xref: /linux/drivers/tty/serial/ucc_uart.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Freescale QUICC Engine UART device driver
4  *
5  * Author: Timur Tabi <timur@freescale.com>
6  *
7  * Copyright 2007 Freescale Semiconductor, Inc.
8  *
9  * This driver adds support for UART devices via Freescale's QUICC Engine
10  * found on some Freescale SOCs.
11  *
12  * If Soft-UART support is needed but not already present, then this driver
13  * will request and upload the "Soft-UART" microcode upon probe.  The
14  * filename of the microcode should be fsl_qe_ucode_uart_X_YZ.bin, where "X"
15  * is the name of the SOC (e.g. 8323), and YZ is the revision of the SOC,
16  * (e.g. "11" for 1.1).
17  */
18 
19 #include <linux/module.h>
20 #include <linux/serial.h>
21 #include <linux/serial_core.h>
22 #include <linux/slab.h>
23 #include <linux/tty.h>
24 #include <linux/tty_flip.h>
25 #include <linux/io.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_platform.h>
29 #include <linux/dma-mapping.h>
30 
31 #include <linux/fs_uart_pd.h>
32 #include <soc/fsl/qe/ucc_slow.h>
33 
34 #include <linux/firmware.h>
35 #include <soc/fsl/cpm.h>
36 
37 #ifdef CONFIG_PPC32
38 #include <asm/reg.h> /* mfspr, SPRN_SVR */
39 #endif
40 
41 /*
42  * The GUMR flag for Soft UART.  This would normally be defined in qe.h,
43  * but Soft-UART is a hack and we want to keep everything related to it in
44  * this file.
45  */
46 #define UCC_SLOW_GUMR_H_SUART   	0x00004000      /* Soft-UART */
47 
48 /*
49  * soft_uart is 1 if we need to use Soft-UART mode
50  */
51 static int soft_uart;
52 /*
53  * firmware_loaded is 1 if the firmware has been loaded, 0 otherwise.
54  */
55 static int firmware_loaded;
56 
57 /* Enable this macro to configure all serial ports in internal loopback
58    mode */
59 /* #define LOOPBACK */
60 
61 /* The major and minor device numbers are defined in
62  * http://www.lanana.org/docs/device-list/devices-2.6+.txt.  For the QE
63  * UART, we have major number 204 and minor numbers 46 - 49, which are the
64  * same as for the CPM2.  This decision was made because no Freescale part
65  * has both a CPM and a QE.
66  */
67 #define SERIAL_QE_MAJOR 204
68 #define SERIAL_QE_MINOR 46
69 
70 /* Since we only have minor numbers 46 - 49, there is a hard limit of 4 ports */
71 #define UCC_MAX_UART    4
72 
73 /* The number of buffer descriptors for receiving characters. */
74 #define RX_NUM_FIFO     4
75 
76 /* The number of buffer descriptors for transmitting characters. */
77 #define TX_NUM_FIFO     4
78 
79 /* The maximum size of the character buffer for a single RX BD. */
80 #define RX_BUF_SIZE     32
81 
82 /* The maximum size of the character buffer for a single TX BD. */
83 #define TX_BUF_SIZE     32
84 
85 /*
86  * The number of jiffies to wait after receiving a close command before the
87  * device is actually closed.  This allows the last few characters to be
88  * sent over the wire.
89  */
90 #define UCC_WAIT_CLOSING 100
91 
92 struct ucc_uart_pram {
93 	struct ucc_slow_pram common;
94 	u8 res1[8];     	/* reserved */
95 	__be16 maxidl;  	/* Maximum idle chars */
96 	__be16 idlc;    	/* temp idle counter */
97 	__be16 brkcr;   	/* Break count register */
98 	__be16 parec;   	/* receive parity error counter */
99 	__be16 frmec;   	/* receive framing error counter */
100 	__be16 nosec;   	/* receive noise counter */
101 	__be16 brkec;   	/* receive break condition counter */
102 	__be16 brkln;   	/* last received break length */
103 	__be16 uaddr[2];	/* UART address character 1 & 2 */
104 	__be16 rtemp;   	/* Temp storage */
105 	__be16 toseq;   	/* Transmit out of sequence char */
106 	__be16 cchars[8];       /* control characters 1-8 */
107 	__be16 rccm;    	/* receive control character mask */
108 	__be16 rccr;    	/* receive control character register */
109 	__be16 rlbc;    	/* receive last break character */
110 	__be16 res2;    	/* reserved */
111 	__be32 res3;    	/* reserved, should be cleared */
112 	u8 res4;		/* reserved, should be cleared */
113 	u8 res5[3];     	/* reserved, should be cleared */
114 	__be32 res6;    	/* reserved, should be cleared */
115 	__be32 res7;    	/* reserved, should be cleared */
116 	__be32 res8;    	/* reserved, should be cleared */
117 	__be32 res9;    	/* reserved, should be cleared */
118 	__be32 res10;   	/* reserved, should be cleared */
119 	__be32 res11;   	/* reserved, should be cleared */
120 	__be32 res12;   	/* reserved, should be cleared */
121 	__be32 res13;   	/* reserved, should be cleared */
122 /* The rest is for Soft-UART only */
123 	__be16 supsmr;  	/* 0x90, Shadow UPSMR */
124 	__be16 res92;   	/* 0x92, reserved, initialize to 0 */
125 	__be32 rx_state;	/* 0x94, RX state, initialize to 0 */
126 	__be32 rx_cnt;  	/* 0x98, RX count, initialize to 0 */
127 	u8 rx_length;   	/* 0x9C, Char length, set to 1+CL+PEN+1+SL */
128 	u8 rx_bitmark;  	/* 0x9D, reserved, initialize to 0 */
129 	u8 rx_temp_dlst_qe;     /* 0x9E, reserved, initialize to 0 */
130 	u8 res14[0xBC - 0x9F];  /* reserved */
131 	__be32 dump_ptr;	/* 0xBC, Dump pointer */
132 	__be32 rx_frame_rem;    /* 0xC0, reserved, initialize to 0 */
133 	u8 rx_frame_rem_size;   /* 0xC4, reserved, initialize to 0 */
134 	u8 tx_mode;     	/* 0xC5, mode, 0=AHDLC, 1=UART */
135 	__be16 tx_state;	/* 0xC6, TX state */
136 	u8 res15[0xD0 - 0xC8];  /* reserved */
137 	__be32 resD0;   	/* 0xD0, reserved, initialize to 0 */
138 	u8 resD4;       	/* 0xD4, reserved, initialize to 0 */
139 	__be16 resD5;   	/* 0xD5, reserved, initialize to 0 */
140 } __attribute__ ((packed));
141 
142 /* SUPSMR definitions, for Soft-UART only */
143 #define UCC_UART_SUPSMR_SL      	0x8000
144 #define UCC_UART_SUPSMR_RPM_MASK	0x6000
145 #define UCC_UART_SUPSMR_RPM_ODD 	0x0000
146 #define UCC_UART_SUPSMR_RPM_LOW 	0x2000
147 #define UCC_UART_SUPSMR_RPM_EVEN	0x4000
148 #define UCC_UART_SUPSMR_RPM_HIGH	0x6000
149 #define UCC_UART_SUPSMR_PEN     	0x1000
150 #define UCC_UART_SUPSMR_TPM_MASK	0x0C00
151 #define UCC_UART_SUPSMR_TPM_ODD 	0x0000
152 #define UCC_UART_SUPSMR_TPM_LOW 	0x0400
153 #define UCC_UART_SUPSMR_TPM_EVEN	0x0800
154 #define UCC_UART_SUPSMR_TPM_HIGH	0x0C00
155 #define UCC_UART_SUPSMR_FRZ     	0x0100
156 #define UCC_UART_SUPSMR_UM_MASK 	0x00c0
157 #define UCC_UART_SUPSMR_UM_NORMAL       0x0000
158 #define UCC_UART_SUPSMR_UM_MAN_MULTI    0x0040
159 #define UCC_UART_SUPSMR_UM_AUTO_MULTI   0x00c0
160 #define UCC_UART_SUPSMR_CL_MASK 	0x0030
161 #define UCC_UART_SUPSMR_CL_8    	0x0030
162 #define UCC_UART_SUPSMR_CL_7    	0x0020
163 #define UCC_UART_SUPSMR_CL_6    	0x0010
164 #define UCC_UART_SUPSMR_CL_5    	0x0000
165 
166 #define UCC_UART_TX_STATE_AHDLC 	0x00
167 #define UCC_UART_TX_STATE_UART  	0x01
168 #define UCC_UART_TX_STATE_X1    	0x00
169 #define UCC_UART_TX_STATE_X16   	0x80
170 
171 #define UCC_UART_PRAM_ALIGNMENT 0x100
172 
173 #define UCC_UART_SIZE_OF_BD     UCC_SLOW_SIZE_OF_BD
174 #define NUM_CONTROL_CHARS       8
175 
176 /* Private per-port data structure */
177 struct uart_qe_port {
178 	struct uart_port port;
179 	struct ucc_slow __iomem *uccp;
180 	struct ucc_uart_pram __iomem *uccup;
181 	struct ucc_slow_info us_info;
182 	struct ucc_slow_private *us_private;
183 	struct device_node *np;
184 	unsigned int ucc_num;   /* First ucc is 0, not 1 */
185 
186 	u16 rx_nrfifos;
187 	u16 rx_fifosize;
188 	u16 tx_nrfifos;
189 	u16 tx_fifosize;
190 	int wait_closing;
191 	u32 flags;
192 	struct qe_bd *rx_bd_base;
193 	struct qe_bd *rx_cur;
194 	struct qe_bd *tx_bd_base;
195 	struct qe_bd *tx_cur;
196 	unsigned char *tx_buf;
197 	unsigned char *rx_buf;
198 	void *bd_virt;  	/* virtual address of the BD buffers */
199 	dma_addr_t bd_dma_addr; /* bus address of the BD buffers */
200 	unsigned int bd_size;   /* size of BD buffer space */
201 };
202 
203 static struct uart_driver ucc_uart_driver = {
204 	.owner  	= THIS_MODULE,
205 	.driver_name    = "ucc_uart",
206 	.dev_name       = "ttyQE",
207 	.major  	= SERIAL_QE_MAJOR,
208 	.minor  	= SERIAL_QE_MINOR,
209 	.nr     	= UCC_MAX_UART,
210 };
211 
212 /*
213  * Virtual to physical address translation.
214  *
215  * Given the virtual address for a character buffer, this function returns
216  * the physical (DMA) equivalent.
217  */
218 static inline dma_addr_t cpu2qe_addr(void *addr, struct uart_qe_port *qe_port)
219 {
220 	if (likely((addr >= qe_port->bd_virt)) &&
221 	    (addr < (qe_port->bd_virt + qe_port->bd_size)))
222 		return qe_port->bd_dma_addr + (addr - qe_port->bd_virt);
223 
224 	/* something nasty happened */
225 	printk(KERN_ERR "%s: addr=%p\n", __func__, addr);
226 	BUG();
227 	return 0;
228 }
229 
230 /*
231  * Physical to virtual address translation.
232  *
233  * Given the physical (DMA) address for a character buffer, this function
234  * returns the virtual equivalent.
235  */
236 static inline void *qe2cpu_addr(dma_addr_t addr, struct uart_qe_port *qe_port)
237 {
238 	/* sanity check */
239 	if (likely((addr >= qe_port->bd_dma_addr) &&
240 		   (addr < (qe_port->bd_dma_addr + qe_port->bd_size))))
241 		return qe_port->bd_virt + (addr - qe_port->bd_dma_addr);
242 
243 	/* something nasty happened */
244 	printk(KERN_ERR "%s: addr=%llx\n", __func__, (u64)addr);
245 	BUG();
246 	return NULL;
247 }
248 
249 /*
250  * Return 1 if the QE is done transmitting all buffers for this port
251  *
252  * This function scans each BD in sequence.  If we find a BD that is not
253  * ready (READY=1), then we return 0 indicating that the QE is still sending
254  * data.  If we reach the last BD (WRAP=1), then we know we've scanned
255  * the entire list, and all BDs are done.
256  */
257 static unsigned int qe_uart_tx_empty(struct uart_port *port)
258 {
259 	struct uart_qe_port *qe_port =
260 		container_of(port, struct uart_qe_port, port);
261 	struct qe_bd *bdp = qe_port->tx_bd_base;
262 
263 	while (1) {
264 		if (ioread16be(&bdp->status) & BD_SC_READY)
265 			/* This BD is not done, so return "not done" */
266 			return 0;
267 
268 		if (ioread16be(&bdp->status) & BD_SC_WRAP)
269 			/*
270 			 * This BD is done and it's the last one, so return
271 			 * "done"
272 			 */
273 			return 1;
274 
275 		bdp++;
276 	}
277 }
278 
279 /*
280  * Set the modem control lines
281  *
282  * Although the QE can control the modem control lines (e.g. CTS), we
283  * don't need that support. This function must exist, however, otherwise
284  * the kernel will panic.
285  */
286 static void qe_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
287 {
288 }
289 
290 /*
291  * Get the current modem control line status
292  *
293  * Although the QE can control the modem control lines (e.g. CTS), this
294  * driver currently doesn't support that, so we always return Carrier
295  * Detect, Data Set Ready, and Clear To Send.
296  */
297 static unsigned int qe_uart_get_mctrl(struct uart_port *port)
298 {
299 	return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
300 }
301 
302 /*
303  * Disable the transmit interrupt.
304  *
305  * Although this function is called "stop_tx", it does not actually stop
306  * transmission of data.  Instead, it tells the QE to not generate an
307  * interrupt when the UCC is finished sending characters.
308  */
309 static void qe_uart_stop_tx(struct uart_port *port)
310 {
311 	struct uart_qe_port *qe_port =
312 		container_of(port, struct uart_qe_port, port);
313 
314 	qe_clrbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
315 }
316 
317 /*
318  * Transmit as many characters to the HW as possible.
319  *
320  * This function will attempt to stuff of all the characters from the
321  * kernel's transmit buffer into TX BDs.
322  *
323  * A return value of non-zero indicates that it successfully stuffed all
324  * characters from the kernel buffer.
325  *
326  * A return value of zero indicates that there are still characters in the
327  * kernel's buffer that have not been transmitted, but there are no more BDs
328  * available.  This function should be called again after a BD has been made
329  * available.
330  */
331 static int qe_uart_tx_pump(struct uart_qe_port *qe_port)
332 {
333 	struct qe_bd *bdp;
334 	unsigned char *p;
335 	unsigned int count;
336 	struct uart_port *port = &qe_port->port;
337 	struct circ_buf *xmit = &port->state->xmit;
338 
339 	/* Handle xon/xoff */
340 	if (port->x_char) {
341 		/* Pick next descriptor and fill from buffer */
342 		bdp = qe_port->tx_cur;
343 
344 		p = qe2cpu_addr(be32_to_cpu(bdp->buf), qe_port);
345 
346 		*p++ = port->x_char;
347 		iowrite16be(1, &bdp->length);
348 		qe_setbits_be16(&bdp->status, BD_SC_READY);
349 		/* Get next BD. */
350 		if (ioread16be(&bdp->status) & BD_SC_WRAP)
351 			bdp = qe_port->tx_bd_base;
352 		else
353 			bdp++;
354 		qe_port->tx_cur = bdp;
355 
356 		port->icount.tx++;
357 		port->x_char = 0;
358 		return 1;
359 	}
360 
361 	if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
362 		qe_uart_stop_tx(port);
363 		return 0;
364 	}
365 
366 	/* Pick next descriptor and fill from buffer */
367 	bdp = qe_port->tx_cur;
368 
369 	while (!(ioread16be(&bdp->status) & BD_SC_READY) &&
370 	       (xmit->tail != xmit->head)) {
371 		count = 0;
372 		p = qe2cpu_addr(be32_to_cpu(bdp->buf), qe_port);
373 		while (count < qe_port->tx_fifosize) {
374 			*p++ = xmit->buf[xmit->tail];
375 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
376 			port->icount.tx++;
377 			count++;
378 			if (xmit->head == xmit->tail)
379 				break;
380 		}
381 
382 		iowrite16be(count, &bdp->length);
383 		qe_setbits_be16(&bdp->status, BD_SC_READY);
384 
385 		/* Get next BD. */
386 		if (ioread16be(&bdp->status) & BD_SC_WRAP)
387 			bdp = qe_port->tx_bd_base;
388 		else
389 			bdp++;
390 	}
391 	qe_port->tx_cur = bdp;
392 
393 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
394 		uart_write_wakeup(port);
395 
396 	if (uart_circ_empty(xmit)) {
397 		/* The kernel buffer is empty, so turn off TX interrupts.  We
398 		   don't need to be told when the QE is finished transmitting
399 		   the data. */
400 		qe_uart_stop_tx(port);
401 		return 0;
402 	}
403 
404 	return 1;
405 }
406 
407 /*
408  * Start transmitting data
409  *
410  * This function will start transmitting any available data, if the port
411  * isn't already transmitting data.
412  */
413 static void qe_uart_start_tx(struct uart_port *port)
414 {
415 	struct uart_qe_port *qe_port =
416 		container_of(port, struct uart_qe_port, port);
417 
418 	/* If we currently are transmitting, then just return */
419 	if (ioread16be(&qe_port->uccp->uccm) & UCC_UART_UCCE_TX)
420 		return;
421 
422 	/* Otherwise, pump the port and start transmission */
423 	if (qe_uart_tx_pump(qe_port))
424 		qe_setbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
425 }
426 
427 /*
428  * Stop transmitting data
429  */
430 static void qe_uart_stop_rx(struct uart_port *port)
431 {
432 	struct uart_qe_port *qe_port =
433 		container_of(port, struct uart_qe_port, port);
434 
435 	qe_clrbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
436 }
437 
438 /* Start or stop sending  break signal
439  *
440  * This function controls the sending of a break signal.  If break_state=1,
441  * then we start sending a break signal.  If break_state=0, then we stop
442  * sending the break signal.
443  */
444 static void qe_uart_break_ctl(struct uart_port *port, int break_state)
445 {
446 	struct uart_qe_port *qe_port =
447 		container_of(port, struct uart_qe_port, port);
448 
449 	if (break_state)
450 		ucc_slow_stop_tx(qe_port->us_private);
451 	else
452 		ucc_slow_restart_tx(qe_port->us_private);
453 }
454 
455 /* ISR helper function for receiving character.
456  *
457  * This function is called by the ISR to handling receiving characters
458  */
459 static void qe_uart_int_rx(struct uart_qe_port *qe_port)
460 {
461 	int i;
462 	unsigned char ch, *cp;
463 	struct uart_port *port = &qe_port->port;
464 	struct tty_port *tport = &port->state->port;
465 	struct qe_bd *bdp;
466 	u16 status;
467 	unsigned int flg;
468 
469 	/* Just loop through the closed BDs and copy the characters into
470 	 * the buffer.
471 	 */
472 	bdp = qe_port->rx_cur;
473 	while (1) {
474 		status = ioread16be(&bdp->status);
475 
476 		/* If this one is empty, then we assume we've read them all */
477 		if (status & BD_SC_EMPTY)
478 			break;
479 
480 		/* get number of characters, and check space in RX buffer */
481 		i = ioread16be(&bdp->length);
482 
483 		/* If we don't have enough room in RX buffer for the entire BD,
484 		 * then we try later, which will be the next RX interrupt.
485 		 */
486 		if (tty_buffer_request_room(tport, i) < i) {
487 			dev_dbg(port->dev, "ucc-uart: no room in RX buffer\n");
488 			return;
489 		}
490 
491 		/* get pointer */
492 		cp = qe2cpu_addr(be32_to_cpu(bdp->buf), qe_port);
493 
494 		/* loop through the buffer */
495 		while (i-- > 0) {
496 			ch = *cp++;
497 			port->icount.rx++;
498 			flg = TTY_NORMAL;
499 
500 			if (!i && status &
501 			    (BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV))
502 				goto handle_error;
503 			if (uart_handle_sysrq_char(port, ch))
504 				continue;
505 
506 error_return:
507 			tty_insert_flip_char(tport, ch, flg);
508 
509 		}
510 
511 		/* This BD is ready to be used again. Clear status. get next */
512 		qe_clrsetbits_be16(&bdp->status,
513 				   BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV | BD_SC_ID,
514 				   BD_SC_EMPTY);
515 		if (ioread16be(&bdp->status) & BD_SC_WRAP)
516 			bdp = qe_port->rx_bd_base;
517 		else
518 			bdp++;
519 
520 	}
521 
522 	/* Write back buffer pointer */
523 	qe_port->rx_cur = bdp;
524 
525 	/* Activate BH processing */
526 	tty_flip_buffer_push(tport);
527 
528 	return;
529 
530 	/* Error processing */
531 
532 handle_error:
533 	/* Statistics */
534 	if (status & BD_SC_BR)
535 		port->icount.brk++;
536 	if (status & BD_SC_PR)
537 		port->icount.parity++;
538 	if (status & BD_SC_FR)
539 		port->icount.frame++;
540 	if (status & BD_SC_OV)
541 		port->icount.overrun++;
542 
543 	/* Mask out ignored conditions */
544 	status &= port->read_status_mask;
545 
546 	/* Handle the remaining ones */
547 	if (status & BD_SC_BR)
548 		flg = TTY_BREAK;
549 	else if (status & BD_SC_PR)
550 		flg = TTY_PARITY;
551 	else if (status & BD_SC_FR)
552 		flg = TTY_FRAME;
553 
554 	/* Overrun does not affect the current character ! */
555 	if (status & BD_SC_OV)
556 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
557 	port->sysrq = 0;
558 	goto error_return;
559 }
560 
561 /* Interrupt handler
562  *
563  * This interrupt handler is called after a BD is processed.
564  */
565 static irqreturn_t qe_uart_int(int irq, void *data)
566 {
567 	struct uart_qe_port *qe_port = (struct uart_qe_port *) data;
568 	struct ucc_slow __iomem *uccp = qe_port->uccp;
569 	u16 events;
570 
571 	/* Clear the interrupts */
572 	events = ioread16be(&uccp->ucce);
573 	iowrite16be(events, &uccp->ucce);
574 
575 	if (events & UCC_UART_UCCE_BRKE)
576 		uart_handle_break(&qe_port->port);
577 
578 	if (events & UCC_UART_UCCE_RX)
579 		qe_uart_int_rx(qe_port);
580 
581 	if (events & UCC_UART_UCCE_TX)
582 		qe_uart_tx_pump(qe_port);
583 
584 	return events ? IRQ_HANDLED : IRQ_NONE;
585 }
586 
587 /* Initialize buffer descriptors
588  *
589  * This function initializes all of the RX and TX buffer descriptors.
590  */
591 static void qe_uart_initbd(struct uart_qe_port *qe_port)
592 {
593 	int i;
594 	void *bd_virt;
595 	struct qe_bd *bdp;
596 
597 	/* Set the physical address of the host memory buffers in the buffer
598 	 * descriptors, and the virtual address for us to work with.
599 	 */
600 	bd_virt = qe_port->bd_virt;
601 	bdp = qe_port->rx_bd_base;
602 	qe_port->rx_cur = qe_port->rx_bd_base;
603 	for (i = 0; i < (qe_port->rx_nrfifos - 1); i++) {
604 		iowrite16be(BD_SC_EMPTY | BD_SC_INTRPT, &bdp->status);
605 		iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf);
606 		iowrite16be(0, &bdp->length);
607 		bd_virt += qe_port->rx_fifosize;
608 		bdp++;
609 	}
610 
611 	/* */
612 	iowrite16be(BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT, &bdp->status);
613 	iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf);
614 	iowrite16be(0, &bdp->length);
615 
616 	/* Set the physical address of the host memory
617 	 * buffers in the buffer descriptors, and the
618 	 * virtual address for us to work with.
619 	 */
620 	bd_virt = qe_port->bd_virt +
621 		L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
622 	qe_port->tx_cur = qe_port->tx_bd_base;
623 	bdp = qe_port->tx_bd_base;
624 	for (i = 0; i < (qe_port->tx_nrfifos - 1); i++) {
625 		iowrite16be(BD_SC_INTRPT, &bdp->status);
626 		iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf);
627 		iowrite16be(0, &bdp->length);
628 		bd_virt += qe_port->tx_fifosize;
629 		bdp++;
630 	}
631 
632 	/* Loopback requires the preamble bit to be set on the first TX BD */
633 #ifdef LOOPBACK
634 	qe_setbits_be16(&qe_port->tx_cur->status, BD_SC_P);
635 #endif
636 
637 	iowrite16be(BD_SC_WRAP | BD_SC_INTRPT, &bdp->status);
638 	iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf);
639 	iowrite16be(0, &bdp->length);
640 }
641 
642 /*
643  * Initialize a UCC for UART.
644  *
645  * This function configures a given UCC to be used as a UART device. Basic
646  * UCC initialization is handled in qe_uart_request_port().  This function
647  * does all the UART-specific stuff.
648  */
649 static void qe_uart_init_ucc(struct uart_qe_port *qe_port)
650 {
651 	u32 cecr_subblock;
652 	struct ucc_slow __iomem *uccp = qe_port->uccp;
653 	struct ucc_uart_pram *uccup = qe_port->uccup;
654 
655 	unsigned int i;
656 
657 	/* First, disable TX and RX in the UCC */
658 	ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
659 
660 	/* Program the UCC UART parameter RAM */
661 	iowrite8(UCC_BMR_GBL | UCC_BMR_BO_BE, &uccup->common.rbmr);
662 	iowrite8(UCC_BMR_GBL | UCC_BMR_BO_BE, &uccup->common.tbmr);
663 	iowrite16be(qe_port->rx_fifosize, &uccup->common.mrblr);
664 	iowrite16be(0x10, &uccup->maxidl);
665 	iowrite16be(1, &uccup->brkcr);
666 	iowrite16be(0, &uccup->parec);
667 	iowrite16be(0, &uccup->frmec);
668 	iowrite16be(0, &uccup->nosec);
669 	iowrite16be(0, &uccup->brkec);
670 	iowrite16be(0, &uccup->uaddr[0]);
671 	iowrite16be(0, &uccup->uaddr[1]);
672 	iowrite16be(0, &uccup->toseq);
673 	for (i = 0; i < 8; i++)
674 		iowrite16be(0xC000, &uccup->cchars[i]);
675 	iowrite16be(0xc0ff, &uccup->rccm);
676 
677 	/* Configure the GUMR registers for UART */
678 	if (soft_uart) {
679 		/* Soft-UART requires a 1X multiplier for TX */
680 		qe_clrsetbits_be32(&uccp->gumr_l,
681 				   UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | UCC_SLOW_GUMR_L_RDCR_MASK,
682 				   UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_1 | UCC_SLOW_GUMR_L_RDCR_16);
683 
684 		qe_clrsetbits_be32(&uccp->gumr_h, UCC_SLOW_GUMR_H_RFW,
685 				   UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX);
686 	} else {
687 		qe_clrsetbits_be32(&uccp->gumr_l,
688 				   UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | UCC_SLOW_GUMR_L_RDCR_MASK,
689 				   UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_16 | UCC_SLOW_GUMR_L_RDCR_16);
690 
691 		qe_clrsetbits_be32(&uccp->gumr_h,
692 				   UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX,
693 				   UCC_SLOW_GUMR_H_RFW);
694 	}
695 
696 #ifdef LOOPBACK
697 	qe_clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
698 			   UCC_SLOW_GUMR_L_DIAG_LOOP);
699 	qe_clrsetbits_be32(&uccp->gumr_h,
700 			   UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_RSYN,
701 			   UCC_SLOW_GUMR_H_CDS);
702 #endif
703 
704 	/* Disable rx interrupts  and clear all pending events.  */
705 	iowrite16be(0, &uccp->uccm);
706 	iowrite16be(0xffff, &uccp->ucce);
707 	iowrite16be(0x7e7e, &uccp->udsr);
708 
709 	/* Initialize UPSMR */
710 	iowrite16be(0, &uccp->upsmr);
711 
712 	if (soft_uart) {
713 		iowrite16be(0x30, &uccup->supsmr);
714 		iowrite16be(0, &uccup->res92);
715 		iowrite32be(0, &uccup->rx_state);
716 		iowrite32be(0, &uccup->rx_cnt);
717 		iowrite8(0, &uccup->rx_bitmark);
718 		iowrite8(10, &uccup->rx_length);
719 		iowrite32be(0x4000, &uccup->dump_ptr);
720 		iowrite8(0, &uccup->rx_temp_dlst_qe);
721 		iowrite32be(0, &uccup->rx_frame_rem);
722 		iowrite8(0, &uccup->rx_frame_rem_size);
723 		/* Soft-UART requires TX to be 1X */
724 		iowrite8(UCC_UART_TX_STATE_UART | UCC_UART_TX_STATE_X1,
725 			    &uccup->tx_mode);
726 		iowrite16be(0, &uccup->tx_state);
727 		iowrite8(0, &uccup->resD4);
728 		iowrite16be(0, &uccup->resD5);
729 
730 		/* Set UART mode.
731 		 * Enable receive and transmit.
732 		 */
733 
734 		/* From the microcode errata:
735 		 * 1.GUMR_L register, set mode=0010 (QMC).
736 		 * 2.Set GUMR_H[17] bit. (UART/AHDLC mode).
737 		 * 3.Set GUMR_H[19:20] (Transparent mode)
738 		 * 4.Clear GUMR_H[26] (RFW)
739 		 * ...
740 		 * 6.Receiver must use 16x over sampling
741 		 */
742 		qe_clrsetbits_be32(&uccp->gumr_l,
743 				   UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | UCC_SLOW_GUMR_L_RDCR_MASK,
744 				   UCC_SLOW_GUMR_L_MODE_QMC | UCC_SLOW_GUMR_L_TDCR_16 | UCC_SLOW_GUMR_L_RDCR_16);
745 
746 		qe_clrsetbits_be32(&uccp->gumr_h,
747 				   UCC_SLOW_GUMR_H_RFW | UCC_SLOW_GUMR_H_RSYN,
748 				   UCC_SLOW_GUMR_H_SUART | UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX | UCC_SLOW_GUMR_H_TFL);
749 
750 #ifdef LOOPBACK
751 		qe_clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
752 				   UCC_SLOW_GUMR_L_DIAG_LOOP);
753 		qe_clrbits_be32(&uccp->gumr_h,
754 				UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_CDS);
755 #endif
756 
757 		cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
758 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
759 			QE_CR_PROTOCOL_UNSPECIFIED, 0);
760 	} else {
761 		cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
762 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
763 			QE_CR_PROTOCOL_UART, 0);
764 	}
765 }
766 
767 /*
768  * Initialize the port.
769  */
770 static int qe_uart_startup(struct uart_port *port)
771 {
772 	struct uart_qe_port *qe_port =
773 		container_of(port, struct uart_qe_port, port);
774 	int ret;
775 
776 	/*
777 	 * If we're using Soft-UART mode, then we need to make sure the
778 	 * firmware has been uploaded first.
779 	 */
780 	if (soft_uart && !firmware_loaded) {
781 		dev_err(port->dev, "Soft-UART firmware not uploaded\n");
782 		return -ENODEV;
783 	}
784 
785 	qe_uart_initbd(qe_port);
786 	qe_uart_init_ucc(qe_port);
787 
788 	/* Install interrupt handler. */
789 	ret = request_irq(port->irq, qe_uart_int, IRQF_SHARED, "ucc-uart",
790 		qe_port);
791 	if (ret) {
792 		dev_err(port->dev, "could not claim IRQ %u\n", port->irq);
793 		return ret;
794 	}
795 
796 	/* Startup rx-int */
797 	qe_setbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
798 	ucc_slow_enable(qe_port->us_private, COMM_DIR_RX_AND_TX);
799 
800 	return 0;
801 }
802 
803 /*
804  * Shutdown the port.
805  */
806 static void qe_uart_shutdown(struct uart_port *port)
807 {
808 	struct uart_qe_port *qe_port =
809 		container_of(port, struct uart_qe_port, port);
810 	struct ucc_slow __iomem *uccp = qe_port->uccp;
811 	unsigned int timeout = 20;
812 
813 	/* Disable RX and TX */
814 
815 	/* Wait for all the BDs marked sent */
816 	while (!qe_uart_tx_empty(port)) {
817 		if (!--timeout) {
818 			dev_warn(port->dev, "shutdown timeout\n");
819 			break;
820 		}
821 		set_current_state(TASK_UNINTERRUPTIBLE);
822 		schedule_timeout(2);
823 	}
824 
825 	if (qe_port->wait_closing) {
826 		/* Wait a bit longer */
827 		set_current_state(TASK_UNINTERRUPTIBLE);
828 		schedule_timeout(qe_port->wait_closing);
829 	}
830 
831 	/* Stop uarts */
832 	ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
833 	qe_clrbits_be16(&uccp->uccm, UCC_UART_UCCE_TX | UCC_UART_UCCE_RX);
834 
835 	/* Shut them really down and reinit buffer descriptors */
836 	ucc_slow_graceful_stop_tx(qe_port->us_private);
837 	qe_uart_initbd(qe_port);
838 
839 	free_irq(port->irq, qe_port);
840 }
841 
842 /*
843  * Set the serial port parameters.
844  */
845 static void qe_uart_set_termios(struct uart_port *port,
846 				struct ktermios *termios, struct ktermios *old)
847 {
848 	struct uart_qe_port *qe_port =
849 		container_of(port, struct uart_qe_port, port);
850 	struct ucc_slow __iomem *uccp = qe_port->uccp;
851 	unsigned int baud;
852 	unsigned long flags;
853 	u16 upsmr = ioread16be(&uccp->upsmr);
854 	struct ucc_uart_pram __iomem *uccup = qe_port->uccup;
855 	u16 supsmr = ioread16be(&uccup->supsmr);
856 	u8 char_length = 2; /* 1 + CL + PEN + 1 + SL */
857 
858 	/* Character length programmed into the mode register is the
859 	 * sum of: 1 start bit, number of data bits, 0 or 1 parity bit,
860 	 * 1 or 2 stop bits, minus 1.
861 	 * The value 'bits' counts this for us.
862 	 */
863 
864 	/* byte size */
865 	upsmr &= UCC_UART_UPSMR_CL_MASK;
866 	supsmr &= UCC_UART_SUPSMR_CL_MASK;
867 
868 	switch (termios->c_cflag & CSIZE) {
869 	case CS5:
870 		upsmr |= UCC_UART_UPSMR_CL_5;
871 		supsmr |= UCC_UART_SUPSMR_CL_5;
872 		char_length += 5;
873 		break;
874 	case CS6:
875 		upsmr |= UCC_UART_UPSMR_CL_6;
876 		supsmr |= UCC_UART_SUPSMR_CL_6;
877 		char_length += 6;
878 		break;
879 	case CS7:
880 		upsmr |= UCC_UART_UPSMR_CL_7;
881 		supsmr |= UCC_UART_SUPSMR_CL_7;
882 		char_length += 7;
883 		break;
884 	default:	/* case CS8 */
885 		upsmr |= UCC_UART_UPSMR_CL_8;
886 		supsmr |= UCC_UART_SUPSMR_CL_8;
887 		char_length += 8;
888 		break;
889 	}
890 
891 	/* If CSTOPB is set, we want two stop bits */
892 	if (termios->c_cflag & CSTOPB) {
893 		upsmr |= UCC_UART_UPSMR_SL;
894 		supsmr |= UCC_UART_SUPSMR_SL;
895 		char_length++;  /* + SL */
896 	}
897 
898 	if (termios->c_cflag & PARENB) {
899 		upsmr |= UCC_UART_UPSMR_PEN;
900 		supsmr |= UCC_UART_SUPSMR_PEN;
901 		char_length++;  /* + PEN */
902 
903 		if (!(termios->c_cflag & PARODD)) {
904 			upsmr &= ~(UCC_UART_UPSMR_RPM_MASK |
905 				   UCC_UART_UPSMR_TPM_MASK);
906 			upsmr |= UCC_UART_UPSMR_RPM_EVEN |
907 				UCC_UART_UPSMR_TPM_EVEN;
908 			supsmr &= ~(UCC_UART_SUPSMR_RPM_MASK |
909 				    UCC_UART_SUPSMR_TPM_MASK);
910 			supsmr |= UCC_UART_SUPSMR_RPM_EVEN |
911 				UCC_UART_SUPSMR_TPM_EVEN;
912 		}
913 	}
914 
915 	/*
916 	 * Set up parity check flag
917 	 */
918 	port->read_status_mask = BD_SC_EMPTY | BD_SC_OV;
919 	if (termios->c_iflag & INPCK)
920 		port->read_status_mask |= BD_SC_FR | BD_SC_PR;
921 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
922 		port->read_status_mask |= BD_SC_BR;
923 
924 	/*
925 	 * Characters to ignore
926 	 */
927 	port->ignore_status_mask = 0;
928 	if (termios->c_iflag & IGNPAR)
929 		port->ignore_status_mask |= BD_SC_PR | BD_SC_FR;
930 	if (termios->c_iflag & IGNBRK) {
931 		port->ignore_status_mask |= BD_SC_BR;
932 		/*
933 		 * If we're ignore parity and break indicators, ignore
934 		 * overruns too.  (For real raw support).
935 		 */
936 		if (termios->c_iflag & IGNPAR)
937 			port->ignore_status_mask |= BD_SC_OV;
938 	}
939 	/*
940 	 * !!! ignore all characters if CREAD is not set
941 	 */
942 	if ((termios->c_cflag & CREAD) == 0)
943 		port->read_status_mask &= ~BD_SC_EMPTY;
944 
945 	baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16);
946 
947 	/* Do we really need a spinlock here? */
948 	spin_lock_irqsave(&port->lock, flags);
949 
950 	/* Update the per-port timeout. */
951 	uart_update_timeout(port, termios->c_cflag, baud);
952 
953 	iowrite16be(upsmr, &uccp->upsmr);
954 	if (soft_uart) {
955 		iowrite16be(supsmr, &uccup->supsmr);
956 		iowrite8(char_length, &uccup->rx_length);
957 
958 		/* Soft-UART requires a 1X multiplier for TX */
959 		qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
960 		qe_setbrg(qe_port->us_info.tx_clock, baud, 1);
961 	} else {
962 		qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
963 		qe_setbrg(qe_port->us_info.tx_clock, baud, 16);
964 	}
965 
966 	spin_unlock_irqrestore(&port->lock, flags);
967 }
968 
969 /*
970  * Return a pointer to a string that describes what kind of port this is.
971  */
972 static const char *qe_uart_type(struct uart_port *port)
973 {
974 	return "QE";
975 }
976 
977 /*
978  * Allocate any memory and I/O resources required by the port.
979  */
980 static int qe_uart_request_port(struct uart_port *port)
981 {
982 	int ret;
983 	struct uart_qe_port *qe_port =
984 		container_of(port, struct uart_qe_port, port);
985 	struct ucc_slow_info *us_info = &qe_port->us_info;
986 	struct ucc_slow_private *uccs;
987 	unsigned int rx_size, tx_size;
988 	void *bd_virt;
989 	dma_addr_t bd_dma_addr = 0;
990 
991 	ret = ucc_slow_init(us_info, &uccs);
992 	if (ret) {
993 		dev_err(port->dev, "could not initialize UCC%u\n",
994 		       qe_port->ucc_num);
995 		return ret;
996 	}
997 
998 	qe_port->us_private = uccs;
999 	qe_port->uccp = uccs->us_regs;
1000 	qe_port->uccup = (struct ucc_uart_pram *) uccs->us_pram;
1001 	qe_port->rx_bd_base = uccs->rx_bd;
1002 	qe_port->tx_bd_base = uccs->tx_bd;
1003 
1004 	/*
1005 	 * Allocate the transmit and receive data buffers.
1006 	 */
1007 
1008 	rx_size = L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
1009 	tx_size = L1_CACHE_ALIGN(qe_port->tx_nrfifos * qe_port->tx_fifosize);
1010 
1011 	bd_virt = dma_alloc_coherent(port->dev, rx_size + tx_size, &bd_dma_addr,
1012 		GFP_KERNEL);
1013 	if (!bd_virt) {
1014 		dev_err(port->dev, "could not allocate buffer descriptors\n");
1015 		return -ENOMEM;
1016 	}
1017 
1018 	qe_port->bd_virt = bd_virt;
1019 	qe_port->bd_dma_addr = bd_dma_addr;
1020 	qe_port->bd_size = rx_size + tx_size;
1021 
1022 	qe_port->rx_buf = bd_virt;
1023 	qe_port->tx_buf = qe_port->rx_buf + rx_size;
1024 
1025 	return 0;
1026 }
1027 
1028 /*
1029  * Configure the port.
1030  *
1031  * We say we're a CPM-type port because that's mostly true.  Once the device
1032  * is configured, this driver operates almost identically to the CPM serial
1033  * driver.
1034  */
1035 static void qe_uart_config_port(struct uart_port *port, int flags)
1036 {
1037 	if (flags & UART_CONFIG_TYPE) {
1038 		port->type = PORT_CPM;
1039 		qe_uart_request_port(port);
1040 	}
1041 }
1042 
1043 /*
1044  * Release any memory and I/O resources that were allocated in
1045  * qe_uart_request_port().
1046  */
1047 static void qe_uart_release_port(struct uart_port *port)
1048 {
1049 	struct uart_qe_port *qe_port =
1050 		container_of(port, struct uart_qe_port, port);
1051 	struct ucc_slow_private *uccs = qe_port->us_private;
1052 
1053 	dma_free_coherent(port->dev, qe_port->bd_size, qe_port->bd_virt,
1054 			  qe_port->bd_dma_addr);
1055 
1056 	ucc_slow_free(uccs);
1057 }
1058 
1059 /*
1060  * Verify that the data in serial_struct is suitable for this device.
1061  */
1062 static int qe_uart_verify_port(struct uart_port *port,
1063 			       struct serial_struct *ser)
1064 {
1065 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_CPM)
1066 		return -EINVAL;
1067 
1068 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1069 		return -EINVAL;
1070 
1071 	if (ser->baud_base < 9600)
1072 		return -EINVAL;
1073 
1074 	return 0;
1075 }
1076 /* UART operations
1077  *
1078  * Details on these functions can be found in Documentation/driver-api/serial/driver.rst
1079  */
1080 static const struct uart_ops qe_uart_pops = {
1081 	.tx_empty       = qe_uart_tx_empty,
1082 	.set_mctrl      = qe_uart_set_mctrl,
1083 	.get_mctrl      = qe_uart_get_mctrl,
1084 	.stop_tx	= qe_uart_stop_tx,
1085 	.start_tx       = qe_uart_start_tx,
1086 	.stop_rx	= qe_uart_stop_rx,
1087 	.break_ctl      = qe_uart_break_ctl,
1088 	.startup	= qe_uart_startup,
1089 	.shutdown       = qe_uart_shutdown,
1090 	.set_termios    = qe_uart_set_termios,
1091 	.type   	= qe_uart_type,
1092 	.release_port   = qe_uart_release_port,
1093 	.request_port   = qe_uart_request_port,
1094 	.config_port    = qe_uart_config_port,
1095 	.verify_port    = qe_uart_verify_port,
1096 };
1097 
1098 
1099 #ifdef CONFIG_PPC32
1100 /*
1101  * Obtain the SOC model number and revision level
1102  *
1103  * This function parses the device tree to obtain the SOC model.  It then
1104  * reads the SVR register to the revision.
1105  *
1106  * The device tree stores the SOC model two different ways.
1107  *
1108  * The new way is:
1109  *
1110  *      	cpu@0 {
1111  *      		compatible = "PowerPC,8323";
1112  *      		device_type = "cpu";
1113  *      		...
1114  *
1115  *
1116  * The old way is:
1117  *      	 PowerPC,8323@0 {
1118  *      		device_type = "cpu";
1119  *      		...
1120  *
1121  * This code first checks the new way, and then the old way.
1122  */
1123 static unsigned int soc_info(unsigned int *rev_h, unsigned int *rev_l)
1124 {
1125 	struct device_node *np;
1126 	const char *soc_string;
1127 	unsigned int svr;
1128 	unsigned int soc;
1129 
1130 	/* Find the CPU node */
1131 	np = of_find_node_by_type(NULL, "cpu");
1132 	if (!np)
1133 		return 0;
1134 	/* Find the compatible property */
1135 	soc_string = of_get_property(np, "compatible", NULL);
1136 	if (!soc_string)
1137 		/* No compatible property, so try the name. */
1138 		soc_string = np->name;
1139 
1140 	/* Extract the SOC number from the "PowerPC," string */
1141 	if ((sscanf(soc_string, "PowerPC,%u", &soc) != 1) || !soc)
1142 		return 0;
1143 
1144 	/* Get the revision from the SVR */
1145 	svr = mfspr(SPRN_SVR);
1146 	*rev_h = (svr >> 4) & 0xf;
1147 	*rev_l = svr & 0xf;
1148 
1149 	return soc;
1150 }
1151 
1152 /*
1153  * requst_firmware_nowait() callback function
1154  *
1155  * This function is called by the kernel when a firmware is made available,
1156  * or if it times out waiting for the firmware.
1157  */
1158 static void uart_firmware_cont(const struct firmware *fw, void *context)
1159 {
1160 	struct qe_firmware *firmware;
1161 	struct device *dev = context;
1162 	int ret;
1163 
1164 	if (!fw) {
1165 		dev_err(dev, "firmware not found\n");
1166 		return;
1167 	}
1168 
1169 	firmware = (struct qe_firmware *) fw->data;
1170 
1171 	if (firmware->header.length != fw->size) {
1172 		dev_err(dev, "invalid firmware\n");
1173 		goto out;
1174 	}
1175 
1176 	ret = qe_upload_firmware(firmware);
1177 	if (ret) {
1178 		dev_err(dev, "could not load firmware\n");
1179 		goto out;
1180 	}
1181 
1182 	firmware_loaded = 1;
1183  out:
1184 	release_firmware(fw);
1185 }
1186 
1187 static int soft_uart_init(struct platform_device *ofdev)
1188 {
1189 	struct device_node *np = ofdev->dev.of_node;
1190 	struct qe_firmware_info *qe_fw_info;
1191 	int ret;
1192 
1193 	if (of_find_property(np, "soft-uart", NULL)) {
1194 		dev_dbg(&ofdev->dev, "using Soft-UART mode\n");
1195 		soft_uart = 1;
1196 	} else {
1197 		return 0;
1198 	}
1199 
1200 	qe_fw_info = qe_get_firmware_info();
1201 
1202 	/* Check if the firmware has been uploaded. */
1203 	if (qe_fw_info && strstr(qe_fw_info->id, "Soft-UART")) {
1204 		firmware_loaded = 1;
1205 	} else {
1206 		char filename[32];
1207 		unsigned int soc;
1208 		unsigned int rev_h;
1209 		unsigned int rev_l;
1210 
1211 		soc = soc_info(&rev_h, &rev_l);
1212 		if (!soc) {
1213 			dev_err(&ofdev->dev, "unknown CPU model\n");
1214 			return -ENXIO;
1215 		}
1216 		sprintf(filename, "fsl_qe_ucode_uart_%u_%u%u.bin",
1217 			soc, rev_h, rev_l);
1218 
1219 		dev_info(&ofdev->dev, "waiting for firmware %s\n",
1220 			 filename);
1221 
1222 		/*
1223 		 * We call request_firmware_nowait instead of
1224 		 * request_firmware so that the driver can load and
1225 		 * initialize the ports without holding up the rest of
1226 		 * the kernel.  If hotplug support is enabled in the
1227 		 * kernel, then we use it.
1228 		 */
1229 		ret = request_firmware_nowait(THIS_MODULE,
1230 					      FW_ACTION_UEVENT, filename, &ofdev->dev,
1231 					      GFP_KERNEL, &ofdev->dev, uart_firmware_cont);
1232 		if (ret) {
1233 			dev_err(&ofdev->dev,
1234 				"could not load firmware %s\n",
1235 				filename);
1236 			return ret;
1237 		}
1238 	}
1239 	return 0;
1240 }
1241 
1242 #else /* !CONFIG_PPC32 */
1243 
1244 static int soft_uart_init(struct platform_device *ofdev)
1245 {
1246 	return 0;
1247 }
1248 
1249 #endif
1250 
1251 
1252 static int ucc_uart_probe(struct platform_device *ofdev)
1253 {
1254 	struct device_node *np = ofdev->dev.of_node;
1255 	const char *sprop;      /* String OF properties */
1256 	struct uart_qe_port *qe_port = NULL;
1257 	struct resource res;
1258 	u32 val;
1259 	int ret;
1260 
1261 	/*
1262 	 * Determine if we need Soft-UART mode
1263 	 */
1264 	ret = soft_uart_init(ofdev);
1265 	if (ret)
1266 		return ret;
1267 
1268 	qe_port = kzalloc(sizeof(struct uart_qe_port), GFP_KERNEL);
1269 	if (!qe_port) {
1270 		dev_err(&ofdev->dev, "can't allocate QE port structure\n");
1271 		return -ENOMEM;
1272 	}
1273 
1274 	/* Search for IRQ and mapbase */
1275 	ret = of_address_to_resource(np, 0, &res);
1276 	if (ret) {
1277 		dev_err(&ofdev->dev, "missing 'reg' property in device tree\n");
1278 		goto out_free;
1279 	}
1280 	if (!res.start) {
1281 		dev_err(&ofdev->dev, "invalid 'reg' property in device tree\n");
1282 		ret = -EINVAL;
1283 		goto out_free;
1284 	}
1285 	qe_port->port.mapbase = res.start;
1286 
1287 	/* Get the UCC number (device ID) */
1288 	/* UCCs are numbered 1-7 */
1289 	if (of_property_read_u32(np, "cell-index", &val)) {
1290 		if (of_property_read_u32(np, "device-id", &val)) {
1291 			dev_err(&ofdev->dev, "UCC is unspecified in device tree\n");
1292 			ret = -EINVAL;
1293 			goto out_free;
1294 		}
1295 	}
1296 
1297 	if (val < 1 || val > UCC_MAX_NUM) {
1298 		dev_err(&ofdev->dev, "no support for UCC%u\n", val);
1299 		ret = -ENODEV;
1300 		goto out_free;
1301 	}
1302 	qe_port->ucc_num = val - 1;
1303 
1304 	/*
1305 	 * In the future, we should not require the BRG to be specified in the
1306 	 * device tree.  If no clock-source is specified, then just pick a BRG
1307 	 * to use.  This requires a new QE library function that manages BRG
1308 	 * assignments.
1309 	 */
1310 
1311 	sprop = of_get_property(np, "rx-clock-name", NULL);
1312 	if (!sprop) {
1313 		dev_err(&ofdev->dev, "missing rx-clock-name in device tree\n");
1314 		ret = -ENODEV;
1315 		goto out_free;
1316 	}
1317 
1318 	qe_port->us_info.rx_clock = qe_clock_source(sprop);
1319 	if ((qe_port->us_info.rx_clock < QE_BRG1) ||
1320 	    (qe_port->us_info.rx_clock > QE_BRG16)) {
1321 		dev_err(&ofdev->dev, "rx-clock-name must be a BRG for UART\n");
1322 		ret = -ENODEV;
1323 		goto out_free;
1324 	}
1325 
1326 #ifdef LOOPBACK
1327 	/* In internal loopback mode, TX and RX must use the same clock */
1328 	qe_port->us_info.tx_clock = qe_port->us_info.rx_clock;
1329 #else
1330 	sprop = of_get_property(np, "tx-clock-name", NULL);
1331 	if (!sprop) {
1332 		dev_err(&ofdev->dev, "missing tx-clock-name in device tree\n");
1333 		ret = -ENODEV;
1334 		goto out_free;
1335 	}
1336 	qe_port->us_info.tx_clock = qe_clock_source(sprop);
1337 #endif
1338 	if ((qe_port->us_info.tx_clock < QE_BRG1) ||
1339 	    (qe_port->us_info.tx_clock > QE_BRG16)) {
1340 		dev_err(&ofdev->dev, "tx-clock-name must be a BRG for UART\n");
1341 		ret = -ENODEV;
1342 		goto out_free;
1343 	}
1344 
1345 	/* Get the port number, numbered 0-3 */
1346 	if (of_property_read_u32(np, "port-number", &val)) {
1347 		dev_err(&ofdev->dev, "missing port-number in device tree\n");
1348 		ret = -EINVAL;
1349 		goto out_free;
1350 	}
1351 	qe_port->port.line = val;
1352 	if (qe_port->port.line >= UCC_MAX_UART) {
1353 		dev_err(&ofdev->dev, "port-number must be 0-%u\n",
1354 			UCC_MAX_UART - 1);
1355 		ret = -EINVAL;
1356 		goto out_free;
1357 	}
1358 
1359 	qe_port->port.irq = irq_of_parse_and_map(np, 0);
1360 	if (qe_port->port.irq == 0) {
1361 		dev_err(&ofdev->dev, "could not map IRQ for UCC%u\n",
1362 		       qe_port->ucc_num + 1);
1363 		ret = -EINVAL;
1364 		goto out_free;
1365 	}
1366 
1367 	/*
1368 	 * Newer device trees have an "fsl,qe" compatible property for the QE
1369 	 * node, but we still need to support older device trees.
1370 	 */
1371 	np = of_find_compatible_node(NULL, NULL, "fsl,qe");
1372 	if (!np) {
1373 		np = of_find_node_by_type(NULL, "qe");
1374 		if (!np) {
1375 			dev_err(&ofdev->dev, "could not find 'qe' node\n");
1376 			ret = -EINVAL;
1377 			goto out_free;
1378 		}
1379 	}
1380 
1381 	if (of_property_read_u32(np, "brg-frequency", &val)) {
1382 		dev_err(&ofdev->dev,
1383 		       "missing brg-frequency in device tree\n");
1384 		ret = -EINVAL;
1385 		goto out_np;
1386 	}
1387 
1388 	if (val)
1389 		qe_port->port.uartclk = val;
1390 	else {
1391 		if (!IS_ENABLED(CONFIG_PPC32)) {
1392 			dev_err(&ofdev->dev,
1393 				"invalid brg-frequency in device tree\n");
1394 			ret = -EINVAL;
1395 			goto out_np;
1396 		}
1397 
1398 		/*
1399 		 * Older versions of U-Boot do not initialize the brg-frequency
1400 		 * property, so in this case we assume the BRG frequency is
1401 		 * half the QE bus frequency.
1402 		 */
1403 		if (of_property_read_u32(np, "bus-frequency", &val)) {
1404 			dev_err(&ofdev->dev,
1405 				"missing QE bus-frequency in device tree\n");
1406 			ret = -EINVAL;
1407 			goto out_np;
1408 		}
1409 		if (val)
1410 			qe_port->port.uartclk = val / 2;
1411 		else {
1412 			dev_err(&ofdev->dev,
1413 				"invalid QE bus-frequency in device tree\n");
1414 			ret = -EINVAL;
1415 			goto out_np;
1416 		}
1417 	}
1418 
1419 	spin_lock_init(&qe_port->port.lock);
1420 	qe_port->np = np;
1421 	qe_port->port.dev = &ofdev->dev;
1422 	qe_port->port.ops = &qe_uart_pops;
1423 	qe_port->port.iotype = UPIO_MEM;
1424 
1425 	qe_port->tx_nrfifos = TX_NUM_FIFO;
1426 	qe_port->tx_fifosize = TX_BUF_SIZE;
1427 	qe_port->rx_nrfifos = RX_NUM_FIFO;
1428 	qe_port->rx_fifosize = RX_BUF_SIZE;
1429 
1430 	qe_port->wait_closing = UCC_WAIT_CLOSING;
1431 	qe_port->port.fifosize = 512;
1432 	qe_port->port.flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP;
1433 
1434 	qe_port->us_info.ucc_num = qe_port->ucc_num;
1435 	qe_port->us_info.regs = (phys_addr_t) res.start;
1436 	qe_port->us_info.irq = qe_port->port.irq;
1437 
1438 	qe_port->us_info.rx_bd_ring_len = qe_port->rx_nrfifos;
1439 	qe_port->us_info.tx_bd_ring_len = qe_port->tx_nrfifos;
1440 
1441 	/* Make sure ucc_slow_init() initializes both TX and RX */
1442 	qe_port->us_info.init_tx = 1;
1443 	qe_port->us_info.init_rx = 1;
1444 
1445 	/* Add the port to the uart sub-system.  This will cause
1446 	 * qe_uart_config_port() to be called, so the us_info structure must
1447 	 * be initialized.
1448 	 */
1449 	ret = uart_add_one_port(&ucc_uart_driver, &qe_port->port);
1450 	if (ret) {
1451 		dev_err(&ofdev->dev, "could not add /dev/ttyQE%u\n",
1452 		       qe_port->port.line);
1453 		goto out_np;
1454 	}
1455 
1456 	platform_set_drvdata(ofdev, qe_port);
1457 
1458 	dev_info(&ofdev->dev, "UCC%u assigned to /dev/ttyQE%u\n",
1459 		qe_port->ucc_num + 1, qe_port->port.line);
1460 
1461 	/* Display the mknod command for this device */
1462 	dev_dbg(&ofdev->dev, "mknod command is 'mknod /dev/ttyQE%u c %u %u'\n",
1463 	       qe_port->port.line, SERIAL_QE_MAJOR,
1464 	       SERIAL_QE_MINOR + qe_port->port.line);
1465 
1466 	return 0;
1467 out_np:
1468 	of_node_put(np);
1469 out_free:
1470 	kfree(qe_port);
1471 	return ret;
1472 }
1473 
1474 static int ucc_uart_remove(struct platform_device *ofdev)
1475 {
1476 	struct uart_qe_port *qe_port = platform_get_drvdata(ofdev);
1477 
1478 	dev_info(&ofdev->dev, "removing /dev/ttyQE%u\n", qe_port->port.line);
1479 
1480 	uart_remove_one_port(&ucc_uart_driver, &qe_port->port);
1481 
1482 	kfree(qe_port);
1483 
1484 	return 0;
1485 }
1486 
1487 static const struct of_device_id ucc_uart_match[] = {
1488 	{
1489 		.type = "serial",
1490 		.compatible = "ucc_uart",
1491 	},
1492 	{
1493 		.compatible = "fsl,t1040-ucc-uart",
1494 	},
1495 	{},
1496 };
1497 MODULE_DEVICE_TABLE(of, ucc_uart_match);
1498 
1499 static struct platform_driver ucc_uart_of_driver = {
1500 	.driver = {
1501 		.name = "ucc_uart",
1502 		.of_match_table    = ucc_uart_match,
1503 	},
1504 	.probe  	= ucc_uart_probe,
1505 	.remove 	= ucc_uart_remove,
1506 };
1507 
1508 static int __init ucc_uart_init(void)
1509 {
1510 	int ret;
1511 
1512 	printk(KERN_INFO "Freescale QUICC Engine UART device driver\n");
1513 #ifdef LOOPBACK
1514 	printk(KERN_INFO "ucc-uart: Using loopback mode\n");
1515 #endif
1516 
1517 	ret = uart_register_driver(&ucc_uart_driver);
1518 	if (ret) {
1519 		printk(KERN_ERR "ucc-uart: could not register UART driver\n");
1520 		return ret;
1521 	}
1522 
1523 	ret = platform_driver_register(&ucc_uart_of_driver);
1524 	if (ret) {
1525 		printk(KERN_ERR
1526 		       "ucc-uart: could not register platform driver\n");
1527 		uart_unregister_driver(&ucc_uart_driver);
1528 	}
1529 
1530 	return ret;
1531 }
1532 
1533 static void __exit ucc_uart_exit(void)
1534 {
1535 	printk(KERN_INFO
1536 	       "Freescale QUICC Engine UART device driver unloading\n");
1537 
1538 	platform_driver_unregister(&ucc_uart_of_driver);
1539 	uart_unregister_driver(&ucc_uart_driver);
1540 }
1541 
1542 module_init(ucc_uart_init);
1543 module_exit(ucc_uart_exit);
1544 
1545 MODULE_DESCRIPTION("Freescale QUICC Engine (QE) UART");
1546 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1547 MODULE_LICENSE("GPL v2");
1548 MODULE_ALIAS_CHARDEV_MAJOR(SERIAL_QE_MAJOR);
1549 
1550