xref: /linux/drivers/tty/serial/ucc_uart.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Freescale QUICC Engine UART device driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007 Freescale Semiconductor, Inc.  This file is licensed under
7  * the terms of the GNU General Public License version 2.  This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  * This driver adds support for UART devices via Freescale's QUICC Engine
12  * found on some Freescale SOCs.
13  *
14  * If Soft-UART support is needed but not already present, then this driver
15  * will request and upload the "Soft-UART" microcode upon probe.  The
16  * filename of the microcode should be fsl_qe_ucode_uart_X_YZ.bin, where "X"
17  * is the name of the SOC (e.g. 8323), and YZ is the revision of the SOC,
18  * (e.g. "11" for 1.1).
19  */
20 
21 #include <linux/module.h>
22 #include <linux/serial.h>
23 #include <linux/serial_core.h>
24 #include <linux/slab.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/io.h>
28 #include <linux/of_address.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_platform.h>
31 #include <linux/dma-mapping.h>
32 
33 #include <linux/fs_uart_pd.h>
34 #include <asm/ucc_slow.h>
35 
36 #include <linux/firmware.h>
37 #include <asm/reg.h>
38 
39 /*
40  * The GUMR flag for Soft UART.  This would normally be defined in qe.h,
41  * but Soft-UART is a hack and we want to keep everything related to it in
42  * this file.
43  */
44 #define UCC_SLOW_GUMR_H_SUART   	0x00004000      /* Soft-UART */
45 
46 /*
47  * soft_uart is 1 if we need to use Soft-UART mode
48  */
49 static int soft_uart;
50 /*
51  * firmware_loaded is 1 if the firmware has been loaded, 0 otherwise.
52  */
53 static int firmware_loaded;
54 
55 /* Enable this macro to configure all serial ports in internal loopback
56    mode */
57 /* #define LOOPBACK */
58 
59 /* The major and minor device numbers are defined in
60  * http://www.lanana.org/docs/device-list/devices-2.6+.txt.  For the QE
61  * UART, we have major number 204 and minor numbers 46 - 49, which are the
62  * same as for the CPM2.  This decision was made because no Freescale part
63  * has both a CPM and a QE.
64  */
65 #define SERIAL_QE_MAJOR 204
66 #define SERIAL_QE_MINOR 46
67 
68 /* Since we only have minor numbers 46 - 49, there is a hard limit of 4 ports */
69 #define UCC_MAX_UART    4
70 
71 /* The number of buffer descriptors for receiving characters. */
72 #define RX_NUM_FIFO     4
73 
74 /* The number of buffer descriptors for transmitting characters. */
75 #define TX_NUM_FIFO     4
76 
77 /* The maximum size of the character buffer for a single RX BD. */
78 #define RX_BUF_SIZE     32
79 
80 /* The maximum size of the character buffer for a single TX BD. */
81 #define TX_BUF_SIZE     32
82 
83 /*
84  * The number of jiffies to wait after receiving a close command before the
85  * device is actually closed.  This allows the last few characters to be
86  * sent over the wire.
87  */
88 #define UCC_WAIT_CLOSING 100
89 
90 struct ucc_uart_pram {
91 	struct ucc_slow_pram common;
92 	u8 res1[8];     	/* reserved */
93 	__be16 maxidl;  	/* Maximum idle chars */
94 	__be16 idlc;    	/* temp idle counter */
95 	__be16 brkcr;   	/* Break count register */
96 	__be16 parec;   	/* receive parity error counter */
97 	__be16 frmec;   	/* receive framing error counter */
98 	__be16 nosec;   	/* receive noise counter */
99 	__be16 brkec;   	/* receive break condition counter */
100 	__be16 brkln;   	/* last received break length */
101 	__be16 uaddr[2];	/* UART address character 1 & 2 */
102 	__be16 rtemp;   	/* Temp storage */
103 	__be16 toseq;   	/* Transmit out of sequence char */
104 	__be16 cchars[8];       /* control characters 1-8 */
105 	__be16 rccm;    	/* receive control character mask */
106 	__be16 rccr;    	/* receive control character register */
107 	__be16 rlbc;    	/* receive last break character */
108 	__be16 res2;    	/* reserved */
109 	__be32 res3;    	/* reserved, should be cleared */
110 	u8 res4;		/* reserved, should be cleared */
111 	u8 res5[3];     	/* reserved, should be cleared */
112 	__be32 res6;    	/* reserved, should be cleared */
113 	__be32 res7;    	/* reserved, should be cleared */
114 	__be32 res8;    	/* reserved, should be cleared */
115 	__be32 res9;    	/* reserved, should be cleared */
116 	__be32 res10;   	/* reserved, should be cleared */
117 	__be32 res11;   	/* reserved, should be cleared */
118 	__be32 res12;   	/* reserved, should be cleared */
119 	__be32 res13;   	/* reserved, should be cleared */
120 /* The rest is for Soft-UART only */
121 	__be16 supsmr;  	/* 0x90, Shadow UPSMR */
122 	__be16 res92;   	/* 0x92, reserved, initialize to 0 */
123 	__be32 rx_state;	/* 0x94, RX state, initialize to 0 */
124 	__be32 rx_cnt;  	/* 0x98, RX count, initialize to 0 */
125 	u8 rx_length;   	/* 0x9C, Char length, set to 1+CL+PEN+1+SL */
126 	u8 rx_bitmark;  	/* 0x9D, reserved, initialize to 0 */
127 	u8 rx_temp_dlst_qe;     /* 0x9E, reserved, initialize to 0 */
128 	u8 res14[0xBC - 0x9F];  /* reserved */
129 	__be32 dump_ptr;	/* 0xBC, Dump pointer */
130 	__be32 rx_frame_rem;    /* 0xC0, reserved, initialize to 0 */
131 	u8 rx_frame_rem_size;   /* 0xC4, reserved, initialize to 0 */
132 	u8 tx_mode;     	/* 0xC5, mode, 0=AHDLC, 1=UART */
133 	__be16 tx_state;	/* 0xC6, TX state */
134 	u8 res15[0xD0 - 0xC8];  /* reserved */
135 	__be32 resD0;   	/* 0xD0, reserved, initialize to 0 */
136 	u8 resD4;       	/* 0xD4, reserved, initialize to 0 */
137 	__be16 resD5;   	/* 0xD5, reserved, initialize to 0 */
138 } __attribute__ ((packed));
139 
140 /* SUPSMR definitions, for Soft-UART only */
141 #define UCC_UART_SUPSMR_SL      	0x8000
142 #define UCC_UART_SUPSMR_RPM_MASK	0x6000
143 #define UCC_UART_SUPSMR_RPM_ODD 	0x0000
144 #define UCC_UART_SUPSMR_RPM_LOW 	0x2000
145 #define UCC_UART_SUPSMR_RPM_EVEN	0x4000
146 #define UCC_UART_SUPSMR_RPM_HIGH	0x6000
147 #define UCC_UART_SUPSMR_PEN     	0x1000
148 #define UCC_UART_SUPSMR_TPM_MASK	0x0C00
149 #define UCC_UART_SUPSMR_TPM_ODD 	0x0000
150 #define UCC_UART_SUPSMR_TPM_LOW 	0x0400
151 #define UCC_UART_SUPSMR_TPM_EVEN	0x0800
152 #define UCC_UART_SUPSMR_TPM_HIGH	0x0C00
153 #define UCC_UART_SUPSMR_FRZ     	0x0100
154 #define UCC_UART_SUPSMR_UM_MASK 	0x00c0
155 #define UCC_UART_SUPSMR_UM_NORMAL       0x0000
156 #define UCC_UART_SUPSMR_UM_MAN_MULTI    0x0040
157 #define UCC_UART_SUPSMR_UM_AUTO_MULTI   0x00c0
158 #define UCC_UART_SUPSMR_CL_MASK 	0x0030
159 #define UCC_UART_SUPSMR_CL_8    	0x0030
160 #define UCC_UART_SUPSMR_CL_7    	0x0020
161 #define UCC_UART_SUPSMR_CL_6    	0x0010
162 #define UCC_UART_SUPSMR_CL_5    	0x0000
163 
164 #define UCC_UART_TX_STATE_AHDLC 	0x00
165 #define UCC_UART_TX_STATE_UART  	0x01
166 #define UCC_UART_TX_STATE_X1    	0x00
167 #define UCC_UART_TX_STATE_X16   	0x80
168 
169 #define UCC_UART_PRAM_ALIGNMENT 0x100
170 
171 #define UCC_UART_SIZE_OF_BD     UCC_SLOW_SIZE_OF_BD
172 #define NUM_CONTROL_CHARS       8
173 
174 /* Private per-port data structure */
175 struct uart_qe_port {
176 	struct uart_port port;
177 	struct ucc_slow __iomem *uccp;
178 	struct ucc_uart_pram __iomem *uccup;
179 	struct ucc_slow_info us_info;
180 	struct ucc_slow_private *us_private;
181 	struct device_node *np;
182 	unsigned int ucc_num;   /* First ucc is 0, not 1 */
183 
184 	u16 rx_nrfifos;
185 	u16 rx_fifosize;
186 	u16 tx_nrfifos;
187 	u16 tx_fifosize;
188 	int wait_closing;
189 	u32 flags;
190 	struct qe_bd *rx_bd_base;
191 	struct qe_bd *rx_cur;
192 	struct qe_bd *tx_bd_base;
193 	struct qe_bd *tx_cur;
194 	unsigned char *tx_buf;
195 	unsigned char *rx_buf;
196 	void *bd_virt;  	/* virtual address of the BD buffers */
197 	dma_addr_t bd_dma_addr; /* bus address of the BD buffers */
198 	unsigned int bd_size;   /* size of BD buffer space */
199 };
200 
201 static struct uart_driver ucc_uart_driver = {
202 	.owner  	= THIS_MODULE,
203 	.driver_name    = "ucc_uart",
204 	.dev_name       = "ttyQE",
205 	.major  	= SERIAL_QE_MAJOR,
206 	.minor  	= SERIAL_QE_MINOR,
207 	.nr     	= UCC_MAX_UART,
208 };
209 
210 /*
211  * Virtual to physical address translation.
212  *
213  * Given the virtual address for a character buffer, this function returns
214  * the physical (DMA) equivalent.
215  */
216 static inline dma_addr_t cpu2qe_addr(void *addr, struct uart_qe_port *qe_port)
217 {
218 	if (likely((addr >= qe_port->bd_virt)) &&
219 	    (addr < (qe_port->bd_virt + qe_port->bd_size)))
220 		return qe_port->bd_dma_addr + (addr - qe_port->bd_virt);
221 
222 	/* something nasty happened */
223 	printk(KERN_ERR "%s: addr=%p\n", __func__, addr);
224 	BUG();
225 	return 0;
226 }
227 
228 /*
229  * Physical to virtual address translation.
230  *
231  * Given the physical (DMA) address for a character buffer, this function
232  * returns the virtual equivalent.
233  */
234 static inline void *qe2cpu_addr(dma_addr_t addr, struct uart_qe_port *qe_port)
235 {
236 	/* sanity check */
237 	if (likely((addr >= qe_port->bd_dma_addr) &&
238 		   (addr < (qe_port->bd_dma_addr + qe_port->bd_size))))
239 		return qe_port->bd_virt + (addr - qe_port->bd_dma_addr);
240 
241 	/* something nasty happened */
242 	printk(KERN_ERR "%s: addr=%llx\n", __func__, (u64)addr);
243 	BUG();
244 	return NULL;
245 }
246 
247 /*
248  * Return 1 if the QE is done transmitting all buffers for this port
249  *
250  * This function scans each BD in sequence.  If we find a BD that is not
251  * ready (READY=1), then we return 0 indicating that the QE is still sending
252  * data.  If we reach the last BD (WRAP=1), then we know we've scanned
253  * the entire list, and all BDs are done.
254  */
255 static unsigned int qe_uart_tx_empty(struct uart_port *port)
256 {
257 	struct uart_qe_port *qe_port =
258 		container_of(port, struct uart_qe_port, port);
259 	struct qe_bd *bdp = qe_port->tx_bd_base;
260 
261 	while (1) {
262 		if (in_be16(&bdp->status) & BD_SC_READY)
263 			/* This BD is not done, so return "not done" */
264 			return 0;
265 
266 		if (in_be16(&bdp->status) & BD_SC_WRAP)
267 			/*
268 			 * This BD is done and it's the last one, so return
269 			 * "done"
270 			 */
271 			return 1;
272 
273 		bdp++;
274 	}
275 }
276 
277 /*
278  * Set the modem control lines
279  *
280  * Although the QE can control the modem control lines (e.g. CTS), we
281  * don't need that support. This function must exist, however, otherwise
282  * the kernel will panic.
283  */
284 void qe_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
285 {
286 }
287 
288 /*
289  * Get the current modem control line status
290  *
291  * Although the QE can control the modem control lines (e.g. CTS), this
292  * driver currently doesn't support that, so we always return Carrier
293  * Detect, Data Set Ready, and Clear To Send.
294  */
295 static unsigned int qe_uart_get_mctrl(struct uart_port *port)
296 {
297 	return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
298 }
299 
300 /*
301  * Disable the transmit interrupt.
302  *
303  * Although this function is called "stop_tx", it does not actually stop
304  * transmission of data.  Instead, it tells the QE to not generate an
305  * interrupt when the UCC is finished sending characters.
306  */
307 static void qe_uart_stop_tx(struct uart_port *port)
308 {
309 	struct uart_qe_port *qe_port =
310 		container_of(port, struct uart_qe_port, port);
311 
312 	clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
313 }
314 
315 /*
316  * Transmit as many characters to the HW as possible.
317  *
318  * This function will attempt to stuff of all the characters from the
319  * kernel's transmit buffer into TX BDs.
320  *
321  * A return value of non-zero indicates that it successfully stuffed all
322  * characters from the kernel buffer.
323  *
324  * A return value of zero indicates that there are still characters in the
325  * kernel's buffer that have not been transmitted, but there are no more BDs
326  * available.  This function should be called again after a BD has been made
327  * available.
328  */
329 static int qe_uart_tx_pump(struct uart_qe_port *qe_port)
330 {
331 	struct qe_bd *bdp;
332 	unsigned char *p;
333 	unsigned int count;
334 	struct uart_port *port = &qe_port->port;
335 	struct circ_buf *xmit = &port->state->xmit;
336 
337 	bdp = qe_port->rx_cur;
338 
339 	/* Handle xon/xoff */
340 	if (port->x_char) {
341 		/* Pick next descriptor and fill from buffer */
342 		bdp = qe_port->tx_cur;
343 
344 		p = qe2cpu_addr(bdp->buf, qe_port);
345 
346 		*p++ = port->x_char;
347 		out_be16(&bdp->length, 1);
348 		setbits16(&bdp->status, BD_SC_READY);
349 		/* Get next BD. */
350 		if (in_be16(&bdp->status) & BD_SC_WRAP)
351 			bdp = qe_port->tx_bd_base;
352 		else
353 			bdp++;
354 		qe_port->tx_cur = bdp;
355 
356 		port->icount.tx++;
357 		port->x_char = 0;
358 		return 1;
359 	}
360 
361 	if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
362 		qe_uart_stop_tx(port);
363 		return 0;
364 	}
365 
366 	/* Pick next descriptor and fill from buffer */
367 	bdp = qe_port->tx_cur;
368 
369 	while (!(in_be16(&bdp->status) & BD_SC_READY) &&
370 	       (xmit->tail != xmit->head)) {
371 		count = 0;
372 		p = qe2cpu_addr(bdp->buf, qe_port);
373 		while (count < qe_port->tx_fifosize) {
374 			*p++ = xmit->buf[xmit->tail];
375 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
376 			port->icount.tx++;
377 			count++;
378 			if (xmit->head == xmit->tail)
379 				break;
380 		}
381 
382 		out_be16(&bdp->length, count);
383 		setbits16(&bdp->status, BD_SC_READY);
384 
385 		/* Get next BD. */
386 		if (in_be16(&bdp->status) & BD_SC_WRAP)
387 			bdp = qe_port->tx_bd_base;
388 		else
389 			bdp++;
390 	}
391 	qe_port->tx_cur = bdp;
392 
393 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
394 		uart_write_wakeup(port);
395 
396 	if (uart_circ_empty(xmit)) {
397 		/* The kernel buffer is empty, so turn off TX interrupts.  We
398 		   don't need to be told when the QE is finished transmitting
399 		   the data. */
400 		qe_uart_stop_tx(port);
401 		return 0;
402 	}
403 
404 	return 1;
405 }
406 
407 /*
408  * Start transmitting data
409  *
410  * This function will start transmitting any available data, if the port
411  * isn't already transmitting data.
412  */
413 static void qe_uart_start_tx(struct uart_port *port)
414 {
415 	struct uart_qe_port *qe_port =
416 		container_of(port, struct uart_qe_port, port);
417 
418 	/* If we currently are transmitting, then just return */
419 	if (in_be16(&qe_port->uccp->uccm) & UCC_UART_UCCE_TX)
420 		return;
421 
422 	/* Otherwise, pump the port and start transmission */
423 	if (qe_uart_tx_pump(qe_port))
424 		setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
425 }
426 
427 /*
428  * Stop transmitting data
429  */
430 static void qe_uart_stop_rx(struct uart_port *port)
431 {
432 	struct uart_qe_port *qe_port =
433 		container_of(port, struct uart_qe_port, port);
434 
435 	clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
436 }
437 
438 /* Start or stop sending  break signal
439  *
440  * This function controls the sending of a break signal.  If break_state=1,
441  * then we start sending a break signal.  If break_state=0, then we stop
442  * sending the break signal.
443  */
444 static void qe_uart_break_ctl(struct uart_port *port, int break_state)
445 {
446 	struct uart_qe_port *qe_port =
447 		container_of(port, struct uart_qe_port, port);
448 
449 	if (break_state)
450 		ucc_slow_stop_tx(qe_port->us_private);
451 	else
452 		ucc_slow_restart_tx(qe_port->us_private);
453 }
454 
455 /* ISR helper function for receiving character.
456  *
457  * This function is called by the ISR to handling receiving characters
458  */
459 static void qe_uart_int_rx(struct uart_qe_port *qe_port)
460 {
461 	int i;
462 	unsigned char ch, *cp;
463 	struct uart_port *port = &qe_port->port;
464 	struct tty_port *tport = &port->state->port;
465 	struct qe_bd *bdp;
466 	u16 status;
467 	unsigned int flg;
468 
469 	/* Just loop through the closed BDs and copy the characters into
470 	 * the buffer.
471 	 */
472 	bdp = qe_port->rx_cur;
473 	while (1) {
474 		status = in_be16(&bdp->status);
475 
476 		/* If this one is empty, then we assume we've read them all */
477 		if (status & BD_SC_EMPTY)
478 			break;
479 
480 		/* get number of characters, and check space in RX buffer */
481 		i = in_be16(&bdp->length);
482 
483 		/* If we don't have enough room in RX buffer for the entire BD,
484 		 * then we try later, which will be the next RX interrupt.
485 		 */
486 		if (tty_buffer_request_room(tport, i) < i) {
487 			dev_dbg(port->dev, "ucc-uart: no room in RX buffer\n");
488 			return;
489 		}
490 
491 		/* get pointer */
492 		cp = qe2cpu_addr(bdp->buf, qe_port);
493 
494 		/* loop through the buffer */
495 		while (i-- > 0) {
496 			ch = *cp++;
497 			port->icount.rx++;
498 			flg = TTY_NORMAL;
499 
500 			if (!i && status &
501 			    (BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV))
502 				goto handle_error;
503 			if (uart_handle_sysrq_char(port, ch))
504 				continue;
505 
506 error_return:
507 			tty_insert_flip_char(tport, ch, flg);
508 
509 		}
510 
511 		/* This BD is ready to be used again. Clear status. get next */
512 		clrsetbits_be16(&bdp->status, BD_SC_BR | BD_SC_FR | BD_SC_PR |
513 			BD_SC_OV | BD_SC_ID, BD_SC_EMPTY);
514 		if (in_be16(&bdp->status) & BD_SC_WRAP)
515 			bdp = qe_port->rx_bd_base;
516 		else
517 			bdp++;
518 
519 	}
520 
521 	/* Write back buffer pointer */
522 	qe_port->rx_cur = bdp;
523 
524 	/* Activate BH processing */
525 	tty_flip_buffer_push(tport);
526 
527 	return;
528 
529 	/* Error processing */
530 
531 handle_error:
532 	/* Statistics */
533 	if (status & BD_SC_BR)
534 		port->icount.brk++;
535 	if (status & BD_SC_PR)
536 		port->icount.parity++;
537 	if (status & BD_SC_FR)
538 		port->icount.frame++;
539 	if (status & BD_SC_OV)
540 		port->icount.overrun++;
541 
542 	/* Mask out ignored conditions */
543 	status &= port->read_status_mask;
544 
545 	/* Handle the remaining ones */
546 	if (status & BD_SC_BR)
547 		flg = TTY_BREAK;
548 	else if (status & BD_SC_PR)
549 		flg = TTY_PARITY;
550 	else if (status & BD_SC_FR)
551 		flg = TTY_FRAME;
552 
553 	/* Overrun does not affect the current character ! */
554 	if (status & BD_SC_OV)
555 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
556 #ifdef SUPPORT_SYSRQ
557 	port->sysrq = 0;
558 #endif
559 	goto error_return;
560 }
561 
562 /* Interrupt handler
563  *
564  * This interrupt handler is called after a BD is processed.
565  */
566 static irqreturn_t qe_uart_int(int irq, void *data)
567 {
568 	struct uart_qe_port *qe_port = (struct uart_qe_port *) data;
569 	struct ucc_slow __iomem *uccp = qe_port->uccp;
570 	u16 events;
571 
572 	/* Clear the interrupts */
573 	events = in_be16(&uccp->ucce);
574 	out_be16(&uccp->ucce, events);
575 
576 	if (events & UCC_UART_UCCE_BRKE)
577 		uart_handle_break(&qe_port->port);
578 
579 	if (events & UCC_UART_UCCE_RX)
580 		qe_uart_int_rx(qe_port);
581 
582 	if (events & UCC_UART_UCCE_TX)
583 		qe_uart_tx_pump(qe_port);
584 
585 	return events ? IRQ_HANDLED : IRQ_NONE;
586 }
587 
588 /* Initialize buffer descriptors
589  *
590  * This function initializes all of the RX and TX buffer descriptors.
591  */
592 static void qe_uart_initbd(struct uart_qe_port *qe_port)
593 {
594 	int i;
595 	void *bd_virt;
596 	struct qe_bd *bdp;
597 
598 	/* Set the physical address of the host memory buffers in the buffer
599 	 * descriptors, and the virtual address for us to work with.
600 	 */
601 	bd_virt = qe_port->bd_virt;
602 	bdp = qe_port->rx_bd_base;
603 	qe_port->rx_cur = qe_port->rx_bd_base;
604 	for (i = 0; i < (qe_port->rx_nrfifos - 1); i++) {
605 		out_be16(&bdp->status, BD_SC_EMPTY | BD_SC_INTRPT);
606 		out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
607 		out_be16(&bdp->length, 0);
608 		bd_virt += qe_port->rx_fifosize;
609 		bdp++;
610 	}
611 
612 	/* */
613 	out_be16(&bdp->status, BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT);
614 	out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
615 	out_be16(&bdp->length, 0);
616 
617 	/* Set the physical address of the host memory
618 	 * buffers in the buffer descriptors, and the
619 	 * virtual address for us to work with.
620 	 */
621 	bd_virt = qe_port->bd_virt +
622 		L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
623 	qe_port->tx_cur = qe_port->tx_bd_base;
624 	bdp = qe_port->tx_bd_base;
625 	for (i = 0; i < (qe_port->tx_nrfifos - 1); i++) {
626 		out_be16(&bdp->status, BD_SC_INTRPT);
627 		out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
628 		out_be16(&bdp->length, 0);
629 		bd_virt += qe_port->tx_fifosize;
630 		bdp++;
631 	}
632 
633 	/* Loopback requires the preamble bit to be set on the first TX BD */
634 #ifdef LOOPBACK
635 	setbits16(&qe_port->tx_cur->status, BD_SC_P);
636 #endif
637 
638 	out_be16(&bdp->status, BD_SC_WRAP | BD_SC_INTRPT);
639 	out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
640 	out_be16(&bdp->length, 0);
641 }
642 
643 /*
644  * Initialize a UCC for UART.
645  *
646  * This function configures a given UCC to be used as a UART device. Basic
647  * UCC initialization is handled in qe_uart_request_port().  This function
648  * does all the UART-specific stuff.
649  */
650 static void qe_uart_init_ucc(struct uart_qe_port *qe_port)
651 {
652 	u32 cecr_subblock;
653 	struct ucc_slow __iomem *uccp = qe_port->uccp;
654 	struct ucc_uart_pram *uccup = qe_port->uccup;
655 
656 	unsigned int i;
657 
658 	/* First, disable TX and RX in the UCC */
659 	ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
660 
661 	/* Program the UCC UART parameter RAM */
662 	out_8(&uccup->common.rbmr, UCC_BMR_GBL | UCC_BMR_BO_BE);
663 	out_8(&uccup->common.tbmr, UCC_BMR_GBL | UCC_BMR_BO_BE);
664 	out_be16(&uccup->common.mrblr, qe_port->rx_fifosize);
665 	out_be16(&uccup->maxidl, 0x10);
666 	out_be16(&uccup->brkcr, 1);
667 	out_be16(&uccup->parec, 0);
668 	out_be16(&uccup->frmec, 0);
669 	out_be16(&uccup->nosec, 0);
670 	out_be16(&uccup->brkec, 0);
671 	out_be16(&uccup->uaddr[0], 0);
672 	out_be16(&uccup->uaddr[1], 0);
673 	out_be16(&uccup->toseq, 0);
674 	for (i = 0; i < 8; i++)
675 		out_be16(&uccup->cchars[i], 0xC000);
676 	out_be16(&uccup->rccm, 0xc0ff);
677 
678 	/* Configure the GUMR registers for UART */
679 	if (soft_uart) {
680 		/* Soft-UART requires a 1X multiplier for TX */
681 		clrsetbits_be32(&uccp->gumr_l,
682 			UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
683 			UCC_SLOW_GUMR_L_RDCR_MASK,
684 			UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_1 |
685 			UCC_SLOW_GUMR_L_RDCR_16);
686 
687 		clrsetbits_be32(&uccp->gumr_h, UCC_SLOW_GUMR_H_RFW,
688 			UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX);
689 	} else {
690 		clrsetbits_be32(&uccp->gumr_l,
691 			UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
692 			UCC_SLOW_GUMR_L_RDCR_MASK,
693 			UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_16 |
694 			UCC_SLOW_GUMR_L_RDCR_16);
695 
696 		clrsetbits_be32(&uccp->gumr_h,
697 			UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX,
698 			UCC_SLOW_GUMR_H_RFW);
699 	}
700 
701 #ifdef LOOPBACK
702 	clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
703 		UCC_SLOW_GUMR_L_DIAG_LOOP);
704 	clrsetbits_be32(&uccp->gumr_h,
705 		UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_RSYN,
706 		UCC_SLOW_GUMR_H_CDS);
707 #endif
708 
709 	/* Disable rx interrupts  and clear all pending events.  */
710 	out_be16(&uccp->uccm, 0);
711 	out_be16(&uccp->ucce, 0xffff);
712 	out_be16(&uccp->udsr, 0x7e7e);
713 
714 	/* Initialize UPSMR */
715 	out_be16(&uccp->upsmr, 0);
716 
717 	if (soft_uart) {
718 		out_be16(&uccup->supsmr, 0x30);
719 		out_be16(&uccup->res92, 0);
720 		out_be32(&uccup->rx_state, 0);
721 		out_be32(&uccup->rx_cnt, 0);
722 		out_8(&uccup->rx_bitmark, 0);
723 		out_8(&uccup->rx_length, 10);
724 		out_be32(&uccup->dump_ptr, 0x4000);
725 		out_8(&uccup->rx_temp_dlst_qe, 0);
726 		out_be32(&uccup->rx_frame_rem, 0);
727 		out_8(&uccup->rx_frame_rem_size, 0);
728 		/* Soft-UART requires TX to be 1X */
729 		out_8(&uccup->tx_mode,
730 			UCC_UART_TX_STATE_UART | UCC_UART_TX_STATE_X1);
731 		out_be16(&uccup->tx_state, 0);
732 		out_8(&uccup->resD4, 0);
733 		out_be16(&uccup->resD5, 0);
734 
735 		/* Set UART mode.
736 		 * Enable receive and transmit.
737 		 */
738 
739 		/* From the microcode errata:
740 		 * 1.GUMR_L register, set mode=0010 (QMC).
741 		 * 2.Set GUMR_H[17] bit. (UART/AHDLC mode).
742 		 * 3.Set GUMR_H[19:20] (Transparent mode)
743 		 * 4.Clear GUMR_H[26] (RFW)
744 		 * ...
745 		 * 6.Receiver must use 16x over sampling
746 		 */
747 		clrsetbits_be32(&uccp->gumr_l,
748 			UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
749 			UCC_SLOW_GUMR_L_RDCR_MASK,
750 			UCC_SLOW_GUMR_L_MODE_QMC | UCC_SLOW_GUMR_L_TDCR_16 |
751 			UCC_SLOW_GUMR_L_RDCR_16);
752 
753 		clrsetbits_be32(&uccp->gumr_h,
754 			UCC_SLOW_GUMR_H_RFW | UCC_SLOW_GUMR_H_RSYN,
755 			UCC_SLOW_GUMR_H_SUART | UCC_SLOW_GUMR_H_TRX |
756 			UCC_SLOW_GUMR_H_TTX | UCC_SLOW_GUMR_H_TFL);
757 
758 #ifdef LOOPBACK
759 		clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
760 				UCC_SLOW_GUMR_L_DIAG_LOOP);
761 		clrbits32(&uccp->gumr_h, UCC_SLOW_GUMR_H_CTSP |
762 			  UCC_SLOW_GUMR_H_CDS);
763 #endif
764 
765 		cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
766 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
767 			QE_CR_PROTOCOL_UNSPECIFIED, 0);
768 	} else {
769 		cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
770 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
771 			QE_CR_PROTOCOL_UART, 0);
772 	}
773 }
774 
775 /*
776  * Initialize the port.
777  */
778 static int qe_uart_startup(struct uart_port *port)
779 {
780 	struct uart_qe_port *qe_port =
781 		container_of(port, struct uart_qe_port, port);
782 	int ret;
783 
784 	/*
785 	 * If we're using Soft-UART mode, then we need to make sure the
786 	 * firmware has been uploaded first.
787 	 */
788 	if (soft_uart && !firmware_loaded) {
789 		dev_err(port->dev, "Soft-UART firmware not uploaded\n");
790 		return -ENODEV;
791 	}
792 
793 	qe_uart_initbd(qe_port);
794 	qe_uart_init_ucc(qe_port);
795 
796 	/* Install interrupt handler. */
797 	ret = request_irq(port->irq, qe_uart_int, IRQF_SHARED, "ucc-uart",
798 		qe_port);
799 	if (ret) {
800 		dev_err(port->dev, "could not claim IRQ %u\n", port->irq);
801 		return ret;
802 	}
803 
804 	/* Startup rx-int */
805 	setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
806 	ucc_slow_enable(qe_port->us_private, COMM_DIR_RX_AND_TX);
807 
808 	return 0;
809 }
810 
811 /*
812  * Shutdown the port.
813  */
814 static void qe_uart_shutdown(struct uart_port *port)
815 {
816 	struct uart_qe_port *qe_port =
817 		container_of(port, struct uart_qe_port, port);
818 	struct ucc_slow __iomem *uccp = qe_port->uccp;
819 	unsigned int timeout = 20;
820 
821 	/* Disable RX and TX */
822 
823 	/* Wait for all the BDs marked sent */
824 	while (!qe_uart_tx_empty(port)) {
825 		if (!--timeout) {
826 			dev_warn(port->dev, "shutdown timeout\n");
827 			break;
828 		}
829 		set_current_state(TASK_UNINTERRUPTIBLE);
830 		schedule_timeout(2);
831 	}
832 
833 	if (qe_port->wait_closing) {
834 		/* Wait a bit longer */
835 		set_current_state(TASK_UNINTERRUPTIBLE);
836 		schedule_timeout(qe_port->wait_closing);
837 	}
838 
839 	/* Stop uarts */
840 	ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
841 	clrbits16(&uccp->uccm, UCC_UART_UCCE_TX | UCC_UART_UCCE_RX);
842 
843 	/* Shut them really down and reinit buffer descriptors */
844 	ucc_slow_graceful_stop_tx(qe_port->us_private);
845 	qe_uart_initbd(qe_port);
846 
847 	free_irq(port->irq, qe_port);
848 }
849 
850 /*
851  * Set the serial port parameters.
852  */
853 static void qe_uart_set_termios(struct uart_port *port,
854 				struct ktermios *termios, struct ktermios *old)
855 {
856 	struct uart_qe_port *qe_port =
857 		container_of(port, struct uart_qe_port, port);
858 	struct ucc_slow __iomem *uccp = qe_port->uccp;
859 	unsigned int baud;
860 	unsigned long flags;
861 	u16 upsmr = in_be16(&uccp->upsmr);
862 	struct ucc_uart_pram __iomem *uccup = qe_port->uccup;
863 	u16 supsmr = in_be16(&uccup->supsmr);
864 	u8 char_length = 2; /* 1 + CL + PEN + 1 + SL */
865 
866 	/* Character length programmed into the mode register is the
867 	 * sum of: 1 start bit, number of data bits, 0 or 1 parity bit,
868 	 * 1 or 2 stop bits, minus 1.
869 	 * The value 'bits' counts this for us.
870 	 */
871 
872 	/* byte size */
873 	upsmr &= UCC_UART_UPSMR_CL_MASK;
874 	supsmr &= UCC_UART_SUPSMR_CL_MASK;
875 
876 	switch (termios->c_cflag & CSIZE) {
877 	case CS5:
878 		upsmr |= UCC_UART_UPSMR_CL_5;
879 		supsmr |= UCC_UART_SUPSMR_CL_5;
880 		char_length += 5;
881 		break;
882 	case CS6:
883 		upsmr |= UCC_UART_UPSMR_CL_6;
884 		supsmr |= UCC_UART_SUPSMR_CL_6;
885 		char_length += 6;
886 		break;
887 	case CS7:
888 		upsmr |= UCC_UART_UPSMR_CL_7;
889 		supsmr |= UCC_UART_SUPSMR_CL_7;
890 		char_length += 7;
891 		break;
892 	default:	/* case CS8 */
893 		upsmr |= UCC_UART_UPSMR_CL_8;
894 		supsmr |= UCC_UART_SUPSMR_CL_8;
895 		char_length += 8;
896 		break;
897 	}
898 
899 	/* If CSTOPB is set, we want two stop bits */
900 	if (termios->c_cflag & CSTOPB) {
901 		upsmr |= UCC_UART_UPSMR_SL;
902 		supsmr |= UCC_UART_SUPSMR_SL;
903 		char_length++;  /* + SL */
904 	}
905 
906 	if (termios->c_cflag & PARENB) {
907 		upsmr |= UCC_UART_UPSMR_PEN;
908 		supsmr |= UCC_UART_SUPSMR_PEN;
909 		char_length++;  /* + PEN */
910 
911 		if (!(termios->c_cflag & PARODD)) {
912 			upsmr &= ~(UCC_UART_UPSMR_RPM_MASK |
913 				   UCC_UART_UPSMR_TPM_MASK);
914 			upsmr |= UCC_UART_UPSMR_RPM_EVEN |
915 				UCC_UART_UPSMR_TPM_EVEN;
916 			supsmr &= ~(UCC_UART_SUPSMR_RPM_MASK |
917 				    UCC_UART_SUPSMR_TPM_MASK);
918 			supsmr |= UCC_UART_SUPSMR_RPM_EVEN |
919 				UCC_UART_SUPSMR_TPM_EVEN;
920 		}
921 	}
922 
923 	/*
924 	 * Set up parity check flag
925 	 */
926 	port->read_status_mask = BD_SC_EMPTY | BD_SC_OV;
927 	if (termios->c_iflag & INPCK)
928 		port->read_status_mask |= BD_SC_FR | BD_SC_PR;
929 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
930 		port->read_status_mask |= BD_SC_BR;
931 
932 	/*
933 	 * Characters to ignore
934 	 */
935 	port->ignore_status_mask = 0;
936 	if (termios->c_iflag & IGNPAR)
937 		port->ignore_status_mask |= BD_SC_PR | BD_SC_FR;
938 	if (termios->c_iflag & IGNBRK) {
939 		port->ignore_status_mask |= BD_SC_BR;
940 		/*
941 		 * If we're ignore parity and break indicators, ignore
942 		 * overruns too.  (For real raw support).
943 		 */
944 		if (termios->c_iflag & IGNPAR)
945 			port->ignore_status_mask |= BD_SC_OV;
946 	}
947 	/*
948 	 * !!! ignore all characters if CREAD is not set
949 	 */
950 	if ((termios->c_cflag & CREAD) == 0)
951 		port->read_status_mask &= ~BD_SC_EMPTY;
952 
953 	baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16);
954 
955 	/* Do we really need a spinlock here? */
956 	spin_lock_irqsave(&port->lock, flags);
957 
958 	/* Update the per-port timeout. */
959 	uart_update_timeout(port, termios->c_cflag, baud);
960 
961 	out_be16(&uccp->upsmr, upsmr);
962 	if (soft_uart) {
963 		out_be16(&uccup->supsmr, supsmr);
964 		out_8(&uccup->rx_length, char_length);
965 
966 		/* Soft-UART requires a 1X multiplier for TX */
967 		qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
968 		qe_setbrg(qe_port->us_info.tx_clock, baud, 1);
969 	} else {
970 		qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
971 		qe_setbrg(qe_port->us_info.tx_clock, baud, 16);
972 	}
973 
974 	spin_unlock_irqrestore(&port->lock, flags);
975 }
976 
977 /*
978  * Return a pointer to a string that describes what kind of port this is.
979  */
980 static const char *qe_uart_type(struct uart_port *port)
981 {
982 	return "QE";
983 }
984 
985 /*
986  * Allocate any memory and I/O resources required by the port.
987  */
988 static int qe_uart_request_port(struct uart_port *port)
989 {
990 	int ret;
991 	struct uart_qe_port *qe_port =
992 		container_of(port, struct uart_qe_port, port);
993 	struct ucc_slow_info *us_info = &qe_port->us_info;
994 	struct ucc_slow_private *uccs;
995 	unsigned int rx_size, tx_size;
996 	void *bd_virt;
997 	dma_addr_t bd_dma_addr = 0;
998 
999 	ret = ucc_slow_init(us_info, &uccs);
1000 	if (ret) {
1001 		dev_err(port->dev, "could not initialize UCC%u\n",
1002 		       qe_port->ucc_num);
1003 		return ret;
1004 	}
1005 
1006 	qe_port->us_private = uccs;
1007 	qe_port->uccp = uccs->us_regs;
1008 	qe_port->uccup = (struct ucc_uart_pram *) uccs->us_pram;
1009 	qe_port->rx_bd_base = uccs->rx_bd;
1010 	qe_port->tx_bd_base = uccs->tx_bd;
1011 
1012 	/*
1013 	 * Allocate the transmit and receive data buffers.
1014 	 */
1015 
1016 	rx_size = L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
1017 	tx_size = L1_CACHE_ALIGN(qe_port->tx_nrfifos * qe_port->tx_fifosize);
1018 
1019 	bd_virt = dma_alloc_coherent(port->dev, rx_size + tx_size, &bd_dma_addr,
1020 		GFP_KERNEL);
1021 	if (!bd_virt) {
1022 		dev_err(port->dev, "could not allocate buffer descriptors\n");
1023 		return -ENOMEM;
1024 	}
1025 
1026 	qe_port->bd_virt = bd_virt;
1027 	qe_port->bd_dma_addr = bd_dma_addr;
1028 	qe_port->bd_size = rx_size + tx_size;
1029 
1030 	qe_port->rx_buf = bd_virt;
1031 	qe_port->tx_buf = qe_port->rx_buf + rx_size;
1032 
1033 	return 0;
1034 }
1035 
1036 /*
1037  * Configure the port.
1038  *
1039  * We say we're a CPM-type port because that's mostly true.  Once the device
1040  * is configured, this driver operates almost identically to the CPM serial
1041  * driver.
1042  */
1043 static void qe_uart_config_port(struct uart_port *port, int flags)
1044 {
1045 	if (flags & UART_CONFIG_TYPE) {
1046 		port->type = PORT_CPM;
1047 		qe_uart_request_port(port);
1048 	}
1049 }
1050 
1051 /*
1052  * Release any memory and I/O resources that were allocated in
1053  * qe_uart_request_port().
1054  */
1055 static void qe_uart_release_port(struct uart_port *port)
1056 {
1057 	struct uart_qe_port *qe_port =
1058 		container_of(port, struct uart_qe_port, port);
1059 	struct ucc_slow_private *uccs = qe_port->us_private;
1060 
1061 	dma_free_coherent(port->dev, qe_port->bd_size, qe_port->bd_virt,
1062 			  qe_port->bd_dma_addr);
1063 
1064 	ucc_slow_free(uccs);
1065 }
1066 
1067 /*
1068  * Verify that the data in serial_struct is suitable for this device.
1069  */
1070 static int qe_uart_verify_port(struct uart_port *port,
1071 			       struct serial_struct *ser)
1072 {
1073 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_CPM)
1074 		return -EINVAL;
1075 
1076 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1077 		return -EINVAL;
1078 
1079 	if (ser->baud_base < 9600)
1080 		return -EINVAL;
1081 
1082 	return 0;
1083 }
1084 /* UART operations
1085  *
1086  * Details on these functions can be found in Documentation/serial/driver
1087  */
1088 static struct uart_ops qe_uart_pops = {
1089 	.tx_empty       = qe_uart_tx_empty,
1090 	.set_mctrl      = qe_uart_set_mctrl,
1091 	.get_mctrl      = qe_uart_get_mctrl,
1092 	.stop_tx	= qe_uart_stop_tx,
1093 	.start_tx       = qe_uart_start_tx,
1094 	.stop_rx	= qe_uart_stop_rx,
1095 	.break_ctl      = qe_uart_break_ctl,
1096 	.startup	= qe_uart_startup,
1097 	.shutdown       = qe_uart_shutdown,
1098 	.set_termios    = qe_uart_set_termios,
1099 	.type   	= qe_uart_type,
1100 	.release_port   = qe_uart_release_port,
1101 	.request_port   = qe_uart_request_port,
1102 	.config_port    = qe_uart_config_port,
1103 	.verify_port    = qe_uart_verify_port,
1104 };
1105 
1106 /*
1107  * Obtain the SOC model number and revision level
1108  *
1109  * This function parses the device tree to obtain the SOC model.  It then
1110  * reads the SVR register to the revision.
1111  *
1112  * The device tree stores the SOC model two different ways.
1113  *
1114  * The new way is:
1115  *
1116  *      	cpu@0 {
1117  *      		compatible = "PowerPC,8323";
1118  *      		device_type = "cpu";
1119  *      		...
1120  *
1121  *
1122  * The old way is:
1123  *      	 PowerPC,8323@0 {
1124  *      		device_type = "cpu";
1125  *      		...
1126  *
1127  * This code first checks the new way, and then the old way.
1128  */
1129 static unsigned int soc_info(unsigned int *rev_h, unsigned int *rev_l)
1130 {
1131 	struct device_node *np;
1132 	const char *soc_string;
1133 	unsigned int svr;
1134 	unsigned int soc;
1135 
1136 	/* Find the CPU node */
1137 	np = of_find_node_by_type(NULL, "cpu");
1138 	if (!np)
1139 		return 0;
1140 	/* Find the compatible property */
1141 	soc_string = of_get_property(np, "compatible", NULL);
1142 	if (!soc_string)
1143 		/* No compatible property, so try the name. */
1144 		soc_string = np->name;
1145 
1146 	/* Extract the SOC number from the "PowerPC," string */
1147 	if ((sscanf(soc_string, "PowerPC,%u", &soc) != 1) || !soc)
1148 		return 0;
1149 
1150 	/* Get the revision from the SVR */
1151 	svr = mfspr(SPRN_SVR);
1152 	*rev_h = (svr >> 4) & 0xf;
1153 	*rev_l = svr & 0xf;
1154 
1155 	return soc;
1156 }
1157 
1158 /*
1159  * requst_firmware_nowait() callback function
1160  *
1161  * This function is called by the kernel when a firmware is made available,
1162  * or if it times out waiting for the firmware.
1163  */
1164 static void uart_firmware_cont(const struct firmware *fw, void *context)
1165 {
1166 	struct qe_firmware *firmware;
1167 	struct device *dev = context;
1168 	int ret;
1169 
1170 	if (!fw) {
1171 		dev_err(dev, "firmware not found\n");
1172 		return;
1173 	}
1174 
1175 	firmware = (struct qe_firmware *) fw->data;
1176 
1177 	if (firmware->header.length != fw->size) {
1178 		dev_err(dev, "invalid firmware\n");
1179 		goto out;
1180 	}
1181 
1182 	ret = qe_upload_firmware(firmware);
1183 	if (ret) {
1184 		dev_err(dev, "could not load firmware\n");
1185 		goto out;
1186 	}
1187 
1188 	firmware_loaded = 1;
1189  out:
1190 	release_firmware(fw);
1191 }
1192 
1193 static int ucc_uart_probe(struct platform_device *ofdev)
1194 {
1195 	struct device_node *np = ofdev->dev.of_node;
1196 	const unsigned int *iprop;      /* Integer OF properties */
1197 	const char *sprop;      /* String OF properties */
1198 	struct uart_qe_port *qe_port = NULL;
1199 	struct resource res;
1200 	int ret;
1201 
1202 	/*
1203 	 * Determine if we need Soft-UART mode
1204 	 */
1205 	if (of_find_property(np, "soft-uart", NULL)) {
1206 		dev_dbg(&ofdev->dev, "using Soft-UART mode\n");
1207 		soft_uart = 1;
1208 	}
1209 
1210 	/*
1211 	 * If we are using Soft-UART, determine if we need to upload the
1212 	 * firmware, too.
1213 	 */
1214 	if (soft_uart) {
1215 		struct qe_firmware_info *qe_fw_info;
1216 
1217 		qe_fw_info = qe_get_firmware_info();
1218 
1219 		/* Check if the firmware has been uploaded. */
1220 		if (qe_fw_info && strstr(qe_fw_info->id, "Soft-UART")) {
1221 			firmware_loaded = 1;
1222 		} else {
1223 			char filename[32];
1224 			unsigned int soc;
1225 			unsigned int rev_h;
1226 			unsigned int rev_l;
1227 
1228 			soc = soc_info(&rev_h, &rev_l);
1229 			if (!soc) {
1230 				dev_err(&ofdev->dev, "unknown CPU model\n");
1231 				return -ENXIO;
1232 			}
1233 			sprintf(filename, "fsl_qe_ucode_uart_%u_%u%u.bin",
1234 				soc, rev_h, rev_l);
1235 
1236 			dev_info(&ofdev->dev, "waiting for firmware %s\n",
1237 				filename);
1238 
1239 			/*
1240 			 * We call request_firmware_nowait instead of
1241 			 * request_firmware so that the driver can load and
1242 			 * initialize the ports without holding up the rest of
1243 			 * the kernel.  If hotplug support is enabled in the
1244 			 * kernel, then we use it.
1245 			 */
1246 			ret = request_firmware_nowait(THIS_MODULE,
1247 				FW_ACTION_HOTPLUG, filename, &ofdev->dev,
1248 				GFP_KERNEL, &ofdev->dev, uart_firmware_cont);
1249 			if (ret) {
1250 				dev_err(&ofdev->dev,
1251 					"could not load firmware %s\n",
1252 					filename);
1253 				return ret;
1254 			}
1255 		}
1256 	}
1257 
1258 	qe_port = kzalloc(sizeof(struct uart_qe_port), GFP_KERNEL);
1259 	if (!qe_port) {
1260 		dev_err(&ofdev->dev, "can't allocate QE port structure\n");
1261 		return -ENOMEM;
1262 	}
1263 
1264 	/* Search for IRQ and mapbase */
1265 	ret = of_address_to_resource(np, 0, &res);
1266 	if (ret) {
1267 		dev_err(&ofdev->dev, "missing 'reg' property in device tree\n");
1268 		goto out_free;
1269 	}
1270 	if (!res.start) {
1271 		dev_err(&ofdev->dev, "invalid 'reg' property in device tree\n");
1272 		ret = -EINVAL;
1273 		goto out_free;
1274 	}
1275 	qe_port->port.mapbase = res.start;
1276 
1277 	/* Get the UCC number (device ID) */
1278 	/* UCCs are numbered 1-7 */
1279 	iprop = of_get_property(np, "cell-index", NULL);
1280 	if (!iprop) {
1281 		iprop = of_get_property(np, "device-id", NULL);
1282 		if (!iprop) {
1283 			dev_err(&ofdev->dev, "UCC is unspecified in "
1284 				"device tree\n");
1285 			ret = -EINVAL;
1286 			goto out_free;
1287 		}
1288 	}
1289 
1290 	if ((*iprop < 1) || (*iprop > UCC_MAX_NUM)) {
1291 		dev_err(&ofdev->dev, "no support for UCC%u\n", *iprop);
1292 		ret = -ENODEV;
1293 		goto out_free;
1294 	}
1295 	qe_port->ucc_num = *iprop - 1;
1296 
1297 	/*
1298 	 * In the future, we should not require the BRG to be specified in the
1299 	 * device tree.  If no clock-source is specified, then just pick a BRG
1300 	 * to use.  This requires a new QE library function that manages BRG
1301 	 * assignments.
1302 	 */
1303 
1304 	sprop = of_get_property(np, "rx-clock-name", NULL);
1305 	if (!sprop) {
1306 		dev_err(&ofdev->dev, "missing rx-clock-name in device tree\n");
1307 		ret = -ENODEV;
1308 		goto out_free;
1309 	}
1310 
1311 	qe_port->us_info.rx_clock = qe_clock_source(sprop);
1312 	if ((qe_port->us_info.rx_clock < QE_BRG1) ||
1313 	    (qe_port->us_info.rx_clock > QE_BRG16)) {
1314 		dev_err(&ofdev->dev, "rx-clock-name must be a BRG for UART\n");
1315 		ret = -ENODEV;
1316 		goto out_free;
1317 	}
1318 
1319 #ifdef LOOPBACK
1320 	/* In internal loopback mode, TX and RX must use the same clock */
1321 	qe_port->us_info.tx_clock = qe_port->us_info.rx_clock;
1322 #else
1323 	sprop = of_get_property(np, "tx-clock-name", NULL);
1324 	if (!sprop) {
1325 		dev_err(&ofdev->dev, "missing tx-clock-name in device tree\n");
1326 		ret = -ENODEV;
1327 		goto out_free;
1328 	}
1329 	qe_port->us_info.tx_clock = qe_clock_source(sprop);
1330 #endif
1331 	if ((qe_port->us_info.tx_clock < QE_BRG1) ||
1332 	    (qe_port->us_info.tx_clock > QE_BRG16)) {
1333 		dev_err(&ofdev->dev, "tx-clock-name must be a BRG for UART\n");
1334 		ret = -ENODEV;
1335 		goto out_free;
1336 	}
1337 
1338 	/* Get the port number, numbered 0-3 */
1339 	iprop = of_get_property(np, "port-number", NULL);
1340 	if (!iprop) {
1341 		dev_err(&ofdev->dev, "missing port-number in device tree\n");
1342 		ret = -EINVAL;
1343 		goto out_free;
1344 	}
1345 	qe_port->port.line = *iprop;
1346 	if (qe_port->port.line >= UCC_MAX_UART) {
1347 		dev_err(&ofdev->dev, "port-number must be 0-%u\n",
1348 			UCC_MAX_UART - 1);
1349 		ret = -EINVAL;
1350 		goto out_free;
1351 	}
1352 
1353 	qe_port->port.irq = irq_of_parse_and_map(np, 0);
1354 	if (qe_port->port.irq == 0) {
1355 		dev_err(&ofdev->dev, "could not map IRQ for UCC%u\n",
1356 		       qe_port->ucc_num + 1);
1357 		ret = -EINVAL;
1358 		goto out_free;
1359 	}
1360 
1361 	/*
1362 	 * Newer device trees have an "fsl,qe" compatible property for the QE
1363 	 * node, but we still need to support older device trees.
1364 	 */
1365 	np = of_find_compatible_node(NULL, NULL, "fsl,qe");
1366 	if (!np) {
1367 		np = of_find_node_by_type(NULL, "qe");
1368 		if (!np) {
1369 			dev_err(&ofdev->dev, "could not find 'qe' node\n");
1370 			ret = -EINVAL;
1371 			goto out_free;
1372 		}
1373 	}
1374 
1375 	iprop = of_get_property(np, "brg-frequency", NULL);
1376 	if (!iprop) {
1377 		dev_err(&ofdev->dev,
1378 		       "missing brg-frequency in device tree\n");
1379 		ret = -EINVAL;
1380 		goto out_np;
1381 	}
1382 
1383 	if (*iprop)
1384 		qe_port->port.uartclk = *iprop;
1385 	else {
1386 		/*
1387 		 * Older versions of U-Boot do not initialize the brg-frequency
1388 		 * property, so in this case we assume the BRG frequency is
1389 		 * half the QE bus frequency.
1390 		 */
1391 		iprop = of_get_property(np, "bus-frequency", NULL);
1392 		if (!iprop) {
1393 			dev_err(&ofdev->dev,
1394 				"missing QE bus-frequency in device tree\n");
1395 			ret = -EINVAL;
1396 			goto out_np;
1397 		}
1398 		if (*iprop)
1399 			qe_port->port.uartclk = *iprop / 2;
1400 		else {
1401 			dev_err(&ofdev->dev,
1402 				"invalid QE bus-frequency in device tree\n");
1403 			ret = -EINVAL;
1404 			goto out_np;
1405 		}
1406 	}
1407 
1408 	spin_lock_init(&qe_port->port.lock);
1409 	qe_port->np = np;
1410 	qe_port->port.dev = &ofdev->dev;
1411 	qe_port->port.ops = &qe_uart_pops;
1412 	qe_port->port.iotype = UPIO_MEM;
1413 
1414 	qe_port->tx_nrfifos = TX_NUM_FIFO;
1415 	qe_port->tx_fifosize = TX_BUF_SIZE;
1416 	qe_port->rx_nrfifos = RX_NUM_FIFO;
1417 	qe_port->rx_fifosize = RX_BUF_SIZE;
1418 
1419 	qe_port->wait_closing = UCC_WAIT_CLOSING;
1420 	qe_port->port.fifosize = 512;
1421 	qe_port->port.flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP;
1422 
1423 	qe_port->us_info.ucc_num = qe_port->ucc_num;
1424 	qe_port->us_info.regs = (phys_addr_t) res.start;
1425 	qe_port->us_info.irq = qe_port->port.irq;
1426 
1427 	qe_port->us_info.rx_bd_ring_len = qe_port->rx_nrfifos;
1428 	qe_port->us_info.tx_bd_ring_len = qe_port->tx_nrfifos;
1429 
1430 	/* Make sure ucc_slow_init() initializes both TX and RX */
1431 	qe_port->us_info.init_tx = 1;
1432 	qe_port->us_info.init_rx = 1;
1433 
1434 	/* Add the port to the uart sub-system.  This will cause
1435 	 * qe_uart_config_port() to be called, so the us_info structure must
1436 	 * be initialized.
1437 	 */
1438 	ret = uart_add_one_port(&ucc_uart_driver, &qe_port->port);
1439 	if (ret) {
1440 		dev_err(&ofdev->dev, "could not add /dev/ttyQE%u\n",
1441 		       qe_port->port.line);
1442 		goto out_np;
1443 	}
1444 
1445 	platform_set_drvdata(ofdev, qe_port);
1446 
1447 	dev_info(&ofdev->dev, "UCC%u assigned to /dev/ttyQE%u\n",
1448 		qe_port->ucc_num + 1, qe_port->port.line);
1449 
1450 	/* Display the mknod command for this device */
1451 	dev_dbg(&ofdev->dev, "mknod command is 'mknod /dev/ttyQE%u c %u %u'\n",
1452 	       qe_port->port.line, SERIAL_QE_MAJOR,
1453 	       SERIAL_QE_MINOR + qe_port->port.line);
1454 
1455 	return 0;
1456 out_np:
1457 	of_node_put(np);
1458 out_free:
1459 	kfree(qe_port);
1460 	return ret;
1461 }
1462 
1463 static int ucc_uart_remove(struct platform_device *ofdev)
1464 {
1465 	struct uart_qe_port *qe_port = platform_get_drvdata(ofdev);
1466 
1467 	dev_info(&ofdev->dev, "removing /dev/ttyQE%u\n", qe_port->port.line);
1468 
1469 	uart_remove_one_port(&ucc_uart_driver, &qe_port->port);
1470 
1471 	kfree(qe_port);
1472 
1473 	return 0;
1474 }
1475 
1476 static const struct of_device_id ucc_uart_match[] = {
1477 	{
1478 		.type = "serial",
1479 		.compatible = "ucc_uart",
1480 	},
1481 	{},
1482 };
1483 MODULE_DEVICE_TABLE(of, ucc_uart_match);
1484 
1485 static struct platform_driver ucc_uart_of_driver = {
1486 	.driver = {
1487 		.name = "ucc_uart",
1488 		.of_match_table    = ucc_uart_match,
1489 	},
1490 	.probe  	= ucc_uart_probe,
1491 	.remove 	= ucc_uart_remove,
1492 };
1493 
1494 static int __init ucc_uart_init(void)
1495 {
1496 	int ret;
1497 
1498 	printk(KERN_INFO "Freescale QUICC Engine UART device driver\n");
1499 #ifdef LOOPBACK
1500 	printk(KERN_INFO "ucc-uart: Using loopback mode\n");
1501 #endif
1502 
1503 	ret = uart_register_driver(&ucc_uart_driver);
1504 	if (ret) {
1505 		printk(KERN_ERR "ucc-uart: could not register UART driver\n");
1506 		return ret;
1507 	}
1508 
1509 	ret = platform_driver_register(&ucc_uart_of_driver);
1510 	if (ret) {
1511 		printk(KERN_ERR
1512 		       "ucc-uart: could not register platform driver\n");
1513 		uart_unregister_driver(&ucc_uart_driver);
1514 	}
1515 
1516 	return ret;
1517 }
1518 
1519 static void __exit ucc_uart_exit(void)
1520 {
1521 	printk(KERN_INFO
1522 	       "Freescale QUICC Engine UART device driver unloading\n");
1523 
1524 	platform_driver_unregister(&ucc_uart_of_driver);
1525 	uart_unregister_driver(&ucc_uart_driver);
1526 }
1527 
1528 module_init(ucc_uart_init);
1529 module_exit(ucc_uart_exit);
1530 
1531 MODULE_DESCRIPTION("Freescale QUICC Engine (QE) UART");
1532 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1533 MODULE_LICENSE("GPL v2");
1534 MODULE_ALIAS_CHARDEV_MAJOR(SERIAL_QE_MAJOR);
1535 
1536