1 /* 2 * Freescale QUICC Engine UART device driver 3 * 4 * Author: Timur Tabi <timur@freescale.com> 5 * 6 * Copyright 2007 Freescale Semiconductor, Inc. This file is licensed under 7 * the terms of the GNU General Public License version 2. This program 8 * is licensed "as is" without any warranty of any kind, whether express 9 * or implied. 10 * 11 * This driver adds support for UART devices via Freescale's QUICC Engine 12 * found on some Freescale SOCs. 13 * 14 * If Soft-UART support is needed but not already present, then this driver 15 * will request and upload the "Soft-UART" microcode upon probe. The 16 * filename of the microcode should be fsl_qe_ucode_uart_X_YZ.bin, where "X" 17 * is the name of the SOC (e.g. 8323), and YZ is the revision of the SOC, 18 * (e.g. "11" for 1.1). 19 */ 20 21 #include <linux/module.h> 22 #include <linux/serial.h> 23 #include <linux/serial_core.h> 24 #include <linux/slab.h> 25 #include <linux/tty.h> 26 #include <linux/tty_flip.h> 27 #include <linux/io.h> 28 #include <linux/of_address.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_platform.h> 31 #include <linux/dma-mapping.h> 32 33 #include <linux/fs_uart_pd.h> 34 #include <soc/fsl/qe/ucc_slow.h> 35 36 #include <linux/firmware.h> 37 #include <asm/reg.h> 38 39 /* 40 * The GUMR flag for Soft UART. This would normally be defined in qe.h, 41 * but Soft-UART is a hack and we want to keep everything related to it in 42 * this file. 43 */ 44 #define UCC_SLOW_GUMR_H_SUART 0x00004000 /* Soft-UART */ 45 46 /* 47 * soft_uart is 1 if we need to use Soft-UART mode 48 */ 49 static int soft_uart; 50 /* 51 * firmware_loaded is 1 if the firmware has been loaded, 0 otherwise. 52 */ 53 static int firmware_loaded; 54 55 /* Enable this macro to configure all serial ports in internal loopback 56 mode */ 57 /* #define LOOPBACK */ 58 59 /* The major and minor device numbers are defined in 60 * http://www.lanana.org/docs/device-list/devices-2.6+.txt. For the QE 61 * UART, we have major number 204 and minor numbers 46 - 49, which are the 62 * same as for the CPM2. This decision was made because no Freescale part 63 * has both a CPM and a QE. 64 */ 65 #define SERIAL_QE_MAJOR 204 66 #define SERIAL_QE_MINOR 46 67 68 /* Since we only have minor numbers 46 - 49, there is a hard limit of 4 ports */ 69 #define UCC_MAX_UART 4 70 71 /* The number of buffer descriptors for receiving characters. */ 72 #define RX_NUM_FIFO 4 73 74 /* The number of buffer descriptors for transmitting characters. */ 75 #define TX_NUM_FIFO 4 76 77 /* The maximum size of the character buffer for a single RX BD. */ 78 #define RX_BUF_SIZE 32 79 80 /* The maximum size of the character buffer for a single TX BD. */ 81 #define TX_BUF_SIZE 32 82 83 /* 84 * The number of jiffies to wait after receiving a close command before the 85 * device is actually closed. This allows the last few characters to be 86 * sent over the wire. 87 */ 88 #define UCC_WAIT_CLOSING 100 89 90 struct ucc_uart_pram { 91 struct ucc_slow_pram common; 92 u8 res1[8]; /* reserved */ 93 __be16 maxidl; /* Maximum idle chars */ 94 __be16 idlc; /* temp idle counter */ 95 __be16 brkcr; /* Break count register */ 96 __be16 parec; /* receive parity error counter */ 97 __be16 frmec; /* receive framing error counter */ 98 __be16 nosec; /* receive noise counter */ 99 __be16 brkec; /* receive break condition counter */ 100 __be16 brkln; /* last received break length */ 101 __be16 uaddr[2]; /* UART address character 1 & 2 */ 102 __be16 rtemp; /* Temp storage */ 103 __be16 toseq; /* Transmit out of sequence char */ 104 __be16 cchars[8]; /* control characters 1-8 */ 105 __be16 rccm; /* receive control character mask */ 106 __be16 rccr; /* receive control character register */ 107 __be16 rlbc; /* receive last break character */ 108 __be16 res2; /* reserved */ 109 __be32 res3; /* reserved, should be cleared */ 110 u8 res4; /* reserved, should be cleared */ 111 u8 res5[3]; /* reserved, should be cleared */ 112 __be32 res6; /* reserved, should be cleared */ 113 __be32 res7; /* reserved, should be cleared */ 114 __be32 res8; /* reserved, should be cleared */ 115 __be32 res9; /* reserved, should be cleared */ 116 __be32 res10; /* reserved, should be cleared */ 117 __be32 res11; /* reserved, should be cleared */ 118 __be32 res12; /* reserved, should be cleared */ 119 __be32 res13; /* reserved, should be cleared */ 120 /* The rest is for Soft-UART only */ 121 __be16 supsmr; /* 0x90, Shadow UPSMR */ 122 __be16 res92; /* 0x92, reserved, initialize to 0 */ 123 __be32 rx_state; /* 0x94, RX state, initialize to 0 */ 124 __be32 rx_cnt; /* 0x98, RX count, initialize to 0 */ 125 u8 rx_length; /* 0x9C, Char length, set to 1+CL+PEN+1+SL */ 126 u8 rx_bitmark; /* 0x9D, reserved, initialize to 0 */ 127 u8 rx_temp_dlst_qe; /* 0x9E, reserved, initialize to 0 */ 128 u8 res14[0xBC - 0x9F]; /* reserved */ 129 __be32 dump_ptr; /* 0xBC, Dump pointer */ 130 __be32 rx_frame_rem; /* 0xC0, reserved, initialize to 0 */ 131 u8 rx_frame_rem_size; /* 0xC4, reserved, initialize to 0 */ 132 u8 tx_mode; /* 0xC5, mode, 0=AHDLC, 1=UART */ 133 __be16 tx_state; /* 0xC6, TX state */ 134 u8 res15[0xD0 - 0xC8]; /* reserved */ 135 __be32 resD0; /* 0xD0, reserved, initialize to 0 */ 136 u8 resD4; /* 0xD4, reserved, initialize to 0 */ 137 __be16 resD5; /* 0xD5, reserved, initialize to 0 */ 138 } __attribute__ ((packed)); 139 140 /* SUPSMR definitions, for Soft-UART only */ 141 #define UCC_UART_SUPSMR_SL 0x8000 142 #define UCC_UART_SUPSMR_RPM_MASK 0x6000 143 #define UCC_UART_SUPSMR_RPM_ODD 0x0000 144 #define UCC_UART_SUPSMR_RPM_LOW 0x2000 145 #define UCC_UART_SUPSMR_RPM_EVEN 0x4000 146 #define UCC_UART_SUPSMR_RPM_HIGH 0x6000 147 #define UCC_UART_SUPSMR_PEN 0x1000 148 #define UCC_UART_SUPSMR_TPM_MASK 0x0C00 149 #define UCC_UART_SUPSMR_TPM_ODD 0x0000 150 #define UCC_UART_SUPSMR_TPM_LOW 0x0400 151 #define UCC_UART_SUPSMR_TPM_EVEN 0x0800 152 #define UCC_UART_SUPSMR_TPM_HIGH 0x0C00 153 #define UCC_UART_SUPSMR_FRZ 0x0100 154 #define UCC_UART_SUPSMR_UM_MASK 0x00c0 155 #define UCC_UART_SUPSMR_UM_NORMAL 0x0000 156 #define UCC_UART_SUPSMR_UM_MAN_MULTI 0x0040 157 #define UCC_UART_SUPSMR_UM_AUTO_MULTI 0x00c0 158 #define UCC_UART_SUPSMR_CL_MASK 0x0030 159 #define UCC_UART_SUPSMR_CL_8 0x0030 160 #define UCC_UART_SUPSMR_CL_7 0x0020 161 #define UCC_UART_SUPSMR_CL_6 0x0010 162 #define UCC_UART_SUPSMR_CL_5 0x0000 163 164 #define UCC_UART_TX_STATE_AHDLC 0x00 165 #define UCC_UART_TX_STATE_UART 0x01 166 #define UCC_UART_TX_STATE_X1 0x00 167 #define UCC_UART_TX_STATE_X16 0x80 168 169 #define UCC_UART_PRAM_ALIGNMENT 0x100 170 171 #define UCC_UART_SIZE_OF_BD UCC_SLOW_SIZE_OF_BD 172 #define NUM_CONTROL_CHARS 8 173 174 /* Private per-port data structure */ 175 struct uart_qe_port { 176 struct uart_port port; 177 struct ucc_slow __iomem *uccp; 178 struct ucc_uart_pram __iomem *uccup; 179 struct ucc_slow_info us_info; 180 struct ucc_slow_private *us_private; 181 struct device_node *np; 182 unsigned int ucc_num; /* First ucc is 0, not 1 */ 183 184 u16 rx_nrfifos; 185 u16 rx_fifosize; 186 u16 tx_nrfifos; 187 u16 tx_fifosize; 188 int wait_closing; 189 u32 flags; 190 struct qe_bd *rx_bd_base; 191 struct qe_bd *rx_cur; 192 struct qe_bd *tx_bd_base; 193 struct qe_bd *tx_cur; 194 unsigned char *tx_buf; 195 unsigned char *rx_buf; 196 void *bd_virt; /* virtual address of the BD buffers */ 197 dma_addr_t bd_dma_addr; /* bus address of the BD buffers */ 198 unsigned int bd_size; /* size of BD buffer space */ 199 }; 200 201 static struct uart_driver ucc_uart_driver = { 202 .owner = THIS_MODULE, 203 .driver_name = "ucc_uart", 204 .dev_name = "ttyQE", 205 .major = SERIAL_QE_MAJOR, 206 .minor = SERIAL_QE_MINOR, 207 .nr = UCC_MAX_UART, 208 }; 209 210 /* 211 * Virtual to physical address translation. 212 * 213 * Given the virtual address for a character buffer, this function returns 214 * the physical (DMA) equivalent. 215 */ 216 static inline dma_addr_t cpu2qe_addr(void *addr, struct uart_qe_port *qe_port) 217 { 218 if (likely((addr >= qe_port->bd_virt)) && 219 (addr < (qe_port->bd_virt + qe_port->bd_size))) 220 return qe_port->bd_dma_addr + (addr - qe_port->bd_virt); 221 222 /* something nasty happened */ 223 printk(KERN_ERR "%s: addr=%p\n", __func__, addr); 224 BUG(); 225 return 0; 226 } 227 228 /* 229 * Physical to virtual address translation. 230 * 231 * Given the physical (DMA) address for a character buffer, this function 232 * returns the virtual equivalent. 233 */ 234 static inline void *qe2cpu_addr(dma_addr_t addr, struct uart_qe_port *qe_port) 235 { 236 /* sanity check */ 237 if (likely((addr >= qe_port->bd_dma_addr) && 238 (addr < (qe_port->bd_dma_addr + qe_port->bd_size)))) 239 return qe_port->bd_virt + (addr - qe_port->bd_dma_addr); 240 241 /* something nasty happened */ 242 printk(KERN_ERR "%s: addr=%llx\n", __func__, (u64)addr); 243 BUG(); 244 return NULL; 245 } 246 247 /* 248 * Return 1 if the QE is done transmitting all buffers for this port 249 * 250 * This function scans each BD in sequence. If we find a BD that is not 251 * ready (READY=1), then we return 0 indicating that the QE is still sending 252 * data. If we reach the last BD (WRAP=1), then we know we've scanned 253 * the entire list, and all BDs are done. 254 */ 255 static unsigned int qe_uart_tx_empty(struct uart_port *port) 256 { 257 struct uart_qe_port *qe_port = 258 container_of(port, struct uart_qe_port, port); 259 struct qe_bd *bdp = qe_port->tx_bd_base; 260 261 while (1) { 262 if (in_be16(&bdp->status) & BD_SC_READY) 263 /* This BD is not done, so return "not done" */ 264 return 0; 265 266 if (in_be16(&bdp->status) & BD_SC_WRAP) 267 /* 268 * This BD is done and it's the last one, so return 269 * "done" 270 */ 271 return 1; 272 273 bdp++; 274 } 275 } 276 277 /* 278 * Set the modem control lines 279 * 280 * Although the QE can control the modem control lines (e.g. CTS), we 281 * don't need that support. This function must exist, however, otherwise 282 * the kernel will panic. 283 */ 284 void qe_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 285 { 286 } 287 288 /* 289 * Get the current modem control line status 290 * 291 * Although the QE can control the modem control lines (e.g. CTS), this 292 * driver currently doesn't support that, so we always return Carrier 293 * Detect, Data Set Ready, and Clear To Send. 294 */ 295 static unsigned int qe_uart_get_mctrl(struct uart_port *port) 296 { 297 return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS; 298 } 299 300 /* 301 * Disable the transmit interrupt. 302 * 303 * Although this function is called "stop_tx", it does not actually stop 304 * transmission of data. Instead, it tells the QE to not generate an 305 * interrupt when the UCC is finished sending characters. 306 */ 307 static void qe_uart_stop_tx(struct uart_port *port) 308 { 309 struct uart_qe_port *qe_port = 310 container_of(port, struct uart_qe_port, port); 311 312 clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX); 313 } 314 315 /* 316 * Transmit as many characters to the HW as possible. 317 * 318 * This function will attempt to stuff of all the characters from the 319 * kernel's transmit buffer into TX BDs. 320 * 321 * A return value of non-zero indicates that it successfully stuffed all 322 * characters from the kernel buffer. 323 * 324 * A return value of zero indicates that there are still characters in the 325 * kernel's buffer that have not been transmitted, but there are no more BDs 326 * available. This function should be called again after a BD has been made 327 * available. 328 */ 329 static int qe_uart_tx_pump(struct uart_qe_port *qe_port) 330 { 331 struct qe_bd *bdp; 332 unsigned char *p; 333 unsigned int count; 334 struct uart_port *port = &qe_port->port; 335 struct circ_buf *xmit = &port->state->xmit; 336 337 bdp = qe_port->rx_cur; 338 339 /* Handle xon/xoff */ 340 if (port->x_char) { 341 /* Pick next descriptor and fill from buffer */ 342 bdp = qe_port->tx_cur; 343 344 p = qe2cpu_addr(bdp->buf, qe_port); 345 346 *p++ = port->x_char; 347 out_be16(&bdp->length, 1); 348 setbits16(&bdp->status, BD_SC_READY); 349 /* Get next BD. */ 350 if (in_be16(&bdp->status) & BD_SC_WRAP) 351 bdp = qe_port->tx_bd_base; 352 else 353 bdp++; 354 qe_port->tx_cur = bdp; 355 356 port->icount.tx++; 357 port->x_char = 0; 358 return 1; 359 } 360 361 if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { 362 qe_uart_stop_tx(port); 363 return 0; 364 } 365 366 /* Pick next descriptor and fill from buffer */ 367 bdp = qe_port->tx_cur; 368 369 while (!(in_be16(&bdp->status) & BD_SC_READY) && 370 (xmit->tail != xmit->head)) { 371 count = 0; 372 p = qe2cpu_addr(bdp->buf, qe_port); 373 while (count < qe_port->tx_fifosize) { 374 *p++ = xmit->buf[xmit->tail]; 375 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 376 port->icount.tx++; 377 count++; 378 if (xmit->head == xmit->tail) 379 break; 380 } 381 382 out_be16(&bdp->length, count); 383 setbits16(&bdp->status, BD_SC_READY); 384 385 /* Get next BD. */ 386 if (in_be16(&bdp->status) & BD_SC_WRAP) 387 bdp = qe_port->tx_bd_base; 388 else 389 bdp++; 390 } 391 qe_port->tx_cur = bdp; 392 393 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 394 uart_write_wakeup(port); 395 396 if (uart_circ_empty(xmit)) { 397 /* The kernel buffer is empty, so turn off TX interrupts. We 398 don't need to be told when the QE is finished transmitting 399 the data. */ 400 qe_uart_stop_tx(port); 401 return 0; 402 } 403 404 return 1; 405 } 406 407 /* 408 * Start transmitting data 409 * 410 * This function will start transmitting any available data, if the port 411 * isn't already transmitting data. 412 */ 413 static void qe_uart_start_tx(struct uart_port *port) 414 { 415 struct uart_qe_port *qe_port = 416 container_of(port, struct uart_qe_port, port); 417 418 /* If we currently are transmitting, then just return */ 419 if (in_be16(&qe_port->uccp->uccm) & UCC_UART_UCCE_TX) 420 return; 421 422 /* Otherwise, pump the port and start transmission */ 423 if (qe_uart_tx_pump(qe_port)) 424 setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX); 425 } 426 427 /* 428 * Stop transmitting data 429 */ 430 static void qe_uart_stop_rx(struct uart_port *port) 431 { 432 struct uart_qe_port *qe_port = 433 container_of(port, struct uart_qe_port, port); 434 435 clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX); 436 } 437 438 /* Start or stop sending break signal 439 * 440 * This function controls the sending of a break signal. If break_state=1, 441 * then we start sending a break signal. If break_state=0, then we stop 442 * sending the break signal. 443 */ 444 static void qe_uart_break_ctl(struct uart_port *port, int break_state) 445 { 446 struct uart_qe_port *qe_port = 447 container_of(port, struct uart_qe_port, port); 448 449 if (break_state) 450 ucc_slow_stop_tx(qe_port->us_private); 451 else 452 ucc_slow_restart_tx(qe_port->us_private); 453 } 454 455 /* ISR helper function for receiving character. 456 * 457 * This function is called by the ISR to handling receiving characters 458 */ 459 static void qe_uart_int_rx(struct uart_qe_port *qe_port) 460 { 461 int i; 462 unsigned char ch, *cp; 463 struct uart_port *port = &qe_port->port; 464 struct tty_port *tport = &port->state->port; 465 struct qe_bd *bdp; 466 u16 status; 467 unsigned int flg; 468 469 /* Just loop through the closed BDs and copy the characters into 470 * the buffer. 471 */ 472 bdp = qe_port->rx_cur; 473 while (1) { 474 status = in_be16(&bdp->status); 475 476 /* If this one is empty, then we assume we've read them all */ 477 if (status & BD_SC_EMPTY) 478 break; 479 480 /* get number of characters, and check space in RX buffer */ 481 i = in_be16(&bdp->length); 482 483 /* If we don't have enough room in RX buffer for the entire BD, 484 * then we try later, which will be the next RX interrupt. 485 */ 486 if (tty_buffer_request_room(tport, i) < i) { 487 dev_dbg(port->dev, "ucc-uart: no room in RX buffer\n"); 488 return; 489 } 490 491 /* get pointer */ 492 cp = qe2cpu_addr(bdp->buf, qe_port); 493 494 /* loop through the buffer */ 495 while (i-- > 0) { 496 ch = *cp++; 497 port->icount.rx++; 498 flg = TTY_NORMAL; 499 500 if (!i && status & 501 (BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV)) 502 goto handle_error; 503 if (uart_handle_sysrq_char(port, ch)) 504 continue; 505 506 error_return: 507 tty_insert_flip_char(tport, ch, flg); 508 509 } 510 511 /* This BD is ready to be used again. Clear status. get next */ 512 clrsetbits_be16(&bdp->status, BD_SC_BR | BD_SC_FR | BD_SC_PR | 513 BD_SC_OV | BD_SC_ID, BD_SC_EMPTY); 514 if (in_be16(&bdp->status) & BD_SC_WRAP) 515 bdp = qe_port->rx_bd_base; 516 else 517 bdp++; 518 519 } 520 521 /* Write back buffer pointer */ 522 qe_port->rx_cur = bdp; 523 524 /* Activate BH processing */ 525 tty_flip_buffer_push(tport); 526 527 return; 528 529 /* Error processing */ 530 531 handle_error: 532 /* Statistics */ 533 if (status & BD_SC_BR) 534 port->icount.brk++; 535 if (status & BD_SC_PR) 536 port->icount.parity++; 537 if (status & BD_SC_FR) 538 port->icount.frame++; 539 if (status & BD_SC_OV) 540 port->icount.overrun++; 541 542 /* Mask out ignored conditions */ 543 status &= port->read_status_mask; 544 545 /* Handle the remaining ones */ 546 if (status & BD_SC_BR) 547 flg = TTY_BREAK; 548 else if (status & BD_SC_PR) 549 flg = TTY_PARITY; 550 else if (status & BD_SC_FR) 551 flg = TTY_FRAME; 552 553 /* Overrun does not affect the current character ! */ 554 if (status & BD_SC_OV) 555 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 556 #ifdef SUPPORT_SYSRQ 557 port->sysrq = 0; 558 #endif 559 goto error_return; 560 } 561 562 /* Interrupt handler 563 * 564 * This interrupt handler is called after a BD is processed. 565 */ 566 static irqreturn_t qe_uart_int(int irq, void *data) 567 { 568 struct uart_qe_port *qe_port = (struct uart_qe_port *) data; 569 struct ucc_slow __iomem *uccp = qe_port->uccp; 570 u16 events; 571 572 /* Clear the interrupts */ 573 events = in_be16(&uccp->ucce); 574 out_be16(&uccp->ucce, events); 575 576 if (events & UCC_UART_UCCE_BRKE) 577 uart_handle_break(&qe_port->port); 578 579 if (events & UCC_UART_UCCE_RX) 580 qe_uart_int_rx(qe_port); 581 582 if (events & UCC_UART_UCCE_TX) 583 qe_uart_tx_pump(qe_port); 584 585 return events ? IRQ_HANDLED : IRQ_NONE; 586 } 587 588 /* Initialize buffer descriptors 589 * 590 * This function initializes all of the RX and TX buffer descriptors. 591 */ 592 static void qe_uart_initbd(struct uart_qe_port *qe_port) 593 { 594 int i; 595 void *bd_virt; 596 struct qe_bd *bdp; 597 598 /* Set the physical address of the host memory buffers in the buffer 599 * descriptors, and the virtual address for us to work with. 600 */ 601 bd_virt = qe_port->bd_virt; 602 bdp = qe_port->rx_bd_base; 603 qe_port->rx_cur = qe_port->rx_bd_base; 604 for (i = 0; i < (qe_port->rx_nrfifos - 1); i++) { 605 out_be16(&bdp->status, BD_SC_EMPTY | BD_SC_INTRPT); 606 out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port)); 607 out_be16(&bdp->length, 0); 608 bd_virt += qe_port->rx_fifosize; 609 bdp++; 610 } 611 612 /* */ 613 out_be16(&bdp->status, BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT); 614 out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port)); 615 out_be16(&bdp->length, 0); 616 617 /* Set the physical address of the host memory 618 * buffers in the buffer descriptors, and the 619 * virtual address for us to work with. 620 */ 621 bd_virt = qe_port->bd_virt + 622 L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize); 623 qe_port->tx_cur = qe_port->tx_bd_base; 624 bdp = qe_port->tx_bd_base; 625 for (i = 0; i < (qe_port->tx_nrfifos - 1); i++) { 626 out_be16(&bdp->status, BD_SC_INTRPT); 627 out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port)); 628 out_be16(&bdp->length, 0); 629 bd_virt += qe_port->tx_fifosize; 630 bdp++; 631 } 632 633 /* Loopback requires the preamble bit to be set on the first TX BD */ 634 #ifdef LOOPBACK 635 setbits16(&qe_port->tx_cur->status, BD_SC_P); 636 #endif 637 638 out_be16(&bdp->status, BD_SC_WRAP | BD_SC_INTRPT); 639 out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port)); 640 out_be16(&bdp->length, 0); 641 } 642 643 /* 644 * Initialize a UCC for UART. 645 * 646 * This function configures a given UCC to be used as a UART device. Basic 647 * UCC initialization is handled in qe_uart_request_port(). This function 648 * does all the UART-specific stuff. 649 */ 650 static void qe_uart_init_ucc(struct uart_qe_port *qe_port) 651 { 652 u32 cecr_subblock; 653 struct ucc_slow __iomem *uccp = qe_port->uccp; 654 struct ucc_uart_pram *uccup = qe_port->uccup; 655 656 unsigned int i; 657 658 /* First, disable TX and RX in the UCC */ 659 ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX); 660 661 /* Program the UCC UART parameter RAM */ 662 out_8(&uccup->common.rbmr, UCC_BMR_GBL | UCC_BMR_BO_BE); 663 out_8(&uccup->common.tbmr, UCC_BMR_GBL | UCC_BMR_BO_BE); 664 out_be16(&uccup->common.mrblr, qe_port->rx_fifosize); 665 out_be16(&uccup->maxidl, 0x10); 666 out_be16(&uccup->brkcr, 1); 667 out_be16(&uccup->parec, 0); 668 out_be16(&uccup->frmec, 0); 669 out_be16(&uccup->nosec, 0); 670 out_be16(&uccup->brkec, 0); 671 out_be16(&uccup->uaddr[0], 0); 672 out_be16(&uccup->uaddr[1], 0); 673 out_be16(&uccup->toseq, 0); 674 for (i = 0; i < 8; i++) 675 out_be16(&uccup->cchars[i], 0xC000); 676 out_be16(&uccup->rccm, 0xc0ff); 677 678 /* Configure the GUMR registers for UART */ 679 if (soft_uart) { 680 /* Soft-UART requires a 1X multiplier for TX */ 681 clrsetbits_be32(&uccp->gumr_l, 682 UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | 683 UCC_SLOW_GUMR_L_RDCR_MASK, 684 UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_1 | 685 UCC_SLOW_GUMR_L_RDCR_16); 686 687 clrsetbits_be32(&uccp->gumr_h, UCC_SLOW_GUMR_H_RFW, 688 UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX); 689 } else { 690 clrsetbits_be32(&uccp->gumr_l, 691 UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | 692 UCC_SLOW_GUMR_L_RDCR_MASK, 693 UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_16 | 694 UCC_SLOW_GUMR_L_RDCR_16); 695 696 clrsetbits_be32(&uccp->gumr_h, 697 UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX, 698 UCC_SLOW_GUMR_H_RFW); 699 } 700 701 #ifdef LOOPBACK 702 clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK, 703 UCC_SLOW_GUMR_L_DIAG_LOOP); 704 clrsetbits_be32(&uccp->gumr_h, 705 UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_RSYN, 706 UCC_SLOW_GUMR_H_CDS); 707 #endif 708 709 /* Disable rx interrupts and clear all pending events. */ 710 out_be16(&uccp->uccm, 0); 711 out_be16(&uccp->ucce, 0xffff); 712 out_be16(&uccp->udsr, 0x7e7e); 713 714 /* Initialize UPSMR */ 715 out_be16(&uccp->upsmr, 0); 716 717 if (soft_uart) { 718 out_be16(&uccup->supsmr, 0x30); 719 out_be16(&uccup->res92, 0); 720 out_be32(&uccup->rx_state, 0); 721 out_be32(&uccup->rx_cnt, 0); 722 out_8(&uccup->rx_bitmark, 0); 723 out_8(&uccup->rx_length, 10); 724 out_be32(&uccup->dump_ptr, 0x4000); 725 out_8(&uccup->rx_temp_dlst_qe, 0); 726 out_be32(&uccup->rx_frame_rem, 0); 727 out_8(&uccup->rx_frame_rem_size, 0); 728 /* Soft-UART requires TX to be 1X */ 729 out_8(&uccup->tx_mode, 730 UCC_UART_TX_STATE_UART | UCC_UART_TX_STATE_X1); 731 out_be16(&uccup->tx_state, 0); 732 out_8(&uccup->resD4, 0); 733 out_be16(&uccup->resD5, 0); 734 735 /* Set UART mode. 736 * Enable receive and transmit. 737 */ 738 739 /* From the microcode errata: 740 * 1.GUMR_L register, set mode=0010 (QMC). 741 * 2.Set GUMR_H[17] bit. (UART/AHDLC mode). 742 * 3.Set GUMR_H[19:20] (Transparent mode) 743 * 4.Clear GUMR_H[26] (RFW) 744 * ... 745 * 6.Receiver must use 16x over sampling 746 */ 747 clrsetbits_be32(&uccp->gumr_l, 748 UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | 749 UCC_SLOW_GUMR_L_RDCR_MASK, 750 UCC_SLOW_GUMR_L_MODE_QMC | UCC_SLOW_GUMR_L_TDCR_16 | 751 UCC_SLOW_GUMR_L_RDCR_16); 752 753 clrsetbits_be32(&uccp->gumr_h, 754 UCC_SLOW_GUMR_H_RFW | UCC_SLOW_GUMR_H_RSYN, 755 UCC_SLOW_GUMR_H_SUART | UCC_SLOW_GUMR_H_TRX | 756 UCC_SLOW_GUMR_H_TTX | UCC_SLOW_GUMR_H_TFL); 757 758 #ifdef LOOPBACK 759 clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK, 760 UCC_SLOW_GUMR_L_DIAG_LOOP); 761 clrbits32(&uccp->gumr_h, UCC_SLOW_GUMR_H_CTSP | 762 UCC_SLOW_GUMR_H_CDS); 763 #endif 764 765 cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num); 766 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 767 QE_CR_PROTOCOL_UNSPECIFIED, 0); 768 } else { 769 cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num); 770 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 771 QE_CR_PROTOCOL_UART, 0); 772 } 773 } 774 775 /* 776 * Initialize the port. 777 */ 778 static int qe_uart_startup(struct uart_port *port) 779 { 780 struct uart_qe_port *qe_port = 781 container_of(port, struct uart_qe_port, port); 782 int ret; 783 784 /* 785 * If we're using Soft-UART mode, then we need to make sure the 786 * firmware has been uploaded first. 787 */ 788 if (soft_uart && !firmware_loaded) { 789 dev_err(port->dev, "Soft-UART firmware not uploaded\n"); 790 return -ENODEV; 791 } 792 793 qe_uart_initbd(qe_port); 794 qe_uart_init_ucc(qe_port); 795 796 /* Install interrupt handler. */ 797 ret = request_irq(port->irq, qe_uart_int, IRQF_SHARED, "ucc-uart", 798 qe_port); 799 if (ret) { 800 dev_err(port->dev, "could not claim IRQ %u\n", port->irq); 801 return ret; 802 } 803 804 /* Startup rx-int */ 805 setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX); 806 ucc_slow_enable(qe_port->us_private, COMM_DIR_RX_AND_TX); 807 808 return 0; 809 } 810 811 /* 812 * Shutdown the port. 813 */ 814 static void qe_uart_shutdown(struct uart_port *port) 815 { 816 struct uart_qe_port *qe_port = 817 container_of(port, struct uart_qe_port, port); 818 struct ucc_slow __iomem *uccp = qe_port->uccp; 819 unsigned int timeout = 20; 820 821 /* Disable RX and TX */ 822 823 /* Wait for all the BDs marked sent */ 824 while (!qe_uart_tx_empty(port)) { 825 if (!--timeout) { 826 dev_warn(port->dev, "shutdown timeout\n"); 827 break; 828 } 829 set_current_state(TASK_UNINTERRUPTIBLE); 830 schedule_timeout(2); 831 } 832 833 if (qe_port->wait_closing) { 834 /* Wait a bit longer */ 835 set_current_state(TASK_UNINTERRUPTIBLE); 836 schedule_timeout(qe_port->wait_closing); 837 } 838 839 /* Stop uarts */ 840 ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX); 841 clrbits16(&uccp->uccm, UCC_UART_UCCE_TX | UCC_UART_UCCE_RX); 842 843 /* Shut them really down and reinit buffer descriptors */ 844 ucc_slow_graceful_stop_tx(qe_port->us_private); 845 qe_uart_initbd(qe_port); 846 847 free_irq(port->irq, qe_port); 848 } 849 850 /* 851 * Set the serial port parameters. 852 */ 853 static void qe_uart_set_termios(struct uart_port *port, 854 struct ktermios *termios, struct ktermios *old) 855 { 856 struct uart_qe_port *qe_port = 857 container_of(port, struct uart_qe_port, port); 858 struct ucc_slow __iomem *uccp = qe_port->uccp; 859 unsigned int baud; 860 unsigned long flags; 861 u16 upsmr = in_be16(&uccp->upsmr); 862 struct ucc_uart_pram __iomem *uccup = qe_port->uccup; 863 u16 supsmr = in_be16(&uccup->supsmr); 864 u8 char_length = 2; /* 1 + CL + PEN + 1 + SL */ 865 866 /* Character length programmed into the mode register is the 867 * sum of: 1 start bit, number of data bits, 0 or 1 parity bit, 868 * 1 or 2 stop bits, minus 1. 869 * The value 'bits' counts this for us. 870 */ 871 872 /* byte size */ 873 upsmr &= UCC_UART_UPSMR_CL_MASK; 874 supsmr &= UCC_UART_SUPSMR_CL_MASK; 875 876 switch (termios->c_cflag & CSIZE) { 877 case CS5: 878 upsmr |= UCC_UART_UPSMR_CL_5; 879 supsmr |= UCC_UART_SUPSMR_CL_5; 880 char_length += 5; 881 break; 882 case CS6: 883 upsmr |= UCC_UART_UPSMR_CL_6; 884 supsmr |= UCC_UART_SUPSMR_CL_6; 885 char_length += 6; 886 break; 887 case CS7: 888 upsmr |= UCC_UART_UPSMR_CL_7; 889 supsmr |= UCC_UART_SUPSMR_CL_7; 890 char_length += 7; 891 break; 892 default: /* case CS8 */ 893 upsmr |= UCC_UART_UPSMR_CL_8; 894 supsmr |= UCC_UART_SUPSMR_CL_8; 895 char_length += 8; 896 break; 897 } 898 899 /* If CSTOPB is set, we want two stop bits */ 900 if (termios->c_cflag & CSTOPB) { 901 upsmr |= UCC_UART_UPSMR_SL; 902 supsmr |= UCC_UART_SUPSMR_SL; 903 char_length++; /* + SL */ 904 } 905 906 if (termios->c_cflag & PARENB) { 907 upsmr |= UCC_UART_UPSMR_PEN; 908 supsmr |= UCC_UART_SUPSMR_PEN; 909 char_length++; /* + PEN */ 910 911 if (!(termios->c_cflag & PARODD)) { 912 upsmr &= ~(UCC_UART_UPSMR_RPM_MASK | 913 UCC_UART_UPSMR_TPM_MASK); 914 upsmr |= UCC_UART_UPSMR_RPM_EVEN | 915 UCC_UART_UPSMR_TPM_EVEN; 916 supsmr &= ~(UCC_UART_SUPSMR_RPM_MASK | 917 UCC_UART_SUPSMR_TPM_MASK); 918 supsmr |= UCC_UART_SUPSMR_RPM_EVEN | 919 UCC_UART_SUPSMR_TPM_EVEN; 920 } 921 } 922 923 /* 924 * Set up parity check flag 925 */ 926 port->read_status_mask = BD_SC_EMPTY | BD_SC_OV; 927 if (termios->c_iflag & INPCK) 928 port->read_status_mask |= BD_SC_FR | BD_SC_PR; 929 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 930 port->read_status_mask |= BD_SC_BR; 931 932 /* 933 * Characters to ignore 934 */ 935 port->ignore_status_mask = 0; 936 if (termios->c_iflag & IGNPAR) 937 port->ignore_status_mask |= BD_SC_PR | BD_SC_FR; 938 if (termios->c_iflag & IGNBRK) { 939 port->ignore_status_mask |= BD_SC_BR; 940 /* 941 * If we're ignore parity and break indicators, ignore 942 * overruns too. (For real raw support). 943 */ 944 if (termios->c_iflag & IGNPAR) 945 port->ignore_status_mask |= BD_SC_OV; 946 } 947 /* 948 * !!! ignore all characters if CREAD is not set 949 */ 950 if ((termios->c_cflag & CREAD) == 0) 951 port->read_status_mask &= ~BD_SC_EMPTY; 952 953 baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16); 954 955 /* Do we really need a spinlock here? */ 956 spin_lock_irqsave(&port->lock, flags); 957 958 /* Update the per-port timeout. */ 959 uart_update_timeout(port, termios->c_cflag, baud); 960 961 out_be16(&uccp->upsmr, upsmr); 962 if (soft_uart) { 963 out_be16(&uccup->supsmr, supsmr); 964 out_8(&uccup->rx_length, char_length); 965 966 /* Soft-UART requires a 1X multiplier for TX */ 967 qe_setbrg(qe_port->us_info.rx_clock, baud, 16); 968 qe_setbrg(qe_port->us_info.tx_clock, baud, 1); 969 } else { 970 qe_setbrg(qe_port->us_info.rx_clock, baud, 16); 971 qe_setbrg(qe_port->us_info.tx_clock, baud, 16); 972 } 973 974 spin_unlock_irqrestore(&port->lock, flags); 975 } 976 977 /* 978 * Return a pointer to a string that describes what kind of port this is. 979 */ 980 static const char *qe_uart_type(struct uart_port *port) 981 { 982 return "QE"; 983 } 984 985 /* 986 * Allocate any memory and I/O resources required by the port. 987 */ 988 static int qe_uart_request_port(struct uart_port *port) 989 { 990 int ret; 991 struct uart_qe_port *qe_port = 992 container_of(port, struct uart_qe_port, port); 993 struct ucc_slow_info *us_info = &qe_port->us_info; 994 struct ucc_slow_private *uccs; 995 unsigned int rx_size, tx_size; 996 void *bd_virt; 997 dma_addr_t bd_dma_addr = 0; 998 999 ret = ucc_slow_init(us_info, &uccs); 1000 if (ret) { 1001 dev_err(port->dev, "could not initialize UCC%u\n", 1002 qe_port->ucc_num); 1003 return ret; 1004 } 1005 1006 qe_port->us_private = uccs; 1007 qe_port->uccp = uccs->us_regs; 1008 qe_port->uccup = (struct ucc_uart_pram *) uccs->us_pram; 1009 qe_port->rx_bd_base = uccs->rx_bd; 1010 qe_port->tx_bd_base = uccs->tx_bd; 1011 1012 /* 1013 * Allocate the transmit and receive data buffers. 1014 */ 1015 1016 rx_size = L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize); 1017 tx_size = L1_CACHE_ALIGN(qe_port->tx_nrfifos * qe_port->tx_fifosize); 1018 1019 bd_virt = dma_alloc_coherent(port->dev, rx_size + tx_size, &bd_dma_addr, 1020 GFP_KERNEL); 1021 if (!bd_virt) { 1022 dev_err(port->dev, "could not allocate buffer descriptors\n"); 1023 return -ENOMEM; 1024 } 1025 1026 qe_port->bd_virt = bd_virt; 1027 qe_port->bd_dma_addr = bd_dma_addr; 1028 qe_port->bd_size = rx_size + tx_size; 1029 1030 qe_port->rx_buf = bd_virt; 1031 qe_port->tx_buf = qe_port->rx_buf + rx_size; 1032 1033 return 0; 1034 } 1035 1036 /* 1037 * Configure the port. 1038 * 1039 * We say we're a CPM-type port because that's mostly true. Once the device 1040 * is configured, this driver operates almost identically to the CPM serial 1041 * driver. 1042 */ 1043 static void qe_uart_config_port(struct uart_port *port, int flags) 1044 { 1045 if (flags & UART_CONFIG_TYPE) { 1046 port->type = PORT_CPM; 1047 qe_uart_request_port(port); 1048 } 1049 } 1050 1051 /* 1052 * Release any memory and I/O resources that were allocated in 1053 * qe_uart_request_port(). 1054 */ 1055 static void qe_uart_release_port(struct uart_port *port) 1056 { 1057 struct uart_qe_port *qe_port = 1058 container_of(port, struct uart_qe_port, port); 1059 struct ucc_slow_private *uccs = qe_port->us_private; 1060 1061 dma_free_coherent(port->dev, qe_port->bd_size, qe_port->bd_virt, 1062 qe_port->bd_dma_addr); 1063 1064 ucc_slow_free(uccs); 1065 } 1066 1067 /* 1068 * Verify that the data in serial_struct is suitable for this device. 1069 */ 1070 static int qe_uart_verify_port(struct uart_port *port, 1071 struct serial_struct *ser) 1072 { 1073 if (ser->type != PORT_UNKNOWN && ser->type != PORT_CPM) 1074 return -EINVAL; 1075 1076 if (ser->irq < 0 || ser->irq >= nr_irqs) 1077 return -EINVAL; 1078 1079 if (ser->baud_base < 9600) 1080 return -EINVAL; 1081 1082 return 0; 1083 } 1084 /* UART operations 1085 * 1086 * Details on these functions can be found in Documentation/serial/driver 1087 */ 1088 static const struct uart_ops qe_uart_pops = { 1089 .tx_empty = qe_uart_tx_empty, 1090 .set_mctrl = qe_uart_set_mctrl, 1091 .get_mctrl = qe_uart_get_mctrl, 1092 .stop_tx = qe_uart_stop_tx, 1093 .start_tx = qe_uart_start_tx, 1094 .stop_rx = qe_uart_stop_rx, 1095 .break_ctl = qe_uart_break_ctl, 1096 .startup = qe_uart_startup, 1097 .shutdown = qe_uart_shutdown, 1098 .set_termios = qe_uart_set_termios, 1099 .type = qe_uart_type, 1100 .release_port = qe_uart_release_port, 1101 .request_port = qe_uart_request_port, 1102 .config_port = qe_uart_config_port, 1103 .verify_port = qe_uart_verify_port, 1104 }; 1105 1106 /* 1107 * Obtain the SOC model number and revision level 1108 * 1109 * This function parses the device tree to obtain the SOC model. It then 1110 * reads the SVR register to the revision. 1111 * 1112 * The device tree stores the SOC model two different ways. 1113 * 1114 * The new way is: 1115 * 1116 * cpu@0 { 1117 * compatible = "PowerPC,8323"; 1118 * device_type = "cpu"; 1119 * ... 1120 * 1121 * 1122 * The old way is: 1123 * PowerPC,8323@0 { 1124 * device_type = "cpu"; 1125 * ... 1126 * 1127 * This code first checks the new way, and then the old way. 1128 */ 1129 static unsigned int soc_info(unsigned int *rev_h, unsigned int *rev_l) 1130 { 1131 struct device_node *np; 1132 const char *soc_string; 1133 unsigned int svr; 1134 unsigned int soc; 1135 1136 /* Find the CPU node */ 1137 np = of_find_node_by_type(NULL, "cpu"); 1138 if (!np) 1139 return 0; 1140 /* Find the compatible property */ 1141 soc_string = of_get_property(np, "compatible", NULL); 1142 if (!soc_string) 1143 /* No compatible property, so try the name. */ 1144 soc_string = np->name; 1145 1146 /* Extract the SOC number from the "PowerPC," string */ 1147 if ((sscanf(soc_string, "PowerPC,%u", &soc) != 1) || !soc) 1148 return 0; 1149 1150 /* Get the revision from the SVR */ 1151 svr = mfspr(SPRN_SVR); 1152 *rev_h = (svr >> 4) & 0xf; 1153 *rev_l = svr & 0xf; 1154 1155 return soc; 1156 } 1157 1158 /* 1159 * requst_firmware_nowait() callback function 1160 * 1161 * This function is called by the kernel when a firmware is made available, 1162 * or if it times out waiting for the firmware. 1163 */ 1164 static void uart_firmware_cont(const struct firmware *fw, void *context) 1165 { 1166 struct qe_firmware *firmware; 1167 struct device *dev = context; 1168 int ret; 1169 1170 if (!fw) { 1171 dev_err(dev, "firmware not found\n"); 1172 return; 1173 } 1174 1175 firmware = (struct qe_firmware *) fw->data; 1176 1177 if (firmware->header.length != fw->size) { 1178 dev_err(dev, "invalid firmware\n"); 1179 goto out; 1180 } 1181 1182 ret = qe_upload_firmware(firmware); 1183 if (ret) { 1184 dev_err(dev, "could not load firmware\n"); 1185 goto out; 1186 } 1187 1188 firmware_loaded = 1; 1189 out: 1190 release_firmware(fw); 1191 } 1192 1193 static int ucc_uart_probe(struct platform_device *ofdev) 1194 { 1195 struct device_node *np = ofdev->dev.of_node; 1196 const unsigned int *iprop; /* Integer OF properties */ 1197 const char *sprop; /* String OF properties */ 1198 struct uart_qe_port *qe_port = NULL; 1199 struct resource res; 1200 int ret; 1201 1202 /* 1203 * Determine if we need Soft-UART mode 1204 */ 1205 if (of_find_property(np, "soft-uart", NULL)) { 1206 dev_dbg(&ofdev->dev, "using Soft-UART mode\n"); 1207 soft_uart = 1; 1208 } 1209 1210 /* 1211 * If we are using Soft-UART, determine if we need to upload the 1212 * firmware, too. 1213 */ 1214 if (soft_uart) { 1215 struct qe_firmware_info *qe_fw_info; 1216 1217 qe_fw_info = qe_get_firmware_info(); 1218 1219 /* Check if the firmware has been uploaded. */ 1220 if (qe_fw_info && strstr(qe_fw_info->id, "Soft-UART")) { 1221 firmware_loaded = 1; 1222 } else { 1223 char filename[32]; 1224 unsigned int soc; 1225 unsigned int rev_h; 1226 unsigned int rev_l; 1227 1228 soc = soc_info(&rev_h, &rev_l); 1229 if (!soc) { 1230 dev_err(&ofdev->dev, "unknown CPU model\n"); 1231 return -ENXIO; 1232 } 1233 sprintf(filename, "fsl_qe_ucode_uart_%u_%u%u.bin", 1234 soc, rev_h, rev_l); 1235 1236 dev_info(&ofdev->dev, "waiting for firmware %s\n", 1237 filename); 1238 1239 /* 1240 * We call request_firmware_nowait instead of 1241 * request_firmware so that the driver can load and 1242 * initialize the ports without holding up the rest of 1243 * the kernel. If hotplug support is enabled in the 1244 * kernel, then we use it. 1245 */ 1246 ret = request_firmware_nowait(THIS_MODULE, 1247 FW_ACTION_HOTPLUG, filename, &ofdev->dev, 1248 GFP_KERNEL, &ofdev->dev, uart_firmware_cont); 1249 if (ret) { 1250 dev_err(&ofdev->dev, 1251 "could not load firmware %s\n", 1252 filename); 1253 return ret; 1254 } 1255 } 1256 } 1257 1258 qe_port = kzalloc(sizeof(struct uart_qe_port), GFP_KERNEL); 1259 if (!qe_port) { 1260 dev_err(&ofdev->dev, "can't allocate QE port structure\n"); 1261 return -ENOMEM; 1262 } 1263 1264 /* Search for IRQ and mapbase */ 1265 ret = of_address_to_resource(np, 0, &res); 1266 if (ret) { 1267 dev_err(&ofdev->dev, "missing 'reg' property in device tree\n"); 1268 goto out_free; 1269 } 1270 if (!res.start) { 1271 dev_err(&ofdev->dev, "invalid 'reg' property in device tree\n"); 1272 ret = -EINVAL; 1273 goto out_free; 1274 } 1275 qe_port->port.mapbase = res.start; 1276 1277 /* Get the UCC number (device ID) */ 1278 /* UCCs are numbered 1-7 */ 1279 iprop = of_get_property(np, "cell-index", NULL); 1280 if (!iprop) { 1281 iprop = of_get_property(np, "device-id", NULL); 1282 if (!iprop) { 1283 dev_err(&ofdev->dev, "UCC is unspecified in " 1284 "device tree\n"); 1285 ret = -EINVAL; 1286 goto out_free; 1287 } 1288 } 1289 1290 if ((*iprop < 1) || (*iprop > UCC_MAX_NUM)) { 1291 dev_err(&ofdev->dev, "no support for UCC%u\n", *iprop); 1292 ret = -ENODEV; 1293 goto out_free; 1294 } 1295 qe_port->ucc_num = *iprop - 1; 1296 1297 /* 1298 * In the future, we should not require the BRG to be specified in the 1299 * device tree. If no clock-source is specified, then just pick a BRG 1300 * to use. This requires a new QE library function that manages BRG 1301 * assignments. 1302 */ 1303 1304 sprop = of_get_property(np, "rx-clock-name", NULL); 1305 if (!sprop) { 1306 dev_err(&ofdev->dev, "missing rx-clock-name in device tree\n"); 1307 ret = -ENODEV; 1308 goto out_free; 1309 } 1310 1311 qe_port->us_info.rx_clock = qe_clock_source(sprop); 1312 if ((qe_port->us_info.rx_clock < QE_BRG1) || 1313 (qe_port->us_info.rx_clock > QE_BRG16)) { 1314 dev_err(&ofdev->dev, "rx-clock-name must be a BRG for UART\n"); 1315 ret = -ENODEV; 1316 goto out_free; 1317 } 1318 1319 #ifdef LOOPBACK 1320 /* In internal loopback mode, TX and RX must use the same clock */ 1321 qe_port->us_info.tx_clock = qe_port->us_info.rx_clock; 1322 #else 1323 sprop = of_get_property(np, "tx-clock-name", NULL); 1324 if (!sprop) { 1325 dev_err(&ofdev->dev, "missing tx-clock-name in device tree\n"); 1326 ret = -ENODEV; 1327 goto out_free; 1328 } 1329 qe_port->us_info.tx_clock = qe_clock_source(sprop); 1330 #endif 1331 if ((qe_port->us_info.tx_clock < QE_BRG1) || 1332 (qe_port->us_info.tx_clock > QE_BRG16)) { 1333 dev_err(&ofdev->dev, "tx-clock-name must be a BRG for UART\n"); 1334 ret = -ENODEV; 1335 goto out_free; 1336 } 1337 1338 /* Get the port number, numbered 0-3 */ 1339 iprop = of_get_property(np, "port-number", NULL); 1340 if (!iprop) { 1341 dev_err(&ofdev->dev, "missing port-number in device tree\n"); 1342 ret = -EINVAL; 1343 goto out_free; 1344 } 1345 qe_port->port.line = *iprop; 1346 if (qe_port->port.line >= UCC_MAX_UART) { 1347 dev_err(&ofdev->dev, "port-number must be 0-%u\n", 1348 UCC_MAX_UART - 1); 1349 ret = -EINVAL; 1350 goto out_free; 1351 } 1352 1353 qe_port->port.irq = irq_of_parse_and_map(np, 0); 1354 if (qe_port->port.irq == 0) { 1355 dev_err(&ofdev->dev, "could not map IRQ for UCC%u\n", 1356 qe_port->ucc_num + 1); 1357 ret = -EINVAL; 1358 goto out_free; 1359 } 1360 1361 /* 1362 * Newer device trees have an "fsl,qe" compatible property for the QE 1363 * node, but we still need to support older device trees. 1364 */ 1365 np = of_find_compatible_node(NULL, NULL, "fsl,qe"); 1366 if (!np) { 1367 np = of_find_node_by_type(NULL, "qe"); 1368 if (!np) { 1369 dev_err(&ofdev->dev, "could not find 'qe' node\n"); 1370 ret = -EINVAL; 1371 goto out_free; 1372 } 1373 } 1374 1375 iprop = of_get_property(np, "brg-frequency", NULL); 1376 if (!iprop) { 1377 dev_err(&ofdev->dev, 1378 "missing brg-frequency in device tree\n"); 1379 ret = -EINVAL; 1380 goto out_np; 1381 } 1382 1383 if (*iprop) 1384 qe_port->port.uartclk = *iprop; 1385 else { 1386 /* 1387 * Older versions of U-Boot do not initialize the brg-frequency 1388 * property, so in this case we assume the BRG frequency is 1389 * half the QE bus frequency. 1390 */ 1391 iprop = of_get_property(np, "bus-frequency", NULL); 1392 if (!iprop) { 1393 dev_err(&ofdev->dev, 1394 "missing QE bus-frequency in device tree\n"); 1395 ret = -EINVAL; 1396 goto out_np; 1397 } 1398 if (*iprop) 1399 qe_port->port.uartclk = *iprop / 2; 1400 else { 1401 dev_err(&ofdev->dev, 1402 "invalid QE bus-frequency in device tree\n"); 1403 ret = -EINVAL; 1404 goto out_np; 1405 } 1406 } 1407 1408 spin_lock_init(&qe_port->port.lock); 1409 qe_port->np = np; 1410 qe_port->port.dev = &ofdev->dev; 1411 qe_port->port.ops = &qe_uart_pops; 1412 qe_port->port.iotype = UPIO_MEM; 1413 1414 qe_port->tx_nrfifos = TX_NUM_FIFO; 1415 qe_port->tx_fifosize = TX_BUF_SIZE; 1416 qe_port->rx_nrfifos = RX_NUM_FIFO; 1417 qe_port->rx_fifosize = RX_BUF_SIZE; 1418 1419 qe_port->wait_closing = UCC_WAIT_CLOSING; 1420 qe_port->port.fifosize = 512; 1421 qe_port->port.flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP; 1422 1423 qe_port->us_info.ucc_num = qe_port->ucc_num; 1424 qe_port->us_info.regs = (phys_addr_t) res.start; 1425 qe_port->us_info.irq = qe_port->port.irq; 1426 1427 qe_port->us_info.rx_bd_ring_len = qe_port->rx_nrfifos; 1428 qe_port->us_info.tx_bd_ring_len = qe_port->tx_nrfifos; 1429 1430 /* Make sure ucc_slow_init() initializes both TX and RX */ 1431 qe_port->us_info.init_tx = 1; 1432 qe_port->us_info.init_rx = 1; 1433 1434 /* Add the port to the uart sub-system. This will cause 1435 * qe_uart_config_port() to be called, so the us_info structure must 1436 * be initialized. 1437 */ 1438 ret = uart_add_one_port(&ucc_uart_driver, &qe_port->port); 1439 if (ret) { 1440 dev_err(&ofdev->dev, "could not add /dev/ttyQE%u\n", 1441 qe_port->port.line); 1442 goto out_np; 1443 } 1444 1445 platform_set_drvdata(ofdev, qe_port); 1446 1447 dev_info(&ofdev->dev, "UCC%u assigned to /dev/ttyQE%u\n", 1448 qe_port->ucc_num + 1, qe_port->port.line); 1449 1450 /* Display the mknod command for this device */ 1451 dev_dbg(&ofdev->dev, "mknod command is 'mknod /dev/ttyQE%u c %u %u'\n", 1452 qe_port->port.line, SERIAL_QE_MAJOR, 1453 SERIAL_QE_MINOR + qe_port->port.line); 1454 1455 return 0; 1456 out_np: 1457 of_node_put(np); 1458 out_free: 1459 kfree(qe_port); 1460 return ret; 1461 } 1462 1463 static int ucc_uart_remove(struct platform_device *ofdev) 1464 { 1465 struct uart_qe_port *qe_port = platform_get_drvdata(ofdev); 1466 1467 dev_info(&ofdev->dev, "removing /dev/ttyQE%u\n", qe_port->port.line); 1468 1469 uart_remove_one_port(&ucc_uart_driver, &qe_port->port); 1470 1471 kfree(qe_port); 1472 1473 return 0; 1474 } 1475 1476 static const struct of_device_id ucc_uart_match[] = { 1477 { 1478 .type = "serial", 1479 .compatible = "ucc_uart", 1480 }, 1481 { 1482 .compatible = "fsl,t1040-ucc-uart", 1483 }, 1484 {}, 1485 }; 1486 MODULE_DEVICE_TABLE(of, ucc_uart_match); 1487 1488 static struct platform_driver ucc_uart_of_driver = { 1489 .driver = { 1490 .name = "ucc_uart", 1491 .of_match_table = ucc_uart_match, 1492 }, 1493 .probe = ucc_uart_probe, 1494 .remove = ucc_uart_remove, 1495 }; 1496 1497 static int __init ucc_uart_init(void) 1498 { 1499 int ret; 1500 1501 printk(KERN_INFO "Freescale QUICC Engine UART device driver\n"); 1502 #ifdef LOOPBACK 1503 printk(KERN_INFO "ucc-uart: Using loopback mode\n"); 1504 #endif 1505 1506 ret = uart_register_driver(&ucc_uart_driver); 1507 if (ret) { 1508 printk(KERN_ERR "ucc-uart: could not register UART driver\n"); 1509 return ret; 1510 } 1511 1512 ret = platform_driver_register(&ucc_uart_of_driver); 1513 if (ret) { 1514 printk(KERN_ERR 1515 "ucc-uart: could not register platform driver\n"); 1516 uart_unregister_driver(&ucc_uart_driver); 1517 } 1518 1519 return ret; 1520 } 1521 1522 static void __exit ucc_uart_exit(void) 1523 { 1524 printk(KERN_INFO 1525 "Freescale QUICC Engine UART device driver unloading\n"); 1526 1527 platform_driver_unregister(&ucc_uart_of_driver); 1528 uart_unregister_driver(&ucc_uart_driver); 1529 } 1530 1531 module_init(ucc_uart_init); 1532 module_exit(ucc_uart_exit); 1533 1534 MODULE_DESCRIPTION("Freescale QUICC Engine (QE) UART"); 1535 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 1536 MODULE_LICENSE("GPL v2"); 1537 MODULE_ALIAS_CHARDEV_MAJOR(SERIAL_QE_MAJOR); 1538 1539