xref: /linux/drivers/tty/serial/sh-sci.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/module.h>
35 #include <linux/mm.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/reset.h>
41 #include <linux/scatterlist.h>
42 #include <linux/serial.h>
43 #include <linux/serial_sci.h>
44 #include <linux/sh_dma.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/sysrq.h>
48 #include <linux/timer.h>
49 #include <linux/tty.h>
50 #include <linux/tty_flip.h>
51 
52 #ifdef CONFIG_SUPERH
53 #include <asm/sh_bios.h>
54 #include <asm/platform_early.h>
55 #endif
56 
57 #include "serial_mctrl_gpio.h"
58 #include "sh-sci.h"
59 
60 /* Offsets into the sci_port->irqs array */
61 enum {
62 	SCIx_ERI_IRQ,
63 	SCIx_RXI_IRQ,
64 	SCIx_TXI_IRQ,
65 	SCIx_BRI_IRQ,
66 	SCIx_DRI_IRQ,
67 	SCIx_TEI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 enum SCI_CLKS {
80 	SCI_FCK,		/* Functional Clock */
81 	SCI_SCK,		/* Optional External Clock */
82 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84 	SCI_NUM_CLKS
85 };
86 
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x)		BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
90 
91 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 				SCI_SR(19) | SCI_SR(27)
94 
95 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
97 
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port)						\
100 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
101 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102 
103 struct plat_sci_reg {
104 	u8 offset, size;
105 };
106 
107 struct sci_port_params {
108 	const struct plat_sci_reg regs[SCIx_NR_REGS];
109 	unsigned int fifosize;
110 	unsigned int overrun_reg;
111 	unsigned int overrun_mask;
112 	unsigned int sampling_rate_mask;
113 	unsigned int error_mask;
114 	unsigned int error_clear;
115 };
116 
117 struct sci_port {
118 	struct uart_port	port;
119 
120 	/* Platform configuration */
121 	const struct sci_port_params *params;
122 	const struct plat_sci_port *cfg;
123 	unsigned int		sampling_rate_mask;
124 	resource_size_t		reg_size;
125 	struct mctrl_gpios	*gpios;
126 
127 	/* Clocks */
128 	struct clk		*clks[SCI_NUM_CLKS];
129 	unsigned long		clk_rates[SCI_NUM_CLKS];
130 
131 	int			irqs[SCIx_NR_IRQS];
132 	char			*irqstr[SCIx_NR_IRQS];
133 
134 	struct dma_chan			*chan_tx;
135 	struct dma_chan			*chan_rx;
136 
137 #ifdef CONFIG_SERIAL_SH_SCI_DMA
138 	struct dma_chan			*chan_tx_saved;
139 	struct dma_chan			*chan_rx_saved;
140 	dma_cookie_t			cookie_tx;
141 	dma_cookie_t			cookie_rx[2];
142 	dma_cookie_t			active_rx;
143 	dma_addr_t			tx_dma_addr;
144 	unsigned int			tx_dma_len;
145 	struct scatterlist		sg_rx[2];
146 	void				*rx_buf[2];
147 	size_t				buf_len_rx;
148 	struct work_struct		work_tx;
149 	struct hrtimer			rx_timer;
150 	unsigned int			rx_timeout;	/* microseconds */
151 #endif
152 	unsigned int			rx_frame;
153 	int				rx_trigger;
154 	struct timer_list		rx_fifo_timer;
155 	int				rx_fifo_timeout;
156 	u16				hscif_tot;
157 
158 	bool has_rtscts;
159 	bool autorts;
160 };
161 
162 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
163 
164 static struct sci_port sci_ports[SCI_NPORTS];
165 static unsigned long sci_ports_in_use;
166 static struct uart_driver sci_uart_driver;
167 
168 static inline struct sci_port *
169 to_sci_port(struct uart_port *uart)
170 {
171 	return container_of(uart, struct sci_port, port);
172 }
173 
174 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
175 	/*
176 	 * Common SCI definitions, dependent on the port's regshift
177 	 * value.
178 	 */
179 	[SCIx_SCI_REGTYPE] = {
180 		.regs = {
181 			[SCSMR]		= { 0x00,  8 },
182 			[SCBRR]		= { 0x01,  8 },
183 			[SCSCR]		= { 0x02,  8 },
184 			[SCxTDR]	= { 0x03,  8 },
185 			[SCxSR]		= { 0x04,  8 },
186 			[SCxRDR]	= { 0x05,  8 },
187 		},
188 		.fifosize = 1,
189 		.overrun_reg = SCxSR,
190 		.overrun_mask = SCI_ORER,
191 		.sampling_rate_mask = SCI_SR(32),
192 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
193 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
194 	},
195 
196 	/*
197 	 * Common definitions for legacy IrDA ports.
198 	 */
199 	[SCIx_IRDA_REGTYPE] = {
200 		.regs = {
201 			[SCSMR]		= { 0x00,  8 },
202 			[SCBRR]		= { 0x02,  8 },
203 			[SCSCR]		= { 0x04,  8 },
204 			[SCxTDR]	= { 0x06,  8 },
205 			[SCxSR]		= { 0x08, 16 },
206 			[SCxRDR]	= { 0x0a,  8 },
207 			[SCFCR]		= { 0x0c,  8 },
208 			[SCFDR]		= { 0x0e, 16 },
209 		},
210 		.fifosize = 1,
211 		.overrun_reg = SCxSR,
212 		.overrun_mask = SCI_ORER,
213 		.sampling_rate_mask = SCI_SR(32),
214 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
215 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
216 	},
217 
218 	/*
219 	 * Common SCIFA definitions.
220 	 */
221 	[SCIx_SCIFA_REGTYPE] = {
222 		.regs = {
223 			[SCSMR]		= { 0x00, 16 },
224 			[SCBRR]		= { 0x04,  8 },
225 			[SCSCR]		= { 0x08, 16 },
226 			[SCxTDR]	= { 0x20,  8 },
227 			[SCxSR]		= { 0x14, 16 },
228 			[SCxRDR]	= { 0x24,  8 },
229 			[SCFCR]		= { 0x18, 16 },
230 			[SCFDR]		= { 0x1c, 16 },
231 			[SCPCR]		= { 0x30, 16 },
232 			[SCPDR]		= { 0x34, 16 },
233 		},
234 		.fifosize = 64,
235 		.overrun_reg = SCxSR,
236 		.overrun_mask = SCIFA_ORER,
237 		.sampling_rate_mask = SCI_SR_SCIFAB,
238 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
239 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
240 	},
241 
242 	/*
243 	 * Common SCIFB definitions.
244 	 */
245 	[SCIx_SCIFB_REGTYPE] = {
246 		.regs = {
247 			[SCSMR]		= { 0x00, 16 },
248 			[SCBRR]		= { 0x04,  8 },
249 			[SCSCR]		= { 0x08, 16 },
250 			[SCxTDR]	= { 0x40,  8 },
251 			[SCxSR]		= { 0x14, 16 },
252 			[SCxRDR]	= { 0x60,  8 },
253 			[SCFCR]		= { 0x18, 16 },
254 			[SCTFDR]	= { 0x38, 16 },
255 			[SCRFDR]	= { 0x3c, 16 },
256 			[SCPCR]		= { 0x30, 16 },
257 			[SCPDR]		= { 0x34, 16 },
258 		},
259 		.fifosize = 256,
260 		.overrun_reg = SCxSR,
261 		.overrun_mask = SCIFA_ORER,
262 		.sampling_rate_mask = SCI_SR_SCIFAB,
263 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
264 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
265 	},
266 
267 	/*
268 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
269 	 * count registers.
270 	 */
271 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
272 		.regs = {
273 			[SCSMR]		= { 0x00, 16 },
274 			[SCBRR]		= { 0x04,  8 },
275 			[SCSCR]		= { 0x08, 16 },
276 			[SCxTDR]	= { 0x0c,  8 },
277 			[SCxSR]		= { 0x10, 16 },
278 			[SCxRDR]	= { 0x14,  8 },
279 			[SCFCR]		= { 0x18, 16 },
280 			[SCFDR]		= { 0x1c, 16 },
281 			[SCSPTR]	= { 0x20, 16 },
282 			[SCLSR]		= { 0x24, 16 },
283 		},
284 		.fifosize = 16,
285 		.overrun_reg = SCLSR,
286 		.overrun_mask = SCLSR_ORER,
287 		.sampling_rate_mask = SCI_SR(32),
288 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
289 		.error_clear = SCIF_ERROR_CLEAR,
290 	},
291 
292 	/*
293 	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
294 	 * It looks like a normal SCIF with FIFO data, but with a
295 	 * compressed address space. Also, the break out of interrupts
296 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
297 	 */
298 	[SCIx_RZ_SCIFA_REGTYPE] = {
299 		.regs = {
300 			[SCSMR]		= { 0x00, 16 },
301 			[SCBRR]		= { 0x02,  8 },
302 			[SCSCR]		= { 0x04, 16 },
303 			[SCxTDR]	= { 0x06,  8 },
304 			[SCxSR]		= { 0x08, 16 },
305 			[SCxRDR]	= { 0x0A,  8 },
306 			[SCFCR]		= { 0x0C, 16 },
307 			[SCFDR]		= { 0x0E, 16 },
308 			[SCSPTR]	= { 0x10, 16 },
309 			[SCLSR]		= { 0x12, 16 },
310 			[SEMR]		= { 0x14, 8 },
311 		},
312 		.fifosize = 16,
313 		.overrun_reg = SCLSR,
314 		.overrun_mask = SCLSR_ORER,
315 		.sampling_rate_mask = SCI_SR(32),
316 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
317 		.error_clear = SCIF_ERROR_CLEAR,
318 	},
319 
320 	/*
321 	 * Common SH-3 SCIF definitions.
322 	 */
323 	[SCIx_SH3_SCIF_REGTYPE] = {
324 		.regs = {
325 			[SCSMR]		= { 0x00,  8 },
326 			[SCBRR]		= { 0x02,  8 },
327 			[SCSCR]		= { 0x04,  8 },
328 			[SCxTDR]	= { 0x06,  8 },
329 			[SCxSR]		= { 0x08, 16 },
330 			[SCxRDR]	= { 0x0a,  8 },
331 			[SCFCR]		= { 0x0c,  8 },
332 			[SCFDR]		= { 0x0e, 16 },
333 		},
334 		.fifosize = 16,
335 		.overrun_reg = SCLSR,
336 		.overrun_mask = SCLSR_ORER,
337 		.sampling_rate_mask = SCI_SR(32),
338 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
339 		.error_clear = SCIF_ERROR_CLEAR,
340 	},
341 
342 	/*
343 	 * Common SH-4(A) SCIF(B) definitions.
344 	 */
345 	[SCIx_SH4_SCIF_REGTYPE] = {
346 		.regs = {
347 			[SCSMR]		= { 0x00, 16 },
348 			[SCBRR]		= { 0x04,  8 },
349 			[SCSCR]		= { 0x08, 16 },
350 			[SCxTDR]	= { 0x0c,  8 },
351 			[SCxSR]		= { 0x10, 16 },
352 			[SCxRDR]	= { 0x14,  8 },
353 			[SCFCR]		= { 0x18, 16 },
354 			[SCFDR]		= { 0x1c, 16 },
355 			[SCSPTR]	= { 0x20, 16 },
356 			[SCLSR]		= { 0x24, 16 },
357 		},
358 		.fifosize = 16,
359 		.overrun_reg = SCLSR,
360 		.overrun_mask = SCLSR_ORER,
361 		.sampling_rate_mask = SCI_SR(32),
362 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
363 		.error_clear = SCIF_ERROR_CLEAR,
364 	},
365 
366 	/*
367 	 * Common SCIF definitions for ports with a Baud Rate Generator for
368 	 * External Clock (BRG).
369 	 */
370 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
371 		.regs = {
372 			[SCSMR]		= { 0x00, 16 },
373 			[SCBRR]		= { 0x04,  8 },
374 			[SCSCR]		= { 0x08, 16 },
375 			[SCxTDR]	= { 0x0c,  8 },
376 			[SCxSR]		= { 0x10, 16 },
377 			[SCxRDR]	= { 0x14,  8 },
378 			[SCFCR]		= { 0x18, 16 },
379 			[SCFDR]		= { 0x1c, 16 },
380 			[SCSPTR]	= { 0x20, 16 },
381 			[SCLSR]		= { 0x24, 16 },
382 			[SCDL]		= { 0x30, 16 },
383 			[SCCKS]		= { 0x34, 16 },
384 		},
385 		.fifosize = 16,
386 		.overrun_reg = SCLSR,
387 		.overrun_mask = SCLSR_ORER,
388 		.sampling_rate_mask = SCI_SR(32),
389 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
390 		.error_clear = SCIF_ERROR_CLEAR,
391 	},
392 
393 	/*
394 	 * Common HSCIF definitions.
395 	 */
396 	[SCIx_HSCIF_REGTYPE] = {
397 		.regs = {
398 			[SCSMR]		= { 0x00, 16 },
399 			[SCBRR]		= { 0x04,  8 },
400 			[SCSCR]		= { 0x08, 16 },
401 			[SCxTDR]	= { 0x0c,  8 },
402 			[SCxSR]		= { 0x10, 16 },
403 			[SCxRDR]	= { 0x14,  8 },
404 			[SCFCR]		= { 0x18, 16 },
405 			[SCFDR]		= { 0x1c, 16 },
406 			[SCSPTR]	= { 0x20, 16 },
407 			[SCLSR]		= { 0x24, 16 },
408 			[HSSRR]		= { 0x40, 16 },
409 			[SCDL]		= { 0x30, 16 },
410 			[SCCKS]		= { 0x34, 16 },
411 			[HSRTRGR]	= { 0x54, 16 },
412 			[HSTTRGR]	= { 0x58, 16 },
413 		},
414 		.fifosize = 128,
415 		.overrun_reg = SCLSR,
416 		.overrun_mask = SCLSR_ORER,
417 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
418 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
419 		.error_clear = SCIF_ERROR_CLEAR,
420 	},
421 
422 	/*
423 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
424 	 * register.
425 	 */
426 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
427 		.regs = {
428 			[SCSMR]		= { 0x00, 16 },
429 			[SCBRR]		= { 0x04,  8 },
430 			[SCSCR]		= { 0x08, 16 },
431 			[SCxTDR]	= { 0x0c,  8 },
432 			[SCxSR]		= { 0x10, 16 },
433 			[SCxRDR]	= { 0x14,  8 },
434 			[SCFCR]		= { 0x18, 16 },
435 			[SCFDR]		= { 0x1c, 16 },
436 			[SCLSR]		= { 0x24, 16 },
437 		},
438 		.fifosize = 16,
439 		.overrun_reg = SCLSR,
440 		.overrun_mask = SCLSR_ORER,
441 		.sampling_rate_mask = SCI_SR(32),
442 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
443 		.error_clear = SCIF_ERROR_CLEAR,
444 	},
445 
446 	/*
447 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
448 	 * count registers.
449 	 */
450 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
451 		.regs = {
452 			[SCSMR]		= { 0x00, 16 },
453 			[SCBRR]		= { 0x04,  8 },
454 			[SCSCR]		= { 0x08, 16 },
455 			[SCxTDR]	= { 0x0c,  8 },
456 			[SCxSR]		= { 0x10, 16 },
457 			[SCxRDR]	= { 0x14,  8 },
458 			[SCFCR]		= { 0x18, 16 },
459 			[SCFDR]		= { 0x1c, 16 },
460 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
461 			[SCRFDR]	= { 0x20, 16 },
462 			[SCSPTR]	= { 0x24, 16 },
463 			[SCLSR]		= { 0x28, 16 },
464 		},
465 		.fifosize = 16,
466 		.overrun_reg = SCLSR,
467 		.overrun_mask = SCLSR_ORER,
468 		.sampling_rate_mask = SCI_SR(32),
469 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
470 		.error_clear = SCIF_ERROR_CLEAR,
471 	},
472 
473 	/*
474 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
475 	 * registers.
476 	 */
477 	[SCIx_SH7705_SCIF_REGTYPE] = {
478 		.regs = {
479 			[SCSMR]		= { 0x00, 16 },
480 			[SCBRR]		= { 0x04,  8 },
481 			[SCSCR]		= { 0x08, 16 },
482 			[SCxTDR]	= { 0x20,  8 },
483 			[SCxSR]		= { 0x14, 16 },
484 			[SCxRDR]	= { 0x24,  8 },
485 			[SCFCR]		= { 0x18, 16 },
486 			[SCFDR]		= { 0x1c, 16 },
487 		},
488 		.fifosize = 64,
489 		.overrun_reg = SCxSR,
490 		.overrun_mask = SCIFA_ORER,
491 		.sampling_rate_mask = SCI_SR(16),
492 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
493 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
494 	},
495 };
496 
497 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
498 
499 /*
500  * The "offset" here is rather misleading, in that it refers to an enum
501  * value relative to the port mapping rather than the fixed offset
502  * itself, which needs to be manually retrieved from the platform's
503  * register map for the given port.
504  */
505 static unsigned int sci_serial_in(struct uart_port *p, int offset)
506 {
507 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
508 
509 	if (reg->size == 8)
510 		return ioread8(p->membase + (reg->offset << p->regshift));
511 	else if (reg->size == 16)
512 		return ioread16(p->membase + (reg->offset << p->regshift));
513 	else
514 		WARN(1, "Invalid register access\n");
515 
516 	return 0;
517 }
518 
519 static void sci_serial_out(struct uart_port *p, int offset, int value)
520 {
521 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
522 
523 	if (reg->size == 8)
524 		iowrite8(value, p->membase + (reg->offset << p->regshift));
525 	else if (reg->size == 16)
526 		iowrite16(value, p->membase + (reg->offset << p->regshift));
527 	else
528 		WARN(1, "Invalid register access\n");
529 }
530 
531 static void sci_port_enable(struct sci_port *sci_port)
532 {
533 	unsigned int i;
534 
535 	if (!sci_port->port.dev)
536 		return;
537 
538 	pm_runtime_get_sync(sci_port->port.dev);
539 
540 	for (i = 0; i < SCI_NUM_CLKS; i++) {
541 		clk_prepare_enable(sci_port->clks[i]);
542 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
543 	}
544 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
545 }
546 
547 static void sci_port_disable(struct sci_port *sci_port)
548 {
549 	unsigned int i;
550 
551 	if (!sci_port->port.dev)
552 		return;
553 
554 	for (i = SCI_NUM_CLKS; i-- > 0; )
555 		clk_disable_unprepare(sci_port->clks[i]);
556 
557 	pm_runtime_put_sync(sci_port->port.dev);
558 }
559 
560 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
561 {
562 	/*
563 	 * Not all ports (such as SCIFA) will support REIE. Rather than
564 	 * special-casing the port type, we check the port initialization
565 	 * IRQ enable mask to see whether the IRQ is desired at all. If
566 	 * it's unset, it's logically inferred that there's no point in
567 	 * testing for it.
568 	 */
569 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
570 }
571 
572 static void sci_start_tx(struct uart_port *port)
573 {
574 	struct sci_port *s = to_sci_port(port);
575 	unsigned short ctrl;
576 
577 #ifdef CONFIG_SERIAL_SH_SCI_DMA
578 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
579 		u16 new, scr = serial_port_in(port, SCSCR);
580 		if (s->chan_tx)
581 			new = scr | SCSCR_TDRQE;
582 		else
583 			new = scr & ~SCSCR_TDRQE;
584 		if (new != scr)
585 			serial_port_out(port, SCSCR, new);
586 	}
587 
588 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
589 	    dma_submit_error(s->cookie_tx)) {
590 		s->cookie_tx = 0;
591 		schedule_work(&s->work_tx);
592 	}
593 #endif
594 
595 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
596 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
597 		ctrl = serial_port_in(port, SCSCR);
598 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
599 	}
600 }
601 
602 static void sci_stop_tx(struct uart_port *port)
603 {
604 	unsigned short ctrl;
605 
606 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
607 	ctrl = serial_port_in(port, SCSCR);
608 
609 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
610 		ctrl &= ~SCSCR_TDRQE;
611 
612 	ctrl &= ~SCSCR_TIE;
613 
614 	serial_port_out(port, SCSCR, ctrl);
615 
616 #ifdef CONFIG_SERIAL_SH_SCI_DMA
617 	if (to_sci_port(port)->chan_tx &&
618 	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
619 		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
620 		to_sci_port(port)->cookie_tx = -EINVAL;
621 	}
622 #endif
623 }
624 
625 static void sci_start_rx(struct uart_port *port)
626 {
627 	unsigned short ctrl;
628 
629 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
630 
631 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
632 		ctrl &= ~SCSCR_RDRQE;
633 
634 	serial_port_out(port, SCSCR, ctrl);
635 }
636 
637 static void sci_stop_rx(struct uart_port *port)
638 {
639 	unsigned short ctrl;
640 
641 	ctrl = serial_port_in(port, SCSCR);
642 
643 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
644 		ctrl &= ~SCSCR_RDRQE;
645 
646 	ctrl &= ~port_rx_irq_mask(port);
647 
648 	serial_port_out(port, SCSCR, ctrl);
649 }
650 
651 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
652 {
653 	if (port->type == PORT_SCI) {
654 		/* Just store the mask */
655 		serial_port_out(port, SCxSR, mask);
656 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
657 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
658 		/* Only clear the status bits we want to clear */
659 		serial_port_out(port, SCxSR,
660 				serial_port_in(port, SCxSR) & mask);
661 	} else {
662 		/* Store the mask, clear parity/framing errors */
663 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
664 	}
665 }
666 
667 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
668     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
669 
670 #ifdef CONFIG_CONSOLE_POLL
671 static int sci_poll_get_char(struct uart_port *port)
672 {
673 	unsigned short status;
674 	int c;
675 
676 	do {
677 		status = serial_port_in(port, SCxSR);
678 		if (status & SCxSR_ERRORS(port)) {
679 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
680 			continue;
681 		}
682 		break;
683 	} while (1);
684 
685 	if (!(status & SCxSR_RDxF(port)))
686 		return NO_POLL_CHAR;
687 
688 	c = serial_port_in(port, SCxRDR);
689 
690 	/* Dummy read */
691 	serial_port_in(port, SCxSR);
692 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
693 
694 	return c;
695 }
696 #endif
697 
698 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
699 {
700 	unsigned short status;
701 
702 	do {
703 		status = serial_port_in(port, SCxSR);
704 	} while (!(status & SCxSR_TDxE(port)));
705 
706 	serial_port_out(port, SCxTDR, c);
707 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
708 }
709 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
710 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
711 
712 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
713 {
714 	struct sci_port *s = to_sci_port(port);
715 
716 	/*
717 	 * Use port-specific handler if provided.
718 	 */
719 	if (s->cfg->ops && s->cfg->ops->init_pins) {
720 		s->cfg->ops->init_pins(port, cflag);
721 		return;
722 	}
723 
724 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
725 		u16 data = serial_port_in(port, SCPDR);
726 		u16 ctrl = serial_port_in(port, SCPCR);
727 
728 		/* Enable RXD and TXD pin functions */
729 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
730 		if (to_sci_port(port)->has_rtscts) {
731 			/* RTS# is output, active low, unless autorts */
732 			if (!(port->mctrl & TIOCM_RTS)) {
733 				ctrl |= SCPCR_RTSC;
734 				data |= SCPDR_RTSD;
735 			} else if (!s->autorts) {
736 				ctrl |= SCPCR_RTSC;
737 				data &= ~SCPDR_RTSD;
738 			} else {
739 				/* Enable RTS# pin function */
740 				ctrl &= ~SCPCR_RTSC;
741 			}
742 			/* Enable CTS# pin function */
743 			ctrl &= ~SCPCR_CTSC;
744 		}
745 		serial_port_out(port, SCPDR, data);
746 		serial_port_out(port, SCPCR, ctrl);
747 	} else if (sci_getreg(port, SCSPTR)->size) {
748 		u16 status = serial_port_in(port, SCSPTR);
749 
750 		/* RTS# is always output; and active low, unless autorts */
751 		status |= SCSPTR_RTSIO;
752 		if (!(port->mctrl & TIOCM_RTS))
753 			status |= SCSPTR_RTSDT;
754 		else if (!s->autorts)
755 			status &= ~SCSPTR_RTSDT;
756 		/* CTS# and SCK are inputs */
757 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
758 		serial_port_out(port, SCSPTR, status);
759 	}
760 }
761 
762 static int sci_txfill(struct uart_port *port)
763 {
764 	struct sci_port *s = to_sci_port(port);
765 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
766 	const struct plat_sci_reg *reg;
767 
768 	reg = sci_getreg(port, SCTFDR);
769 	if (reg->size)
770 		return serial_port_in(port, SCTFDR) & fifo_mask;
771 
772 	reg = sci_getreg(port, SCFDR);
773 	if (reg->size)
774 		return serial_port_in(port, SCFDR) >> 8;
775 
776 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
777 }
778 
779 static int sci_txroom(struct uart_port *port)
780 {
781 	return port->fifosize - sci_txfill(port);
782 }
783 
784 static int sci_rxfill(struct uart_port *port)
785 {
786 	struct sci_port *s = to_sci_port(port);
787 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
788 	const struct plat_sci_reg *reg;
789 
790 	reg = sci_getreg(port, SCRFDR);
791 	if (reg->size)
792 		return serial_port_in(port, SCRFDR) & fifo_mask;
793 
794 	reg = sci_getreg(port, SCFDR);
795 	if (reg->size)
796 		return serial_port_in(port, SCFDR) & fifo_mask;
797 
798 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
799 }
800 
801 /* ********************************************************************** *
802  *                   the interrupt related routines                       *
803  * ********************************************************************** */
804 
805 static void sci_transmit_chars(struct uart_port *port)
806 {
807 	struct circ_buf *xmit = &port->state->xmit;
808 	unsigned int stopped = uart_tx_stopped(port);
809 	unsigned short status;
810 	unsigned short ctrl;
811 	int count;
812 
813 	status = serial_port_in(port, SCxSR);
814 	if (!(status & SCxSR_TDxE(port))) {
815 		ctrl = serial_port_in(port, SCSCR);
816 		if (uart_circ_empty(xmit))
817 			ctrl &= ~SCSCR_TIE;
818 		else
819 			ctrl |= SCSCR_TIE;
820 		serial_port_out(port, SCSCR, ctrl);
821 		return;
822 	}
823 
824 	count = sci_txroom(port);
825 
826 	do {
827 		unsigned char c;
828 
829 		if (port->x_char) {
830 			c = port->x_char;
831 			port->x_char = 0;
832 		} else if (!uart_circ_empty(xmit) && !stopped) {
833 			c = xmit->buf[xmit->tail];
834 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
835 		} else {
836 			break;
837 		}
838 
839 		serial_port_out(port, SCxTDR, c);
840 
841 		port->icount.tx++;
842 	} while (--count > 0);
843 
844 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
845 
846 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
847 		uart_write_wakeup(port);
848 	if (uart_circ_empty(xmit))
849 		sci_stop_tx(port);
850 
851 }
852 
853 static void sci_receive_chars(struct uart_port *port)
854 {
855 	struct tty_port *tport = &port->state->port;
856 	int i, count, copied = 0;
857 	unsigned short status;
858 	unsigned char flag;
859 
860 	status = serial_port_in(port, SCxSR);
861 	if (!(status & SCxSR_RDxF(port)))
862 		return;
863 
864 	while (1) {
865 		/* Don't copy more bytes than there is room for in the buffer */
866 		count = tty_buffer_request_room(tport, sci_rxfill(port));
867 
868 		/* If for any reason we can't copy more data, we're done! */
869 		if (count == 0)
870 			break;
871 
872 		if (port->type == PORT_SCI) {
873 			char c = serial_port_in(port, SCxRDR);
874 			if (uart_handle_sysrq_char(port, c))
875 				count = 0;
876 			else
877 				tty_insert_flip_char(tport, c, TTY_NORMAL);
878 		} else {
879 			for (i = 0; i < count; i++) {
880 				char c;
881 
882 				if (port->type == PORT_SCIF ||
883 				    port->type == PORT_HSCIF) {
884 					status = serial_port_in(port, SCxSR);
885 					c = serial_port_in(port, SCxRDR);
886 				} else {
887 					c = serial_port_in(port, SCxRDR);
888 					status = serial_port_in(port, SCxSR);
889 				}
890 				if (uart_handle_sysrq_char(port, c)) {
891 					count--; i--;
892 					continue;
893 				}
894 
895 				/* Store data and status */
896 				if (status & SCxSR_FER(port)) {
897 					flag = TTY_FRAME;
898 					port->icount.frame++;
899 				} else if (status & SCxSR_PER(port)) {
900 					flag = TTY_PARITY;
901 					port->icount.parity++;
902 				} else
903 					flag = TTY_NORMAL;
904 
905 				tty_insert_flip_char(tport, c, flag);
906 			}
907 		}
908 
909 		serial_port_in(port, SCxSR); /* dummy read */
910 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
911 
912 		copied += count;
913 		port->icount.rx += count;
914 	}
915 
916 	if (copied) {
917 		/* Tell the rest of the system the news. New characters! */
918 		tty_flip_buffer_push(tport);
919 	} else {
920 		/* TTY buffers full; read from RX reg to prevent lockup */
921 		serial_port_in(port, SCxRDR);
922 		serial_port_in(port, SCxSR); /* dummy read */
923 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
924 	}
925 }
926 
927 static int sci_handle_errors(struct uart_port *port)
928 {
929 	int copied = 0;
930 	unsigned short status = serial_port_in(port, SCxSR);
931 	struct tty_port *tport = &port->state->port;
932 	struct sci_port *s = to_sci_port(port);
933 
934 	/* Handle overruns */
935 	if (status & s->params->overrun_mask) {
936 		port->icount.overrun++;
937 
938 		/* overrun error */
939 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
940 			copied++;
941 	}
942 
943 	if (status & SCxSR_FER(port)) {
944 		/* frame error */
945 		port->icount.frame++;
946 
947 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
948 			copied++;
949 	}
950 
951 	if (status & SCxSR_PER(port)) {
952 		/* parity error */
953 		port->icount.parity++;
954 
955 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
956 			copied++;
957 	}
958 
959 	if (copied)
960 		tty_flip_buffer_push(tport);
961 
962 	return copied;
963 }
964 
965 static int sci_handle_fifo_overrun(struct uart_port *port)
966 {
967 	struct tty_port *tport = &port->state->port;
968 	struct sci_port *s = to_sci_port(port);
969 	const struct plat_sci_reg *reg;
970 	int copied = 0;
971 	u16 status;
972 
973 	reg = sci_getreg(port, s->params->overrun_reg);
974 	if (!reg->size)
975 		return 0;
976 
977 	status = serial_port_in(port, s->params->overrun_reg);
978 	if (status & s->params->overrun_mask) {
979 		status &= ~s->params->overrun_mask;
980 		serial_port_out(port, s->params->overrun_reg, status);
981 
982 		port->icount.overrun++;
983 
984 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
985 		tty_flip_buffer_push(tport);
986 		copied++;
987 	}
988 
989 	return copied;
990 }
991 
992 static int sci_handle_breaks(struct uart_port *port)
993 {
994 	int copied = 0;
995 	unsigned short status = serial_port_in(port, SCxSR);
996 	struct tty_port *tport = &port->state->port;
997 
998 	if (uart_handle_break(port))
999 		return 0;
1000 
1001 	if (status & SCxSR_BRK(port)) {
1002 		port->icount.brk++;
1003 
1004 		/* Notify of BREAK */
1005 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1006 			copied++;
1007 	}
1008 
1009 	if (copied)
1010 		tty_flip_buffer_push(tport);
1011 
1012 	copied += sci_handle_fifo_overrun(port);
1013 
1014 	return copied;
1015 }
1016 
1017 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1018 {
1019 	unsigned int bits;
1020 
1021 	if (rx_trig >= port->fifosize)
1022 		rx_trig = port->fifosize - 1;
1023 	if (rx_trig < 1)
1024 		rx_trig = 1;
1025 
1026 	/* HSCIF can be set to an arbitrary level. */
1027 	if (sci_getreg(port, HSRTRGR)->size) {
1028 		serial_port_out(port, HSRTRGR, rx_trig);
1029 		return rx_trig;
1030 	}
1031 
1032 	switch (port->type) {
1033 	case PORT_SCIF:
1034 		if (rx_trig < 4) {
1035 			bits = 0;
1036 			rx_trig = 1;
1037 		} else if (rx_trig < 8) {
1038 			bits = SCFCR_RTRG0;
1039 			rx_trig = 4;
1040 		} else if (rx_trig < 14) {
1041 			bits = SCFCR_RTRG1;
1042 			rx_trig = 8;
1043 		} else {
1044 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1045 			rx_trig = 14;
1046 		}
1047 		break;
1048 	case PORT_SCIFA:
1049 	case PORT_SCIFB:
1050 		if (rx_trig < 16) {
1051 			bits = 0;
1052 			rx_trig = 1;
1053 		} else if (rx_trig < 32) {
1054 			bits = SCFCR_RTRG0;
1055 			rx_trig = 16;
1056 		} else if (rx_trig < 48) {
1057 			bits = SCFCR_RTRG1;
1058 			rx_trig = 32;
1059 		} else {
1060 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1061 			rx_trig = 48;
1062 		}
1063 		break;
1064 	default:
1065 		WARN(1, "unknown FIFO configuration");
1066 		return 1;
1067 	}
1068 
1069 	serial_port_out(port, SCFCR,
1070 		(serial_port_in(port, SCFCR) &
1071 		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1072 
1073 	return rx_trig;
1074 }
1075 
1076 static int scif_rtrg_enabled(struct uart_port *port)
1077 {
1078 	if (sci_getreg(port, HSRTRGR)->size)
1079 		return serial_port_in(port, HSRTRGR) != 0;
1080 	else
1081 		return (serial_port_in(port, SCFCR) &
1082 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1083 }
1084 
1085 static void rx_fifo_timer_fn(struct timer_list *t)
1086 {
1087 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1088 	struct uart_port *port = &s->port;
1089 
1090 	dev_dbg(port->dev, "Rx timed out\n");
1091 	scif_set_rtrg(port, 1);
1092 }
1093 
1094 static ssize_t rx_fifo_trigger_show(struct device *dev,
1095 				    struct device_attribute *attr, char *buf)
1096 {
1097 	struct uart_port *port = dev_get_drvdata(dev);
1098 	struct sci_port *sci = to_sci_port(port);
1099 
1100 	return sprintf(buf, "%d\n", sci->rx_trigger);
1101 }
1102 
1103 static ssize_t rx_fifo_trigger_store(struct device *dev,
1104 				     struct device_attribute *attr,
1105 				     const char *buf, size_t count)
1106 {
1107 	struct uart_port *port = dev_get_drvdata(dev);
1108 	struct sci_port *sci = to_sci_port(port);
1109 	int ret;
1110 	long r;
1111 
1112 	ret = kstrtol(buf, 0, &r);
1113 	if (ret)
1114 		return ret;
1115 
1116 	sci->rx_trigger = scif_set_rtrg(port, r);
1117 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1118 		scif_set_rtrg(port, 1);
1119 
1120 	return count;
1121 }
1122 
1123 static DEVICE_ATTR_RW(rx_fifo_trigger);
1124 
1125 static ssize_t rx_fifo_timeout_show(struct device *dev,
1126 			       struct device_attribute *attr,
1127 			       char *buf)
1128 {
1129 	struct uart_port *port = dev_get_drvdata(dev);
1130 	struct sci_port *sci = to_sci_port(port);
1131 	int v;
1132 
1133 	if (port->type == PORT_HSCIF)
1134 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1135 	else
1136 		v = sci->rx_fifo_timeout;
1137 
1138 	return sprintf(buf, "%d\n", v);
1139 }
1140 
1141 static ssize_t rx_fifo_timeout_store(struct device *dev,
1142 				struct device_attribute *attr,
1143 				const char *buf,
1144 				size_t count)
1145 {
1146 	struct uart_port *port = dev_get_drvdata(dev);
1147 	struct sci_port *sci = to_sci_port(port);
1148 	int ret;
1149 	long r;
1150 
1151 	ret = kstrtol(buf, 0, &r);
1152 	if (ret)
1153 		return ret;
1154 
1155 	if (port->type == PORT_HSCIF) {
1156 		if (r < 0 || r > 3)
1157 			return -EINVAL;
1158 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1159 	} else {
1160 		sci->rx_fifo_timeout = r;
1161 		scif_set_rtrg(port, 1);
1162 		if (r > 0)
1163 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1164 	}
1165 
1166 	return count;
1167 }
1168 
1169 static DEVICE_ATTR_RW(rx_fifo_timeout);
1170 
1171 
1172 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1173 static void sci_dma_tx_complete(void *arg)
1174 {
1175 	struct sci_port *s = arg;
1176 	struct uart_port *port = &s->port;
1177 	struct circ_buf *xmit = &port->state->xmit;
1178 	unsigned long flags;
1179 
1180 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1181 
1182 	spin_lock_irqsave(&port->lock, flags);
1183 
1184 	uart_xmit_advance(port, s->tx_dma_len);
1185 
1186 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1187 		uart_write_wakeup(port);
1188 
1189 	if (!uart_circ_empty(xmit)) {
1190 		s->cookie_tx = 0;
1191 		schedule_work(&s->work_tx);
1192 	} else {
1193 		s->cookie_tx = -EINVAL;
1194 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1195 			u16 ctrl = serial_port_in(port, SCSCR);
1196 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1197 		}
1198 	}
1199 
1200 	spin_unlock_irqrestore(&port->lock, flags);
1201 }
1202 
1203 /* Locking: called with port lock held */
1204 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1205 {
1206 	struct uart_port *port = &s->port;
1207 	struct tty_port *tport = &port->state->port;
1208 	int copied;
1209 
1210 	copied = tty_insert_flip_string(tport, buf, count);
1211 	if (copied < count)
1212 		port->icount.buf_overrun++;
1213 
1214 	port->icount.rx += copied;
1215 
1216 	return copied;
1217 }
1218 
1219 static int sci_dma_rx_find_active(struct sci_port *s)
1220 {
1221 	unsigned int i;
1222 
1223 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1224 		if (s->active_rx == s->cookie_rx[i])
1225 			return i;
1226 
1227 	return -1;
1228 }
1229 
1230 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1231 {
1232 	unsigned int i;
1233 
1234 	s->chan_rx = NULL;
1235 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1236 		s->cookie_rx[i] = -EINVAL;
1237 	s->active_rx = 0;
1238 }
1239 
1240 static void sci_dma_rx_release(struct sci_port *s)
1241 {
1242 	struct dma_chan *chan = s->chan_rx_saved;
1243 
1244 	s->chan_rx_saved = NULL;
1245 	sci_dma_rx_chan_invalidate(s);
1246 	dmaengine_terminate_sync(chan);
1247 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1248 			  sg_dma_address(&s->sg_rx[0]));
1249 	dma_release_channel(chan);
1250 }
1251 
1252 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1253 {
1254 	long sec = usec / 1000000;
1255 	long nsec = (usec % 1000000) * 1000;
1256 	ktime_t t = ktime_set(sec, nsec);
1257 
1258 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1259 }
1260 
1261 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1262 {
1263 	struct uart_port *port = &s->port;
1264 	u16 scr;
1265 
1266 	/* Direct new serial port interrupts back to CPU */
1267 	scr = serial_port_in(port, SCSCR);
1268 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1269 		scr &= ~SCSCR_RDRQE;
1270 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1271 	}
1272 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1273 }
1274 
1275 static void sci_dma_rx_complete(void *arg)
1276 {
1277 	struct sci_port *s = arg;
1278 	struct dma_chan *chan = s->chan_rx;
1279 	struct uart_port *port = &s->port;
1280 	struct dma_async_tx_descriptor *desc;
1281 	unsigned long flags;
1282 	int active, count = 0;
1283 
1284 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1285 		s->active_rx);
1286 
1287 	spin_lock_irqsave(&port->lock, flags);
1288 
1289 	active = sci_dma_rx_find_active(s);
1290 	if (active >= 0)
1291 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1292 
1293 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1294 
1295 	if (count)
1296 		tty_flip_buffer_push(&port->state->port);
1297 
1298 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1299 				       DMA_DEV_TO_MEM,
1300 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1301 	if (!desc)
1302 		goto fail;
1303 
1304 	desc->callback = sci_dma_rx_complete;
1305 	desc->callback_param = s;
1306 	s->cookie_rx[active] = dmaengine_submit(desc);
1307 	if (dma_submit_error(s->cookie_rx[active]))
1308 		goto fail;
1309 
1310 	s->active_rx = s->cookie_rx[!active];
1311 
1312 	dma_async_issue_pending(chan);
1313 
1314 	spin_unlock_irqrestore(&port->lock, flags);
1315 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1316 		__func__, s->cookie_rx[active], active, s->active_rx);
1317 	return;
1318 
1319 fail:
1320 	spin_unlock_irqrestore(&port->lock, flags);
1321 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1322 	/* Switch to PIO */
1323 	spin_lock_irqsave(&port->lock, flags);
1324 	dmaengine_terminate_async(chan);
1325 	sci_dma_rx_chan_invalidate(s);
1326 	sci_dma_rx_reenable_irq(s);
1327 	spin_unlock_irqrestore(&port->lock, flags);
1328 }
1329 
1330 static void sci_dma_tx_release(struct sci_port *s)
1331 {
1332 	struct dma_chan *chan = s->chan_tx_saved;
1333 
1334 	cancel_work_sync(&s->work_tx);
1335 	s->chan_tx_saved = s->chan_tx = NULL;
1336 	s->cookie_tx = -EINVAL;
1337 	dmaengine_terminate_sync(chan);
1338 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1339 			 DMA_TO_DEVICE);
1340 	dma_release_channel(chan);
1341 }
1342 
1343 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1344 {
1345 	struct dma_chan *chan = s->chan_rx;
1346 	struct uart_port *port = &s->port;
1347 	unsigned long flags;
1348 	int i;
1349 
1350 	for (i = 0; i < 2; i++) {
1351 		struct scatterlist *sg = &s->sg_rx[i];
1352 		struct dma_async_tx_descriptor *desc;
1353 
1354 		desc = dmaengine_prep_slave_sg(chan,
1355 			sg, 1, DMA_DEV_TO_MEM,
1356 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1357 		if (!desc)
1358 			goto fail;
1359 
1360 		desc->callback = sci_dma_rx_complete;
1361 		desc->callback_param = s;
1362 		s->cookie_rx[i] = dmaengine_submit(desc);
1363 		if (dma_submit_error(s->cookie_rx[i]))
1364 			goto fail;
1365 
1366 	}
1367 
1368 	s->active_rx = s->cookie_rx[0];
1369 
1370 	dma_async_issue_pending(chan);
1371 	return 0;
1372 
1373 fail:
1374 	/* Switch to PIO */
1375 	if (!port_lock_held)
1376 		spin_lock_irqsave(&port->lock, flags);
1377 	if (i)
1378 		dmaengine_terminate_async(chan);
1379 	sci_dma_rx_chan_invalidate(s);
1380 	sci_start_rx(port);
1381 	if (!port_lock_held)
1382 		spin_unlock_irqrestore(&port->lock, flags);
1383 	return -EAGAIN;
1384 }
1385 
1386 static void sci_dma_tx_work_fn(struct work_struct *work)
1387 {
1388 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1389 	struct dma_async_tx_descriptor *desc;
1390 	struct dma_chan *chan = s->chan_tx;
1391 	struct uart_port *port = &s->port;
1392 	struct circ_buf *xmit = &port->state->xmit;
1393 	unsigned long flags;
1394 	dma_addr_t buf;
1395 	int head, tail;
1396 
1397 	/*
1398 	 * DMA is idle now.
1399 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1400 	 * offsets and lengths. Since it is a circular buffer, we have to
1401 	 * transmit till the end, and then the rest. Take the port lock to get a
1402 	 * consistent xmit buffer state.
1403 	 */
1404 	spin_lock_irq(&port->lock);
1405 	head = xmit->head;
1406 	tail = xmit->tail;
1407 	buf = s->tx_dma_addr + tail;
1408 	s->tx_dma_len = CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE);
1409 	if (!s->tx_dma_len) {
1410 		/* Transmit buffer has been flushed */
1411 		spin_unlock_irq(&port->lock);
1412 		return;
1413 	}
1414 
1415 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1416 					   DMA_MEM_TO_DEV,
1417 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1418 	if (!desc) {
1419 		spin_unlock_irq(&port->lock);
1420 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1421 		goto switch_to_pio;
1422 	}
1423 
1424 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1425 				   DMA_TO_DEVICE);
1426 
1427 	desc->callback = sci_dma_tx_complete;
1428 	desc->callback_param = s;
1429 	s->cookie_tx = dmaengine_submit(desc);
1430 	if (dma_submit_error(s->cookie_tx)) {
1431 		spin_unlock_irq(&port->lock);
1432 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1433 		goto switch_to_pio;
1434 	}
1435 
1436 	spin_unlock_irq(&port->lock);
1437 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1438 		__func__, xmit->buf, tail, head, s->cookie_tx);
1439 
1440 	dma_async_issue_pending(chan);
1441 	return;
1442 
1443 switch_to_pio:
1444 	spin_lock_irqsave(&port->lock, flags);
1445 	s->chan_tx = NULL;
1446 	sci_start_tx(port);
1447 	spin_unlock_irqrestore(&port->lock, flags);
1448 	return;
1449 }
1450 
1451 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1452 {
1453 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1454 	struct dma_chan *chan = s->chan_rx;
1455 	struct uart_port *port = &s->port;
1456 	struct dma_tx_state state;
1457 	enum dma_status status;
1458 	unsigned long flags;
1459 	unsigned int read;
1460 	int active, count;
1461 
1462 	dev_dbg(port->dev, "DMA Rx timed out\n");
1463 
1464 	spin_lock_irqsave(&port->lock, flags);
1465 
1466 	active = sci_dma_rx_find_active(s);
1467 	if (active < 0) {
1468 		spin_unlock_irqrestore(&port->lock, flags);
1469 		return HRTIMER_NORESTART;
1470 	}
1471 
1472 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1473 	if (status == DMA_COMPLETE) {
1474 		spin_unlock_irqrestore(&port->lock, flags);
1475 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1476 			s->active_rx, active);
1477 
1478 		/* Let packet complete handler take care of the packet */
1479 		return HRTIMER_NORESTART;
1480 	}
1481 
1482 	dmaengine_pause(chan);
1483 
1484 	/*
1485 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1486 	 * data keeps on coming until transaction is complete so check
1487 	 * for DMA_COMPLETE again
1488 	 * Let packet complete handler take care of the packet
1489 	 */
1490 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1491 	if (status == DMA_COMPLETE) {
1492 		spin_unlock_irqrestore(&port->lock, flags);
1493 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1494 		return HRTIMER_NORESTART;
1495 	}
1496 
1497 	/* Handle incomplete DMA receive */
1498 	dmaengine_terminate_async(s->chan_rx);
1499 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1500 
1501 	if (read) {
1502 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1503 		if (count)
1504 			tty_flip_buffer_push(&port->state->port);
1505 	}
1506 
1507 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1508 		sci_dma_rx_submit(s, true);
1509 
1510 	sci_dma_rx_reenable_irq(s);
1511 
1512 	spin_unlock_irqrestore(&port->lock, flags);
1513 
1514 	return HRTIMER_NORESTART;
1515 }
1516 
1517 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1518 					     enum dma_transfer_direction dir)
1519 {
1520 	struct dma_chan *chan;
1521 	struct dma_slave_config cfg;
1522 	int ret;
1523 
1524 	chan = dma_request_slave_channel(port->dev,
1525 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1526 	if (!chan) {
1527 		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1528 		return NULL;
1529 	}
1530 
1531 	memset(&cfg, 0, sizeof(cfg));
1532 	cfg.direction = dir;
1533 	if (dir == DMA_MEM_TO_DEV) {
1534 		cfg.dst_addr = port->mapbase +
1535 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1536 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1537 	} else {
1538 		cfg.src_addr = port->mapbase +
1539 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1540 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1541 	}
1542 
1543 	ret = dmaengine_slave_config(chan, &cfg);
1544 	if (ret) {
1545 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1546 		dma_release_channel(chan);
1547 		return NULL;
1548 	}
1549 
1550 	return chan;
1551 }
1552 
1553 static void sci_request_dma(struct uart_port *port)
1554 {
1555 	struct sci_port *s = to_sci_port(port);
1556 	struct dma_chan *chan;
1557 
1558 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1559 
1560 	/*
1561 	 * DMA on console may interfere with Kernel log messages which use
1562 	 * plain putchar(). So, simply don't use it with a console.
1563 	 */
1564 	if (uart_console(port))
1565 		return;
1566 
1567 	if (!port->dev->of_node)
1568 		return;
1569 
1570 	s->cookie_tx = -EINVAL;
1571 
1572 	/*
1573 	 * Don't request a dma channel if no channel was specified
1574 	 * in the device tree.
1575 	 */
1576 	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1577 		return;
1578 
1579 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1580 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1581 	if (chan) {
1582 		/* UART circular tx buffer is an aligned page. */
1583 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1584 						port->state->xmit.buf,
1585 						UART_XMIT_SIZE,
1586 						DMA_TO_DEVICE);
1587 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1588 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1589 			dma_release_channel(chan);
1590 		} else {
1591 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1592 				__func__, UART_XMIT_SIZE,
1593 				port->state->xmit.buf, &s->tx_dma_addr);
1594 
1595 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1596 			s->chan_tx_saved = s->chan_tx = chan;
1597 		}
1598 	}
1599 
1600 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1601 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1602 	if (chan) {
1603 		unsigned int i;
1604 		dma_addr_t dma;
1605 		void *buf;
1606 
1607 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1608 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1609 					 &dma, GFP_KERNEL);
1610 		if (!buf) {
1611 			dev_warn(port->dev,
1612 				 "Failed to allocate Rx dma buffer, using PIO\n");
1613 			dma_release_channel(chan);
1614 			return;
1615 		}
1616 
1617 		for (i = 0; i < 2; i++) {
1618 			struct scatterlist *sg = &s->sg_rx[i];
1619 
1620 			sg_init_table(sg, 1);
1621 			s->rx_buf[i] = buf;
1622 			sg_dma_address(sg) = dma;
1623 			sg_dma_len(sg) = s->buf_len_rx;
1624 
1625 			buf += s->buf_len_rx;
1626 			dma += s->buf_len_rx;
1627 		}
1628 
1629 		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1630 		s->rx_timer.function = sci_dma_rx_timer_fn;
1631 
1632 		s->chan_rx_saved = s->chan_rx = chan;
1633 
1634 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1635 			sci_dma_rx_submit(s, false);
1636 	}
1637 }
1638 
1639 static void sci_free_dma(struct uart_port *port)
1640 {
1641 	struct sci_port *s = to_sci_port(port);
1642 
1643 	if (s->chan_tx_saved)
1644 		sci_dma_tx_release(s);
1645 	if (s->chan_rx_saved)
1646 		sci_dma_rx_release(s);
1647 }
1648 
1649 static void sci_flush_buffer(struct uart_port *port)
1650 {
1651 	struct sci_port *s = to_sci_port(port);
1652 
1653 	/*
1654 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1655 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1656 	 * pending transfers
1657 	 */
1658 	s->tx_dma_len = 0;
1659 	if (s->chan_tx) {
1660 		dmaengine_terminate_async(s->chan_tx);
1661 		s->cookie_tx = -EINVAL;
1662 	}
1663 }
1664 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1665 static inline void sci_request_dma(struct uart_port *port)
1666 {
1667 }
1668 
1669 static inline void sci_free_dma(struct uart_port *port)
1670 {
1671 }
1672 
1673 #define sci_flush_buffer	NULL
1674 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1675 
1676 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1677 {
1678 	struct uart_port *port = ptr;
1679 	struct sci_port *s = to_sci_port(port);
1680 
1681 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1682 	if (s->chan_rx) {
1683 		u16 scr = serial_port_in(port, SCSCR);
1684 		u16 ssr = serial_port_in(port, SCxSR);
1685 
1686 		/* Disable future Rx interrupts */
1687 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1688 			disable_irq_nosync(irq);
1689 			scr |= SCSCR_RDRQE;
1690 		} else {
1691 			if (sci_dma_rx_submit(s, false) < 0)
1692 				goto handle_pio;
1693 
1694 			scr &= ~SCSCR_RIE;
1695 		}
1696 		serial_port_out(port, SCSCR, scr);
1697 		/* Clear current interrupt */
1698 		serial_port_out(port, SCxSR,
1699 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1700 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1701 			jiffies, s->rx_timeout);
1702 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1703 
1704 		return IRQ_HANDLED;
1705 	}
1706 
1707 handle_pio:
1708 #endif
1709 
1710 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1711 		if (!scif_rtrg_enabled(port))
1712 			scif_set_rtrg(port, s->rx_trigger);
1713 
1714 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1715 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1716 	}
1717 
1718 	/* I think sci_receive_chars has to be called irrespective
1719 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1720 	 * to be disabled?
1721 	 */
1722 	sci_receive_chars(port);
1723 
1724 	return IRQ_HANDLED;
1725 }
1726 
1727 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1728 {
1729 	struct uart_port *port = ptr;
1730 	unsigned long flags;
1731 
1732 	spin_lock_irqsave(&port->lock, flags);
1733 	sci_transmit_chars(port);
1734 	spin_unlock_irqrestore(&port->lock, flags);
1735 
1736 	return IRQ_HANDLED;
1737 }
1738 
1739 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1740 {
1741 	struct uart_port *port = ptr;
1742 
1743 	/* Handle BREAKs */
1744 	sci_handle_breaks(port);
1745 
1746 	/* drop invalid character received before break was detected */
1747 	serial_port_in(port, SCxRDR);
1748 
1749 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1750 
1751 	return IRQ_HANDLED;
1752 }
1753 
1754 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1755 {
1756 	struct uart_port *port = ptr;
1757 	struct sci_port *s = to_sci_port(port);
1758 
1759 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1760 		/* Break and Error interrupts are muxed */
1761 		unsigned short ssr_status = serial_port_in(port, SCxSR);
1762 
1763 		/* Break Interrupt */
1764 		if (ssr_status & SCxSR_BRK(port))
1765 			sci_br_interrupt(irq, ptr);
1766 
1767 		/* Break only? */
1768 		if (!(ssr_status & SCxSR_ERRORS(port)))
1769 			return IRQ_HANDLED;
1770 	}
1771 
1772 	/* Handle errors */
1773 	if (port->type == PORT_SCI) {
1774 		if (sci_handle_errors(port)) {
1775 			/* discard character in rx buffer */
1776 			serial_port_in(port, SCxSR);
1777 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1778 		}
1779 	} else {
1780 		sci_handle_fifo_overrun(port);
1781 		if (!s->chan_rx)
1782 			sci_receive_chars(port);
1783 	}
1784 
1785 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1786 
1787 	/* Kick the transmission */
1788 	if (!s->chan_tx)
1789 		sci_tx_interrupt(irq, ptr);
1790 
1791 	return IRQ_HANDLED;
1792 }
1793 
1794 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1795 {
1796 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1797 	struct uart_port *port = ptr;
1798 	struct sci_port *s = to_sci_port(port);
1799 	irqreturn_t ret = IRQ_NONE;
1800 
1801 	ssr_status = serial_port_in(port, SCxSR);
1802 	scr_status = serial_port_in(port, SCSCR);
1803 	if (s->params->overrun_reg == SCxSR)
1804 		orer_status = ssr_status;
1805 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1806 		orer_status = serial_port_in(port, s->params->overrun_reg);
1807 
1808 	err_enabled = scr_status & port_rx_irq_mask(port);
1809 
1810 	/* Tx Interrupt */
1811 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1812 	    !s->chan_tx)
1813 		ret = sci_tx_interrupt(irq, ptr);
1814 
1815 	/*
1816 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1817 	 * DR flags
1818 	 */
1819 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1820 	    (scr_status & SCSCR_RIE))
1821 		ret = sci_rx_interrupt(irq, ptr);
1822 
1823 	/* Error Interrupt */
1824 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1825 		ret = sci_er_interrupt(irq, ptr);
1826 
1827 	/* Break Interrupt */
1828 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1829 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1830 		ret = sci_br_interrupt(irq, ptr);
1831 
1832 	/* Overrun Interrupt */
1833 	if (orer_status & s->params->overrun_mask) {
1834 		sci_handle_fifo_overrun(port);
1835 		ret = IRQ_HANDLED;
1836 	}
1837 
1838 	return ret;
1839 }
1840 
1841 static const struct sci_irq_desc {
1842 	const char	*desc;
1843 	irq_handler_t	handler;
1844 } sci_irq_desc[] = {
1845 	/*
1846 	 * Split out handlers, the default case.
1847 	 */
1848 	[SCIx_ERI_IRQ] = {
1849 		.desc = "rx err",
1850 		.handler = sci_er_interrupt,
1851 	},
1852 
1853 	[SCIx_RXI_IRQ] = {
1854 		.desc = "rx full",
1855 		.handler = sci_rx_interrupt,
1856 	},
1857 
1858 	[SCIx_TXI_IRQ] = {
1859 		.desc = "tx empty",
1860 		.handler = sci_tx_interrupt,
1861 	},
1862 
1863 	[SCIx_BRI_IRQ] = {
1864 		.desc = "break",
1865 		.handler = sci_br_interrupt,
1866 	},
1867 
1868 	[SCIx_DRI_IRQ] = {
1869 		.desc = "rx ready",
1870 		.handler = sci_rx_interrupt,
1871 	},
1872 
1873 	[SCIx_TEI_IRQ] = {
1874 		.desc = "tx end",
1875 		.handler = sci_tx_interrupt,
1876 	},
1877 
1878 	/*
1879 	 * Special muxed handler.
1880 	 */
1881 	[SCIx_MUX_IRQ] = {
1882 		.desc = "mux",
1883 		.handler = sci_mpxed_interrupt,
1884 	},
1885 };
1886 
1887 static int sci_request_irq(struct sci_port *port)
1888 {
1889 	struct uart_port *up = &port->port;
1890 	int i, j, w, ret = 0;
1891 
1892 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1893 		const struct sci_irq_desc *desc;
1894 		int irq;
1895 
1896 		/* Check if already registered (muxed) */
1897 		for (w = 0; w < i; w++)
1898 			if (port->irqs[w] == port->irqs[i])
1899 				w = i + 1;
1900 		if (w > i)
1901 			continue;
1902 
1903 		if (SCIx_IRQ_IS_MUXED(port)) {
1904 			i = SCIx_MUX_IRQ;
1905 			irq = up->irq;
1906 		} else {
1907 			irq = port->irqs[i];
1908 
1909 			/*
1910 			 * Certain port types won't support all of the
1911 			 * available interrupt sources.
1912 			 */
1913 			if (unlikely(irq < 0))
1914 				continue;
1915 		}
1916 
1917 		desc = sci_irq_desc + i;
1918 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1919 					    dev_name(up->dev), desc->desc);
1920 		if (!port->irqstr[j]) {
1921 			ret = -ENOMEM;
1922 			goto out_nomem;
1923 		}
1924 
1925 		ret = request_irq(irq, desc->handler, up->irqflags,
1926 				  port->irqstr[j], port);
1927 		if (unlikely(ret)) {
1928 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1929 			goto out_noirq;
1930 		}
1931 	}
1932 
1933 	return 0;
1934 
1935 out_noirq:
1936 	while (--i >= 0)
1937 		free_irq(port->irqs[i], port);
1938 
1939 out_nomem:
1940 	while (--j >= 0)
1941 		kfree(port->irqstr[j]);
1942 
1943 	return ret;
1944 }
1945 
1946 static void sci_free_irq(struct sci_port *port)
1947 {
1948 	int i, j;
1949 
1950 	/*
1951 	 * Intentionally in reverse order so we iterate over the muxed
1952 	 * IRQ first.
1953 	 */
1954 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1955 		int irq = port->irqs[i];
1956 
1957 		/*
1958 		 * Certain port types won't support all of the available
1959 		 * interrupt sources.
1960 		 */
1961 		if (unlikely(irq < 0))
1962 			continue;
1963 
1964 		/* Check if already freed (irq was muxed) */
1965 		for (j = 0; j < i; j++)
1966 			if (port->irqs[j] == irq)
1967 				j = i + 1;
1968 		if (j > i)
1969 			continue;
1970 
1971 		free_irq(port->irqs[i], port);
1972 		kfree(port->irqstr[i]);
1973 
1974 		if (SCIx_IRQ_IS_MUXED(port)) {
1975 			/* If there's only one IRQ, we're done. */
1976 			return;
1977 		}
1978 	}
1979 }
1980 
1981 static unsigned int sci_tx_empty(struct uart_port *port)
1982 {
1983 	unsigned short status = serial_port_in(port, SCxSR);
1984 	unsigned short in_tx_fifo = sci_txfill(port);
1985 
1986 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1987 }
1988 
1989 static void sci_set_rts(struct uart_port *port, bool state)
1990 {
1991 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1992 		u16 data = serial_port_in(port, SCPDR);
1993 
1994 		/* Active low */
1995 		if (state)
1996 			data &= ~SCPDR_RTSD;
1997 		else
1998 			data |= SCPDR_RTSD;
1999 		serial_port_out(port, SCPDR, data);
2000 
2001 		/* RTS# is output */
2002 		serial_port_out(port, SCPCR,
2003 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
2004 	} else if (sci_getreg(port, SCSPTR)->size) {
2005 		u16 ctrl = serial_port_in(port, SCSPTR);
2006 
2007 		/* Active low */
2008 		if (state)
2009 			ctrl &= ~SCSPTR_RTSDT;
2010 		else
2011 			ctrl |= SCSPTR_RTSDT;
2012 		serial_port_out(port, SCSPTR, ctrl);
2013 	}
2014 }
2015 
2016 static bool sci_get_cts(struct uart_port *port)
2017 {
2018 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2019 		/* Active low */
2020 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2021 	} else if (sci_getreg(port, SCSPTR)->size) {
2022 		/* Active low */
2023 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2024 	}
2025 
2026 	return true;
2027 }
2028 
2029 /*
2030  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2031  * CTS/RTS is supported in hardware by at least one port and controlled
2032  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2033  * handled via the ->init_pins() op, which is a bit of a one-way street,
2034  * lacking any ability to defer pin control -- this will later be
2035  * converted over to the GPIO framework).
2036  *
2037  * Other modes (such as loopback) are supported generically on certain
2038  * port types, but not others. For these it's sufficient to test for the
2039  * existence of the support register and simply ignore the port type.
2040  */
2041 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2042 {
2043 	struct sci_port *s = to_sci_port(port);
2044 
2045 	if (mctrl & TIOCM_LOOP) {
2046 		const struct plat_sci_reg *reg;
2047 
2048 		/*
2049 		 * Standard loopback mode for SCFCR ports.
2050 		 */
2051 		reg = sci_getreg(port, SCFCR);
2052 		if (reg->size)
2053 			serial_port_out(port, SCFCR,
2054 					serial_port_in(port, SCFCR) |
2055 					SCFCR_LOOP);
2056 	}
2057 
2058 	mctrl_gpio_set(s->gpios, mctrl);
2059 
2060 	if (!s->has_rtscts)
2061 		return;
2062 
2063 	if (!(mctrl & TIOCM_RTS)) {
2064 		/* Disable Auto RTS */
2065 		serial_port_out(port, SCFCR,
2066 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2067 
2068 		/* Clear RTS */
2069 		sci_set_rts(port, 0);
2070 	} else if (s->autorts) {
2071 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2072 			/* Enable RTS# pin function */
2073 			serial_port_out(port, SCPCR,
2074 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2075 		}
2076 
2077 		/* Enable Auto RTS */
2078 		serial_port_out(port, SCFCR,
2079 				serial_port_in(port, SCFCR) | SCFCR_MCE);
2080 	} else {
2081 		/* Set RTS */
2082 		sci_set_rts(port, 1);
2083 	}
2084 }
2085 
2086 static unsigned int sci_get_mctrl(struct uart_port *port)
2087 {
2088 	struct sci_port *s = to_sci_port(port);
2089 	struct mctrl_gpios *gpios = s->gpios;
2090 	unsigned int mctrl = 0;
2091 
2092 	mctrl_gpio_get(gpios, &mctrl);
2093 
2094 	/*
2095 	 * CTS/RTS is handled in hardware when supported, while nothing
2096 	 * else is wired up.
2097 	 */
2098 	if (s->autorts) {
2099 		if (sci_get_cts(port))
2100 			mctrl |= TIOCM_CTS;
2101 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2102 		mctrl |= TIOCM_CTS;
2103 	}
2104 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2105 		mctrl |= TIOCM_DSR;
2106 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2107 		mctrl |= TIOCM_CAR;
2108 
2109 	return mctrl;
2110 }
2111 
2112 static void sci_enable_ms(struct uart_port *port)
2113 {
2114 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2115 }
2116 
2117 static void sci_break_ctl(struct uart_port *port, int break_state)
2118 {
2119 	unsigned short scscr, scsptr;
2120 	unsigned long flags;
2121 
2122 	/* check whether the port has SCSPTR */
2123 	if (!sci_getreg(port, SCSPTR)->size) {
2124 		/*
2125 		 * Not supported by hardware. Most parts couple break and rx
2126 		 * interrupts together, with break detection always enabled.
2127 		 */
2128 		return;
2129 	}
2130 
2131 	spin_lock_irqsave(&port->lock, flags);
2132 	scsptr = serial_port_in(port, SCSPTR);
2133 	scscr = serial_port_in(port, SCSCR);
2134 
2135 	if (break_state == -1) {
2136 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2137 		scscr &= ~SCSCR_TE;
2138 	} else {
2139 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2140 		scscr |= SCSCR_TE;
2141 	}
2142 
2143 	serial_port_out(port, SCSPTR, scsptr);
2144 	serial_port_out(port, SCSCR, scscr);
2145 	spin_unlock_irqrestore(&port->lock, flags);
2146 }
2147 
2148 static int sci_startup(struct uart_port *port)
2149 {
2150 	struct sci_port *s = to_sci_port(port);
2151 	int ret;
2152 
2153 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2154 
2155 	sci_request_dma(port);
2156 
2157 	ret = sci_request_irq(s);
2158 	if (unlikely(ret < 0)) {
2159 		sci_free_dma(port);
2160 		return ret;
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 static void sci_shutdown(struct uart_port *port)
2167 {
2168 	struct sci_port *s = to_sci_port(port);
2169 	unsigned long flags;
2170 	u16 scr;
2171 
2172 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2173 
2174 	s->autorts = false;
2175 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2176 
2177 	spin_lock_irqsave(&port->lock, flags);
2178 	sci_stop_rx(port);
2179 	sci_stop_tx(port);
2180 	/*
2181 	 * Stop RX and TX, disable related interrupts, keep clock source
2182 	 * and HSCIF TOT bits
2183 	 */
2184 	scr = serial_port_in(port, SCSCR);
2185 	serial_port_out(port, SCSCR, scr &
2186 			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2187 	spin_unlock_irqrestore(&port->lock, flags);
2188 
2189 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2190 	if (s->chan_rx_saved) {
2191 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2192 			port->line);
2193 		hrtimer_cancel(&s->rx_timer);
2194 	}
2195 #endif
2196 
2197 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2198 		del_timer_sync(&s->rx_fifo_timer);
2199 	sci_free_irq(s);
2200 	sci_free_dma(port);
2201 }
2202 
2203 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2204 			unsigned int *srr)
2205 {
2206 	unsigned long freq = s->clk_rates[SCI_SCK];
2207 	int err, min_err = INT_MAX;
2208 	unsigned int sr;
2209 
2210 	if (s->port.type != PORT_HSCIF)
2211 		freq *= 2;
2212 
2213 	for_each_sr(sr, s) {
2214 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2215 		if (abs(err) >= abs(min_err))
2216 			continue;
2217 
2218 		min_err = err;
2219 		*srr = sr - 1;
2220 
2221 		if (!err)
2222 			break;
2223 	}
2224 
2225 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2226 		*srr + 1);
2227 	return min_err;
2228 }
2229 
2230 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2231 			unsigned long freq, unsigned int *dlr,
2232 			unsigned int *srr)
2233 {
2234 	int err, min_err = INT_MAX;
2235 	unsigned int sr, dl;
2236 
2237 	if (s->port.type != PORT_HSCIF)
2238 		freq *= 2;
2239 
2240 	for_each_sr(sr, s) {
2241 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2242 		dl = clamp(dl, 1U, 65535U);
2243 
2244 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2245 		if (abs(err) >= abs(min_err))
2246 			continue;
2247 
2248 		min_err = err;
2249 		*dlr = dl;
2250 		*srr = sr - 1;
2251 
2252 		if (!err)
2253 			break;
2254 	}
2255 
2256 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2257 		min_err, *dlr, *srr + 1);
2258 	return min_err;
2259 }
2260 
2261 /* calculate sample rate, BRR, and clock select */
2262 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2263 			  unsigned int *brr, unsigned int *srr,
2264 			  unsigned int *cks)
2265 {
2266 	unsigned long freq = s->clk_rates[SCI_FCK];
2267 	unsigned int sr, br, prediv, scrate, c;
2268 	int err, min_err = INT_MAX;
2269 
2270 	if (s->port.type != PORT_HSCIF)
2271 		freq *= 2;
2272 
2273 	/*
2274 	 * Find the combination of sample rate and clock select with the
2275 	 * smallest deviation from the desired baud rate.
2276 	 * Prefer high sample rates to maximise the receive margin.
2277 	 *
2278 	 * M: Receive margin (%)
2279 	 * N: Ratio of bit rate to clock (N = sampling rate)
2280 	 * D: Clock duty (D = 0 to 1.0)
2281 	 * L: Frame length (L = 9 to 12)
2282 	 * F: Absolute value of clock frequency deviation
2283 	 *
2284 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2285 	 *      (|D - 0.5| / N * (1 + F))|
2286 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2287 	 */
2288 	for_each_sr(sr, s) {
2289 		for (c = 0; c <= 3; c++) {
2290 			/* integerized formulas from HSCIF documentation */
2291 			prediv = sr << (2 * c + 1);
2292 
2293 			/*
2294 			 * We need to calculate:
2295 			 *
2296 			 *     br = freq / (prediv * bps) clamped to [1..256]
2297 			 *     err = freq / (br * prediv) - bps
2298 			 *
2299 			 * Watch out for overflow when calculating the desired
2300 			 * sampling clock rate!
2301 			 */
2302 			if (bps > UINT_MAX / prediv)
2303 				break;
2304 
2305 			scrate = prediv * bps;
2306 			br = DIV_ROUND_CLOSEST(freq, scrate);
2307 			br = clamp(br, 1U, 256U);
2308 
2309 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2310 			if (abs(err) >= abs(min_err))
2311 				continue;
2312 
2313 			min_err = err;
2314 			*brr = br - 1;
2315 			*srr = sr - 1;
2316 			*cks = c;
2317 
2318 			if (!err)
2319 				goto found;
2320 		}
2321 	}
2322 
2323 found:
2324 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2325 		min_err, *brr, *srr + 1, *cks);
2326 	return min_err;
2327 }
2328 
2329 static void sci_reset(struct uart_port *port)
2330 {
2331 	const struct plat_sci_reg *reg;
2332 	unsigned int status;
2333 	struct sci_port *s = to_sci_port(port);
2334 
2335 	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2336 
2337 	reg = sci_getreg(port, SCFCR);
2338 	if (reg->size)
2339 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2340 
2341 	sci_clear_SCxSR(port,
2342 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2343 			SCxSR_BREAK_CLEAR(port));
2344 	if (sci_getreg(port, SCLSR)->size) {
2345 		status = serial_port_in(port, SCLSR);
2346 		status &= ~(SCLSR_TO | SCLSR_ORER);
2347 		serial_port_out(port, SCLSR, status);
2348 	}
2349 
2350 	if (s->rx_trigger > 1) {
2351 		if (s->rx_fifo_timeout) {
2352 			scif_set_rtrg(port, 1);
2353 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2354 		} else {
2355 			if (port->type == PORT_SCIFA ||
2356 			    port->type == PORT_SCIFB)
2357 				scif_set_rtrg(port, 1);
2358 			else
2359 				scif_set_rtrg(port, s->rx_trigger);
2360 		}
2361 	}
2362 }
2363 
2364 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2365 		            const struct ktermios *old)
2366 {
2367 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2368 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2369 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2370 	struct sci_port *s = to_sci_port(port);
2371 	const struct plat_sci_reg *reg;
2372 	int min_err = INT_MAX, err;
2373 	unsigned long max_freq = 0;
2374 	int best_clk = -1;
2375 	unsigned long flags;
2376 
2377 	if ((termios->c_cflag & CSIZE) == CS7) {
2378 		smr_val |= SCSMR_CHR;
2379 	} else {
2380 		termios->c_cflag &= ~CSIZE;
2381 		termios->c_cflag |= CS8;
2382 	}
2383 	if (termios->c_cflag & PARENB)
2384 		smr_val |= SCSMR_PE;
2385 	if (termios->c_cflag & PARODD)
2386 		smr_val |= SCSMR_PE | SCSMR_ODD;
2387 	if (termios->c_cflag & CSTOPB)
2388 		smr_val |= SCSMR_STOP;
2389 
2390 	/*
2391 	 * earlyprintk comes here early on with port->uartclk set to zero.
2392 	 * the clock framework is not up and running at this point so here
2393 	 * we assume that 115200 is the maximum baud rate. please note that
2394 	 * the baud rate is not programmed during earlyprintk - it is assumed
2395 	 * that the previous boot loader has enabled required clocks and
2396 	 * setup the baud rate generator hardware for us already.
2397 	 */
2398 	if (!port->uartclk) {
2399 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2400 		goto done;
2401 	}
2402 
2403 	for (i = 0; i < SCI_NUM_CLKS; i++)
2404 		max_freq = max(max_freq, s->clk_rates[i]);
2405 
2406 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2407 	if (!baud)
2408 		goto done;
2409 
2410 	/*
2411 	 * There can be multiple sources for the sampling clock.  Find the one
2412 	 * that gives us the smallest deviation from the desired baud rate.
2413 	 */
2414 
2415 	/* Optional Undivided External Clock */
2416 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2417 	    port->type != PORT_SCIFB) {
2418 		err = sci_sck_calc(s, baud, &srr1);
2419 		if (abs(err) < abs(min_err)) {
2420 			best_clk = SCI_SCK;
2421 			scr_val = SCSCR_CKE1;
2422 			sccks = SCCKS_CKS;
2423 			min_err = err;
2424 			srr = srr1;
2425 			if (!err)
2426 				goto done;
2427 		}
2428 	}
2429 
2430 	/* Optional BRG Frequency Divided External Clock */
2431 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2432 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2433 				   &srr1);
2434 		if (abs(err) < abs(min_err)) {
2435 			best_clk = SCI_SCIF_CLK;
2436 			scr_val = SCSCR_CKE1;
2437 			sccks = 0;
2438 			min_err = err;
2439 			dl = dl1;
2440 			srr = srr1;
2441 			if (!err)
2442 				goto done;
2443 		}
2444 	}
2445 
2446 	/* Optional BRG Frequency Divided Internal Clock */
2447 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2448 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2449 				   &srr1);
2450 		if (abs(err) < abs(min_err)) {
2451 			best_clk = SCI_BRG_INT;
2452 			scr_val = SCSCR_CKE1;
2453 			sccks = SCCKS_XIN;
2454 			min_err = err;
2455 			dl = dl1;
2456 			srr = srr1;
2457 			if (!min_err)
2458 				goto done;
2459 		}
2460 	}
2461 
2462 	/* Divided Functional Clock using standard Bit Rate Register */
2463 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2464 	if (abs(err) < abs(min_err)) {
2465 		best_clk = SCI_FCK;
2466 		scr_val = 0;
2467 		min_err = err;
2468 		brr = brr1;
2469 		srr = srr1;
2470 		cks = cks1;
2471 	}
2472 
2473 done:
2474 	if (best_clk >= 0)
2475 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2476 			s->clks[best_clk], baud, min_err);
2477 
2478 	sci_port_enable(s);
2479 
2480 	/*
2481 	 * Program the optional External Baud Rate Generator (BRG) first.
2482 	 * It controls the mux to select (H)SCK or frequency divided clock.
2483 	 */
2484 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2485 		serial_port_out(port, SCDL, dl);
2486 		serial_port_out(port, SCCKS, sccks);
2487 	}
2488 
2489 	spin_lock_irqsave(&port->lock, flags);
2490 
2491 	sci_reset(port);
2492 
2493 	uart_update_timeout(port, termios->c_cflag, baud);
2494 
2495 	/* byte size and parity */
2496 	bits = tty_get_frame_size(termios->c_cflag);
2497 
2498 	if (sci_getreg(port, SEMR)->size)
2499 		serial_port_out(port, SEMR, 0);
2500 
2501 	if (best_clk >= 0) {
2502 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2503 			switch (srr + 1) {
2504 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2505 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2506 			case 11: smr_val |= SCSMR_SRC_11; break;
2507 			case 13: smr_val |= SCSMR_SRC_13; break;
2508 			case 16: smr_val |= SCSMR_SRC_16; break;
2509 			case 17: smr_val |= SCSMR_SRC_17; break;
2510 			case 19: smr_val |= SCSMR_SRC_19; break;
2511 			case 27: smr_val |= SCSMR_SRC_27; break;
2512 			}
2513 		smr_val |= cks;
2514 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2515 		serial_port_out(port, SCSMR, smr_val);
2516 		serial_port_out(port, SCBRR, brr);
2517 		if (sci_getreg(port, HSSRR)->size) {
2518 			unsigned int hssrr = srr | HSCIF_SRE;
2519 			/* Calculate deviation from intended rate at the
2520 			 * center of the last stop bit in sampling clocks.
2521 			 */
2522 			int last_stop = bits * 2 - 1;
2523 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2524 							  (int)(srr + 1),
2525 							  2 * (int)baud);
2526 
2527 			if (abs(deviation) >= 2) {
2528 				/* At least two sampling clocks off at the
2529 				 * last stop bit; we can increase the error
2530 				 * margin by shifting the sampling point.
2531 				 */
2532 				int shift = clamp(deviation / 2, -8, 7);
2533 
2534 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2535 					 HSCIF_SRHP_MASK;
2536 				hssrr |= HSCIF_SRDE;
2537 			}
2538 			serial_port_out(port, HSSRR, hssrr);
2539 		}
2540 
2541 		/* Wait one bit interval */
2542 		udelay((1000000 + (baud - 1)) / baud);
2543 	} else {
2544 		/* Don't touch the bit rate configuration */
2545 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2546 		smr_val |= serial_port_in(port, SCSMR) &
2547 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2548 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2549 		serial_port_out(port, SCSMR, smr_val);
2550 	}
2551 
2552 	sci_init_pins(port, termios->c_cflag);
2553 
2554 	port->status &= ~UPSTAT_AUTOCTS;
2555 	s->autorts = false;
2556 	reg = sci_getreg(port, SCFCR);
2557 	if (reg->size) {
2558 		unsigned short ctrl = serial_port_in(port, SCFCR);
2559 
2560 		if ((port->flags & UPF_HARD_FLOW) &&
2561 		    (termios->c_cflag & CRTSCTS)) {
2562 			/* There is no CTS interrupt to restart the hardware */
2563 			port->status |= UPSTAT_AUTOCTS;
2564 			/* MCE is enabled when RTS is raised */
2565 			s->autorts = true;
2566 		}
2567 
2568 		/*
2569 		 * As we've done a sci_reset() above, ensure we don't
2570 		 * interfere with the FIFOs while toggling MCE. As the
2571 		 * reset values could still be set, simply mask them out.
2572 		 */
2573 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2574 
2575 		serial_port_out(port, SCFCR, ctrl);
2576 	}
2577 	if (port->flags & UPF_HARD_FLOW) {
2578 		/* Refresh (Auto) RTS */
2579 		sci_set_mctrl(port, port->mctrl);
2580 	}
2581 
2582 	scr_val |= SCSCR_RE | SCSCR_TE |
2583 		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2584 	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2585 	if ((srr + 1 == 5) &&
2586 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2587 		/*
2588 		 * In asynchronous mode, when the sampling rate is 1/5, first
2589 		 * received data may become invalid on some SCIFA and SCIFB.
2590 		 * To avoid this problem wait more than 1 serial data time (1
2591 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2592 		 */
2593 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2594 	}
2595 
2596 	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2597 	s->rx_frame = (10000 * bits) / (baud / 100);
2598 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2599 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2600 #endif
2601 
2602 	if ((termios->c_cflag & CREAD) != 0)
2603 		sci_start_rx(port);
2604 
2605 	spin_unlock_irqrestore(&port->lock, flags);
2606 
2607 	sci_port_disable(s);
2608 
2609 	if (UART_ENABLE_MS(port, termios->c_cflag))
2610 		sci_enable_ms(port);
2611 }
2612 
2613 static void sci_pm(struct uart_port *port, unsigned int state,
2614 		   unsigned int oldstate)
2615 {
2616 	struct sci_port *sci_port = to_sci_port(port);
2617 
2618 	switch (state) {
2619 	case UART_PM_STATE_OFF:
2620 		sci_port_disable(sci_port);
2621 		break;
2622 	default:
2623 		sci_port_enable(sci_port);
2624 		break;
2625 	}
2626 }
2627 
2628 static const char *sci_type(struct uart_port *port)
2629 {
2630 	switch (port->type) {
2631 	case PORT_IRDA:
2632 		return "irda";
2633 	case PORT_SCI:
2634 		return "sci";
2635 	case PORT_SCIF:
2636 		return "scif";
2637 	case PORT_SCIFA:
2638 		return "scifa";
2639 	case PORT_SCIFB:
2640 		return "scifb";
2641 	case PORT_HSCIF:
2642 		return "hscif";
2643 	}
2644 
2645 	return NULL;
2646 }
2647 
2648 static int sci_remap_port(struct uart_port *port)
2649 {
2650 	struct sci_port *sport = to_sci_port(port);
2651 
2652 	/*
2653 	 * Nothing to do if there's already an established membase.
2654 	 */
2655 	if (port->membase)
2656 		return 0;
2657 
2658 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2659 		port->membase = ioremap(port->mapbase, sport->reg_size);
2660 		if (unlikely(!port->membase)) {
2661 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2662 			return -ENXIO;
2663 		}
2664 	} else {
2665 		/*
2666 		 * For the simple (and majority of) cases where we don't
2667 		 * need to do any remapping, just cast the cookie
2668 		 * directly.
2669 		 */
2670 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2671 	}
2672 
2673 	return 0;
2674 }
2675 
2676 static void sci_release_port(struct uart_port *port)
2677 {
2678 	struct sci_port *sport = to_sci_port(port);
2679 
2680 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2681 		iounmap(port->membase);
2682 		port->membase = NULL;
2683 	}
2684 
2685 	release_mem_region(port->mapbase, sport->reg_size);
2686 }
2687 
2688 static int sci_request_port(struct uart_port *port)
2689 {
2690 	struct resource *res;
2691 	struct sci_port *sport = to_sci_port(port);
2692 	int ret;
2693 
2694 	res = request_mem_region(port->mapbase, sport->reg_size,
2695 				 dev_name(port->dev));
2696 	if (unlikely(res == NULL)) {
2697 		dev_err(port->dev, "request_mem_region failed.");
2698 		return -EBUSY;
2699 	}
2700 
2701 	ret = sci_remap_port(port);
2702 	if (unlikely(ret != 0)) {
2703 		release_resource(res);
2704 		return ret;
2705 	}
2706 
2707 	return 0;
2708 }
2709 
2710 static void sci_config_port(struct uart_port *port, int flags)
2711 {
2712 	if (flags & UART_CONFIG_TYPE) {
2713 		struct sci_port *sport = to_sci_port(port);
2714 
2715 		port->type = sport->cfg->type;
2716 		sci_request_port(port);
2717 	}
2718 }
2719 
2720 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2721 {
2722 	if (ser->baud_base < 2400)
2723 		/* No paper tape reader for Mitch.. */
2724 		return -EINVAL;
2725 
2726 	return 0;
2727 }
2728 
2729 static const struct uart_ops sci_uart_ops = {
2730 	.tx_empty	= sci_tx_empty,
2731 	.set_mctrl	= sci_set_mctrl,
2732 	.get_mctrl	= sci_get_mctrl,
2733 	.start_tx	= sci_start_tx,
2734 	.stop_tx	= sci_stop_tx,
2735 	.stop_rx	= sci_stop_rx,
2736 	.enable_ms	= sci_enable_ms,
2737 	.break_ctl	= sci_break_ctl,
2738 	.startup	= sci_startup,
2739 	.shutdown	= sci_shutdown,
2740 	.flush_buffer	= sci_flush_buffer,
2741 	.set_termios	= sci_set_termios,
2742 	.pm		= sci_pm,
2743 	.type		= sci_type,
2744 	.release_port	= sci_release_port,
2745 	.request_port	= sci_request_port,
2746 	.config_port	= sci_config_port,
2747 	.verify_port	= sci_verify_port,
2748 #ifdef CONFIG_CONSOLE_POLL
2749 	.poll_get_char	= sci_poll_get_char,
2750 	.poll_put_char	= sci_poll_put_char,
2751 #endif
2752 };
2753 
2754 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2755 {
2756 	const char *clk_names[] = {
2757 		[SCI_FCK] = "fck",
2758 		[SCI_SCK] = "sck",
2759 		[SCI_BRG_INT] = "brg_int",
2760 		[SCI_SCIF_CLK] = "scif_clk",
2761 	};
2762 	struct clk *clk;
2763 	unsigned int i;
2764 
2765 	if (sci_port->cfg->type == PORT_HSCIF)
2766 		clk_names[SCI_SCK] = "hsck";
2767 
2768 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2769 		clk = devm_clk_get_optional(dev, clk_names[i]);
2770 		if (IS_ERR(clk))
2771 			return PTR_ERR(clk);
2772 
2773 		if (!clk && i == SCI_FCK) {
2774 			/*
2775 			 * Not all SH platforms declare a clock lookup entry
2776 			 * for SCI devices, in which case we need to get the
2777 			 * global "peripheral_clk" clock.
2778 			 */
2779 			clk = devm_clk_get(dev, "peripheral_clk");
2780 			if (IS_ERR(clk))
2781 				return dev_err_probe(dev, PTR_ERR(clk),
2782 						     "failed to get %s\n",
2783 						     clk_names[i]);
2784 		}
2785 
2786 		if (!clk)
2787 			dev_dbg(dev, "failed to get %s\n", clk_names[i]);
2788 		else
2789 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2790 				clk, clk_get_rate(clk));
2791 		sci_port->clks[i] = clk;
2792 	}
2793 	return 0;
2794 }
2795 
2796 static const struct sci_port_params *
2797 sci_probe_regmap(const struct plat_sci_port *cfg)
2798 {
2799 	unsigned int regtype;
2800 
2801 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2802 		return &sci_port_params[cfg->regtype];
2803 
2804 	switch (cfg->type) {
2805 	case PORT_SCI:
2806 		regtype = SCIx_SCI_REGTYPE;
2807 		break;
2808 	case PORT_IRDA:
2809 		regtype = SCIx_IRDA_REGTYPE;
2810 		break;
2811 	case PORT_SCIFA:
2812 		regtype = SCIx_SCIFA_REGTYPE;
2813 		break;
2814 	case PORT_SCIFB:
2815 		regtype = SCIx_SCIFB_REGTYPE;
2816 		break;
2817 	case PORT_SCIF:
2818 		/*
2819 		 * The SH-4 is a bit of a misnomer here, although that's
2820 		 * where this particular port layout originated. This
2821 		 * configuration (or some slight variation thereof)
2822 		 * remains the dominant model for all SCIFs.
2823 		 */
2824 		regtype = SCIx_SH4_SCIF_REGTYPE;
2825 		break;
2826 	case PORT_HSCIF:
2827 		regtype = SCIx_HSCIF_REGTYPE;
2828 		break;
2829 	default:
2830 		pr_err("Can't probe register map for given port\n");
2831 		return NULL;
2832 	}
2833 
2834 	return &sci_port_params[regtype];
2835 }
2836 
2837 static int sci_init_single(struct platform_device *dev,
2838 			   struct sci_port *sci_port, unsigned int index,
2839 			   const struct plat_sci_port *p, bool early)
2840 {
2841 	struct uart_port *port = &sci_port->port;
2842 	const struct resource *res;
2843 	unsigned int i;
2844 	int ret;
2845 
2846 	sci_port->cfg	= p;
2847 
2848 	port->ops	= &sci_uart_ops;
2849 	port->iotype	= UPIO_MEM;
2850 	port->line	= index;
2851 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2852 
2853 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2854 	if (res == NULL)
2855 		return -ENOMEM;
2856 
2857 	port->mapbase = res->start;
2858 	sci_port->reg_size = resource_size(res);
2859 
2860 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2861 		if (i)
2862 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2863 		else
2864 			sci_port->irqs[i] = platform_get_irq(dev, i);
2865 	}
2866 
2867 	/* The SCI generates several interrupts. They can be muxed together or
2868 	 * connected to different interrupt lines. In the muxed case only one
2869 	 * interrupt resource is specified as there is only one interrupt ID.
2870 	 * In the non-muxed case, up to 6 interrupt signals might be generated
2871 	 * from the SCI, however those signals might have their own individual
2872 	 * interrupt ID numbers, or muxed together with another interrupt.
2873 	 */
2874 	if (sci_port->irqs[0] < 0)
2875 		return -ENXIO;
2876 
2877 	if (sci_port->irqs[1] < 0)
2878 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2879 			sci_port->irqs[i] = sci_port->irqs[0];
2880 
2881 	sci_port->params = sci_probe_regmap(p);
2882 	if (unlikely(sci_port->params == NULL))
2883 		return -EINVAL;
2884 
2885 	switch (p->type) {
2886 	case PORT_SCIFB:
2887 		sci_port->rx_trigger = 48;
2888 		break;
2889 	case PORT_HSCIF:
2890 		sci_port->rx_trigger = 64;
2891 		break;
2892 	case PORT_SCIFA:
2893 		sci_port->rx_trigger = 32;
2894 		break;
2895 	case PORT_SCIF:
2896 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2897 			/* RX triggering not implemented for this IP */
2898 			sci_port->rx_trigger = 1;
2899 		else
2900 			sci_port->rx_trigger = 8;
2901 		break;
2902 	default:
2903 		sci_port->rx_trigger = 1;
2904 		break;
2905 	}
2906 
2907 	sci_port->rx_fifo_timeout = 0;
2908 	sci_port->hscif_tot = 0;
2909 
2910 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2911 	 * match the SoC datasheet, this should be investigated. Let platform
2912 	 * data override the sampling rate for now.
2913 	 */
2914 	sci_port->sampling_rate_mask = p->sampling_rate
2915 				     ? SCI_SR(p->sampling_rate)
2916 				     : sci_port->params->sampling_rate_mask;
2917 
2918 	if (!early) {
2919 		ret = sci_init_clocks(sci_port, &dev->dev);
2920 		if (ret < 0)
2921 			return ret;
2922 
2923 		port->dev = &dev->dev;
2924 
2925 		pm_runtime_enable(&dev->dev);
2926 	}
2927 
2928 	port->type		= p->type;
2929 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2930 	port->fifosize		= sci_port->params->fifosize;
2931 
2932 	if (port->type == PORT_SCI) {
2933 		if (sci_port->reg_size >= 0x20)
2934 			port->regshift = 2;
2935 		else
2936 			port->regshift = 1;
2937 	}
2938 
2939 	/*
2940 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2941 	 * for the multi-IRQ ports, which is where we are primarily
2942 	 * concerned with the shutdown path synchronization.
2943 	 *
2944 	 * For the muxed case there's nothing more to do.
2945 	 */
2946 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2947 	port->irqflags		= 0;
2948 
2949 	port->serial_in		= sci_serial_in;
2950 	port->serial_out	= sci_serial_out;
2951 
2952 	return 0;
2953 }
2954 
2955 static void sci_cleanup_single(struct sci_port *port)
2956 {
2957 	pm_runtime_disable(port->port.dev);
2958 }
2959 
2960 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2961     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2962 static void serial_console_putchar(struct uart_port *port, unsigned char ch)
2963 {
2964 	sci_poll_put_char(port, ch);
2965 }
2966 
2967 /*
2968  *	Print a string to the serial port trying not to disturb
2969  *	any possible real use of the port...
2970  */
2971 static void serial_console_write(struct console *co, const char *s,
2972 				 unsigned count)
2973 {
2974 	struct sci_port *sci_port = &sci_ports[co->index];
2975 	struct uart_port *port = &sci_port->port;
2976 	unsigned short bits, ctrl, ctrl_temp;
2977 	unsigned long flags;
2978 	int locked = 1;
2979 
2980 	if (port->sysrq)
2981 		locked = 0;
2982 	else if (oops_in_progress)
2983 		locked = spin_trylock_irqsave(&port->lock, flags);
2984 	else
2985 		spin_lock_irqsave(&port->lock, flags);
2986 
2987 	/* first save SCSCR then disable interrupts, keep clock source */
2988 	ctrl = serial_port_in(port, SCSCR);
2989 	ctrl_temp = SCSCR_RE | SCSCR_TE |
2990 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2991 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2992 	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
2993 
2994 	uart_console_write(port, s, count, serial_console_putchar);
2995 
2996 	/* wait until fifo is empty and last bit has been transmitted */
2997 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2998 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2999 		cpu_relax();
3000 
3001 	/* restore the SCSCR */
3002 	serial_port_out(port, SCSCR, ctrl);
3003 
3004 	if (locked)
3005 		spin_unlock_irqrestore(&port->lock, flags);
3006 }
3007 
3008 static int serial_console_setup(struct console *co, char *options)
3009 {
3010 	struct sci_port *sci_port;
3011 	struct uart_port *port;
3012 	int baud = 115200;
3013 	int bits = 8;
3014 	int parity = 'n';
3015 	int flow = 'n';
3016 	int ret;
3017 
3018 	/*
3019 	 * Refuse to handle any bogus ports.
3020 	 */
3021 	if (co->index < 0 || co->index >= SCI_NPORTS)
3022 		return -ENODEV;
3023 
3024 	sci_port = &sci_ports[co->index];
3025 	port = &sci_port->port;
3026 
3027 	/*
3028 	 * Refuse to handle uninitialized ports.
3029 	 */
3030 	if (!port->ops)
3031 		return -ENODEV;
3032 
3033 	ret = sci_remap_port(port);
3034 	if (unlikely(ret != 0))
3035 		return ret;
3036 
3037 	if (options)
3038 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3039 
3040 	return uart_set_options(port, co, baud, parity, bits, flow);
3041 }
3042 
3043 static struct console serial_console = {
3044 	.name		= "ttySC",
3045 	.device		= uart_console_device,
3046 	.write		= serial_console_write,
3047 	.setup		= serial_console_setup,
3048 	.flags		= CON_PRINTBUFFER,
3049 	.index		= -1,
3050 	.data		= &sci_uart_driver,
3051 };
3052 
3053 #ifdef CONFIG_SUPERH
3054 static char early_serial_buf[32];
3055 
3056 static int early_serial_console_setup(struct console *co, char *options)
3057 {
3058 	/*
3059 	 * This early console is always registered using the earlyprintk=
3060 	 * parameter, which does not call add_preferred_console(). Thus
3061 	 * @options is always NULL and the options for this early console
3062 	 * are passed using a custom buffer.
3063 	 */
3064 	WARN_ON(options);
3065 
3066 	return serial_console_setup(co, early_serial_buf);
3067 }
3068 
3069 static struct console early_serial_console = {
3070 	.name           = "early_ttySC",
3071 	.write          = serial_console_write,
3072 	.setup		= early_serial_console_setup,
3073 	.flags          = CON_PRINTBUFFER,
3074 	.index		= -1,
3075 };
3076 
3077 static int sci_probe_earlyprintk(struct platform_device *pdev)
3078 {
3079 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3080 
3081 	if (early_serial_console.data)
3082 		return -EEXIST;
3083 
3084 	early_serial_console.index = pdev->id;
3085 
3086 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3087 
3088 	if (!strstr(early_serial_buf, "keep"))
3089 		early_serial_console.flags |= CON_BOOT;
3090 
3091 	register_console(&early_serial_console);
3092 	return 0;
3093 }
3094 #endif
3095 
3096 #define SCI_CONSOLE	(&serial_console)
3097 
3098 #else
3099 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3100 {
3101 	return -EINVAL;
3102 }
3103 
3104 #define SCI_CONSOLE	NULL
3105 
3106 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3107 
3108 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3109 
3110 static DEFINE_MUTEX(sci_uart_registration_lock);
3111 static struct uart_driver sci_uart_driver = {
3112 	.owner		= THIS_MODULE,
3113 	.driver_name	= "sci",
3114 	.dev_name	= "ttySC",
3115 	.major		= SCI_MAJOR,
3116 	.minor		= SCI_MINOR_START,
3117 	.nr		= SCI_NPORTS,
3118 	.cons		= SCI_CONSOLE,
3119 };
3120 
3121 static int sci_remove(struct platform_device *dev)
3122 {
3123 	struct sci_port *port = platform_get_drvdata(dev);
3124 	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3125 
3126 	sci_ports_in_use &= ~BIT(port->port.line);
3127 	uart_remove_one_port(&sci_uart_driver, &port->port);
3128 
3129 	sci_cleanup_single(port);
3130 
3131 	if (port->port.fifosize > 1)
3132 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3133 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3134 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3135 
3136 	return 0;
3137 }
3138 
3139 
3140 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3141 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3142 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3143 
3144 static const struct of_device_id of_sci_match[] = {
3145 	/* SoC-specific types */
3146 	{
3147 		.compatible = "renesas,scif-r7s72100",
3148 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3149 	},
3150 	{
3151 		.compatible = "renesas,scif-r7s9210",
3152 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3153 	},
3154 	{
3155 		.compatible = "renesas,scif-r9a07g044",
3156 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3157 	},
3158 	/* Family-specific types */
3159 	{
3160 		.compatible = "renesas,rcar-gen1-scif",
3161 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3162 	}, {
3163 		.compatible = "renesas,rcar-gen2-scif",
3164 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3165 	}, {
3166 		.compatible = "renesas,rcar-gen3-scif",
3167 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3168 	}, {
3169 		.compatible = "renesas,rcar-gen4-scif",
3170 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3171 	},
3172 	/* Generic types */
3173 	{
3174 		.compatible = "renesas,scif",
3175 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3176 	}, {
3177 		.compatible = "renesas,scifa",
3178 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3179 	}, {
3180 		.compatible = "renesas,scifb",
3181 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3182 	}, {
3183 		.compatible = "renesas,hscif",
3184 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3185 	}, {
3186 		.compatible = "renesas,sci",
3187 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3188 	}, {
3189 		/* Terminator */
3190 	},
3191 };
3192 MODULE_DEVICE_TABLE(of, of_sci_match);
3193 
3194 static void sci_reset_control_assert(void *data)
3195 {
3196 	reset_control_assert(data);
3197 }
3198 
3199 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3200 					  unsigned int *dev_id)
3201 {
3202 	struct device_node *np = pdev->dev.of_node;
3203 	struct reset_control *rstc;
3204 	struct plat_sci_port *p;
3205 	struct sci_port *sp;
3206 	const void *data;
3207 	int id, ret;
3208 
3209 	if (!IS_ENABLED(CONFIG_OF) || !np)
3210 		return ERR_PTR(-EINVAL);
3211 
3212 	data = of_device_get_match_data(&pdev->dev);
3213 
3214 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3215 	if (IS_ERR(rstc))
3216 		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3217 					     "failed to get reset ctrl\n"));
3218 
3219 	ret = reset_control_deassert(rstc);
3220 	if (ret) {
3221 		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3222 		return ERR_PTR(ret);
3223 	}
3224 
3225 	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3226 	if (ret) {
3227 		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3228 			ret);
3229 		return ERR_PTR(ret);
3230 	}
3231 
3232 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3233 	if (!p)
3234 		return ERR_PTR(-ENOMEM);
3235 
3236 	/* Get the line number from the aliases node. */
3237 	id = of_alias_get_id(np, "serial");
3238 	if (id < 0 && ~sci_ports_in_use)
3239 		id = ffz(sci_ports_in_use);
3240 	if (id < 0) {
3241 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3242 		return ERR_PTR(-EINVAL);
3243 	}
3244 	if (id >= ARRAY_SIZE(sci_ports)) {
3245 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3246 		return ERR_PTR(-EINVAL);
3247 	}
3248 
3249 	sp = &sci_ports[id];
3250 	*dev_id = id;
3251 
3252 	p->type = SCI_OF_TYPE(data);
3253 	p->regtype = SCI_OF_REGTYPE(data);
3254 
3255 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3256 
3257 	return p;
3258 }
3259 
3260 static int sci_probe_single(struct platform_device *dev,
3261 				      unsigned int index,
3262 				      struct plat_sci_port *p,
3263 				      struct sci_port *sciport)
3264 {
3265 	int ret;
3266 
3267 	/* Sanity check */
3268 	if (unlikely(index >= SCI_NPORTS)) {
3269 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3270 			   index+1, SCI_NPORTS);
3271 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3272 		return -EINVAL;
3273 	}
3274 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3275 	if (sci_ports_in_use & BIT(index))
3276 		return -EBUSY;
3277 
3278 	mutex_lock(&sci_uart_registration_lock);
3279 	if (!sci_uart_driver.state) {
3280 		ret = uart_register_driver(&sci_uart_driver);
3281 		if (ret) {
3282 			mutex_unlock(&sci_uart_registration_lock);
3283 			return ret;
3284 		}
3285 	}
3286 	mutex_unlock(&sci_uart_registration_lock);
3287 
3288 	ret = sci_init_single(dev, sciport, index, p, false);
3289 	if (ret)
3290 		return ret;
3291 
3292 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3293 	if (IS_ERR(sciport->gpios))
3294 		return PTR_ERR(sciport->gpios);
3295 
3296 	if (sciport->has_rtscts) {
3297 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3298 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3299 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3300 			return -EINVAL;
3301 		}
3302 		sciport->port.flags |= UPF_HARD_FLOW;
3303 	}
3304 
3305 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3306 	if (ret) {
3307 		sci_cleanup_single(sciport);
3308 		return ret;
3309 	}
3310 
3311 	return 0;
3312 }
3313 
3314 static int sci_probe(struct platform_device *dev)
3315 {
3316 	struct plat_sci_port *p;
3317 	struct sci_port *sp;
3318 	unsigned int dev_id;
3319 	int ret;
3320 
3321 	/*
3322 	 * If we've come here via earlyprintk initialization, head off to
3323 	 * the special early probe. We don't have sufficient device state
3324 	 * to make it beyond this yet.
3325 	 */
3326 #ifdef CONFIG_SUPERH
3327 	if (is_sh_early_platform_device(dev))
3328 		return sci_probe_earlyprintk(dev);
3329 #endif
3330 
3331 	if (dev->dev.of_node) {
3332 		p = sci_parse_dt(dev, &dev_id);
3333 		if (IS_ERR(p))
3334 			return PTR_ERR(p);
3335 	} else {
3336 		p = dev->dev.platform_data;
3337 		if (p == NULL) {
3338 			dev_err(&dev->dev, "no platform data supplied\n");
3339 			return -EINVAL;
3340 		}
3341 
3342 		dev_id = dev->id;
3343 	}
3344 
3345 	sp = &sci_ports[dev_id];
3346 	platform_set_drvdata(dev, sp);
3347 
3348 	ret = sci_probe_single(dev, dev_id, p, sp);
3349 	if (ret)
3350 		return ret;
3351 
3352 	if (sp->port.fifosize > 1) {
3353 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3354 		if (ret)
3355 			return ret;
3356 	}
3357 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3358 	    sp->port.type == PORT_HSCIF) {
3359 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3360 		if (ret) {
3361 			if (sp->port.fifosize > 1) {
3362 				device_remove_file(&dev->dev,
3363 						   &dev_attr_rx_fifo_trigger);
3364 			}
3365 			return ret;
3366 		}
3367 	}
3368 
3369 #ifdef CONFIG_SH_STANDARD_BIOS
3370 	sh_bios_gdb_detach();
3371 #endif
3372 
3373 	sci_ports_in_use |= BIT(dev_id);
3374 	return 0;
3375 }
3376 
3377 static __maybe_unused int sci_suspend(struct device *dev)
3378 {
3379 	struct sci_port *sport = dev_get_drvdata(dev);
3380 
3381 	if (sport)
3382 		uart_suspend_port(&sci_uart_driver, &sport->port);
3383 
3384 	return 0;
3385 }
3386 
3387 static __maybe_unused int sci_resume(struct device *dev)
3388 {
3389 	struct sci_port *sport = dev_get_drvdata(dev);
3390 
3391 	if (sport)
3392 		uart_resume_port(&sci_uart_driver, &sport->port);
3393 
3394 	return 0;
3395 }
3396 
3397 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3398 
3399 static struct platform_driver sci_driver = {
3400 	.probe		= sci_probe,
3401 	.remove		= sci_remove,
3402 	.driver		= {
3403 		.name	= "sh-sci",
3404 		.pm	= &sci_dev_pm_ops,
3405 		.of_match_table = of_match_ptr(of_sci_match),
3406 	},
3407 };
3408 
3409 static int __init sci_init(void)
3410 {
3411 	pr_info("%s\n", banner);
3412 
3413 	return platform_driver_register(&sci_driver);
3414 }
3415 
3416 static void __exit sci_exit(void)
3417 {
3418 	platform_driver_unregister(&sci_driver);
3419 
3420 	if (sci_uart_driver.state)
3421 		uart_unregister_driver(&sci_uart_driver);
3422 }
3423 
3424 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3425 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3426 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3427 #endif
3428 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3429 static struct plat_sci_port port_cfg __initdata;
3430 
3431 static int __init early_console_setup(struct earlycon_device *device,
3432 				      int type)
3433 {
3434 	if (!device->port.membase)
3435 		return -ENODEV;
3436 
3437 	device->port.serial_in = sci_serial_in;
3438 	device->port.serial_out	= sci_serial_out;
3439 	device->port.type = type;
3440 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3441 	port_cfg.type = type;
3442 	sci_ports[0].cfg = &port_cfg;
3443 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3444 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3445 	sci_serial_out(&sci_ports[0].port, SCSCR,
3446 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3447 
3448 	device->con->write = serial_console_write;
3449 	return 0;
3450 }
3451 static int __init sci_early_console_setup(struct earlycon_device *device,
3452 					  const char *opt)
3453 {
3454 	return early_console_setup(device, PORT_SCI);
3455 }
3456 static int __init scif_early_console_setup(struct earlycon_device *device,
3457 					  const char *opt)
3458 {
3459 	return early_console_setup(device, PORT_SCIF);
3460 }
3461 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3462 					  const char *opt)
3463 {
3464 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3465 	return early_console_setup(device, PORT_SCIF);
3466 }
3467 
3468 static int __init scifa_early_console_setup(struct earlycon_device *device,
3469 					  const char *opt)
3470 {
3471 	return early_console_setup(device, PORT_SCIFA);
3472 }
3473 static int __init scifb_early_console_setup(struct earlycon_device *device,
3474 					  const char *opt)
3475 {
3476 	return early_console_setup(device, PORT_SCIFB);
3477 }
3478 static int __init hscif_early_console_setup(struct earlycon_device *device,
3479 					  const char *opt)
3480 {
3481 	return early_console_setup(device, PORT_HSCIF);
3482 }
3483 
3484 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3485 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3486 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3487 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3488 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3489 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3490 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3491 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3492 
3493 module_init(sci_init);
3494 module_exit(sci_exit);
3495 
3496 MODULE_LICENSE("GPL");
3497 MODULE_ALIAS("platform:sh-sci");
3498 MODULE_AUTHOR("Paul Mundt");
3499 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3500