xref: /linux/drivers/tty/serial/sh-sci.c (revision abeebe8889b732b2de3c5c098350f51bc5204069)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/minmax.h>
35 #include <linux/module.h>
36 #include <linux/mm.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/reset.h>
41 #include <linux/scatterlist.h>
42 #include <linux/serial.h>
43 #include <linux/serial_sci.h>
44 #include <linux/sh_dma.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/sysrq.h>
48 #include <linux/timer.h>
49 #include <linux/tty.h>
50 #include <linux/tty_flip.h>
51 
52 #ifdef CONFIG_SUPERH
53 #include <asm/sh_bios.h>
54 #include <asm/platform_early.h>
55 #endif
56 
57 #include "serial_mctrl_gpio.h"
58 #include "sh-sci.h"
59 
60 /* Offsets into the sci_port->irqs array */
61 enum {
62 	SCIx_ERI_IRQ,
63 	SCIx_RXI_IRQ,
64 	SCIx_TXI_IRQ,
65 	SCIx_BRI_IRQ,
66 	SCIx_DRI_IRQ,
67 	SCIx_TEI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 enum SCI_CLKS {
80 	SCI_FCK,		/* Functional Clock */
81 	SCI_SCK,		/* Optional External Clock */
82 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84 	SCI_NUM_CLKS
85 };
86 
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x)		BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
90 
91 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 				SCI_SR(19) | SCI_SR(27)
94 
95 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
97 
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port)						\
100 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
101 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102 
103 struct plat_sci_reg {
104 	u8 offset, size;
105 };
106 
107 struct sci_port_params {
108 	const struct plat_sci_reg regs[SCIx_NR_REGS];
109 	unsigned int fifosize;
110 	unsigned int overrun_reg;
111 	unsigned int overrun_mask;
112 	unsigned int sampling_rate_mask;
113 	unsigned int error_mask;
114 	unsigned int error_clear;
115 };
116 
117 struct sci_port {
118 	struct uart_port	port;
119 
120 	/* Platform configuration */
121 	const struct sci_port_params *params;
122 	const struct plat_sci_port *cfg;
123 	unsigned int		sampling_rate_mask;
124 	resource_size_t		reg_size;
125 	struct mctrl_gpios	*gpios;
126 
127 	/* Clocks */
128 	struct clk		*clks[SCI_NUM_CLKS];
129 	unsigned long		clk_rates[SCI_NUM_CLKS];
130 
131 	int			irqs[SCIx_NR_IRQS];
132 	char			*irqstr[SCIx_NR_IRQS];
133 
134 	struct dma_chan			*chan_tx;
135 	struct dma_chan			*chan_rx;
136 
137 #ifdef CONFIG_SERIAL_SH_SCI_DMA
138 	struct dma_chan			*chan_tx_saved;
139 	struct dma_chan			*chan_rx_saved;
140 	dma_cookie_t			cookie_tx;
141 	dma_cookie_t			cookie_rx[2];
142 	dma_cookie_t			active_rx;
143 	dma_addr_t			tx_dma_addr;
144 	unsigned int			tx_dma_len;
145 	struct scatterlist		sg_rx[2];
146 	void				*rx_buf[2];
147 	size_t				buf_len_rx;
148 	struct work_struct		work_tx;
149 	struct hrtimer			rx_timer;
150 	unsigned int			rx_timeout;	/* microseconds */
151 #endif
152 	unsigned int			rx_frame;
153 	int				rx_trigger;
154 	struct timer_list		rx_fifo_timer;
155 	int				rx_fifo_timeout;
156 	u16				hscif_tot;
157 
158 	bool has_rtscts;
159 	bool autorts;
160 	bool tx_occurred;
161 };
162 
163 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
164 
165 static struct sci_port sci_ports[SCI_NPORTS];
166 static unsigned long sci_ports_in_use;
167 static struct uart_driver sci_uart_driver;
168 static bool sci_uart_earlycon;
169 static bool sci_uart_earlycon_dev_probing;
170 
171 static inline struct sci_port *
172 to_sci_port(struct uart_port *uart)
173 {
174 	return container_of(uart, struct sci_port, port);
175 }
176 
177 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
178 	/*
179 	 * Common SCI definitions, dependent on the port's regshift
180 	 * value.
181 	 */
182 	[SCIx_SCI_REGTYPE] = {
183 		.regs = {
184 			[SCSMR]		= { 0x00,  8 },
185 			[SCBRR]		= { 0x01,  8 },
186 			[SCSCR]		= { 0x02,  8 },
187 			[SCxTDR]	= { 0x03,  8 },
188 			[SCxSR]		= { 0x04,  8 },
189 			[SCxRDR]	= { 0x05,  8 },
190 		},
191 		.fifosize = 1,
192 		.overrun_reg = SCxSR,
193 		.overrun_mask = SCI_ORER,
194 		.sampling_rate_mask = SCI_SR(32),
195 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
196 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
197 	},
198 
199 	/*
200 	 * Common definitions for legacy IrDA ports.
201 	 */
202 	[SCIx_IRDA_REGTYPE] = {
203 		.regs = {
204 			[SCSMR]		= { 0x00,  8 },
205 			[SCBRR]		= { 0x02,  8 },
206 			[SCSCR]		= { 0x04,  8 },
207 			[SCxTDR]	= { 0x06,  8 },
208 			[SCxSR]		= { 0x08, 16 },
209 			[SCxRDR]	= { 0x0a,  8 },
210 			[SCFCR]		= { 0x0c,  8 },
211 			[SCFDR]		= { 0x0e, 16 },
212 		},
213 		.fifosize = 1,
214 		.overrun_reg = SCxSR,
215 		.overrun_mask = SCI_ORER,
216 		.sampling_rate_mask = SCI_SR(32),
217 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
218 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
219 	},
220 
221 	/*
222 	 * Common SCIFA definitions.
223 	 */
224 	[SCIx_SCIFA_REGTYPE] = {
225 		.regs = {
226 			[SCSMR]		= { 0x00, 16 },
227 			[SCBRR]		= { 0x04,  8 },
228 			[SCSCR]		= { 0x08, 16 },
229 			[SCxTDR]	= { 0x20,  8 },
230 			[SCxSR]		= { 0x14, 16 },
231 			[SCxRDR]	= { 0x24,  8 },
232 			[SCFCR]		= { 0x18, 16 },
233 			[SCFDR]		= { 0x1c, 16 },
234 			[SCPCR]		= { 0x30, 16 },
235 			[SCPDR]		= { 0x34, 16 },
236 		},
237 		.fifosize = 64,
238 		.overrun_reg = SCxSR,
239 		.overrun_mask = SCIFA_ORER,
240 		.sampling_rate_mask = SCI_SR_SCIFAB,
241 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
242 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
243 	},
244 
245 	/*
246 	 * Common SCIFB definitions.
247 	 */
248 	[SCIx_SCIFB_REGTYPE] = {
249 		.regs = {
250 			[SCSMR]		= { 0x00, 16 },
251 			[SCBRR]		= { 0x04,  8 },
252 			[SCSCR]		= { 0x08, 16 },
253 			[SCxTDR]	= { 0x40,  8 },
254 			[SCxSR]		= { 0x14, 16 },
255 			[SCxRDR]	= { 0x60,  8 },
256 			[SCFCR]		= { 0x18, 16 },
257 			[SCTFDR]	= { 0x38, 16 },
258 			[SCRFDR]	= { 0x3c, 16 },
259 			[SCPCR]		= { 0x30, 16 },
260 			[SCPDR]		= { 0x34, 16 },
261 		},
262 		.fifosize = 256,
263 		.overrun_reg = SCxSR,
264 		.overrun_mask = SCIFA_ORER,
265 		.sampling_rate_mask = SCI_SR_SCIFAB,
266 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
267 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
268 	},
269 
270 	/*
271 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
272 	 * count registers.
273 	 */
274 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
275 		.regs = {
276 			[SCSMR]		= { 0x00, 16 },
277 			[SCBRR]		= { 0x04,  8 },
278 			[SCSCR]		= { 0x08, 16 },
279 			[SCxTDR]	= { 0x0c,  8 },
280 			[SCxSR]		= { 0x10, 16 },
281 			[SCxRDR]	= { 0x14,  8 },
282 			[SCFCR]		= { 0x18, 16 },
283 			[SCFDR]		= { 0x1c, 16 },
284 			[SCSPTR]	= { 0x20, 16 },
285 			[SCLSR]		= { 0x24, 16 },
286 		},
287 		.fifosize = 16,
288 		.overrun_reg = SCLSR,
289 		.overrun_mask = SCLSR_ORER,
290 		.sampling_rate_mask = SCI_SR(32),
291 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
292 		.error_clear = SCIF_ERROR_CLEAR,
293 	},
294 
295 	/*
296 	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
297 	 * It looks like a normal SCIF with FIFO data, but with a
298 	 * compressed address space. Also, the break out of interrupts
299 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
300 	 */
301 	[SCIx_RZ_SCIFA_REGTYPE] = {
302 		.regs = {
303 			[SCSMR]		= { 0x00, 16 },
304 			[SCBRR]		= { 0x02,  8 },
305 			[SCSCR]		= { 0x04, 16 },
306 			[SCxTDR]	= { 0x06,  8 },
307 			[SCxSR]		= { 0x08, 16 },
308 			[SCxRDR]	= { 0x0A,  8 },
309 			[SCFCR]		= { 0x0C, 16 },
310 			[SCFDR]		= { 0x0E, 16 },
311 			[SCSPTR]	= { 0x10, 16 },
312 			[SCLSR]		= { 0x12, 16 },
313 			[SEMR]		= { 0x14, 8 },
314 		},
315 		.fifosize = 16,
316 		.overrun_reg = SCLSR,
317 		.overrun_mask = SCLSR_ORER,
318 		.sampling_rate_mask = SCI_SR(32),
319 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
320 		.error_clear = SCIF_ERROR_CLEAR,
321 	},
322 
323 	/*
324 	 * The "SCIF" that is in RZ/V2H(P) SoC is similar to one found on RZ/G2L SoC
325 	 * with below differences,
326 	 * - Break out of interrupts are different: ERI, BRI, RXI, TXI, TEI, DRI,
327 	 *   TEI-DRI, RXI-EDGE and TXI-EDGE.
328 	 * - SCSMR register does not have CM bit (BIT(7)) ie it does not support synchronous mode.
329 	 * - SCFCR register does not have SCFCR_MCE bit.
330 	 * - SCSPTR register has only bits SCSPTR_SPB2DT and SCSPTR_SPB2IO.
331 	 */
332 	[SCIx_RZV2H_SCIF_REGTYPE] = {
333 		.regs = {
334 			[SCSMR]		= { 0x00, 16 },
335 			[SCBRR]		= { 0x02,  8 },
336 			[SCSCR]		= { 0x04, 16 },
337 			[SCxTDR]	= { 0x06,  8 },
338 			[SCxSR]		= { 0x08, 16 },
339 			[SCxRDR]	= { 0x0a,  8 },
340 			[SCFCR]		= { 0x0c, 16 },
341 			[SCFDR]		= { 0x0e, 16 },
342 			[SCSPTR]	= { 0x10, 16 },
343 			[SCLSR]		= { 0x12, 16 },
344 			[SEMR]		= { 0x14, 8 },
345 		},
346 		.fifosize = 16,
347 		.overrun_reg = SCLSR,
348 		.overrun_mask = SCLSR_ORER,
349 		.sampling_rate_mask = SCI_SR(32),
350 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
351 		.error_clear = SCIF_ERROR_CLEAR,
352 	},
353 
354 	/*
355 	 * Common SH-3 SCIF definitions.
356 	 */
357 	[SCIx_SH3_SCIF_REGTYPE] = {
358 		.regs = {
359 			[SCSMR]		= { 0x00,  8 },
360 			[SCBRR]		= { 0x02,  8 },
361 			[SCSCR]		= { 0x04,  8 },
362 			[SCxTDR]	= { 0x06,  8 },
363 			[SCxSR]		= { 0x08, 16 },
364 			[SCxRDR]	= { 0x0a,  8 },
365 			[SCFCR]		= { 0x0c,  8 },
366 			[SCFDR]		= { 0x0e, 16 },
367 		},
368 		.fifosize = 16,
369 		.overrun_reg = SCLSR,
370 		.overrun_mask = SCLSR_ORER,
371 		.sampling_rate_mask = SCI_SR(32),
372 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
373 		.error_clear = SCIF_ERROR_CLEAR,
374 	},
375 
376 	/*
377 	 * Common SH-4(A) SCIF(B) definitions.
378 	 */
379 	[SCIx_SH4_SCIF_REGTYPE] = {
380 		.regs = {
381 			[SCSMR]		= { 0x00, 16 },
382 			[SCBRR]		= { 0x04,  8 },
383 			[SCSCR]		= { 0x08, 16 },
384 			[SCxTDR]	= { 0x0c,  8 },
385 			[SCxSR]		= { 0x10, 16 },
386 			[SCxRDR]	= { 0x14,  8 },
387 			[SCFCR]		= { 0x18, 16 },
388 			[SCFDR]		= { 0x1c, 16 },
389 			[SCSPTR]	= { 0x20, 16 },
390 			[SCLSR]		= { 0x24, 16 },
391 		},
392 		.fifosize = 16,
393 		.overrun_reg = SCLSR,
394 		.overrun_mask = SCLSR_ORER,
395 		.sampling_rate_mask = SCI_SR(32),
396 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
397 		.error_clear = SCIF_ERROR_CLEAR,
398 	},
399 
400 	/*
401 	 * Common SCIF definitions for ports with a Baud Rate Generator for
402 	 * External Clock (BRG).
403 	 */
404 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
405 		.regs = {
406 			[SCSMR]		= { 0x00, 16 },
407 			[SCBRR]		= { 0x04,  8 },
408 			[SCSCR]		= { 0x08, 16 },
409 			[SCxTDR]	= { 0x0c,  8 },
410 			[SCxSR]		= { 0x10, 16 },
411 			[SCxRDR]	= { 0x14,  8 },
412 			[SCFCR]		= { 0x18, 16 },
413 			[SCFDR]		= { 0x1c, 16 },
414 			[SCSPTR]	= { 0x20, 16 },
415 			[SCLSR]		= { 0x24, 16 },
416 			[SCDL]		= { 0x30, 16 },
417 			[SCCKS]		= { 0x34, 16 },
418 		},
419 		.fifosize = 16,
420 		.overrun_reg = SCLSR,
421 		.overrun_mask = SCLSR_ORER,
422 		.sampling_rate_mask = SCI_SR(32),
423 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
424 		.error_clear = SCIF_ERROR_CLEAR,
425 	},
426 
427 	/*
428 	 * Common HSCIF definitions.
429 	 */
430 	[SCIx_HSCIF_REGTYPE] = {
431 		.regs = {
432 			[SCSMR]		= { 0x00, 16 },
433 			[SCBRR]		= { 0x04,  8 },
434 			[SCSCR]		= { 0x08, 16 },
435 			[SCxTDR]	= { 0x0c,  8 },
436 			[SCxSR]		= { 0x10, 16 },
437 			[SCxRDR]	= { 0x14,  8 },
438 			[SCFCR]		= { 0x18, 16 },
439 			[SCFDR]		= { 0x1c, 16 },
440 			[SCSPTR]	= { 0x20, 16 },
441 			[SCLSR]		= { 0x24, 16 },
442 			[HSSRR]		= { 0x40, 16 },
443 			[SCDL]		= { 0x30, 16 },
444 			[SCCKS]		= { 0x34, 16 },
445 			[HSRTRGR]	= { 0x54, 16 },
446 			[HSTTRGR]	= { 0x58, 16 },
447 		},
448 		.fifosize = 128,
449 		.overrun_reg = SCLSR,
450 		.overrun_mask = SCLSR_ORER,
451 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
452 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
453 		.error_clear = SCIF_ERROR_CLEAR,
454 	},
455 
456 	/*
457 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
458 	 * register.
459 	 */
460 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
461 		.regs = {
462 			[SCSMR]		= { 0x00, 16 },
463 			[SCBRR]		= { 0x04,  8 },
464 			[SCSCR]		= { 0x08, 16 },
465 			[SCxTDR]	= { 0x0c,  8 },
466 			[SCxSR]		= { 0x10, 16 },
467 			[SCxRDR]	= { 0x14,  8 },
468 			[SCFCR]		= { 0x18, 16 },
469 			[SCFDR]		= { 0x1c, 16 },
470 			[SCLSR]		= { 0x24, 16 },
471 		},
472 		.fifosize = 16,
473 		.overrun_reg = SCLSR,
474 		.overrun_mask = SCLSR_ORER,
475 		.sampling_rate_mask = SCI_SR(32),
476 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
477 		.error_clear = SCIF_ERROR_CLEAR,
478 	},
479 
480 	/*
481 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
482 	 * count registers.
483 	 */
484 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
485 		.regs = {
486 			[SCSMR]		= { 0x00, 16 },
487 			[SCBRR]		= { 0x04,  8 },
488 			[SCSCR]		= { 0x08, 16 },
489 			[SCxTDR]	= { 0x0c,  8 },
490 			[SCxSR]		= { 0x10, 16 },
491 			[SCxRDR]	= { 0x14,  8 },
492 			[SCFCR]		= { 0x18, 16 },
493 			[SCFDR]		= { 0x1c, 16 },
494 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
495 			[SCRFDR]	= { 0x20, 16 },
496 			[SCSPTR]	= { 0x24, 16 },
497 			[SCLSR]		= { 0x28, 16 },
498 		},
499 		.fifosize = 16,
500 		.overrun_reg = SCLSR,
501 		.overrun_mask = SCLSR_ORER,
502 		.sampling_rate_mask = SCI_SR(32),
503 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
504 		.error_clear = SCIF_ERROR_CLEAR,
505 	},
506 
507 	/*
508 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
509 	 * registers.
510 	 */
511 	[SCIx_SH7705_SCIF_REGTYPE] = {
512 		.regs = {
513 			[SCSMR]		= { 0x00, 16 },
514 			[SCBRR]		= { 0x04,  8 },
515 			[SCSCR]		= { 0x08, 16 },
516 			[SCxTDR]	= { 0x20,  8 },
517 			[SCxSR]		= { 0x14, 16 },
518 			[SCxRDR]	= { 0x24,  8 },
519 			[SCFCR]		= { 0x18, 16 },
520 			[SCFDR]		= { 0x1c, 16 },
521 		},
522 		.fifosize = 64,
523 		.overrun_reg = SCxSR,
524 		.overrun_mask = SCIFA_ORER,
525 		.sampling_rate_mask = SCI_SR(16),
526 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
527 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
528 	},
529 };
530 
531 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
532 
533 /*
534  * The "offset" here is rather misleading, in that it refers to an enum
535  * value relative to the port mapping rather than the fixed offset
536  * itself, which needs to be manually retrieved from the platform's
537  * register map for the given port.
538  */
539 static unsigned int sci_serial_in(struct uart_port *p, int offset)
540 {
541 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
542 
543 	if (reg->size == 8)
544 		return ioread8(p->membase + (reg->offset << p->regshift));
545 	else if (reg->size == 16)
546 		return ioread16(p->membase + (reg->offset << p->regshift));
547 	else
548 		WARN(1, "Invalid register access\n");
549 
550 	return 0;
551 }
552 
553 static void sci_serial_out(struct uart_port *p, int offset, int value)
554 {
555 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
556 
557 	if (reg->size == 8)
558 		iowrite8(value, p->membase + (reg->offset << p->regshift));
559 	else if (reg->size == 16)
560 		iowrite16(value, p->membase + (reg->offset << p->regshift));
561 	else
562 		WARN(1, "Invalid register access\n");
563 }
564 
565 static void sci_port_enable(struct sci_port *sci_port)
566 {
567 	unsigned int i;
568 
569 	if (!sci_port->port.dev)
570 		return;
571 
572 	pm_runtime_get_sync(sci_port->port.dev);
573 
574 	for (i = 0; i < SCI_NUM_CLKS; i++) {
575 		clk_prepare_enable(sci_port->clks[i]);
576 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
577 	}
578 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
579 }
580 
581 static void sci_port_disable(struct sci_port *sci_port)
582 {
583 	unsigned int i;
584 
585 	if (!sci_port->port.dev)
586 		return;
587 
588 	for (i = SCI_NUM_CLKS; i-- > 0; )
589 		clk_disable_unprepare(sci_port->clks[i]);
590 
591 	pm_runtime_put_sync(sci_port->port.dev);
592 }
593 
594 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
595 {
596 	/*
597 	 * Not all ports (such as SCIFA) will support REIE. Rather than
598 	 * special-casing the port type, we check the port initialization
599 	 * IRQ enable mask to see whether the IRQ is desired at all. If
600 	 * it's unset, it's logically inferred that there's no point in
601 	 * testing for it.
602 	 */
603 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
604 }
605 
606 static void sci_start_tx(struct uart_port *port)
607 {
608 	struct sci_port *s = to_sci_port(port);
609 	unsigned short ctrl;
610 
611 #ifdef CONFIG_SERIAL_SH_SCI_DMA
612 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
613 		u16 new, scr = sci_serial_in(port, SCSCR);
614 		if (s->chan_tx)
615 			new = scr | SCSCR_TDRQE;
616 		else
617 			new = scr & ~SCSCR_TDRQE;
618 		if (new != scr)
619 			sci_serial_out(port, SCSCR, new);
620 	}
621 
622 	if (s->chan_tx && !kfifo_is_empty(&port->state->port.xmit_fifo) &&
623 	    dma_submit_error(s->cookie_tx)) {
624 		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
625 			/* Switch irq from SCIF to DMA */
626 			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
627 
628 		s->cookie_tx = 0;
629 		schedule_work(&s->work_tx);
630 	}
631 #endif
632 
633 	if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
634 	    port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
635 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
636 		ctrl = sci_serial_in(port, SCSCR);
637 
638 		/*
639 		 * For SCI, TE (transmit enable) must be set after setting TIE
640 		 * (transmit interrupt enable) or in the same instruction to start
641 		 * the transmit process.
642 		 */
643 		if (port->type == PORT_SCI)
644 			ctrl |= SCSCR_TE;
645 
646 		sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
647 	}
648 }
649 
650 static void sci_stop_tx(struct uart_port *port)
651 {
652 	unsigned short ctrl;
653 
654 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
655 	ctrl = sci_serial_in(port, SCSCR);
656 
657 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
658 		ctrl &= ~SCSCR_TDRQE;
659 
660 	ctrl &= ~SCSCR_TIE;
661 
662 	sci_serial_out(port, SCSCR, ctrl);
663 
664 #ifdef CONFIG_SERIAL_SH_SCI_DMA
665 	if (to_sci_port(port)->chan_tx &&
666 	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
667 		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
668 		to_sci_port(port)->cookie_tx = -EINVAL;
669 	}
670 #endif
671 }
672 
673 static void sci_start_rx(struct uart_port *port)
674 {
675 	unsigned short ctrl;
676 
677 	ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
678 
679 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
680 		ctrl &= ~SCSCR_RDRQE;
681 
682 	sci_serial_out(port, SCSCR, ctrl);
683 }
684 
685 static void sci_stop_rx(struct uart_port *port)
686 {
687 	unsigned short ctrl;
688 
689 	ctrl = sci_serial_in(port, SCSCR);
690 
691 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
692 		ctrl &= ~SCSCR_RDRQE;
693 
694 	ctrl &= ~port_rx_irq_mask(port);
695 
696 	sci_serial_out(port, SCSCR, ctrl);
697 }
698 
699 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
700 {
701 	if (port->type == PORT_SCI) {
702 		/* Just store the mask */
703 		sci_serial_out(port, SCxSR, mask);
704 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
705 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
706 		/* Only clear the status bits we want to clear */
707 		sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
708 	} else {
709 		/* Store the mask, clear parity/framing errors */
710 		sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
711 	}
712 }
713 
714 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
715     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
716 
717 #ifdef CONFIG_CONSOLE_POLL
718 static int sci_poll_get_char(struct uart_port *port)
719 {
720 	unsigned short status;
721 	int c;
722 
723 	do {
724 		status = sci_serial_in(port, SCxSR);
725 		if (status & SCxSR_ERRORS(port)) {
726 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
727 			continue;
728 		}
729 		break;
730 	} while (1);
731 
732 	if (!(status & SCxSR_RDxF(port)))
733 		return NO_POLL_CHAR;
734 
735 	c = sci_serial_in(port, SCxRDR);
736 
737 	/* Dummy read */
738 	sci_serial_in(port, SCxSR);
739 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
740 
741 	return c;
742 }
743 #endif
744 
745 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
746 {
747 	unsigned short status;
748 
749 	do {
750 		status = sci_serial_in(port, SCxSR);
751 	} while (!(status & SCxSR_TDxE(port)));
752 
753 	sci_serial_out(port, SCxTDR, c);
754 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
755 }
756 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
757 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
758 
759 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
760 {
761 	struct sci_port *s = to_sci_port(port);
762 
763 	/*
764 	 * Use port-specific handler if provided.
765 	 */
766 	if (s->cfg->ops && s->cfg->ops->init_pins) {
767 		s->cfg->ops->init_pins(port, cflag);
768 		return;
769 	}
770 
771 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
772 		u16 data = sci_serial_in(port, SCPDR);
773 		u16 ctrl = sci_serial_in(port, SCPCR);
774 
775 		/* Enable RXD and TXD pin functions */
776 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
777 		if (to_sci_port(port)->has_rtscts) {
778 			/* RTS# is output, active low, unless autorts */
779 			if (!(port->mctrl & TIOCM_RTS)) {
780 				ctrl |= SCPCR_RTSC;
781 				data |= SCPDR_RTSD;
782 			} else if (!s->autorts) {
783 				ctrl |= SCPCR_RTSC;
784 				data &= ~SCPDR_RTSD;
785 			} else {
786 				/* Enable RTS# pin function */
787 				ctrl &= ~SCPCR_RTSC;
788 			}
789 			/* Enable CTS# pin function */
790 			ctrl &= ~SCPCR_CTSC;
791 		}
792 		sci_serial_out(port, SCPDR, data);
793 		sci_serial_out(port, SCPCR, ctrl);
794 	} else if (sci_getreg(port, SCSPTR)->size && s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE) {
795 		u16 status = sci_serial_in(port, SCSPTR);
796 
797 		/* RTS# is always output; and active low, unless autorts */
798 		status |= SCSPTR_RTSIO;
799 		if (!(port->mctrl & TIOCM_RTS))
800 			status |= SCSPTR_RTSDT;
801 		else if (!s->autorts)
802 			status &= ~SCSPTR_RTSDT;
803 		/* CTS# and SCK are inputs */
804 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
805 		sci_serial_out(port, SCSPTR, status);
806 	}
807 }
808 
809 static int sci_txfill(struct uart_port *port)
810 {
811 	struct sci_port *s = to_sci_port(port);
812 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
813 	const struct plat_sci_reg *reg;
814 
815 	reg = sci_getreg(port, SCTFDR);
816 	if (reg->size)
817 		return sci_serial_in(port, SCTFDR) & fifo_mask;
818 
819 	reg = sci_getreg(port, SCFDR);
820 	if (reg->size)
821 		return sci_serial_in(port, SCFDR) >> 8;
822 
823 	return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
824 }
825 
826 static int sci_txroom(struct uart_port *port)
827 {
828 	return port->fifosize - sci_txfill(port);
829 }
830 
831 static int sci_rxfill(struct uart_port *port)
832 {
833 	struct sci_port *s = to_sci_port(port);
834 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
835 	const struct plat_sci_reg *reg;
836 
837 	reg = sci_getreg(port, SCRFDR);
838 	if (reg->size)
839 		return sci_serial_in(port, SCRFDR) & fifo_mask;
840 
841 	reg = sci_getreg(port, SCFDR);
842 	if (reg->size)
843 		return sci_serial_in(port, SCFDR) & fifo_mask;
844 
845 	return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
846 }
847 
848 /* ********************************************************************** *
849  *                   the interrupt related routines                       *
850  * ********************************************************************** */
851 
852 static void sci_transmit_chars(struct uart_port *port)
853 {
854 	struct tty_port *tport = &port->state->port;
855 	unsigned int stopped = uart_tx_stopped(port);
856 	struct sci_port *s = to_sci_port(port);
857 	unsigned short status;
858 	unsigned short ctrl;
859 	int count;
860 
861 	status = sci_serial_in(port, SCxSR);
862 	if (!(status & SCxSR_TDxE(port))) {
863 		ctrl = sci_serial_in(port, SCSCR);
864 		if (kfifo_is_empty(&tport->xmit_fifo))
865 			ctrl &= ~SCSCR_TIE;
866 		else
867 			ctrl |= SCSCR_TIE;
868 		sci_serial_out(port, SCSCR, ctrl);
869 		return;
870 	}
871 
872 	count = sci_txroom(port);
873 
874 	do {
875 		unsigned char c;
876 
877 		if (port->x_char) {
878 			c = port->x_char;
879 			port->x_char = 0;
880 		} else if (stopped || !kfifo_get(&tport->xmit_fifo, &c)) {
881 			if (port->type == PORT_SCI &&
882 				   kfifo_is_empty(&tport->xmit_fifo)) {
883 				ctrl = sci_serial_in(port, SCSCR);
884 				ctrl &= ~SCSCR_TE;
885 				sci_serial_out(port, SCSCR, ctrl);
886 				return;
887 			}
888 			break;
889 		}
890 
891 		sci_serial_out(port, SCxTDR, c);
892 		s->tx_occurred = true;
893 
894 		port->icount.tx++;
895 	} while (--count > 0);
896 
897 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
898 
899 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
900 		uart_write_wakeup(port);
901 	if (kfifo_is_empty(&tport->xmit_fifo)) {
902 		if (port->type == PORT_SCI) {
903 			ctrl = sci_serial_in(port, SCSCR);
904 			ctrl &= ~SCSCR_TIE;
905 			ctrl |= SCSCR_TEIE;
906 			sci_serial_out(port, SCSCR, ctrl);
907 		}
908 
909 		sci_stop_tx(port);
910 	}
911 }
912 
913 static void sci_receive_chars(struct uart_port *port)
914 {
915 	struct tty_port *tport = &port->state->port;
916 	int i, count, copied = 0;
917 	unsigned short status;
918 	unsigned char flag;
919 
920 	status = sci_serial_in(port, SCxSR);
921 	if (!(status & SCxSR_RDxF(port)))
922 		return;
923 
924 	while (1) {
925 		/* Don't copy more bytes than there is room for in the buffer */
926 		count = tty_buffer_request_room(tport, sci_rxfill(port));
927 
928 		/* If for any reason we can't copy more data, we're done! */
929 		if (count == 0)
930 			break;
931 
932 		if (port->type == PORT_SCI) {
933 			char c = sci_serial_in(port, SCxRDR);
934 			if (uart_handle_sysrq_char(port, c))
935 				count = 0;
936 			else
937 				tty_insert_flip_char(tport, c, TTY_NORMAL);
938 		} else {
939 			for (i = 0; i < count; i++) {
940 				char c;
941 
942 				if (port->type == PORT_SCIF ||
943 				    port->type == PORT_HSCIF) {
944 					status = sci_serial_in(port, SCxSR);
945 					c = sci_serial_in(port, SCxRDR);
946 				} else {
947 					c = sci_serial_in(port, SCxRDR);
948 					status = sci_serial_in(port, SCxSR);
949 				}
950 				if (uart_handle_sysrq_char(port, c)) {
951 					count--; i--;
952 					continue;
953 				}
954 
955 				/* Store data and status */
956 				if (status & SCxSR_FER(port)) {
957 					flag = TTY_FRAME;
958 					port->icount.frame++;
959 				} else if (status & SCxSR_PER(port)) {
960 					flag = TTY_PARITY;
961 					port->icount.parity++;
962 				} else
963 					flag = TTY_NORMAL;
964 
965 				tty_insert_flip_char(tport, c, flag);
966 			}
967 		}
968 
969 		sci_serial_in(port, SCxSR); /* dummy read */
970 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
971 
972 		copied += count;
973 		port->icount.rx += count;
974 	}
975 
976 	if (copied) {
977 		/* Tell the rest of the system the news. New characters! */
978 		tty_flip_buffer_push(tport);
979 	} else {
980 		/* TTY buffers full; read from RX reg to prevent lockup */
981 		sci_serial_in(port, SCxRDR);
982 		sci_serial_in(port, SCxSR); /* dummy read */
983 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
984 	}
985 }
986 
987 static int sci_handle_errors(struct uart_port *port)
988 {
989 	int copied = 0;
990 	unsigned short status = sci_serial_in(port, SCxSR);
991 	struct tty_port *tport = &port->state->port;
992 	struct sci_port *s = to_sci_port(port);
993 
994 	/* Handle overruns */
995 	if (status & s->params->overrun_mask) {
996 		port->icount.overrun++;
997 
998 		/* overrun error */
999 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
1000 			copied++;
1001 	}
1002 
1003 	if (status & SCxSR_FER(port)) {
1004 		/* frame error */
1005 		port->icount.frame++;
1006 
1007 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1008 			copied++;
1009 	}
1010 
1011 	if (status & SCxSR_PER(port)) {
1012 		/* parity error */
1013 		port->icount.parity++;
1014 
1015 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1016 			copied++;
1017 	}
1018 
1019 	if (copied)
1020 		tty_flip_buffer_push(tport);
1021 
1022 	return copied;
1023 }
1024 
1025 static int sci_handle_fifo_overrun(struct uart_port *port)
1026 {
1027 	struct tty_port *tport = &port->state->port;
1028 	struct sci_port *s = to_sci_port(port);
1029 	const struct plat_sci_reg *reg;
1030 	int copied = 0;
1031 	u16 status;
1032 
1033 	reg = sci_getreg(port, s->params->overrun_reg);
1034 	if (!reg->size)
1035 		return 0;
1036 
1037 	status = sci_serial_in(port, s->params->overrun_reg);
1038 	if (status & s->params->overrun_mask) {
1039 		status &= ~s->params->overrun_mask;
1040 		sci_serial_out(port, s->params->overrun_reg, status);
1041 
1042 		port->icount.overrun++;
1043 
1044 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1045 		tty_flip_buffer_push(tport);
1046 		copied++;
1047 	}
1048 
1049 	return copied;
1050 }
1051 
1052 static int sci_handle_breaks(struct uart_port *port)
1053 {
1054 	int copied = 0;
1055 	unsigned short status = sci_serial_in(port, SCxSR);
1056 	struct tty_port *tport = &port->state->port;
1057 
1058 	if (uart_handle_break(port))
1059 		return 0;
1060 
1061 	if (status & SCxSR_BRK(port)) {
1062 		port->icount.brk++;
1063 
1064 		/* Notify of BREAK */
1065 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1066 			copied++;
1067 	}
1068 
1069 	if (copied)
1070 		tty_flip_buffer_push(tport);
1071 
1072 	copied += sci_handle_fifo_overrun(port);
1073 
1074 	return copied;
1075 }
1076 
1077 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1078 {
1079 	unsigned int bits;
1080 
1081 	if (rx_trig >= port->fifosize)
1082 		rx_trig = port->fifosize - 1;
1083 	if (rx_trig < 1)
1084 		rx_trig = 1;
1085 
1086 	/* HSCIF can be set to an arbitrary level. */
1087 	if (sci_getreg(port, HSRTRGR)->size) {
1088 		sci_serial_out(port, HSRTRGR, rx_trig);
1089 		return rx_trig;
1090 	}
1091 
1092 	switch (port->type) {
1093 	case PORT_SCIF:
1094 		if (rx_trig < 4) {
1095 			bits = 0;
1096 			rx_trig = 1;
1097 		} else if (rx_trig < 8) {
1098 			bits = SCFCR_RTRG0;
1099 			rx_trig = 4;
1100 		} else if (rx_trig < 14) {
1101 			bits = SCFCR_RTRG1;
1102 			rx_trig = 8;
1103 		} else {
1104 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1105 			rx_trig = 14;
1106 		}
1107 		break;
1108 	case PORT_SCIFA:
1109 	case PORT_SCIFB:
1110 		if (rx_trig < 16) {
1111 			bits = 0;
1112 			rx_trig = 1;
1113 		} else if (rx_trig < 32) {
1114 			bits = SCFCR_RTRG0;
1115 			rx_trig = 16;
1116 		} else if (rx_trig < 48) {
1117 			bits = SCFCR_RTRG1;
1118 			rx_trig = 32;
1119 		} else {
1120 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1121 			rx_trig = 48;
1122 		}
1123 		break;
1124 	default:
1125 		WARN(1, "unknown FIFO configuration");
1126 		return 1;
1127 	}
1128 
1129 	sci_serial_out(port, SCFCR,
1130 		       (sci_serial_in(port, SCFCR) &
1131 			~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1132 
1133 	return rx_trig;
1134 }
1135 
1136 static int scif_rtrg_enabled(struct uart_port *port)
1137 {
1138 	if (sci_getreg(port, HSRTRGR)->size)
1139 		return sci_serial_in(port, HSRTRGR) != 0;
1140 	else
1141 		return (sci_serial_in(port, SCFCR) &
1142 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1143 }
1144 
1145 static void rx_fifo_timer_fn(struct timer_list *t)
1146 {
1147 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1148 	struct uart_port *port = &s->port;
1149 
1150 	dev_dbg(port->dev, "Rx timed out\n");
1151 	scif_set_rtrg(port, 1);
1152 }
1153 
1154 static ssize_t rx_fifo_trigger_show(struct device *dev,
1155 				    struct device_attribute *attr, char *buf)
1156 {
1157 	struct uart_port *port = dev_get_drvdata(dev);
1158 	struct sci_port *sci = to_sci_port(port);
1159 
1160 	return sprintf(buf, "%d\n", sci->rx_trigger);
1161 }
1162 
1163 static ssize_t rx_fifo_trigger_store(struct device *dev,
1164 				     struct device_attribute *attr,
1165 				     const char *buf, size_t count)
1166 {
1167 	struct uart_port *port = dev_get_drvdata(dev);
1168 	struct sci_port *sci = to_sci_port(port);
1169 	int ret;
1170 	long r;
1171 
1172 	ret = kstrtol(buf, 0, &r);
1173 	if (ret)
1174 		return ret;
1175 
1176 	sci->rx_trigger = scif_set_rtrg(port, r);
1177 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1178 		scif_set_rtrg(port, 1);
1179 
1180 	return count;
1181 }
1182 
1183 static DEVICE_ATTR_RW(rx_fifo_trigger);
1184 
1185 static ssize_t rx_fifo_timeout_show(struct device *dev,
1186 			       struct device_attribute *attr,
1187 			       char *buf)
1188 {
1189 	struct uart_port *port = dev_get_drvdata(dev);
1190 	struct sci_port *sci = to_sci_port(port);
1191 	int v;
1192 
1193 	if (port->type == PORT_HSCIF)
1194 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1195 	else
1196 		v = sci->rx_fifo_timeout;
1197 
1198 	return sprintf(buf, "%d\n", v);
1199 }
1200 
1201 static ssize_t rx_fifo_timeout_store(struct device *dev,
1202 				struct device_attribute *attr,
1203 				const char *buf,
1204 				size_t count)
1205 {
1206 	struct uart_port *port = dev_get_drvdata(dev);
1207 	struct sci_port *sci = to_sci_port(port);
1208 	int ret;
1209 	long r;
1210 
1211 	ret = kstrtol(buf, 0, &r);
1212 	if (ret)
1213 		return ret;
1214 
1215 	if (port->type == PORT_HSCIF) {
1216 		if (r < 0 || r > 3)
1217 			return -EINVAL;
1218 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1219 	} else {
1220 		sci->rx_fifo_timeout = r;
1221 		scif_set_rtrg(port, 1);
1222 		if (r > 0)
1223 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1224 	}
1225 
1226 	return count;
1227 }
1228 
1229 static DEVICE_ATTR_RW(rx_fifo_timeout);
1230 
1231 
1232 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1233 static void sci_dma_tx_complete(void *arg)
1234 {
1235 	struct sci_port *s = arg;
1236 	struct uart_port *port = &s->port;
1237 	struct tty_port *tport = &port->state->port;
1238 	unsigned long flags;
1239 
1240 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1241 
1242 	uart_port_lock_irqsave(port, &flags);
1243 
1244 	uart_xmit_advance(port, s->tx_dma_len);
1245 
1246 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1247 		uart_write_wakeup(port);
1248 
1249 	s->tx_occurred = true;
1250 
1251 	if (!kfifo_is_empty(&tport->xmit_fifo)) {
1252 		s->cookie_tx = 0;
1253 		schedule_work(&s->work_tx);
1254 	} else {
1255 		s->cookie_tx = -EINVAL;
1256 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1257 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1258 			u16 ctrl = sci_serial_in(port, SCSCR);
1259 			sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1260 			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1261 				/* Switch irq from DMA to SCIF */
1262 				dmaengine_pause(s->chan_tx_saved);
1263 				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1264 			}
1265 		}
1266 	}
1267 
1268 	uart_port_unlock_irqrestore(port, flags);
1269 }
1270 
1271 /* Locking: called with port lock held */
1272 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1273 {
1274 	struct uart_port *port = &s->port;
1275 	struct tty_port *tport = &port->state->port;
1276 	int copied;
1277 
1278 	copied = tty_insert_flip_string(tport, buf, count);
1279 	if (copied < count)
1280 		port->icount.buf_overrun++;
1281 
1282 	port->icount.rx += copied;
1283 
1284 	return copied;
1285 }
1286 
1287 static int sci_dma_rx_find_active(struct sci_port *s)
1288 {
1289 	unsigned int i;
1290 
1291 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1292 		if (s->active_rx == s->cookie_rx[i])
1293 			return i;
1294 
1295 	return -1;
1296 }
1297 
1298 /* Must only be called with uart_port_lock taken */
1299 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1300 {
1301 	unsigned int i;
1302 
1303 	s->chan_rx = NULL;
1304 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1305 		s->cookie_rx[i] = -EINVAL;
1306 	s->active_rx = 0;
1307 }
1308 
1309 static void sci_dma_rx_release(struct sci_port *s)
1310 {
1311 	struct dma_chan *chan = s->chan_rx_saved;
1312 	struct uart_port *port = &s->port;
1313 	unsigned long flags;
1314 
1315 	uart_port_lock_irqsave(port, &flags);
1316 	s->chan_rx_saved = NULL;
1317 	sci_dma_rx_chan_invalidate(s);
1318 	uart_port_unlock_irqrestore(port, flags);
1319 
1320 	dmaengine_terminate_sync(chan);
1321 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1322 			  sg_dma_address(&s->sg_rx[0]));
1323 	dma_release_channel(chan);
1324 }
1325 
1326 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1327 {
1328 	long sec = usec / 1000000;
1329 	long nsec = (usec % 1000000) * 1000;
1330 	ktime_t t = ktime_set(sec, nsec);
1331 
1332 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1333 }
1334 
1335 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1336 {
1337 	struct uart_port *port = &s->port;
1338 	u16 scr;
1339 
1340 	/* Direct new serial port interrupts back to CPU */
1341 	scr = sci_serial_in(port, SCSCR);
1342 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1343 	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1344 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1345 		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1346 			scif_set_rtrg(port, s->rx_trigger);
1347 		else
1348 			scr &= ~SCSCR_RDRQE;
1349 	}
1350 	sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
1351 }
1352 
1353 static void sci_dma_rx_complete(void *arg)
1354 {
1355 	struct sci_port *s = arg;
1356 	struct dma_chan *chan = s->chan_rx;
1357 	struct uart_port *port = &s->port;
1358 	struct dma_async_tx_descriptor *desc;
1359 	unsigned long flags;
1360 	int active, count = 0;
1361 
1362 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1363 		s->active_rx);
1364 
1365 	hrtimer_cancel(&s->rx_timer);
1366 
1367 	uart_port_lock_irqsave(port, &flags);
1368 
1369 	active = sci_dma_rx_find_active(s);
1370 	if (active >= 0)
1371 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1372 
1373 	if (count)
1374 		tty_flip_buffer_push(&port->state->port);
1375 
1376 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1377 				       DMA_DEV_TO_MEM,
1378 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1379 	if (!desc)
1380 		goto fail;
1381 
1382 	desc->callback = sci_dma_rx_complete;
1383 	desc->callback_param = s;
1384 	s->cookie_rx[active] = dmaengine_submit(desc);
1385 	if (dma_submit_error(s->cookie_rx[active]))
1386 		goto fail;
1387 
1388 	s->active_rx = s->cookie_rx[!active];
1389 
1390 	dma_async_issue_pending(chan);
1391 
1392 	uart_port_unlock_irqrestore(port, flags);
1393 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1394 		__func__, s->cookie_rx[active], active, s->active_rx);
1395 
1396 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1397 
1398 	return;
1399 
1400 fail:
1401 	/* Switch to PIO */
1402 	dmaengine_terminate_async(chan);
1403 	sci_dma_rx_chan_invalidate(s);
1404 	sci_dma_rx_reenable_irq(s);
1405 	uart_port_unlock_irqrestore(port, flags);
1406 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1407 }
1408 
1409 static void sci_dma_tx_release(struct sci_port *s)
1410 {
1411 	struct dma_chan *chan = s->chan_tx_saved;
1412 
1413 	cancel_work_sync(&s->work_tx);
1414 	s->chan_tx_saved = s->chan_tx = NULL;
1415 	s->cookie_tx = -EINVAL;
1416 	dmaengine_terminate_sync(chan);
1417 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1418 			 DMA_TO_DEVICE);
1419 	dma_release_channel(chan);
1420 }
1421 
1422 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1423 {
1424 	struct dma_chan *chan = s->chan_rx;
1425 	struct uart_port *port = &s->port;
1426 	unsigned long flags;
1427 	int i;
1428 
1429 	for (i = 0; i < 2; i++) {
1430 		struct scatterlist *sg = &s->sg_rx[i];
1431 		struct dma_async_tx_descriptor *desc;
1432 
1433 		desc = dmaengine_prep_slave_sg(chan,
1434 			sg, 1, DMA_DEV_TO_MEM,
1435 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1436 		if (!desc)
1437 			goto fail;
1438 
1439 		desc->callback = sci_dma_rx_complete;
1440 		desc->callback_param = s;
1441 		s->cookie_rx[i] = dmaengine_submit(desc);
1442 		if (dma_submit_error(s->cookie_rx[i]))
1443 			goto fail;
1444 
1445 	}
1446 
1447 	s->active_rx = s->cookie_rx[0];
1448 
1449 	dma_async_issue_pending(chan);
1450 	return 0;
1451 
1452 fail:
1453 	/* Switch to PIO */
1454 	if (!port_lock_held)
1455 		uart_port_lock_irqsave(port, &flags);
1456 	if (i)
1457 		dmaengine_terminate_async(chan);
1458 	sci_dma_rx_chan_invalidate(s);
1459 	sci_start_rx(port);
1460 	if (!port_lock_held)
1461 		uart_port_unlock_irqrestore(port, flags);
1462 	return -EAGAIN;
1463 }
1464 
1465 static void sci_dma_tx_work_fn(struct work_struct *work)
1466 {
1467 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1468 	struct dma_async_tx_descriptor *desc;
1469 	struct dma_chan *chan = s->chan_tx;
1470 	struct uart_port *port = &s->port;
1471 	struct tty_port *tport = &port->state->port;
1472 	unsigned long flags;
1473 	unsigned int tail;
1474 	dma_addr_t buf;
1475 
1476 	/*
1477 	 * DMA is idle now.
1478 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1479 	 * offsets and lengths. Since it is a circular buffer, we have to
1480 	 * transmit till the end, and then the rest. Take the port lock to get a
1481 	 * consistent xmit buffer state.
1482 	 */
1483 	uart_port_lock_irq(port);
1484 	s->tx_dma_len = kfifo_out_linear(&tport->xmit_fifo, &tail,
1485 			UART_XMIT_SIZE);
1486 	buf = s->tx_dma_addr + tail;
1487 	if (!s->tx_dma_len) {
1488 		/* Transmit buffer has been flushed */
1489 		uart_port_unlock_irq(port);
1490 		return;
1491 	}
1492 
1493 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1494 					   DMA_MEM_TO_DEV,
1495 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1496 	if (!desc) {
1497 		uart_port_unlock_irq(port);
1498 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1499 		goto switch_to_pio;
1500 	}
1501 
1502 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1503 				   DMA_TO_DEVICE);
1504 
1505 	desc->callback = sci_dma_tx_complete;
1506 	desc->callback_param = s;
1507 	s->cookie_tx = dmaengine_submit(desc);
1508 	if (dma_submit_error(s->cookie_tx)) {
1509 		uart_port_unlock_irq(port);
1510 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1511 		goto switch_to_pio;
1512 	}
1513 
1514 	uart_port_unlock_irq(port);
1515 	dev_dbg(port->dev, "%s: %p: %u, cookie %d\n",
1516 		__func__, tport->xmit_buf, tail, s->cookie_tx);
1517 
1518 	dma_async_issue_pending(chan);
1519 	return;
1520 
1521 switch_to_pio:
1522 	uart_port_lock_irqsave(port, &flags);
1523 	s->chan_tx = NULL;
1524 	sci_start_tx(port);
1525 	uart_port_unlock_irqrestore(port, flags);
1526 	return;
1527 }
1528 
1529 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1530 {
1531 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1532 	struct dma_chan *chan = s->chan_rx;
1533 	struct uart_port *port = &s->port;
1534 	struct dma_tx_state state;
1535 	enum dma_status status;
1536 	unsigned long flags;
1537 	unsigned int read;
1538 	int active, count;
1539 
1540 	dev_dbg(port->dev, "DMA Rx timed out\n");
1541 
1542 	uart_port_lock_irqsave(port, &flags);
1543 
1544 	active = sci_dma_rx_find_active(s);
1545 	if (active < 0) {
1546 		uart_port_unlock_irqrestore(port, flags);
1547 		return HRTIMER_NORESTART;
1548 	}
1549 
1550 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1551 	if (status == DMA_COMPLETE) {
1552 		uart_port_unlock_irqrestore(port, flags);
1553 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1554 			s->active_rx, active);
1555 
1556 		/* Let packet complete handler take care of the packet */
1557 		return HRTIMER_NORESTART;
1558 	}
1559 
1560 	dmaengine_pause(chan);
1561 
1562 	/*
1563 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1564 	 * data keeps on coming until transaction is complete so check
1565 	 * for DMA_COMPLETE again
1566 	 * Let packet complete handler take care of the packet
1567 	 */
1568 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1569 	if (status == DMA_COMPLETE) {
1570 		uart_port_unlock_irqrestore(port, flags);
1571 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1572 		return HRTIMER_NORESTART;
1573 	}
1574 
1575 	/* Handle incomplete DMA receive */
1576 	dmaengine_terminate_async(s->chan_rx);
1577 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1578 
1579 	if (read) {
1580 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1581 		if (count)
1582 			tty_flip_buffer_push(&port->state->port);
1583 	}
1584 
1585 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1586 	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1587 		sci_dma_rx_submit(s, true);
1588 
1589 	sci_dma_rx_reenable_irq(s);
1590 
1591 	uart_port_unlock_irqrestore(port, flags);
1592 
1593 	return HRTIMER_NORESTART;
1594 }
1595 
1596 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1597 					     enum dma_transfer_direction dir)
1598 {
1599 	struct dma_chan *chan;
1600 	struct dma_slave_config cfg;
1601 	int ret;
1602 
1603 	chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1604 	if (IS_ERR(chan)) {
1605 		dev_dbg(port->dev, "dma_request_chan failed\n");
1606 		return NULL;
1607 	}
1608 
1609 	memset(&cfg, 0, sizeof(cfg));
1610 	cfg.direction = dir;
1611 	cfg.dst_addr = port->mapbase +
1612 		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1613 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1614 	cfg.src_addr = port->mapbase +
1615 		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1616 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1617 
1618 	ret = dmaengine_slave_config(chan, &cfg);
1619 	if (ret) {
1620 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1621 		dma_release_channel(chan);
1622 		return NULL;
1623 	}
1624 
1625 	return chan;
1626 }
1627 
1628 static void sci_request_dma(struct uart_port *port)
1629 {
1630 	struct sci_port *s = to_sci_port(port);
1631 	struct tty_port *tport = &port->state->port;
1632 	struct dma_chan *chan;
1633 
1634 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1635 
1636 	/*
1637 	 * DMA on console may interfere with Kernel log messages which use
1638 	 * plain putchar(). So, simply don't use it with a console.
1639 	 */
1640 	if (uart_console(port))
1641 		return;
1642 
1643 	if (!port->dev->of_node)
1644 		return;
1645 
1646 	s->cookie_tx = -EINVAL;
1647 
1648 	/*
1649 	 * Don't request a dma channel if no channel was specified
1650 	 * in the device tree.
1651 	 */
1652 	if (!of_property_present(port->dev->of_node, "dmas"))
1653 		return;
1654 
1655 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1656 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1657 	if (chan) {
1658 		/* UART circular tx buffer is an aligned page. */
1659 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1660 						tport->xmit_buf,
1661 						UART_XMIT_SIZE,
1662 						DMA_TO_DEVICE);
1663 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1664 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1665 			dma_release_channel(chan);
1666 		} else {
1667 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1668 				__func__, UART_XMIT_SIZE,
1669 				tport->xmit_buf, &s->tx_dma_addr);
1670 
1671 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1672 			s->chan_tx_saved = s->chan_tx = chan;
1673 		}
1674 	}
1675 
1676 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1677 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1678 	if (chan) {
1679 		unsigned int i;
1680 		dma_addr_t dma;
1681 		void *buf;
1682 
1683 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1684 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1685 					 &dma, GFP_KERNEL);
1686 		if (!buf) {
1687 			dev_warn(port->dev,
1688 				 "Failed to allocate Rx dma buffer, using PIO\n");
1689 			dma_release_channel(chan);
1690 			return;
1691 		}
1692 
1693 		for (i = 0; i < 2; i++) {
1694 			struct scatterlist *sg = &s->sg_rx[i];
1695 
1696 			sg_init_table(sg, 1);
1697 			s->rx_buf[i] = buf;
1698 			sg_dma_address(sg) = dma;
1699 			sg_dma_len(sg) = s->buf_len_rx;
1700 
1701 			buf += s->buf_len_rx;
1702 			dma += s->buf_len_rx;
1703 		}
1704 
1705 		hrtimer_setup(&s->rx_timer, sci_dma_rx_timer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1706 
1707 		s->chan_rx_saved = s->chan_rx = chan;
1708 
1709 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1710 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1711 			sci_dma_rx_submit(s, false);
1712 	}
1713 }
1714 
1715 static void sci_free_dma(struct uart_port *port)
1716 {
1717 	struct sci_port *s = to_sci_port(port);
1718 
1719 	if (s->chan_tx_saved)
1720 		sci_dma_tx_release(s);
1721 	if (s->chan_rx_saved)
1722 		sci_dma_rx_release(s);
1723 }
1724 
1725 static void sci_flush_buffer(struct uart_port *port)
1726 {
1727 	struct sci_port *s = to_sci_port(port);
1728 
1729 	/*
1730 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1731 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1732 	 * pending transfers
1733 	 */
1734 	s->tx_dma_len = 0;
1735 	if (s->chan_tx) {
1736 		dmaengine_terminate_async(s->chan_tx);
1737 		s->cookie_tx = -EINVAL;
1738 	}
1739 }
1740 
1741 static void sci_dma_check_tx_occurred(struct sci_port *s)
1742 {
1743 	struct dma_tx_state state;
1744 	enum dma_status status;
1745 
1746 	if (!s->chan_tx)
1747 		return;
1748 
1749 	status = dmaengine_tx_status(s->chan_tx, s->cookie_tx, &state);
1750 	if (status == DMA_COMPLETE || status == DMA_IN_PROGRESS)
1751 		s->tx_occurred = true;
1752 }
1753 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1754 static inline void sci_request_dma(struct uart_port *port)
1755 {
1756 }
1757 
1758 static inline void sci_free_dma(struct uart_port *port)
1759 {
1760 }
1761 
1762 static void sci_dma_check_tx_occurred(struct sci_port *s)
1763 {
1764 }
1765 
1766 #define sci_flush_buffer	NULL
1767 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1768 
1769 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1770 {
1771 	struct uart_port *port = ptr;
1772 	struct sci_port *s = to_sci_port(port);
1773 
1774 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1775 	if (s->chan_rx) {
1776 		u16 scr = sci_serial_in(port, SCSCR);
1777 		u16 ssr = sci_serial_in(port, SCxSR);
1778 
1779 		/* Disable future Rx interrupts */
1780 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1781 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1782 			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1783 			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1784 				scif_set_rtrg(port, 1);
1785 				scr |= SCSCR_RIE;
1786 			} else {
1787 				scr |= SCSCR_RDRQE;
1788 			}
1789 		} else {
1790 			if (sci_dma_rx_submit(s, false) < 0)
1791 				goto handle_pio;
1792 
1793 			scr &= ~SCSCR_RIE;
1794 		}
1795 		sci_serial_out(port, SCSCR, scr);
1796 		/* Clear current interrupt */
1797 		sci_serial_out(port, SCxSR,
1798 			       ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1799 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1800 			jiffies, s->rx_timeout);
1801 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1802 
1803 		return IRQ_HANDLED;
1804 	}
1805 
1806 handle_pio:
1807 #endif
1808 
1809 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1810 		if (!scif_rtrg_enabled(port))
1811 			scif_set_rtrg(port, s->rx_trigger);
1812 
1813 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1814 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1815 	}
1816 
1817 	/* I think sci_receive_chars has to be called irrespective
1818 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1819 	 * to be disabled?
1820 	 */
1821 	sci_receive_chars(port);
1822 
1823 	return IRQ_HANDLED;
1824 }
1825 
1826 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1827 {
1828 	struct uart_port *port = ptr;
1829 	unsigned long flags;
1830 
1831 	uart_port_lock_irqsave(port, &flags);
1832 	sci_transmit_chars(port);
1833 	uart_port_unlock_irqrestore(port, flags);
1834 
1835 	return IRQ_HANDLED;
1836 }
1837 
1838 static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1839 {
1840 	struct uart_port *port = ptr;
1841 	unsigned long flags;
1842 	unsigned short ctrl;
1843 
1844 	if (port->type != PORT_SCI)
1845 		return sci_tx_interrupt(irq, ptr);
1846 
1847 	uart_port_lock_irqsave(port, &flags);
1848 	ctrl = sci_serial_in(port, SCSCR);
1849 	ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
1850 	sci_serial_out(port, SCSCR, ctrl);
1851 	uart_port_unlock_irqrestore(port, flags);
1852 
1853 	return IRQ_HANDLED;
1854 }
1855 
1856 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1857 {
1858 	struct uart_port *port = ptr;
1859 
1860 	/* Handle BREAKs */
1861 	sci_handle_breaks(port);
1862 
1863 	/* drop invalid character received before break was detected */
1864 	sci_serial_in(port, SCxRDR);
1865 
1866 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1867 
1868 	return IRQ_HANDLED;
1869 }
1870 
1871 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1872 {
1873 	struct uart_port *port = ptr;
1874 	struct sci_port *s = to_sci_port(port);
1875 
1876 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1877 		/* Break and Error interrupts are muxed */
1878 		unsigned short ssr_status = sci_serial_in(port, SCxSR);
1879 
1880 		/* Break Interrupt */
1881 		if (ssr_status & SCxSR_BRK(port))
1882 			sci_br_interrupt(irq, ptr);
1883 
1884 		/* Break only? */
1885 		if (!(ssr_status & SCxSR_ERRORS(port)))
1886 			return IRQ_HANDLED;
1887 	}
1888 
1889 	/* Handle errors */
1890 	if (port->type == PORT_SCI) {
1891 		if (sci_handle_errors(port)) {
1892 			/* discard character in rx buffer */
1893 			sci_serial_in(port, SCxSR);
1894 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1895 		}
1896 	} else {
1897 		sci_handle_fifo_overrun(port);
1898 		if (!s->chan_rx)
1899 			sci_receive_chars(port);
1900 	}
1901 
1902 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1903 
1904 	/* Kick the transmission */
1905 	if (!s->chan_tx)
1906 		sci_tx_interrupt(irq, ptr);
1907 
1908 	return IRQ_HANDLED;
1909 }
1910 
1911 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1912 {
1913 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1914 	struct uart_port *port = ptr;
1915 	struct sci_port *s = to_sci_port(port);
1916 	irqreturn_t ret = IRQ_NONE;
1917 
1918 	ssr_status = sci_serial_in(port, SCxSR);
1919 	scr_status = sci_serial_in(port, SCSCR);
1920 	if (s->params->overrun_reg == SCxSR)
1921 		orer_status = ssr_status;
1922 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1923 		orer_status = sci_serial_in(port, s->params->overrun_reg);
1924 
1925 	err_enabled = scr_status & port_rx_irq_mask(port);
1926 
1927 	/* Tx Interrupt */
1928 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1929 	    !s->chan_tx)
1930 		ret = sci_tx_interrupt(irq, ptr);
1931 
1932 	/*
1933 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1934 	 * DR flags
1935 	 */
1936 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1937 	    (scr_status & SCSCR_RIE))
1938 		ret = sci_rx_interrupt(irq, ptr);
1939 
1940 	/* Error Interrupt */
1941 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1942 		ret = sci_er_interrupt(irq, ptr);
1943 
1944 	/* Break Interrupt */
1945 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1946 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1947 		ret = sci_br_interrupt(irq, ptr);
1948 
1949 	/* Overrun Interrupt */
1950 	if (orer_status & s->params->overrun_mask) {
1951 		sci_handle_fifo_overrun(port);
1952 		ret = IRQ_HANDLED;
1953 	}
1954 
1955 	return ret;
1956 }
1957 
1958 static const struct sci_irq_desc {
1959 	const char	*desc;
1960 	irq_handler_t	handler;
1961 } sci_irq_desc[] = {
1962 	/*
1963 	 * Split out handlers, the default case.
1964 	 */
1965 	[SCIx_ERI_IRQ] = {
1966 		.desc = "rx err",
1967 		.handler = sci_er_interrupt,
1968 	},
1969 
1970 	[SCIx_RXI_IRQ] = {
1971 		.desc = "rx full",
1972 		.handler = sci_rx_interrupt,
1973 	},
1974 
1975 	[SCIx_TXI_IRQ] = {
1976 		.desc = "tx empty",
1977 		.handler = sci_tx_interrupt,
1978 	},
1979 
1980 	[SCIx_BRI_IRQ] = {
1981 		.desc = "break",
1982 		.handler = sci_br_interrupt,
1983 	},
1984 
1985 	[SCIx_DRI_IRQ] = {
1986 		.desc = "rx ready",
1987 		.handler = sci_rx_interrupt,
1988 	},
1989 
1990 	[SCIx_TEI_IRQ] = {
1991 		.desc = "tx end",
1992 		.handler = sci_tx_end_interrupt,
1993 	},
1994 
1995 	/*
1996 	 * Special muxed handler.
1997 	 */
1998 	[SCIx_MUX_IRQ] = {
1999 		.desc = "mux",
2000 		.handler = sci_mpxed_interrupt,
2001 	},
2002 };
2003 
2004 static int sci_request_irq(struct sci_port *port)
2005 {
2006 	struct uart_port *up = &port->port;
2007 	int i, j, w, ret = 0;
2008 
2009 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
2010 		const struct sci_irq_desc *desc;
2011 		int irq;
2012 
2013 		/* Check if already registered (muxed) */
2014 		for (w = 0; w < i; w++)
2015 			if (port->irqs[w] == port->irqs[i])
2016 				w = i + 1;
2017 		if (w > i)
2018 			continue;
2019 
2020 		if (SCIx_IRQ_IS_MUXED(port)) {
2021 			i = SCIx_MUX_IRQ;
2022 			irq = up->irq;
2023 		} else {
2024 			irq = port->irqs[i];
2025 
2026 			/*
2027 			 * Certain port types won't support all of the
2028 			 * available interrupt sources.
2029 			 */
2030 			if (unlikely(irq < 0))
2031 				continue;
2032 		}
2033 
2034 		desc = sci_irq_desc + i;
2035 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
2036 					    dev_name(up->dev), desc->desc);
2037 		if (!port->irqstr[j]) {
2038 			ret = -ENOMEM;
2039 			goto out_nomem;
2040 		}
2041 
2042 		ret = request_irq(irq, desc->handler, up->irqflags,
2043 				  port->irqstr[j], port);
2044 		if (unlikely(ret)) {
2045 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
2046 			goto out_noirq;
2047 		}
2048 	}
2049 
2050 	return 0;
2051 
2052 out_noirq:
2053 	while (--i >= 0)
2054 		free_irq(port->irqs[i], port);
2055 
2056 out_nomem:
2057 	while (--j >= 0)
2058 		kfree(port->irqstr[j]);
2059 
2060 	return ret;
2061 }
2062 
2063 static void sci_free_irq(struct sci_port *port)
2064 {
2065 	int i, j;
2066 
2067 	/*
2068 	 * Intentionally in reverse order so we iterate over the muxed
2069 	 * IRQ first.
2070 	 */
2071 	for (i = 0; i < SCIx_NR_IRQS; i++) {
2072 		int irq = port->irqs[i];
2073 
2074 		/*
2075 		 * Certain port types won't support all of the available
2076 		 * interrupt sources.
2077 		 */
2078 		if (unlikely(irq < 0))
2079 			continue;
2080 
2081 		/* Check if already freed (irq was muxed) */
2082 		for (j = 0; j < i; j++)
2083 			if (port->irqs[j] == irq)
2084 				j = i + 1;
2085 		if (j > i)
2086 			continue;
2087 
2088 		free_irq(port->irqs[i], port);
2089 		kfree(port->irqstr[i]);
2090 
2091 		if (SCIx_IRQ_IS_MUXED(port)) {
2092 			/* If there's only one IRQ, we're done. */
2093 			return;
2094 		}
2095 	}
2096 }
2097 
2098 static unsigned int sci_tx_empty(struct uart_port *port)
2099 {
2100 	unsigned short status = sci_serial_in(port, SCxSR);
2101 	unsigned short in_tx_fifo = sci_txfill(port);
2102 	struct sci_port *s = to_sci_port(port);
2103 
2104 	sci_dma_check_tx_occurred(s);
2105 
2106 	if (!s->tx_occurred)
2107 		return TIOCSER_TEMT;
2108 
2109 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2110 }
2111 
2112 static void sci_set_rts(struct uart_port *port, bool state)
2113 {
2114 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2115 		u16 data = sci_serial_in(port, SCPDR);
2116 
2117 		/* Active low */
2118 		if (state)
2119 			data &= ~SCPDR_RTSD;
2120 		else
2121 			data |= SCPDR_RTSD;
2122 		sci_serial_out(port, SCPDR, data);
2123 
2124 		/* RTS# is output */
2125 		sci_serial_out(port, SCPCR,
2126 			       sci_serial_in(port, SCPCR) | SCPCR_RTSC);
2127 	} else if (sci_getreg(port, SCSPTR)->size) {
2128 		u16 ctrl = sci_serial_in(port, SCSPTR);
2129 
2130 		/* Active low */
2131 		if (state)
2132 			ctrl &= ~SCSPTR_RTSDT;
2133 		else
2134 			ctrl |= SCSPTR_RTSDT;
2135 		sci_serial_out(port, SCSPTR, ctrl);
2136 	}
2137 }
2138 
2139 static bool sci_get_cts(struct uart_port *port)
2140 {
2141 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2142 		/* Active low */
2143 		return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
2144 	} else if (sci_getreg(port, SCSPTR)->size) {
2145 		/* Active low */
2146 		return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
2147 	}
2148 
2149 	return true;
2150 }
2151 
2152 /*
2153  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2154  * CTS/RTS is supported in hardware by at least one port and controlled
2155  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2156  * handled via the ->init_pins() op, which is a bit of a one-way street,
2157  * lacking any ability to defer pin control -- this will later be
2158  * converted over to the GPIO framework).
2159  *
2160  * Other modes (such as loopback) are supported generically on certain
2161  * port types, but not others. For these it's sufficient to test for the
2162  * existence of the support register and simply ignore the port type.
2163  */
2164 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2165 {
2166 	struct sci_port *s = to_sci_port(port);
2167 
2168 	if (mctrl & TIOCM_LOOP) {
2169 		const struct plat_sci_reg *reg;
2170 
2171 		/*
2172 		 * Standard loopback mode for SCFCR ports.
2173 		 */
2174 		reg = sci_getreg(port, SCFCR);
2175 		if (reg->size)
2176 			sci_serial_out(port, SCFCR,
2177 				       sci_serial_in(port, SCFCR) | SCFCR_LOOP);
2178 	}
2179 
2180 	mctrl_gpio_set(s->gpios, mctrl);
2181 
2182 	if (!s->has_rtscts)
2183 		return;
2184 
2185 	if (!(mctrl & TIOCM_RTS)) {
2186 		/* Disable Auto RTS */
2187 		if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2188 			sci_serial_out(port, SCFCR,
2189 				       sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
2190 
2191 		/* Clear RTS */
2192 		sci_set_rts(port, 0);
2193 	} else if (s->autorts) {
2194 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2195 			/* Enable RTS# pin function */
2196 			sci_serial_out(port, SCPCR,
2197 				sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
2198 		}
2199 
2200 		/* Enable Auto RTS */
2201 		if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2202 			sci_serial_out(port, SCFCR,
2203 				       sci_serial_in(port, SCFCR) | SCFCR_MCE);
2204 	} else {
2205 		/* Set RTS */
2206 		sci_set_rts(port, 1);
2207 	}
2208 }
2209 
2210 static unsigned int sci_get_mctrl(struct uart_port *port)
2211 {
2212 	struct sci_port *s = to_sci_port(port);
2213 	struct mctrl_gpios *gpios = s->gpios;
2214 	unsigned int mctrl = 0;
2215 
2216 	mctrl_gpio_get(gpios, &mctrl);
2217 
2218 	/*
2219 	 * CTS/RTS is handled in hardware when supported, while nothing
2220 	 * else is wired up.
2221 	 */
2222 	if (s->autorts) {
2223 		if (sci_get_cts(port))
2224 			mctrl |= TIOCM_CTS;
2225 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2226 		mctrl |= TIOCM_CTS;
2227 	}
2228 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2229 		mctrl |= TIOCM_DSR;
2230 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2231 		mctrl |= TIOCM_CAR;
2232 
2233 	return mctrl;
2234 }
2235 
2236 static void sci_enable_ms(struct uart_port *port)
2237 {
2238 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2239 }
2240 
2241 static void sci_break_ctl(struct uart_port *port, int break_state)
2242 {
2243 	unsigned short scscr, scsptr;
2244 	unsigned long flags;
2245 
2246 	/* check whether the port has SCSPTR */
2247 	if (!sci_getreg(port, SCSPTR)->size) {
2248 		/*
2249 		 * Not supported by hardware. Most parts couple break and rx
2250 		 * interrupts together, with break detection always enabled.
2251 		 */
2252 		return;
2253 	}
2254 
2255 	uart_port_lock_irqsave(port, &flags);
2256 	scsptr = sci_serial_in(port, SCSPTR);
2257 	scscr = sci_serial_in(port, SCSCR);
2258 
2259 	if (break_state == -1) {
2260 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2261 		scscr &= ~SCSCR_TE;
2262 	} else {
2263 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2264 		scscr |= SCSCR_TE;
2265 	}
2266 
2267 	sci_serial_out(port, SCSPTR, scsptr);
2268 	sci_serial_out(port, SCSCR, scscr);
2269 	uart_port_unlock_irqrestore(port, flags);
2270 }
2271 
2272 static int sci_startup(struct uart_port *port)
2273 {
2274 	struct sci_port *s = to_sci_port(port);
2275 	int ret;
2276 
2277 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2278 
2279 	s->tx_occurred = false;
2280 	sci_request_dma(port);
2281 
2282 	ret = sci_request_irq(s);
2283 	if (unlikely(ret < 0)) {
2284 		sci_free_dma(port);
2285 		return ret;
2286 	}
2287 
2288 	return 0;
2289 }
2290 
2291 static void sci_shutdown(struct uart_port *port)
2292 {
2293 	struct sci_port *s = to_sci_port(port);
2294 	unsigned long flags;
2295 	u16 scr;
2296 
2297 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2298 
2299 	s->autorts = false;
2300 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2301 
2302 	uart_port_lock_irqsave(port, &flags);
2303 	sci_stop_rx(port);
2304 	sci_stop_tx(port);
2305 	/*
2306 	 * Stop RX and TX, disable related interrupts, keep clock source
2307 	 * and HSCIF TOT bits
2308 	 */
2309 	scr = sci_serial_in(port, SCSCR);
2310 	sci_serial_out(port, SCSCR,
2311 		       scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2312 	uart_port_unlock_irqrestore(port, flags);
2313 
2314 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2315 	if (s->chan_rx_saved) {
2316 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2317 			port->line);
2318 		hrtimer_cancel(&s->rx_timer);
2319 	}
2320 #endif
2321 
2322 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2323 		del_timer_sync(&s->rx_fifo_timer);
2324 	sci_free_irq(s);
2325 	sci_free_dma(port);
2326 }
2327 
2328 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2329 			unsigned int *srr)
2330 {
2331 	unsigned long freq = s->clk_rates[SCI_SCK];
2332 	int err, min_err = INT_MAX;
2333 	unsigned int sr;
2334 
2335 	if (s->port.type != PORT_HSCIF)
2336 		freq *= 2;
2337 
2338 	for_each_sr(sr, s) {
2339 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2340 		if (abs(err) >= abs(min_err))
2341 			continue;
2342 
2343 		min_err = err;
2344 		*srr = sr - 1;
2345 
2346 		if (!err)
2347 			break;
2348 	}
2349 
2350 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2351 		*srr + 1);
2352 	return min_err;
2353 }
2354 
2355 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2356 			unsigned long freq, unsigned int *dlr,
2357 			unsigned int *srr)
2358 {
2359 	int err, min_err = INT_MAX;
2360 	unsigned int sr, dl;
2361 
2362 	if (s->port.type != PORT_HSCIF)
2363 		freq *= 2;
2364 
2365 	for_each_sr(sr, s) {
2366 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2367 		dl = clamp(dl, 1U, 65535U);
2368 
2369 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2370 		if (abs(err) >= abs(min_err))
2371 			continue;
2372 
2373 		min_err = err;
2374 		*dlr = dl;
2375 		*srr = sr - 1;
2376 
2377 		if (!err)
2378 			break;
2379 	}
2380 
2381 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2382 		min_err, *dlr, *srr + 1);
2383 	return min_err;
2384 }
2385 
2386 /* calculate sample rate, BRR, and clock select */
2387 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2388 			  unsigned int *brr, unsigned int *srr,
2389 			  unsigned int *cks)
2390 {
2391 	unsigned long freq = s->clk_rates[SCI_FCK];
2392 	unsigned int sr, br, prediv, scrate, c;
2393 	int err, min_err = INT_MAX;
2394 
2395 	if (s->port.type != PORT_HSCIF)
2396 		freq *= 2;
2397 
2398 	/*
2399 	 * Find the combination of sample rate and clock select with the
2400 	 * smallest deviation from the desired baud rate.
2401 	 * Prefer high sample rates to maximise the receive margin.
2402 	 *
2403 	 * M: Receive margin (%)
2404 	 * N: Ratio of bit rate to clock (N = sampling rate)
2405 	 * D: Clock duty (D = 0 to 1.0)
2406 	 * L: Frame length (L = 9 to 12)
2407 	 * F: Absolute value of clock frequency deviation
2408 	 *
2409 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2410 	 *      (|D - 0.5| / N * (1 + F))|
2411 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2412 	 */
2413 	for_each_sr(sr, s) {
2414 		for (c = 0; c <= 3; c++) {
2415 			/* integerized formulas from HSCIF documentation */
2416 			prediv = sr << (2 * c + 1);
2417 
2418 			/*
2419 			 * We need to calculate:
2420 			 *
2421 			 *     br = freq / (prediv * bps) clamped to [1..256]
2422 			 *     err = freq / (br * prediv) - bps
2423 			 *
2424 			 * Watch out for overflow when calculating the desired
2425 			 * sampling clock rate!
2426 			 */
2427 			if (bps > UINT_MAX / prediv)
2428 				break;
2429 
2430 			scrate = prediv * bps;
2431 			br = DIV_ROUND_CLOSEST(freq, scrate);
2432 			br = clamp(br, 1U, 256U);
2433 
2434 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2435 			if (abs(err) >= abs(min_err))
2436 				continue;
2437 
2438 			min_err = err;
2439 			*brr = br - 1;
2440 			*srr = sr - 1;
2441 			*cks = c;
2442 
2443 			if (!err)
2444 				goto found;
2445 		}
2446 	}
2447 
2448 found:
2449 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2450 		min_err, *brr, *srr + 1, *cks);
2451 	return min_err;
2452 }
2453 
2454 static void sci_reset(struct uart_port *port)
2455 {
2456 	const struct plat_sci_reg *reg;
2457 	unsigned int status;
2458 	struct sci_port *s = to_sci_port(port);
2459 
2460 	sci_serial_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2461 
2462 	reg = sci_getreg(port, SCFCR);
2463 	if (reg->size)
2464 		sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2465 
2466 	sci_clear_SCxSR(port,
2467 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2468 			SCxSR_BREAK_CLEAR(port));
2469 	if (sci_getreg(port, SCLSR)->size) {
2470 		status = sci_serial_in(port, SCLSR);
2471 		status &= ~(SCLSR_TO | SCLSR_ORER);
2472 		sci_serial_out(port, SCLSR, status);
2473 	}
2474 
2475 	if (s->rx_trigger > 1) {
2476 		if (s->rx_fifo_timeout) {
2477 			scif_set_rtrg(port, 1);
2478 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2479 		} else {
2480 			if (port->type == PORT_SCIFA ||
2481 			    port->type == PORT_SCIFB)
2482 				scif_set_rtrg(port, 1);
2483 			else
2484 				scif_set_rtrg(port, s->rx_trigger);
2485 		}
2486 	}
2487 }
2488 
2489 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2490 		            const struct ktermios *old)
2491 {
2492 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2493 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2494 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2495 	struct sci_port *s = to_sci_port(port);
2496 	const struct plat_sci_reg *reg;
2497 	int min_err = INT_MAX, err;
2498 	unsigned long max_freq = 0;
2499 	int best_clk = -1;
2500 	unsigned long flags;
2501 
2502 	if ((termios->c_cflag & CSIZE) == CS7) {
2503 		smr_val |= SCSMR_CHR;
2504 	} else {
2505 		termios->c_cflag &= ~CSIZE;
2506 		termios->c_cflag |= CS8;
2507 	}
2508 	if (termios->c_cflag & PARENB)
2509 		smr_val |= SCSMR_PE;
2510 	if (termios->c_cflag & PARODD)
2511 		smr_val |= SCSMR_PE | SCSMR_ODD;
2512 	if (termios->c_cflag & CSTOPB)
2513 		smr_val |= SCSMR_STOP;
2514 
2515 	/*
2516 	 * earlyprintk comes here early on with port->uartclk set to zero.
2517 	 * the clock framework is not up and running at this point so here
2518 	 * we assume that 115200 is the maximum baud rate. please note that
2519 	 * the baud rate is not programmed during earlyprintk - it is assumed
2520 	 * that the previous boot loader has enabled required clocks and
2521 	 * setup the baud rate generator hardware for us already.
2522 	 */
2523 	if (!port->uartclk) {
2524 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2525 		goto done;
2526 	}
2527 
2528 	for (i = 0; i < SCI_NUM_CLKS; i++)
2529 		max_freq = max(max_freq, s->clk_rates[i]);
2530 
2531 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2532 	if (!baud)
2533 		goto done;
2534 
2535 	/*
2536 	 * There can be multiple sources for the sampling clock.  Find the one
2537 	 * that gives us the smallest deviation from the desired baud rate.
2538 	 */
2539 
2540 	/* Optional Undivided External Clock */
2541 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2542 	    port->type != PORT_SCIFB) {
2543 		err = sci_sck_calc(s, baud, &srr1);
2544 		if (abs(err) < abs(min_err)) {
2545 			best_clk = SCI_SCK;
2546 			scr_val = SCSCR_CKE1;
2547 			sccks = SCCKS_CKS;
2548 			min_err = err;
2549 			srr = srr1;
2550 			if (!err)
2551 				goto done;
2552 		}
2553 	}
2554 
2555 	/* Optional BRG Frequency Divided External Clock */
2556 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2557 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2558 				   &srr1);
2559 		if (abs(err) < abs(min_err)) {
2560 			best_clk = SCI_SCIF_CLK;
2561 			scr_val = SCSCR_CKE1;
2562 			sccks = 0;
2563 			min_err = err;
2564 			dl = dl1;
2565 			srr = srr1;
2566 			if (!err)
2567 				goto done;
2568 		}
2569 	}
2570 
2571 	/* Optional BRG Frequency Divided Internal Clock */
2572 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2573 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2574 				   &srr1);
2575 		if (abs(err) < abs(min_err)) {
2576 			best_clk = SCI_BRG_INT;
2577 			scr_val = SCSCR_CKE1;
2578 			sccks = SCCKS_XIN;
2579 			min_err = err;
2580 			dl = dl1;
2581 			srr = srr1;
2582 			if (!min_err)
2583 				goto done;
2584 		}
2585 	}
2586 
2587 	/* Divided Functional Clock using standard Bit Rate Register */
2588 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2589 	if (abs(err) < abs(min_err)) {
2590 		best_clk = SCI_FCK;
2591 		scr_val = 0;
2592 		min_err = err;
2593 		brr = brr1;
2594 		srr = srr1;
2595 		cks = cks1;
2596 	}
2597 
2598 done:
2599 	if (best_clk >= 0)
2600 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2601 			s->clks[best_clk], baud, min_err);
2602 
2603 	sci_port_enable(s);
2604 
2605 	/*
2606 	 * Program the optional External Baud Rate Generator (BRG) first.
2607 	 * It controls the mux to select (H)SCK or frequency divided clock.
2608 	 */
2609 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2610 		sci_serial_out(port, SCDL, dl);
2611 		sci_serial_out(port, SCCKS, sccks);
2612 	}
2613 
2614 	uart_port_lock_irqsave(port, &flags);
2615 
2616 	sci_reset(port);
2617 
2618 	uart_update_timeout(port, termios->c_cflag, baud);
2619 
2620 	/* byte size and parity */
2621 	bits = tty_get_frame_size(termios->c_cflag);
2622 
2623 	if (sci_getreg(port, SEMR)->size)
2624 		sci_serial_out(port, SEMR, 0);
2625 
2626 	if (best_clk >= 0) {
2627 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2628 			switch (srr + 1) {
2629 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2630 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2631 			case 11: smr_val |= SCSMR_SRC_11; break;
2632 			case 13: smr_val |= SCSMR_SRC_13; break;
2633 			case 16: smr_val |= SCSMR_SRC_16; break;
2634 			case 17: smr_val |= SCSMR_SRC_17; break;
2635 			case 19: smr_val |= SCSMR_SRC_19; break;
2636 			case 27: smr_val |= SCSMR_SRC_27; break;
2637 			}
2638 		smr_val |= cks;
2639 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2640 		sci_serial_out(port, SCSMR, smr_val);
2641 		sci_serial_out(port, SCBRR, brr);
2642 		if (sci_getreg(port, HSSRR)->size) {
2643 			unsigned int hssrr = srr | HSCIF_SRE;
2644 			/* Calculate deviation from intended rate at the
2645 			 * center of the last stop bit in sampling clocks.
2646 			 */
2647 			int last_stop = bits * 2 - 1;
2648 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2649 							  (int)(srr + 1),
2650 							  2 * (int)baud);
2651 
2652 			if (abs(deviation) >= 2) {
2653 				/* At least two sampling clocks off at the
2654 				 * last stop bit; we can increase the error
2655 				 * margin by shifting the sampling point.
2656 				 */
2657 				int shift = clamp(deviation / 2, -8, 7);
2658 
2659 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2660 					 HSCIF_SRHP_MASK;
2661 				hssrr |= HSCIF_SRDE;
2662 			}
2663 			sci_serial_out(port, HSSRR, hssrr);
2664 		}
2665 
2666 		/* Wait one bit interval */
2667 		udelay((1000000 + (baud - 1)) / baud);
2668 	} else {
2669 		/* Don't touch the bit rate configuration */
2670 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2671 		smr_val |= sci_serial_in(port, SCSMR) &
2672 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2673 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2674 		sci_serial_out(port, SCSMR, smr_val);
2675 	}
2676 
2677 	sci_init_pins(port, termios->c_cflag);
2678 
2679 	port->status &= ~UPSTAT_AUTOCTS;
2680 	s->autorts = false;
2681 	reg = sci_getreg(port, SCFCR);
2682 	if (reg->size) {
2683 		unsigned short ctrl = sci_serial_in(port, SCFCR);
2684 
2685 		if ((port->flags & UPF_HARD_FLOW) &&
2686 		    (termios->c_cflag & CRTSCTS)) {
2687 			/* There is no CTS interrupt to restart the hardware */
2688 			port->status |= UPSTAT_AUTOCTS;
2689 			/* MCE is enabled when RTS is raised */
2690 			s->autorts = true;
2691 		}
2692 
2693 		/*
2694 		 * As we've done a sci_reset() above, ensure we don't
2695 		 * interfere with the FIFOs while toggling MCE. As the
2696 		 * reset values could still be set, simply mask them out.
2697 		 */
2698 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2699 
2700 		sci_serial_out(port, SCFCR, ctrl);
2701 	}
2702 	if (port->flags & UPF_HARD_FLOW) {
2703 		/* Refresh (Auto) RTS */
2704 		sci_set_mctrl(port, port->mctrl);
2705 	}
2706 
2707 	/*
2708 	 * For SCI, TE (transmit enable) must be set after setting TIE
2709 	 * (transmit interrupt enable) or in the same instruction to
2710 	 * start the transmitting process. So skip setting TE here for SCI.
2711 	 */
2712 	if (port->type != PORT_SCI)
2713 		scr_val |= SCSCR_TE;
2714 	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2715 	sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2716 	if ((srr + 1 == 5) &&
2717 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2718 		/*
2719 		 * In asynchronous mode, when the sampling rate is 1/5, first
2720 		 * received data may become invalid on some SCIFA and SCIFB.
2721 		 * To avoid this problem wait more than 1 serial data time (1
2722 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2723 		 */
2724 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2725 	}
2726 
2727 	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2728 	s->rx_frame = (10000 * bits) / (baud / 100);
2729 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2730 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2731 #endif
2732 
2733 	if ((termios->c_cflag & CREAD) != 0)
2734 		sci_start_rx(port);
2735 
2736 	uart_port_unlock_irqrestore(port, flags);
2737 
2738 	sci_port_disable(s);
2739 
2740 	if (UART_ENABLE_MS(port, termios->c_cflag))
2741 		sci_enable_ms(port);
2742 }
2743 
2744 static void sci_pm(struct uart_port *port, unsigned int state,
2745 		   unsigned int oldstate)
2746 {
2747 	struct sci_port *sci_port = to_sci_port(port);
2748 
2749 	switch (state) {
2750 	case UART_PM_STATE_OFF:
2751 		sci_port_disable(sci_port);
2752 		break;
2753 	default:
2754 		sci_port_enable(sci_port);
2755 		break;
2756 	}
2757 }
2758 
2759 static const char *sci_type(struct uart_port *port)
2760 {
2761 	switch (port->type) {
2762 	case PORT_IRDA:
2763 		return "irda";
2764 	case PORT_SCI:
2765 		return "sci";
2766 	case PORT_SCIF:
2767 		return "scif";
2768 	case PORT_SCIFA:
2769 		return "scifa";
2770 	case PORT_SCIFB:
2771 		return "scifb";
2772 	case PORT_HSCIF:
2773 		return "hscif";
2774 	}
2775 
2776 	return NULL;
2777 }
2778 
2779 static int sci_remap_port(struct uart_port *port)
2780 {
2781 	struct sci_port *sport = to_sci_port(port);
2782 
2783 	/*
2784 	 * Nothing to do if there's already an established membase.
2785 	 */
2786 	if (port->membase)
2787 		return 0;
2788 
2789 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2790 		port->membase = ioremap(port->mapbase, sport->reg_size);
2791 		if (unlikely(!port->membase)) {
2792 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2793 			return -ENXIO;
2794 		}
2795 	} else {
2796 		/*
2797 		 * For the simple (and majority of) cases where we don't
2798 		 * need to do any remapping, just cast the cookie
2799 		 * directly.
2800 		 */
2801 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2802 	}
2803 
2804 	return 0;
2805 }
2806 
2807 static void sci_release_port(struct uart_port *port)
2808 {
2809 	struct sci_port *sport = to_sci_port(port);
2810 
2811 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2812 		iounmap(port->membase);
2813 		port->membase = NULL;
2814 	}
2815 
2816 	release_mem_region(port->mapbase, sport->reg_size);
2817 }
2818 
2819 static int sci_request_port(struct uart_port *port)
2820 {
2821 	struct resource *res;
2822 	struct sci_port *sport = to_sci_port(port);
2823 	int ret;
2824 
2825 	res = request_mem_region(port->mapbase, sport->reg_size,
2826 				 dev_name(port->dev));
2827 	if (unlikely(res == NULL)) {
2828 		dev_err(port->dev, "request_mem_region failed.");
2829 		return -EBUSY;
2830 	}
2831 
2832 	ret = sci_remap_port(port);
2833 	if (unlikely(ret != 0)) {
2834 		release_resource(res);
2835 		return ret;
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 static void sci_config_port(struct uart_port *port, int flags)
2842 {
2843 	if (flags & UART_CONFIG_TYPE) {
2844 		struct sci_port *sport = to_sci_port(port);
2845 
2846 		port->type = sport->cfg->type;
2847 		sci_request_port(port);
2848 	}
2849 }
2850 
2851 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2852 {
2853 	if (ser->baud_base < 2400)
2854 		/* No paper tape reader for Mitch.. */
2855 		return -EINVAL;
2856 
2857 	return 0;
2858 }
2859 
2860 static const struct uart_ops sci_uart_ops = {
2861 	.tx_empty	= sci_tx_empty,
2862 	.set_mctrl	= sci_set_mctrl,
2863 	.get_mctrl	= sci_get_mctrl,
2864 	.start_tx	= sci_start_tx,
2865 	.stop_tx	= sci_stop_tx,
2866 	.stop_rx	= sci_stop_rx,
2867 	.enable_ms	= sci_enable_ms,
2868 	.break_ctl	= sci_break_ctl,
2869 	.startup	= sci_startup,
2870 	.shutdown	= sci_shutdown,
2871 	.flush_buffer	= sci_flush_buffer,
2872 	.set_termios	= sci_set_termios,
2873 	.pm		= sci_pm,
2874 	.type		= sci_type,
2875 	.release_port	= sci_release_port,
2876 	.request_port	= sci_request_port,
2877 	.config_port	= sci_config_port,
2878 	.verify_port	= sci_verify_port,
2879 #ifdef CONFIG_CONSOLE_POLL
2880 	.poll_get_char	= sci_poll_get_char,
2881 	.poll_put_char	= sci_poll_put_char,
2882 #endif
2883 };
2884 
2885 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2886 {
2887 	const char *clk_names[] = {
2888 		[SCI_FCK] = "fck",
2889 		[SCI_SCK] = "sck",
2890 		[SCI_BRG_INT] = "brg_int",
2891 		[SCI_SCIF_CLK] = "scif_clk",
2892 	};
2893 	struct clk *clk;
2894 	unsigned int i;
2895 
2896 	if (sci_port->cfg->type == PORT_HSCIF)
2897 		clk_names[SCI_SCK] = "hsck";
2898 
2899 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2900 		clk = devm_clk_get_optional(dev, clk_names[i]);
2901 		if (IS_ERR(clk))
2902 			return PTR_ERR(clk);
2903 
2904 		if (!clk && i == SCI_FCK) {
2905 			/*
2906 			 * Not all SH platforms declare a clock lookup entry
2907 			 * for SCI devices, in which case we need to get the
2908 			 * global "peripheral_clk" clock.
2909 			 */
2910 			clk = devm_clk_get(dev, "peripheral_clk");
2911 			if (IS_ERR(clk))
2912 				return dev_err_probe(dev, PTR_ERR(clk),
2913 						     "failed to get %s\n",
2914 						     clk_names[i]);
2915 		}
2916 
2917 		if (!clk)
2918 			dev_dbg(dev, "failed to get %s\n", clk_names[i]);
2919 		else
2920 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2921 				clk, clk_get_rate(clk));
2922 		sci_port->clks[i] = clk;
2923 	}
2924 	return 0;
2925 }
2926 
2927 static const struct sci_port_params *
2928 sci_probe_regmap(const struct plat_sci_port *cfg)
2929 {
2930 	unsigned int regtype;
2931 
2932 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2933 		return &sci_port_params[cfg->regtype];
2934 
2935 	switch (cfg->type) {
2936 	case PORT_SCI:
2937 		regtype = SCIx_SCI_REGTYPE;
2938 		break;
2939 	case PORT_IRDA:
2940 		regtype = SCIx_IRDA_REGTYPE;
2941 		break;
2942 	case PORT_SCIFA:
2943 		regtype = SCIx_SCIFA_REGTYPE;
2944 		break;
2945 	case PORT_SCIFB:
2946 		regtype = SCIx_SCIFB_REGTYPE;
2947 		break;
2948 	case PORT_SCIF:
2949 		/*
2950 		 * The SH-4 is a bit of a misnomer here, although that's
2951 		 * where this particular port layout originated. This
2952 		 * configuration (or some slight variation thereof)
2953 		 * remains the dominant model for all SCIFs.
2954 		 */
2955 		regtype = SCIx_SH4_SCIF_REGTYPE;
2956 		break;
2957 	case PORT_HSCIF:
2958 		regtype = SCIx_HSCIF_REGTYPE;
2959 		break;
2960 	default:
2961 		pr_err("Can't probe register map for given port\n");
2962 		return NULL;
2963 	}
2964 
2965 	return &sci_port_params[regtype];
2966 }
2967 
2968 static int sci_init_single(struct platform_device *dev,
2969 			   struct sci_port *sci_port, unsigned int index,
2970 			   const struct plat_sci_port *p, bool early)
2971 {
2972 	struct uart_port *port = &sci_port->port;
2973 	const struct resource *res;
2974 	unsigned int i;
2975 	int ret;
2976 
2977 	sci_port->cfg	= p;
2978 
2979 	port->ops	= &sci_uart_ops;
2980 	port->iotype	= UPIO_MEM;
2981 	port->line	= index;
2982 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2983 
2984 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2985 	if (res == NULL)
2986 		return -ENOMEM;
2987 
2988 	port->mapbase = res->start;
2989 	sci_port->reg_size = resource_size(res);
2990 
2991 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2992 		if (i)
2993 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2994 		else
2995 			sci_port->irqs[i] = platform_get_irq(dev, i);
2996 	}
2997 
2998 	/*
2999 	 * The fourth interrupt on SCI port is transmit end interrupt, so
3000 	 * shuffle the interrupts.
3001 	 */
3002 	if (p->type == PORT_SCI)
3003 		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
3004 
3005 	/* The SCI generates several interrupts. They can be muxed together or
3006 	 * connected to different interrupt lines. In the muxed case only one
3007 	 * interrupt resource is specified as there is only one interrupt ID.
3008 	 * In the non-muxed case, up to 6 interrupt signals might be generated
3009 	 * from the SCI, however those signals might have their own individual
3010 	 * interrupt ID numbers, or muxed together with another interrupt.
3011 	 */
3012 	if (sci_port->irqs[0] < 0)
3013 		return -ENXIO;
3014 
3015 	if (sci_port->irqs[1] < 0)
3016 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
3017 			sci_port->irqs[i] = sci_port->irqs[0];
3018 
3019 	sci_port->params = sci_probe_regmap(p);
3020 	if (unlikely(sci_port->params == NULL))
3021 		return -EINVAL;
3022 
3023 	switch (p->type) {
3024 	case PORT_SCIFB:
3025 		sci_port->rx_trigger = 48;
3026 		break;
3027 	case PORT_HSCIF:
3028 		sci_port->rx_trigger = 64;
3029 		break;
3030 	case PORT_SCIFA:
3031 		sci_port->rx_trigger = 32;
3032 		break;
3033 	case PORT_SCIF:
3034 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
3035 			/* RX triggering not implemented for this IP */
3036 			sci_port->rx_trigger = 1;
3037 		else
3038 			sci_port->rx_trigger = 8;
3039 		break;
3040 	default:
3041 		sci_port->rx_trigger = 1;
3042 		break;
3043 	}
3044 
3045 	sci_port->rx_fifo_timeout = 0;
3046 	sci_port->hscif_tot = 0;
3047 
3048 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
3049 	 * match the SoC datasheet, this should be investigated. Let platform
3050 	 * data override the sampling rate for now.
3051 	 */
3052 	sci_port->sampling_rate_mask = p->sampling_rate
3053 				     ? SCI_SR(p->sampling_rate)
3054 				     : sci_port->params->sampling_rate_mask;
3055 
3056 	if (!early) {
3057 		ret = sci_init_clocks(sci_port, &dev->dev);
3058 		if (ret < 0)
3059 			return ret;
3060 	}
3061 
3062 	port->type		= p->type;
3063 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3064 	port->fifosize		= sci_port->params->fifosize;
3065 
3066 	if (port->type == PORT_SCI && !dev->dev.of_node) {
3067 		if (sci_port->reg_size >= 0x20)
3068 			port->regshift = 2;
3069 		else
3070 			port->regshift = 1;
3071 	}
3072 
3073 	/*
3074 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3075 	 * for the multi-IRQ ports, which is where we are primarily
3076 	 * concerned with the shutdown path synchronization.
3077 	 *
3078 	 * For the muxed case there's nothing more to do.
3079 	 */
3080 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3081 	port->irqflags		= 0;
3082 
3083 	return 0;
3084 }
3085 
3086 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3087     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3088 static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3089 {
3090 	sci_poll_put_char(port, ch);
3091 }
3092 
3093 /*
3094  *	Print a string to the serial port trying not to disturb
3095  *	any possible real use of the port...
3096  */
3097 static void serial_console_write(struct console *co, const char *s,
3098 				 unsigned count)
3099 {
3100 	struct sci_port *sci_port = &sci_ports[co->index];
3101 	struct uart_port *port = &sci_port->port;
3102 	unsigned short bits, ctrl, ctrl_temp;
3103 	unsigned long flags;
3104 	int locked = 1;
3105 
3106 	if (port->sysrq)
3107 		locked = 0;
3108 	else if (oops_in_progress)
3109 		locked = uart_port_trylock_irqsave(port, &flags);
3110 	else
3111 		uart_port_lock_irqsave(port, &flags);
3112 
3113 	/* first save SCSCR then disable interrupts, keep clock source */
3114 	ctrl = sci_serial_in(port, SCSCR);
3115 	ctrl_temp = SCSCR_RE | SCSCR_TE |
3116 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3117 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3118 	sci_serial_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3119 
3120 	uart_console_write(port, s, count, serial_console_putchar);
3121 
3122 	/* wait until fifo is empty and last bit has been transmitted */
3123 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3124 	while ((sci_serial_in(port, SCxSR) & bits) != bits)
3125 		cpu_relax();
3126 
3127 	/* restore the SCSCR */
3128 	sci_serial_out(port, SCSCR, ctrl);
3129 
3130 	if (locked)
3131 		uart_port_unlock_irqrestore(port, flags);
3132 }
3133 
3134 static int serial_console_setup(struct console *co, char *options)
3135 {
3136 	struct sci_port *sci_port;
3137 	struct uart_port *port;
3138 	int baud = 115200;
3139 	int bits = 8;
3140 	int parity = 'n';
3141 	int flow = 'n';
3142 	int ret;
3143 
3144 	/*
3145 	 * Refuse to handle any bogus ports.
3146 	 */
3147 	if (co->index < 0 || co->index >= SCI_NPORTS)
3148 		return -ENODEV;
3149 
3150 	sci_port = &sci_ports[co->index];
3151 	port = &sci_port->port;
3152 
3153 	/*
3154 	 * Refuse to handle uninitialized ports.
3155 	 */
3156 	if (!port->ops)
3157 		return -ENODEV;
3158 
3159 	ret = sci_remap_port(port);
3160 	if (unlikely(ret != 0))
3161 		return ret;
3162 
3163 	if (options)
3164 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3165 
3166 	return uart_set_options(port, co, baud, parity, bits, flow);
3167 }
3168 
3169 static struct console serial_console = {
3170 	.name		= "ttySC",
3171 	.device		= uart_console_device,
3172 	.write		= serial_console_write,
3173 	.setup		= serial_console_setup,
3174 	.flags		= CON_PRINTBUFFER,
3175 	.index		= -1,
3176 	.data		= &sci_uart_driver,
3177 };
3178 
3179 #ifdef CONFIG_SUPERH
3180 static char early_serial_buf[32];
3181 
3182 static int early_serial_console_setup(struct console *co, char *options)
3183 {
3184 	/*
3185 	 * This early console is always registered using the earlyprintk=
3186 	 * parameter, which does not call add_preferred_console(). Thus
3187 	 * @options is always NULL and the options for this early console
3188 	 * are passed using a custom buffer.
3189 	 */
3190 	WARN_ON(options);
3191 
3192 	return serial_console_setup(co, early_serial_buf);
3193 }
3194 
3195 static struct console early_serial_console = {
3196 	.name           = "early_ttySC",
3197 	.write          = serial_console_write,
3198 	.setup		= early_serial_console_setup,
3199 	.flags          = CON_PRINTBUFFER,
3200 	.index		= -1,
3201 };
3202 
3203 static int sci_probe_earlyprintk(struct platform_device *pdev)
3204 {
3205 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3206 
3207 	if (early_serial_console.data)
3208 		return -EEXIST;
3209 
3210 	early_serial_console.index = pdev->id;
3211 
3212 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3213 
3214 	if (!strstr(early_serial_buf, "keep"))
3215 		early_serial_console.flags |= CON_BOOT;
3216 
3217 	register_console(&early_serial_console);
3218 	return 0;
3219 }
3220 #endif
3221 
3222 #define SCI_CONSOLE	(&serial_console)
3223 
3224 #else
3225 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3226 {
3227 	return -EINVAL;
3228 }
3229 
3230 #define SCI_CONSOLE	NULL
3231 
3232 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3233 
3234 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3235 
3236 static DEFINE_MUTEX(sci_uart_registration_lock);
3237 static struct uart_driver sci_uart_driver = {
3238 	.owner		= THIS_MODULE,
3239 	.driver_name	= "sci",
3240 	.dev_name	= "ttySC",
3241 	.major		= SCI_MAJOR,
3242 	.minor		= SCI_MINOR_START,
3243 	.nr		= SCI_NPORTS,
3244 	.cons		= SCI_CONSOLE,
3245 };
3246 
3247 static void sci_remove(struct platform_device *dev)
3248 {
3249 	struct sci_port *port = platform_get_drvdata(dev);
3250 	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3251 
3252 	sci_ports_in_use &= ~BIT(port->port.line);
3253 	uart_remove_one_port(&sci_uart_driver, &port->port);
3254 
3255 	if (port->port.fifosize > 1)
3256 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3257 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3258 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3259 }
3260 
3261 
3262 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3263 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3264 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3265 
3266 static const struct of_device_id of_sci_match[] __maybe_unused = {
3267 	/* SoC-specific types */
3268 	{
3269 		.compatible = "renesas,scif-r7s72100",
3270 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3271 	},
3272 	{
3273 		.compatible = "renesas,scif-r7s9210",
3274 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3275 	},
3276 	{
3277 		.compatible = "renesas,scif-r9a07g044",
3278 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3279 	},
3280 	{
3281 		.compatible = "renesas,scif-r9a09g057",
3282 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZV2H_SCIF_REGTYPE),
3283 	},
3284 	/* Family-specific types */
3285 	{
3286 		.compatible = "renesas,rcar-gen1-scif",
3287 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3288 	}, {
3289 		.compatible = "renesas,rcar-gen2-scif",
3290 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3291 	}, {
3292 		.compatible = "renesas,rcar-gen3-scif",
3293 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3294 	}, {
3295 		.compatible = "renesas,rcar-gen4-scif",
3296 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3297 	},
3298 	/* Generic types */
3299 	{
3300 		.compatible = "renesas,scif",
3301 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3302 	}, {
3303 		.compatible = "renesas,scifa",
3304 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3305 	}, {
3306 		.compatible = "renesas,scifb",
3307 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3308 	}, {
3309 		.compatible = "renesas,hscif",
3310 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3311 	}, {
3312 		.compatible = "renesas,sci",
3313 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3314 	}, {
3315 		/* Terminator */
3316 	},
3317 };
3318 MODULE_DEVICE_TABLE(of, of_sci_match);
3319 
3320 static void sci_reset_control_assert(void *data)
3321 {
3322 	reset_control_assert(data);
3323 }
3324 
3325 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3326 					  unsigned int *dev_id)
3327 {
3328 	struct device_node *np = pdev->dev.of_node;
3329 	struct reset_control *rstc;
3330 	struct plat_sci_port *p;
3331 	struct sci_port *sp;
3332 	const void *data;
3333 	int id, ret;
3334 
3335 	if (!IS_ENABLED(CONFIG_OF) || !np)
3336 		return ERR_PTR(-EINVAL);
3337 
3338 	data = of_device_get_match_data(&pdev->dev);
3339 
3340 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3341 	if (IS_ERR(rstc))
3342 		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3343 					     "failed to get reset ctrl\n"));
3344 
3345 	ret = reset_control_deassert(rstc);
3346 	if (ret) {
3347 		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3348 		return ERR_PTR(ret);
3349 	}
3350 
3351 	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3352 	if (ret) {
3353 		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3354 			ret);
3355 		return ERR_PTR(ret);
3356 	}
3357 
3358 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3359 	if (!p)
3360 		return ERR_PTR(-ENOMEM);
3361 
3362 	/* Get the line number from the aliases node. */
3363 	id = of_alias_get_id(np, "serial");
3364 	if (id < 0 && ~sci_ports_in_use)
3365 		id = ffz(sci_ports_in_use);
3366 	if (id < 0) {
3367 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3368 		return ERR_PTR(-EINVAL);
3369 	}
3370 	if (id >= ARRAY_SIZE(sci_ports)) {
3371 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3372 		return ERR_PTR(-EINVAL);
3373 	}
3374 
3375 	sp = &sci_ports[id];
3376 	*dev_id = id;
3377 
3378 	p->type = SCI_OF_TYPE(data);
3379 	p->regtype = SCI_OF_REGTYPE(data);
3380 
3381 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3382 
3383 	return p;
3384 }
3385 
3386 static int sci_probe_single(struct platform_device *dev,
3387 				      unsigned int index,
3388 				      struct plat_sci_port *p,
3389 				      struct sci_port *sciport,
3390 				      struct resource *sci_res)
3391 {
3392 	int ret;
3393 
3394 	/* Sanity check */
3395 	if (unlikely(index >= SCI_NPORTS)) {
3396 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3397 			   index+1, SCI_NPORTS);
3398 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3399 		return -EINVAL;
3400 	}
3401 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3402 	if (sci_ports_in_use & BIT(index))
3403 		return -EBUSY;
3404 
3405 	mutex_lock(&sci_uart_registration_lock);
3406 	if (!sci_uart_driver.state) {
3407 		ret = uart_register_driver(&sci_uart_driver);
3408 		if (ret) {
3409 			mutex_unlock(&sci_uart_registration_lock);
3410 			return ret;
3411 		}
3412 	}
3413 	mutex_unlock(&sci_uart_registration_lock);
3414 
3415 	ret = sci_init_single(dev, sciport, index, p, false);
3416 	if (ret)
3417 		return ret;
3418 
3419 	sciport->port.dev = &dev->dev;
3420 	ret = devm_pm_runtime_enable(&dev->dev);
3421 	if (ret)
3422 		return ret;
3423 
3424 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3425 	if (IS_ERR(sciport->gpios))
3426 		return PTR_ERR(sciport->gpios);
3427 
3428 	if (sciport->has_rtscts) {
3429 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3430 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3431 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3432 			return -EINVAL;
3433 		}
3434 		sciport->port.flags |= UPF_HARD_FLOW;
3435 	}
3436 
3437 	if (sci_uart_earlycon && sci_ports[0].port.mapbase == sci_res->start) {
3438 		/*
3439 		 * In case:
3440 		 * - this is the earlycon port (mapped on index 0 in sci_ports[]) and
3441 		 * - it now maps to an alias other than zero and
3442 		 * - the earlycon is still alive (e.g., "earlycon keep_bootcon" is
3443 		 *   available in bootargs)
3444 		 *
3445 		 * we need to avoid disabling clocks and PM domains through the runtime
3446 		 * PM APIs called in __device_attach(). For this, increment the runtime
3447 		 * PM reference counter (the clocks and PM domains were already enabled
3448 		 * by the bootloader). Otherwise the earlycon may access the HW when it
3449 		 * has no clocks enabled leading to failures (infinite loop in
3450 		 * sci_poll_put_char()).
3451 		 */
3452 		pm_runtime_get_noresume(&dev->dev);
3453 
3454 		/*
3455 		 * Skip cleanup the sci_port[0] in early_console_exit(), this
3456 		 * port is the same as the earlycon one.
3457 		 */
3458 		sci_uart_earlycon_dev_probing = true;
3459 	}
3460 
3461 	return uart_add_one_port(&sci_uart_driver, &sciport->port);
3462 }
3463 
3464 static int sci_probe(struct platform_device *dev)
3465 {
3466 	struct plat_sci_port *p;
3467 	struct resource *res;
3468 	struct sci_port *sp;
3469 	unsigned int dev_id;
3470 	int ret;
3471 
3472 	/*
3473 	 * If we've come here via earlyprintk initialization, head off to
3474 	 * the special early probe. We don't have sufficient device state
3475 	 * to make it beyond this yet.
3476 	 */
3477 #ifdef CONFIG_SUPERH
3478 	if (is_sh_early_platform_device(dev))
3479 		return sci_probe_earlyprintk(dev);
3480 #endif
3481 
3482 	if (dev->dev.of_node) {
3483 		p = sci_parse_dt(dev, &dev_id);
3484 		if (IS_ERR(p))
3485 			return PTR_ERR(p);
3486 	} else {
3487 		p = dev->dev.platform_data;
3488 		if (p == NULL) {
3489 			dev_err(&dev->dev, "no platform data supplied\n");
3490 			return -EINVAL;
3491 		}
3492 
3493 		dev_id = dev->id;
3494 	}
3495 
3496 	sp = &sci_ports[dev_id];
3497 
3498 	/*
3499 	 * In case:
3500 	 * - the probed port alias is zero (as the one used by earlycon), and
3501 	 * - the earlycon is still active (e.g., "earlycon keep_bootcon" in
3502 	 *   bootargs)
3503 	 *
3504 	 * defer the probe of this serial. This is a debug scenario and the user
3505 	 * must be aware of it.
3506 	 *
3507 	 * Except when the probed port is the same as the earlycon port.
3508 	 */
3509 
3510 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
3511 	if (!res)
3512 		return -ENODEV;
3513 
3514 	if (sci_uart_earlycon && sp == &sci_ports[0] && sp->port.mapbase != res->start)
3515 		return dev_err_probe(&dev->dev, -EBUSY, "sci_port[0] is used by earlycon!\n");
3516 
3517 	platform_set_drvdata(dev, sp);
3518 
3519 	ret = sci_probe_single(dev, dev_id, p, sp, res);
3520 	if (ret)
3521 		return ret;
3522 
3523 	if (sp->port.fifosize > 1) {
3524 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3525 		if (ret)
3526 			return ret;
3527 	}
3528 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3529 	    sp->port.type == PORT_HSCIF) {
3530 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3531 		if (ret) {
3532 			if (sp->port.fifosize > 1) {
3533 				device_remove_file(&dev->dev,
3534 						   &dev_attr_rx_fifo_trigger);
3535 			}
3536 			return ret;
3537 		}
3538 	}
3539 
3540 #ifdef CONFIG_SH_STANDARD_BIOS
3541 	sh_bios_gdb_detach();
3542 #endif
3543 
3544 	sci_ports_in_use |= BIT(dev_id);
3545 	return 0;
3546 }
3547 
3548 static __maybe_unused int sci_suspend(struct device *dev)
3549 {
3550 	struct sci_port *sport = dev_get_drvdata(dev);
3551 
3552 	if (sport)
3553 		uart_suspend_port(&sci_uart_driver, &sport->port);
3554 
3555 	return 0;
3556 }
3557 
3558 static __maybe_unused int sci_resume(struct device *dev)
3559 {
3560 	struct sci_port *sport = dev_get_drvdata(dev);
3561 
3562 	if (sport)
3563 		uart_resume_port(&sci_uart_driver, &sport->port);
3564 
3565 	return 0;
3566 }
3567 
3568 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3569 
3570 static struct platform_driver sci_driver = {
3571 	.probe		= sci_probe,
3572 	.remove		= sci_remove,
3573 	.driver		= {
3574 		.name	= "sh-sci",
3575 		.pm	= &sci_dev_pm_ops,
3576 		.of_match_table = of_match_ptr(of_sci_match),
3577 	},
3578 };
3579 
3580 static int __init sci_init(void)
3581 {
3582 	pr_info("%s\n", banner);
3583 
3584 	return platform_driver_register(&sci_driver);
3585 }
3586 
3587 static void __exit sci_exit(void)
3588 {
3589 	platform_driver_unregister(&sci_driver);
3590 
3591 	if (sci_uart_driver.state)
3592 		uart_unregister_driver(&sci_uart_driver);
3593 }
3594 
3595 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3596 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3597 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3598 #endif
3599 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3600 static struct plat_sci_port port_cfg;
3601 
3602 static int early_console_exit(struct console *co)
3603 {
3604 	struct sci_port *sci_port = &sci_ports[0];
3605 
3606 	/*
3607 	 * Clean the slot used by earlycon. A new SCI device might
3608 	 * map to this slot.
3609 	 */
3610 	if (!sci_uart_earlycon_dev_probing) {
3611 		memset(sci_port, 0, sizeof(*sci_port));
3612 		sci_uart_earlycon = false;
3613 	}
3614 
3615 	return 0;
3616 }
3617 
3618 static int __init early_console_setup(struct earlycon_device *device,
3619 				      int type)
3620 {
3621 	if (!device->port.membase)
3622 		return -ENODEV;
3623 
3624 	device->port.type = type;
3625 	sci_ports[0].port = device->port;
3626 	port_cfg.type = type;
3627 	sci_ports[0].cfg = &port_cfg;
3628 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3629 	sci_uart_earlycon = true;
3630 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3631 	sci_serial_out(&sci_ports[0].port, SCSCR,
3632 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3633 
3634 	device->con->write = serial_console_write;
3635 	device->con->exit = early_console_exit;
3636 
3637 	return 0;
3638 }
3639 static int __init sci_early_console_setup(struct earlycon_device *device,
3640 					  const char *opt)
3641 {
3642 	return early_console_setup(device, PORT_SCI);
3643 }
3644 static int __init scif_early_console_setup(struct earlycon_device *device,
3645 					  const char *opt)
3646 {
3647 	return early_console_setup(device, PORT_SCIF);
3648 }
3649 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3650 					  const char *opt)
3651 {
3652 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3653 	return early_console_setup(device, PORT_SCIF);
3654 }
3655 
3656 static int __init rzv2hscif_early_console_setup(struct earlycon_device *device,
3657 						const char *opt)
3658 {
3659 	port_cfg.regtype = SCIx_RZV2H_SCIF_REGTYPE;
3660 	return early_console_setup(device, PORT_SCIF);
3661 }
3662 
3663 static int __init scifa_early_console_setup(struct earlycon_device *device,
3664 					  const char *opt)
3665 {
3666 	return early_console_setup(device, PORT_SCIFA);
3667 }
3668 static int __init scifb_early_console_setup(struct earlycon_device *device,
3669 					  const char *opt)
3670 {
3671 	return early_console_setup(device, PORT_SCIFB);
3672 }
3673 static int __init hscif_early_console_setup(struct earlycon_device *device,
3674 					  const char *opt)
3675 {
3676 	return early_console_setup(device, PORT_HSCIF);
3677 }
3678 
3679 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3680 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3681 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3682 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3683 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a09g057", rzv2hscif_early_console_setup);
3684 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3685 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3686 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3687 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3688 
3689 module_init(sci_init);
3690 module_exit(sci_exit);
3691 
3692 MODULE_LICENSE("GPL");
3693 MODULE_ALIAS("platform:sh-sci");
3694 MODULE_AUTHOR("Paul Mundt");
3695 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3696