1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Freescale QUICC Engine UART device driver 4 * 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * Copyright 2007 Freescale Semiconductor, Inc. 8 * 9 * This driver adds support for UART devices via Freescale's QUICC Engine 10 * found on some Freescale SOCs. 11 * 12 * If Soft-UART support is needed but not already present, then this driver 13 * will request and upload the "Soft-UART" microcode upon probe. The 14 * filename of the microcode should be fsl_qe_ucode_uart_X_YZ.bin, where "X" 15 * is the name of the SOC (e.g. 8323), and YZ is the revision of the SOC, 16 * (e.g. "11" for 1.1). 17 */ 18 19 #include <linux/module.h> 20 #include <linux/platform_device.h> 21 #include <linux/serial.h> 22 #include <linux/serial_core.h> 23 #include <linux/slab.h> 24 #include <linux/tty.h> 25 #include <linux/tty_flip.h> 26 #include <linux/io.h> 27 #include <linux/of.h> 28 #include <linux/of_address.h> 29 #include <linux/of_irq.h> 30 #include <linux/dma-mapping.h> 31 32 #include <soc/fsl/qe/ucc_slow.h> 33 34 #include <linux/firmware.h> 35 #include <soc/fsl/cpm.h> 36 37 #ifdef CONFIG_PPC32 38 #include <asm/reg.h> /* mfspr, SPRN_SVR */ 39 #endif 40 41 /* 42 * The GUMR flag for Soft UART. This would normally be defined in qe.h, 43 * but Soft-UART is a hack and we want to keep everything related to it in 44 * this file. 45 */ 46 #define UCC_SLOW_GUMR_H_SUART 0x00004000 /* Soft-UART */ 47 48 /* 49 * soft_uart is 1 if we need to use Soft-UART mode 50 */ 51 static int soft_uart; 52 /* 53 * firmware_loaded is 1 if the firmware has been loaded, 0 otherwise. 54 */ 55 static int firmware_loaded; 56 57 /* Enable this macro to configure all serial ports in internal loopback 58 mode */ 59 /* #define LOOPBACK */ 60 61 /* The major and minor device numbers are defined in 62 * Documentation/admin-guide/devices.txt. For the QE 63 * UART, we have major number 204 and minor numbers 46 - 49, which are the 64 * same as for the CPM2. This decision was made because no Freescale part 65 * has both a CPM and a QE. 66 */ 67 #define SERIAL_QE_MAJOR 204 68 #define SERIAL_QE_MINOR 46 69 70 /* Since we only have minor numbers 46 - 49, there is a hard limit of 4 ports */ 71 #define UCC_MAX_UART 4 72 73 /* The number of buffer descriptors for receiving characters. */ 74 #define RX_NUM_FIFO 4 75 76 /* The number of buffer descriptors for transmitting characters. */ 77 #define TX_NUM_FIFO 4 78 79 /* The maximum size of the character buffer for a single RX BD. */ 80 #define RX_BUF_SIZE 32 81 82 /* The maximum size of the character buffer for a single TX BD. */ 83 #define TX_BUF_SIZE 32 84 85 /* 86 * The number of jiffies to wait after receiving a close command before the 87 * device is actually closed. This allows the last few characters to be 88 * sent over the wire. 89 */ 90 #define UCC_WAIT_CLOSING 100 91 92 struct ucc_uart_pram { 93 struct ucc_slow_pram common; 94 u8 res1[8]; /* reserved */ 95 __be16 maxidl; /* Maximum idle chars */ 96 __be16 idlc; /* temp idle counter */ 97 __be16 brkcr; /* Break count register */ 98 __be16 parec; /* receive parity error counter */ 99 __be16 frmec; /* receive framing error counter */ 100 __be16 nosec; /* receive noise counter */ 101 __be16 brkec; /* receive break condition counter */ 102 __be16 brkln; /* last received break length */ 103 __be16 uaddr[2]; /* UART address character 1 & 2 */ 104 __be16 rtemp; /* Temp storage */ 105 __be16 toseq; /* Transmit out of sequence char */ 106 __be16 cchars[8]; /* control characters 1-8 */ 107 __be16 rccm; /* receive control character mask */ 108 __be16 rccr; /* receive control character register */ 109 __be16 rlbc; /* receive last break character */ 110 __be16 res2; /* reserved */ 111 __be32 res3; /* reserved, should be cleared */ 112 u8 res4; /* reserved, should be cleared */ 113 u8 res5[3]; /* reserved, should be cleared */ 114 __be32 res6; /* reserved, should be cleared */ 115 __be32 res7; /* reserved, should be cleared */ 116 __be32 res8; /* reserved, should be cleared */ 117 __be32 res9; /* reserved, should be cleared */ 118 __be32 res10; /* reserved, should be cleared */ 119 __be32 res11; /* reserved, should be cleared */ 120 __be32 res12; /* reserved, should be cleared */ 121 __be32 res13; /* reserved, should be cleared */ 122 /* The rest is for Soft-UART only */ 123 __be16 supsmr; /* 0x90, Shadow UPSMR */ 124 __be16 res92; /* 0x92, reserved, initialize to 0 */ 125 __be32 rx_state; /* 0x94, RX state, initialize to 0 */ 126 __be32 rx_cnt; /* 0x98, RX count, initialize to 0 */ 127 u8 rx_length; /* 0x9C, Char length, set to 1+CL+PEN+1+SL */ 128 u8 rx_bitmark; /* 0x9D, reserved, initialize to 0 */ 129 u8 rx_temp_dlst_qe; /* 0x9E, reserved, initialize to 0 */ 130 u8 res14[0xBC - 0x9F]; /* reserved */ 131 __be32 dump_ptr; /* 0xBC, Dump pointer */ 132 __be32 rx_frame_rem; /* 0xC0, reserved, initialize to 0 */ 133 u8 rx_frame_rem_size; /* 0xC4, reserved, initialize to 0 */ 134 u8 tx_mode; /* 0xC5, mode, 0=AHDLC, 1=UART */ 135 __be16 tx_state; /* 0xC6, TX state */ 136 u8 res15[0xD0 - 0xC8]; /* reserved */ 137 __be32 resD0; /* 0xD0, reserved, initialize to 0 */ 138 u8 resD4; /* 0xD4, reserved, initialize to 0 */ 139 __be16 resD5; /* 0xD5, reserved, initialize to 0 */ 140 } __attribute__ ((packed)); 141 142 /* SUPSMR definitions, for Soft-UART only */ 143 #define UCC_UART_SUPSMR_SL 0x8000 144 #define UCC_UART_SUPSMR_RPM_MASK 0x6000 145 #define UCC_UART_SUPSMR_RPM_ODD 0x0000 146 #define UCC_UART_SUPSMR_RPM_LOW 0x2000 147 #define UCC_UART_SUPSMR_RPM_EVEN 0x4000 148 #define UCC_UART_SUPSMR_RPM_HIGH 0x6000 149 #define UCC_UART_SUPSMR_PEN 0x1000 150 #define UCC_UART_SUPSMR_TPM_MASK 0x0C00 151 #define UCC_UART_SUPSMR_TPM_ODD 0x0000 152 #define UCC_UART_SUPSMR_TPM_LOW 0x0400 153 #define UCC_UART_SUPSMR_TPM_EVEN 0x0800 154 #define UCC_UART_SUPSMR_TPM_HIGH 0x0C00 155 #define UCC_UART_SUPSMR_FRZ 0x0100 156 #define UCC_UART_SUPSMR_UM_MASK 0x00c0 157 #define UCC_UART_SUPSMR_UM_NORMAL 0x0000 158 #define UCC_UART_SUPSMR_UM_MAN_MULTI 0x0040 159 #define UCC_UART_SUPSMR_UM_AUTO_MULTI 0x00c0 160 #define UCC_UART_SUPSMR_CL_MASK 0x0030 161 #define UCC_UART_SUPSMR_CL_8 0x0030 162 #define UCC_UART_SUPSMR_CL_7 0x0020 163 #define UCC_UART_SUPSMR_CL_6 0x0010 164 #define UCC_UART_SUPSMR_CL_5 0x0000 165 166 #define UCC_UART_TX_STATE_AHDLC 0x00 167 #define UCC_UART_TX_STATE_UART 0x01 168 #define UCC_UART_TX_STATE_X1 0x00 169 #define UCC_UART_TX_STATE_X16 0x80 170 171 #define UCC_UART_PRAM_ALIGNMENT 0x100 172 173 #define UCC_UART_SIZE_OF_BD UCC_SLOW_SIZE_OF_BD 174 #define NUM_CONTROL_CHARS 8 175 176 /* Private per-port data structure */ 177 struct uart_qe_port { 178 struct uart_port port; 179 struct ucc_slow __iomem *uccp; 180 struct ucc_uart_pram __iomem *uccup; 181 struct ucc_slow_info us_info; 182 struct ucc_slow_private *us_private; 183 struct device_node *np; 184 unsigned int ucc_num; /* First ucc is 0, not 1 */ 185 186 u16 rx_nrfifos; 187 u16 rx_fifosize; 188 u16 tx_nrfifos; 189 u16 tx_fifosize; 190 int wait_closing; 191 u32 flags; 192 struct qe_bd __iomem *rx_bd_base; 193 struct qe_bd __iomem *rx_cur; 194 struct qe_bd __iomem *tx_bd_base; 195 struct qe_bd __iomem *tx_cur; 196 unsigned char *tx_buf; 197 unsigned char *rx_buf; 198 void *bd_virt; /* virtual address of the BD buffers */ 199 dma_addr_t bd_dma_addr; /* bus address of the BD buffers */ 200 unsigned int bd_size; /* size of BD buffer space */ 201 }; 202 203 static struct uart_driver ucc_uart_driver = { 204 .owner = THIS_MODULE, 205 .driver_name = "ucc_uart", 206 .dev_name = "ttyQE", 207 .major = SERIAL_QE_MAJOR, 208 .minor = SERIAL_QE_MINOR, 209 .nr = UCC_MAX_UART, 210 }; 211 212 /* 213 * Virtual to physical address translation. 214 * 215 * Given the virtual address for a character buffer, this function returns 216 * the physical (DMA) equivalent. 217 */ 218 static inline dma_addr_t cpu2qe_addr(void *addr, struct uart_qe_port *qe_port) 219 { 220 if (likely((addr >= qe_port->bd_virt)) && 221 (addr < (qe_port->bd_virt + qe_port->bd_size))) 222 return qe_port->bd_dma_addr + (addr - qe_port->bd_virt); 223 224 /* something nasty happened */ 225 printk(KERN_ERR "%s: addr=%p\n", __func__, addr); 226 BUG(); 227 return 0; 228 } 229 230 /* 231 * Physical to virtual address translation. 232 * 233 * Given the physical (DMA) address for a character buffer, this function 234 * returns the virtual equivalent. 235 */ 236 static inline void *qe2cpu_addr(dma_addr_t addr, struct uart_qe_port *qe_port) 237 { 238 /* sanity check */ 239 if (likely((addr >= qe_port->bd_dma_addr) && 240 (addr < (qe_port->bd_dma_addr + qe_port->bd_size)))) 241 return qe_port->bd_virt + (addr - qe_port->bd_dma_addr); 242 243 /* something nasty happened */ 244 printk(KERN_ERR "%s: addr=%llx\n", __func__, (u64)addr); 245 BUG(); 246 return NULL; 247 } 248 249 /* 250 * Return 1 if the QE is done transmitting all buffers for this port 251 * 252 * This function scans each BD in sequence. If we find a BD that is not 253 * ready (READY=1), then we return 0 indicating that the QE is still sending 254 * data. If we reach the last BD (WRAP=1), then we know we've scanned 255 * the entire list, and all BDs are done. 256 */ 257 static unsigned int qe_uart_tx_empty(struct uart_port *port) 258 { 259 struct uart_qe_port *qe_port = 260 container_of(port, struct uart_qe_port, port); 261 struct qe_bd __iomem *bdp = qe_port->tx_bd_base; 262 263 while (1) { 264 if (ioread16be(&bdp->status) & BD_SC_READY) 265 /* This BD is not done, so return "not done" */ 266 return 0; 267 268 if (ioread16be(&bdp->status) & BD_SC_WRAP) 269 /* 270 * This BD is done and it's the last one, so return 271 * "done" 272 */ 273 return 1; 274 275 bdp++; 276 } 277 } 278 279 /* 280 * Set the modem control lines 281 * 282 * Although the QE can control the modem control lines (e.g. CTS), we 283 * don't need that support. This function must exist, however, otherwise 284 * the kernel will panic. 285 */ 286 static void qe_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 287 { 288 } 289 290 /* 291 * Get the current modem control line status 292 * 293 * Although the QE can control the modem control lines (e.g. CTS), this 294 * driver currently doesn't support that, so we always return Carrier 295 * Detect, Data Set Ready, and Clear To Send. 296 */ 297 static unsigned int qe_uart_get_mctrl(struct uart_port *port) 298 { 299 return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS; 300 } 301 302 /* 303 * Disable the transmit interrupt. 304 * 305 * Although this function is called "stop_tx", it does not actually stop 306 * transmission of data. Instead, it tells the QE to not generate an 307 * interrupt when the UCC is finished sending characters. 308 */ 309 static void qe_uart_stop_tx(struct uart_port *port) 310 { 311 struct uart_qe_port *qe_port = 312 container_of(port, struct uart_qe_port, port); 313 314 qe_clrbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX); 315 } 316 317 /* 318 * Transmit as many characters to the HW as possible. 319 * 320 * This function will attempt to stuff of all the characters from the 321 * kernel's transmit buffer into TX BDs. 322 * 323 * A return value of non-zero indicates that it successfully stuffed all 324 * characters from the kernel buffer. 325 * 326 * A return value of zero indicates that there are still characters in the 327 * kernel's buffer that have not been transmitted, but there are no more BDs 328 * available. This function should be called again after a BD has been made 329 * available. 330 */ 331 static int qe_uart_tx_pump(struct uart_qe_port *qe_port) 332 { 333 struct qe_bd __iomem *bdp; 334 unsigned char *p; 335 unsigned int count; 336 struct uart_port *port = &qe_port->port; 337 struct tty_port *tport = &port->state->port; 338 339 /* Handle xon/xoff */ 340 if (port->x_char) { 341 /* Pick next descriptor and fill from buffer */ 342 bdp = qe_port->tx_cur; 343 344 p = qe2cpu_addr(ioread32be(&bdp->buf), qe_port); 345 346 *p++ = port->x_char; 347 iowrite16be(1, &bdp->length); 348 qe_setbits_be16(&bdp->status, BD_SC_READY); 349 /* Get next BD. */ 350 if (ioread16be(&bdp->status) & BD_SC_WRAP) 351 bdp = qe_port->tx_bd_base; 352 else 353 bdp++; 354 qe_port->tx_cur = bdp; 355 356 port->icount.tx++; 357 port->x_char = 0; 358 return 1; 359 } 360 361 if (kfifo_is_empty(&tport->xmit_fifo) || uart_tx_stopped(port)) { 362 qe_uart_stop_tx(port); 363 return 0; 364 } 365 366 /* Pick next descriptor and fill from buffer */ 367 bdp = qe_port->tx_cur; 368 369 while (!(ioread16be(&bdp->status) & BD_SC_READY) && 370 !kfifo_is_empty(&tport->xmit_fifo)) { 371 p = qe2cpu_addr(ioread32be(&bdp->buf), qe_port); 372 count = uart_fifo_out(port, p, qe_port->tx_fifosize); 373 374 iowrite16be(count, &bdp->length); 375 qe_setbits_be16(&bdp->status, BD_SC_READY); 376 377 /* Get next BD. */ 378 if (ioread16be(&bdp->status) & BD_SC_WRAP) 379 bdp = qe_port->tx_bd_base; 380 else 381 bdp++; 382 } 383 qe_port->tx_cur = bdp; 384 385 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 386 uart_write_wakeup(port); 387 388 if (kfifo_is_empty(&tport->xmit_fifo)) { 389 /* The kernel buffer is empty, so turn off TX interrupts. We 390 don't need to be told when the QE is finished transmitting 391 the data. */ 392 qe_uart_stop_tx(port); 393 return 0; 394 } 395 396 return 1; 397 } 398 399 /* 400 * Start transmitting data 401 * 402 * This function will start transmitting any available data, if the port 403 * isn't already transmitting data. 404 */ 405 static void qe_uart_start_tx(struct uart_port *port) 406 { 407 struct uart_qe_port *qe_port = 408 container_of(port, struct uart_qe_port, port); 409 410 /* If we currently are transmitting, then just return */ 411 if (ioread16be(&qe_port->uccp->uccm) & UCC_UART_UCCE_TX) 412 return; 413 414 /* Otherwise, pump the port and start transmission */ 415 if (qe_uart_tx_pump(qe_port)) 416 qe_setbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX); 417 } 418 419 /* 420 * Stop transmitting data 421 */ 422 static void qe_uart_stop_rx(struct uart_port *port) 423 { 424 struct uart_qe_port *qe_port = 425 container_of(port, struct uart_qe_port, port); 426 427 qe_clrbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX); 428 } 429 430 /* Start or stop sending break signal 431 * 432 * This function controls the sending of a break signal. If break_state=1, 433 * then we start sending a break signal. If break_state=0, then we stop 434 * sending the break signal. 435 */ 436 static void qe_uart_break_ctl(struct uart_port *port, int break_state) 437 { 438 struct uart_qe_port *qe_port = 439 container_of(port, struct uart_qe_port, port); 440 441 if (break_state) 442 ucc_slow_stop_tx(qe_port->us_private); 443 else 444 ucc_slow_restart_tx(qe_port->us_private); 445 } 446 447 /* ISR helper function for receiving character. 448 * 449 * This function is called by the ISR to handling receiving characters 450 */ 451 static void qe_uart_int_rx(struct uart_qe_port *qe_port) 452 { 453 int i; 454 unsigned char ch, *cp; 455 struct uart_port *port = &qe_port->port; 456 struct tty_port *tport = &port->state->port; 457 struct qe_bd __iomem *bdp; 458 u16 status; 459 unsigned int flg; 460 461 /* Just loop through the closed BDs and copy the characters into 462 * the buffer. 463 */ 464 bdp = qe_port->rx_cur; 465 while (1) { 466 status = ioread16be(&bdp->status); 467 468 /* If this one is empty, then we assume we've read them all */ 469 if (status & BD_SC_EMPTY) 470 break; 471 472 /* get number of characters, and check space in RX buffer */ 473 i = ioread16be(&bdp->length); 474 475 /* If we don't have enough room in RX buffer for the entire BD, 476 * then we try later, which will be the next RX interrupt. 477 */ 478 if (tty_buffer_request_room(tport, i) < i) { 479 dev_dbg(port->dev, "ucc-uart: no room in RX buffer\n"); 480 return; 481 } 482 483 /* get pointer */ 484 cp = qe2cpu_addr(ioread32be(&bdp->buf), qe_port); 485 486 /* loop through the buffer */ 487 while (i-- > 0) { 488 ch = *cp++; 489 port->icount.rx++; 490 flg = TTY_NORMAL; 491 492 if (!i && status & 493 (BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV)) 494 goto handle_error; 495 if (uart_handle_sysrq_char(port, ch)) 496 continue; 497 498 error_return: 499 tty_insert_flip_char(tport, ch, flg); 500 501 } 502 503 /* This BD is ready to be used again. Clear status. get next */ 504 qe_clrsetbits_be16(&bdp->status, 505 BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV | BD_SC_ID, 506 BD_SC_EMPTY); 507 if (ioread16be(&bdp->status) & BD_SC_WRAP) 508 bdp = qe_port->rx_bd_base; 509 else 510 bdp++; 511 512 } 513 514 /* Write back buffer pointer */ 515 qe_port->rx_cur = bdp; 516 517 /* Activate BH processing */ 518 tty_flip_buffer_push(tport); 519 520 return; 521 522 /* Error processing */ 523 524 handle_error: 525 /* Statistics */ 526 if (status & BD_SC_BR) 527 port->icount.brk++; 528 if (status & BD_SC_PR) 529 port->icount.parity++; 530 if (status & BD_SC_FR) 531 port->icount.frame++; 532 if (status & BD_SC_OV) 533 port->icount.overrun++; 534 535 /* Mask out ignored conditions */ 536 status &= port->read_status_mask; 537 538 /* Handle the remaining ones */ 539 if (status & BD_SC_BR) 540 flg = TTY_BREAK; 541 else if (status & BD_SC_PR) 542 flg = TTY_PARITY; 543 else if (status & BD_SC_FR) 544 flg = TTY_FRAME; 545 546 /* Overrun does not affect the current character ! */ 547 if (status & BD_SC_OV) 548 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 549 port->sysrq = 0; 550 goto error_return; 551 } 552 553 /* Interrupt handler 554 * 555 * This interrupt handler is called after a BD is processed. 556 */ 557 static irqreturn_t qe_uart_int(int irq, void *data) 558 { 559 struct uart_qe_port *qe_port = (struct uart_qe_port *) data; 560 struct ucc_slow __iomem *uccp = qe_port->uccp; 561 u16 events; 562 563 /* Clear the interrupts */ 564 events = ioread16be(&uccp->ucce); 565 iowrite16be(events, &uccp->ucce); 566 567 if (events & UCC_UART_UCCE_BRKE) 568 uart_handle_break(&qe_port->port); 569 570 if (events & UCC_UART_UCCE_RX) 571 qe_uart_int_rx(qe_port); 572 573 if (events & UCC_UART_UCCE_TX) 574 qe_uart_tx_pump(qe_port); 575 576 return events ? IRQ_HANDLED : IRQ_NONE; 577 } 578 579 /* Initialize buffer descriptors 580 * 581 * This function initializes all of the RX and TX buffer descriptors. 582 */ 583 static void qe_uart_initbd(struct uart_qe_port *qe_port) 584 { 585 int i; 586 void *bd_virt; 587 struct qe_bd __iomem *bdp; 588 589 /* Set the physical address of the host memory buffers in the buffer 590 * descriptors, and the virtual address for us to work with. 591 */ 592 bd_virt = qe_port->bd_virt; 593 bdp = qe_port->rx_bd_base; 594 qe_port->rx_cur = qe_port->rx_bd_base; 595 for (i = 0; i < (qe_port->rx_nrfifos - 1); i++) { 596 iowrite16be(BD_SC_EMPTY | BD_SC_INTRPT, &bdp->status); 597 iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf); 598 iowrite16be(0, &bdp->length); 599 bd_virt += qe_port->rx_fifosize; 600 bdp++; 601 } 602 603 /* */ 604 iowrite16be(BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT, &bdp->status); 605 iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf); 606 iowrite16be(0, &bdp->length); 607 608 /* Set the physical address of the host memory 609 * buffers in the buffer descriptors, and the 610 * virtual address for us to work with. 611 */ 612 bd_virt = qe_port->bd_virt + 613 L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize); 614 qe_port->tx_cur = qe_port->tx_bd_base; 615 bdp = qe_port->tx_bd_base; 616 for (i = 0; i < (qe_port->tx_nrfifos - 1); i++) { 617 iowrite16be(BD_SC_INTRPT, &bdp->status); 618 iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf); 619 iowrite16be(0, &bdp->length); 620 bd_virt += qe_port->tx_fifosize; 621 bdp++; 622 } 623 624 /* Loopback requires the preamble bit to be set on the first TX BD */ 625 #ifdef LOOPBACK 626 qe_setbits_be16(&qe_port->tx_cur->status, BD_SC_P); 627 #endif 628 629 iowrite16be(BD_SC_WRAP | BD_SC_INTRPT, &bdp->status); 630 iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf); 631 iowrite16be(0, &bdp->length); 632 } 633 634 /* 635 * Initialize a UCC for UART. 636 * 637 * This function configures a given UCC to be used as a UART device. Basic 638 * UCC initialization is handled in qe_uart_request_port(). This function 639 * does all the UART-specific stuff. 640 */ 641 static void qe_uart_init_ucc(struct uart_qe_port *qe_port) 642 { 643 u32 cecr_subblock; 644 struct ucc_slow __iomem *uccp = qe_port->uccp; 645 struct ucc_uart_pram __iomem *uccup = qe_port->uccup; 646 647 unsigned int i; 648 649 /* First, disable TX and RX in the UCC */ 650 ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX); 651 652 /* Program the UCC UART parameter RAM */ 653 iowrite8(UCC_BMR_GBL | UCC_BMR_BO_BE, &uccup->common.rbmr); 654 iowrite8(UCC_BMR_GBL | UCC_BMR_BO_BE, &uccup->common.tbmr); 655 iowrite16be(qe_port->rx_fifosize, &uccup->common.mrblr); 656 iowrite16be(0x10, &uccup->maxidl); 657 iowrite16be(1, &uccup->brkcr); 658 iowrite16be(0, &uccup->parec); 659 iowrite16be(0, &uccup->frmec); 660 iowrite16be(0, &uccup->nosec); 661 iowrite16be(0, &uccup->brkec); 662 iowrite16be(0, &uccup->uaddr[0]); 663 iowrite16be(0, &uccup->uaddr[1]); 664 iowrite16be(0, &uccup->toseq); 665 for (i = 0; i < 8; i++) 666 iowrite16be(0xC000, &uccup->cchars[i]); 667 iowrite16be(0xc0ff, &uccup->rccm); 668 669 /* Configure the GUMR registers for UART */ 670 if (soft_uart) { 671 /* Soft-UART requires a 1X multiplier for TX */ 672 qe_clrsetbits_be32(&uccp->gumr_l, 673 UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | UCC_SLOW_GUMR_L_RDCR_MASK, 674 UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_1 | UCC_SLOW_GUMR_L_RDCR_16); 675 676 qe_clrsetbits_be32(&uccp->gumr_h, UCC_SLOW_GUMR_H_RFW, 677 UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX); 678 } else { 679 qe_clrsetbits_be32(&uccp->gumr_l, 680 UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | UCC_SLOW_GUMR_L_RDCR_MASK, 681 UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_16 | UCC_SLOW_GUMR_L_RDCR_16); 682 683 qe_clrsetbits_be32(&uccp->gumr_h, 684 UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX, 685 UCC_SLOW_GUMR_H_RFW); 686 } 687 688 #ifdef LOOPBACK 689 qe_clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK, 690 UCC_SLOW_GUMR_L_DIAG_LOOP); 691 qe_clrsetbits_be32(&uccp->gumr_h, 692 UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_RSYN, 693 UCC_SLOW_GUMR_H_CDS); 694 #endif 695 696 /* Disable rx interrupts and clear all pending events. */ 697 iowrite16be(0, &uccp->uccm); 698 iowrite16be(0xffff, &uccp->ucce); 699 iowrite16be(0x7e7e, &uccp->udsr); 700 701 /* Initialize UPSMR */ 702 iowrite16be(0, &uccp->upsmr); 703 704 if (soft_uart) { 705 iowrite16be(0x30, &uccup->supsmr); 706 iowrite16be(0, &uccup->res92); 707 iowrite32be(0, &uccup->rx_state); 708 iowrite32be(0, &uccup->rx_cnt); 709 iowrite8(0, &uccup->rx_bitmark); 710 iowrite8(10, &uccup->rx_length); 711 iowrite32be(0x4000, &uccup->dump_ptr); 712 iowrite8(0, &uccup->rx_temp_dlst_qe); 713 iowrite32be(0, &uccup->rx_frame_rem); 714 iowrite8(0, &uccup->rx_frame_rem_size); 715 /* Soft-UART requires TX to be 1X */ 716 iowrite8(UCC_UART_TX_STATE_UART | UCC_UART_TX_STATE_X1, 717 &uccup->tx_mode); 718 iowrite16be(0, &uccup->tx_state); 719 iowrite8(0, &uccup->resD4); 720 iowrite16be(0, &uccup->resD5); 721 722 /* Set UART mode. 723 * Enable receive and transmit. 724 */ 725 726 /* From the microcode errata: 727 * 1.GUMR_L register, set mode=0010 (QMC). 728 * 2.Set GUMR_H[17] bit. (UART/AHDLC mode). 729 * 3.Set GUMR_H[19:20] (Transparent mode) 730 * 4.Clear GUMR_H[26] (RFW) 731 * ... 732 * 6.Receiver must use 16x over sampling 733 */ 734 qe_clrsetbits_be32(&uccp->gumr_l, 735 UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | UCC_SLOW_GUMR_L_RDCR_MASK, 736 UCC_SLOW_GUMR_L_MODE_QMC | UCC_SLOW_GUMR_L_TDCR_16 | UCC_SLOW_GUMR_L_RDCR_16); 737 738 qe_clrsetbits_be32(&uccp->gumr_h, 739 UCC_SLOW_GUMR_H_RFW | UCC_SLOW_GUMR_H_RSYN, 740 UCC_SLOW_GUMR_H_SUART | UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX | UCC_SLOW_GUMR_H_TFL); 741 742 #ifdef LOOPBACK 743 qe_clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK, 744 UCC_SLOW_GUMR_L_DIAG_LOOP); 745 qe_clrbits_be32(&uccp->gumr_h, 746 UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_CDS); 747 #endif 748 749 cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num); 750 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 751 QE_CR_PROTOCOL_UNSPECIFIED, 0); 752 } else { 753 cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num); 754 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 755 QE_CR_PROTOCOL_UART, 0); 756 } 757 } 758 759 /* 760 * Initialize the port. 761 */ 762 static int qe_uart_startup(struct uart_port *port) 763 { 764 struct uart_qe_port *qe_port = 765 container_of(port, struct uart_qe_port, port); 766 int ret; 767 768 /* 769 * If we're using Soft-UART mode, then we need to make sure the 770 * firmware has been uploaded first. 771 */ 772 if (soft_uart && !firmware_loaded) { 773 dev_err(port->dev, "Soft-UART firmware not uploaded\n"); 774 return -ENODEV; 775 } 776 777 qe_uart_initbd(qe_port); 778 qe_uart_init_ucc(qe_port); 779 780 /* Install interrupt handler. */ 781 ret = request_irq(port->irq, qe_uart_int, IRQF_SHARED, "ucc-uart", 782 qe_port); 783 if (ret) { 784 dev_err(port->dev, "could not claim IRQ %u\n", port->irq); 785 return ret; 786 } 787 788 /* Startup rx-int */ 789 qe_setbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX); 790 ucc_slow_enable(qe_port->us_private, COMM_DIR_RX_AND_TX); 791 792 return 0; 793 } 794 795 /* 796 * Shutdown the port. 797 */ 798 static void qe_uart_shutdown(struct uart_port *port) 799 { 800 struct uart_qe_port *qe_port = 801 container_of(port, struct uart_qe_port, port); 802 struct ucc_slow __iomem *uccp = qe_port->uccp; 803 unsigned int timeout = 20; 804 805 /* Disable RX and TX */ 806 807 /* Wait for all the BDs marked sent */ 808 while (!qe_uart_tx_empty(port)) { 809 if (!--timeout) { 810 dev_warn(port->dev, "shutdown timeout\n"); 811 break; 812 } 813 set_current_state(TASK_UNINTERRUPTIBLE); 814 schedule_timeout(2); 815 } 816 817 if (qe_port->wait_closing) { 818 /* Wait a bit longer */ 819 set_current_state(TASK_UNINTERRUPTIBLE); 820 schedule_timeout(qe_port->wait_closing); 821 } 822 823 /* Stop uarts */ 824 ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX); 825 qe_clrbits_be16(&uccp->uccm, UCC_UART_UCCE_TX | UCC_UART_UCCE_RX); 826 827 /* Shut them really down and reinit buffer descriptors */ 828 ucc_slow_graceful_stop_tx(qe_port->us_private); 829 qe_uart_initbd(qe_port); 830 831 free_irq(port->irq, qe_port); 832 } 833 834 /* 835 * Set the serial port parameters. 836 */ 837 static void qe_uart_set_termios(struct uart_port *port, 838 struct ktermios *termios, 839 const struct ktermios *old) 840 { 841 struct uart_qe_port *qe_port = 842 container_of(port, struct uart_qe_port, port); 843 struct ucc_slow __iomem *uccp = qe_port->uccp; 844 unsigned int baud; 845 unsigned long flags; 846 u16 upsmr = ioread16be(&uccp->upsmr); 847 struct ucc_uart_pram __iomem *uccup = qe_port->uccup; 848 u16 supsmr = ioread16be(&uccup->supsmr); 849 850 /* byte size */ 851 upsmr &= UCC_UART_UPSMR_CL_MASK; 852 supsmr &= UCC_UART_SUPSMR_CL_MASK; 853 854 switch (termios->c_cflag & CSIZE) { 855 case CS5: 856 upsmr |= UCC_UART_UPSMR_CL_5; 857 supsmr |= UCC_UART_SUPSMR_CL_5; 858 break; 859 case CS6: 860 upsmr |= UCC_UART_UPSMR_CL_6; 861 supsmr |= UCC_UART_SUPSMR_CL_6; 862 break; 863 case CS7: 864 upsmr |= UCC_UART_UPSMR_CL_7; 865 supsmr |= UCC_UART_SUPSMR_CL_7; 866 break; 867 default: /* case CS8 */ 868 upsmr |= UCC_UART_UPSMR_CL_8; 869 supsmr |= UCC_UART_SUPSMR_CL_8; 870 break; 871 } 872 873 /* If CSTOPB is set, we want two stop bits */ 874 if (termios->c_cflag & CSTOPB) { 875 upsmr |= UCC_UART_UPSMR_SL; 876 supsmr |= UCC_UART_SUPSMR_SL; 877 } 878 879 if (termios->c_cflag & PARENB) { 880 upsmr |= UCC_UART_UPSMR_PEN; 881 supsmr |= UCC_UART_SUPSMR_PEN; 882 883 if (!(termios->c_cflag & PARODD)) { 884 upsmr &= ~(UCC_UART_UPSMR_RPM_MASK | 885 UCC_UART_UPSMR_TPM_MASK); 886 upsmr |= UCC_UART_UPSMR_RPM_EVEN | 887 UCC_UART_UPSMR_TPM_EVEN; 888 supsmr &= ~(UCC_UART_SUPSMR_RPM_MASK | 889 UCC_UART_SUPSMR_TPM_MASK); 890 supsmr |= UCC_UART_SUPSMR_RPM_EVEN | 891 UCC_UART_SUPSMR_TPM_EVEN; 892 } 893 } 894 895 /* 896 * Set up parity check flag 897 */ 898 port->read_status_mask = BD_SC_EMPTY | BD_SC_OV; 899 if (termios->c_iflag & INPCK) 900 port->read_status_mask |= BD_SC_FR | BD_SC_PR; 901 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 902 port->read_status_mask |= BD_SC_BR; 903 904 /* 905 * Characters to ignore 906 */ 907 port->ignore_status_mask = 0; 908 if (termios->c_iflag & IGNPAR) 909 port->ignore_status_mask |= BD_SC_PR | BD_SC_FR; 910 if (termios->c_iflag & IGNBRK) { 911 port->ignore_status_mask |= BD_SC_BR; 912 /* 913 * If we're ignore parity and break indicators, ignore 914 * overruns too. (For real raw support). 915 */ 916 if (termios->c_iflag & IGNPAR) 917 port->ignore_status_mask |= BD_SC_OV; 918 } 919 /* 920 * !!! ignore all characters if CREAD is not set 921 */ 922 if ((termios->c_cflag & CREAD) == 0) 923 port->read_status_mask &= ~BD_SC_EMPTY; 924 925 baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16); 926 927 /* Do we really need a spinlock here? */ 928 uart_port_lock_irqsave(port, &flags); 929 930 /* Update the per-port timeout. */ 931 uart_update_timeout(port, termios->c_cflag, baud); 932 933 iowrite16be(upsmr, &uccp->upsmr); 934 if (soft_uart) { 935 iowrite16be(supsmr, &uccup->supsmr); 936 iowrite8(tty_get_frame_size(termios->c_cflag), &uccup->rx_length); 937 938 /* Soft-UART requires a 1X multiplier for TX */ 939 qe_setbrg(qe_port->us_info.rx_clock, baud, 16); 940 qe_setbrg(qe_port->us_info.tx_clock, baud, 1); 941 } else { 942 qe_setbrg(qe_port->us_info.rx_clock, baud, 16); 943 qe_setbrg(qe_port->us_info.tx_clock, baud, 16); 944 } 945 946 uart_port_unlock_irqrestore(port, flags); 947 } 948 949 /* 950 * Return a pointer to a string that describes what kind of port this is. 951 */ 952 static const char *qe_uart_type(struct uart_port *port) 953 { 954 return "QE"; 955 } 956 957 /* 958 * Allocate any memory and I/O resources required by the port. 959 */ 960 static int qe_uart_request_port(struct uart_port *port) 961 { 962 int ret; 963 struct uart_qe_port *qe_port = 964 container_of(port, struct uart_qe_port, port); 965 struct ucc_slow_info *us_info = &qe_port->us_info; 966 struct ucc_slow_private *uccs; 967 unsigned int rx_size, tx_size; 968 void *bd_virt; 969 dma_addr_t bd_dma_addr = 0; 970 971 ret = ucc_slow_init(us_info, &uccs); 972 if (ret) { 973 dev_err(port->dev, "could not initialize UCC%u\n", 974 qe_port->ucc_num); 975 return ret; 976 } 977 978 qe_port->us_private = uccs; 979 qe_port->uccp = uccs->us_regs; 980 qe_port->uccup = (struct ucc_uart_pram __iomem *)uccs->us_pram; 981 qe_port->rx_bd_base = uccs->rx_bd; 982 qe_port->tx_bd_base = uccs->tx_bd; 983 984 /* 985 * Allocate the transmit and receive data buffers. 986 */ 987 988 rx_size = L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize); 989 tx_size = L1_CACHE_ALIGN(qe_port->tx_nrfifos * qe_port->tx_fifosize); 990 991 bd_virt = dma_alloc_coherent(port->dev, rx_size + tx_size, &bd_dma_addr, 992 GFP_KERNEL); 993 if (!bd_virt) { 994 dev_err(port->dev, "could not allocate buffer descriptors\n"); 995 return -ENOMEM; 996 } 997 998 qe_port->bd_virt = bd_virt; 999 qe_port->bd_dma_addr = bd_dma_addr; 1000 qe_port->bd_size = rx_size + tx_size; 1001 1002 qe_port->rx_buf = bd_virt; 1003 qe_port->tx_buf = qe_port->rx_buf + rx_size; 1004 1005 return 0; 1006 } 1007 1008 /* 1009 * Configure the port. 1010 * 1011 * We say we're a CPM-type port because that's mostly true. Once the device 1012 * is configured, this driver operates almost identically to the CPM serial 1013 * driver. 1014 */ 1015 static void qe_uart_config_port(struct uart_port *port, int flags) 1016 { 1017 if (flags & UART_CONFIG_TYPE) { 1018 port->type = PORT_CPM; 1019 qe_uart_request_port(port); 1020 } 1021 } 1022 1023 /* 1024 * Release any memory and I/O resources that were allocated in 1025 * qe_uart_request_port(). 1026 */ 1027 static void qe_uart_release_port(struct uart_port *port) 1028 { 1029 struct uart_qe_port *qe_port = 1030 container_of(port, struct uart_qe_port, port); 1031 struct ucc_slow_private *uccs = qe_port->us_private; 1032 1033 dma_free_coherent(port->dev, qe_port->bd_size, qe_port->bd_virt, 1034 qe_port->bd_dma_addr); 1035 1036 ucc_slow_free(uccs); 1037 } 1038 1039 /* 1040 * Verify that the data in serial_struct is suitable for this device. 1041 */ 1042 static int qe_uart_verify_port(struct uart_port *port, 1043 struct serial_struct *ser) 1044 { 1045 if (ser->type != PORT_UNKNOWN && ser->type != PORT_CPM) 1046 return -EINVAL; 1047 1048 if (ser->irq < 0 || ser->irq >= irq_get_nr_irqs()) 1049 return -EINVAL; 1050 1051 if (ser->baud_base < 9600) 1052 return -EINVAL; 1053 1054 return 0; 1055 } 1056 /* UART operations 1057 * 1058 * Details on these functions can be found in Documentation/driver-api/serial/driver.rst 1059 */ 1060 static const struct uart_ops qe_uart_pops = { 1061 .tx_empty = qe_uart_tx_empty, 1062 .set_mctrl = qe_uart_set_mctrl, 1063 .get_mctrl = qe_uart_get_mctrl, 1064 .stop_tx = qe_uart_stop_tx, 1065 .start_tx = qe_uart_start_tx, 1066 .stop_rx = qe_uart_stop_rx, 1067 .break_ctl = qe_uart_break_ctl, 1068 .startup = qe_uart_startup, 1069 .shutdown = qe_uart_shutdown, 1070 .set_termios = qe_uart_set_termios, 1071 .type = qe_uart_type, 1072 .release_port = qe_uart_release_port, 1073 .request_port = qe_uart_request_port, 1074 .config_port = qe_uart_config_port, 1075 .verify_port = qe_uart_verify_port, 1076 }; 1077 1078 1079 #ifdef CONFIG_PPC32 1080 /* 1081 * Obtain the SOC model number and revision level 1082 * 1083 * This function parses the device tree to obtain the SOC model. It then 1084 * reads the SVR register to the revision. 1085 * 1086 * The device tree stores the SOC model two different ways. 1087 * 1088 * The new way is: 1089 * 1090 * cpu@0 { 1091 * compatible = "PowerPC,8323"; 1092 * device_type = "cpu"; 1093 * ... 1094 * 1095 * 1096 * The old way is: 1097 * PowerPC,8323@0 { 1098 * device_type = "cpu"; 1099 * ... 1100 * 1101 * This code first checks the new way, and then the old way. 1102 */ 1103 static unsigned int soc_info(unsigned int *rev_h, unsigned int *rev_l) 1104 { 1105 struct device_node *np; 1106 const char *soc_string; 1107 unsigned int svr; 1108 unsigned int soc; 1109 1110 /* Find the CPU node */ 1111 np = of_find_node_by_type(NULL, "cpu"); 1112 if (!np) 1113 return 0; 1114 /* Find the compatible property */ 1115 soc_string = of_get_property(np, "compatible", NULL); 1116 if (!soc_string) 1117 /* No compatible property, so try the name. */ 1118 soc_string = np->name; 1119 1120 of_node_put(np); 1121 1122 /* Extract the SOC number from the "PowerPC," string */ 1123 if ((sscanf(soc_string, "PowerPC,%u", &soc) != 1) || !soc) 1124 return 0; 1125 1126 /* Get the revision from the SVR */ 1127 svr = mfspr(SPRN_SVR); 1128 *rev_h = (svr >> 4) & 0xf; 1129 *rev_l = svr & 0xf; 1130 1131 return soc; 1132 } 1133 1134 /* 1135 * requst_firmware_nowait() callback function 1136 * 1137 * This function is called by the kernel when a firmware is made available, 1138 * or if it times out waiting for the firmware. 1139 */ 1140 static void uart_firmware_cont(const struct firmware *fw, void *context) 1141 { 1142 struct qe_firmware *firmware; 1143 struct device *dev = context; 1144 int ret; 1145 1146 if (!fw) { 1147 dev_err(dev, "firmware not found\n"); 1148 return; 1149 } 1150 1151 firmware = (struct qe_firmware *) fw->data; 1152 1153 if (be32_to_cpu(firmware->header.length) != fw->size) { 1154 dev_err(dev, "invalid firmware\n"); 1155 goto out; 1156 } 1157 1158 ret = qe_upload_firmware(firmware); 1159 if (ret) { 1160 dev_err(dev, "could not load firmware\n"); 1161 goto out; 1162 } 1163 1164 firmware_loaded = 1; 1165 out: 1166 release_firmware(fw); 1167 } 1168 1169 static int soft_uart_init(struct platform_device *ofdev) 1170 { 1171 struct device_node *np = ofdev->dev.of_node; 1172 struct qe_firmware_info *qe_fw_info; 1173 int ret; 1174 1175 if (of_property_read_bool(np, "soft-uart")) { 1176 dev_dbg(&ofdev->dev, "using Soft-UART mode\n"); 1177 soft_uart = 1; 1178 } else { 1179 return 0; 1180 } 1181 1182 qe_fw_info = qe_get_firmware_info(); 1183 1184 /* Check if the firmware has been uploaded. */ 1185 if (qe_fw_info && strstr(qe_fw_info->id, "Soft-UART")) { 1186 firmware_loaded = 1; 1187 } else { 1188 char filename[32]; 1189 unsigned int soc; 1190 unsigned int rev_h; 1191 unsigned int rev_l; 1192 1193 soc = soc_info(&rev_h, &rev_l); 1194 if (!soc) { 1195 dev_err(&ofdev->dev, "unknown CPU model\n"); 1196 return -ENXIO; 1197 } 1198 sprintf(filename, "fsl_qe_ucode_uart_%u_%u%u.bin", 1199 soc, rev_h, rev_l); 1200 1201 dev_info(&ofdev->dev, "waiting for firmware %s\n", 1202 filename); 1203 1204 /* 1205 * We call request_firmware_nowait instead of 1206 * request_firmware so that the driver can load and 1207 * initialize the ports without holding up the rest of 1208 * the kernel. If hotplug support is enabled in the 1209 * kernel, then we use it. 1210 */ 1211 ret = request_firmware_nowait(THIS_MODULE, 1212 FW_ACTION_UEVENT, filename, &ofdev->dev, 1213 GFP_KERNEL, &ofdev->dev, uart_firmware_cont); 1214 if (ret) { 1215 dev_err(&ofdev->dev, 1216 "could not load firmware %s\n", 1217 filename); 1218 return ret; 1219 } 1220 } 1221 return 0; 1222 } 1223 1224 #else /* !CONFIG_PPC32 */ 1225 1226 static int soft_uart_init(struct platform_device *ofdev) 1227 { 1228 return 0; 1229 } 1230 1231 #endif 1232 1233 1234 static int ucc_uart_probe(struct platform_device *ofdev) 1235 { 1236 struct device_node *np = ofdev->dev.of_node; 1237 const char *sprop; /* String OF properties */ 1238 struct uart_qe_port *qe_port = NULL; 1239 struct resource res; 1240 u32 val; 1241 int ret; 1242 1243 /* 1244 * Determine if we need Soft-UART mode 1245 */ 1246 ret = soft_uart_init(ofdev); 1247 if (ret) 1248 return ret; 1249 1250 qe_port = kzalloc(sizeof(struct uart_qe_port), GFP_KERNEL); 1251 if (!qe_port) { 1252 dev_err(&ofdev->dev, "can't allocate QE port structure\n"); 1253 return -ENOMEM; 1254 } 1255 1256 /* Search for IRQ and mapbase */ 1257 ret = of_address_to_resource(np, 0, &res); 1258 if (ret) { 1259 dev_err(&ofdev->dev, "missing 'reg' property in device tree\n"); 1260 goto out_free; 1261 } 1262 if (!res.start) { 1263 dev_err(&ofdev->dev, "invalid 'reg' property in device tree\n"); 1264 ret = -EINVAL; 1265 goto out_free; 1266 } 1267 qe_port->port.mapbase = res.start; 1268 1269 /* Get the UCC number (device ID) */ 1270 /* UCCs are numbered 1-7 */ 1271 if (of_property_read_u32(np, "cell-index", &val)) { 1272 if (of_property_read_u32(np, "device-id", &val)) { 1273 dev_err(&ofdev->dev, "UCC is unspecified in device tree\n"); 1274 ret = -EINVAL; 1275 goto out_free; 1276 } 1277 } 1278 1279 if (val < 1 || val > UCC_MAX_NUM) { 1280 dev_err(&ofdev->dev, "no support for UCC%u\n", val); 1281 ret = -ENODEV; 1282 goto out_free; 1283 } 1284 qe_port->ucc_num = val - 1; 1285 1286 /* 1287 * In the future, we should not require the BRG to be specified in the 1288 * device tree. If no clock-source is specified, then just pick a BRG 1289 * to use. This requires a new QE library function that manages BRG 1290 * assignments. 1291 */ 1292 1293 sprop = of_get_property(np, "rx-clock-name", NULL); 1294 if (!sprop) { 1295 dev_err(&ofdev->dev, "missing rx-clock-name in device tree\n"); 1296 ret = -ENODEV; 1297 goto out_free; 1298 } 1299 1300 qe_port->us_info.rx_clock = qe_clock_source(sprop); 1301 if ((qe_port->us_info.rx_clock < QE_BRG1) || 1302 (qe_port->us_info.rx_clock > QE_BRG16)) { 1303 dev_err(&ofdev->dev, "rx-clock-name must be a BRG for UART\n"); 1304 ret = -ENODEV; 1305 goto out_free; 1306 } 1307 1308 #ifdef LOOPBACK 1309 /* In internal loopback mode, TX and RX must use the same clock */ 1310 qe_port->us_info.tx_clock = qe_port->us_info.rx_clock; 1311 #else 1312 sprop = of_get_property(np, "tx-clock-name", NULL); 1313 if (!sprop) { 1314 dev_err(&ofdev->dev, "missing tx-clock-name in device tree\n"); 1315 ret = -ENODEV; 1316 goto out_free; 1317 } 1318 qe_port->us_info.tx_clock = qe_clock_source(sprop); 1319 #endif 1320 if ((qe_port->us_info.tx_clock < QE_BRG1) || 1321 (qe_port->us_info.tx_clock > QE_BRG16)) { 1322 dev_err(&ofdev->dev, "tx-clock-name must be a BRG for UART\n"); 1323 ret = -ENODEV; 1324 goto out_free; 1325 } 1326 1327 /* Get the port number, numbered 0-3 */ 1328 if (of_property_read_u32(np, "port-number", &val)) { 1329 dev_err(&ofdev->dev, "missing port-number in device tree\n"); 1330 ret = -EINVAL; 1331 goto out_free; 1332 } 1333 qe_port->port.line = val; 1334 if (qe_port->port.line >= UCC_MAX_UART) { 1335 dev_err(&ofdev->dev, "port-number must be 0-%u\n", 1336 UCC_MAX_UART - 1); 1337 ret = -EINVAL; 1338 goto out_free; 1339 } 1340 1341 qe_port->port.irq = irq_of_parse_and_map(np, 0); 1342 if (qe_port->port.irq == 0) { 1343 dev_err(&ofdev->dev, "could not map IRQ for UCC%u\n", 1344 qe_port->ucc_num + 1); 1345 ret = -EINVAL; 1346 goto out_free; 1347 } 1348 1349 /* 1350 * Newer device trees have an "fsl,qe" compatible property for the QE 1351 * node, but we still need to support older device trees. 1352 */ 1353 np = of_find_compatible_node(NULL, NULL, "fsl,qe"); 1354 if (!np) { 1355 np = of_find_node_by_type(NULL, "qe"); 1356 if (!np) { 1357 dev_err(&ofdev->dev, "could not find 'qe' node\n"); 1358 ret = -EINVAL; 1359 goto out_free; 1360 } 1361 } 1362 1363 if (of_property_read_u32(np, "brg-frequency", &val)) { 1364 dev_err(&ofdev->dev, 1365 "missing brg-frequency in device tree\n"); 1366 ret = -EINVAL; 1367 goto out_np; 1368 } 1369 1370 if (val) 1371 qe_port->port.uartclk = val; 1372 else { 1373 if (!IS_ENABLED(CONFIG_PPC32)) { 1374 dev_err(&ofdev->dev, 1375 "invalid brg-frequency in device tree\n"); 1376 ret = -EINVAL; 1377 goto out_np; 1378 } 1379 1380 /* 1381 * Older versions of U-Boot do not initialize the brg-frequency 1382 * property, so in this case we assume the BRG frequency is 1383 * half the QE bus frequency. 1384 */ 1385 if (of_property_read_u32(np, "bus-frequency", &val)) { 1386 dev_err(&ofdev->dev, 1387 "missing QE bus-frequency in device tree\n"); 1388 ret = -EINVAL; 1389 goto out_np; 1390 } 1391 if (val) 1392 qe_port->port.uartclk = val / 2; 1393 else { 1394 dev_err(&ofdev->dev, 1395 "invalid QE bus-frequency in device tree\n"); 1396 ret = -EINVAL; 1397 goto out_np; 1398 } 1399 } 1400 1401 spin_lock_init(&qe_port->port.lock); 1402 qe_port->np = np; 1403 qe_port->port.dev = &ofdev->dev; 1404 qe_port->port.ops = &qe_uart_pops; 1405 qe_port->port.iotype = UPIO_MEM; 1406 1407 qe_port->tx_nrfifos = TX_NUM_FIFO; 1408 qe_port->tx_fifosize = TX_BUF_SIZE; 1409 qe_port->rx_nrfifos = RX_NUM_FIFO; 1410 qe_port->rx_fifosize = RX_BUF_SIZE; 1411 1412 qe_port->wait_closing = UCC_WAIT_CLOSING; 1413 qe_port->port.fifosize = 512; 1414 qe_port->port.flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP; 1415 1416 qe_port->us_info.ucc_num = qe_port->ucc_num; 1417 qe_port->us_info.regs = (phys_addr_t) res.start; 1418 qe_port->us_info.irq = qe_port->port.irq; 1419 1420 qe_port->us_info.rx_bd_ring_len = qe_port->rx_nrfifos; 1421 qe_port->us_info.tx_bd_ring_len = qe_port->tx_nrfifos; 1422 1423 /* Make sure ucc_slow_init() initializes both TX and RX */ 1424 qe_port->us_info.init_tx = 1; 1425 qe_port->us_info.init_rx = 1; 1426 1427 /* Add the port to the uart sub-system. This will cause 1428 * qe_uart_config_port() to be called, so the us_info structure must 1429 * be initialized. 1430 */ 1431 ret = uart_add_one_port(&ucc_uart_driver, &qe_port->port); 1432 if (ret) { 1433 dev_err(&ofdev->dev, "could not add /dev/ttyQE%u\n", 1434 qe_port->port.line); 1435 goto out_np; 1436 } 1437 1438 platform_set_drvdata(ofdev, qe_port); 1439 1440 dev_info(&ofdev->dev, "UCC%u assigned to /dev/ttyQE%u\n", 1441 qe_port->ucc_num + 1, qe_port->port.line); 1442 1443 /* Display the mknod command for this device */ 1444 dev_dbg(&ofdev->dev, "mknod command is 'mknod /dev/ttyQE%u c %u %u'\n", 1445 qe_port->port.line, SERIAL_QE_MAJOR, 1446 SERIAL_QE_MINOR + qe_port->port.line); 1447 1448 return 0; 1449 out_np: 1450 of_node_put(np); 1451 out_free: 1452 kfree(qe_port); 1453 return ret; 1454 } 1455 1456 static void ucc_uart_remove(struct platform_device *ofdev) 1457 { 1458 struct uart_qe_port *qe_port = platform_get_drvdata(ofdev); 1459 1460 dev_info(&ofdev->dev, "removing /dev/ttyQE%u\n", qe_port->port.line); 1461 1462 uart_remove_one_port(&ucc_uart_driver, &qe_port->port); 1463 1464 of_node_put(qe_port->np); 1465 1466 kfree(qe_port); 1467 } 1468 1469 static const struct of_device_id ucc_uart_match[] = { 1470 { 1471 .type = "serial", 1472 .compatible = "ucc_uart", 1473 }, 1474 { 1475 .compatible = "fsl,t1040-ucc-uart", 1476 }, 1477 {}, 1478 }; 1479 MODULE_DEVICE_TABLE(of, ucc_uart_match); 1480 1481 static struct platform_driver ucc_uart_of_driver = { 1482 .driver = { 1483 .name = "ucc_uart", 1484 .of_match_table = ucc_uart_match, 1485 }, 1486 .probe = ucc_uart_probe, 1487 .remove_new = ucc_uart_remove, 1488 }; 1489 1490 static int __init ucc_uart_init(void) 1491 { 1492 int ret; 1493 1494 printk(KERN_INFO "Freescale QUICC Engine UART device driver\n"); 1495 #ifdef LOOPBACK 1496 printk(KERN_INFO "ucc-uart: Using loopback mode\n"); 1497 #endif 1498 1499 ret = uart_register_driver(&ucc_uart_driver); 1500 if (ret) { 1501 printk(KERN_ERR "ucc-uart: could not register UART driver\n"); 1502 return ret; 1503 } 1504 1505 ret = platform_driver_register(&ucc_uart_of_driver); 1506 if (ret) { 1507 printk(KERN_ERR 1508 "ucc-uart: could not register platform driver\n"); 1509 uart_unregister_driver(&ucc_uart_driver); 1510 } 1511 1512 return ret; 1513 } 1514 1515 static void __exit ucc_uart_exit(void) 1516 { 1517 printk(KERN_INFO 1518 "Freescale QUICC Engine UART device driver unloading\n"); 1519 1520 platform_driver_unregister(&ucc_uart_of_driver); 1521 uart_unregister_driver(&ucc_uart_driver); 1522 } 1523 1524 module_init(ucc_uart_init); 1525 module_exit(ucc_uart_exit); 1526 1527 MODULE_DESCRIPTION("Freescale QUICC Engine (QE) UART"); 1528 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 1529 MODULE_LICENSE("GPL v2"); 1530 MODULE_ALIAS_CHARDEV_MAJOR(SERIAL_QE_MAJOR); 1531 1532