1 /* 2 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) 3 * 4 * Copyright (C) 2002 - 2011 Paul Mundt 5 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). 6 * 7 * based off of the old drivers/char/sh-sci.c by: 8 * 9 * Copyright (C) 1999, 2000 Niibe Yutaka 10 * Copyright (C) 2000 Sugioka Toshinobu 11 * Modified to support multiple serial ports. Stuart Menefy (May 2000). 12 * Modified to support SecureEdge. David McCullough (2002) 13 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). 14 * Removed SH7300 support (Jul 2007). 15 * 16 * This file is subject to the terms and conditions of the GNU General Public 17 * License. See the file "COPYING" in the main directory of this archive 18 * for more details. 19 */ 20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 21 #define SUPPORT_SYSRQ 22 #endif 23 24 #undef DEBUG 25 26 #include <linux/module.h> 27 #include <linux/errno.h> 28 #include <linux/timer.h> 29 #include <linux/interrupt.h> 30 #include <linux/tty.h> 31 #include <linux/tty_flip.h> 32 #include <linux/serial.h> 33 #include <linux/major.h> 34 #include <linux/string.h> 35 #include <linux/sysrq.h> 36 #include <linux/ioport.h> 37 #include <linux/mm.h> 38 #include <linux/init.h> 39 #include <linux/delay.h> 40 #include <linux/console.h> 41 #include <linux/platform_device.h> 42 #include <linux/serial_sci.h> 43 #include <linux/notifier.h> 44 #include <linux/pm_runtime.h> 45 #include <linux/cpufreq.h> 46 #include <linux/clk.h> 47 #include <linux/ctype.h> 48 #include <linux/err.h> 49 #include <linux/dmaengine.h> 50 #include <linux/dma-mapping.h> 51 #include <linux/scatterlist.h> 52 #include <linux/slab.h> 53 #include <linux/gpio.h> 54 55 #ifdef CONFIG_SUPERH 56 #include <asm/sh_bios.h> 57 #endif 58 59 #include "sh-sci.h" 60 61 struct sci_port { 62 struct uart_port port; 63 64 /* Platform configuration */ 65 struct plat_sci_port *cfg; 66 67 /* Break timer */ 68 struct timer_list break_timer; 69 int break_flag; 70 71 /* Interface clock */ 72 struct clk *iclk; 73 /* Function clock */ 74 struct clk *fclk; 75 76 char *irqstr[SCIx_NR_IRQS]; 77 char *gpiostr[SCIx_NR_FNS]; 78 79 struct dma_chan *chan_tx; 80 struct dma_chan *chan_rx; 81 82 #ifdef CONFIG_SERIAL_SH_SCI_DMA 83 struct dma_async_tx_descriptor *desc_tx; 84 struct dma_async_tx_descriptor *desc_rx[2]; 85 dma_cookie_t cookie_tx; 86 dma_cookie_t cookie_rx[2]; 87 dma_cookie_t active_rx; 88 struct scatterlist sg_tx; 89 unsigned int sg_len_tx; 90 struct scatterlist sg_rx[2]; 91 size_t buf_len_rx; 92 struct sh_dmae_slave param_tx; 93 struct sh_dmae_slave param_rx; 94 struct work_struct work_tx; 95 struct work_struct work_rx; 96 struct timer_list rx_timer; 97 unsigned int rx_timeout; 98 #endif 99 100 struct notifier_block freq_transition; 101 102 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 103 unsigned short saved_smr; 104 unsigned short saved_fcr; 105 unsigned char saved_brr; 106 #endif 107 }; 108 109 /* Function prototypes */ 110 static void sci_start_tx(struct uart_port *port); 111 static void sci_stop_tx(struct uart_port *port); 112 static void sci_start_rx(struct uart_port *port); 113 114 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS 115 116 static struct sci_port sci_ports[SCI_NPORTS]; 117 static struct uart_driver sci_uart_driver; 118 119 static inline struct sci_port * 120 to_sci_port(struct uart_port *uart) 121 { 122 return container_of(uart, struct sci_port, port); 123 } 124 125 struct plat_sci_reg { 126 u8 offset, size; 127 }; 128 129 /* Helper for invalidating specific entries of an inherited map. */ 130 #define sci_reg_invalid { .offset = 0, .size = 0 } 131 132 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = { 133 [SCIx_PROBE_REGTYPE] = { 134 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid, 135 }, 136 137 /* 138 * Common SCI definitions, dependent on the port's regshift 139 * value. 140 */ 141 [SCIx_SCI_REGTYPE] = { 142 [SCSMR] = { 0x00, 8 }, 143 [SCBRR] = { 0x01, 8 }, 144 [SCSCR] = { 0x02, 8 }, 145 [SCxTDR] = { 0x03, 8 }, 146 [SCxSR] = { 0x04, 8 }, 147 [SCxRDR] = { 0x05, 8 }, 148 [SCFCR] = sci_reg_invalid, 149 [SCFDR] = sci_reg_invalid, 150 [SCTFDR] = sci_reg_invalid, 151 [SCRFDR] = sci_reg_invalid, 152 [SCSPTR] = sci_reg_invalid, 153 [SCLSR] = sci_reg_invalid, 154 }, 155 156 /* 157 * Common definitions for legacy IrDA ports, dependent on 158 * regshift value. 159 */ 160 [SCIx_IRDA_REGTYPE] = { 161 [SCSMR] = { 0x00, 8 }, 162 [SCBRR] = { 0x01, 8 }, 163 [SCSCR] = { 0x02, 8 }, 164 [SCxTDR] = { 0x03, 8 }, 165 [SCxSR] = { 0x04, 8 }, 166 [SCxRDR] = { 0x05, 8 }, 167 [SCFCR] = { 0x06, 8 }, 168 [SCFDR] = { 0x07, 16 }, 169 [SCTFDR] = sci_reg_invalid, 170 [SCRFDR] = sci_reg_invalid, 171 [SCSPTR] = sci_reg_invalid, 172 [SCLSR] = sci_reg_invalid, 173 }, 174 175 /* 176 * Common SCIFA definitions. 177 */ 178 [SCIx_SCIFA_REGTYPE] = { 179 [SCSMR] = { 0x00, 16 }, 180 [SCBRR] = { 0x04, 8 }, 181 [SCSCR] = { 0x08, 16 }, 182 [SCxTDR] = { 0x20, 8 }, 183 [SCxSR] = { 0x14, 16 }, 184 [SCxRDR] = { 0x24, 8 }, 185 [SCFCR] = { 0x18, 16 }, 186 [SCFDR] = { 0x1c, 16 }, 187 [SCTFDR] = sci_reg_invalid, 188 [SCRFDR] = sci_reg_invalid, 189 [SCSPTR] = sci_reg_invalid, 190 [SCLSR] = sci_reg_invalid, 191 }, 192 193 /* 194 * Common SCIFB definitions. 195 */ 196 [SCIx_SCIFB_REGTYPE] = { 197 [SCSMR] = { 0x00, 16 }, 198 [SCBRR] = { 0x04, 8 }, 199 [SCSCR] = { 0x08, 16 }, 200 [SCxTDR] = { 0x40, 8 }, 201 [SCxSR] = { 0x14, 16 }, 202 [SCxRDR] = { 0x60, 8 }, 203 [SCFCR] = { 0x18, 16 }, 204 [SCFDR] = { 0x1c, 16 }, 205 [SCTFDR] = sci_reg_invalid, 206 [SCRFDR] = sci_reg_invalid, 207 [SCSPTR] = sci_reg_invalid, 208 [SCLSR] = sci_reg_invalid, 209 }, 210 211 /* 212 * Common SH-2(A) SCIF definitions for ports with FIFO data 213 * count registers. 214 */ 215 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = { 216 [SCSMR] = { 0x00, 16 }, 217 [SCBRR] = { 0x04, 8 }, 218 [SCSCR] = { 0x08, 16 }, 219 [SCxTDR] = { 0x0c, 8 }, 220 [SCxSR] = { 0x10, 16 }, 221 [SCxRDR] = { 0x14, 8 }, 222 [SCFCR] = { 0x18, 16 }, 223 [SCFDR] = { 0x1c, 16 }, 224 [SCTFDR] = sci_reg_invalid, 225 [SCRFDR] = sci_reg_invalid, 226 [SCSPTR] = { 0x20, 16 }, 227 [SCLSR] = { 0x24, 16 }, 228 }, 229 230 /* 231 * Common SH-3 SCIF definitions. 232 */ 233 [SCIx_SH3_SCIF_REGTYPE] = { 234 [SCSMR] = { 0x00, 8 }, 235 [SCBRR] = { 0x02, 8 }, 236 [SCSCR] = { 0x04, 8 }, 237 [SCxTDR] = { 0x06, 8 }, 238 [SCxSR] = { 0x08, 16 }, 239 [SCxRDR] = { 0x0a, 8 }, 240 [SCFCR] = { 0x0c, 8 }, 241 [SCFDR] = { 0x0e, 16 }, 242 [SCTFDR] = sci_reg_invalid, 243 [SCRFDR] = sci_reg_invalid, 244 [SCSPTR] = sci_reg_invalid, 245 [SCLSR] = sci_reg_invalid, 246 }, 247 248 /* 249 * Common SH-4(A) SCIF(B) definitions. 250 */ 251 [SCIx_SH4_SCIF_REGTYPE] = { 252 [SCSMR] = { 0x00, 16 }, 253 [SCBRR] = { 0x04, 8 }, 254 [SCSCR] = { 0x08, 16 }, 255 [SCxTDR] = { 0x0c, 8 }, 256 [SCxSR] = { 0x10, 16 }, 257 [SCxRDR] = { 0x14, 8 }, 258 [SCFCR] = { 0x18, 16 }, 259 [SCFDR] = { 0x1c, 16 }, 260 [SCTFDR] = sci_reg_invalid, 261 [SCRFDR] = sci_reg_invalid, 262 [SCSPTR] = { 0x20, 16 }, 263 [SCLSR] = { 0x24, 16 }, 264 }, 265 266 /* 267 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR 268 * register. 269 */ 270 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = { 271 [SCSMR] = { 0x00, 16 }, 272 [SCBRR] = { 0x04, 8 }, 273 [SCSCR] = { 0x08, 16 }, 274 [SCxTDR] = { 0x0c, 8 }, 275 [SCxSR] = { 0x10, 16 }, 276 [SCxRDR] = { 0x14, 8 }, 277 [SCFCR] = { 0x18, 16 }, 278 [SCFDR] = { 0x1c, 16 }, 279 [SCTFDR] = sci_reg_invalid, 280 [SCRFDR] = sci_reg_invalid, 281 [SCSPTR] = sci_reg_invalid, 282 [SCLSR] = { 0x24, 16 }, 283 }, 284 285 /* 286 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data 287 * count registers. 288 */ 289 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = { 290 [SCSMR] = { 0x00, 16 }, 291 [SCBRR] = { 0x04, 8 }, 292 [SCSCR] = { 0x08, 16 }, 293 [SCxTDR] = { 0x0c, 8 }, 294 [SCxSR] = { 0x10, 16 }, 295 [SCxRDR] = { 0x14, 8 }, 296 [SCFCR] = { 0x18, 16 }, 297 [SCFDR] = { 0x1c, 16 }, 298 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */ 299 [SCRFDR] = { 0x20, 16 }, 300 [SCSPTR] = { 0x24, 16 }, 301 [SCLSR] = { 0x28, 16 }, 302 }, 303 304 /* 305 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR 306 * registers. 307 */ 308 [SCIx_SH7705_SCIF_REGTYPE] = { 309 [SCSMR] = { 0x00, 16 }, 310 [SCBRR] = { 0x04, 8 }, 311 [SCSCR] = { 0x08, 16 }, 312 [SCxTDR] = { 0x20, 8 }, 313 [SCxSR] = { 0x14, 16 }, 314 [SCxRDR] = { 0x24, 8 }, 315 [SCFCR] = { 0x18, 16 }, 316 [SCFDR] = { 0x1c, 16 }, 317 [SCTFDR] = sci_reg_invalid, 318 [SCRFDR] = sci_reg_invalid, 319 [SCSPTR] = sci_reg_invalid, 320 [SCLSR] = sci_reg_invalid, 321 }, 322 }; 323 324 #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset) 325 326 /* 327 * The "offset" here is rather misleading, in that it refers to an enum 328 * value relative to the port mapping rather than the fixed offset 329 * itself, which needs to be manually retrieved from the platform's 330 * register map for the given port. 331 */ 332 static unsigned int sci_serial_in(struct uart_port *p, int offset) 333 { 334 struct plat_sci_reg *reg = sci_getreg(p, offset); 335 336 if (reg->size == 8) 337 return ioread8(p->membase + (reg->offset << p->regshift)); 338 else if (reg->size == 16) 339 return ioread16(p->membase + (reg->offset << p->regshift)); 340 else 341 WARN(1, "Invalid register access\n"); 342 343 return 0; 344 } 345 346 static void sci_serial_out(struct uart_port *p, int offset, int value) 347 { 348 struct plat_sci_reg *reg = sci_getreg(p, offset); 349 350 if (reg->size == 8) 351 iowrite8(value, p->membase + (reg->offset << p->regshift)); 352 else if (reg->size == 16) 353 iowrite16(value, p->membase + (reg->offset << p->regshift)); 354 else 355 WARN(1, "Invalid register access\n"); 356 } 357 358 #define sci_in(up, offset) (up->serial_in(up, offset)) 359 #define sci_out(up, offset, value) (up->serial_out(up, offset, value)) 360 361 static int sci_probe_regmap(struct plat_sci_port *cfg) 362 { 363 switch (cfg->type) { 364 case PORT_SCI: 365 cfg->regtype = SCIx_SCI_REGTYPE; 366 break; 367 case PORT_IRDA: 368 cfg->regtype = SCIx_IRDA_REGTYPE; 369 break; 370 case PORT_SCIFA: 371 cfg->regtype = SCIx_SCIFA_REGTYPE; 372 break; 373 case PORT_SCIFB: 374 cfg->regtype = SCIx_SCIFB_REGTYPE; 375 break; 376 case PORT_SCIF: 377 /* 378 * The SH-4 is a bit of a misnomer here, although that's 379 * where this particular port layout originated. This 380 * configuration (or some slight variation thereof) 381 * remains the dominant model for all SCIFs. 382 */ 383 cfg->regtype = SCIx_SH4_SCIF_REGTYPE; 384 break; 385 default: 386 printk(KERN_ERR "Can't probe register map for given port\n"); 387 return -EINVAL; 388 } 389 390 return 0; 391 } 392 393 static void sci_port_enable(struct sci_port *sci_port) 394 { 395 if (!sci_port->port.dev) 396 return; 397 398 pm_runtime_get_sync(sci_port->port.dev); 399 400 clk_enable(sci_port->iclk); 401 sci_port->port.uartclk = clk_get_rate(sci_port->iclk); 402 clk_enable(sci_port->fclk); 403 } 404 405 static void sci_port_disable(struct sci_port *sci_port) 406 { 407 if (!sci_port->port.dev) 408 return; 409 410 clk_disable(sci_port->fclk); 411 clk_disable(sci_port->iclk); 412 413 pm_runtime_put_sync(sci_port->port.dev); 414 } 415 416 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) 417 418 #ifdef CONFIG_CONSOLE_POLL 419 static int sci_poll_get_char(struct uart_port *port) 420 { 421 unsigned short status; 422 int c; 423 424 do { 425 status = sci_in(port, SCxSR); 426 if (status & SCxSR_ERRORS(port)) { 427 sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); 428 continue; 429 } 430 break; 431 } while (1); 432 433 if (!(status & SCxSR_RDxF(port))) 434 return NO_POLL_CHAR; 435 436 c = sci_in(port, SCxRDR); 437 438 /* Dummy read */ 439 sci_in(port, SCxSR); 440 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 441 442 return c; 443 } 444 #endif 445 446 static void sci_poll_put_char(struct uart_port *port, unsigned char c) 447 { 448 unsigned short status; 449 450 do { 451 status = sci_in(port, SCxSR); 452 } while (!(status & SCxSR_TDxE(port))); 453 454 sci_out(port, SCxTDR, c); 455 sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); 456 } 457 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */ 458 459 static void sci_init_pins(struct uart_port *port, unsigned int cflag) 460 { 461 struct sci_port *s = to_sci_port(port); 462 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR; 463 464 /* 465 * Use port-specific handler if provided. 466 */ 467 if (s->cfg->ops && s->cfg->ops->init_pins) { 468 s->cfg->ops->init_pins(port, cflag); 469 return; 470 } 471 472 /* 473 * For the generic path SCSPTR is necessary. Bail out if that's 474 * unavailable, too. 475 */ 476 if (!reg->size) 477 return; 478 479 if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) && 480 ((!(cflag & CRTSCTS)))) { 481 unsigned short status; 482 483 status = sci_in(port, SCSPTR); 484 status &= ~SCSPTR_CTSIO; 485 status |= SCSPTR_RTSIO; 486 sci_out(port, SCSPTR, status); /* Set RTS = 1 */ 487 } 488 } 489 490 static int sci_txfill(struct uart_port *port) 491 { 492 struct plat_sci_reg *reg; 493 494 reg = sci_getreg(port, SCTFDR); 495 if (reg->size) 496 return sci_in(port, SCTFDR) & 0xff; 497 498 reg = sci_getreg(port, SCFDR); 499 if (reg->size) 500 return sci_in(port, SCFDR) >> 8; 501 502 return !(sci_in(port, SCxSR) & SCI_TDRE); 503 } 504 505 static int sci_txroom(struct uart_port *port) 506 { 507 return port->fifosize - sci_txfill(port); 508 } 509 510 static int sci_rxfill(struct uart_port *port) 511 { 512 struct plat_sci_reg *reg; 513 514 reg = sci_getreg(port, SCRFDR); 515 if (reg->size) 516 return sci_in(port, SCRFDR) & 0xff; 517 518 reg = sci_getreg(port, SCFDR); 519 if (reg->size) 520 return sci_in(port, SCFDR) & ((port->fifosize << 1) - 1); 521 522 return (sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; 523 } 524 525 /* 526 * SCI helper for checking the state of the muxed port/RXD pins. 527 */ 528 static inline int sci_rxd_in(struct uart_port *port) 529 { 530 struct sci_port *s = to_sci_port(port); 531 532 if (s->cfg->port_reg <= 0) 533 return 1; 534 535 return !!__raw_readb(s->cfg->port_reg); 536 } 537 538 /* ********************************************************************** * 539 * the interrupt related routines * 540 * ********************************************************************** */ 541 542 static void sci_transmit_chars(struct uart_port *port) 543 { 544 struct circ_buf *xmit = &port->state->xmit; 545 unsigned int stopped = uart_tx_stopped(port); 546 unsigned short status; 547 unsigned short ctrl; 548 int count; 549 550 status = sci_in(port, SCxSR); 551 if (!(status & SCxSR_TDxE(port))) { 552 ctrl = sci_in(port, SCSCR); 553 if (uart_circ_empty(xmit)) 554 ctrl &= ~SCSCR_TIE; 555 else 556 ctrl |= SCSCR_TIE; 557 sci_out(port, SCSCR, ctrl); 558 return; 559 } 560 561 count = sci_txroom(port); 562 563 do { 564 unsigned char c; 565 566 if (port->x_char) { 567 c = port->x_char; 568 port->x_char = 0; 569 } else if (!uart_circ_empty(xmit) && !stopped) { 570 c = xmit->buf[xmit->tail]; 571 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 572 } else { 573 break; 574 } 575 576 sci_out(port, SCxTDR, c); 577 578 port->icount.tx++; 579 } while (--count > 0); 580 581 sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); 582 583 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 584 uart_write_wakeup(port); 585 if (uart_circ_empty(xmit)) { 586 sci_stop_tx(port); 587 } else { 588 ctrl = sci_in(port, SCSCR); 589 590 if (port->type != PORT_SCI) { 591 sci_in(port, SCxSR); /* Dummy read */ 592 sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); 593 } 594 595 ctrl |= SCSCR_TIE; 596 sci_out(port, SCSCR, ctrl); 597 } 598 } 599 600 /* On SH3, SCIF may read end-of-break as a space->mark char */ 601 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); }) 602 603 static void sci_receive_chars(struct uart_port *port) 604 { 605 struct sci_port *sci_port = to_sci_port(port); 606 struct tty_struct *tty = port->state->port.tty; 607 int i, count, copied = 0; 608 unsigned short status; 609 unsigned char flag; 610 611 status = sci_in(port, SCxSR); 612 if (!(status & SCxSR_RDxF(port))) 613 return; 614 615 while (1) { 616 /* Don't copy more bytes than there is room for in the buffer */ 617 count = tty_buffer_request_room(tty, sci_rxfill(port)); 618 619 /* If for any reason we can't copy more data, we're done! */ 620 if (count == 0) 621 break; 622 623 if (port->type == PORT_SCI) { 624 char c = sci_in(port, SCxRDR); 625 if (uart_handle_sysrq_char(port, c) || 626 sci_port->break_flag) 627 count = 0; 628 else 629 tty_insert_flip_char(tty, c, TTY_NORMAL); 630 } else { 631 for (i = 0; i < count; i++) { 632 char c = sci_in(port, SCxRDR); 633 634 status = sci_in(port, SCxSR); 635 #if defined(CONFIG_CPU_SH3) 636 /* Skip "chars" during break */ 637 if (sci_port->break_flag) { 638 if ((c == 0) && 639 (status & SCxSR_FER(port))) { 640 count--; i--; 641 continue; 642 } 643 644 /* Nonzero => end-of-break */ 645 dev_dbg(port->dev, "debounce<%02x>\n", c); 646 sci_port->break_flag = 0; 647 648 if (STEPFN(c)) { 649 count--; i--; 650 continue; 651 } 652 } 653 #endif /* CONFIG_CPU_SH3 */ 654 if (uart_handle_sysrq_char(port, c)) { 655 count--; i--; 656 continue; 657 } 658 659 /* Store data and status */ 660 if (status & SCxSR_FER(port)) { 661 flag = TTY_FRAME; 662 port->icount.frame++; 663 dev_notice(port->dev, "frame error\n"); 664 } else if (status & SCxSR_PER(port)) { 665 flag = TTY_PARITY; 666 port->icount.parity++; 667 dev_notice(port->dev, "parity error\n"); 668 } else 669 flag = TTY_NORMAL; 670 671 tty_insert_flip_char(tty, c, flag); 672 } 673 } 674 675 sci_in(port, SCxSR); /* dummy read */ 676 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 677 678 copied += count; 679 port->icount.rx += count; 680 } 681 682 if (copied) { 683 /* Tell the rest of the system the news. New characters! */ 684 tty_flip_buffer_push(tty); 685 } else { 686 sci_in(port, SCxSR); /* dummy read */ 687 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 688 } 689 } 690 691 #define SCI_BREAK_JIFFIES (HZ/20) 692 693 /* 694 * The sci generates interrupts during the break, 695 * 1 per millisecond or so during the break period, for 9600 baud. 696 * So dont bother disabling interrupts. 697 * But dont want more than 1 break event. 698 * Use a kernel timer to periodically poll the rx line until 699 * the break is finished. 700 */ 701 static inline void sci_schedule_break_timer(struct sci_port *port) 702 { 703 mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES); 704 } 705 706 /* Ensure that two consecutive samples find the break over. */ 707 static void sci_break_timer(unsigned long data) 708 { 709 struct sci_port *port = (struct sci_port *)data; 710 711 sci_port_enable(port); 712 713 if (sci_rxd_in(&port->port) == 0) { 714 port->break_flag = 1; 715 sci_schedule_break_timer(port); 716 } else if (port->break_flag == 1) { 717 /* break is over. */ 718 port->break_flag = 2; 719 sci_schedule_break_timer(port); 720 } else 721 port->break_flag = 0; 722 723 sci_port_disable(port); 724 } 725 726 static int sci_handle_errors(struct uart_port *port) 727 { 728 int copied = 0; 729 unsigned short status = sci_in(port, SCxSR); 730 struct tty_struct *tty = port->state->port.tty; 731 struct sci_port *s = to_sci_port(port); 732 733 /* 734 * Handle overruns, if supported. 735 */ 736 if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) { 737 if (status & (1 << s->cfg->overrun_bit)) { 738 port->icount.overrun++; 739 740 /* overrun error */ 741 if (tty_insert_flip_char(tty, 0, TTY_OVERRUN)) 742 copied++; 743 744 dev_notice(port->dev, "overrun error"); 745 } 746 } 747 748 if (status & SCxSR_FER(port)) { 749 if (sci_rxd_in(port) == 0) { 750 /* Notify of BREAK */ 751 struct sci_port *sci_port = to_sci_port(port); 752 753 if (!sci_port->break_flag) { 754 port->icount.brk++; 755 756 sci_port->break_flag = 1; 757 sci_schedule_break_timer(sci_port); 758 759 /* Do sysrq handling. */ 760 if (uart_handle_break(port)) 761 return 0; 762 763 dev_dbg(port->dev, "BREAK detected\n"); 764 765 if (tty_insert_flip_char(tty, 0, TTY_BREAK)) 766 copied++; 767 } 768 769 } else { 770 /* frame error */ 771 port->icount.frame++; 772 773 if (tty_insert_flip_char(tty, 0, TTY_FRAME)) 774 copied++; 775 776 dev_notice(port->dev, "frame error\n"); 777 } 778 } 779 780 if (status & SCxSR_PER(port)) { 781 /* parity error */ 782 port->icount.parity++; 783 784 if (tty_insert_flip_char(tty, 0, TTY_PARITY)) 785 copied++; 786 787 dev_notice(port->dev, "parity error"); 788 } 789 790 if (copied) 791 tty_flip_buffer_push(tty); 792 793 return copied; 794 } 795 796 static int sci_handle_fifo_overrun(struct uart_port *port) 797 { 798 struct tty_struct *tty = port->state->port.tty; 799 struct sci_port *s = to_sci_port(port); 800 struct plat_sci_reg *reg; 801 int copied = 0; 802 803 reg = sci_getreg(port, SCLSR); 804 if (!reg->size) 805 return 0; 806 807 if ((sci_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) { 808 sci_out(port, SCLSR, 0); 809 810 port->icount.overrun++; 811 812 tty_insert_flip_char(tty, 0, TTY_OVERRUN); 813 tty_flip_buffer_push(tty); 814 815 dev_notice(port->dev, "overrun error\n"); 816 copied++; 817 } 818 819 return copied; 820 } 821 822 static int sci_handle_breaks(struct uart_port *port) 823 { 824 int copied = 0; 825 unsigned short status = sci_in(port, SCxSR); 826 struct tty_struct *tty = port->state->port.tty; 827 struct sci_port *s = to_sci_port(port); 828 829 if (uart_handle_break(port)) 830 return 0; 831 832 if (!s->break_flag && status & SCxSR_BRK(port)) { 833 #if defined(CONFIG_CPU_SH3) 834 /* Debounce break */ 835 s->break_flag = 1; 836 #endif 837 838 port->icount.brk++; 839 840 /* Notify of BREAK */ 841 if (tty_insert_flip_char(tty, 0, TTY_BREAK)) 842 copied++; 843 844 dev_dbg(port->dev, "BREAK detected\n"); 845 } 846 847 if (copied) 848 tty_flip_buffer_push(tty); 849 850 copied += sci_handle_fifo_overrun(port); 851 852 return copied; 853 } 854 855 static irqreturn_t sci_rx_interrupt(int irq, void *ptr) 856 { 857 #ifdef CONFIG_SERIAL_SH_SCI_DMA 858 struct uart_port *port = ptr; 859 struct sci_port *s = to_sci_port(port); 860 861 if (s->chan_rx) { 862 u16 scr = sci_in(port, SCSCR); 863 u16 ssr = sci_in(port, SCxSR); 864 865 /* Disable future Rx interrupts */ 866 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 867 disable_irq_nosync(irq); 868 scr |= 0x4000; 869 } else { 870 scr &= ~SCSCR_RIE; 871 } 872 sci_out(port, SCSCR, scr); 873 /* Clear current interrupt */ 874 sci_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port))); 875 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n", 876 jiffies, s->rx_timeout); 877 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 878 879 return IRQ_HANDLED; 880 } 881 #endif 882 883 /* I think sci_receive_chars has to be called irrespective 884 * of whether the I_IXOFF is set, otherwise, how is the interrupt 885 * to be disabled? 886 */ 887 sci_receive_chars(ptr); 888 889 return IRQ_HANDLED; 890 } 891 892 static irqreturn_t sci_tx_interrupt(int irq, void *ptr) 893 { 894 struct uart_port *port = ptr; 895 unsigned long flags; 896 897 spin_lock_irqsave(&port->lock, flags); 898 sci_transmit_chars(port); 899 spin_unlock_irqrestore(&port->lock, flags); 900 901 return IRQ_HANDLED; 902 } 903 904 static irqreturn_t sci_er_interrupt(int irq, void *ptr) 905 { 906 struct uart_port *port = ptr; 907 908 /* Handle errors */ 909 if (port->type == PORT_SCI) { 910 if (sci_handle_errors(port)) { 911 /* discard character in rx buffer */ 912 sci_in(port, SCxSR); 913 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 914 } 915 } else { 916 sci_handle_fifo_overrun(port); 917 sci_rx_interrupt(irq, ptr); 918 } 919 920 sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); 921 922 /* Kick the transmission */ 923 sci_tx_interrupt(irq, ptr); 924 925 return IRQ_HANDLED; 926 } 927 928 static irqreturn_t sci_br_interrupt(int irq, void *ptr) 929 { 930 struct uart_port *port = ptr; 931 932 /* Handle BREAKs */ 933 sci_handle_breaks(port); 934 sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port)); 935 936 return IRQ_HANDLED; 937 } 938 939 static inline unsigned long port_rx_irq_mask(struct uart_port *port) 940 { 941 /* 942 * Not all ports (such as SCIFA) will support REIE. Rather than 943 * special-casing the port type, we check the port initialization 944 * IRQ enable mask to see whether the IRQ is desired at all. If 945 * it's unset, it's logically inferred that there's no point in 946 * testing for it. 947 */ 948 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE); 949 } 950 951 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) 952 { 953 unsigned short ssr_status, scr_status, err_enabled; 954 struct uart_port *port = ptr; 955 struct sci_port *s = to_sci_port(port); 956 irqreturn_t ret = IRQ_NONE; 957 958 ssr_status = sci_in(port, SCxSR); 959 scr_status = sci_in(port, SCSCR); 960 err_enabled = scr_status & port_rx_irq_mask(port); 961 962 /* Tx Interrupt */ 963 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) && 964 !s->chan_tx) 965 ret = sci_tx_interrupt(irq, ptr); 966 967 /* 968 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / 969 * DR flags 970 */ 971 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && 972 (scr_status & SCSCR_RIE)) 973 ret = sci_rx_interrupt(irq, ptr); 974 975 /* Error Interrupt */ 976 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) 977 ret = sci_er_interrupt(irq, ptr); 978 979 /* Break Interrupt */ 980 if ((ssr_status & SCxSR_BRK(port)) && err_enabled) 981 ret = sci_br_interrupt(irq, ptr); 982 983 return ret; 984 } 985 986 /* 987 * Here we define a transition notifier so that we can update all of our 988 * ports' baud rate when the peripheral clock changes. 989 */ 990 static int sci_notifier(struct notifier_block *self, 991 unsigned long phase, void *p) 992 { 993 struct sci_port *sci_port; 994 unsigned long flags; 995 996 sci_port = container_of(self, struct sci_port, freq_transition); 997 998 if ((phase == CPUFREQ_POSTCHANGE) || 999 (phase == CPUFREQ_RESUMECHANGE)) { 1000 struct uart_port *port = &sci_port->port; 1001 1002 spin_lock_irqsave(&port->lock, flags); 1003 port->uartclk = clk_get_rate(sci_port->iclk); 1004 spin_unlock_irqrestore(&port->lock, flags); 1005 } 1006 1007 return NOTIFY_OK; 1008 } 1009 1010 static struct sci_irq_desc { 1011 const char *desc; 1012 irq_handler_t handler; 1013 } sci_irq_desc[] = { 1014 /* 1015 * Split out handlers, the default case. 1016 */ 1017 [SCIx_ERI_IRQ] = { 1018 .desc = "rx err", 1019 .handler = sci_er_interrupt, 1020 }, 1021 1022 [SCIx_RXI_IRQ] = { 1023 .desc = "rx full", 1024 .handler = sci_rx_interrupt, 1025 }, 1026 1027 [SCIx_TXI_IRQ] = { 1028 .desc = "tx empty", 1029 .handler = sci_tx_interrupt, 1030 }, 1031 1032 [SCIx_BRI_IRQ] = { 1033 .desc = "break", 1034 .handler = sci_br_interrupt, 1035 }, 1036 1037 /* 1038 * Special muxed handler. 1039 */ 1040 [SCIx_MUX_IRQ] = { 1041 .desc = "mux", 1042 .handler = sci_mpxed_interrupt, 1043 }, 1044 }; 1045 1046 static int sci_request_irq(struct sci_port *port) 1047 { 1048 struct uart_port *up = &port->port; 1049 int i, j, ret = 0; 1050 1051 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) { 1052 struct sci_irq_desc *desc; 1053 unsigned int irq; 1054 1055 if (SCIx_IRQ_IS_MUXED(port)) { 1056 i = SCIx_MUX_IRQ; 1057 irq = up->irq; 1058 } else 1059 irq = port->cfg->irqs[i]; 1060 1061 desc = sci_irq_desc + i; 1062 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s", 1063 dev_name(up->dev), desc->desc); 1064 if (!port->irqstr[j]) { 1065 dev_err(up->dev, "Failed to allocate %s IRQ string\n", 1066 desc->desc); 1067 goto out_nomem; 1068 } 1069 1070 ret = request_irq(irq, desc->handler, up->irqflags, 1071 port->irqstr[j], port); 1072 if (unlikely(ret)) { 1073 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc); 1074 goto out_noirq; 1075 } 1076 } 1077 1078 return 0; 1079 1080 out_noirq: 1081 while (--i >= 0) 1082 free_irq(port->cfg->irqs[i], port); 1083 1084 out_nomem: 1085 while (--j >= 0) 1086 kfree(port->irqstr[j]); 1087 1088 return ret; 1089 } 1090 1091 static void sci_free_irq(struct sci_port *port) 1092 { 1093 int i; 1094 1095 /* 1096 * Intentionally in reverse order so we iterate over the muxed 1097 * IRQ first. 1098 */ 1099 for (i = 0; i < SCIx_NR_IRQS; i++) { 1100 free_irq(port->cfg->irqs[i], port); 1101 kfree(port->irqstr[i]); 1102 1103 if (SCIx_IRQ_IS_MUXED(port)) { 1104 /* If there's only one IRQ, we're done. */ 1105 return; 1106 } 1107 } 1108 } 1109 1110 static const char *sci_gpio_names[SCIx_NR_FNS] = { 1111 "sck", "rxd", "txd", "cts", "rts", 1112 }; 1113 1114 static const char *sci_gpio_str(unsigned int index) 1115 { 1116 return sci_gpio_names[index]; 1117 } 1118 1119 static void __devinit sci_init_gpios(struct sci_port *port) 1120 { 1121 struct uart_port *up = &port->port; 1122 int i; 1123 1124 if (!port->cfg) 1125 return; 1126 1127 for (i = 0; i < SCIx_NR_FNS; i++) { 1128 const char *desc; 1129 int ret; 1130 1131 if (!port->cfg->gpios[i]) 1132 continue; 1133 1134 desc = sci_gpio_str(i); 1135 1136 port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s", 1137 dev_name(up->dev), desc); 1138 1139 /* 1140 * If we've failed the allocation, we can still continue 1141 * on with a NULL string. 1142 */ 1143 if (!port->gpiostr[i]) 1144 dev_notice(up->dev, "%s string allocation failure\n", 1145 desc); 1146 1147 ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]); 1148 if (unlikely(ret != 0)) { 1149 dev_notice(up->dev, "failed %s gpio request\n", desc); 1150 1151 /* 1152 * If we can't get the GPIO for whatever reason, 1153 * no point in keeping the verbose string around. 1154 */ 1155 kfree(port->gpiostr[i]); 1156 } 1157 } 1158 } 1159 1160 static void sci_free_gpios(struct sci_port *port) 1161 { 1162 int i; 1163 1164 for (i = 0; i < SCIx_NR_FNS; i++) 1165 if (port->cfg->gpios[i]) { 1166 gpio_free(port->cfg->gpios[i]); 1167 kfree(port->gpiostr[i]); 1168 } 1169 } 1170 1171 static unsigned int sci_tx_empty(struct uart_port *port) 1172 { 1173 unsigned short status = sci_in(port, SCxSR); 1174 unsigned short in_tx_fifo = sci_txfill(port); 1175 1176 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; 1177 } 1178 1179 /* 1180 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally 1181 * CTS/RTS is supported in hardware by at least one port and controlled 1182 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently 1183 * handled via the ->init_pins() op, which is a bit of a one-way street, 1184 * lacking any ability to defer pin control -- this will later be 1185 * converted over to the GPIO framework). 1186 * 1187 * Other modes (such as loopback) are supported generically on certain 1188 * port types, but not others. For these it's sufficient to test for the 1189 * existence of the support register and simply ignore the port type. 1190 */ 1191 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) 1192 { 1193 if (mctrl & TIOCM_LOOP) { 1194 struct plat_sci_reg *reg; 1195 1196 /* 1197 * Standard loopback mode for SCFCR ports. 1198 */ 1199 reg = sci_getreg(port, SCFCR); 1200 if (reg->size) 1201 sci_out(port, SCFCR, sci_in(port, SCFCR) | 1); 1202 } 1203 } 1204 1205 static unsigned int sci_get_mctrl(struct uart_port *port) 1206 { 1207 /* 1208 * CTS/RTS is handled in hardware when supported, while nothing 1209 * else is wired up. Keep it simple and simply assert DSR/CAR. 1210 */ 1211 return TIOCM_DSR | TIOCM_CAR; 1212 } 1213 1214 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1215 static void sci_dma_tx_complete(void *arg) 1216 { 1217 struct sci_port *s = arg; 1218 struct uart_port *port = &s->port; 1219 struct circ_buf *xmit = &port->state->xmit; 1220 unsigned long flags; 1221 1222 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1223 1224 spin_lock_irqsave(&port->lock, flags); 1225 1226 xmit->tail += sg_dma_len(&s->sg_tx); 1227 xmit->tail &= UART_XMIT_SIZE - 1; 1228 1229 port->icount.tx += sg_dma_len(&s->sg_tx); 1230 1231 async_tx_ack(s->desc_tx); 1232 s->cookie_tx = -EINVAL; 1233 s->desc_tx = NULL; 1234 1235 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1236 uart_write_wakeup(port); 1237 1238 if (!uart_circ_empty(xmit)) { 1239 schedule_work(&s->work_tx); 1240 } else if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1241 u16 ctrl = sci_in(port, SCSCR); 1242 sci_out(port, SCSCR, ctrl & ~SCSCR_TIE); 1243 } 1244 1245 spin_unlock_irqrestore(&port->lock, flags); 1246 } 1247 1248 /* Locking: called with port lock held */ 1249 static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty, 1250 size_t count) 1251 { 1252 struct uart_port *port = &s->port; 1253 int i, active, room; 1254 1255 room = tty_buffer_request_room(tty, count); 1256 1257 if (s->active_rx == s->cookie_rx[0]) { 1258 active = 0; 1259 } else if (s->active_rx == s->cookie_rx[1]) { 1260 active = 1; 1261 } else { 1262 dev_err(port->dev, "cookie %d not found!\n", s->active_rx); 1263 return 0; 1264 } 1265 1266 if (room < count) 1267 dev_warn(port->dev, "Rx overrun: dropping %u bytes\n", 1268 count - room); 1269 if (!room) 1270 return room; 1271 1272 for (i = 0; i < room; i++) 1273 tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i], 1274 TTY_NORMAL); 1275 1276 port->icount.rx += room; 1277 1278 return room; 1279 } 1280 1281 static void sci_dma_rx_complete(void *arg) 1282 { 1283 struct sci_port *s = arg; 1284 struct uart_port *port = &s->port; 1285 struct tty_struct *tty = port->state->port.tty; 1286 unsigned long flags; 1287 int count; 1288 1289 dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx); 1290 1291 spin_lock_irqsave(&port->lock, flags); 1292 1293 count = sci_dma_rx_push(s, tty, s->buf_len_rx); 1294 1295 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 1296 1297 spin_unlock_irqrestore(&port->lock, flags); 1298 1299 if (count) 1300 tty_flip_buffer_push(tty); 1301 1302 schedule_work(&s->work_rx); 1303 } 1304 1305 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio) 1306 { 1307 struct dma_chan *chan = s->chan_rx; 1308 struct uart_port *port = &s->port; 1309 1310 s->chan_rx = NULL; 1311 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL; 1312 dma_release_channel(chan); 1313 if (sg_dma_address(&s->sg_rx[0])) 1314 dma_free_coherent(port->dev, s->buf_len_rx * 2, 1315 sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0])); 1316 if (enable_pio) 1317 sci_start_rx(port); 1318 } 1319 1320 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio) 1321 { 1322 struct dma_chan *chan = s->chan_tx; 1323 struct uart_port *port = &s->port; 1324 1325 s->chan_tx = NULL; 1326 s->cookie_tx = -EINVAL; 1327 dma_release_channel(chan); 1328 if (enable_pio) 1329 sci_start_tx(port); 1330 } 1331 1332 static void sci_submit_rx(struct sci_port *s) 1333 { 1334 struct dma_chan *chan = s->chan_rx; 1335 int i; 1336 1337 for (i = 0; i < 2; i++) { 1338 struct scatterlist *sg = &s->sg_rx[i]; 1339 struct dma_async_tx_descriptor *desc; 1340 1341 desc = chan->device->device_prep_slave_sg(chan, 1342 sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1343 1344 if (desc) { 1345 s->desc_rx[i] = desc; 1346 desc->callback = sci_dma_rx_complete; 1347 desc->callback_param = s; 1348 s->cookie_rx[i] = desc->tx_submit(desc); 1349 } 1350 1351 if (!desc || s->cookie_rx[i] < 0) { 1352 if (i) { 1353 async_tx_ack(s->desc_rx[0]); 1354 s->cookie_rx[0] = -EINVAL; 1355 } 1356 if (desc) { 1357 async_tx_ack(desc); 1358 s->cookie_rx[i] = -EINVAL; 1359 } 1360 dev_warn(s->port.dev, 1361 "failed to re-start DMA, using PIO\n"); 1362 sci_rx_dma_release(s, true); 1363 return; 1364 } 1365 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__, 1366 s->cookie_rx[i], i); 1367 } 1368 1369 s->active_rx = s->cookie_rx[0]; 1370 1371 dma_async_issue_pending(chan); 1372 } 1373 1374 static void work_fn_rx(struct work_struct *work) 1375 { 1376 struct sci_port *s = container_of(work, struct sci_port, work_rx); 1377 struct uart_port *port = &s->port; 1378 struct dma_async_tx_descriptor *desc; 1379 int new; 1380 1381 if (s->active_rx == s->cookie_rx[0]) { 1382 new = 0; 1383 } else if (s->active_rx == s->cookie_rx[1]) { 1384 new = 1; 1385 } else { 1386 dev_err(port->dev, "cookie %d not found!\n", s->active_rx); 1387 return; 1388 } 1389 desc = s->desc_rx[new]; 1390 1391 if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) != 1392 DMA_SUCCESS) { 1393 /* Handle incomplete DMA receive */ 1394 struct tty_struct *tty = port->state->port.tty; 1395 struct dma_chan *chan = s->chan_rx; 1396 struct sh_desc *sh_desc = container_of(desc, struct sh_desc, 1397 async_tx); 1398 unsigned long flags; 1399 int count; 1400 1401 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); 1402 dev_dbg(port->dev, "Read %u bytes with cookie %d\n", 1403 sh_desc->partial, sh_desc->cookie); 1404 1405 spin_lock_irqsave(&port->lock, flags); 1406 count = sci_dma_rx_push(s, tty, sh_desc->partial); 1407 spin_unlock_irqrestore(&port->lock, flags); 1408 1409 if (count) 1410 tty_flip_buffer_push(tty); 1411 1412 sci_submit_rx(s); 1413 1414 return; 1415 } 1416 1417 s->cookie_rx[new] = desc->tx_submit(desc); 1418 if (s->cookie_rx[new] < 0) { 1419 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); 1420 sci_rx_dma_release(s, true); 1421 return; 1422 } 1423 1424 s->active_rx = s->cookie_rx[!new]; 1425 1426 dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__, 1427 s->cookie_rx[new], new, s->active_rx); 1428 } 1429 1430 static void work_fn_tx(struct work_struct *work) 1431 { 1432 struct sci_port *s = container_of(work, struct sci_port, work_tx); 1433 struct dma_async_tx_descriptor *desc; 1434 struct dma_chan *chan = s->chan_tx; 1435 struct uart_port *port = &s->port; 1436 struct circ_buf *xmit = &port->state->xmit; 1437 struct scatterlist *sg = &s->sg_tx; 1438 1439 /* 1440 * DMA is idle now. 1441 * Port xmit buffer is already mapped, and it is one page... Just adjust 1442 * offsets and lengths. Since it is a circular buffer, we have to 1443 * transmit till the end, and then the rest. Take the port lock to get a 1444 * consistent xmit buffer state. 1445 */ 1446 spin_lock_irq(&port->lock); 1447 sg->offset = xmit->tail & (UART_XMIT_SIZE - 1); 1448 sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) + 1449 sg->offset; 1450 sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE), 1451 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); 1452 spin_unlock_irq(&port->lock); 1453 1454 BUG_ON(!sg_dma_len(sg)); 1455 1456 desc = chan->device->device_prep_slave_sg(chan, 1457 sg, s->sg_len_tx, DMA_MEM_TO_DEV, 1458 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1459 if (!desc) { 1460 /* switch to PIO */ 1461 sci_tx_dma_release(s, true); 1462 return; 1463 } 1464 1465 dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE); 1466 1467 spin_lock_irq(&port->lock); 1468 s->desc_tx = desc; 1469 desc->callback = sci_dma_tx_complete; 1470 desc->callback_param = s; 1471 spin_unlock_irq(&port->lock); 1472 s->cookie_tx = desc->tx_submit(desc); 1473 if (s->cookie_tx < 0) { 1474 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); 1475 /* switch to PIO */ 1476 sci_tx_dma_release(s, true); 1477 return; 1478 } 1479 1480 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__, 1481 xmit->buf, xmit->tail, xmit->head, s->cookie_tx); 1482 1483 dma_async_issue_pending(chan); 1484 } 1485 #endif 1486 1487 static void sci_start_tx(struct uart_port *port) 1488 { 1489 struct sci_port *s = to_sci_port(port); 1490 unsigned short ctrl; 1491 1492 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1493 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1494 u16 new, scr = sci_in(port, SCSCR); 1495 if (s->chan_tx) 1496 new = scr | 0x8000; 1497 else 1498 new = scr & ~0x8000; 1499 if (new != scr) 1500 sci_out(port, SCSCR, new); 1501 } 1502 1503 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) && 1504 s->cookie_tx < 0) 1505 schedule_work(&s->work_tx); 1506 #endif 1507 1508 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1509 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ 1510 ctrl = sci_in(port, SCSCR); 1511 sci_out(port, SCSCR, ctrl | SCSCR_TIE); 1512 } 1513 } 1514 1515 static void sci_stop_tx(struct uart_port *port) 1516 { 1517 unsigned short ctrl; 1518 1519 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ 1520 ctrl = sci_in(port, SCSCR); 1521 1522 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1523 ctrl &= ~0x8000; 1524 1525 ctrl &= ~SCSCR_TIE; 1526 1527 sci_out(port, SCSCR, ctrl); 1528 } 1529 1530 static void sci_start_rx(struct uart_port *port) 1531 { 1532 unsigned short ctrl; 1533 1534 ctrl = sci_in(port, SCSCR) | port_rx_irq_mask(port); 1535 1536 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1537 ctrl &= ~0x4000; 1538 1539 sci_out(port, SCSCR, ctrl); 1540 } 1541 1542 static void sci_stop_rx(struct uart_port *port) 1543 { 1544 unsigned short ctrl; 1545 1546 ctrl = sci_in(port, SCSCR); 1547 1548 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1549 ctrl &= ~0x4000; 1550 1551 ctrl &= ~port_rx_irq_mask(port); 1552 1553 sci_out(port, SCSCR, ctrl); 1554 } 1555 1556 static void sci_enable_ms(struct uart_port *port) 1557 { 1558 /* 1559 * Not supported by hardware, always a nop. 1560 */ 1561 } 1562 1563 static void sci_break_ctl(struct uart_port *port, int break_state) 1564 { 1565 /* 1566 * Not supported by hardware. Most parts couple break and rx 1567 * interrupts together, with break detection always enabled. 1568 */ 1569 } 1570 1571 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1572 static bool filter(struct dma_chan *chan, void *slave) 1573 { 1574 struct sh_dmae_slave *param = slave; 1575 1576 dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__, 1577 param->slave_id); 1578 1579 chan->private = param; 1580 return true; 1581 } 1582 1583 static void rx_timer_fn(unsigned long arg) 1584 { 1585 struct sci_port *s = (struct sci_port *)arg; 1586 struct uart_port *port = &s->port; 1587 u16 scr = sci_in(port, SCSCR); 1588 1589 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1590 scr &= ~0x4000; 1591 enable_irq(s->cfg->irqs[1]); 1592 } 1593 sci_out(port, SCSCR, scr | SCSCR_RIE); 1594 dev_dbg(port->dev, "DMA Rx timed out\n"); 1595 schedule_work(&s->work_rx); 1596 } 1597 1598 static void sci_request_dma(struct uart_port *port) 1599 { 1600 struct sci_port *s = to_sci_port(port); 1601 struct sh_dmae_slave *param; 1602 struct dma_chan *chan; 1603 dma_cap_mask_t mask; 1604 int nent; 1605 1606 dev_dbg(port->dev, "%s: port %d\n", __func__, 1607 port->line); 1608 1609 if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0) 1610 return; 1611 1612 dma_cap_zero(mask); 1613 dma_cap_set(DMA_SLAVE, mask); 1614 1615 param = &s->param_tx; 1616 1617 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */ 1618 param->slave_id = s->cfg->dma_slave_tx; 1619 1620 s->cookie_tx = -EINVAL; 1621 chan = dma_request_channel(mask, filter, param); 1622 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); 1623 if (chan) { 1624 s->chan_tx = chan; 1625 sg_init_table(&s->sg_tx, 1); 1626 /* UART circular tx buffer is an aligned page. */ 1627 BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK); 1628 sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf), 1629 UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK); 1630 nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE); 1631 if (!nent) 1632 sci_tx_dma_release(s, false); 1633 else 1634 dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__, 1635 sg_dma_len(&s->sg_tx), 1636 port->state->xmit.buf, sg_dma_address(&s->sg_tx)); 1637 1638 s->sg_len_tx = nent; 1639 1640 INIT_WORK(&s->work_tx, work_fn_tx); 1641 } 1642 1643 param = &s->param_rx; 1644 1645 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */ 1646 param->slave_id = s->cfg->dma_slave_rx; 1647 1648 chan = dma_request_channel(mask, filter, param); 1649 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); 1650 if (chan) { 1651 dma_addr_t dma[2]; 1652 void *buf[2]; 1653 int i; 1654 1655 s->chan_rx = chan; 1656 1657 s->buf_len_rx = 2 * max(16, (int)port->fifosize); 1658 buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2, 1659 &dma[0], GFP_KERNEL); 1660 1661 if (!buf[0]) { 1662 dev_warn(port->dev, 1663 "failed to allocate dma buffer, using PIO\n"); 1664 sci_rx_dma_release(s, true); 1665 return; 1666 } 1667 1668 buf[1] = buf[0] + s->buf_len_rx; 1669 dma[1] = dma[0] + s->buf_len_rx; 1670 1671 for (i = 0; i < 2; i++) { 1672 struct scatterlist *sg = &s->sg_rx[i]; 1673 1674 sg_init_table(sg, 1); 1675 sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx, 1676 (int)buf[i] & ~PAGE_MASK); 1677 sg_dma_address(sg) = dma[i]; 1678 } 1679 1680 INIT_WORK(&s->work_rx, work_fn_rx); 1681 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s); 1682 1683 sci_submit_rx(s); 1684 } 1685 } 1686 1687 static void sci_free_dma(struct uart_port *port) 1688 { 1689 struct sci_port *s = to_sci_port(port); 1690 1691 if (s->chan_tx) 1692 sci_tx_dma_release(s, false); 1693 if (s->chan_rx) 1694 sci_rx_dma_release(s, false); 1695 } 1696 #else 1697 static inline void sci_request_dma(struct uart_port *port) 1698 { 1699 } 1700 1701 static inline void sci_free_dma(struct uart_port *port) 1702 { 1703 } 1704 #endif 1705 1706 static int sci_startup(struct uart_port *port) 1707 { 1708 struct sci_port *s = to_sci_port(port); 1709 int ret; 1710 1711 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1712 1713 pm_runtime_put_noidle(port->dev); 1714 1715 sci_port_enable(s); 1716 1717 ret = sci_request_irq(s); 1718 if (unlikely(ret < 0)) 1719 return ret; 1720 1721 sci_request_dma(port); 1722 1723 sci_start_tx(port); 1724 sci_start_rx(port); 1725 1726 return 0; 1727 } 1728 1729 static void sci_shutdown(struct uart_port *port) 1730 { 1731 struct sci_port *s = to_sci_port(port); 1732 1733 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1734 1735 sci_stop_rx(port); 1736 sci_stop_tx(port); 1737 1738 sci_free_dma(port); 1739 sci_free_irq(s); 1740 1741 sci_port_disable(s); 1742 1743 pm_runtime_get_noresume(port->dev); 1744 } 1745 1746 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps, 1747 unsigned long freq) 1748 { 1749 switch (algo_id) { 1750 case SCBRR_ALGO_1: 1751 return ((freq + 16 * bps) / (16 * bps) - 1); 1752 case SCBRR_ALGO_2: 1753 return ((freq + 16 * bps) / (32 * bps) - 1); 1754 case SCBRR_ALGO_3: 1755 return (((freq * 2) + 16 * bps) / (16 * bps) - 1); 1756 case SCBRR_ALGO_4: 1757 return (((freq * 2) + 16 * bps) / (32 * bps) - 1); 1758 case SCBRR_ALGO_5: 1759 return (((freq * 1000 / 32) / bps) - 1); 1760 } 1761 1762 /* Warn, but use a safe default */ 1763 WARN_ON(1); 1764 1765 return ((freq + 16 * bps) / (32 * bps) - 1); 1766 } 1767 1768 static void sci_reset(struct uart_port *port) 1769 { 1770 struct plat_sci_reg *reg; 1771 unsigned int status; 1772 1773 do { 1774 status = sci_in(port, SCxSR); 1775 } while (!(status & SCxSR_TEND(port))); 1776 1777 sci_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */ 1778 1779 reg = sci_getreg(port, SCFCR); 1780 if (reg->size) 1781 sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); 1782 } 1783 1784 static void sci_set_termios(struct uart_port *port, struct ktermios *termios, 1785 struct ktermios *old) 1786 { 1787 struct sci_port *s = to_sci_port(port); 1788 struct plat_sci_reg *reg; 1789 unsigned int baud, smr_val, max_baud; 1790 int t = -1; 1791 1792 /* 1793 * earlyprintk comes here early on with port->uartclk set to zero. 1794 * the clock framework is not up and running at this point so here 1795 * we assume that 115200 is the maximum baud rate. please note that 1796 * the baud rate is not programmed during earlyprintk - it is assumed 1797 * that the previous boot loader has enabled required clocks and 1798 * setup the baud rate generator hardware for us already. 1799 */ 1800 max_baud = port->uartclk ? port->uartclk / 16 : 115200; 1801 1802 baud = uart_get_baud_rate(port, termios, old, 0, max_baud); 1803 if (likely(baud && port->uartclk)) 1804 t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk); 1805 1806 sci_port_enable(s); 1807 1808 sci_reset(port); 1809 1810 smr_val = sci_in(port, SCSMR) & 3; 1811 1812 if ((termios->c_cflag & CSIZE) == CS7) 1813 smr_val |= 0x40; 1814 if (termios->c_cflag & PARENB) 1815 smr_val |= 0x20; 1816 if (termios->c_cflag & PARODD) 1817 smr_val |= 0x30; 1818 if (termios->c_cflag & CSTOPB) 1819 smr_val |= 0x08; 1820 1821 uart_update_timeout(port, termios->c_cflag, baud); 1822 1823 sci_out(port, SCSMR, smr_val); 1824 1825 dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t, 1826 s->cfg->scscr); 1827 1828 if (t > 0) { 1829 if (t >= 256) { 1830 sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1); 1831 t >>= 2; 1832 } else 1833 sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3); 1834 1835 sci_out(port, SCBRR, t); 1836 udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */ 1837 } 1838 1839 sci_init_pins(port, termios->c_cflag); 1840 1841 reg = sci_getreg(port, SCFCR); 1842 if (reg->size) { 1843 unsigned short ctrl = sci_in(port, SCFCR); 1844 1845 if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) { 1846 if (termios->c_cflag & CRTSCTS) 1847 ctrl |= SCFCR_MCE; 1848 else 1849 ctrl &= ~SCFCR_MCE; 1850 } 1851 1852 /* 1853 * As we've done a sci_reset() above, ensure we don't 1854 * interfere with the FIFOs while toggling MCE. As the 1855 * reset values could still be set, simply mask them out. 1856 */ 1857 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST); 1858 1859 sci_out(port, SCFCR, ctrl); 1860 } 1861 1862 sci_out(port, SCSCR, s->cfg->scscr); 1863 1864 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1865 /* 1866 * Calculate delay for 1.5 DMA buffers: see 1867 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits 1868 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function 1869 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)." 1870 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO 1871 * sizes), but it has been found out experimentally, that this is not 1872 * enough: the driver too often needlessly runs on a DMA timeout. 20ms 1873 * as a minimum seem to work perfectly. 1874 */ 1875 if (s->chan_rx) { 1876 s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 / 1877 port->fifosize / 2; 1878 dev_dbg(port->dev, 1879 "DMA Rx t-out %ums, tty t-out %u jiffies\n", 1880 s->rx_timeout * 1000 / HZ, port->timeout); 1881 if (s->rx_timeout < msecs_to_jiffies(20)) 1882 s->rx_timeout = msecs_to_jiffies(20); 1883 } 1884 #endif 1885 1886 if ((termios->c_cflag & CREAD) != 0) 1887 sci_start_rx(port); 1888 1889 sci_port_disable(s); 1890 } 1891 1892 static const char *sci_type(struct uart_port *port) 1893 { 1894 switch (port->type) { 1895 case PORT_IRDA: 1896 return "irda"; 1897 case PORT_SCI: 1898 return "sci"; 1899 case PORT_SCIF: 1900 return "scif"; 1901 case PORT_SCIFA: 1902 return "scifa"; 1903 case PORT_SCIFB: 1904 return "scifb"; 1905 } 1906 1907 return NULL; 1908 } 1909 1910 static inline unsigned long sci_port_size(struct uart_port *port) 1911 { 1912 /* 1913 * Pick an arbitrary size that encapsulates all of the base 1914 * registers by default. This can be optimized later, or derived 1915 * from platform resource data at such a time that ports begin to 1916 * behave more erratically. 1917 */ 1918 return 64; 1919 } 1920 1921 static int sci_remap_port(struct uart_port *port) 1922 { 1923 unsigned long size = sci_port_size(port); 1924 1925 /* 1926 * Nothing to do if there's already an established membase. 1927 */ 1928 if (port->membase) 1929 return 0; 1930 1931 if (port->flags & UPF_IOREMAP) { 1932 port->membase = ioremap_nocache(port->mapbase, size); 1933 if (unlikely(!port->membase)) { 1934 dev_err(port->dev, "can't remap port#%d\n", port->line); 1935 return -ENXIO; 1936 } 1937 } else { 1938 /* 1939 * For the simple (and majority of) cases where we don't 1940 * need to do any remapping, just cast the cookie 1941 * directly. 1942 */ 1943 port->membase = (void __iomem *)port->mapbase; 1944 } 1945 1946 return 0; 1947 } 1948 1949 static void sci_release_port(struct uart_port *port) 1950 { 1951 if (port->flags & UPF_IOREMAP) { 1952 iounmap(port->membase); 1953 port->membase = NULL; 1954 } 1955 1956 release_mem_region(port->mapbase, sci_port_size(port)); 1957 } 1958 1959 static int sci_request_port(struct uart_port *port) 1960 { 1961 unsigned long size = sci_port_size(port); 1962 struct resource *res; 1963 int ret; 1964 1965 res = request_mem_region(port->mapbase, size, dev_name(port->dev)); 1966 if (unlikely(res == NULL)) 1967 return -EBUSY; 1968 1969 ret = sci_remap_port(port); 1970 if (unlikely(ret != 0)) { 1971 release_resource(res); 1972 return ret; 1973 } 1974 1975 return 0; 1976 } 1977 1978 static void sci_config_port(struct uart_port *port, int flags) 1979 { 1980 if (flags & UART_CONFIG_TYPE) { 1981 struct sci_port *sport = to_sci_port(port); 1982 1983 port->type = sport->cfg->type; 1984 sci_request_port(port); 1985 } 1986 } 1987 1988 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) 1989 { 1990 struct sci_port *s = to_sci_port(port); 1991 1992 if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs) 1993 return -EINVAL; 1994 if (ser->baud_base < 2400) 1995 /* No paper tape reader for Mitch.. */ 1996 return -EINVAL; 1997 1998 return 0; 1999 } 2000 2001 static struct uart_ops sci_uart_ops = { 2002 .tx_empty = sci_tx_empty, 2003 .set_mctrl = sci_set_mctrl, 2004 .get_mctrl = sci_get_mctrl, 2005 .start_tx = sci_start_tx, 2006 .stop_tx = sci_stop_tx, 2007 .stop_rx = sci_stop_rx, 2008 .enable_ms = sci_enable_ms, 2009 .break_ctl = sci_break_ctl, 2010 .startup = sci_startup, 2011 .shutdown = sci_shutdown, 2012 .set_termios = sci_set_termios, 2013 .type = sci_type, 2014 .release_port = sci_release_port, 2015 .request_port = sci_request_port, 2016 .config_port = sci_config_port, 2017 .verify_port = sci_verify_port, 2018 #ifdef CONFIG_CONSOLE_POLL 2019 .poll_get_char = sci_poll_get_char, 2020 .poll_put_char = sci_poll_put_char, 2021 #endif 2022 }; 2023 2024 static int __devinit sci_init_single(struct platform_device *dev, 2025 struct sci_port *sci_port, 2026 unsigned int index, 2027 struct plat_sci_port *p) 2028 { 2029 struct uart_port *port = &sci_port->port; 2030 int ret; 2031 2032 sci_port->cfg = p; 2033 2034 port->ops = &sci_uart_ops; 2035 port->iotype = UPIO_MEM; 2036 port->line = index; 2037 2038 switch (p->type) { 2039 case PORT_SCIFB: 2040 port->fifosize = 256; 2041 break; 2042 case PORT_SCIFA: 2043 port->fifosize = 64; 2044 break; 2045 case PORT_SCIF: 2046 port->fifosize = 16; 2047 break; 2048 default: 2049 port->fifosize = 1; 2050 break; 2051 } 2052 2053 if (p->regtype == SCIx_PROBE_REGTYPE) { 2054 ret = sci_probe_regmap(p); 2055 if (unlikely(ret)) 2056 return ret; 2057 } 2058 2059 if (dev) { 2060 sci_port->iclk = clk_get(&dev->dev, "sci_ick"); 2061 if (IS_ERR(sci_port->iclk)) { 2062 sci_port->iclk = clk_get(&dev->dev, "peripheral_clk"); 2063 if (IS_ERR(sci_port->iclk)) { 2064 dev_err(&dev->dev, "can't get iclk\n"); 2065 return PTR_ERR(sci_port->iclk); 2066 } 2067 } 2068 2069 /* 2070 * The function clock is optional, ignore it if we can't 2071 * find it. 2072 */ 2073 sci_port->fclk = clk_get(&dev->dev, "sci_fck"); 2074 if (IS_ERR(sci_port->fclk)) 2075 sci_port->fclk = NULL; 2076 2077 port->dev = &dev->dev; 2078 2079 sci_init_gpios(sci_port); 2080 2081 pm_runtime_irq_safe(&dev->dev); 2082 pm_runtime_get_noresume(&dev->dev); 2083 pm_runtime_enable(&dev->dev); 2084 } 2085 2086 sci_port->break_timer.data = (unsigned long)sci_port; 2087 sci_port->break_timer.function = sci_break_timer; 2088 init_timer(&sci_port->break_timer); 2089 2090 /* 2091 * Establish some sensible defaults for the error detection. 2092 */ 2093 if (!p->error_mask) 2094 p->error_mask = (p->type == PORT_SCI) ? 2095 SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK; 2096 2097 /* 2098 * Establish sensible defaults for the overrun detection, unless 2099 * the part has explicitly disabled support for it. 2100 */ 2101 if (p->overrun_bit != SCIx_NOT_SUPPORTED) { 2102 if (p->type == PORT_SCI) 2103 p->overrun_bit = 5; 2104 else if (p->scbrr_algo_id == SCBRR_ALGO_4) 2105 p->overrun_bit = 9; 2106 else 2107 p->overrun_bit = 0; 2108 2109 /* 2110 * Make the error mask inclusive of overrun detection, if 2111 * supported. 2112 */ 2113 p->error_mask |= (1 << p->overrun_bit); 2114 } 2115 2116 port->mapbase = p->mapbase; 2117 port->type = p->type; 2118 port->flags = p->flags; 2119 port->regshift = p->regshift; 2120 2121 /* 2122 * The UART port needs an IRQ value, so we peg this to the RX IRQ 2123 * for the multi-IRQ ports, which is where we are primarily 2124 * concerned with the shutdown path synchronization. 2125 * 2126 * For the muxed case there's nothing more to do. 2127 */ 2128 port->irq = p->irqs[SCIx_RXI_IRQ]; 2129 port->irqflags = 0; 2130 2131 port->serial_in = sci_serial_in; 2132 port->serial_out = sci_serial_out; 2133 2134 if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0) 2135 dev_dbg(port->dev, "DMA tx %d, rx %d\n", 2136 p->dma_slave_tx, p->dma_slave_rx); 2137 2138 return 0; 2139 } 2140 2141 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 2142 static void serial_console_putchar(struct uart_port *port, int ch) 2143 { 2144 sci_poll_put_char(port, ch); 2145 } 2146 2147 /* 2148 * Print a string to the serial port trying not to disturb 2149 * any possible real use of the port... 2150 */ 2151 static void serial_console_write(struct console *co, const char *s, 2152 unsigned count) 2153 { 2154 struct sci_port *sci_port = &sci_ports[co->index]; 2155 struct uart_port *port = &sci_port->port; 2156 unsigned short bits; 2157 2158 sci_port_enable(sci_port); 2159 2160 uart_console_write(port, s, count, serial_console_putchar); 2161 2162 /* wait until fifo is empty and last bit has been transmitted */ 2163 bits = SCxSR_TDxE(port) | SCxSR_TEND(port); 2164 while ((sci_in(port, SCxSR) & bits) != bits) 2165 cpu_relax(); 2166 2167 sci_port_disable(sci_port); 2168 } 2169 2170 static int __devinit serial_console_setup(struct console *co, char *options) 2171 { 2172 struct sci_port *sci_port; 2173 struct uart_port *port; 2174 int baud = 115200; 2175 int bits = 8; 2176 int parity = 'n'; 2177 int flow = 'n'; 2178 int ret; 2179 2180 /* 2181 * Refuse to handle any bogus ports. 2182 */ 2183 if (co->index < 0 || co->index >= SCI_NPORTS) 2184 return -ENODEV; 2185 2186 sci_port = &sci_ports[co->index]; 2187 port = &sci_port->port; 2188 2189 /* 2190 * Refuse to handle uninitialized ports. 2191 */ 2192 if (!port->ops) 2193 return -ENODEV; 2194 2195 ret = sci_remap_port(port); 2196 if (unlikely(ret != 0)) 2197 return ret; 2198 2199 sci_port_enable(sci_port); 2200 2201 if (options) 2202 uart_parse_options(options, &baud, &parity, &bits, &flow); 2203 2204 sci_port_disable(sci_port); 2205 2206 return uart_set_options(port, co, baud, parity, bits, flow); 2207 } 2208 2209 static struct console serial_console = { 2210 .name = "ttySC", 2211 .device = uart_console_device, 2212 .write = serial_console_write, 2213 .setup = serial_console_setup, 2214 .flags = CON_PRINTBUFFER, 2215 .index = -1, 2216 .data = &sci_uart_driver, 2217 }; 2218 2219 static struct console early_serial_console = { 2220 .name = "early_ttySC", 2221 .write = serial_console_write, 2222 .flags = CON_PRINTBUFFER, 2223 .index = -1, 2224 }; 2225 2226 static char early_serial_buf[32]; 2227 2228 static int __devinit sci_probe_earlyprintk(struct platform_device *pdev) 2229 { 2230 struct plat_sci_port *cfg = pdev->dev.platform_data; 2231 2232 if (early_serial_console.data) 2233 return -EEXIST; 2234 2235 early_serial_console.index = pdev->id; 2236 2237 sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg); 2238 2239 serial_console_setup(&early_serial_console, early_serial_buf); 2240 2241 if (!strstr(early_serial_buf, "keep")) 2242 early_serial_console.flags |= CON_BOOT; 2243 2244 register_console(&early_serial_console); 2245 return 0; 2246 } 2247 2248 #define uart_console(port) ((port)->cons->index == (port)->line) 2249 2250 static int sci_runtime_suspend(struct device *dev) 2251 { 2252 struct sci_port *sci_port = dev_get_drvdata(dev); 2253 struct uart_port *port = &sci_port->port; 2254 2255 if (uart_console(port)) { 2256 struct plat_sci_reg *reg; 2257 2258 sci_port->saved_smr = sci_in(port, SCSMR); 2259 sci_port->saved_brr = sci_in(port, SCBRR); 2260 2261 reg = sci_getreg(port, SCFCR); 2262 if (reg->size) 2263 sci_port->saved_fcr = sci_in(port, SCFCR); 2264 else 2265 sci_port->saved_fcr = 0; 2266 } 2267 return 0; 2268 } 2269 2270 static int sci_runtime_resume(struct device *dev) 2271 { 2272 struct sci_port *sci_port = dev_get_drvdata(dev); 2273 struct uart_port *port = &sci_port->port; 2274 2275 if (uart_console(port)) { 2276 sci_reset(port); 2277 sci_out(port, SCSMR, sci_port->saved_smr); 2278 sci_out(port, SCBRR, sci_port->saved_brr); 2279 2280 if (sci_port->saved_fcr) 2281 sci_out(port, SCFCR, sci_port->saved_fcr); 2282 2283 sci_out(port, SCSCR, sci_port->cfg->scscr); 2284 } 2285 return 0; 2286 } 2287 2288 #define SCI_CONSOLE (&serial_console) 2289 2290 #else 2291 static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev) 2292 { 2293 return -EINVAL; 2294 } 2295 2296 #define SCI_CONSOLE NULL 2297 #define sci_runtime_suspend NULL 2298 #define sci_runtime_resume NULL 2299 2300 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */ 2301 2302 static char banner[] __initdata = 2303 KERN_INFO "SuperH SCI(F) driver initialized\n"; 2304 2305 static struct uart_driver sci_uart_driver = { 2306 .owner = THIS_MODULE, 2307 .driver_name = "sci", 2308 .dev_name = "ttySC", 2309 .major = SCI_MAJOR, 2310 .minor = SCI_MINOR_START, 2311 .nr = SCI_NPORTS, 2312 .cons = SCI_CONSOLE, 2313 }; 2314 2315 static int sci_remove(struct platform_device *dev) 2316 { 2317 struct sci_port *port = platform_get_drvdata(dev); 2318 2319 cpufreq_unregister_notifier(&port->freq_transition, 2320 CPUFREQ_TRANSITION_NOTIFIER); 2321 2322 sci_free_gpios(port); 2323 2324 uart_remove_one_port(&sci_uart_driver, &port->port); 2325 2326 clk_put(port->iclk); 2327 clk_put(port->fclk); 2328 2329 pm_runtime_disable(&dev->dev); 2330 return 0; 2331 } 2332 2333 static int __devinit sci_probe_single(struct platform_device *dev, 2334 unsigned int index, 2335 struct plat_sci_port *p, 2336 struct sci_port *sciport) 2337 { 2338 int ret; 2339 2340 /* Sanity check */ 2341 if (unlikely(index >= SCI_NPORTS)) { 2342 dev_notice(&dev->dev, "Attempting to register port " 2343 "%d when only %d are available.\n", 2344 index+1, SCI_NPORTS); 2345 dev_notice(&dev->dev, "Consider bumping " 2346 "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); 2347 return 0; 2348 } 2349 2350 ret = sci_init_single(dev, sciport, index, p); 2351 if (ret) 2352 return ret; 2353 2354 return uart_add_one_port(&sci_uart_driver, &sciport->port); 2355 } 2356 2357 static int __devinit sci_probe(struct platform_device *dev) 2358 { 2359 struct plat_sci_port *p = dev->dev.platform_data; 2360 struct sci_port *sp = &sci_ports[dev->id]; 2361 int ret; 2362 2363 /* 2364 * If we've come here via earlyprintk initialization, head off to 2365 * the special early probe. We don't have sufficient device state 2366 * to make it beyond this yet. 2367 */ 2368 if (is_early_platform_device(dev)) 2369 return sci_probe_earlyprintk(dev); 2370 2371 platform_set_drvdata(dev, sp); 2372 2373 ret = sci_probe_single(dev, dev->id, p, sp); 2374 if (ret) 2375 goto err_unreg; 2376 2377 sp->freq_transition.notifier_call = sci_notifier; 2378 2379 ret = cpufreq_register_notifier(&sp->freq_transition, 2380 CPUFREQ_TRANSITION_NOTIFIER); 2381 if (unlikely(ret < 0)) 2382 goto err_unreg; 2383 2384 #ifdef CONFIG_SH_STANDARD_BIOS 2385 sh_bios_gdb_detach(); 2386 #endif 2387 2388 return 0; 2389 2390 err_unreg: 2391 sci_remove(dev); 2392 return ret; 2393 } 2394 2395 static int sci_suspend(struct device *dev) 2396 { 2397 struct sci_port *sport = dev_get_drvdata(dev); 2398 2399 if (sport) 2400 uart_suspend_port(&sci_uart_driver, &sport->port); 2401 2402 return 0; 2403 } 2404 2405 static int sci_resume(struct device *dev) 2406 { 2407 struct sci_port *sport = dev_get_drvdata(dev); 2408 2409 if (sport) 2410 uart_resume_port(&sci_uart_driver, &sport->port); 2411 2412 return 0; 2413 } 2414 2415 static const struct dev_pm_ops sci_dev_pm_ops = { 2416 .runtime_suspend = sci_runtime_suspend, 2417 .runtime_resume = sci_runtime_resume, 2418 .suspend = sci_suspend, 2419 .resume = sci_resume, 2420 }; 2421 2422 static struct platform_driver sci_driver = { 2423 .probe = sci_probe, 2424 .remove = sci_remove, 2425 .driver = { 2426 .name = "sh-sci", 2427 .owner = THIS_MODULE, 2428 .pm = &sci_dev_pm_ops, 2429 }, 2430 }; 2431 2432 static int __init sci_init(void) 2433 { 2434 int ret; 2435 2436 printk(banner); 2437 2438 ret = uart_register_driver(&sci_uart_driver); 2439 if (likely(ret == 0)) { 2440 ret = platform_driver_register(&sci_driver); 2441 if (unlikely(ret)) 2442 uart_unregister_driver(&sci_uart_driver); 2443 } 2444 2445 return ret; 2446 } 2447 2448 static void __exit sci_exit(void) 2449 { 2450 platform_driver_unregister(&sci_driver); 2451 uart_unregister_driver(&sci_uart_driver); 2452 } 2453 2454 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 2455 early_platform_init_buffer("earlyprintk", &sci_driver, 2456 early_serial_buf, ARRAY_SIZE(early_serial_buf)); 2457 #endif 2458 module_init(sci_init); 2459 module_exit(sci_exit); 2460 2461 MODULE_LICENSE("GPL"); 2462 MODULE_ALIAS("platform:sh-sci"); 2463 MODULE_AUTHOR("Paul Mundt"); 2464 MODULE_DESCRIPTION("SuperH SCI(F) serial driver"); 2465