xref: /linux/drivers/tty/serial/sh-sci.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/minmax.h>
35 #include <linux/module.h>
36 #include <linux/mm.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/reset.h>
41 #include <linux/scatterlist.h>
42 #include <linux/serial.h>
43 #include <linux/serial_sci.h>
44 #include <linux/sh_dma.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/sysrq.h>
48 #include <linux/timer.h>
49 #include <linux/tty.h>
50 #include <linux/tty_flip.h>
51 
52 #ifdef CONFIG_SUPERH
53 #include <asm/sh_bios.h>
54 #include <asm/platform_early.h>
55 #endif
56 
57 #include "serial_mctrl_gpio.h"
58 #include "sh-sci.h"
59 
60 /* Offsets into the sci_port->irqs array */
61 enum {
62 	SCIx_ERI_IRQ,
63 	SCIx_RXI_IRQ,
64 	SCIx_TXI_IRQ,
65 	SCIx_BRI_IRQ,
66 	SCIx_DRI_IRQ,
67 	SCIx_TEI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 enum SCI_CLKS {
80 	SCI_FCK,		/* Functional Clock */
81 	SCI_SCK,		/* Optional External Clock */
82 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84 	SCI_NUM_CLKS
85 };
86 
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x)		BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
90 
91 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 				SCI_SR(19) | SCI_SR(27)
94 
95 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
97 
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port)						\
100 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
101 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102 
103 struct plat_sci_reg {
104 	u8 offset, size;
105 };
106 
107 struct sci_port_params {
108 	const struct plat_sci_reg regs[SCIx_NR_REGS];
109 	unsigned int fifosize;
110 	unsigned int overrun_reg;
111 	unsigned int overrun_mask;
112 	unsigned int sampling_rate_mask;
113 	unsigned int error_mask;
114 	unsigned int error_clear;
115 };
116 
117 struct sci_port {
118 	struct uart_port	port;
119 
120 	/* Platform configuration */
121 	const struct sci_port_params *params;
122 	const struct plat_sci_port *cfg;
123 	unsigned int		sampling_rate_mask;
124 	resource_size_t		reg_size;
125 	struct mctrl_gpios	*gpios;
126 
127 	/* Clocks */
128 	struct clk		*clks[SCI_NUM_CLKS];
129 	unsigned long		clk_rates[SCI_NUM_CLKS];
130 
131 	int			irqs[SCIx_NR_IRQS];
132 	char			*irqstr[SCIx_NR_IRQS];
133 
134 	struct dma_chan			*chan_tx;
135 	struct dma_chan			*chan_rx;
136 
137 #ifdef CONFIG_SERIAL_SH_SCI_DMA
138 	struct dma_chan			*chan_tx_saved;
139 	struct dma_chan			*chan_rx_saved;
140 	dma_cookie_t			cookie_tx;
141 	dma_cookie_t			cookie_rx[2];
142 	dma_cookie_t			active_rx;
143 	dma_addr_t			tx_dma_addr;
144 	unsigned int			tx_dma_len;
145 	struct scatterlist		sg_rx[2];
146 	void				*rx_buf[2];
147 	size_t				buf_len_rx;
148 	struct work_struct		work_tx;
149 	struct hrtimer			rx_timer;
150 	unsigned int			rx_timeout;	/* microseconds */
151 #endif
152 	unsigned int			rx_frame;
153 	int				rx_trigger;
154 	struct timer_list		rx_fifo_timer;
155 	int				rx_fifo_timeout;
156 	u16				hscif_tot;
157 
158 	bool has_rtscts;
159 	bool autorts;
160 	bool tx_occurred;
161 };
162 
163 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
164 
165 static struct sci_port sci_ports[SCI_NPORTS];
166 static unsigned long sci_ports_in_use;
167 static struct uart_driver sci_uart_driver;
168 
169 static inline struct sci_port *
170 to_sci_port(struct uart_port *uart)
171 {
172 	return container_of(uart, struct sci_port, port);
173 }
174 
175 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
176 	/*
177 	 * Common SCI definitions, dependent on the port's regshift
178 	 * value.
179 	 */
180 	[SCIx_SCI_REGTYPE] = {
181 		.regs = {
182 			[SCSMR]		= { 0x00,  8 },
183 			[SCBRR]		= { 0x01,  8 },
184 			[SCSCR]		= { 0x02,  8 },
185 			[SCxTDR]	= { 0x03,  8 },
186 			[SCxSR]		= { 0x04,  8 },
187 			[SCxRDR]	= { 0x05,  8 },
188 		},
189 		.fifosize = 1,
190 		.overrun_reg = SCxSR,
191 		.overrun_mask = SCI_ORER,
192 		.sampling_rate_mask = SCI_SR(32),
193 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
194 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
195 	},
196 
197 	/*
198 	 * Common definitions for legacy IrDA ports.
199 	 */
200 	[SCIx_IRDA_REGTYPE] = {
201 		.regs = {
202 			[SCSMR]		= { 0x00,  8 },
203 			[SCBRR]		= { 0x02,  8 },
204 			[SCSCR]		= { 0x04,  8 },
205 			[SCxTDR]	= { 0x06,  8 },
206 			[SCxSR]		= { 0x08, 16 },
207 			[SCxRDR]	= { 0x0a,  8 },
208 			[SCFCR]		= { 0x0c,  8 },
209 			[SCFDR]		= { 0x0e, 16 },
210 		},
211 		.fifosize = 1,
212 		.overrun_reg = SCxSR,
213 		.overrun_mask = SCI_ORER,
214 		.sampling_rate_mask = SCI_SR(32),
215 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
216 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
217 	},
218 
219 	/*
220 	 * Common SCIFA definitions.
221 	 */
222 	[SCIx_SCIFA_REGTYPE] = {
223 		.regs = {
224 			[SCSMR]		= { 0x00, 16 },
225 			[SCBRR]		= { 0x04,  8 },
226 			[SCSCR]		= { 0x08, 16 },
227 			[SCxTDR]	= { 0x20,  8 },
228 			[SCxSR]		= { 0x14, 16 },
229 			[SCxRDR]	= { 0x24,  8 },
230 			[SCFCR]		= { 0x18, 16 },
231 			[SCFDR]		= { 0x1c, 16 },
232 			[SCPCR]		= { 0x30, 16 },
233 			[SCPDR]		= { 0x34, 16 },
234 		},
235 		.fifosize = 64,
236 		.overrun_reg = SCxSR,
237 		.overrun_mask = SCIFA_ORER,
238 		.sampling_rate_mask = SCI_SR_SCIFAB,
239 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
240 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
241 	},
242 
243 	/*
244 	 * Common SCIFB definitions.
245 	 */
246 	[SCIx_SCIFB_REGTYPE] = {
247 		.regs = {
248 			[SCSMR]		= { 0x00, 16 },
249 			[SCBRR]		= { 0x04,  8 },
250 			[SCSCR]		= { 0x08, 16 },
251 			[SCxTDR]	= { 0x40,  8 },
252 			[SCxSR]		= { 0x14, 16 },
253 			[SCxRDR]	= { 0x60,  8 },
254 			[SCFCR]		= { 0x18, 16 },
255 			[SCTFDR]	= { 0x38, 16 },
256 			[SCRFDR]	= { 0x3c, 16 },
257 			[SCPCR]		= { 0x30, 16 },
258 			[SCPDR]		= { 0x34, 16 },
259 		},
260 		.fifosize = 256,
261 		.overrun_reg = SCxSR,
262 		.overrun_mask = SCIFA_ORER,
263 		.sampling_rate_mask = SCI_SR_SCIFAB,
264 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
265 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
266 	},
267 
268 	/*
269 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
270 	 * count registers.
271 	 */
272 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
273 		.regs = {
274 			[SCSMR]		= { 0x00, 16 },
275 			[SCBRR]		= { 0x04,  8 },
276 			[SCSCR]		= { 0x08, 16 },
277 			[SCxTDR]	= { 0x0c,  8 },
278 			[SCxSR]		= { 0x10, 16 },
279 			[SCxRDR]	= { 0x14,  8 },
280 			[SCFCR]		= { 0x18, 16 },
281 			[SCFDR]		= { 0x1c, 16 },
282 			[SCSPTR]	= { 0x20, 16 },
283 			[SCLSR]		= { 0x24, 16 },
284 		},
285 		.fifosize = 16,
286 		.overrun_reg = SCLSR,
287 		.overrun_mask = SCLSR_ORER,
288 		.sampling_rate_mask = SCI_SR(32),
289 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
290 		.error_clear = SCIF_ERROR_CLEAR,
291 	},
292 
293 	/*
294 	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
295 	 * It looks like a normal SCIF with FIFO data, but with a
296 	 * compressed address space. Also, the break out of interrupts
297 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
298 	 */
299 	[SCIx_RZ_SCIFA_REGTYPE] = {
300 		.regs = {
301 			[SCSMR]		= { 0x00, 16 },
302 			[SCBRR]		= { 0x02,  8 },
303 			[SCSCR]		= { 0x04, 16 },
304 			[SCxTDR]	= { 0x06,  8 },
305 			[SCxSR]		= { 0x08, 16 },
306 			[SCxRDR]	= { 0x0A,  8 },
307 			[SCFCR]		= { 0x0C, 16 },
308 			[SCFDR]		= { 0x0E, 16 },
309 			[SCSPTR]	= { 0x10, 16 },
310 			[SCLSR]		= { 0x12, 16 },
311 			[SEMR]		= { 0x14, 8 },
312 		},
313 		.fifosize = 16,
314 		.overrun_reg = SCLSR,
315 		.overrun_mask = SCLSR_ORER,
316 		.sampling_rate_mask = SCI_SR(32),
317 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
318 		.error_clear = SCIF_ERROR_CLEAR,
319 	},
320 
321 	/*
322 	 * The "SCIF" that is in RZ/V2H(P) SoC is similar to one found on RZ/G2L SoC
323 	 * with below differences,
324 	 * - Break out of interrupts are different: ERI, BRI, RXI, TXI, TEI, DRI,
325 	 *   TEI-DRI, RXI-EDGE and TXI-EDGE.
326 	 * - SCSMR register does not have CM bit (BIT(7)) ie it does not support synchronous mode.
327 	 * - SCFCR register does not have SCFCR_MCE bit.
328 	 * - SCSPTR register has only bits SCSPTR_SPB2DT and SCSPTR_SPB2IO.
329 	 */
330 	[SCIx_RZV2H_SCIF_REGTYPE] = {
331 		.regs = {
332 			[SCSMR]		= { 0x00, 16 },
333 			[SCBRR]		= { 0x02,  8 },
334 			[SCSCR]		= { 0x04, 16 },
335 			[SCxTDR]	= { 0x06,  8 },
336 			[SCxSR]		= { 0x08, 16 },
337 			[SCxRDR]	= { 0x0a,  8 },
338 			[SCFCR]		= { 0x0c, 16 },
339 			[SCFDR]		= { 0x0e, 16 },
340 			[SCSPTR]	= { 0x10, 16 },
341 			[SCLSR]		= { 0x12, 16 },
342 			[SEMR]		= { 0x14, 8 },
343 		},
344 		.fifosize = 16,
345 		.overrun_reg = SCLSR,
346 		.overrun_mask = SCLSR_ORER,
347 		.sampling_rate_mask = SCI_SR(32),
348 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
349 		.error_clear = SCIF_ERROR_CLEAR,
350 	},
351 
352 	/*
353 	 * Common SH-3 SCIF definitions.
354 	 */
355 	[SCIx_SH3_SCIF_REGTYPE] = {
356 		.regs = {
357 			[SCSMR]		= { 0x00,  8 },
358 			[SCBRR]		= { 0x02,  8 },
359 			[SCSCR]		= { 0x04,  8 },
360 			[SCxTDR]	= { 0x06,  8 },
361 			[SCxSR]		= { 0x08, 16 },
362 			[SCxRDR]	= { 0x0a,  8 },
363 			[SCFCR]		= { 0x0c,  8 },
364 			[SCFDR]		= { 0x0e, 16 },
365 		},
366 		.fifosize = 16,
367 		.overrun_reg = SCLSR,
368 		.overrun_mask = SCLSR_ORER,
369 		.sampling_rate_mask = SCI_SR(32),
370 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
371 		.error_clear = SCIF_ERROR_CLEAR,
372 	},
373 
374 	/*
375 	 * Common SH-4(A) SCIF(B) definitions.
376 	 */
377 	[SCIx_SH4_SCIF_REGTYPE] = {
378 		.regs = {
379 			[SCSMR]		= { 0x00, 16 },
380 			[SCBRR]		= { 0x04,  8 },
381 			[SCSCR]		= { 0x08, 16 },
382 			[SCxTDR]	= { 0x0c,  8 },
383 			[SCxSR]		= { 0x10, 16 },
384 			[SCxRDR]	= { 0x14,  8 },
385 			[SCFCR]		= { 0x18, 16 },
386 			[SCFDR]		= { 0x1c, 16 },
387 			[SCSPTR]	= { 0x20, 16 },
388 			[SCLSR]		= { 0x24, 16 },
389 		},
390 		.fifosize = 16,
391 		.overrun_reg = SCLSR,
392 		.overrun_mask = SCLSR_ORER,
393 		.sampling_rate_mask = SCI_SR(32),
394 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
395 		.error_clear = SCIF_ERROR_CLEAR,
396 	},
397 
398 	/*
399 	 * Common SCIF definitions for ports with a Baud Rate Generator for
400 	 * External Clock (BRG).
401 	 */
402 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
403 		.regs = {
404 			[SCSMR]		= { 0x00, 16 },
405 			[SCBRR]		= { 0x04,  8 },
406 			[SCSCR]		= { 0x08, 16 },
407 			[SCxTDR]	= { 0x0c,  8 },
408 			[SCxSR]		= { 0x10, 16 },
409 			[SCxRDR]	= { 0x14,  8 },
410 			[SCFCR]		= { 0x18, 16 },
411 			[SCFDR]		= { 0x1c, 16 },
412 			[SCSPTR]	= { 0x20, 16 },
413 			[SCLSR]		= { 0x24, 16 },
414 			[SCDL]		= { 0x30, 16 },
415 			[SCCKS]		= { 0x34, 16 },
416 		},
417 		.fifosize = 16,
418 		.overrun_reg = SCLSR,
419 		.overrun_mask = SCLSR_ORER,
420 		.sampling_rate_mask = SCI_SR(32),
421 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
422 		.error_clear = SCIF_ERROR_CLEAR,
423 	},
424 
425 	/*
426 	 * Common HSCIF definitions.
427 	 */
428 	[SCIx_HSCIF_REGTYPE] = {
429 		.regs = {
430 			[SCSMR]		= { 0x00, 16 },
431 			[SCBRR]		= { 0x04,  8 },
432 			[SCSCR]		= { 0x08, 16 },
433 			[SCxTDR]	= { 0x0c,  8 },
434 			[SCxSR]		= { 0x10, 16 },
435 			[SCxRDR]	= { 0x14,  8 },
436 			[SCFCR]		= { 0x18, 16 },
437 			[SCFDR]		= { 0x1c, 16 },
438 			[SCSPTR]	= { 0x20, 16 },
439 			[SCLSR]		= { 0x24, 16 },
440 			[HSSRR]		= { 0x40, 16 },
441 			[SCDL]		= { 0x30, 16 },
442 			[SCCKS]		= { 0x34, 16 },
443 			[HSRTRGR]	= { 0x54, 16 },
444 			[HSTTRGR]	= { 0x58, 16 },
445 		},
446 		.fifosize = 128,
447 		.overrun_reg = SCLSR,
448 		.overrun_mask = SCLSR_ORER,
449 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
450 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
451 		.error_clear = SCIF_ERROR_CLEAR,
452 	},
453 
454 	/*
455 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
456 	 * register.
457 	 */
458 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
459 		.regs = {
460 			[SCSMR]		= { 0x00, 16 },
461 			[SCBRR]		= { 0x04,  8 },
462 			[SCSCR]		= { 0x08, 16 },
463 			[SCxTDR]	= { 0x0c,  8 },
464 			[SCxSR]		= { 0x10, 16 },
465 			[SCxRDR]	= { 0x14,  8 },
466 			[SCFCR]		= { 0x18, 16 },
467 			[SCFDR]		= { 0x1c, 16 },
468 			[SCLSR]		= { 0x24, 16 },
469 		},
470 		.fifosize = 16,
471 		.overrun_reg = SCLSR,
472 		.overrun_mask = SCLSR_ORER,
473 		.sampling_rate_mask = SCI_SR(32),
474 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
475 		.error_clear = SCIF_ERROR_CLEAR,
476 	},
477 
478 	/*
479 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
480 	 * count registers.
481 	 */
482 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
483 		.regs = {
484 			[SCSMR]		= { 0x00, 16 },
485 			[SCBRR]		= { 0x04,  8 },
486 			[SCSCR]		= { 0x08, 16 },
487 			[SCxTDR]	= { 0x0c,  8 },
488 			[SCxSR]		= { 0x10, 16 },
489 			[SCxRDR]	= { 0x14,  8 },
490 			[SCFCR]		= { 0x18, 16 },
491 			[SCFDR]		= { 0x1c, 16 },
492 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
493 			[SCRFDR]	= { 0x20, 16 },
494 			[SCSPTR]	= { 0x24, 16 },
495 			[SCLSR]		= { 0x28, 16 },
496 		},
497 		.fifosize = 16,
498 		.overrun_reg = SCLSR,
499 		.overrun_mask = SCLSR_ORER,
500 		.sampling_rate_mask = SCI_SR(32),
501 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
502 		.error_clear = SCIF_ERROR_CLEAR,
503 	},
504 
505 	/*
506 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
507 	 * registers.
508 	 */
509 	[SCIx_SH7705_SCIF_REGTYPE] = {
510 		.regs = {
511 			[SCSMR]		= { 0x00, 16 },
512 			[SCBRR]		= { 0x04,  8 },
513 			[SCSCR]		= { 0x08, 16 },
514 			[SCxTDR]	= { 0x20,  8 },
515 			[SCxSR]		= { 0x14, 16 },
516 			[SCxRDR]	= { 0x24,  8 },
517 			[SCFCR]		= { 0x18, 16 },
518 			[SCFDR]		= { 0x1c, 16 },
519 		},
520 		.fifosize = 64,
521 		.overrun_reg = SCxSR,
522 		.overrun_mask = SCIFA_ORER,
523 		.sampling_rate_mask = SCI_SR(16),
524 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
525 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
526 	},
527 };
528 
529 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
530 
531 /*
532  * The "offset" here is rather misleading, in that it refers to an enum
533  * value relative to the port mapping rather than the fixed offset
534  * itself, which needs to be manually retrieved from the platform's
535  * register map for the given port.
536  */
537 static unsigned int sci_serial_in(struct uart_port *p, int offset)
538 {
539 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
540 
541 	if (reg->size == 8)
542 		return ioread8(p->membase + (reg->offset << p->regshift));
543 	else if (reg->size == 16)
544 		return ioread16(p->membase + (reg->offset << p->regshift));
545 	else
546 		WARN(1, "Invalid register access\n");
547 
548 	return 0;
549 }
550 
551 static void sci_serial_out(struct uart_port *p, int offset, int value)
552 {
553 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
554 
555 	if (reg->size == 8)
556 		iowrite8(value, p->membase + (reg->offset << p->regshift));
557 	else if (reg->size == 16)
558 		iowrite16(value, p->membase + (reg->offset << p->regshift));
559 	else
560 		WARN(1, "Invalid register access\n");
561 }
562 
563 static void sci_port_enable(struct sci_port *sci_port)
564 {
565 	unsigned int i;
566 
567 	if (!sci_port->port.dev)
568 		return;
569 
570 	pm_runtime_get_sync(sci_port->port.dev);
571 
572 	for (i = 0; i < SCI_NUM_CLKS; i++) {
573 		clk_prepare_enable(sci_port->clks[i]);
574 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
575 	}
576 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
577 }
578 
579 static void sci_port_disable(struct sci_port *sci_port)
580 {
581 	unsigned int i;
582 
583 	if (!sci_port->port.dev)
584 		return;
585 
586 	for (i = SCI_NUM_CLKS; i-- > 0; )
587 		clk_disable_unprepare(sci_port->clks[i]);
588 
589 	pm_runtime_put_sync(sci_port->port.dev);
590 }
591 
592 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
593 {
594 	/*
595 	 * Not all ports (such as SCIFA) will support REIE. Rather than
596 	 * special-casing the port type, we check the port initialization
597 	 * IRQ enable mask to see whether the IRQ is desired at all. If
598 	 * it's unset, it's logically inferred that there's no point in
599 	 * testing for it.
600 	 */
601 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
602 }
603 
604 static void sci_start_tx(struct uart_port *port)
605 {
606 	struct sci_port *s = to_sci_port(port);
607 	unsigned short ctrl;
608 
609 #ifdef CONFIG_SERIAL_SH_SCI_DMA
610 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
611 		u16 new, scr = sci_serial_in(port, SCSCR);
612 		if (s->chan_tx)
613 			new = scr | SCSCR_TDRQE;
614 		else
615 			new = scr & ~SCSCR_TDRQE;
616 		if (new != scr)
617 			sci_serial_out(port, SCSCR, new);
618 	}
619 
620 	if (s->chan_tx && !kfifo_is_empty(&port->state->port.xmit_fifo) &&
621 	    dma_submit_error(s->cookie_tx)) {
622 		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
623 			/* Switch irq from SCIF to DMA */
624 			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
625 
626 		s->cookie_tx = 0;
627 		schedule_work(&s->work_tx);
628 	}
629 #endif
630 
631 	if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
632 	    port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
633 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
634 		ctrl = sci_serial_in(port, SCSCR);
635 
636 		/*
637 		 * For SCI, TE (transmit enable) must be set after setting TIE
638 		 * (transmit interrupt enable) or in the same instruction to start
639 		 * the transmit process.
640 		 */
641 		if (port->type == PORT_SCI)
642 			ctrl |= SCSCR_TE;
643 
644 		sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
645 	}
646 }
647 
648 static void sci_stop_tx(struct uart_port *port)
649 {
650 	unsigned short ctrl;
651 
652 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
653 	ctrl = sci_serial_in(port, SCSCR);
654 
655 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
656 		ctrl &= ~SCSCR_TDRQE;
657 
658 	ctrl &= ~SCSCR_TIE;
659 
660 	sci_serial_out(port, SCSCR, ctrl);
661 
662 #ifdef CONFIG_SERIAL_SH_SCI_DMA
663 	if (to_sci_port(port)->chan_tx &&
664 	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
665 		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
666 		to_sci_port(port)->cookie_tx = -EINVAL;
667 	}
668 #endif
669 }
670 
671 static void sci_start_rx(struct uart_port *port)
672 {
673 	unsigned short ctrl;
674 
675 	ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
676 
677 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
678 		ctrl &= ~SCSCR_RDRQE;
679 
680 	sci_serial_out(port, SCSCR, ctrl);
681 }
682 
683 static void sci_stop_rx(struct uart_port *port)
684 {
685 	unsigned short ctrl;
686 
687 	ctrl = sci_serial_in(port, SCSCR);
688 
689 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
690 		ctrl &= ~SCSCR_RDRQE;
691 
692 	ctrl &= ~port_rx_irq_mask(port);
693 
694 	sci_serial_out(port, SCSCR, ctrl);
695 }
696 
697 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
698 {
699 	if (port->type == PORT_SCI) {
700 		/* Just store the mask */
701 		sci_serial_out(port, SCxSR, mask);
702 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
703 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
704 		/* Only clear the status bits we want to clear */
705 		sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
706 	} else {
707 		/* Store the mask, clear parity/framing errors */
708 		sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
709 	}
710 }
711 
712 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
713     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
714 
715 #ifdef CONFIG_CONSOLE_POLL
716 static int sci_poll_get_char(struct uart_port *port)
717 {
718 	unsigned short status;
719 	int c;
720 
721 	do {
722 		status = sci_serial_in(port, SCxSR);
723 		if (status & SCxSR_ERRORS(port)) {
724 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
725 			continue;
726 		}
727 		break;
728 	} while (1);
729 
730 	if (!(status & SCxSR_RDxF(port)))
731 		return NO_POLL_CHAR;
732 
733 	c = sci_serial_in(port, SCxRDR);
734 
735 	/* Dummy read */
736 	sci_serial_in(port, SCxSR);
737 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
738 
739 	return c;
740 }
741 #endif
742 
743 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
744 {
745 	unsigned short status;
746 
747 	do {
748 		status = sci_serial_in(port, SCxSR);
749 	} while (!(status & SCxSR_TDxE(port)));
750 
751 	sci_serial_out(port, SCxTDR, c);
752 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
753 }
754 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
755 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
756 
757 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
758 {
759 	struct sci_port *s = to_sci_port(port);
760 
761 	/*
762 	 * Use port-specific handler if provided.
763 	 */
764 	if (s->cfg->ops && s->cfg->ops->init_pins) {
765 		s->cfg->ops->init_pins(port, cflag);
766 		return;
767 	}
768 
769 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
770 		u16 data = sci_serial_in(port, SCPDR);
771 		u16 ctrl = sci_serial_in(port, SCPCR);
772 
773 		/* Enable RXD and TXD pin functions */
774 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
775 		if (to_sci_port(port)->has_rtscts) {
776 			/* RTS# is output, active low, unless autorts */
777 			if (!(port->mctrl & TIOCM_RTS)) {
778 				ctrl |= SCPCR_RTSC;
779 				data |= SCPDR_RTSD;
780 			} else if (!s->autorts) {
781 				ctrl |= SCPCR_RTSC;
782 				data &= ~SCPDR_RTSD;
783 			} else {
784 				/* Enable RTS# pin function */
785 				ctrl &= ~SCPCR_RTSC;
786 			}
787 			/* Enable CTS# pin function */
788 			ctrl &= ~SCPCR_CTSC;
789 		}
790 		sci_serial_out(port, SCPDR, data);
791 		sci_serial_out(port, SCPCR, ctrl);
792 	} else if (sci_getreg(port, SCSPTR)->size && s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE) {
793 		u16 status = sci_serial_in(port, SCSPTR);
794 
795 		/* RTS# is always output; and active low, unless autorts */
796 		status |= SCSPTR_RTSIO;
797 		if (!(port->mctrl & TIOCM_RTS))
798 			status |= SCSPTR_RTSDT;
799 		else if (!s->autorts)
800 			status &= ~SCSPTR_RTSDT;
801 		/* CTS# and SCK are inputs */
802 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
803 		sci_serial_out(port, SCSPTR, status);
804 	}
805 }
806 
807 static int sci_txfill(struct uart_port *port)
808 {
809 	struct sci_port *s = to_sci_port(port);
810 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
811 	const struct plat_sci_reg *reg;
812 
813 	reg = sci_getreg(port, SCTFDR);
814 	if (reg->size)
815 		return sci_serial_in(port, SCTFDR) & fifo_mask;
816 
817 	reg = sci_getreg(port, SCFDR);
818 	if (reg->size)
819 		return sci_serial_in(port, SCFDR) >> 8;
820 
821 	return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
822 }
823 
824 static int sci_txroom(struct uart_port *port)
825 {
826 	return port->fifosize - sci_txfill(port);
827 }
828 
829 static int sci_rxfill(struct uart_port *port)
830 {
831 	struct sci_port *s = to_sci_port(port);
832 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
833 	const struct plat_sci_reg *reg;
834 
835 	reg = sci_getreg(port, SCRFDR);
836 	if (reg->size)
837 		return sci_serial_in(port, SCRFDR) & fifo_mask;
838 
839 	reg = sci_getreg(port, SCFDR);
840 	if (reg->size)
841 		return sci_serial_in(port, SCFDR) & fifo_mask;
842 
843 	return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
844 }
845 
846 /* ********************************************************************** *
847  *                   the interrupt related routines                       *
848  * ********************************************************************** */
849 
850 static void sci_transmit_chars(struct uart_port *port)
851 {
852 	struct tty_port *tport = &port->state->port;
853 	unsigned int stopped = uart_tx_stopped(port);
854 	struct sci_port *s = to_sci_port(port);
855 	unsigned short status;
856 	unsigned short ctrl;
857 	int count;
858 
859 	status = sci_serial_in(port, SCxSR);
860 	if (!(status & SCxSR_TDxE(port))) {
861 		ctrl = sci_serial_in(port, SCSCR);
862 		if (kfifo_is_empty(&tport->xmit_fifo))
863 			ctrl &= ~SCSCR_TIE;
864 		else
865 			ctrl |= SCSCR_TIE;
866 		sci_serial_out(port, SCSCR, ctrl);
867 		return;
868 	}
869 
870 	count = sci_txroom(port);
871 
872 	do {
873 		unsigned char c;
874 
875 		if (port->x_char) {
876 			c = port->x_char;
877 			port->x_char = 0;
878 		} else if (stopped || !kfifo_get(&tport->xmit_fifo, &c)) {
879 			if (port->type == PORT_SCI &&
880 				   kfifo_is_empty(&tport->xmit_fifo)) {
881 				ctrl = sci_serial_in(port, SCSCR);
882 				ctrl &= ~SCSCR_TE;
883 				sci_serial_out(port, SCSCR, ctrl);
884 				return;
885 			}
886 			break;
887 		}
888 
889 		sci_serial_out(port, SCxTDR, c);
890 		s->tx_occurred = true;
891 
892 		port->icount.tx++;
893 	} while (--count > 0);
894 
895 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
896 
897 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
898 		uart_write_wakeup(port);
899 	if (kfifo_is_empty(&tport->xmit_fifo)) {
900 		if (port->type == PORT_SCI) {
901 			ctrl = sci_serial_in(port, SCSCR);
902 			ctrl &= ~SCSCR_TIE;
903 			ctrl |= SCSCR_TEIE;
904 			sci_serial_out(port, SCSCR, ctrl);
905 		}
906 
907 		sci_stop_tx(port);
908 	}
909 }
910 
911 static void sci_receive_chars(struct uart_port *port)
912 {
913 	struct tty_port *tport = &port->state->port;
914 	int i, count, copied = 0;
915 	unsigned short status;
916 	unsigned char flag;
917 
918 	status = sci_serial_in(port, SCxSR);
919 	if (!(status & SCxSR_RDxF(port)))
920 		return;
921 
922 	while (1) {
923 		/* Don't copy more bytes than there is room for in the buffer */
924 		count = tty_buffer_request_room(tport, sci_rxfill(port));
925 
926 		/* If for any reason we can't copy more data, we're done! */
927 		if (count == 0)
928 			break;
929 
930 		if (port->type == PORT_SCI) {
931 			char c = sci_serial_in(port, SCxRDR);
932 			if (uart_handle_sysrq_char(port, c))
933 				count = 0;
934 			else
935 				tty_insert_flip_char(tport, c, TTY_NORMAL);
936 		} else {
937 			for (i = 0; i < count; i++) {
938 				char c;
939 
940 				if (port->type == PORT_SCIF ||
941 				    port->type == PORT_HSCIF) {
942 					status = sci_serial_in(port, SCxSR);
943 					c = sci_serial_in(port, SCxRDR);
944 				} else {
945 					c = sci_serial_in(port, SCxRDR);
946 					status = sci_serial_in(port, SCxSR);
947 				}
948 				if (uart_handle_sysrq_char(port, c)) {
949 					count--; i--;
950 					continue;
951 				}
952 
953 				/* Store data and status */
954 				if (status & SCxSR_FER(port)) {
955 					flag = TTY_FRAME;
956 					port->icount.frame++;
957 				} else if (status & SCxSR_PER(port)) {
958 					flag = TTY_PARITY;
959 					port->icount.parity++;
960 				} else
961 					flag = TTY_NORMAL;
962 
963 				tty_insert_flip_char(tport, c, flag);
964 			}
965 		}
966 
967 		sci_serial_in(port, SCxSR); /* dummy read */
968 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
969 
970 		copied += count;
971 		port->icount.rx += count;
972 	}
973 
974 	if (copied) {
975 		/* Tell the rest of the system the news. New characters! */
976 		tty_flip_buffer_push(tport);
977 	} else {
978 		/* TTY buffers full; read from RX reg to prevent lockup */
979 		sci_serial_in(port, SCxRDR);
980 		sci_serial_in(port, SCxSR); /* dummy read */
981 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
982 	}
983 }
984 
985 static int sci_handle_errors(struct uart_port *port)
986 {
987 	int copied = 0;
988 	unsigned short status = sci_serial_in(port, SCxSR);
989 	struct tty_port *tport = &port->state->port;
990 	struct sci_port *s = to_sci_port(port);
991 
992 	/* Handle overruns */
993 	if (status & s->params->overrun_mask) {
994 		port->icount.overrun++;
995 
996 		/* overrun error */
997 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
998 			copied++;
999 	}
1000 
1001 	if (status & SCxSR_FER(port)) {
1002 		/* frame error */
1003 		port->icount.frame++;
1004 
1005 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1006 			copied++;
1007 	}
1008 
1009 	if (status & SCxSR_PER(port)) {
1010 		/* parity error */
1011 		port->icount.parity++;
1012 
1013 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1014 			copied++;
1015 	}
1016 
1017 	if (copied)
1018 		tty_flip_buffer_push(tport);
1019 
1020 	return copied;
1021 }
1022 
1023 static int sci_handle_fifo_overrun(struct uart_port *port)
1024 {
1025 	struct tty_port *tport = &port->state->port;
1026 	struct sci_port *s = to_sci_port(port);
1027 	const struct plat_sci_reg *reg;
1028 	int copied = 0;
1029 	u16 status;
1030 
1031 	reg = sci_getreg(port, s->params->overrun_reg);
1032 	if (!reg->size)
1033 		return 0;
1034 
1035 	status = sci_serial_in(port, s->params->overrun_reg);
1036 	if (status & s->params->overrun_mask) {
1037 		status &= ~s->params->overrun_mask;
1038 		sci_serial_out(port, s->params->overrun_reg, status);
1039 
1040 		port->icount.overrun++;
1041 
1042 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1043 		tty_flip_buffer_push(tport);
1044 		copied++;
1045 	}
1046 
1047 	return copied;
1048 }
1049 
1050 static int sci_handle_breaks(struct uart_port *port)
1051 {
1052 	int copied = 0;
1053 	unsigned short status = sci_serial_in(port, SCxSR);
1054 	struct tty_port *tport = &port->state->port;
1055 
1056 	if (uart_handle_break(port))
1057 		return 0;
1058 
1059 	if (status & SCxSR_BRK(port)) {
1060 		port->icount.brk++;
1061 
1062 		/* Notify of BREAK */
1063 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1064 			copied++;
1065 	}
1066 
1067 	if (copied)
1068 		tty_flip_buffer_push(tport);
1069 
1070 	copied += sci_handle_fifo_overrun(port);
1071 
1072 	return copied;
1073 }
1074 
1075 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1076 {
1077 	unsigned int bits;
1078 
1079 	if (rx_trig >= port->fifosize)
1080 		rx_trig = port->fifosize - 1;
1081 	if (rx_trig < 1)
1082 		rx_trig = 1;
1083 
1084 	/* HSCIF can be set to an arbitrary level. */
1085 	if (sci_getreg(port, HSRTRGR)->size) {
1086 		sci_serial_out(port, HSRTRGR, rx_trig);
1087 		return rx_trig;
1088 	}
1089 
1090 	switch (port->type) {
1091 	case PORT_SCIF:
1092 		if (rx_trig < 4) {
1093 			bits = 0;
1094 			rx_trig = 1;
1095 		} else if (rx_trig < 8) {
1096 			bits = SCFCR_RTRG0;
1097 			rx_trig = 4;
1098 		} else if (rx_trig < 14) {
1099 			bits = SCFCR_RTRG1;
1100 			rx_trig = 8;
1101 		} else {
1102 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1103 			rx_trig = 14;
1104 		}
1105 		break;
1106 	case PORT_SCIFA:
1107 	case PORT_SCIFB:
1108 		if (rx_trig < 16) {
1109 			bits = 0;
1110 			rx_trig = 1;
1111 		} else if (rx_trig < 32) {
1112 			bits = SCFCR_RTRG0;
1113 			rx_trig = 16;
1114 		} else if (rx_trig < 48) {
1115 			bits = SCFCR_RTRG1;
1116 			rx_trig = 32;
1117 		} else {
1118 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1119 			rx_trig = 48;
1120 		}
1121 		break;
1122 	default:
1123 		WARN(1, "unknown FIFO configuration");
1124 		return 1;
1125 	}
1126 
1127 	sci_serial_out(port, SCFCR,
1128 		       (sci_serial_in(port, SCFCR) &
1129 			~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1130 
1131 	return rx_trig;
1132 }
1133 
1134 static int scif_rtrg_enabled(struct uart_port *port)
1135 {
1136 	if (sci_getreg(port, HSRTRGR)->size)
1137 		return sci_serial_in(port, HSRTRGR) != 0;
1138 	else
1139 		return (sci_serial_in(port, SCFCR) &
1140 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1141 }
1142 
1143 static void rx_fifo_timer_fn(struct timer_list *t)
1144 {
1145 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1146 	struct uart_port *port = &s->port;
1147 
1148 	dev_dbg(port->dev, "Rx timed out\n");
1149 	scif_set_rtrg(port, 1);
1150 }
1151 
1152 static ssize_t rx_fifo_trigger_show(struct device *dev,
1153 				    struct device_attribute *attr, char *buf)
1154 {
1155 	struct uart_port *port = dev_get_drvdata(dev);
1156 	struct sci_port *sci = to_sci_port(port);
1157 
1158 	return sprintf(buf, "%d\n", sci->rx_trigger);
1159 }
1160 
1161 static ssize_t rx_fifo_trigger_store(struct device *dev,
1162 				     struct device_attribute *attr,
1163 				     const char *buf, size_t count)
1164 {
1165 	struct uart_port *port = dev_get_drvdata(dev);
1166 	struct sci_port *sci = to_sci_port(port);
1167 	int ret;
1168 	long r;
1169 
1170 	ret = kstrtol(buf, 0, &r);
1171 	if (ret)
1172 		return ret;
1173 
1174 	sci->rx_trigger = scif_set_rtrg(port, r);
1175 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1176 		scif_set_rtrg(port, 1);
1177 
1178 	return count;
1179 }
1180 
1181 static DEVICE_ATTR_RW(rx_fifo_trigger);
1182 
1183 static ssize_t rx_fifo_timeout_show(struct device *dev,
1184 			       struct device_attribute *attr,
1185 			       char *buf)
1186 {
1187 	struct uart_port *port = dev_get_drvdata(dev);
1188 	struct sci_port *sci = to_sci_port(port);
1189 	int v;
1190 
1191 	if (port->type == PORT_HSCIF)
1192 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1193 	else
1194 		v = sci->rx_fifo_timeout;
1195 
1196 	return sprintf(buf, "%d\n", v);
1197 }
1198 
1199 static ssize_t rx_fifo_timeout_store(struct device *dev,
1200 				struct device_attribute *attr,
1201 				const char *buf,
1202 				size_t count)
1203 {
1204 	struct uart_port *port = dev_get_drvdata(dev);
1205 	struct sci_port *sci = to_sci_port(port);
1206 	int ret;
1207 	long r;
1208 
1209 	ret = kstrtol(buf, 0, &r);
1210 	if (ret)
1211 		return ret;
1212 
1213 	if (port->type == PORT_HSCIF) {
1214 		if (r < 0 || r > 3)
1215 			return -EINVAL;
1216 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1217 	} else {
1218 		sci->rx_fifo_timeout = r;
1219 		scif_set_rtrg(port, 1);
1220 		if (r > 0)
1221 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1222 	}
1223 
1224 	return count;
1225 }
1226 
1227 static DEVICE_ATTR_RW(rx_fifo_timeout);
1228 
1229 
1230 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1231 static void sci_dma_tx_complete(void *arg)
1232 {
1233 	struct sci_port *s = arg;
1234 	struct uart_port *port = &s->port;
1235 	struct tty_port *tport = &port->state->port;
1236 	unsigned long flags;
1237 
1238 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1239 
1240 	uart_port_lock_irqsave(port, &flags);
1241 
1242 	uart_xmit_advance(port, s->tx_dma_len);
1243 
1244 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1245 		uart_write_wakeup(port);
1246 
1247 	s->tx_occurred = true;
1248 
1249 	if (!kfifo_is_empty(&tport->xmit_fifo)) {
1250 		s->cookie_tx = 0;
1251 		schedule_work(&s->work_tx);
1252 	} else {
1253 		s->cookie_tx = -EINVAL;
1254 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1255 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1256 			u16 ctrl = sci_serial_in(port, SCSCR);
1257 			sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1258 			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1259 				/* Switch irq from DMA to SCIF */
1260 				dmaengine_pause(s->chan_tx_saved);
1261 				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1262 			}
1263 		}
1264 	}
1265 
1266 	uart_port_unlock_irqrestore(port, flags);
1267 }
1268 
1269 /* Locking: called with port lock held */
1270 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1271 {
1272 	struct uart_port *port = &s->port;
1273 	struct tty_port *tport = &port->state->port;
1274 	int copied;
1275 
1276 	copied = tty_insert_flip_string(tport, buf, count);
1277 	if (copied < count)
1278 		port->icount.buf_overrun++;
1279 
1280 	port->icount.rx += copied;
1281 
1282 	return copied;
1283 }
1284 
1285 static int sci_dma_rx_find_active(struct sci_port *s)
1286 {
1287 	unsigned int i;
1288 
1289 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1290 		if (s->active_rx == s->cookie_rx[i])
1291 			return i;
1292 
1293 	return -1;
1294 }
1295 
1296 /* Must only be called with uart_port_lock taken */
1297 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1298 {
1299 	unsigned int i;
1300 
1301 	s->chan_rx = NULL;
1302 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1303 		s->cookie_rx[i] = -EINVAL;
1304 	s->active_rx = 0;
1305 }
1306 
1307 static void sci_dma_rx_release(struct sci_port *s)
1308 {
1309 	struct dma_chan *chan = s->chan_rx_saved;
1310 	struct uart_port *port = &s->port;
1311 	unsigned long flags;
1312 
1313 	uart_port_lock_irqsave(port, &flags);
1314 	s->chan_rx_saved = NULL;
1315 	sci_dma_rx_chan_invalidate(s);
1316 	uart_port_unlock_irqrestore(port, flags);
1317 
1318 	dmaengine_terminate_sync(chan);
1319 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1320 			  sg_dma_address(&s->sg_rx[0]));
1321 	dma_release_channel(chan);
1322 }
1323 
1324 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1325 {
1326 	long sec = usec / 1000000;
1327 	long nsec = (usec % 1000000) * 1000;
1328 	ktime_t t = ktime_set(sec, nsec);
1329 
1330 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1331 }
1332 
1333 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1334 {
1335 	struct uart_port *port = &s->port;
1336 	u16 scr;
1337 
1338 	/* Direct new serial port interrupts back to CPU */
1339 	scr = sci_serial_in(port, SCSCR);
1340 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1341 	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1342 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1343 		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1344 			scif_set_rtrg(port, s->rx_trigger);
1345 		else
1346 			scr &= ~SCSCR_RDRQE;
1347 	}
1348 	sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
1349 }
1350 
1351 static void sci_dma_rx_complete(void *arg)
1352 {
1353 	struct sci_port *s = arg;
1354 	struct dma_chan *chan = s->chan_rx;
1355 	struct uart_port *port = &s->port;
1356 	struct dma_async_tx_descriptor *desc;
1357 	unsigned long flags;
1358 	int active, count = 0;
1359 
1360 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1361 		s->active_rx);
1362 
1363 	hrtimer_cancel(&s->rx_timer);
1364 
1365 	uart_port_lock_irqsave(port, &flags);
1366 
1367 	active = sci_dma_rx_find_active(s);
1368 	if (active >= 0)
1369 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1370 
1371 	if (count)
1372 		tty_flip_buffer_push(&port->state->port);
1373 
1374 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1375 				       DMA_DEV_TO_MEM,
1376 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1377 	if (!desc)
1378 		goto fail;
1379 
1380 	desc->callback = sci_dma_rx_complete;
1381 	desc->callback_param = s;
1382 	s->cookie_rx[active] = dmaengine_submit(desc);
1383 	if (dma_submit_error(s->cookie_rx[active]))
1384 		goto fail;
1385 
1386 	s->active_rx = s->cookie_rx[!active];
1387 
1388 	dma_async_issue_pending(chan);
1389 
1390 	uart_port_unlock_irqrestore(port, flags);
1391 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1392 		__func__, s->cookie_rx[active], active, s->active_rx);
1393 
1394 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1395 
1396 	return;
1397 
1398 fail:
1399 	/* Switch to PIO */
1400 	dmaengine_terminate_async(chan);
1401 	sci_dma_rx_chan_invalidate(s);
1402 	sci_dma_rx_reenable_irq(s);
1403 	uart_port_unlock_irqrestore(port, flags);
1404 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1405 }
1406 
1407 static void sci_dma_tx_release(struct sci_port *s)
1408 {
1409 	struct dma_chan *chan = s->chan_tx_saved;
1410 
1411 	cancel_work_sync(&s->work_tx);
1412 	s->chan_tx_saved = s->chan_tx = NULL;
1413 	s->cookie_tx = -EINVAL;
1414 	dmaengine_terminate_sync(chan);
1415 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1416 			 DMA_TO_DEVICE);
1417 	dma_release_channel(chan);
1418 }
1419 
1420 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1421 {
1422 	struct dma_chan *chan = s->chan_rx;
1423 	struct uart_port *port = &s->port;
1424 	unsigned long flags;
1425 	int i;
1426 
1427 	for (i = 0; i < 2; i++) {
1428 		struct scatterlist *sg = &s->sg_rx[i];
1429 		struct dma_async_tx_descriptor *desc;
1430 
1431 		desc = dmaengine_prep_slave_sg(chan,
1432 			sg, 1, DMA_DEV_TO_MEM,
1433 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1434 		if (!desc)
1435 			goto fail;
1436 
1437 		desc->callback = sci_dma_rx_complete;
1438 		desc->callback_param = s;
1439 		s->cookie_rx[i] = dmaengine_submit(desc);
1440 		if (dma_submit_error(s->cookie_rx[i]))
1441 			goto fail;
1442 
1443 	}
1444 
1445 	s->active_rx = s->cookie_rx[0];
1446 
1447 	dma_async_issue_pending(chan);
1448 	return 0;
1449 
1450 fail:
1451 	/* Switch to PIO */
1452 	if (!port_lock_held)
1453 		uart_port_lock_irqsave(port, &flags);
1454 	if (i)
1455 		dmaengine_terminate_async(chan);
1456 	sci_dma_rx_chan_invalidate(s);
1457 	sci_start_rx(port);
1458 	if (!port_lock_held)
1459 		uart_port_unlock_irqrestore(port, flags);
1460 	return -EAGAIN;
1461 }
1462 
1463 static void sci_dma_tx_work_fn(struct work_struct *work)
1464 {
1465 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1466 	struct dma_async_tx_descriptor *desc;
1467 	struct dma_chan *chan = s->chan_tx;
1468 	struct uart_port *port = &s->port;
1469 	struct tty_port *tport = &port->state->port;
1470 	unsigned long flags;
1471 	unsigned int tail;
1472 	dma_addr_t buf;
1473 
1474 	/*
1475 	 * DMA is idle now.
1476 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1477 	 * offsets and lengths. Since it is a circular buffer, we have to
1478 	 * transmit till the end, and then the rest. Take the port lock to get a
1479 	 * consistent xmit buffer state.
1480 	 */
1481 	uart_port_lock_irq(port);
1482 	s->tx_dma_len = kfifo_out_linear(&tport->xmit_fifo, &tail,
1483 			UART_XMIT_SIZE);
1484 	buf = s->tx_dma_addr + tail;
1485 	if (!s->tx_dma_len) {
1486 		/* Transmit buffer has been flushed */
1487 		uart_port_unlock_irq(port);
1488 		return;
1489 	}
1490 
1491 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1492 					   DMA_MEM_TO_DEV,
1493 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1494 	if (!desc) {
1495 		uart_port_unlock_irq(port);
1496 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1497 		goto switch_to_pio;
1498 	}
1499 
1500 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1501 				   DMA_TO_DEVICE);
1502 
1503 	desc->callback = sci_dma_tx_complete;
1504 	desc->callback_param = s;
1505 	s->cookie_tx = dmaengine_submit(desc);
1506 	if (dma_submit_error(s->cookie_tx)) {
1507 		uart_port_unlock_irq(port);
1508 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1509 		goto switch_to_pio;
1510 	}
1511 
1512 	uart_port_unlock_irq(port);
1513 	dev_dbg(port->dev, "%s: %p: %u, cookie %d\n",
1514 		__func__, tport->xmit_buf, tail, s->cookie_tx);
1515 
1516 	dma_async_issue_pending(chan);
1517 	return;
1518 
1519 switch_to_pio:
1520 	uart_port_lock_irqsave(port, &flags);
1521 	s->chan_tx = NULL;
1522 	sci_start_tx(port);
1523 	uart_port_unlock_irqrestore(port, flags);
1524 	return;
1525 }
1526 
1527 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1528 {
1529 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1530 	struct dma_chan *chan = s->chan_rx;
1531 	struct uart_port *port = &s->port;
1532 	struct dma_tx_state state;
1533 	enum dma_status status;
1534 	unsigned long flags;
1535 	unsigned int read;
1536 	int active, count;
1537 
1538 	dev_dbg(port->dev, "DMA Rx timed out\n");
1539 
1540 	uart_port_lock_irqsave(port, &flags);
1541 
1542 	active = sci_dma_rx_find_active(s);
1543 	if (active < 0) {
1544 		uart_port_unlock_irqrestore(port, flags);
1545 		return HRTIMER_NORESTART;
1546 	}
1547 
1548 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1549 	if (status == DMA_COMPLETE) {
1550 		uart_port_unlock_irqrestore(port, flags);
1551 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1552 			s->active_rx, active);
1553 
1554 		/* Let packet complete handler take care of the packet */
1555 		return HRTIMER_NORESTART;
1556 	}
1557 
1558 	dmaengine_pause(chan);
1559 
1560 	/*
1561 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1562 	 * data keeps on coming until transaction is complete so check
1563 	 * for DMA_COMPLETE again
1564 	 * Let packet complete handler take care of the packet
1565 	 */
1566 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1567 	if (status == DMA_COMPLETE) {
1568 		uart_port_unlock_irqrestore(port, flags);
1569 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1570 		return HRTIMER_NORESTART;
1571 	}
1572 
1573 	/* Handle incomplete DMA receive */
1574 	dmaengine_terminate_async(s->chan_rx);
1575 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1576 
1577 	if (read) {
1578 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1579 		if (count)
1580 			tty_flip_buffer_push(&port->state->port);
1581 	}
1582 
1583 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1584 	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1585 		sci_dma_rx_submit(s, true);
1586 
1587 	sci_dma_rx_reenable_irq(s);
1588 
1589 	uart_port_unlock_irqrestore(port, flags);
1590 
1591 	return HRTIMER_NORESTART;
1592 }
1593 
1594 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1595 					     enum dma_transfer_direction dir)
1596 {
1597 	struct dma_chan *chan;
1598 	struct dma_slave_config cfg;
1599 	int ret;
1600 
1601 	chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1602 	if (IS_ERR(chan)) {
1603 		dev_dbg(port->dev, "dma_request_chan failed\n");
1604 		return NULL;
1605 	}
1606 
1607 	memset(&cfg, 0, sizeof(cfg));
1608 	cfg.direction = dir;
1609 	cfg.dst_addr = port->mapbase +
1610 		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1611 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1612 	cfg.src_addr = port->mapbase +
1613 		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1614 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1615 
1616 	ret = dmaengine_slave_config(chan, &cfg);
1617 	if (ret) {
1618 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1619 		dma_release_channel(chan);
1620 		return NULL;
1621 	}
1622 
1623 	return chan;
1624 }
1625 
1626 static void sci_request_dma(struct uart_port *port)
1627 {
1628 	struct sci_port *s = to_sci_port(port);
1629 	struct tty_port *tport = &port->state->port;
1630 	struct dma_chan *chan;
1631 
1632 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1633 
1634 	/*
1635 	 * DMA on console may interfere with Kernel log messages which use
1636 	 * plain putchar(). So, simply don't use it with a console.
1637 	 */
1638 	if (uart_console(port))
1639 		return;
1640 
1641 	if (!port->dev->of_node)
1642 		return;
1643 
1644 	s->cookie_tx = -EINVAL;
1645 
1646 	/*
1647 	 * Don't request a dma channel if no channel was specified
1648 	 * in the device tree.
1649 	 */
1650 	if (!of_property_present(port->dev->of_node, "dmas"))
1651 		return;
1652 
1653 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1654 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1655 	if (chan) {
1656 		/* UART circular tx buffer is an aligned page. */
1657 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1658 						tport->xmit_buf,
1659 						UART_XMIT_SIZE,
1660 						DMA_TO_DEVICE);
1661 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1662 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1663 			dma_release_channel(chan);
1664 		} else {
1665 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1666 				__func__, UART_XMIT_SIZE,
1667 				tport->xmit_buf, &s->tx_dma_addr);
1668 
1669 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1670 			s->chan_tx_saved = s->chan_tx = chan;
1671 		}
1672 	}
1673 
1674 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1675 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1676 	if (chan) {
1677 		unsigned int i;
1678 		dma_addr_t dma;
1679 		void *buf;
1680 
1681 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1682 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1683 					 &dma, GFP_KERNEL);
1684 		if (!buf) {
1685 			dev_warn(port->dev,
1686 				 "Failed to allocate Rx dma buffer, using PIO\n");
1687 			dma_release_channel(chan);
1688 			return;
1689 		}
1690 
1691 		for (i = 0; i < 2; i++) {
1692 			struct scatterlist *sg = &s->sg_rx[i];
1693 
1694 			sg_init_table(sg, 1);
1695 			s->rx_buf[i] = buf;
1696 			sg_dma_address(sg) = dma;
1697 			sg_dma_len(sg) = s->buf_len_rx;
1698 
1699 			buf += s->buf_len_rx;
1700 			dma += s->buf_len_rx;
1701 		}
1702 
1703 		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1704 		s->rx_timer.function = sci_dma_rx_timer_fn;
1705 
1706 		s->chan_rx_saved = s->chan_rx = chan;
1707 
1708 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1709 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1710 			sci_dma_rx_submit(s, false);
1711 	}
1712 }
1713 
1714 static void sci_free_dma(struct uart_port *port)
1715 {
1716 	struct sci_port *s = to_sci_port(port);
1717 
1718 	if (s->chan_tx_saved)
1719 		sci_dma_tx_release(s);
1720 	if (s->chan_rx_saved)
1721 		sci_dma_rx_release(s);
1722 }
1723 
1724 static void sci_flush_buffer(struct uart_port *port)
1725 {
1726 	struct sci_port *s = to_sci_port(port);
1727 
1728 	/*
1729 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1730 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1731 	 * pending transfers
1732 	 */
1733 	s->tx_dma_len = 0;
1734 	if (s->chan_tx) {
1735 		dmaengine_terminate_async(s->chan_tx);
1736 		s->cookie_tx = -EINVAL;
1737 	}
1738 }
1739 
1740 static void sci_dma_check_tx_occurred(struct sci_port *s)
1741 {
1742 	struct dma_tx_state state;
1743 	enum dma_status status;
1744 
1745 	if (!s->chan_tx)
1746 		return;
1747 
1748 	status = dmaengine_tx_status(s->chan_tx, s->cookie_tx, &state);
1749 	if (status == DMA_COMPLETE || status == DMA_IN_PROGRESS)
1750 		s->tx_occurred = true;
1751 }
1752 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1753 static inline void sci_request_dma(struct uart_port *port)
1754 {
1755 }
1756 
1757 static inline void sci_free_dma(struct uart_port *port)
1758 {
1759 }
1760 
1761 static void sci_dma_check_tx_occurred(struct sci_port *s)
1762 {
1763 }
1764 
1765 #define sci_flush_buffer	NULL
1766 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1767 
1768 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1769 {
1770 	struct uart_port *port = ptr;
1771 	struct sci_port *s = to_sci_port(port);
1772 
1773 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1774 	if (s->chan_rx) {
1775 		u16 scr = sci_serial_in(port, SCSCR);
1776 		u16 ssr = sci_serial_in(port, SCxSR);
1777 
1778 		/* Disable future Rx interrupts */
1779 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1780 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1781 			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1782 			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1783 				scif_set_rtrg(port, 1);
1784 				scr |= SCSCR_RIE;
1785 			} else {
1786 				scr |= SCSCR_RDRQE;
1787 			}
1788 		} else {
1789 			if (sci_dma_rx_submit(s, false) < 0)
1790 				goto handle_pio;
1791 
1792 			scr &= ~SCSCR_RIE;
1793 		}
1794 		sci_serial_out(port, SCSCR, scr);
1795 		/* Clear current interrupt */
1796 		sci_serial_out(port, SCxSR,
1797 			       ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1798 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1799 			jiffies, s->rx_timeout);
1800 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1801 
1802 		return IRQ_HANDLED;
1803 	}
1804 
1805 handle_pio:
1806 #endif
1807 
1808 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1809 		if (!scif_rtrg_enabled(port))
1810 			scif_set_rtrg(port, s->rx_trigger);
1811 
1812 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1813 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1814 	}
1815 
1816 	/* I think sci_receive_chars has to be called irrespective
1817 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1818 	 * to be disabled?
1819 	 */
1820 	sci_receive_chars(port);
1821 
1822 	return IRQ_HANDLED;
1823 }
1824 
1825 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1826 {
1827 	struct uart_port *port = ptr;
1828 	unsigned long flags;
1829 
1830 	uart_port_lock_irqsave(port, &flags);
1831 	sci_transmit_chars(port);
1832 	uart_port_unlock_irqrestore(port, flags);
1833 
1834 	return IRQ_HANDLED;
1835 }
1836 
1837 static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1838 {
1839 	struct uart_port *port = ptr;
1840 	unsigned long flags;
1841 	unsigned short ctrl;
1842 
1843 	if (port->type != PORT_SCI)
1844 		return sci_tx_interrupt(irq, ptr);
1845 
1846 	uart_port_lock_irqsave(port, &flags);
1847 	ctrl = sci_serial_in(port, SCSCR);
1848 	ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
1849 	sci_serial_out(port, SCSCR, ctrl);
1850 	uart_port_unlock_irqrestore(port, flags);
1851 
1852 	return IRQ_HANDLED;
1853 }
1854 
1855 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1856 {
1857 	struct uart_port *port = ptr;
1858 
1859 	/* Handle BREAKs */
1860 	sci_handle_breaks(port);
1861 
1862 	/* drop invalid character received before break was detected */
1863 	sci_serial_in(port, SCxRDR);
1864 
1865 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1866 
1867 	return IRQ_HANDLED;
1868 }
1869 
1870 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1871 {
1872 	struct uart_port *port = ptr;
1873 	struct sci_port *s = to_sci_port(port);
1874 
1875 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1876 		/* Break and Error interrupts are muxed */
1877 		unsigned short ssr_status = sci_serial_in(port, SCxSR);
1878 
1879 		/* Break Interrupt */
1880 		if (ssr_status & SCxSR_BRK(port))
1881 			sci_br_interrupt(irq, ptr);
1882 
1883 		/* Break only? */
1884 		if (!(ssr_status & SCxSR_ERRORS(port)))
1885 			return IRQ_HANDLED;
1886 	}
1887 
1888 	/* Handle errors */
1889 	if (port->type == PORT_SCI) {
1890 		if (sci_handle_errors(port)) {
1891 			/* discard character in rx buffer */
1892 			sci_serial_in(port, SCxSR);
1893 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1894 		}
1895 	} else {
1896 		sci_handle_fifo_overrun(port);
1897 		if (!s->chan_rx)
1898 			sci_receive_chars(port);
1899 	}
1900 
1901 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1902 
1903 	/* Kick the transmission */
1904 	if (!s->chan_tx)
1905 		sci_tx_interrupt(irq, ptr);
1906 
1907 	return IRQ_HANDLED;
1908 }
1909 
1910 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1911 {
1912 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1913 	struct uart_port *port = ptr;
1914 	struct sci_port *s = to_sci_port(port);
1915 	irqreturn_t ret = IRQ_NONE;
1916 
1917 	ssr_status = sci_serial_in(port, SCxSR);
1918 	scr_status = sci_serial_in(port, SCSCR);
1919 	if (s->params->overrun_reg == SCxSR)
1920 		orer_status = ssr_status;
1921 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1922 		orer_status = sci_serial_in(port, s->params->overrun_reg);
1923 
1924 	err_enabled = scr_status & port_rx_irq_mask(port);
1925 
1926 	/* Tx Interrupt */
1927 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1928 	    !s->chan_tx)
1929 		ret = sci_tx_interrupt(irq, ptr);
1930 
1931 	/*
1932 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1933 	 * DR flags
1934 	 */
1935 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1936 	    (scr_status & SCSCR_RIE))
1937 		ret = sci_rx_interrupt(irq, ptr);
1938 
1939 	/* Error Interrupt */
1940 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1941 		ret = sci_er_interrupt(irq, ptr);
1942 
1943 	/* Break Interrupt */
1944 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1945 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1946 		ret = sci_br_interrupt(irq, ptr);
1947 
1948 	/* Overrun Interrupt */
1949 	if (orer_status & s->params->overrun_mask) {
1950 		sci_handle_fifo_overrun(port);
1951 		ret = IRQ_HANDLED;
1952 	}
1953 
1954 	return ret;
1955 }
1956 
1957 static const struct sci_irq_desc {
1958 	const char	*desc;
1959 	irq_handler_t	handler;
1960 } sci_irq_desc[] = {
1961 	/*
1962 	 * Split out handlers, the default case.
1963 	 */
1964 	[SCIx_ERI_IRQ] = {
1965 		.desc = "rx err",
1966 		.handler = sci_er_interrupt,
1967 	},
1968 
1969 	[SCIx_RXI_IRQ] = {
1970 		.desc = "rx full",
1971 		.handler = sci_rx_interrupt,
1972 	},
1973 
1974 	[SCIx_TXI_IRQ] = {
1975 		.desc = "tx empty",
1976 		.handler = sci_tx_interrupt,
1977 	},
1978 
1979 	[SCIx_BRI_IRQ] = {
1980 		.desc = "break",
1981 		.handler = sci_br_interrupt,
1982 	},
1983 
1984 	[SCIx_DRI_IRQ] = {
1985 		.desc = "rx ready",
1986 		.handler = sci_rx_interrupt,
1987 	},
1988 
1989 	[SCIx_TEI_IRQ] = {
1990 		.desc = "tx end",
1991 		.handler = sci_tx_end_interrupt,
1992 	},
1993 
1994 	/*
1995 	 * Special muxed handler.
1996 	 */
1997 	[SCIx_MUX_IRQ] = {
1998 		.desc = "mux",
1999 		.handler = sci_mpxed_interrupt,
2000 	},
2001 };
2002 
2003 static int sci_request_irq(struct sci_port *port)
2004 {
2005 	struct uart_port *up = &port->port;
2006 	int i, j, w, ret = 0;
2007 
2008 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
2009 		const struct sci_irq_desc *desc;
2010 		int irq;
2011 
2012 		/* Check if already registered (muxed) */
2013 		for (w = 0; w < i; w++)
2014 			if (port->irqs[w] == port->irqs[i])
2015 				w = i + 1;
2016 		if (w > i)
2017 			continue;
2018 
2019 		if (SCIx_IRQ_IS_MUXED(port)) {
2020 			i = SCIx_MUX_IRQ;
2021 			irq = up->irq;
2022 		} else {
2023 			irq = port->irqs[i];
2024 
2025 			/*
2026 			 * Certain port types won't support all of the
2027 			 * available interrupt sources.
2028 			 */
2029 			if (unlikely(irq < 0))
2030 				continue;
2031 		}
2032 
2033 		desc = sci_irq_desc + i;
2034 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
2035 					    dev_name(up->dev), desc->desc);
2036 		if (!port->irqstr[j]) {
2037 			ret = -ENOMEM;
2038 			goto out_nomem;
2039 		}
2040 
2041 		ret = request_irq(irq, desc->handler, up->irqflags,
2042 				  port->irqstr[j], port);
2043 		if (unlikely(ret)) {
2044 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
2045 			goto out_noirq;
2046 		}
2047 	}
2048 
2049 	return 0;
2050 
2051 out_noirq:
2052 	while (--i >= 0)
2053 		free_irq(port->irqs[i], port);
2054 
2055 out_nomem:
2056 	while (--j >= 0)
2057 		kfree(port->irqstr[j]);
2058 
2059 	return ret;
2060 }
2061 
2062 static void sci_free_irq(struct sci_port *port)
2063 {
2064 	int i, j;
2065 
2066 	/*
2067 	 * Intentionally in reverse order so we iterate over the muxed
2068 	 * IRQ first.
2069 	 */
2070 	for (i = 0; i < SCIx_NR_IRQS; i++) {
2071 		int irq = port->irqs[i];
2072 
2073 		/*
2074 		 * Certain port types won't support all of the available
2075 		 * interrupt sources.
2076 		 */
2077 		if (unlikely(irq < 0))
2078 			continue;
2079 
2080 		/* Check if already freed (irq was muxed) */
2081 		for (j = 0; j < i; j++)
2082 			if (port->irqs[j] == irq)
2083 				j = i + 1;
2084 		if (j > i)
2085 			continue;
2086 
2087 		free_irq(port->irqs[i], port);
2088 		kfree(port->irqstr[i]);
2089 
2090 		if (SCIx_IRQ_IS_MUXED(port)) {
2091 			/* If there's only one IRQ, we're done. */
2092 			return;
2093 		}
2094 	}
2095 }
2096 
2097 static unsigned int sci_tx_empty(struct uart_port *port)
2098 {
2099 	unsigned short status = sci_serial_in(port, SCxSR);
2100 	unsigned short in_tx_fifo = sci_txfill(port);
2101 	struct sci_port *s = to_sci_port(port);
2102 
2103 	sci_dma_check_tx_occurred(s);
2104 
2105 	if (!s->tx_occurred)
2106 		return TIOCSER_TEMT;
2107 
2108 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2109 }
2110 
2111 static void sci_set_rts(struct uart_port *port, bool state)
2112 {
2113 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2114 		u16 data = sci_serial_in(port, SCPDR);
2115 
2116 		/* Active low */
2117 		if (state)
2118 			data &= ~SCPDR_RTSD;
2119 		else
2120 			data |= SCPDR_RTSD;
2121 		sci_serial_out(port, SCPDR, data);
2122 
2123 		/* RTS# is output */
2124 		sci_serial_out(port, SCPCR,
2125 			       sci_serial_in(port, SCPCR) | SCPCR_RTSC);
2126 	} else if (sci_getreg(port, SCSPTR)->size) {
2127 		u16 ctrl = sci_serial_in(port, SCSPTR);
2128 
2129 		/* Active low */
2130 		if (state)
2131 			ctrl &= ~SCSPTR_RTSDT;
2132 		else
2133 			ctrl |= SCSPTR_RTSDT;
2134 		sci_serial_out(port, SCSPTR, ctrl);
2135 	}
2136 }
2137 
2138 static bool sci_get_cts(struct uart_port *port)
2139 {
2140 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2141 		/* Active low */
2142 		return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
2143 	} else if (sci_getreg(port, SCSPTR)->size) {
2144 		/* Active low */
2145 		return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
2146 	}
2147 
2148 	return true;
2149 }
2150 
2151 /*
2152  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2153  * CTS/RTS is supported in hardware by at least one port and controlled
2154  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2155  * handled via the ->init_pins() op, which is a bit of a one-way street,
2156  * lacking any ability to defer pin control -- this will later be
2157  * converted over to the GPIO framework).
2158  *
2159  * Other modes (such as loopback) are supported generically on certain
2160  * port types, but not others. For these it's sufficient to test for the
2161  * existence of the support register and simply ignore the port type.
2162  */
2163 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2164 {
2165 	struct sci_port *s = to_sci_port(port);
2166 
2167 	if (mctrl & TIOCM_LOOP) {
2168 		const struct plat_sci_reg *reg;
2169 
2170 		/*
2171 		 * Standard loopback mode for SCFCR ports.
2172 		 */
2173 		reg = sci_getreg(port, SCFCR);
2174 		if (reg->size)
2175 			sci_serial_out(port, SCFCR,
2176 				       sci_serial_in(port, SCFCR) | SCFCR_LOOP);
2177 	}
2178 
2179 	mctrl_gpio_set(s->gpios, mctrl);
2180 
2181 	if (!s->has_rtscts)
2182 		return;
2183 
2184 	if (!(mctrl & TIOCM_RTS)) {
2185 		/* Disable Auto RTS */
2186 		if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2187 			sci_serial_out(port, SCFCR,
2188 				       sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
2189 
2190 		/* Clear RTS */
2191 		sci_set_rts(port, 0);
2192 	} else if (s->autorts) {
2193 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2194 			/* Enable RTS# pin function */
2195 			sci_serial_out(port, SCPCR,
2196 				sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
2197 		}
2198 
2199 		/* Enable Auto RTS */
2200 		if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2201 			sci_serial_out(port, SCFCR,
2202 				       sci_serial_in(port, SCFCR) | SCFCR_MCE);
2203 	} else {
2204 		/* Set RTS */
2205 		sci_set_rts(port, 1);
2206 	}
2207 }
2208 
2209 static unsigned int sci_get_mctrl(struct uart_port *port)
2210 {
2211 	struct sci_port *s = to_sci_port(port);
2212 	struct mctrl_gpios *gpios = s->gpios;
2213 	unsigned int mctrl = 0;
2214 
2215 	mctrl_gpio_get(gpios, &mctrl);
2216 
2217 	/*
2218 	 * CTS/RTS is handled in hardware when supported, while nothing
2219 	 * else is wired up.
2220 	 */
2221 	if (s->autorts) {
2222 		if (sci_get_cts(port))
2223 			mctrl |= TIOCM_CTS;
2224 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2225 		mctrl |= TIOCM_CTS;
2226 	}
2227 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2228 		mctrl |= TIOCM_DSR;
2229 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2230 		mctrl |= TIOCM_CAR;
2231 
2232 	return mctrl;
2233 }
2234 
2235 static void sci_enable_ms(struct uart_port *port)
2236 {
2237 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2238 }
2239 
2240 static void sci_break_ctl(struct uart_port *port, int break_state)
2241 {
2242 	unsigned short scscr, scsptr;
2243 	unsigned long flags;
2244 
2245 	/* check whether the port has SCSPTR */
2246 	if (!sci_getreg(port, SCSPTR)->size) {
2247 		/*
2248 		 * Not supported by hardware. Most parts couple break and rx
2249 		 * interrupts together, with break detection always enabled.
2250 		 */
2251 		return;
2252 	}
2253 
2254 	uart_port_lock_irqsave(port, &flags);
2255 	scsptr = sci_serial_in(port, SCSPTR);
2256 	scscr = sci_serial_in(port, SCSCR);
2257 
2258 	if (break_state == -1) {
2259 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2260 		scscr &= ~SCSCR_TE;
2261 	} else {
2262 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2263 		scscr |= SCSCR_TE;
2264 	}
2265 
2266 	sci_serial_out(port, SCSPTR, scsptr);
2267 	sci_serial_out(port, SCSCR, scscr);
2268 	uart_port_unlock_irqrestore(port, flags);
2269 }
2270 
2271 static int sci_startup(struct uart_port *port)
2272 {
2273 	struct sci_port *s = to_sci_port(port);
2274 	int ret;
2275 
2276 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2277 
2278 	s->tx_occurred = false;
2279 	sci_request_dma(port);
2280 
2281 	ret = sci_request_irq(s);
2282 	if (unlikely(ret < 0)) {
2283 		sci_free_dma(port);
2284 		return ret;
2285 	}
2286 
2287 	return 0;
2288 }
2289 
2290 static void sci_shutdown(struct uart_port *port)
2291 {
2292 	struct sci_port *s = to_sci_port(port);
2293 	unsigned long flags;
2294 	u16 scr;
2295 
2296 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2297 
2298 	s->autorts = false;
2299 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2300 
2301 	uart_port_lock_irqsave(port, &flags);
2302 	sci_stop_rx(port);
2303 	sci_stop_tx(port);
2304 	/*
2305 	 * Stop RX and TX, disable related interrupts, keep clock source
2306 	 * and HSCIF TOT bits
2307 	 */
2308 	scr = sci_serial_in(port, SCSCR);
2309 	sci_serial_out(port, SCSCR,
2310 		       scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2311 	uart_port_unlock_irqrestore(port, flags);
2312 
2313 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2314 	if (s->chan_rx_saved) {
2315 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2316 			port->line);
2317 		hrtimer_cancel(&s->rx_timer);
2318 	}
2319 #endif
2320 
2321 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2322 		del_timer_sync(&s->rx_fifo_timer);
2323 	sci_free_irq(s);
2324 	sci_free_dma(port);
2325 }
2326 
2327 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2328 			unsigned int *srr)
2329 {
2330 	unsigned long freq = s->clk_rates[SCI_SCK];
2331 	int err, min_err = INT_MAX;
2332 	unsigned int sr;
2333 
2334 	if (s->port.type != PORT_HSCIF)
2335 		freq *= 2;
2336 
2337 	for_each_sr(sr, s) {
2338 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2339 		if (abs(err) >= abs(min_err))
2340 			continue;
2341 
2342 		min_err = err;
2343 		*srr = sr - 1;
2344 
2345 		if (!err)
2346 			break;
2347 	}
2348 
2349 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2350 		*srr + 1);
2351 	return min_err;
2352 }
2353 
2354 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2355 			unsigned long freq, unsigned int *dlr,
2356 			unsigned int *srr)
2357 {
2358 	int err, min_err = INT_MAX;
2359 	unsigned int sr, dl;
2360 
2361 	if (s->port.type != PORT_HSCIF)
2362 		freq *= 2;
2363 
2364 	for_each_sr(sr, s) {
2365 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2366 		dl = clamp(dl, 1U, 65535U);
2367 
2368 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2369 		if (abs(err) >= abs(min_err))
2370 			continue;
2371 
2372 		min_err = err;
2373 		*dlr = dl;
2374 		*srr = sr - 1;
2375 
2376 		if (!err)
2377 			break;
2378 	}
2379 
2380 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2381 		min_err, *dlr, *srr + 1);
2382 	return min_err;
2383 }
2384 
2385 /* calculate sample rate, BRR, and clock select */
2386 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2387 			  unsigned int *brr, unsigned int *srr,
2388 			  unsigned int *cks)
2389 {
2390 	unsigned long freq = s->clk_rates[SCI_FCK];
2391 	unsigned int sr, br, prediv, scrate, c;
2392 	int err, min_err = INT_MAX;
2393 
2394 	if (s->port.type != PORT_HSCIF)
2395 		freq *= 2;
2396 
2397 	/*
2398 	 * Find the combination of sample rate and clock select with the
2399 	 * smallest deviation from the desired baud rate.
2400 	 * Prefer high sample rates to maximise the receive margin.
2401 	 *
2402 	 * M: Receive margin (%)
2403 	 * N: Ratio of bit rate to clock (N = sampling rate)
2404 	 * D: Clock duty (D = 0 to 1.0)
2405 	 * L: Frame length (L = 9 to 12)
2406 	 * F: Absolute value of clock frequency deviation
2407 	 *
2408 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2409 	 *      (|D - 0.5| / N * (1 + F))|
2410 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2411 	 */
2412 	for_each_sr(sr, s) {
2413 		for (c = 0; c <= 3; c++) {
2414 			/* integerized formulas from HSCIF documentation */
2415 			prediv = sr << (2 * c + 1);
2416 
2417 			/*
2418 			 * We need to calculate:
2419 			 *
2420 			 *     br = freq / (prediv * bps) clamped to [1..256]
2421 			 *     err = freq / (br * prediv) - bps
2422 			 *
2423 			 * Watch out for overflow when calculating the desired
2424 			 * sampling clock rate!
2425 			 */
2426 			if (bps > UINT_MAX / prediv)
2427 				break;
2428 
2429 			scrate = prediv * bps;
2430 			br = DIV_ROUND_CLOSEST(freq, scrate);
2431 			br = clamp(br, 1U, 256U);
2432 
2433 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2434 			if (abs(err) >= abs(min_err))
2435 				continue;
2436 
2437 			min_err = err;
2438 			*brr = br - 1;
2439 			*srr = sr - 1;
2440 			*cks = c;
2441 
2442 			if (!err)
2443 				goto found;
2444 		}
2445 	}
2446 
2447 found:
2448 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2449 		min_err, *brr, *srr + 1, *cks);
2450 	return min_err;
2451 }
2452 
2453 static void sci_reset(struct uart_port *port)
2454 {
2455 	const struct plat_sci_reg *reg;
2456 	unsigned int status;
2457 	struct sci_port *s = to_sci_port(port);
2458 
2459 	sci_serial_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2460 
2461 	reg = sci_getreg(port, SCFCR);
2462 	if (reg->size)
2463 		sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2464 
2465 	sci_clear_SCxSR(port,
2466 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2467 			SCxSR_BREAK_CLEAR(port));
2468 	if (sci_getreg(port, SCLSR)->size) {
2469 		status = sci_serial_in(port, SCLSR);
2470 		status &= ~(SCLSR_TO | SCLSR_ORER);
2471 		sci_serial_out(port, SCLSR, status);
2472 	}
2473 
2474 	if (s->rx_trigger > 1) {
2475 		if (s->rx_fifo_timeout) {
2476 			scif_set_rtrg(port, 1);
2477 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2478 		} else {
2479 			if (port->type == PORT_SCIFA ||
2480 			    port->type == PORT_SCIFB)
2481 				scif_set_rtrg(port, 1);
2482 			else
2483 				scif_set_rtrg(port, s->rx_trigger);
2484 		}
2485 	}
2486 }
2487 
2488 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2489 		            const struct ktermios *old)
2490 {
2491 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2492 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2493 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2494 	struct sci_port *s = to_sci_port(port);
2495 	const struct plat_sci_reg *reg;
2496 	int min_err = INT_MAX, err;
2497 	unsigned long max_freq = 0;
2498 	int best_clk = -1;
2499 	unsigned long flags;
2500 
2501 	if ((termios->c_cflag & CSIZE) == CS7) {
2502 		smr_val |= SCSMR_CHR;
2503 	} else {
2504 		termios->c_cflag &= ~CSIZE;
2505 		termios->c_cflag |= CS8;
2506 	}
2507 	if (termios->c_cflag & PARENB)
2508 		smr_val |= SCSMR_PE;
2509 	if (termios->c_cflag & PARODD)
2510 		smr_val |= SCSMR_PE | SCSMR_ODD;
2511 	if (termios->c_cflag & CSTOPB)
2512 		smr_val |= SCSMR_STOP;
2513 
2514 	/*
2515 	 * earlyprintk comes here early on with port->uartclk set to zero.
2516 	 * the clock framework is not up and running at this point so here
2517 	 * we assume that 115200 is the maximum baud rate. please note that
2518 	 * the baud rate is not programmed during earlyprintk - it is assumed
2519 	 * that the previous boot loader has enabled required clocks and
2520 	 * setup the baud rate generator hardware for us already.
2521 	 */
2522 	if (!port->uartclk) {
2523 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2524 		goto done;
2525 	}
2526 
2527 	for (i = 0; i < SCI_NUM_CLKS; i++)
2528 		max_freq = max(max_freq, s->clk_rates[i]);
2529 
2530 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2531 	if (!baud)
2532 		goto done;
2533 
2534 	/*
2535 	 * There can be multiple sources for the sampling clock.  Find the one
2536 	 * that gives us the smallest deviation from the desired baud rate.
2537 	 */
2538 
2539 	/* Optional Undivided External Clock */
2540 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2541 	    port->type != PORT_SCIFB) {
2542 		err = sci_sck_calc(s, baud, &srr1);
2543 		if (abs(err) < abs(min_err)) {
2544 			best_clk = SCI_SCK;
2545 			scr_val = SCSCR_CKE1;
2546 			sccks = SCCKS_CKS;
2547 			min_err = err;
2548 			srr = srr1;
2549 			if (!err)
2550 				goto done;
2551 		}
2552 	}
2553 
2554 	/* Optional BRG Frequency Divided External Clock */
2555 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2556 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2557 				   &srr1);
2558 		if (abs(err) < abs(min_err)) {
2559 			best_clk = SCI_SCIF_CLK;
2560 			scr_val = SCSCR_CKE1;
2561 			sccks = 0;
2562 			min_err = err;
2563 			dl = dl1;
2564 			srr = srr1;
2565 			if (!err)
2566 				goto done;
2567 		}
2568 	}
2569 
2570 	/* Optional BRG Frequency Divided Internal Clock */
2571 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2572 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2573 				   &srr1);
2574 		if (abs(err) < abs(min_err)) {
2575 			best_clk = SCI_BRG_INT;
2576 			scr_val = SCSCR_CKE1;
2577 			sccks = SCCKS_XIN;
2578 			min_err = err;
2579 			dl = dl1;
2580 			srr = srr1;
2581 			if (!min_err)
2582 				goto done;
2583 		}
2584 	}
2585 
2586 	/* Divided Functional Clock using standard Bit Rate Register */
2587 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2588 	if (abs(err) < abs(min_err)) {
2589 		best_clk = SCI_FCK;
2590 		scr_val = 0;
2591 		min_err = err;
2592 		brr = brr1;
2593 		srr = srr1;
2594 		cks = cks1;
2595 	}
2596 
2597 done:
2598 	if (best_clk >= 0)
2599 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2600 			s->clks[best_clk], baud, min_err);
2601 
2602 	sci_port_enable(s);
2603 
2604 	/*
2605 	 * Program the optional External Baud Rate Generator (BRG) first.
2606 	 * It controls the mux to select (H)SCK or frequency divided clock.
2607 	 */
2608 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2609 		sci_serial_out(port, SCDL, dl);
2610 		sci_serial_out(port, SCCKS, sccks);
2611 	}
2612 
2613 	uart_port_lock_irqsave(port, &flags);
2614 
2615 	sci_reset(port);
2616 
2617 	uart_update_timeout(port, termios->c_cflag, baud);
2618 
2619 	/* byte size and parity */
2620 	bits = tty_get_frame_size(termios->c_cflag);
2621 
2622 	if (sci_getreg(port, SEMR)->size)
2623 		sci_serial_out(port, SEMR, 0);
2624 
2625 	if (best_clk >= 0) {
2626 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2627 			switch (srr + 1) {
2628 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2629 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2630 			case 11: smr_val |= SCSMR_SRC_11; break;
2631 			case 13: smr_val |= SCSMR_SRC_13; break;
2632 			case 16: smr_val |= SCSMR_SRC_16; break;
2633 			case 17: smr_val |= SCSMR_SRC_17; break;
2634 			case 19: smr_val |= SCSMR_SRC_19; break;
2635 			case 27: smr_val |= SCSMR_SRC_27; break;
2636 			}
2637 		smr_val |= cks;
2638 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2639 		sci_serial_out(port, SCSMR, smr_val);
2640 		sci_serial_out(port, SCBRR, brr);
2641 		if (sci_getreg(port, HSSRR)->size) {
2642 			unsigned int hssrr = srr | HSCIF_SRE;
2643 			/* Calculate deviation from intended rate at the
2644 			 * center of the last stop bit in sampling clocks.
2645 			 */
2646 			int last_stop = bits * 2 - 1;
2647 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2648 							  (int)(srr + 1),
2649 							  2 * (int)baud);
2650 
2651 			if (abs(deviation) >= 2) {
2652 				/* At least two sampling clocks off at the
2653 				 * last stop bit; we can increase the error
2654 				 * margin by shifting the sampling point.
2655 				 */
2656 				int shift = clamp(deviation / 2, -8, 7);
2657 
2658 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2659 					 HSCIF_SRHP_MASK;
2660 				hssrr |= HSCIF_SRDE;
2661 			}
2662 			sci_serial_out(port, HSSRR, hssrr);
2663 		}
2664 
2665 		/* Wait one bit interval */
2666 		udelay((1000000 + (baud - 1)) / baud);
2667 	} else {
2668 		/* Don't touch the bit rate configuration */
2669 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2670 		smr_val |= sci_serial_in(port, SCSMR) &
2671 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2672 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2673 		sci_serial_out(port, SCSMR, smr_val);
2674 	}
2675 
2676 	sci_init_pins(port, termios->c_cflag);
2677 
2678 	port->status &= ~UPSTAT_AUTOCTS;
2679 	s->autorts = false;
2680 	reg = sci_getreg(port, SCFCR);
2681 	if (reg->size) {
2682 		unsigned short ctrl = sci_serial_in(port, SCFCR);
2683 
2684 		if ((port->flags & UPF_HARD_FLOW) &&
2685 		    (termios->c_cflag & CRTSCTS)) {
2686 			/* There is no CTS interrupt to restart the hardware */
2687 			port->status |= UPSTAT_AUTOCTS;
2688 			/* MCE is enabled when RTS is raised */
2689 			s->autorts = true;
2690 		}
2691 
2692 		/*
2693 		 * As we've done a sci_reset() above, ensure we don't
2694 		 * interfere with the FIFOs while toggling MCE. As the
2695 		 * reset values could still be set, simply mask them out.
2696 		 */
2697 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2698 
2699 		sci_serial_out(port, SCFCR, ctrl);
2700 	}
2701 	if (port->flags & UPF_HARD_FLOW) {
2702 		/* Refresh (Auto) RTS */
2703 		sci_set_mctrl(port, port->mctrl);
2704 	}
2705 
2706 	/*
2707 	 * For SCI, TE (transmit enable) must be set after setting TIE
2708 	 * (transmit interrupt enable) or in the same instruction to
2709 	 * start the transmitting process. So skip setting TE here for SCI.
2710 	 */
2711 	if (port->type != PORT_SCI)
2712 		scr_val |= SCSCR_TE;
2713 	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2714 	sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2715 	if ((srr + 1 == 5) &&
2716 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2717 		/*
2718 		 * In asynchronous mode, when the sampling rate is 1/5, first
2719 		 * received data may become invalid on some SCIFA and SCIFB.
2720 		 * To avoid this problem wait more than 1 serial data time (1
2721 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2722 		 */
2723 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2724 	}
2725 
2726 	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2727 	s->rx_frame = (10000 * bits) / (baud / 100);
2728 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2729 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2730 #endif
2731 
2732 	if ((termios->c_cflag & CREAD) != 0)
2733 		sci_start_rx(port);
2734 
2735 	uart_port_unlock_irqrestore(port, flags);
2736 
2737 	sci_port_disable(s);
2738 
2739 	if (UART_ENABLE_MS(port, termios->c_cflag))
2740 		sci_enable_ms(port);
2741 }
2742 
2743 static void sci_pm(struct uart_port *port, unsigned int state,
2744 		   unsigned int oldstate)
2745 {
2746 	struct sci_port *sci_port = to_sci_port(port);
2747 
2748 	switch (state) {
2749 	case UART_PM_STATE_OFF:
2750 		sci_port_disable(sci_port);
2751 		break;
2752 	default:
2753 		sci_port_enable(sci_port);
2754 		break;
2755 	}
2756 }
2757 
2758 static const char *sci_type(struct uart_port *port)
2759 {
2760 	switch (port->type) {
2761 	case PORT_IRDA:
2762 		return "irda";
2763 	case PORT_SCI:
2764 		return "sci";
2765 	case PORT_SCIF:
2766 		return "scif";
2767 	case PORT_SCIFA:
2768 		return "scifa";
2769 	case PORT_SCIFB:
2770 		return "scifb";
2771 	case PORT_HSCIF:
2772 		return "hscif";
2773 	}
2774 
2775 	return NULL;
2776 }
2777 
2778 static int sci_remap_port(struct uart_port *port)
2779 {
2780 	struct sci_port *sport = to_sci_port(port);
2781 
2782 	/*
2783 	 * Nothing to do if there's already an established membase.
2784 	 */
2785 	if (port->membase)
2786 		return 0;
2787 
2788 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2789 		port->membase = ioremap(port->mapbase, sport->reg_size);
2790 		if (unlikely(!port->membase)) {
2791 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2792 			return -ENXIO;
2793 		}
2794 	} else {
2795 		/*
2796 		 * For the simple (and majority of) cases where we don't
2797 		 * need to do any remapping, just cast the cookie
2798 		 * directly.
2799 		 */
2800 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2801 	}
2802 
2803 	return 0;
2804 }
2805 
2806 static void sci_release_port(struct uart_port *port)
2807 {
2808 	struct sci_port *sport = to_sci_port(port);
2809 
2810 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2811 		iounmap(port->membase);
2812 		port->membase = NULL;
2813 	}
2814 
2815 	release_mem_region(port->mapbase, sport->reg_size);
2816 }
2817 
2818 static int sci_request_port(struct uart_port *port)
2819 {
2820 	struct resource *res;
2821 	struct sci_port *sport = to_sci_port(port);
2822 	int ret;
2823 
2824 	res = request_mem_region(port->mapbase, sport->reg_size,
2825 				 dev_name(port->dev));
2826 	if (unlikely(res == NULL)) {
2827 		dev_err(port->dev, "request_mem_region failed.");
2828 		return -EBUSY;
2829 	}
2830 
2831 	ret = sci_remap_port(port);
2832 	if (unlikely(ret != 0)) {
2833 		release_resource(res);
2834 		return ret;
2835 	}
2836 
2837 	return 0;
2838 }
2839 
2840 static void sci_config_port(struct uart_port *port, int flags)
2841 {
2842 	if (flags & UART_CONFIG_TYPE) {
2843 		struct sci_port *sport = to_sci_port(port);
2844 
2845 		port->type = sport->cfg->type;
2846 		sci_request_port(port);
2847 	}
2848 }
2849 
2850 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2851 {
2852 	if (ser->baud_base < 2400)
2853 		/* No paper tape reader for Mitch.. */
2854 		return -EINVAL;
2855 
2856 	return 0;
2857 }
2858 
2859 static const struct uart_ops sci_uart_ops = {
2860 	.tx_empty	= sci_tx_empty,
2861 	.set_mctrl	= sci_set_mctrl,
2862 	.get_mctrl	= sci_get_mctrl,
2863 	.start_tx	= sci_start_tx,
2864 	.stop_tx	= sci_stop_tx,
2865 	.stop_rx	= sci_stop_rx,
2866 	.enable_ms	= sci_enable_ms,
2867 	.break_ctl	= sci_break_ctl,
2868 	.startup	= sci_startup,
2869 	.shutdown	= sci_shutdown,
2870 	.flush_buffer	= sci_flush_buffer,
2871 	.set_termios	= sci_set_termios,
2872 	.pm		= sci_pm,
2873 	.type		= sci_type,
2874 	.release_port	= sci_release_port,
2875 	.request_port	= sci_request_port,
2876 	.config_port	= sci_config_port,
2877 	.verify_port	= sci_verify_port,
2878 #ifdef CONFIG_CONSOLE_POLL
2879 	.poll_get_char	= sci_poll_get_char,
2880 	.poll_put_char	= sci_poll_put_char,
2881 #endif
2882 };
2883 
2884 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2885 {
2886 	const char *clk_names[] = {
2887 		[SCI_FCK] = "fck",
2888 		[SCI_SCK] = "sck",
2889 		[SCI_BRG_INT] = "brg_int",
2890 		[SCI_SCIF_CLK] = "scif_clk",
2891 	};
2892 	struct clk *clk;
2893 	unsigned int i;
2894 
2895 	if (sci_port->cfg->type == PORT_HSCIF)
2896 		clk_names[SCI_SCK] = "hsck";
2897 
2898 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2899 		clk = devm_clk_get_optional(dev, clk_names[i]);
2900 		if (IS_ERR(clk))
2901 			return PTR_ERR(clk);
2902 
2903 		if (!clk && i == SCI_FCK) {
2904 			/*
2905 			 * Not all SH platforms declare a clock lookup entry
2906 			 * for SCI devices, in which case we need to get the
2907 			 * global "peripheral_clk" clock.
2908 			 */
2909 			clk = devm_clk_get(dev, "peripheral_clk");
2910 			if (IS_ERR(clk))
2911 				return dev_err_probe(dev, PTR_ERR(clk),
2912 						     "failed to get %s\n",
2913 						     clk_names[i]);
2914 		}
2915 
2916 		if (!clk)
2917 			dev_dbg(dev, "failed to get %s\n", clk_names[i]);
2918 		else
2919 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2920 				clk, clk_get_rate(clk));
2921 		sci_port->clks[i] = clk;
2922 	}
2923 	return 0;
2924 }
2925 
2926 static const struct sci_port_params *
2927 sci_probe_regmap(const struct plat_sci_port *cfg)
2928 {
2929 	unsigned int regtype;
2930 
2931 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2932 		return &sci_port_params[cfg->regtype];
2933 
2934 	switch (cfg->type) {
2935 	case PORT_SCI:
2936 		regtype = SCIx_SCI_REGTYPE;
2937 		break;
2938 	case PORT_IRDA:
2939 		regtype = SCIx_IRDA_REGTYPE;
2940 		break;
2941 	case PORT_SCIFA:
2942 		regtype = SCIx_SCIFA_REGTYPE;
2943 		break;
2944 	case PORT_SCIFB:
2945 		regtype = SCIx_SCIFB_REGTYPE;
2946 		break;
2947 	case PORT_SCIF:
2948 		/*
2949 		 * The SH-4 is a bit of a misnomer here, although that's
2950 		 * where this particular port layout originated. This
2951 		 * configuration (or some slight variation thereof)
2952 		 * remains the dominant model for all SCIFs.
2953 		 */
2954 		regtype = SCIx_SH4_SCIF_REGTYPE;
2955 		break;
2956 	case PORT_HSCIF:
2957 		regtype = SCIx_HSCIF_REGTYPE;
2958 		break;
2959 	default:
2960 		pr_err("Can't probe register map for given port\n");
2961 		return NULL;
2962 	}
2963 
2964 	return &sci_port_params[regtype];
2965 }
2966 
2967 static int sci_init_single(struct platform_device *dev,
2968 			   struct sci_port *sci_port, unsigned int index,
2969 			   const struct plat_sci_port *p, bool early)
2970 {
2971 	struct uart_port *port = &sci_port->port;
2972 	const struct resource *res;
2973 	unsigned int i;
2974 	int ret;
2975 
2976 	sci_port->cfg	= p;
2977 
2978 	port->ops	= &sci_uart_ops;
2979 	port->iotype	= UPIO_MEM;
2980 	port->line	= index;
2981 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2982 
2983 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2984 	if (res == NULL)
2985 		return -ENOMEM;
2986 
2987 	port->mapbase = res->start;
2988 	sci_port->reg_size = resource_size(res);
2989 
2990 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2991 		if (i)
2992 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2993 		else
2994 			sci_port->irqs[i] = platform_get_irq(dev, i);
2995 	}
2996 
2997 	/*
2998 	 * The fourth interrupt on SCI port is transmit end interrupt, so
2999 	 * shuffle the interrupts.
3000 	 */
3001 	if (p->type == PORT_SCI)
3002 		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
3003 
3004 	/* The SCI generates several interrupts. They can be muxed together or
3005 	 * connected to different interrupt lines. In the muxed case only one
3006 	 * interrupt resource is specified as there is only one interrupt ID.
3007 	 * In the non-muxed case, up to 6 interrupt signals might be generated
3008 	 * from the SCI, however those signals might have their own individual
3009 	 * interrupt ID numbers, or muxed together with another interrupt.
3010 	 */
3011 	if (sci_port->irqs[0] < 0)
3012 		return -ENXIO;
3013 
3014 	if (sci_port->irqs[1] < 0)
3015 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
3016 			sci_port->irqs[i] = sci_port->irqs[0];
3017 
3018 	sci_port->params = sci_probe_regmap(p);
3019 	if (unlikely(sci_port->params == NULL))
3020 		return -EINVAL;
3021 
3022 	switch (p->type) {
3023 	case PORT_SCIFB:
3024 		sci_port->rx_trigger = 48;
3025 		break;
3026 	case PORT_HSCIF:
3027 		sci_port->rx_trigger = 64;
3028 		break;
3029 	case PORT_SCIFA:
3030 		sci_port->rx_trigger = 32;
3031 		break;
3032 	case PORT_SCIF:
3033 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
3034 			/* RX triggering not implemented for this IP */
3035 			sci_port->rx_trigger = 1;
3036 		else
3037 			sci_port->rx_trigger = 8;
3038 		break;
3039 	default:
3040 		sci_port->rx_trigger = 1;
3041 		break;
3042 	}
3043 
3044 	sci_port->rx_fifo_timeout = 0;
3045 	sci_port->hscif_tot = 0;
3046 
3047 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
3048 	 * match the SoC datasheet, this should be investigated. Let platform
3049 	 * data override the sampling rate for now.
3050 	 */
3051 	sci_port->sampling_rate_mask = p->sampling_rate
3052 				     ? SCI_SR(p->sampling_rate)
3053 				     : sci_port->params->sampling_rate_mask;
3054 
3055 	if (!early) {
3056 		ret = sci_init_clocks(sci_port, &dev->dev);
3057 		if (ret < 0)
3058 			return ret;
3059 
3060 		port->dev = &dev->dev;
3061 
3062 		pm_runtime_enable(&dev->dev);
3063 	}
3064 
3065 	port->type		= p->type;
3066 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3067 	port->fifosize		= sci_port->params->fifosize;
3068 
3069 	if (port->type == PORT_SCI && !dev->dev.of_node) {
3070 		if (sci_port->reg_size >= 0x20)
3071 			port->regshift = 2;
3072 		else
3073 			port->regshift = 1;
3074 	}
3075 
3076 	/*
3077 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3078 	 * for the multi-IRQ ports, which is where we are primarily
3079 	 * concerned with the shutdown path synchronization.
3080 	 *
3081 	 * For the muxed case there's nothing more to do.
3082 	 */
3083 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3084 	port->irqflags		= 0;
3085 
3086 	return 0;
3087 }
3088 
3089 static void sci_cleanup_single(struct sci_port *port)
3090 {
3091 	pm_runtime_disable(port->port.dev);
3092 }
3093 
3094 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3095     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3096 static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3097 {
3098 	sci_poll_put_char(port, ch);
3099 }
3100 
3101 /*
3102  *	Print a string to the serial port trying not to disturb
3103  *	any possible real use of the port...
3104  */
3105 static void serial_console_write(struct console *co, const char *s,
3106 				 unsigned count)
3107 {
3108 	struct sci_port *sci_port = &sci_ports[co->index];
3109 	struct uart_port *port = &sci_port->port;
3110 	unsigned short bits, ctrl, ctrl_temp;
3111 	unsigned long flags;
3112 	int locked = 1;
3113 
3114 	if (port->sysrq)
3115 		locked = 0;
3116 	else if (oops_in_progress)
3117 		locked = uart_port_trylock_irqsave(port, &flags);
3118 	else
3119 		uart_port_lock_irqsave(port, &flags);
3120 
3121 	/* first save SCSCR then disable interrupts, keep clock source */
3122 	ctrl = sci_serial_in(port, SCSCR);
3123 	ctrl_temp = SCSCR_RE | SCSCR_TE |
3124 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3125 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3126 	sci_serial_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3127 
3128 	uart_console_write(port, s, count, serial_console_putchar);
3129 
3130 	/* wait until fifo is empty and last bit has been transmitted */
3131 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3132 	while ((sci_serial_in(port, SCxSR) & bits) != bits)
3133 		cpu_relax();
3134 
3135 	/* restore the SCSCR */
3136 	sci_serial_out(port, SCSCR, ctrl);
3137 
3138 	if (locked)
3139 		uart_port_unlock_irqrestore(port, flags);
3140 }
3141 
3142 static int serial_console_setup(struct console *co, char *options)
3143 {
3144 	struct sci_port *sci_port;
3145 	struct uart_port *port;
3146 	int baud = 115200;
3147 	int bits = 8;
3148 	int parity = 'n';
3149 	int flow = 'n';
3150 	int ret;
3151 
3152 	/*
3153 	 * Refuse to handle any bogus ports.
3154 	 */
3155 	if (co->index < 0 || co->index >= SCI_NPORTS)
3156 		return -ENODEV;
3157 
3158 	sci_port = &sci_ports[co->index];
3159 	port = &sci_port->port;
3160 
3161 	/*
3162 	 * Refuse to handle uninitialized ports.
3163 	 */
3164 	if (!port->ops)
3165 		return -ENODEV;
3166 
3167 	ret = sci_remap_port(port);
3168 	if (unlikely(ret != 0))
3169 		return ret;
3170 
3171 	if (options)
3172 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3173 
3174 	return uart_set_options(port, co, baud, parity, bits, flow);
3175 }
3176 
3177 static struct console serial_console = {
3178 	.name		= "ttySC",
3179 	.device		= uart_console_device,
3180 	.write		= serial_console_write,
3181 	.setup		= serial_console_setup,
3182 	.flags		= CON_PRINTBUFFER,
3183 	.index		= -1,
3184 	.data		= &sci_uart_driver,
3185 };
3186 
3187 #ifdef CONFIG_SUPERH
3188 static char early_serial_buf[32];
3189 
3190 static int early_serial_console_setup(struct console *co, char *options)
3191 {
3192 	/*
3193 	 * This early console is always registered using the earlyprintk=
3194 	 * parameter, which does not call add_preferred_console(). Thus
3195 	 * @options is always NULL and the options for this early console
3196 	 * are passed using a custom buffer.
3197 	 */
3198 	WARN_ON(options);
3199 
3200 	return serial_console_setup(co, early_serial_buf);
3201 }
3202 
3203 static struct console early_serial_console = {
3204 	.name           = "early_ttySC",
3205 	.write          = serial_console_write,
3206 	.setup		= early_serial_console_setup,
3207 	.flags          = CON_PRINTBUFFER,
3208 	.index		= -1,
3209 };
3210 
3211 static int sci_probe_earlyprintk(struct platform_device *pdev)
3212 {
3213 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3214 
3215 	if (early_serial_console.data)
3216 		return -EEXIST;
3217 
3218 	early_serial_console.index = pdev->id;
3219 
3220 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3221 
3222 	if (!strstr(early_serial_buf, "keep"))
3223 		early_serial_console.flags |= CON_BOOT;
3224 
3225 	register_console(&early_serial_console);
3226 	return 0;
3227 }
3228 #endif
3229 
3230 #define SCI_CONSOLE	(&serial_console)
3231 
3232 #else
3233 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3234 {
3235 	return -EINVAL;
3236 }
3237 
3238 #define SCI_CONSOLE	NULL
3239 
3240 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3241 
3242 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3243 
3244 static DEFINE_MUTEX(sci_uart_registration_lock);
3245 static struct uart_driver sci_uart_driver = {
3246 	.owner		= THIS_MODULE,
3247 	.driver_name	= "sci",
3248 	.dev_name	= "ttySC",
3249 	.major		= SCI_MAJOR,
3250 	.minor		= SCI_MINOR_START,
3251 	.nr		= SCI_NPORTS,
3252 	.cons		= SCI_CONSOLE,
3253 };
3254 
3255 static void sci_remove(struct platform_device *dev)
3256 {
3257 	struct sci_port *port = platform_get_drvdata(dev);
3258 	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3259 
3260 	sci_ports_in_use &= ~BIT(port->port.line);
3261 	uart_remove_one_port(&sci_uart_driver, &port->port);
3262 
3263 	sci_cleanup_single(port);
3264 
3265 	if (port->port.fifosize > 1)
3266 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3267 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3268 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3269 }
3270 
3271 
3272 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3273 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3274 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3275 
3276 static const struct of_device_id of_sci_match[] __maybe_unused = {
3277 	/* SoC-specific types */
3278 	{
3279 		.compatible = "renesas,scif-r7s72100",
3280 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3281 	},
3282 	{
3283 		.compatible = "renesas,scif-r7s9210",
3284 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3285 	},
3286 	{
3287 		.compatible = "renesas,scif-r9a07g044",
3288 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3289 	},
3290 	{
3291 		.compatible = "renesas,scif-r9a09g057",
3292 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZV2H_SCIF_REGTYPE),
3293 	},
3294 	/* Family-specific types */
3295 	{
3296 		.compatible = "renesas,rcar-gen1-scif",
3297 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3298 	}, {
3299 		.compatible = "renesas,rcar-gen2-scif",
3300 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3301 	}, {
3302 		.compatible = "renesas,rcar-gen3-scif",
3303 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3304 	}, {
3305 		.compatible = "renesas,rcar-gen4-scif",
3306 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3307 	},
3308 	/* Generic types */
3309 	{
3310 		.compatible = "renesas,scif",
3311 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3312 	}, {
3313 		.compatible = "renesas,scifa",
3314 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3315 	}, {
3316 		.compatible = "renesas,scifb",
3317 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3318 	}, {
3319 		.compatible = "renesas,hscif",
3320 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3321 	}, {
3322 		.compatible = "renesas,sci",
3323 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3324 	}, {
3325 		/* Terminator */
3326 	},
3327 };
3328 MODULE_DEVICE_TABLE(of, of_sci_match);
3329 
3330 static void sci_reset_control_assert(void *data)
3331 {
3332 	reset_control_assert(data);
3333 }
3334 
3335 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3336 					  unsigned int *dev_id)
3337 {
3338 	struct device_node *np = pdev->dev.of_node;
3339 	struct reset_control *rstc;
3340 	struct plat_sci_port *p;
3341 	struct sci_port *sp;
3342 	const void *data;
3343 	int id, ret;
3344 
3345 	if (!IS_ENABLED(CONFIG_OF) || !np)
3346 		return ERR_PTR(-EINVAL);
3347 
3348 	data = of_device_get_match_data(&pdev->dev);
3349 
3350 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3351 	if (IS_ERR(rstc))
3352 		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3353 					     "failed to get reset ctrl\n"));
3354 
3355 	ret = reset_control_deassert(rstc);
3356 	if (ret) {
3357 		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3358 		return ERR_PTR(ret);
3359 	}
3360 
3361 	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3362 	if (ret) {
3363 		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3364 			ret);
3365 		return ERR_PTR(ret);
3366 	}
3367 
3368 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3369 	if (!p)
3370 		return ERR_PTR(-ENOMEM);
3371 
3372 	/* Get the line number from the aliases node. */
3373 	id = of_alias_get_id(np, "serial");
3374 	if (id < 0 && ~sci_ports_in_use)
3375 		id = ffz(sci_ports_in_use);
3376 	if (id < 0) {
3377 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3378 		return ERR_PTR(-EINVAL);
3379 	}
3380 	if (id >= ARRAY_SIZE(sci_ports)) {
3381 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3382 		return ERR_PTR(-EINVAL);
3383 	}
3384 
3385 	sp = &sci_ports[id];
3386 	*dev_id = id;
3387 
3388 	p->type = SCI_OF_TYPE(data);
3389 	p->regtype = SCI_OF_REGTYPE(data);
3390 
3391 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3392 
3393 	return p;
3394 }
3395 
3396 static int sci_probe_single(struct platform_device *dev,
3397 				      unsigned int index,
3398 				      struct plat_sci_port *p,
3399 				      struct sci_port *sciport)
3400 {
3401 	int ret;
3402 
3403 	/* Sanity check */
3404 	if (unlikely(index >= SCI_NPORTS)) {
3405 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3406 			   index+1, SCI_NPORTS);
3407 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3408 		return -EINVAL;
3409 	}
3410 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3411 	if (sci_ports_in_use & BIT(index))
3412 		return -EBUSY;
3413 
3414 	mutex_lock(&sci_uart_registration_lock);
3415 	if (!sci_uart_driver.state) {
3416 		ret = uart_register_driver(&sci_uart_driver);
3417 		if (ret) {
3418 			mutex_unlock(&sci_uart_registration_lock);
3419 			return ret;
3420 		}
3421 	}
3422 	mutex_unlock(&sci_uart_registration_lock);
3423 
3424 	ret = sci_init_single(dev, sciport, index, p, false);
3425 	if (ret)
3426 		return ret;
3427 
3428 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3429 	if (IS_ERR(sciport->gpios))
3430 		return PTR_ERR(sciport->gpios);
3431 
3432 	if (sciport->has_rtscts) {
3433 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3434 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3435 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3436 			return -EINVAL;
3437 		}
3438 		sciport->port.flags |= UPF_HARD_FLOW;
3439 	}
3440 
3441 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3442 	if (ret) {
3443 		sci_cleanup_single(sciport);
3444 		return ret;
3445 	}
3446 
3447 	return 0;
3448 }
3449 
3450 static int sci_probe(struct platform_device *dev)
3451 {
3452 	struct plat_sci_port *p;
3453 	struct sci_port *sp;
3454 	unsigned int dev_id;
3455 	int ret;
3456 
3457 	/*
3458 	 * If we've come here via earlyprintk initialization, head off to
3459 	 * the special early probe. We don't have sufficient device state
3460 	 * to make it beyond this yet.
3461 	 */
3462 #ifdef CONFIG_SUPERH
3463 	if (is_sh_early_platform_device(dev))
3464 		return sci_probe_earlyprintk(dev);
3465 #endif
3466 
3467 	if (dev->dev.of_node) {
3468 		p = sci_parse_dt(dev, &dev_id);
3469 		if (IS_ERR(p))
3470 			return PTR_ERR(p);
3471 	} else {
3472 		p = dev->dev.platform_data;
3473 		if (p == NULL) {
3474 			dev_err(&dev->dev, "no platform data supplied\n");
3475 			return -EINVAL;
3476 		}
3477 
3478 		dev_id = dev->id;
3479 	}
3480 
3481 	sp = &sci_ports[dev_id];
3482 	platform_set_drvdata(dev, sp);
3483 
3484 	ret = sci_probe_single(dev, dev_id, p, sp);
3485 	if (ret)
3486 		return ret;
3487 
3488 	if (sp->port.fifosize > 1) {
3489 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3490 		if (ret)
3491 			return ret;
3492 	}
3493 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3494 	    sp->port.type == PORT_HSCIF) {
3495 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3496 		if (ret) {
3497 			if (sp->port.fifosize > 1) {
3498 				device_remove_file(&dev->dev,
3499 						   &dev_attr_rx_fifo_trigger);
3500 			}
3501 			return ret;
3502 		}
3503 	}
3504 
3505 #ifdef CONFIG_SH_STANDARD_BIOS
3506 	sh_bios_gdb_detach();
3507 #endif
3508 
3509 	sci_ports_in_use |= BIT(dev_id);
3510 	return 0;
3511 }
3512 
3513 static __maybe_unused int sci_suspend(struct device *dev)
3514 {
3515 	struct sci_port *sport = dev_get_drvdata(dev);
3516 
3517 	if (sport)
3518 		uart_suspend_port(&sci_uart_driver, &sport->port);
3519 
3520 	return 0;
3521 }
3522 
3523 static __maybe_unused int sci_resume(struct device *dev)
3524 {
3525 	struct sci_port *sport = dev_get_drvdata(dev);
3526 
3527 	if (sport)
3528 		uart_resume_port(&sci_uart_driver, &sport->port);
3529 
3530 	return 0;
3531 }
3532 
3533 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3534 
3535 static struct platform_driver sci_driver = {
3536 	.probe		= sci_probe,
3537 	.remove		= sci_remove,
3538 	.driver		= {
3539 		.name	= "sh-sci",
3540 		.pm	= &sci_dev_pm_ops,
3541 		.of_match_table = of_match_ptr(of_sci_match),
3542 	},
3543 };
3544 
3545 static int __init sci_init(void)
3546 {
3547 	pr_info("%s\n", banner);
3548 
3549 	return platform_driver_register(&sci_driver);
3550 }
3551 
3552 static void __exit sci_exit(void)
3553 {
3554 	platform_driver_unregister(&sci_driver);
3555 
3556 	if (sci_uart_driver.state)
3557 		uart_unregister_driver(&sci_uart_driver);
3558 }
3559 
3560 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3561 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3562 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3563 #endif
3564 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3565 static struct plat_sci_port port_cfg __initdata;
3566 
3567 static int __init early_console_setup(struct earlycon_device *device,
3568 				      int type)
3569 {
3570 	if (!device->port.membase)
3571 		return -ENODEV;
3572 
3573 	device->port.type = type;
3574 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3575 	port_cfg.type = type;
3576 	sci_ports[0].cfg = &port_cfg;
3577 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3578 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3579 	sci_serial_out(&sci_ports[0].port, SCSCR,
3580 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3581 
3582 	device->con->write = serial_console_write;
3583 	return 0;
3584 }
3585 static int __init sci_early_console_setup(struct earlycon_device *device,
3586 					  const char *opt)
3587 {
3588 	return early_console_setup(device, PORT_SCI);
3589 }
3590 static int __init scif_early_console_setup(struct earlycon_device *device,
3591 					  const char *opt)
3592 {
3593 	return early_console_setup(device, PORT_SCIF);
3594 }
3595 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3596 					  const char *opt)
3597 {
3598 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3599 	return early_console_setup(device, PORT_SCIF);
3600 }
3601 
3602 static int __init rzv2hscif_early_console_setup(struct earlycon_device *device,
3603 						const char *opt)
3604 {
3605 	port_cfg.regtype = SCIx_RZV2H_SCIF_REGTYPE;
3606 	return early_console_setup(device, PORT_SCIF);
3607 }
3608 
3609 static int __init scifa_early_console_setup(struct earlycon_device *device,
3610 					  const char *opt)
3611 {
3612 	return early_console_setup(device, PORT_SCIFA);
3613 }
3614 static int __init scifb_early_console_setup(struct earlycon_device *device,
3615 					  const char *opt)
3616 {
3617 	return early_console_setup(device, PORT_SCIFB);
3618 }
3619 static int __init hscif_early_console_setup(struct earlycon_device *device,
3620 					  const char *opt)
3621 {
3622 	return early_console_setup(device, PORT_HSCIF);
3623 }
3624 
3625 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3626 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3627 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3628 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3629 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a09g057", rzv2hscif_early_console_setup);
3630 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3631 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3632 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3633 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3634 
3635 module_init(sci_init);
3636 module_exit(sci_exit);
3637 
3638 MODULE_LICENSE("GPL");
3639 MODULE_ALIAS("platform:sh-sci");
3640 MODULE_AUTHOR("Paul Mundt");
3641 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3642