541 info->max_frame_size = 4096; 3542 else if (info->max_frame_size > 65535) 3543 info->max_frame_size = 65535; 3544 3545 switch(info->pdev->device) { 3546 case SYNCLINK_GT_DEVICE_ID: 3547 devstr = "GT"; 3548 break; 3549 case SYNCLINK_GT2_DEVICE_ID: 3550 devstr = "GT2"; 3551 break; 3552 case SYNCLINK_GT4_DEVICE_ID: 3553 devstr = "GT4"; 3554 break; 3555 case SYNCLINK_AC_DEVICE_ID: 3556 devstr = "AC"; 3557 info->params.mode = MGSL_MODE_ASYNC; 3558 break; 3559 default: 3560 devstr = "(unknown model)"; 3561 } 3562 printk("SyncLink %s %s IO=%08x IRQ=%d MaxFrameSize=%u\n", 3563 devstr, info->device_name, info->phys_reg_addr, 3564 info->irq_level, info->max_frame_size); 3565 3566 #if SYNCLINK_GENERIC_HDLC 3567 hdlcdev_init(info); 3568 #endif 3569 } 3570 3571 static const struct tty_port_operations slgt_port_ops = { 3572 .carrier_raised = carrier_raised, 3573 .dtr_rts = dtr_rts, 3574 }; 3575 3576 /* 3577 * allocate device instance structure, return NULL on failure 3578 */ 3579 static struct slgt_info *alloc_dev(int adapter_num, int port_num, struct pci_dev *pdev) 3580 { 3581 struct slgt_info *info; 3582 3583 info = kzalloc(sizeof(struct slgt_info), GFP_KERNEL); 3584 3585 if (!info) { 3586 DBGERR(("%s device alloc failed adapter=%d port=%d\n", 3587 driver_name, adapter_num, port_num)); 3588 } else { 3589 tty_port_init(&info->port); 3590 info->port.ops = &slgt_port_ops; 3591 info->magic = MGSL_MAGIC; 3592 INIT_WORK(&info->task, bh_handler); 3593 info->max_frame_size = 4096; 3594 info->base_clock = 14745600; 3595 info->rbuf_fill_level = DMABUFSIZE; 3596 info->port.close_delay = 5*HZ/10; 3597 info->port.closing_wait = 30*HZ; 3598 init_waitqueue_head(&info->status_event_wait_q); 3599 init_waitqueue_head(&info->event_wait_q); 3600 spin_lock_init(&info->netlock); 3601 memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS)); 3602 info->idle_mode = HDLC_TXIDLE_FLAGS; 3603 info->adapter_num = adapter_num; 3604 info->port_num = port_num; 3605 3606 setup_timer(&info->tx_timer, tx_timeout, (unsigned long)info); 3607 setup_timer(&info->rx_timer, rx_timeout, (unsigned long)info); 3608 3609 /* Copy configuration info to device instance data */ 3610 info->pdev = pdev; 3611 info->irq_level = pdev->irq; 3612 info->phys_reg_addr = pci_resource_start(pdev,0); 3613 3614 info->bus_type = MGSL_BUS_TYPE_PCI; 3615 info->irq_flags = IRQF_SHARED; 3616 3617 info->init_error = -1; /* assume error, set to 0 on successful init */ 3618 } 3619 3620 return info; 3621 } 3622 3623 static void device_init(int adapter_num, struct pci_dev *pdev) 3624 { 3625 struct slgt_info *port_array[SLGT_MAX_PORTS]; 3626 int i; 3627 int port_count = 1; 3628 3629 if (pdev->device == SYNCLINK_GT2_DEVICE_ID) 3630 port_count = 2; 3631 else if (pdev->device == SYNCLINK_GT4_DEVICE_ID) 3632 port_count = 4; 3633 3634 /* allocate device instances for all ports */ 3635 for (i=0; i < port_count; ++i) { 3636 port_array[i] = alloc_dev(adapter_num, i, pdev); 3637 if (port_array[i] == NULL) { 3638 for (--i; i >= 0; --i) { 3639 tty_port_destroy(&port_array[i]->port); 3640 kfree(port_array[i]); 3641 } 3642 return; 3643 } 3644 } 3645 3646 /* give copy of port_array to all ports and add to device list */ 3647 for (i=0; i < port_count; ++i) { 3648 memcpy(port_array[i]->port_array, port_array, sizeof(port_array)); 3649 add_device(port_array[i]); 3650 port_array[i]->port_count = port_count; 3651 spin_lock_init(&port_array[i]->lock); 3652 } 3653 3654 /* Allocate and claim adapter resources */ 3655 if (!claim_resources(port_array[0])) { 3656 3657 alloc_dma_bufs(port_array[0]); 3658 3659 /* copy resource information from first port to others */ 3660 for (i = 1; i < port_count; ++i) { 3661 port_array[i]->irq_level = port_array[0]->irq_level; 3662 port_array[i]->reg_addr = port_array[0]->reg_addr; 3663 alloc_dma_bufs(port_array[i]); 3664 } 3665 3666 if (request_irq(port_array[0]->irq_level, 3667 slgt_interrupt, 3668 port_array[0]->irq_flags, 3669 port_array[0]->device_name, 3670 port_array[0]) < 0) { 3671 DBGERR(("%s request_irq failed IRQ=%d\n", 3672 port_array[0]->device_name, 3673 port_array[0]->irq_level)); 3674 } else { 3675 port_array[0]->irq_requested = true; 3676 adapter_test(port_array[0]); 3677 for (i=1 ; i < port_count ; i++) { 3678 port_array[i]->init_error = port_array[0]->init_error; 3679 port_array[i]->gpio_present = port_array[0]->gpio_present; 3680 } 3681 } 3682 } 3683 3684 for (i = 0; i < port_count; ++i) { 3685 struct slgt_info *info = port_array[i]; 3686 tty_port_register_device(&info->port, serial_driver, info->line, 3687 &info->pdev->dev); 3688 } 3689 } 3690 3691 static int init_one(struct pci_dev *dev, 3692 const struct pci_device_id *ent) 3693 { 3694 if (pci_enable_device(dev)) { 3695 printk("error enabling pci device %p\n", dev); 3696 return -EIO; 3697 } 3698 pci_set_master(dev); 3699 device_init(slgt_device_count, dev); 3700 return 0; 3701 } 3702 3703 static void remove_one(struct pci_dev *dev) 3704 { 3705 } 3706 3707 static const struct tty_operations ops = { 3708 .open = open, 3709 .close = close, 3710 .write = write, 3711 .put_char = put_char, 3712 .flush_chars = flush_chars, 3713 .write_room = write_room, 3714 .chars_in_buffer = chars_in_buffer, 3715 .flush_buffer = flush_buffer, 3716 .ioctl = ioctl, 3717 .compat_ioctl = slgt_compat_ioctl, 3718 .throttle = throttle, 3719 .unthrottle = unthrottle, 3720 .send_xchar = send_xchar, 3721 .break_ctl = set_break, 3722 .wait_until_sent = wait_until_sent, 3723 .set_termios = set_termios, 3724 .stop = tx_hold, 3725 .start = tx_release, 3726 .hangup = hangup, 3727 .tiocmget = tiocmget, 3728 .tiocmset = tiocmset, 3729 .get_icount = get_icount, 3730 .proc_fops = &synclink_gt_proc_fops, 3731 }; 3732 3733 static void slgt_cleanup(void) 3734 { 3735 int rc; 3736 struct slgt_info *info; 3737 struct slgt_info *tmp; 3738 3739 printk(KERN_INFO "unload %s\n", driver_name); 3740 3741 if (serial_driver) { 3742 for (info=slgt_device_list ; info != NULL ; info=info->next_device) 3743 tty_unregister_device(serial_driver, info->line); 3744 rc = tty_unregister_driver(serial_driver); 3745 if (rc) 3746 DBGERR(("tty_unregister_driver error=%d\n", rc)); 3747 put_tty_driver(serial_driver); 3748 } 3749 3750 /* reset devices */ 3751 info = slgt_device_list; 3752 while(info) { 3753 reset_port(info); 3754 info = info->next_device; 3755 } 3756 3757 /* release devices */ 3758 info = slgt_device_list; 3759 while(info) { 3760 #if SYNCLINK_GENERIC_HDLC 3761 hdlcdev_exit(info); 3762 #endif 3763 free_dma_bufs(info); 3764 free_tmp_rbuf(info); 3765 if (info->port_num == 0) 3766 release_resources(info); 3767 tmp = info; 3768 info = info->next_device; 3769 tty_port_destroy(&tmp->port); 3770 kfree(tmp); 3771 } 3772 3773 if (pci_registered) 3774 pci_unregister_driver(&pci_driver); 3775 } 3776 3777 /* 3778 * Driver initialization entry point. 3779 */ 3780 static int __init slgt_init(void) 3781 { 3782 int rc; 3783 3784 printk(KERN_INFO "%s\n", driver_name); 3785 3786 serial_driver = alloc_tty_driver(MAX_DEVICES); 3787 if (!serial_driver) { 3788 printk("%s can't allocate tty driver\n", driver_name); 3789 return -ENOMEM; 3790 } 3791 3792 /* Initialize the tty_driver structure */ 3793 3794 serial_driver->driver_name = slgt_driver_name; 3795 serial_driver->name = tty_dev_prefix; 3796 serial_driver->major = ttymajor; 3797 serial_driver->minor_start = 64; 3798 serial_driver->type = TTY_DRIVER_TYPE_SERIAL; 3799 serial_driver->subtype = SERIAL_TYPE_NORMAL; 3800 serial_driver->init_termios = tty_std_termios; 3801 serial_driver->init_termios.c_cflag = 3802 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 3803 serial_driver->init_termios.c_ispeed = 9600; 3804 serial_driver->init_termios.c_ospeed = 9600; 3805 serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 3806 tty_set_operations(serial_driver, &ops); 3807 if ((rc = tty_register_driver(serial_driver)) < 0) { 3808 DBGERR(("%s can't register serial driver\n", driver_name)); 3809 put_tty_driver(serial_driver); 3810 serial_driver = NULL; 3811 goto error; 3812 } 3813 3814 printk(KERN_INFO "%s, tty major#%d\n", 3815 driver_name, serial_driver->major); 3816 3817 slgt_device_count = 0; 3818 if ((rc = pci_register_driver(&pci_driver)) < 0) { 3819 printk("%s pci_register_driver error=%d\n", driver_name, rc); 3820 goto error; 3821 } 3822 pci_registered = true; 3823 3824 if (!slgt_device_list) 3825 printk("%s no devices found\n",driver_name); 3826 3827 return 0; 3828 3829 error: 3830 slgt_cleanup(); 3831 return rc; 3832 } 3833 3834 static void __exit slgt_exit(void) 3835 { 3836 slgt_cleanup(); 3837 } 3838 3839 module_init(slgt_init); 3840 module_exit(slgt_exit); 3841 3842 /* 3843 * register access routines 3844 */ 3845 3846 #define CALC_REGADDR() \ 3847 unsigned long reg_addr = ((unsigned long)info->reg_addr) + addr; \ 3848 if (addr >= 0x80) \ 3849 reg_addr += (info->port_num) * 32; \ 3850 else if (addr >= 0x40) \ 3851 reg_addr += (info->port_num) * 16; 3852 3853 static __u8 rd_reg8(struct slgt_info *info, unsigned int addr) 3854 { 3855 CALC_REGADDR(); 3856 return readb((void __iomem *)reg_addr); 3857 } 3858 3859 static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value) 3860 { 3861 CALC_REGADDR(); 3862 writeb(value, (void __iomem *)reg_addr); 3863 } 3864 3865 static __u16 rd_reg16(struct slgt_info *info, unsigned int addr) 3866 { 3867 CALC_REGADDR(); 3868 return readw((void __iomem *)reg_addr); 3869 } 3870 3871 static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value) 3872 { 3873 CALC_REGADDR(); 3874 writew(value, (void __iomem *)reg_addr); 3875 } 3876 3877 static __u32 rd_reg32(struct slgt_info *info, unsigned int addr) 3878 { 3879 CALC_REGADDR(); 3880 return readl((void __iomem *)reg_addr); 3881 } 3882 3883 static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value) 3884 { 3885 CALC_REGADDR(); 3886 writel(value, (void __iomem *)reg_addr); 3887 } 3888 3889 static void rdma_reset(struct slgt_info *info) 3890 { 3891 unsigned int i; 3892 3893 /* set reset bit */ 3894 wr_reg32(info, RDCSR, BIT1); 3895 3896 /* wait for enable bit cleared */ 3897 for(i=0 ; i < 1000 ; i++) 3898 if (!(rd_reg32(info, RDCSR) & BIT0)) 3899 break; 3900 } 3901 3902 static void tdma_reset(struct slgt_info *info) 3903 { 3904 unsigned int i; 3905 3906 /* set reset bit */ 3907 wr_reg32(info, TDCSR, BIT1); 3908 3909 /* wait for enable bit cleared */ 3910 for(i=0 ; i < 1000 ; i++) 3911 if (!(rd_reg32(info, TDCSR) & BIT0)) 3912 break; 3913 } 3914 3915 /* 3916 * enable internal loopback 3917 * TxCLK and RxCLK are generated from BRG 3918 * and TxD is looped back to RxD internally. 3919 */ 3920 static void enable_loopback(struct slgt_info *info) 3921 { 3922 /* SCR (serial control) BIT2=loopback enable */ 3923 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT2)); 3924 3925 if (info->params.mode != MGSL_MODE_ASYNC) { 3926 /* CCR (clock control) 3927 * 07..05 tx clock source (010 = BRG) 3928 * 04..02 rx clock source (010 = BRG) 3929 * 01 auxclk enable (0 = disable) 3930 * 00 BRG enable (1 = enable) 3931 * 3932 * 0100 1001 3933 */ 3934 wr_reg8(info, CCR, 0x49); 3935 3936 /* set speed if available, otherwise use default */ 3937 if (info->params.clock_speed) 3938 set_rate(info, info->params.clock_speed); 3939 else 3940 set_rate(info, 3686400); 3941 } 3942 } 3943 3944 /* 3945 * set baud rate generator to specified rate 3946 */ 3947 static void set_rate(struct slgt_info *info, u32 rate) 3948 { 3949 unsigned int div; 3950 unsigned int osc = info->base_clock; 3951 3952 /* div = osc/rate - 1 3953 * 3954 * Round div up if osc/rate is not integer to 3955 * force to next slowest rate. 3956 */ 3957 3958 if (rate) { 3959 div = osc/rate; 3960 if (!(osc % rate) && div) 3961 div--; 3962 wr_reg16(info, BDR, (unsigned short)div); 3963 } 3964 } 3965 3966 static void rx_stop(struct slgt_info *info) 3967 { 3968 unsigned short val; 3969 3970 /* disable and reset receiver */ 3971 val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */ 3972 wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */ 3973 wr_reg16(info, RCR, val); /* clear reset bit */ 3974 3975 slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA + IRQ_RXIDLE); 3976 3977 /* clear pending rx interrupts */ 3978 wr_reg16(info, SSR, IRQ_RXIDLE + IRQ_RXOVER); 3979 3980 rdma_reset(info); 3981 3982 info->rx_enabled = false; 3983 info->rx_restart = false; 3984 } 3985 3986 static void rx_start(struct slgt_info *info) 3987 { 3988 unsigned short val; 3989 3990 slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA); 3991 3992 /* clear pending rx overrun IRQ */ 3993 wr_reg16(info, SSR, IRQ_RXOVER); 3994 3995 /* reset and disable receiver */ 3996 val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */ 3997 wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */ 3998 wr_reg16(info, RCR, val); /* clear reset bit */ 3999 4000 rdma_reset(info); 4001 reset_rbufs(info); 4002 4003 if (info->rx_pio) { 4004 /* rx request when rx FIFO not empty */ 4005 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) & ~BIT14)); 4006 slgt_irq_on(info, IRQ_RXDATA); 4007 if (info->params.mode == MGSL_MODE_ASYNC) { 4008 /* enable saving of rx status */ 4009 wr_reg32(info, RDCSR, BIT6); 4010 } 4011 } else { 4012 /* rx request when rx FIFO half full */ 4013 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT14)); 4014 /* set 1st descriptor address */ 4015 wr_reg32(info, RDDAR, info->rbufs[0].pdesc); 4016 4017 if (info->params.mode != MGSL_MODE_ASYNC) { 4018 /* enable rx DMA and DMA interrupt */ 4019 wr_reg32(info, RDCSR, (BIT2 + BIT0)); 4020 } else { 4021 /* enable saving of rx status, rx DMA and DMA interrupt */ 4022 wr_reg32(info, RDCSR, (BIT6 + BIT2 + BIT0)); 4023 } 4024 } 4025 4026 slgt_irq_on(info, IRQ_RXOVER); 4027 4028 /* enable receiver */ 4029 wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | BIT1)); 4030 4031 info->rx_restart = false; 4032 info->rx_enabled = true; 4033 } 4034 4035 static void tx_start(struct slgt_info *info) 4036 { 4037 if (!info->tx_enabled) { 4038 wr_reg16(info, TCR, 4039 (unsigned short)((rd_reg16(info, TCR) | BIT1) & ~BIT2)); 4040 info->tx_enabled = true; 4041 } 4042 4043 if (desc_count(info->tbufs[info->tbuf_start])) { 4044 info->drop_rts_on_tx_done = false; 4045 4046 if (info->params.mode != MGSL_MODE_ASYNC) { 4047 if (info->params.flags & HDLC_FLAG_AUTO_RTS) { 4048 get_signals(info); 4049 if (!(info->signals & SerialSignal_RTS)) { 4050 info->signals |= SerialSignal_RTS; 4051 set_signals(info); 4052 info->drop_rts_on_tx_done = true; 4053 } 4054 } 4055 4056 slgt_irq_off(info, IRQ_TXDATA); 4057 slgt_irq_on(info, IRQ_TXUNDER + IRQ_TXIDLE); 4058 /* clear tx idle and underrun status bits */ 4059 wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER)); 4060 } else { 4061 slgt_irq_off(info, IRQ_TXDATA); 4062 slgt_irq_on(info, IRQ_TXIDLE); 4063 /* clear tx idle status bit */ 4064 wr_reg16(info, SSR, IRQ_TXIDLE); 4065 } 4066 /* set 1st descriptor address and start DMA */ 4067 wr_reg32(info, TDDAR, info->tbufs[info->tbuf_start].pdesc); 4068 wr_reg32(info, TDCSR, BIT2 + BIT0); 4069 info->tx_active = true; 4070 } 4071 } 4072 4073 static void tx_stop(struct slgt_info *info) 4074 { 4075 unsigned short val; 4076 4077 del_timer(&info->tx_timer); 4078 4079 tdma_reset(info); 4080 4081 /* reset and disable transmitter */ 4082 val = rd_reg16(info, TCR) & ~BIT1; /* clear enable bit */ 4083 wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */ 4084 4085 slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER); 4086 4087 /* clear tx idle and underrun status bit */ 4088 wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER)); 4089 4090 reset_tbufs(info); 4091 4092 info->tx_enabled = false; 4093 info->tx_active = false; 4094 } 4095 4096 static void reset_port(struct slgt_info *info) 4097 { 4098 if (!info->reg_addr) 4099 return; 4100 4101 tx_stop(info); 4102 rx_stop(info); 4103 4104 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 4105 set_signals(info); 4106 4107 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 4108 } 4109 4110 static void reset_adapter(struct slgt_info *info) 4111 { 4112 int i; 4113 for (i=0; i < info->port_count; ++i) { 4114 if (info->port_array[i]) 4115 reset_port(info->port_array[i]); 4116 } 4117 } 4118 4119 static void async_mode(struct slgt_info *info) 4120 { 4121 unsigned short val; 4122 4123 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 4124 tx_stop(info); 4125 rx_stop(info); 4126 4127 /* TCR (tx control) 4128 * 4129 * 15..13 mode, 010=async 4130 * 12..10 encoding, 000=NRZ 4131 * 09 parity enable 4132 * 08 1=odd parity, 0=even parity 4133 * 07 1=RTS driver control 4134 * 06 1=break enable 4135 * 05..04 character length 4136 * 00=5 bits 4137 * 01=6 bits 4138 * 10=7 bits 4139 * 11=8 bits 4140 * 03 0=1 stop bit, 1=2 stop bits 4141 * 02 reset 4142 * 01 enable 4143 * 00 auto-CTS enable 4144 */ 4145 val = 0x4000; 4146 4147 if (info->if_mode & MGSL_INTERFACE_RTS_EN) 4148 val |= BIT7; 4149 4150 if (info->params.parity != ASYNC_PARITY_NONE) { 4151 val |= BIT9; 4152 if (info->params.parity == ASYNC_PARITY_ODD) 4153 val |= BIT8; 4154 } 4155 4156 switch (info->params.data_bits) 4157 { 4158 case 6: val |= BIT4; break; 4159 case 7: val |= BIT5; break; 4160 case 8: val |= BIT5 + BIT4; break; 4161 } 4162 4163 if (info->params.stop_bits != 1) 4164 val |= BIT3; 4165 4166 if (info->params.flags & HDLC_FLAG_AUTO_CTS) 4167 val |= BIT0; 4168 4169 wr_reg16(info, TCR, val); 4170 4171 /* RCR (rx control) 4172 * 4173 * 15..13 mode, 010=async 4174 * 12..10 encoding, 000=NRZ 4175 * 09 parity enable 4176 * 08 1=odd parity, 0=even parity 4177 * 07..06 reserved, must be 0 4178 * 05..04 character length 4179 * 00=5 bits 4180 * 01=6 bits 4181 * 10=7 bits 4182 * 11=8 bits 4183 * 03 reserved, must be zero 4184 * 02 reset 4185 * 01 enable 4186 * 00 auto-DCD enable 4187 */ 4188 val = 0x4000; 4189 4190 if (info->params.parity != ASYNC_PARITY_NONE) { 4191 val |= BIT9; 4192 if (info->params.parity == ASYNC_PARITY_ODD) 4193 val |= BIT8; 4194 } 4195 4196 switch (info->params.data_bits) 4197 { 4198 case 6: val |= BIT4; break; 4199 case 7: val |= BIT5; break; 4200 case 8: val |= BIT5 + BIT4; break; 4201 } 4202 4203 if (info->params.flags & HDLC_FLAG_AUTO_DCD) 4204 val |= BIT0; 4205 4206 wr_reg16(info, RCR, val); 4207 4208 /* CCR (clock control) 4209 * 4210 * 07..05 011 = tx clock source is BRG/16 4211 * 04..02 010 = rx clock source is BRG 4212 * 01 0 = auxclk disabled 4213 * 00 1 = BRG enabled 4214 * 4215 * 0110 1001 4216 */ 4217 wr_reg8(info, CCR, 0x69); 4218 4219 msc_set_vcr(info); 4220 4221 /* SCR (serial control) 4222 * 4223 * 15 1=tx req on FIFO half empty 4224 * 14 1=rx req on FIFO half full 4225 * 13 tx data IRQ enable 4226 * 12 tx idle IRQ enable 4227 * 11 rx break on IRQ enable 4228 * 10 rx data IRQ enable 4229 * 09 rx break off IRQ enable 4230 * 08 overrun IRQ enable 4231 * 07 DSR IRQ enable 4232 * 06 CTS IRQ enable 4233 * 05 DCD IRQ enable 4234 * 04 RI IRQ enable 4235 * 03 0=16x sampling, 1=8x sampling 4236 * 02 1=txd->rxd internal loopback enable 4237 * 01 reserved, must be zero 4238 * 00 1=master IRQ enable 4239 */ 4240 val = BIT15 + BIT14 + BIT0; 4241 /* JCR[8] : 1 = x8 async mode feature available */ 4242 if ((rd_reg32(info, JCR) & BIT8) && info->params.data_rate && 4243 ((info->base_clock < (info->params.data_rate * 16)) || 4244 (info->base_clock % (info->params.data_rate * 16)))) { 4245 /* use 8x sampling */ 4246 val |= BIT3; 4247 set_rate(info, info->params.data_rate * 8); 4248 } else { 4249 /* use 16x sampling */ 4250 set_rate(info, info->params.data_rate * 16); 4251 } 4252 wr_reg16(info, SCR, val); 4253 4254 slgt_irq_on(info, IRQ_RXBREAK | IRQ_RXOVER); 4255 4256 if (info->params.loopback) 4257 enable_loopback(info); 4258 } 4259 4260 static void sync_mode(struct slgt_info *info) 4261 { 4262 unsigned short val; 4263 4264 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 4265 tx_stop(info); 4266 rx_stop(info); 4267 4268 /* TCR (tx control) 4269 * 4270 * 15..13 mode 4271 * 000=HDLC/SDLC 4272 * 001=raw bit synchronous 4273 * 010=asynchronous/isochronous 4274 * 011=monosync byte synchronous 4275 * 100=bisync byte synchronous 4276 * 101=xsync byte synchronous 4277 * 12..10 encoding 4278 * 09 CRC enable 4279 * 08 CRC32 4280 * 07 1=RTS driver control 4281 * 06 preamble enable 4282 * 05..04 preamble length 4283 * 03 share open/close flag 4284 * 02 reset 4285 * 01 enable 4286 * 00 auto-CTS enable 4287 */ 4288 val = BIT2; 4289 4290 switch(info->params.mode) { 4291 case MGSL_MODE_XSYNC: 4292 val |= BIT15 + BIT13; 4293 break; 4294 case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break; 4295 case MGSL_MODE_BISYNC: val |= BIT15; break; 4296 case MGSL_MODE_RAW: val |= BIT13; break; 4297 } 4298 if (info->if_mode & MGSL_INTERFACE_RTS_EN) 4299 val |= BIT7; 4300 4301 switch(info->params.encoding) 4302 { 4303 case HDLC_ENCODING_NRZB: val |= BIT10; break; 4304 case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break; 4305 case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break; 4306 case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break; 4307 case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break; 4308 case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break; 4309 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break; 4310 } 4311 4312 switch (info->params.crc_type & HDLC_CRC_MASK) 4313 { 4314 case HDLC_CRC_16_CCITT: val |= BIT9; break; 4315 case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break; 4316 } 4317 4318 if (info->params.preamble != HDLC_PREAMBLE_PATTERN_NONE) 4319 val |= BIT6; 4320 4321 switch (info->params.preamble_length) 4322 { 4323 case HDLC_PREAMBLE_LENGTH_16BITS: val |= BIT5; break; 4324 case HDLC_PREAMBLE_LENGTH_32BITS: val |= BIT4; break; 4325 case HDLC_PREAMBLE_LENGTH_64BITS: val |= BIT5 + BIT4; break; 4326 } 4327 4328 if (info->params.flags & HDLC_FLAG_AUTO_CTS) 4329 val |= BIT0; 4330 4331 wr_reg16(info, TCR, val); 4332 4333 /* TPR (transmit preamble) */ 4334 4335 switch (info->params.preamble) 4336 { 4337 case HDLC_PREAMBLE_PATTERN_FLAGS: val = 0x7e; break; 4338 case HDLC_PREAMBLE_PATTERN_ONES: val = 0xff; break; 4339 case HDLC_PREAMBLE_PATTERN_ZEROS: val = 0x00; break; 4340 case HDLC_PREAMBLE_PATTERN_10: val = 0x55; break; 4341 case HDLC_PREAMBLE_PATTERN_01: val = 0xaa; break; 4342 default: val = 0x7e; break; 4343 } 4344 wr_reg8(info, TPR, (unsigned char)val); 4345 4346 /* RCR (rx control) 4347 * 4348 * 15..13 mode 4349 * 000=HDLC/SDLC 4350 * 001=raw bit synchronous 4351 * 010=asynchronous/isochronous 4352 * 011=monosync byte synchronous 4353 * 100=bisync byte synchronous 4354 * 101=xsync byte synchronous 4355 * 12..10 encoding 4356 * 09 CRC enable 4357 * 08 CRC32 4358 * 07..03 reserved, must be 0 4359 * 02 reset 4360 * 01 enable 4361 * 00 auto-DCD enable 4362 */ 4363 val = 0; 4364 4365 switch(info->params.mode) { 4366 case MGSL_MODE_XSYNC: 4367 val |= BIT15 + BIT13; 4368 break; 4369 case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break; 4370 case MGSL_MODE_BISYNC: val |= BIT15; break; 4371 case MGSL_MODE_RAW: val |= BIT13; break; 4372 } 4373 4374 switch(info->params.encoding) 4375 { 4376 case HDLC_ENCODING_NRZB: val |= BIT10; break; 4377 case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break; 4378 case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break; 4379 case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break; 4380 case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break; 4381 case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break; 4382 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break; 4383 } 4384 4385 switch (info->params.crc_type & HDLC_CRC_MASK) 4386 { 4387 case HDLC_CRC_16_CCITT: val |= BIT9; break; 4388 case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break; 4389 } 4390 4391 if (info->params.flags & HDLC_FLAG_AUTO_DCD) 4392 val |= BIT0; 4393 4394 wr_reg16(info, RCR, val); 4395 4396 /* CCR (clock control) 4397 * 4398 * 07..05 tx clock source 4399 * 04..02 rx clock source 4400 * 01 auxclk enable 4401 * 00 BRG enable 4402 */ 4403 val = 0; 4404 4405 if (info->params.flags & HDLC_FLAG_TXC_BRG) 4406 { 4407 // when RxC source is DPLL, BRG generates 16X DPLL 4408 // reference clock, so take TxC from BRG/16 to get 4409 // transmit clock at actual data rate 4410 if (info->params.flags & HDLC_FLAG_RXC_DPLL) 4411 val |= BIT6 + BIT5; /* 011, txclk = BRG/16 */ 4412 else 4413 val |= BIT6; /* 010, txclk = BRG */ 4414 } 4415 else if (info->params.flags & HDLC_FLAG_TXC_DPLL) 4416 val |= BIT7; /* 100, txclk = DPLL Input */ 4417 else if (info->params.flags & HDLC_FLAG_TXC_RXCPIN) 4418 val |= BIT5; /* 001, txclk = RXC Input */ 4419 4420 if (info->params.flags & HDLC_FLAG_RXC_BRG) 4421 val |= BIT3; /* 010, rxclk = BRG */ 4422 else if (info->params.flags & HDLC_FLAG_RXC_DPLL) 4423 val |= BIT4; /* 100, rxclk = DPLL */ 4424 else if (info->params.flags & HDLC_FLAG_RXC_TXCPIN) 4425 val |= BIT2; /* 001, rxclk = TXC Input */ 4426 4427 if (info->params.clock_speed) 4428 val |= BIT1 + BIT0; 4429 4430 wr_reg8(info, CCR, (unsigned char)val); 4431 4432 if (info->params.flags & (HDLC_FLAG_TXC_DPLL + HDLC_FLAG_RXC_DPLL)) 4433 { 4434 // program DPLL mode 4435 switch(info->params.encoding) 4436 { 4437 case HDLC_ENCODING_BIPHASE_MARK: 4438 case HDLC_ENCODING_BIPHASE_SPACE: 4439 val = BIT7; break; 4440 case HDLC_ENCODING_BIPHASE_LEVEL: 4441 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: 4442 val = BIT7 + BIT6; break; 4443 default: val = BIT6; // NRZ encodings 4444 } 4445 wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | val)); 4446 4447 // DPLL requires a 16X reference clock from BRG 4448 set_rate(info, info->params.clock_speed * 16); 4449 } 4450 else 4451 set_rate(info, info->params.clock_speed); 4452 4453 tx_set_idle(info); 4454 4455 msc_set_vcr(info); 4456 4457 /* SCR (serial control) 4458 * 4459 * 15 1=tx req on FIFO half empty 4460 * 14 1=rx req on FIFO half full 4461 * 13 tx data IRQ enable 4462 * 12 tx idle IRQ enable 4463 * 11 underrun IRQ enable 4464 * 10 rx data IRQ enable 4465 * 09 rx idle IRQ enable 4466 * 08 overrun IRQ enable 4467 * 07 DSR IRQ enable 4468 * 06 CTS IRQ enable 4469 * 05 DCD IRQ enable 4470 * 04 RI IRQ enable 4471 * 03 reserved, must be zero 4472 * 02 1=txd->rxd internal loopback enable 4473 * 01 reserved, must be zero 4474 * 00 1=master IRQ enable 4475 */ 4476 wr_reg16(info, SCR, BIT15 + BIT14 + BIT0); 4477 4478 if (info->params.loopback) 4479 enable_loopback(info); 4480 } 4481 4482 /* 4483 * set transmit idle mode 4484 */ 4485 static void tx_set_idle(struct slgt_info *info) 4486 { 4487 unsigned char val; 4488 unsigned short tcr; 4489 4490 /* if preamble enabled (tcr[6] == 1) then tx idle size = 8 bits 4491 * else tcr[5:4] = tx idle size: 00 = 8 bits, 01 = 16 bits 4492 */ 4493 tcr = rd_reg16(info, TCR); 4494 if (info->idle_mode & HDLC_TXIDLE_CUSTOM_16) { 4495 /* disable preamble, set idle size to 16 bits */ 4496 tcr = (tcr & ~(BIT6 + BIT5)) | BIT4; 4497 /* MSB of 16 bit idle specified in tx preamble register (TPR) */ 4498 wr_reg8(info, TPR, (unsigned char)((info->idle_mode >> 8) & 0xff)); 4499 } else if (!(tcr & BIT6)) { 4500 /* preamble is disabled, set idle size to 8 bits */ 4501 tcr &= ~(BIT5 + BIT4); 4502 } 4503 wr_reg16(info, TCR, tcr); 4504 4505 if (info->idle_mode & (HDLC_TXIDLE_CUSTOM_8 | HDLC_TXIDLE_CUSTOM_16)) { 4506 /* LSB of custom tx idle specified in tx idle register */ 4507 val = (unsigned char)(info->idle_mode & 0xff); 4508 } else { 4509 /* standard 8 bit idle patterns */ 4510 switch(info->idle_mode) 4511 { 4512 case HDLC_TXIDLE_FLAGS: val = 0x7e; break; 4513 case HDLC_TXIDLE_ALT_ZEROS_ONES: 4514 case HDLC_TXIDLE_ALT_MARK_SPACE: val = 0xaa; break; 4515 case HDLC_TXIDLE_ZEROS: 4516 case HDLC_TXIDLE_SPACE: val = 0x00; break; 4517 default: val = 0xff; 4518 } 4519 } 4520 4521 wr_reg8(info, TIR, val); 4522 } 4523 4524 /* 4525 * get state of V24 status (input) signals 4526 */ 4527 static void get_signals(struct slgt_info *info) 4528 { 4529 unsigned short status = rd_reg16(info, SSR); 4530 4531 /* clear all serial signals except RTS and DTR */ 4532 info->signals &= SerialSignal_RTS | SerialSignal_DTR; 4533 4534 if (status & BIT3) 4535 info->signals |= SerialSignal_DSR; 4536 if (status & BIT2) 4537 info->signals |= SerialSignal_CTS; 4538 if (status & BIT1) 4539 info->signals |= SerialSignal_DCD; 4540 if (status & BIT0) 4541 info->signals |= SerialSignal_RI; 4542 } 4543 4544 /* 4545 * set V.24 Control Register based on current configuration 4546 */ 4547 static void msc_set_vcr(struct slgt_info *info) 4548 { 4549 unsigned char val = 0; 4550 4551 /* VCR (V.24 control) 4552 * 4553 * 07..04 serial IF select 4554 * 03 DTR 4555 * 02 RTS 4556 * 01 LL 4557 * 00 RL 4558 */ 4559 4560 switch(info->if_mode & MGSL_INTERFACE_MASK) 4561 { 4562 case MGSL_INTERFACE_RS232: 4563 val |= BIT5; /* 0010 */ 4564 break; 4565 case MGSL_INTERFACE_V35: 4566 val |= BIT7 + BIT6 + BIT5; /* 1110 */ 4567 break; 4568 case MGSL_INTERFACE_RS422: 4569 val |= BIT6; /* 0100 */ 4570 break; 4571 } 4572 4573 if (info->if_mode & MGSL_INTERFACE_MSB_FIRST) 4574 val |= BIT4; 4575 if (info->signals & SerialSignal_DTR) 4576 val |= BIT3; 4577 if (info->signals & SerialSignal_RTS) 4578 val |= BIT2; 4579 if (info->if_mode & MGSL_INTERFACE_LL) 4580 val |= BIT1; 4581 if (info->if_mode & MGSL_INTERFACE_RL) 4582 val |= BIT0; 4583 wr_reg8(info, VCR, val); 4584 } 4585 4586 /* 4587 * set state of V24 control (output) signals 4588 */ 4589 static void set_signals(struct slgt_info *info) 4590 { 4591 unsigned char val = rd_reg8(info, VCR); 4592 if (info->signals & SerialSignal_DTR) 4593 val |= BIT3; 4594 else 4595 val &= ~BIT3; 4596 if (info->signals & SerialSignal_RTS) 4597 val |= BIT2; 4598 else 4599 val &= ~BIT2; 4600 wr_reg8(info, VCR, val); 4601 } 4602 4603 /* 4604 * free range of receive DMA buffers (i to last) 4605 */ 4606 static void free_rbufs(struct slgt_info *info, unsigned int i, unsigned int last) 4607 { 4608 int done = 0; 4609 4610 while(!done) { 4611 /* reset current buffer for reuse */ 4612 info->rbufs[i].status = 0; 4613 set_desc_count(info->rbufs[i], info->rbuf_fill_level); 4614 if (i == last) 4615 done = 1; 4616 if (++i == info->rbuf_count) 4617 i = 0; 4618 } 4619 info->rbuf_current = i; 4620 } 4621 4622 /* 4623 * mark all receive DMA buffers as free 4624 */ 4625 static void reset_rbufs(struct slgt_info *info) 4626 { 4627 free_rbufs(info, 0, info->rbuf_count - 1); 4628 info->rbuf_fill_index = 0; 4629 info->rbuf_fill_count = 0; 4630 } 4631 4632 /* 4633 * pass receive HDLC frame to upper layer 4634 * 4635 * return true if frame available, otherwise false 4636 */ 4637 static bool rx_get_frame(struct slgt_info *info) 4638 { 4639 unsigned int start, end; 4640 unsigned short status; 4641 unsigned int framesize = 0; 4642 unsigned long flags; 4643 struct tty_struct *tty = info->port.tty; 4644 unsigned char addr_field = 0xff; 4645 unsigned int crc_size = 0; 4646 4647 switch (info->params.crc_type & HDLC_CRC_MASK) { 4648 case HDLC_CRC_16_CCITT: crc_size = 2; break; 4649 case HDLC_CRC_32_CCITT: crc_size = 4; break; 4650 } 4651 4652 check_again: 4653 4654 framesize = 0; 4655 addr_field = 0xff; 4656 start = end = info->rbuf_current; 4657 4658 for (;;) { 4659 if (!desc_complete(info->rbufs[end])) 4660 goto cleanup; 4661 4662 if (framesize == 0 && info->params.addr_filter != 0xff) 4663 addr_field = info->rbufs[end].buf[0]; 4664 4665 framesize += desc_count(info->rbufs[end]); 4666 4667 if (desc_eof(info->rbufs[end])) 4668 break; 4669 4670 if (++end == info->rbuf_count) 4671 end = 0; 4672 4673 if (end == info->rbuf_current) { 4674 if (info->rx_enabled){ 4675 spin_lock_irqsave(&info->lock,flags); 4676 rx_start(info); 4677 spin_unlock_irqrestore(&info->lock,flags); 4678 } 4679 goto cleanup; 4680 } 4681 } 4682 4683 /* status 4684 * 4685 * 15 buffer complete 4686 * 14..06 reserved 4687 * 05..04 residue 4688 * 02 eof (end of frame) 4689 * 01 CRC error 4690 * 00 abort 4691 */ 4692 status = desc_status(info->rbufs[end]); 4693 4694 /* ignore CRC bit if not using CRC (bit is undefined) */ 4695 if ((info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_NONE) 4696 status &= ~BIT1; 4697 4698 if (framesize == 0 || 4699 (addr_field != 0xff && addr_field != info->params.addr_filter)) { 4700 free_rbufs(info, start, end); 4701 goto check_again; 4702 } 4703 4704 if (framesize < (2 + crc_size) || status & BIT0) { 4705 info->icount.rxshort++; 4706 framesize = 0; 4707 } else if (status & BIT1) { 4708 info->icount.rxcrc++; 4709 if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) 4710 framesize = 0; 4711 } 4712 4713 #if SYNCLINK_GENERIC_HDLC 4714 if (framesize == 0) { 4715 info->netdev->stats.rx_errors++; 4716 info->netdev->stats.rx_frame_errors++; 4717 } 4718 #endif 4719 4720 DBGBH(("%s rx frame status=%04X size=%d\n", 4721 info->device_name, status, framesize)); 4722 DBGDATA(info, info->rbufs[start].buf, min_t(int, framesize, info->rbuf_fill_level), "rx"); 4723 4724 if (framesize) { 4725 if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) { 4726 framesize -= crc_size; 4727 crc_size = 0; 4728 } 4729 4730 if (framesize > info->max_frame_size + crc_size) 4731 info->icount.rxlong++; 4732 else { 4733 /* copy dma buffer(s) to contiguous temp buffer */ 4734 int copy_count = framesize; 4735 int i = start; 4736 unsigned char *p = info->tmp_rbuf; 4737 info->tmp_rbuf_count = framesize; 4738 4739 info->icount.rxok++; 4740 4741 while(copy_count) { 4742 int partial_count = min_t(int, copy_count, info->rbuf_fill_level); 4743 memcpy(p, info->rbufs[i].buf, partial_count); 4744 p += partial_count; 4745 copy_count -= partial_count; 4746 if (++i == info->rbuf_count) 4747 i = 0; 4748 } 4749 4750 if (info->params.crc_type & HDLC_CRC_RETURN_EX) { 4751 *p = (status & BIT1) ? RX_CRC_ERROR : RX_OK; 4752 framesize++; 4753 } 4754 4755 #if SYNCLINK_GENERIC_HDLC 4756 if (info->netcount) 4757 hdlcdev_rx(info,info->tmp_rbuf, framesize); 4758 else 4759 #endif 4760 ldisc_receive_buf(tty, info->tmp_rbuf, info->flag_buf, framesize); 4761 } 4762 } 4763 free_rbufs(info, start, end); 4764 return true; 4765 4766 cleanup: 4767 return false; 4768 } 4769 4770 /* 4771 * pass receive buffer (RAW synchronous mode) to tty layer 4772 * return true if buffer available, otherwise false 4773 */ 4774 static bool rx_get_buf(struct slgt_info *info) 4775 { 4776 unsigned int i = info->rbuf_current; 4777 unsigned int count; 4778 4779 if (!desc_complete(info->rbufs[i])) 4780 return false; 4781 count = desc_count(info->rbufs[i]); 4782 switch(info->params.mode) { 4783 case MGSL_MODE_MONOSYNC: 4784 case MGSL_MODE_BISYNC: 4785 case MGSL_MODE_XSYNC: 4786 /* ignore residue in byte synchronous modes */ 4787 if (desc_residue(info->rbufs[i])) 4788 count--; 4789 break; 4790 } 4791 DBGDATA(info, info->rbufs[i].buf, count, "rx"); 4792 DBGINFO(("rx_get_buf size=%d\n", count)); 4793 if (count) 4794 ldisc_receive_buf(info->port.tty, info->rbufs[i].buf, 4795 info->flag_buf, count); 4796 free_rbufs(info, i, i); 4797 return true; 4798 } 4799 4800 static void reset_tbufs(struct slgt_info *info) 4801 { 4802 unsigned int i; 4803 info->tbuf_current = 0; 4804 for (i=0 ; i < info->tbuf_count ; i++) { 4805 info->tbufs[i].status = 0; 4806 info->tbufs[i].count = 0; 4807 } 4808 } 4809 4810 /* 4811 * return number of free transmit DMA buffers 4812 */ 4813 static unsigned int free_tbuf_count(struct slgt_info *info) 4814 { 4815 unsigned int count = 0; 4816 unsigned int i = info->tbuf_current; 4817 4818 do 4819 { 4820 if (desc_count(info->tbufs[i])) 4821 break; /* buffer in use */ 4822 ++count; 4823 if (++i == info->tbuf_count) 4824 i=0; 4825 } while (i != info->tbuf_current); 4826 4827 /* if tx DMA active, last zero count buffer is in use */ 4828 if (count && (rd_reg32(info, TDCSR) & BIT0)) 4829 --count; 4830 4831 return count; 4832 } 4833 4834 /* 4835 * return number of bytes in unsent transmit DMA buffers 4836 * and the serial controller tx FIFO 4837 */ 4838 static unsigned int tbuf_bytes(struct slgt_info *info) 4839 { 4840 unsigned int total_count = 0; 4841 unsigned int i = info->tbuf_current; 4842 unsigned int reg_value; 4843 unsigned int count; 4844 unsigned int active_buf_count = 0; 4845 4846 /* 4847 * Add descriptor counts for all tx DMA buffers. 4848 * If count is zero (cleared by DMA controller after read), 4849 * the buffer is complete or is actively being read from. 4850 * 4851 * Record buf_count of last buffer with zero count starting 4852 * from current ring position. buf_count is mirror 4853 * copy of count and is not cleared by serial controller. 4854 * If DMA controller is active, that buffer is actively 4855 * being read so add to total. 4856 */ 4857 do { 4858 count = desc_count(info->tbufs[i]); 4859 if (count) 4860 total_count += count; 4861 else if (!total_count) 4862 active_buf_count = info->tbufs[i].buf_count; 4863 if (++i == info->tbuf_count) 4864 i = 0; 4865 } while (i != info->tbuf_current); 4866 4867 /* read tx DMA status register */ 4868 reg_value = rd_reg32(info, TDCSR); 4869 4870 /* if tx DMA active, last zero count buffer is in use */ 4871 if (reg_value & BIT0) 4872 total_count += active_buf_count; 4873 4874 /* add tx FIFO count = reg_value[15..8] */ 4875 total_count += (reg_value >> 8) & 0xff; 4876 4877 /* if transmitter active add one byte for shift register */ 4878 if (info->tx_active) 4879 total_count++; 4880 4881 return total_count; 4882 } 4883 4884 /* 4885 * load data into transmit DMA buffer ring and start transmitter if needed 4886 * return true if data accepted, otherwise false (buffers full) 4887 */ 4888 static bool tx_load(struct slgt_info *info, const char *buf, unsigned int size) 4889 { 4890 unsigned short count; 4891 unsigned int i; 4892 struct slgt_desc *d; 4893 4894 /* check required buffer space */ 4895 if (DIV_ROUND_UP(size, DMABUFSIZE) > free_tbuf_count(info)) 4896 return false; 4897 4898 DBGDATA(info, buf, size, "tx"); 4899 4900 /* 4901 * copy data to one or more DMA buffers in circular ring 4902 * tbuf_start = first buffer for this data 4903 * tbuf_current = next free buffer 4904 * 4905 * Copy all data before making data visible to DMA controller by 4906 * setting descriptor count of the first buffer. 4907 * This prevents an active DMA controller from reading the first DMA 4908 * buffers of a frame and stopping before the final buffers are filled. 4909 */ 4910 4911 info->tbuf_start = i = info->tbuf_current; 4912 4913 while (size) { 4914 d = &info->tbufs[i]; 4915 4916 count = (unsigned short)((size > DMABUFSIZE) ? DMABUFSIZE : size); 4917 memcpy(d->buf, buf, count); 4918 4919 size -= count; 4920 buf += count; 4921 4922 /* 4923 * set EOF bit for last buffer of HDLC frame or 4924 * for every buffer in raw mode 4925 */ 4926 if ((!size && info->params.mode == MGSL_MODE_HDLC) || 4927 info->params.mode == MGSL_MODE_RAW) 4928 set_desc_eof(*d, 1); 4929 else 4930 set_desc_eof(*d, 0); 4931 4932 /* set descriptor count for all but first buffer */ 4933 if (i != info->tbuf_start) 4934 set_desc_count(*d, count); 4935 d->buf_count = count; 4936 4937 if (++i == info->tbuf_count) 4938 i = 0; 4939 } 4940 4941 info->tbuf_current = i; 4942 4943 /* set first buffer count to make new data visible to DMA controller */ 4944 d = &info->tbufs[info->tbuf_start]; 4945 set_desc_count(*d, d->buf_count); 4946 4947 /* start transmitter if needed and update transmit timeout */ 4948 if (!info->tx_active) 4949 tx_start(info); 4950 update_tx_timer(info); 4951 4952 return true; 4953 } 4954 4955 static int register_test(struct slgt_info *info) 4956 { 4957 static unsigned short patterns[] = 4958 {0x0000, 0xffff, 0xaaaa, 0x5555, 0x6969, 0x9696}; 4959 static unsigned int count = ARRAY_SIZE(patterns); 4960 unsigned int i; 4961 int rc = 0; 4962 4963 for (i=0 ; i < count ; i++) { 4964 wr_reg16(info, TIR, patterns[i]); 4965 wr_reg16(info, BDR, patterns[(i+1)%count]); 4966 if ((rd_reg16(info, TIR) != patterns[i]) || 4967 (rd_reg16(info, BDR) != patterns[(i+1)%count])) { 4968 rc = -ENODEV; 4969 break; 4970 } 4971 } 4972 info->gpio_present = (rd_reg32(info, JCR) & BIT5) ? 1 : 0; 4973 info->init_error = rc ? 0 : DiagStatus_AddressFailure; 4974 return rc; 4975 } 4976 4977 static int irq_test(struct slgt_info *info) 4978 { 4979 unsigned long timeout; 4980 unsigned long flags; 4981 struct tty_struct *oldtty = info->port.tty; 4982 u32 speed = info->params.data_rate; 4983 4984 info->params.data_rate = 921600; 4985 info->port.tty = NULL; 4986 4987 spin_lock_irqsave(&info->lock, flags); 4988 async_mode(info); 4989 slgt_irq_on(info, IRQ_TXIDLE); 4990 4991 /* enable transmitter */ 4992 wr_reg16(info, TCR, 4993 (unsigned short)(rd_reg16(info, TCR) | BIT1)); 4994 4995 /* write one byte and wait for tx idle */ 4996 wr_reg16(info, TDR, 0); 4997 4998 /* assume failure */ 4999 info->init_error = DiagStatus_IrqFailure; 5000 info->irq_occurred = false; 5001 5002 spin_unlock_irqrestore(&info->lock, flags); 5003 5004 timeout=100; 5005 while(timeout-- && !info->irq_occurred) 5006 msleep_interruptible(10); 5007 5008 spin_lock_irqsave(&info->lock,flags); 5009 reset_port(info); 5010 spin_unlock_irqrestore(&info->lock,flags); 5011 5012 info->params.data_rate = speed; 5013 info->port.tty = oldtty; 5014 5015 info->init_error = info->irq_occurred ? 0 : DiagStatus_IrqFailure; 5016 return info->irq_occurred ? 0 : -ENODEV; 5017 } 5018 5019 static int loopback_test_rx(struct slgt_info *info) 5020 { 5021 unsigned char *src, *dest; 5022 int count; 5023 5024 if (desc_complete(info->rbufs[0])) { 5025 count = desc_count(info->rbufs[0]); 5026 src = info->rbufs[0].buf; 5027 dest = info->tmp_rbuf; 5028 5029 for( ; count ; count-=2, src+=2) { 5030 /* src=data byte (src+1)=status byte */ 5031 if (!(*(src+1) & (BIT9 + BIT8))) { 5032 *dest = *src; 5033 dest++; 5034 info->tmp_rbuf_count++; 5035 } 5036 } 5037 DBGDATA(info, info->tmp_rbuf, info->tmp_rbuf_count, "rx"); 5038 return 1; 5039 } 5040 return 0; 5041 } 5042 5043 static int loopback_test(struct slgt_info *info) 5044 { 5045 #define TESTFRAMESIZE 20 5046 5047 unsigned long timeout; 5048 u16 count = TESTFRAMESIZE; 5049 unsigned char buf[TESTFRAMESIZE]; 5050 int rc = -ENODEV; 5051 unsigned long flags; 5052 5053 struct tty_struct *oldtty = info->port.tty; 5054 MGSL_PARAMS params; 5055 5056 memcpy(¶ms, &info->params, sizeof(params)); 5057 5058 info->params.mode = MGSL_MODE_ASYNC; 5059 info->params.data_rate = 921600; 5060 info->params.loopback = 1; 5061 info->port.tty = NULL; 5062 5063 /* build and send transmit frame */ 5064 for (count = 0; count < TESTFRAMESIZE; ++count) 5065 buf[count] = (unsigned char)count; 5066 5067 info->tmp_rbuf_count = 0; 5068 memset(info->tmp_rbuf, 0, TESTFRAMESIZE); 5069 5070 /* program hardware for HDLC and enabled receiver */ 5071 spin_lock_irqsave(&info->lock,flags); 5072 async_mode(info); 5073 rx_start(info); 5074 tx_load(info, buf, count); 5075 spin_unlock_irqrestore(&info->lock, flags); 5076 5077 /* wait for receive complete */ 5078 for (timeout = 100; timeout; --timeout) { 5079 msleep_interruptible(10); 5080 if (loopback_test_rx(info)) { 5081 rc = 0; 5082 break; 5083 } 5084 } 5085 5086 /* verify received frame length and contents */ 5087 if (!rc && (info->tmp_rbuf_count != count || 5088 memcmp(buf, info->tmp_rbuf, count))) { 5089 rc = -ENODEV; 5090 } 5091 5092 spin_lock_irqsave(&info->lock,flags); 5093 reset_adapter(info); 5094 spin_unlock_irqrestore(&info->lock,flags); 5095 5096 memcpy(&info->params, ¶ms, sizeof(info->params)); 5097 info->port.tty = oldtty; 5098 5099 info->init_error = rc ? DiagStatus_DmaFailure : 0; 5100 return rc; 5101 } 5102 5103 static int adapter_test(struct slgt_info *info) 5104 { 5105 DBGINFO(("testing %s\n", info->device_name)); 5106 if (register_test(info) < 0) { 5107 printk("register test failure %s addr=%08X\n", 5108 info->device_name, info->phys_reg_addr); 5109 } else if (irq_test(info) < 0) { 5110 printk("IRQ test failure %s IRQ=%d\n", 5111 info->device_name, info->irq_level); 5112 } else if (loopback_test(info) < 0) { 5113 printk("loopback test failure %s\n", info->device_name); 5114 } 5115 return info->init_error; 5116 } 5117 5118 /* 5119 * transmit timeout handler 5120 */ 5121 static void tx_timeout(unsigned long context) 5122 { 5123 struct slgt_info *info = (struct slgt_info*)context; 5124 unsigned long flags; 5125 5126 DBGINFO(("%s tx_timeout\n", info->device_name)); 5127 if(info->tx_active && info->params.mode == MGSL_MODE_HDLC) { 5128 info->icount.txtimeout++; 5129 } 5130 spin_lock_irqsave(&info->lock,flags); 5131 tx_stop(info); 5132 spin_unlock_irqrestore(&info->lock,flags); 5133 5134 #if SYNCLINK_GENERIC_HDLC 5135 if (info->netcount) 5136 hdlcdev_tx_done(info); 5137 else 5138 #endif 5139 bh_transmit(info); 5140 } 5141 5142 /* 5143 * receive buffer polling timer 5144 */ 5145 static void rx_timeout(unsigned long context) 5146 { 5147 struct slgt_info *info = (struct slgt_info*)context; 5148 unsigned long flags; 5149 5150 DBGINFO(("%s rx_timeout\n", info->device_name)); 5151 spin_lock_irqsave(&info->lock, flags); 5152 info->pending_bh |= BH_RECEIVE; 5153 spin_unlock_irqrestore(&info->lock, flags); 5154 bh_handler(&info->task); 5155 } 5156 5157