xref: /linux/drivers/tty/serial/sh-sci.c (revision 4831e0d9054c62c0bd134315de34e7701804707a)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Copyright (C) 2015 Glider bvba
6  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
7  *
8  * based off of the old drivers/char/sh-sci.c by:
9  *
10  *   Copyright (C) 1999, 2000  Niibe Yutaka
11  *   Copyright (C) 2000  Sugioka Toshinobu
12  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
13  *   Modified to support SecureEdge. David McCullough (2002)
14  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
15  *   Removed SH7300 support (Jul 2007).
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  */
21 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
22 #define SUPPORT_SYSRQ
23 #endif
24 
25 #undef DEBUG
26 
27 #include <linux/clk.h>
28 #include <linux/console.h>
29 #include <linux/ctype.h>
30 #include <linux/cpufreq.h>
31 #include <linux/delay.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/errno.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/ioport.h>
39 #include <linux/major.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "serial_mctrl_gpio.h"
61 #include "sh-sci.h"
62 
63 /* Offsets into the sci_port->irqs array */
64 enum {
65 	SCIx_ERI_IRQ,
66 	SCIx_RXI_IRQ,
67 	SCIx_TXI_IRQ,
68 	SCIx_BRI_IRQ,
69 	SCIx_NR_IRQS,
70 
71 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
72 };
73 
74 #define SCIx_IRQ_IS_MUXED(port)			\
75 	((port)->irqs[SCIx_ERI_IRQ] ==	\
76 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
77 	((port)->irqs[SCIx_ERI_IRQ] &&	\
78 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
79 
80 enum SCI_CLKS {
81 	SCI_FCK,		/* Functional Clock */
82 	SCI_SCK,		/* Optional External Clock */
83 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
84 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
85 	SCI_NUM_CLKS
86 };
87 
88 /* Bit x set means sampling rate x + 1 is supported */
89 #define SCI_SR(x)		BIT((x) - 1)
90 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
91 
92 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
93 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
94 				SCI_SR(19) | SCI_SR(27)
95 
96 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
97 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
98 
99 /* Iterate over all supported sampling rates, from high to low */
100 #define for_each_sr(_sr, _port)						\
101 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
102 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
103 
104 struct plat_sci_reg {
105 	u8 offset, size;
106 };
107 
108 struct sci_port_params {
109 	const struct plat_sci_reg regs[SCIx_NR_REGS];
110 	unsigned int fifosize;
111 	unsigned int overrun_reg;
112 	unsigned int overrun_mask;
113 	unsigned int sampling_rate_mask;
114 	unsigned int error_mask;
115 	unsigned int error_clear;
116 };
117 
118 struct sci_port {
119 	struct uart_port	port;
120 
121 	/* Platform configuration */
122 	const struct sci_port_params *params;
123 	const struct plat_sci_port *cfg;
124 	unsigned int		sampling_rate_mask;
125 	resource_size_t		reg_size;
126 	struct mctrl_gpios	*gpios;
127 
128 	/* Clocks */
129 	struct clk		*clks[SCI_NUM_CLKS];
130 	unsigned long		clk_rates[SCI_NUM_CLKS];
131 
132 	int			irqs[SCIx_NR_IRQS];
133 	char			*irqstr[SCIx_NR_IRQS];
134 
135 	struct dma_chan			*chan_tx;
136 	struct dma_chan			*chan_rx;
137 
138 #ifdef CONFIG_SERIAL_SH_SCI_DMA
139 	dma_cookie_t			cookie_tx;
140 	dma_cookie_t			cookie_rx[2];
141 	dma_cookie_t			active_rx;
142 	dma_addr_t			tx_dma_addr;
143 	unsigned int			tx_dma_len;
144 	struct scatterlist		sg_rx[2];
145 	void				*rx_buf[2];
146 	size_t				buf_len_rx;
147 	struct work_struct		work_tx;
148 	struct timer_list		rx_timer;
149 	unsigned int			rx_timeout;
150 #endif
151 
152 	bool has_rtscts;
153 	bool autorts;
154 };
155 
156 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
157 
158 static struct sci_port sci_ports[SCI_NPORTS];
159 static struct uart_driver sci_uart_driver;
160 
161 static inline struct sci_port *
162 to_sci_port(struct uart_port *uart)
163 {
164 	return container_of(uart, struct sci_port, port);
165 }
166 
167 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
168 	/*
169 	 * Common SCI definitions, dependent on the port's regshift
170 	 * value.
171 	 */
172 	[SCIx_SCI_REGTYPE] = {
173 		.regs = {
174 			[SCSMR]		= { 0x00,  8 },
175 			[SCBRR]		= { 0x01,  8 },
176 			[SCSCR]		= { 0x02,  8 },
177 			[SCxTDR]	= { 0x03,  8 },
178 			[SCxSR]		= { 0x04,  8 },
179 			[SCxRDR]	= { 0x05,  8 },
180 		},
181 		.fifosize = 1,
182 		.overrun_reg = SCxSR,
183 		.overrun_mask = SCI_ORER,
184 		.sampling_rate_mask = SCI_SR(32),
185 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
186 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
187 	},
188 
189 	/*
190 	 * Common definitions for legacy IrDA ports.
191 	 */
192 	[SCIx_IRDA_REGTYPE] = {
193 		.regs = {
194 			[SCSMR]		= { 0x00,  8 },
195 			[SCBRR]		= { 0x02,  8 },
196 			[SCSCR]		= { 0x04,  8 },
197 			[SCxTDR]	= { 0x06,  8 },
198 			[SCxSR]		= { 0x08, 16 },
199 			[SCxRDR]	= { 0x0a,  8 },
200 			[SCFCR]		= { 0x0c,  8 },
201 			[SCFDR]		= { 0x0e, 16 },
202 		},
203 		.fifosize = 1,
204 		.overrun_reg = SCxSR,
205 		.overrun_mask = SCI_ORER,
206 		.sampling_rate_mask = SCI_SR(32),
207 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
208 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
209 	},
210 
211 	/*
212 	 * Common SCIFA definitions.
213 	 */
214 	[SCIx_SCIFA_REGTYPE] = {
215 		.regs = {
216 			[SCSMR]		= { 0x00, 16 },
217 			[SCBRR]		= { 0x04,  8 },
218 			[SCSCR]		= { 0x08, 16 },
219 			[SCxTDR]	= { 0x20,  8 },
220 			[SCxSR]		= { 0x14, 16 },
221 			[SCxRDR]	= { 0x24,  8 },
222 			[SCFCR]		= { 0x18, 16 },
223 			[SCFDR]		= { 0x1c, 16 },
224 			[SCPCR]		= { 0x30, 16 },
225 			[SCPDR]		= { 0x34, 16 },
226 		},
227 		.fifosize = 64,
228 		.overrun_reg = SCxSR,
229 		.overrun_mask = SCIFA_ORER,
230 		.sampling_rate_mask = SCI_SR_SCIFAB,
231 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
232 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
233 	},
234 
235 	/*
236 	 * Common SCIFB definitions.
237 	 */
238 	[SCIx_SCIFB_REGTYPE] = {
239 		.regs = {
240 			[SCSMR]		= { 0x00, 16 },
241 			[SCBRR]		= { 0x04,  8 },
242 			[SCSCR]		= { 0x08, 16 },
243 			[SCxTDR]	= { 0x40,  8 },
244 			[SCxSR]		= { 0x14, 16 },
245 			[SCxRDR]	= { 0x60,  8 },
246 			[SCFCR]		= { 0x18, 16 },
247 			[SCTFDR]	= { 0x38, 16 },
248 			[SCRFDR]	= { 0x3c, 16 },
249 			[SCPCR]		= { 0x30, 16 },
250 			[SCPDR]		= { 0x34, 16 },
251 		},
252 		.fifosize = 256,
253 		.overrun_reg = SCxSR,
254 		.overrun_mask = SCIFA_ORER,
255 		.sampling_rate_mask = SCI_SR_SCIFAB,
256 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
257 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
258 	},
259 
260 	/*
261 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
262 	 * count registers.
263 	 */
264 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
265 		.regs = {
266 			[SCSMR]		= { 0x00, 16 },
267 			[SCBRR]		= { 0x04,  8 },
268 			[SCSCR]		= { 0x08, 16 },
269 			[SCxTDR]	= { 0x0c,  8 },
270 			[SCxSR]		= { 0x10, 16 },
271 			[SCxRDR]	= { 0x14,  8 },
272 			[SCFCR]		= { 0x18, 16 },
273 			[SCFDR]		= { 0x1c, 16 },
274 			[SCSPTR]	= { 0x20, 16 },
275 			[SCLSR]		= { 0x24, 16 },
276 		},
277 		.fifosize = 16,
278 		.overrun_reg = SCLSR,
279 		.overrun_mask = SCLSR_ORER,
280 		.sampling_rate_mask = SCI_SR(32),
281 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
282 		.error_clear = SCIF_ERROR_CLEAR,
283 	},
284 
285 	/*
286 	 * Common SH-3 SCIF definitions.
287 	 */
288 	[SCIx_SH3_SCIF_REGTYPE] = {
289 		.regs = {
290 			[SCSMR]		= { 0x00,  8 },
291 			[SCBRR]		= { 0x02,  8 },
292 			[SCSCR]		= { 0x04,  8 },
293 			[SCxTDR]	= { 0x06,  8 },
294 			[SCxSR]		= { 0x08, 16 },
295 			[SCxRDR]	= { 0x0a,  8 },
296 			[SCFCR]		= { 0x0c,  8 },
297 			[SCFDR]		= { 0x0e, 16 },
298 		},
299 		.fifosize = 16,
300 		.overrun_reg = SCLSR,
301 		.overrun_mask = SCLSR_ORER,
302 		.sampling_rate_mask = SCI_SR(32),
303 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
304 		.error_clear = SCIF_ERROR_CLEAR,
305 	},
306 
307 	/*
308 	 * Common SH-4(A) SCIF(B) definitions.
309 	 */
310 	[SCIx_SH4_SCIF_REGTYPE] = {
311 		.regs = {
312 			[SCSMR]		= { 0x00, 16 },
313 			[SCBRR]		= { 0x04,  8 },
314 			[SCSCR]		= { 0x08, 16 },
315 			[SCxTDR]	= { 0x0c,  8 },
316 			[SCxSR]		= { 0x10, 16 },
317 			[SCxRDR]	= { 0x14,  8 },
318 			[SCFCR]		= { 0x18, 16 },
319 			[SCFDR]		= { 0x1c, 16 },
320 			[SCSPTR]	= { 0x20, 16 },
321 			[SCLSR]		= { 0x24, 16 },
322 		},
323 		.fifosize = 16,
324 		.overrun_reg = SCLSR,
325 		.overrun_mask = SCLSR_ORER,
326 		.sampling_rate_mask = SCI_SR(32),
327 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
328 		.error_clear = SCIF_ERROR_CLEAR,
329 	},
330 
331 	/*
332 	 * Common SCIF definitions for ports with a Baud Rate Generator for
333 	 * External Clock (BRG).
334 	 */
335 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
336 		.regs = {
337 			[SCSMR]		= { 0x00, 16 },
338 			[SCBRR]		= { 0x04,  8 },
339 			[SCSCR]		= { 0x08, 16 },
340 			[SCxTDR]	= { 0x0c,  8 },
341 			[SCxSR]		= { 0x10, 16 },
342 			[SCxRDR]	= { 0x14,  8 },
343 			[SCFCR]		= { 0x18, 16 },
344 			[SCFDR]		= { 0x1c, 16 },
345 			[SCSPTR]	= { 0x20, 16 },
346 			[SCLSR]		= { 0x24, 16 },
347 			[SCDL]		= { 0x30, 16 },
348 			[SCCKS]		= { 0x34, 16 },
349 		},
350 		.fifosize = 16,
351 		.overrun_reg = SCLSR,
352 		.overrun_mask = SCLSR_ORER,
353 		.sampling_rate_mask = SCI_SR(32),
354 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
355 		.error_clear = SCIF_ERROR_CLEAR,
356 	},
357 
358 	/*
359 	 * Common HSCIF definitions.
360 	 */
361 	[SCIx_HSCIF_REGTYPE] = {
362 		.regs = {
363 			[SCSMR]		= { 0x00, 16 },
364 			[SCBRR]		= { 0x04,  8 },
365 			[SCSCR]		= { 0x08, 16 },
366 			[SCxTDR]	= { 0x0c,  8 },
367 			[SCxSR]		= { 0x10, 16 },
368 			[SCxRDR]	= { 0x14,  8 },
369 			[SCFCR]		= { 0x18, 16 },
370 			[SCFDR]		= { 0x1c, 16 },
371 			[SCSPTR]	= { 0x20, 16 },
372 			[SCLSR]		= { 0x24, 16 },
373 			[HSSRR]		= { 0x40, 16 },
374 			[SCDL]		= { 0x30, 16 },
375 			[SCCKS]		= { 0x34, 16 },
376 		},
377 		.fifosize = 128,
378 		.overrun_reg = SCLSR,
379 		.overrun_mask = SCLSR_ORER,
380 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
381 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
382 		.error_clear = SCIF_ERROR_CLEAR,
383 	},
384 
385 	/*
386 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
387 	 * register.
388 	 */
389 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
390 		.regs = {
391 			[SCSMR]		= { 0x00, 16 },
392 			[SCBRR]		= { 0x04,  8 },
393 			[SCSCR]		= { 0x08, 16 },
394 			[SCxTDR]	= { 0x0c,  8 },
395 			[SCxSR]		= { 0x10, 16 },
396 			[SCxRDR]	= { 0x14,  8 },
397 			[SCFCR]		= { 0x18, 16 },
398 			[SCFDR]		= { 0x1c, 16 },
399 			[SCLSR]		= { 0x24, 16 },
400 		},
401 		.fifosize = 16,
402 		.overrun_reg = SCLSR,
403 		.overrun_mask = SCLSR_ORER,
404 		.sampling_rate_mask = SCI_SR(32),
405 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
406 		.error_clear = SCIF_ERROR_CLEAR,
407 	},
408 
409 	/*
410 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
411 	 * count registers.
412 	 */
413 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
414 		.regs = {
415 			[SCSMR]		= { 0x00, 16 },
416 			[SCBRR]		= { 0x04,  8 },
417 			[SCSCR]		= { 0x08, 16 },
418 			[SCxTDR]	= { 0x0c,  8 },
419 			[SCxSR]		= { 0x10, 16 },
420 			[SCxRDR]	= { 0x14,  8 },
421 			[SCFCR]		= { 0x18, 16 },
422 			[SCFDR]		= { 0x1c, 16 },
423 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
424 			[SCRFDR]	= { 0x20, 16 },
425 			[SCSPTR]	= { 0x24, 16 },
426 			[SCLSR]		= { 0x28, 16 },
427 		},
428 		.fifosize = 16,
429 		.overrun_reg = SCLSR,
430 		.overrun_mask = SCLSR_ORER,
431 		.sampling_rate_mask = SCI_SR(32),
432 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
433 		.error_clear = SCIF_ERROR_CLEAR,
434 	},
435 
436 	/*
437 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
438 	 * registers.
439 	 */
440 	[SCIx_SH7705_SCIF_REGTYPE] = {
441 		.regs = {
442 			[SCSMR]		= { 0x00, 16 },
443 			[SCBRR]		= { 0x04,  8 },
444 			[SCSCR]		= { 0x08, 16 },
445 			[SCxTDR]	= { 0x20,  8 },
446 			[SCxSR]		= { 0x14, 16 },
447 			[SCxRDR]	= { 0x24,  8 },
448 			[SCFCR]		= { 0x18, 16 },
449 			[SCFDR]		= { 0x1c, 16 },
450 		},
451 		.fifosize = 16,
452 		.overrun_reg = SCxSR,
453 		.overrun_mask = SCIFA_ORER,
454 		.sampling_rate_mask = SCI_SR(16),
455 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
456 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
457 	},
458 };
459 
460 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
461 
462 /*
463  * The "offset" here is rather misleading, in that it refers to an enum
464  * value relative to the port mapping rather than the fixed offset
465  * itself, which needs to be manually retrieved from the platform's
466  * register map for the given port.
467  */
468 static unsigned int sci_serial_in(struct uart_port *p, int offset)
469 {
470 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
471 
472 	if (reg->size == 8)
473 		return ioread8(p->membase + (reg->offset << p->regshift));
474 	else if (reg->size == 16)
475 		return ioread16(p->membase + (reg->offset << p->regshift));
476 	else
477 		WARN(1, "Invalid register access\n");
478 
479 	return 0;
480 }
481 
482 static void sci_serial_out(struct uart_port *p, int offset, int value)
483 {
484 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
485 
486 	if (reg->size == 8)
487 		iowrite8(value, p->membase + (reg->offset << p->regshift));
488 	else if (reg->size == 16)
489 		iowrite16(value, p->membase + (reg->offset << p->regshift));
490 	else
491 		WARN(1, "Invalid register access\n");
492 }
493 
494 static void sci_port_enable(struct sci_port *sci_port)
495 {
496 	unsigned int i;
497 
498 	if (!sci_port->port.dev)
499 		return;
500 
501 	pm_runtime_get_sync(sci_port->port.dev);
502 
503 	for (i = 0; i < SCI_NUM_CLKS; i++) {
504 		clk_prepare_enable(sci_port->clks[i]);
505 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
506 	}
507 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
508 }
509 
510 static void sci_port_disable(struct sci_port *sci_port)
511 {
512 	unsigned int i;
513 
514 	if (!sci_port->port.dev)
515 		return;
516 
517 	for (i = SCI_NUM_CLKS; i-- > 0; )
518 		clk_disable_unprepare(sci_port->clks[i]);
519 
520 	pm_runtime_put_sync(sci_port->port.dev);
521 }
522 
523 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
524 {
525 	/*
526 	 * Not all ports (such as SCIFA) will support REIE. Rather than
527 	 * special-casing the port type, we check the port initialization
528 	 * IRQ enable mask to see whether the IRQ is desired at all. If
529 	 * it's unset, it's logically inferred that there's no point in
530 	 * testing for it.
531 	 */
532 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
533 }
534 
535 static void sci_start_tx(struct uart_port *port)
536 {
537 	struct sci_port *s = to_sci_port(port);
538 	unsigned short ctrl;
539 
540 #ifdef CONFIG_SERIAL_SH_SCI_DMA
541 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
542 		u16 new, scr = serial_port_in(port, SCSCR);
543 		if (s->chan_tx)
544 			new = scr | SCSCR_TDRQE;
545 		else
546 			new = scr & ~SCSCR_TDRQE;
547 		if (new != scr)
548 			serial_port_out(port, SCSCR, new);
549 	}
550 
551 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
552 	    dma_submit_error(s->cookie_tx)) {
553 		s->cookie_tx = 0;
554 		schedule_work(&s->work_tx);
555 	}
556 #endif
557 
558 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
559 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
560 		ctrl = serial_port_in(port, SCSCR);
561 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
562 	}
563 }
564 
565 static void sci_stop_tx(struct uart_port *port)
566 {
567 	unsigned short ctrl;
568 
569 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
570 	ctrl = serial_port_in(port, SCSCR);
571 
572 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
573 		ctrl &= ~SCSCR_TDRQE;
574 
575 	ctrl &= ~SCSCR_TIE;
576 
577 	serial_port_out(port, SCSCR, ctrl);
578 }
579 
580 static void sci_start_rx(struct uart_port *port)
581 {
582 	unsigned short ctrl;
583 
584 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
585 
586 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
587 		ctrl &= ~SCSCR_RDRQE;
588 
589 	serial_port_out(port, SCSCR, ctrl);
590 }
591 
592 static void sci_stop_rx(struct uart_port *port)
593 {
594 	unsigned short ctrl;
595 
596 	ctrl = serial_port_in(port, SCSCR);
597 
598 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
599 		ctrl &= ~SCSCR_RDRQE;
600 
601 	ctrl &= ~port_rx_irq_mask(port);
602 
603 	serial_port_out(port, SCSCR, ctrl);
604 }
605 
606 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
607 {
608 	if (port->type == PORT_SCI) {
609 		/* Just store the mask */
610 		serial_port_out(port, SCxSR, mask);
611 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
612 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
613 		/* Only clear the status bits we want to clear */
614 		serial_port_out(port, SCxSR,
615 				serial_port_in(port, SCxSR) & mask);
616 	} else {
617 		/* Store the mask, clear parity/framing errors */
618 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
619 	}
620 }
621 
622 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
623     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
624 
625 #ifdef CONFIG_CONSOLE_POLL
626 static int sci_poll_get_char(struct uart_port *port)
627 {
628 	unsigned short status;
629 	int c;
630 
631 	do {
632 		status = serial_port_in(port, SCxSR);
633 		if (status & SCxSR_ERRORS(port)) {
634 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
635 			continue;
636 		}
637 		break;
638 	} while (1);
639 
640 	if (!(status & SCxSR_RDxF(port)))
641 		return NO_POLL_CHAR;
642 
643 	c = serial_port_in(port, SCxRDR);
644 
645 	/* Dummy read */
646 	serial_port_in(port, SCxSR);
647 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
648 
649 	return c;
650 }
651 #endif
652 
653 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
654 {
655 	unsigned short status;
656 
657 	do {
658 		status = serial_port_in(port, SCxSR);
659 	} while (!(status & SCxSR_TDxE(port)));
660 
661 	serial_port_out(port, SCxTDR, c);
662 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
663 }
664 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
665 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
666 
667 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
668 {
669 	struct sci_port *s = to_sci_port(port);
670 
671 	/*
672 	 * Use port-specific handler if provided.
673 	 */
674 	if (s->cfg->ops && s->cfg->ops->init_pins) {
675 		s->cfg->ops->init_pins(port, cflag);
676 		return;
677 	}
678 
679 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
680 		u16 ctrl = serial_port_in(port, SCPCR);
681 
682 		/* Enable RXD and TXD pin functions */
683 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
684 		if (to_sci_port(port)->has_rtscts) {
685 			/* RTS# is output, driven 1 */
686 			ctrl |= SCPCR_RTSC;
687 			serial_port_out(port, SCPDR,
688 				serial_port_in(port, SCPDR) | SCPDR_RTSD);
689 			/* Enable CTS# pin function */
690 			ctrl &= ~SCPCR_CTSC;
691 		}
692 		serial_port_out(port, SCPCR, ctrl);
693 	} else if (sci_getreg(port, SCSPTR)->size) {
694 		u16 status = serial_port_in(port, SCSPTR);
695 
696 		/* RTS# is output, driven 1 */
697 		status |= SCSPTR_RTSIO | SCSPTR_RTSDT;
698 		/* CTS# and SCK are inputs */
699 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
700 		serial_port_out(port, SCSPTR, status);
701 	}
702 }
703 
704 static int sci_txfill(struct uart_port *port)
705 {
706 	struct sci_port *s = to_sci_port(port);
707 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
708 	const struct plat_sci_reg *reg;
709 
710 	reg = sci_getreg(port, SCTFDR);
711 	if (reg->size)
712 		return serial_port_in(port, SCTFDR) & fifo_mask;
713 
714 	reg = sci_getreg(port, SCFDR);
715 	if (reg->size)
716 		return serial_port_in(port, SCFDR) >> 8;
717 
718 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
719 }
720 
721 static int sci_txroom(struct uart_port *port)
722 {
723 	return port->fifosize - sci_txfill(port);
724 }
725 
726 static int sci_rxfill(struct uart_port *port)
727 {
728 	struct sci_port *s = to_sci_port(port);
729 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
730 	const struct plat_sci_reg *reg;
731 
732 	reg = sci_getreg(port, SCRFDR);
733 	if (reg->size)
734 		return serial_port_in(port, SCRFDR) & fifo_mask;
735 
736 	reg = sci_getreg(port, SCFDR);
737 	if (reg->size)
738 		return serial_port_in(port, SCFDR) & fifo_mask;
739 
740 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
741 }
742 
743 /* ********************************************************************** *
744  *                   the interrupt related routines                       *
745  * ********************************************************************** */
746 
747 static void sci_transmit_chars(struct uart_port *port)
748 {
749 	struct circ_buf *xmit = &port->state->xmit;
750 	unsigned int stopped = uart_tx_stopped(port);
751 	unsigned short status;
752 	unsigned short ctrl;
753 	int count;
754 
755 	status = serial_port_in(port, SCxSR);
756 	if (!(status & SCxSR_TDxE(port))) {
757 		ctrl = serial_port_in(port, SCSCR);
758 		if (uart_circ_empty(xmit))
759 			ctrl &= ~SCSCR_TIE;
760 		else
761 			ctrl |= SCSCR_TIE;
762 		serial_port_out(port, SCSCR, ctrl);
763 		return;
764 	}
765 
766 	count = sci_txroom(port);
767 
768 	do {
769 		unsigned char c;
770 
771 		if (port->x_char) {
772 			c = port->x_char;
773 			port->x_char = 0;
774 		} else if (!uart_circ_empty(xmit) && !stopped) {
775 			c = xmit->buf[xmit->tail];
776 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
777 		} else {
778 			break;
779 		}
780 
781 		serial_port_out(port, SCxTDR, c);
782 
783 		port->icount.tx++;
784 	} while (--count > 0);
785 
786 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
787 
788 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
789 		uart_write_wakeup(port);
790 	if (uart_circ_empty(xmit)) {
791 		sci_stop_tx(port);
792 	} else {
793 		ctrl = serial_port_in(port, SCSCR);
794 
795 		if (port->type != PORT_SCI) {
796 			serial_port_in(port, SCxSR); /* Dummy read */
797 			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
798 		}
799 
800 		ctrl |= SCSCR_TIE;
801 		serial_port_out(port, SCSCR, ctrl);
802 	}
803 }
804 
805 /* On SH3, SCIF may read end-of-break as a space->mark char */
806 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
807 
808 static void sci_receive_chars(struct uart_port *port)
809 {
810 	struct tty_port *tport = &port->state->port;
811 	int i, count, copied = 0;
812 	unsigned short status;
813 	unsigned char flag;
814 
815 	status = serial_port_in(port, SCxSR);
816 	if (!(status & SCxSR_RDxF(port)))
817 		return;
818 
819 	while (1) {
820 		/* Don't copy more bytes than there is room for in the buffer */
821 		count = tty_buffer_request_room(tport, sci_rxfill(port));
822 
823 		/* If for any reason we can't copy more data, we're done! */
824 		if (count == 0)
825 			break;
826 
827 		if (port->type == PORT_SCI) {
828 			char c = serial_port_in(port, SCxRDR);
829 			if (uart_handle_sysrq_char(port, c))
830 				count = 0;
831 			else
832 				tty_insert_flip_char(tport, c, TTY_NORMAL);
833 		} else {
834 			for (i = 0; i < count; i++) {
835 				char c = serial_port_in(port, SCxRDR);
836 
837 				status = serial_port_in(port, SCxSR);
838 				if (uart_handle_sysrq_char(port, c)) {
839 					count--; i--;
840 					continue;
841 				}
842 
843 				/* Store data and status */
844 				if (status & SCxSR_FER(port)) {
845 					flag = TTY_FRAME;
846 					port->icount.frame++;
847 					dev_notice(port->dev, "frame error\n");
848 				} else if (status & SCxSR_PER(port)) {
849 					flag = TTY_PARITY;
850 					port->icount.parity++;
851 					dev_notice(port->dev, "parity error\n");
852 				} else
853 					flag = TTY_NORMAL;
854 
855 				tty_insert_flip_char(tport, c, flag);
856 			}
857 		}
858 
859 		serial_port_in(port, SCxSR); /* dummy read */
860 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
861 
862 		copied += count;
863 		port->icount.rx += count;
864 	}
865 
866 	if (copied) {
867 		/* Tell the rest of the system the news. New characters! */
868 		tty_flip_buffer_push(tport);
869 	} else {
870 		serial_port_in(port, SCxSR); /* dummy read */
871 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
872 	}
873 }
874 
875 static int sci_handle_errors(struct uart_port *port)
876 {
877 	int copied = 0;
878 	unsigned short status = serial_port_in(port, SCxSR);
879 	struct tty_port *tport = &port->state->port;
880 	struct sci_port *s = to_sci_port(port);
881 
882 	/* Handle overruns */
883 	if (status & s->params->overrun_mask) {
884 		port->icount.overrun++;
885 
886 		/* overrun error */
887 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
888 			copied++;
889 
890 		dev_notice(port->dev, "overrun error\n");
891 	}
892 
893 	if (status & SCxSR_FER(port)) {
894 		/* frame error */
895 		port->icount.frame++;
896 
897 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
898 			copied++;
899 
900 		dev_notice(port->dev, "frame error\n");
901 	}
902 
903 	if (status & SCxSR_PER(port)) {
904 		/* parity error */
905 		port->icount.parity++;
906 
907 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
908 			copied++;
909 
910 		dev_notice(port->dev, "parity error\n");
911 	}
912 
913 	if (copied)
914 		tty_flip_buffer_push(tport);
915 
916 	return copied;
917 }
918 
919 static int sci_handle_fifo_overrun(struct uart_port *port)
920 {
921 	struct tty_port *tport = &port->state->port;
922 	struct sci_port *s = to_sci_port(port);
923 	const struct plat_sci_reg *reg;
924 	int copied = 0;
925 	u16 status;
926 
927 	reg = sci_getreg(port, s->params->overrun_reg);
928 	if (!reg->size)
929 		return 0;
930 
931 	status = serial_port_in(port, s->params->overrun_reg);
932 	if (status & s->params->overrun_mask) {
933 		status &= ~s->params->overrun_mask;
934 		serial_port_out(port, s->params->overrun_reg, status);
935 
936 		port->icount.overrun++;
937 
938 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
939 		tty_flip_buffer_push(tport);
940 
941 		dev_dbg(port->dev, "overrun error\n");
942 		copied++;
943 	}
944 
945 	return copied;
946 }
947 
948 static int sci_handle_breaks(struct uart_port *port)
949 {
950 	int copied = 0;
951 	unsigned short status = serial_port_in(port, SCxSR);
952 	struct tty_port *tport = &port->state->port;
953 
954 	if (uart_handle_break(port))
955 		return 0;
956 
957 	if (status & SCxSR_BRK(port)) {
958 		port->icount.brk++;
959 
960 		/* Notify of BREAK */
961 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
962 			copied++;
963 
964 		dev_dbg(port->dev, "BREAK detected\n");
965 	}
966 
967 	if (copied)
968 		tty_flip_buffer_push(tport);
969 
970 	copied += sci_handle_fifo_overrun(port);
971 
972 	return copied;
973 }
974 
975 #ifdef CONFIG_SERIAL_SH_SCI_DMA
976 static void sci_dma_tx_complete(void *arg)
977 {
978 	struct sci_port *s = arg;
979 	struct uart_port *port = &s->port;
980 	struct circ_buf *xmit = &port->state->xmit;
981 	unsigned long flags;
982 
983 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
984 
985 	spin_lock_irqsave(&port->lock, flags);
986 
987 	xmit->tail += s->tx_dma_len;
988 	xmit->tail &= UART_XMIT_SIZE - 1;
989 
990 	port->icount.tx += s->tx_dma_len;
991 
992 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
993 		uart_write_wakeup(port);
994 
995 	if (!uart_circ_empty(xmit)) {
996 		s->cookie_tx = 0;
997 		schedule_work(&s->work_tx);
998 	} else {
999 		s->cookie_tx = -EINVAL;
1000 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1001 			u16 ctrl = serial_port_in(port, SCSCR);
1002 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1003 		}
1004 	}
1005 
1006 	spin_unlock_irqrestore(&port->lock, flags);
1007 }
1008 
1009 /* Locking: called with port lock held */
1010 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1011 {
1012 	struct uart_port *port = &s->port;
1013 	struct tty_port *tport = &port->state->port;
1014 	int copied;
1015 
1016 	copied = tty_insert_flip_string(tport, buf, count);
1017 	if (copied < count)
1018 		port->icount.buf_overrun++;
1019 
1020 	port->icount.rx += copied;
1021 
1022 	return copied;
1023 }
1024 
1025 static int sci_dma_rx_find_active(struct sci_port *s)
1026 {
1027 	unsigned int i;
1028 
1029 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1030 		if (s->active_rx == s->cookie_rx[i])
1031 			return i;
1032 
1033 	return -1;
1034 }
1035 
1036 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1037 {
1038 	struct dma_chan *chan = s->chan_rx;
1039 	struct uart_port *port = &s->port;
1040 	unsigned long flags;
1041 
1042 	spin_lock_irqsave(&port->lock, flags);
1043 	s->chan_rx = NULL;
1044 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1045 	spin_unlock_irqrestore(&port->lock, flags);
1046 	dmaengine_terminate_all(chan);
1047 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1048 			  sg_dma_address(&s->sg_rx[0]));
1049 	dma_release_channel(chan);
1050 	if (enable_pio)
1051 		sci_start_rx(port);
1052 }
1053 
1054 static void sci_dma_rx_complete(void *arg)
1055 {
1056 	struct sci_port *s = arg;
1057 	struct dma_chan *chan = s->chan_rx;
1058 	struct uart_port *port = &s->port;
1059 	struct dma_async_tx_descriptor *desc;
1060 	unsigned long flags;
1061 	int active, count = 0;
1062 
1063 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1064 		s->active_rx);
1065 
1066 	spin_lock_irqsave(&port->lock, flags);
1067 
1068 	active = sci_dma_rx_find_active(s);
1069 	if (active >= 0)
1070 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1071 
1072 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1073 
1074 	if (count)
1075 		tty_flip_buffer_push(&port->state->port);
1076 
1077 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1078 				       DMA_DEV_TO_MEM,
1079 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080 	if (!desc)
1081 		goto fail;
1082 
1083 	desc->callback = sci_dma_rx_complete;
1084 	desc->callback_param = s;
1085 	s->cookie_rx[active] = dmaengine_submit(desc);
1086 	if (dma_submit_error(s->cookie_rx[active]))
1087 		goto fail;
1088 
1089 	s->active_rx = s->cookie_rx[!active];
1090 
1091 	dma_async_issue_pending(chan);
1092 
1093 	spin_unlock_irqrestore(&port->lock, flags);
1094 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1095 		__func__, s->cookie_rx[active], active, s->active_rx);
1096 	return;
1097 
1098 fail:
1099 	spin_unlock_irqrestore(&port->lock, flags);
1100 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1101 	sci_rx_dma_release(s, true);
1102 }
1103 
1104 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1105 {
1106 	struct dma_chan *chan = s->chan_tx;
1107 	struct uart_port *port = &s->port;
1108 	unsigned long flags;
1109 
1110 	spin_lock_irqsave(&port->lock, flags);
1111 	s->chan_tx = NULL;
1112 	s->cookie_tx = -EINVAL;
1113 	spin_unlock_irqrestore(&port->lock, flags);
1114 	dmaengine_terminate_all(chan);
1115 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1116 			 DMA_TO_DEVICE);
1117 	dma_release_channel(chan);
1118 	if (enable_pio)
1119 		sci_start_tx(port);
1120 }
1121 
1122 static void sci_submit_rx(struct sci_port *s)
1123 {
1124 	struct dma_chan *chan = s->chan_rx;
1125 	int i;
1126 
1127 	for (i = 0; i < 2; i++) {
1128 		struct scatterlist *sg = &s->sg_rx[i];
1129 		struct dma_async_tx_descriptor *desc;
1130 
1131 		desc = dmaengine_prep_slave_sg(chan,
1132 			sg, 1, DMA_DEV_TO_MEM,
1133 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1134 		if (!desc)
1135 			goto fail;
1136 
1137 		desc->callback = sci_dma_rx_complete;
1138 		desc->callback_param = s;
1139 		s->cookie_rx[i] = dmaengine_submit(desc);
1140 		if (dma_submit_error(s->cookie_rx[i]))
1141 			goto fail;
1142 
1143 	}
1144 
1145 	s->active_rx = s->cookie_rx[0];
1146 
1147 	dma_async_issue_pending(chan);
1148 	return;
1149 
1150 fail:
1151 	if (i)
1152 		dmaengine_terminate_all(chan);
1153 	for (i = 0; i < 2; i++)
1154 		s->cookie_rx[i] = -EINVAL;
1155 	s->active_rx = -EINVAL;
1156 	sci_rx_dma_release(s, true);
1157 }
1158 
1159 static void work_fn_tx(struct work_struct *work)
1160 {
1161 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1162 	struct dma_async_tx_descriptor *desc;
1163 	struct dma_chan *chan = s->chan_tx;
1164 	struct uart_port *port = &s->port;
1165 	struct circ_buf *xmit = &port->state->xmit;
1166 	dma_addr_t buf;
1167 
1168 	/*
1169 	 * DMA is idle now.
1170 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1171 	 * offsets and lengths. Since it is a circular buffer, we have to
1172 	 * transmit till the end, and then the rest. Take the port lock to get a
1173 	 * consistent xmit buffer state.
1174 	 */
1175 	spin_lock_irq(&port->lock);
1176 	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1177 	s->tx_dma_len = min_t(unsigned int,
1178 		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1179 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1180 	spin_unlock_irq(&port->lock);
1181 
1182 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1183 					   DMA_MEM_TO_DEV,
1184 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1185 	if (!desc) {
1186 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1187 		/* switch to PIO */
1188 		sci_tx_dma_release(s, true);
1189 		return;
1190 	}
1191 
1192 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1193 				   DMA_TO_DEVICE);
1194 
1195 	spin_lock_irq(&port->lock);
1196 	desc->callback = sci_dma_tx_complete;
1197 	desc->callback_param = s;
1198 	spin_unlock_irq(&port->lock);
1199 	s->cookie_tx = dmaengine_submit(desc);
1200 	if (dma_submit_error(s->cookie_tx)) {
1201 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1202 		/* switch to PIO */
1203 		sci_tx_dma_release(s, true);
1204 		return;
1205 	}
1206 
1207 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1208 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1209 
1210 	dma_async_issue_pending(chan);
1211 }
1212 
1213 static void rx_timer_fn(unsigned long arg)
1214 {
1215 	struct sci_port *s = (struct sci_port *)arg;
1216 	struct dma_chan *chan = s->chan_rx;
1217 	struct uart_port *port = &s->port;
1218 	struct dma_tx_state state;
1219 	enum dma_status status;
1220 	unsigned long flags;
1221 	unsigned int read;
1222 	int active, count;
1223 	u16 scr;
1224 
1225 	dev_dbg(port->dev, "DMA Rx timed out\n");
1226 
1227 	spin_lock_irqsave(&port->lock, flags);
1228 
1229 	active = sci_dma_rx_find_active(s);
1230 	if (active < 0) {
1231 		spin_unlock_irqrestore(&port->lock, flags);
1232 		return;
1233 	}
1234 
1235 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1236 	if (status == DMA_COMPLETE) {
1237 		spin_unlock_irqrestore(&port->lock, flags);
1238 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1239 			s->active_rx, active);
1240 
1241 		/* Let packet complete handler take care of the packet */
1242 		return;
1243 	}
1244 
1245 	dmaengine_pause(chan);
1246 
1247 	/*
1248 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1249 	 * data keeps on coming until transaction is complete so check
1250 	 * for DMA_COMPLETE again
1251 	 * Let packet complete handler take care of the packet
1252 	 */
1253 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1254 	if (status == DMA_COMPLETE) {
1255 		spin_unlock_irqrestore(&port->lock, flags);
1256 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1257 		return;
1258 	}
1259 
1260 	/* Handle incomplete DMA receive */
1261 	dmaengine_terminate_all(s->chan_rx);
1262 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1263 
1264 	if (read) {
1265 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1266 		if (count)
1267 			tty_flip_buffer_push(&port->state->port);
1268 	}
1269 
1270 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1271 		sci_submit_rx(s);
1272 
1273 	/* Direct new serial port interrupts back to CPU */
1274 	scr = serial_port_in(port, SCSCR);
1275 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1276 		scr &= ~SCSCR_RDRQE;
1277 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1278 	}
1279 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1280 
1281 	spin_unlock_irqrestore(&port->lock, flags);
1282 }
1283 
1284 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1285 					     enum dma_transfer_direction dir)
1286 {
1287 	struct dma_chan *chan;
1288 	struct dma_slave_config cfg;
1289 	int ret;
1290 
1291 	chan = dma_request_slave_channel(port->dev,
1292 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1293 	if (!chan) {
1294 		dev_warn(port->dev,
1295 			 "dma_request_slave_channel_compat failed\n");
1296 		return NULL;
1297 	}
1298 
1299 	memset(&cfg, 0, sizeof(cfg));
1300 	cfg.direction = dir;
1301 	if (dir == DMA_MEM_TO_DEV) {
1302 		cfg.dst_addr = port->mapbase +
1303 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1304 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1305 	} else {
1306 		cfg.src_addr = port->mapbase +
1307 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1308 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1309 	}
1310 
1311 	ret = dmaengine_slave_config(chan, &cfg);
1312 	if (ret) {
1313 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1314 		dma_release_channel(chan);
1315 		return NULL;
1316 	}
1317 
1318 	return chan;
1319 }
1320 
1321 static void sci_request_dma(struct uart_port *port)
1322 {
1323 	struct sci_port *s = to_sci_port(port);
1324 	struct dma_chan *chan;
1325 
1326 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1327 
1328 	if (!port->dev->of_node)
1329 		return;
1330 
1331 	s->cookie_tx = -EINVAL;
1332 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1333 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1334 	if (chan) {
1335 		s->chan_tx = chan;
1336 		/* UART circular tx buffer is an aligned page. */
1337 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1338 						port->state->xmit.buf,
1339 						UART_XMIT_SIZE,
1340 						DMA_TO_DEVICE);
1341 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1342 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1343 			dma_release_channel(chan);
1344 			s->chan_tx = NULL;
1345 		} else {
1346 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1347 				__func__, UART_XMIT_SIZE,
1348 				port->state->xmit.buf, &s->tx_dma_addr);
1349 		}
1350 
1351 		INIT_WORK(&s->work_tx, work_fn_tx);
1352 	}
1353 
1354 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1355 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1356 	if (chan) {
1357 		unsigned int i;
1358 		dma_addr_t dma;
1359 		void *buf;
1360 
1361 		s->chan_rx = chan;
1362 
1363 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1364 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1365 					 &dma, GFP_KERNEL);
1366 		if (!buf) {
1367 			dev_warn(port->dev,
1368 				 "Failed to allocate Rx dma buffer, using PIO\n");
1369 			dma_release_channel(chan);
1370 			s->chan_rx = NULL;
1371 			return;
1372 		}
1373 
1374 		for (i = 0; i < 2; i++) {
1375 			struct scatterlist *sg = &s->sg_rx[i];
1376 
1377 			sg_init_table(sg, 1);
1378 			s->rx_buf[i] = buf;
1379 			sg_dma_address(sg) = dma;
1380 			sg_dma_len(sg) = s->buf_len_rx;
1381 
1382 			buf += s->buf_len_rx;
1383 			dma += s->buf_len_rx;
1384 		}
1385 
1386 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1387 
1388 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1389 			sci_submit_rx(s);
1390 	}
1391 }
1392 
1393 static void sci_free_dma(struct uart_port *port)
1394 {
1395 	struct sci_port *s = to_sci_port(port);
1396 
1397 	if (s->chan_tx)
1398 		sci_tx_dma_release(s, false);
1399 	if (s->chan_rx)
1400 		sci_rx_dma_release(s, false);
1401 }
1402 #else
1403 static inline void sci_request_dma(struct uart_port *port)
1404 {
1405 }
1406 
1407 static inline void sci_free_dma(struct uart_port *port)
1408 {
1409 }
1410 #endif
1411 
1412 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1413 {
1414 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1415 	struct uart_port *port = ptr;
1416 	struct sci_port *s = to_sci_port(port);
1417 
1418 	if (s->chan_rx) {
1419 		u16 scr = serial_port_in(port, SCSCR);
1420 		u16 ssr = serial_port_in(port, SCxSR);
1421 
1422 		/* Disable future Rx interrupts */
1423 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1424 			disable_irq_nosync(irq);
1425 			scr |= SCSCR_RDRQE;
1426 		} else {
1427 			scr &= ~SCSCR_RIE;
1428 			sci_submit_rx(s);
1429 		}
1430 		serial_port_out(port, SCSCR, scr);
1431 		/* Clear current interrupt */
1432 		serial_port_out(port, SCxSR,
1433 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1434 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1435 			jiffies, s->rx_timeout);
1436 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1437 
1438 		return IRQ_HANDLED;
1439 	}
1440 #endif
1441 
1442 	/* I think sci_receive_chars has to be called irrespective
1443 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1444 	 * to be disabled?
1445 	 */
1446 	sci_receive_chars(ptr);
1447 
1448 	return IRQ_HANDLED;
1449 }
1450 
1451 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1452 {
1453 	struct uart_port *port = ptr;
1454 	unsigned long flags;
1455 
1456 	spin_lock_irqsave(&port->lock, flags);
1457 	sci_transmit_chars(port);
1458 	spin_unlock_irqrestore(&port->lock, flags);
1459 
1460 	return IRQ_HANDLED;
1461 }
1462 
1463 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1464 {
1465 	struct uart_port *port = ptr;
1466 	struct sci_port *s = to_sci_port(port);
1467 
1468 	/* Handle errors */
1469 	if (port->type == PORT_SCI) {
1470 		if (sci_handle_errors(port)) {
1471 			/* discard character in rx buffer */
1472 			serial_port_in(port, SCxSR);
1473 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1474 		}
1475 	} else {
1476 		sci_handle_fifo_overrun(port);
1477 		if (!s->chan_rx)
1478 			sci_receive_chars(ptr);
1479 	}
1480 
1481 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1482 
1483 	/* Kick the transmission */
1484 	if (!s->chan_tx)
1485 		sci_tx_interrupt(irq, ptr);
1486 
1487 	return IRQ_HANDLED;
1488 }
1489 
1490 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1491 {
1492 	struct uart_port *port = ptr;
1493 
1494 	/* Handle BREAKs */
1495 	sci_handle_breaks(port);
1496 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1497 
1498 	return IRQ_HANDLED;
1499 }
1500 
1501 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1502 {
1503 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1504 	struct uart_port *port = ptr;
1505 	struct sci_port *s = to_sci_port(port);
1506 	irqreturn_t ret = IRQ_NONE;
1507 
1508 	ssr_status = serial_port_in(port, SCxSR);
1509 	scr_status = serial_port_in(port, SCSCR);
1510 	if (s->params->overrun_reg == SCxSR)
1511 		orer_status = ssr_status;
1512 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1513 		orer_status = serial_port_in(port, s->params->overrun_reg);
1514 
1515 	err_enabled = scr_status & port_rx_irq_mask(port);
1516 
1517 	/* Tx Interrupt */
1518 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1519 	    !s->chan_tx)
1520 		ret = sci_tx_interrupt(irq, ptr);
1521 
1522 	/*
1523 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1524 	 * DR flags
1525 	 */
1526 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1527 	    (scr_status & SCSCR_RIE))
1528 		ret = sci_rx_interrupt(irq, ptr);
1529 
1530 	/* Error Interrupt */
1531 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1532 		ret = sci_er_interrupt(irq, ptr);
1533 
1534 	/* Break Interrupt */
1535 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1536 		ret = sci_br_interrupt(irq, ptr);
1537 
1538 	/* Overrun Interrupt */
1539 	if (orer_status & s->params->overrun_mask) {
1540 		sci_handle_fifo_overrun(port);
1541 		ret = IRQ_HANDLED;
1542 	}
1543 
1544 	return ret;
1545 }
1546 
1547 static const struct sci_irq_desc {
1548 	const char	*desc;
1549 	irq_handler_t	handler;
1550 } sci_irq_desc[] = {
1551 	/*
1552 	 * Split out handlers, the default case.
1553 	 */
1554 	[SCIx_ERI_IRQ] = {
1555 		.desc = "rx err",
1556 		.handler = sci_er_interrupt,
1557 	},
1558 
1559 	[SCIx_RXI_IRQ] = {
1560 		.desc = "rx full",
1561 		.handler = sci_rx_interrupt,
1562 	},
1563 
1564 	[SCIx_TXI_IRQ] = {
1565 		.desc = "tx empty",
1566 		.handler = sci_tx_interrupt,
1567 	},
1568 
1569 	[SCIx_BRI_IRQ] = {
1570 		.desc = "break",
1571 		.handler = sci_br_interrupt,
1572 	},
1573 
1574 	/*
1575 	 * Special muxed handler.
1576 	 */
1577 	[SCIx_MUX_IRQ] = {
1578 		.desc = "mux",
1579 		.handler = sci_mpxed_interrupt,
1580 	},
1581 };
1582 
1583 static int sci_request_irq(struct sci_port *port)
1584 {
1585 	struct uart_port *up = &port->port;
1586 	int i, j, ret = 0;
1587 
1588 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1589 		const struct sci_irq_desc *desc;
1590 		int irq;
1591 
1592 		if (SCIx_IRQ_IS_MUXED(port)) {
1593 			i = SCIx_MUX_IRQ;
1594 			irq = up->irq;
1595 		} else {
1596 			irq = port->irqs[i];
1597 
1598 			/*
1599 			 * Certain port types won't support all of the
1600 			 * available interrupt sources.
1601 			 */
1602 			if (unlikely(irq < 0))
1603 				continue;
1604 		}
1605 
1606 		desc = sci_irq_desc + i;
1607 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1608 					    dev_name(up->dev), desc->desc);
1609 		if (!port->irqstr[j]) {
1610 			ret = -ENOMEM;
1611 			goto out_nomem;
1612 		}
1613 
1614 		ret = request_irq(irq, desc->handler, up->irqflags,
1615 				  port->irqstr[j], port);
1616 		if (unlikely(ret)) {
1617 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1618 			goto out_noirq;
1619 		}
1620 	}
1621 
1622 	return 0;
1623 
1624 out_noirq:
1625 	while (--i >= 0)
1626 		free_irq(port->irqs[i], port);
1627 
1628 out_nomem:
1629 	while (--j >= 0)
1630 		kfree(port->irqstr[j]);
1631 
1632 	return ret;
1633 }
1634 
1635 static void sci_free_irq(struct sci_port *port)
1636 {
1637 	int i;
1638 
1639 	/*
1640 	 * Intentionally in reverse order so we iterate over the muxed
1641 	 * IRQ first.
1642 	 */
1643 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1644 		int irq = port->irqs[i];
1645 
1646 		/*
1647 		 * Certain port types won't support all of the available
1648 		 * interrupt sources.
1649 		 */
1650 		if (unlikely(irq < 0))
1651 			continue;
1652 
1653 		free_irq(port->irqs[i], port);
1654 		kfree(port->irqstr[i]);
1655 
1656 		if (SCIx_IRQ_IS_MUXED(port)) {
1657 			/* If there's only one IRQ, we're done. */
1658 			return;
1659 		}
1660 	}
1661 }
1662 
1663 static unsigned int sci_tx_empty(struct uart_port *port)
1664 {
1665 	unsigned short status = serial_port_in(port, SCxSR);
1666 	unsigned short in_tx_fifo = sci_txfill(port);
1667 
1668 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1669 }
1670 
1671 static void sci_set_rts(struct uart_port *port, bool state)
1672 {
1673 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1674 		u16 data = serial_port_in(port, SCPDR);
1675 
1676 		/* Active low */
1677 		if (state)
1678 			data &= ~SCPDR_RTSD;
1679 		else
1680 			data |= SCPDR_RTSD;
1681 		serial_port_out(port, SCPDR, data);
1682 
1683 		/* RTS# is output */
1684 		serial_port_out(port, SCPCR,
1685 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1686 	} else if (sci_getreg(port, SCSPTR)->size) {
1687 		u16 ctrl = serial_port_in(port, SCSPTR);
1688 
1689 		/* Active low */
1690 		if (state)
1691 			ctrl &= ~SCSPTR_RTSDT;
1692 		else
1693 			ctrl |= SCSPTR_RTSDT;
1694 		serial_port_out(port, SCSPTR, ctrl);
1695 	}
1696 }
1697 
1698 static bool sci_get_cts(struct uart_port *port)
1699 {
1700 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1701 		/* Active low */
1702 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1703 	} else if (sci_getreg(port, SCSPTR)->size) {
1704 		/* Active low */
1705 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1706 	}
1707 
1708 	return true;
1709 }
1710 
1711 /*
1712  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1713  * CTS/RTS is supported in hardware by at least one port and controlled
1714  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1715  * handled via the ->init_pins() op, which is a bit of a one-way street,
1716  * lacking any ability to defer pin control -- this will later be
1717  * converted over to the GPIO framework).
1718  *
1719  * Other modes (such as loopback) are supported generically on certain
1720  * port types, but not others. For these it's sufficient to test for the
1721  * existence of the support register and simply ignore the port type.
1722  */
1723 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1724 {
1725 	struct sci_port *s = to_sci_port(port);
1726 
1727 	if (mctrl & TIOCM_LOOP) {
1728 		const struct plat_sci_reg *reg;
1729 
1730 		/*
1731 		 * Standard loopback mode for SCFCR ports.
1732 		 */
1733 		reg = sci_getreg(port, SCFCR);
1734 		if (reg->size)
1735 			serial_port_out(port, SCFCR,
1736 					serial_port_in(port, SCFCR) |
1737 					SCFCR_LOOP);
1738 	}
1739 
1740 	mctrl_gpio_set(s->gpios, mctrl);
1741 
1742 	if (!s->has_rtscts)
1743 		return;
1744 
1745 	if (!(mctrl & TIOCM_RTS)) {
1746 		/* Disable Auto RTS */
1747 		serial_port_out(port, SCFCR,
1748 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1749 
1750 		/* Clear RTS */
1751 		sci_set_rts(port, 0);
1752 	} else if (s->autorts) {
1753 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1754 			/* Enable RTS# pin function */
1755 			serial_port_out(port, SCPCR,
1756 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1757 		}
1758 
1759 		/* Enable Auto RTS */
1760 		serial_port_out(port, SCFCR,
1761 				serial_port_in(port, SCFCR) | SCFCR_MCE);
1762 	} else {
1763 		/* Set RTS */
1764 		sci_set_rts(port, 1);
1765 	}
1766 }
1767 
1768 static unsigned int sci_get_mctrl(struct uart_port *port)
1769 {
1770 	struct sci_port *s = to_sci_port(port);
1771 	struct mctrl_gpios *gpios = s->gpios;
1772 	unsigned int mctrl = 0;
1773 
1774 	mctrl_gpio_get(gpios, &mctrl);
1775 
1776 	/*
1777 	 * CTS/RTS is handled in hardware when supported, while nothing
1778 	 * else is wired up.
1779 	 */
1780 	if (s->autorts) {
1781 		if (sci_get_cts(port))
1782 			mctrl |= TIOCM_CTS;
1783 	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
1784 		mctrl |= TIOCM_CTS;
1785 	}
1786 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
1787 		mctrl |= TIOCM_DSR;
1788 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
1789 		mctrl |= TIOCM_CAR;
1790 
1791 	return mctrl;
1792 }
1793 
1794 static void sci_enable_ms(struct uart_port *port)
1795 {
1796 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
1797 }
1798 
1799 static void sci_break_ctl(struct uart_port *port, int break_state)
1800 {
1801 	unsigned short scscr, scsptr;
1802 
1803 	/* check wheter the port has SCSPTR */
1804 	if (!sci_getreg(port, SCSPTR)->size) {
1805 		/*
1806 		 * Not supported by hardware. Most parts couple break and rx
1807 		 * interrupts together, with break detection always enabled.
1808 		 */
1809 		return;
1810 	}
1811 
1812 	scsptr = serial_port_in(port, SCSPTR);
1813 	scscr = serial_port_in(port, SCSCR);
1814 
1815 	if (break_state == -1) {
1816 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1817 		scscr &= ~SCSCR_TE;
1818 	} else {
1819 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1820 		scscr |= SCSCR_TE;
1821 	}
1822 
1823 	serial_port_out(port, SCSPTR, scsptr);
1824 	serial_port_out(port, SCSCR, scscr);
1825 }
1826 
1827 static int sci_startup(struct uart_port *port)
1828 {
1829 	struct sci_port *s = to_sci_port(port);
1830 	int ret;
1831 
1832 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1833 
1834 	ret = sci_request_irq(s);
1835 	if (unlikely(ret < 0))
1836 		return ret;
1837 
1838 	sci_request_dma(port);
1839 
1840 	return 0;
1841 }
1842 
1843 static void sci_shutdown(struct uart_port *port)
1844 {
1845 	struct sci_port *s = to_sci_port(port);
1846 	unsigned long flags;
1847 	u16 scr;
1848 
1849 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1850 
1851 	s->autorts = false;
1852 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
1853 
1854 	spin_lock_irqsave(&port->lock, flags);
1855 	sci_stop_rx(port);
1856 	sci_stop_tx(port);
1857 	/* Stop RX and TX, disable related interrupts, keep clock source */
1858 	scr = serial_port_in(port, SCSCR);
1859 	serial_port_out(port, SCSCR, scr & (SCSCR_CKE1 | SCSCR_CKE0));
1860 	spin_unlock_irqrestore(&port->lock, flags);
1861 
1862 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1863 	if (s->chan_rx) {
1864 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
1865 			port->line);
1866 		del_timer_sync(&s->rx_timer);
1867 	}
1868 #endif
1869 
1870 	sci_free_dma(port);
1871 	sci_free_irq(s);
1872 }
1873 
1874 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
1875 			unsigned int *srr)
1876 {
1877 	unsigned long freq = s->clk_rates[SCI_SCK];
1878 	int err, min_err = INT_MAX;
1879 	unsigned int sr;
1880 
1881 	if (s->port.type != PORT_HSCIF)
1882 		freq *= 2;
1883 
1884 	for_each_sr(sr, s) {
1885 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
1886 		if (abs(err) >= abs(min_err))
1887 			continue;
1888 
1889 		min_err = err;
1890 		*srr = sr - 1;
1891 
1892 		if (!err)
1893 			break;
1894 	}
1895 
1896 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
1897 		*srr + 1);
1898 	return min_err;
1899 }
1900 
1901 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
1902 			unsigned long freq, unsigned int *dlr,
1903 			unsigned int *srr)
1904 {
1905 	int err, min_err = INT_MAX;
1906 	unsigned int sr, dl;
1907 
1908 	if (s->port.type != PORT_HSCIF)
1909 		freq *= 2;
1910 
1911 	for_each_sr(sr, s) {
1912 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
1913 		dl = clamp(dl, 1U, 65535U);
1914 
1915 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
1916 		if (abs(err) >= abs(min_err))
1917 			continue;
1918 
1919 		min_err = err;
1920 		*dlr = dl;
1921 		*srr = sr - 1;
1922 
1923 		if (!err)
1924 			break;
1925 	}
1926 
1927 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
1928 		min_err, *dlr, *srr + 1);
1929 	return min_err;
1930 }
1931 
1932 /* calculate sample rate, BRR, and clock select */
1933 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1934 			  unsigned int *brr, unsigned int *srr,
1935 			  unsigned int *cks)
1936 {
1937 	unsigned long freq = s->clk_rates[SCI_FCK];
1938 	unsigned int sr, br, prediv, scrate, c;
1939 	int err, min_err = INT_MAX;
1940 
1941 	if (s->port.type != PORT_HSCIF)
1942 		freq *= 2;
1943 
1944 	/*
1945 	 * Find the combination of sample rate and clock select with the
1946 	 * smallest deviation from the desired baud rate.
1947 	 * Prefer high sample rates to maximise the receive margin.
1948 	 *
1949 	 * M: Receive margin (%)
1950 	 * N: Ratio of bit rate to clock (N = sampling rate)
1951 	 * D: Clock duty (D = 0 to 1.0)
1952 	 * L: Frame length (L = 9 to 12)
1953 	 * F: Absolute value of clock frequency deviation
1954 	 *
1955 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
1956 	 *      (|D - 0.5| / N * (1 + F))|
1957 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
1958 	 */
1959 	for_each_sr(sr, s) {
1960 		for (c = 0; c <= 3; c++) {
1961 			/* integerized formulas from HSCIF documentation */
1962 			prediv = sr * (1 << (2 * c + 1));
1963 
1964 			/*
1965 			 * We need to calculate:
1966 			 *
1967 			 *     br = freq / (prediv * bps) clamped to [1..256]
1968 			 *     err = freq / (br * prediv) - bps
1969 			 *
1970 			 * Watch out for overflow when calculating the desired
1971 			 * sampling clock rate!
1972 			 */
1973 			if (bps > UINT_MAX / prediv)
1974 				break;
1975 
1976 			scrate = prediv * bps;
1977 			br = DIV_ROUND_CLOSEST(freq, scrate);
1978 			br = clamp(br, 1U, 256U);
1979 
1980 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
1981 			if (abs(err) >= abs(min_err))
1982 				continue;
1983 
1984 			min_err = err;
1985 			*brr = br - 1;
1986 			*srr = sr - 1;
1987 			*cks = c;
1988 
1989 			if (!err)
1990 				goto found;
1991 		}
1992 	}
1993 
1994 found:
1995 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
1996 		min_err, *brr, *srr + 1, *cks);
1997 	return min_err;
1998 }
1999 
2000 static void sci_reset(struct uart_port *port)
2001 {
2002 	const struct plat_sci_reg *reg;
2003 	unsigned int status;
2004 
2005 	do {
2006 		status = serial_port_in(port, SCxSR);
2007 	} while (!(status & SCxSR_TEND(port)));
2008 
2009 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
2010 
2011 	reg = sci_getreg(port, SCFCR);
2012 	if (reg->size)
2013 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2014 
2015 	sci_clear_SCxSR(port,
2016 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2017 			SCxSR_BREAK_CLEAR(port));
2018 	if (sci_getreg(port, SCLSR)->size) {
2019 		status = serial_port_in(port, SCLSR);
2020 		status &= ~(SCLSR_TO | SCLSR_ORER);
2021 		serial_port_out(port, SCLSR, status);
2022 	}
2023 }
2024 
2025 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2026 			    struct ktermios *old)
2027 {
2028 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i;
2029 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2030 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2031 	struct sci_port *s = to_sci_port(port);
2032 	const struct plat_sci_reg *reg;
2033 	int min_err = INT_MAX, err;
2034 	unsigned long max_freq = 0;
2035 	int best_clk = -1;
2036 
2037 	if ((termios->c_cflag & CSIZE) == CS7)
2038 		smr_val |= SCSMR_CHR;
2039 	if (termios->c_cflag & PARENB)
2040 		smr_val |= SCSMR_PE;
2041 	if (termios->c_cflag & PARODD)
2042 		smr_val |= SCSMR_PE | SCSMR_ODD;
2043 	if (termios->c_cflag & CSTOPB)
2044 		smr_val |= SCSMR_STOP;
2045 
2046 	/*
2047 	 * earlyprintk comes here early on with port->uartclk set to zero.
2048 	 * the clock framework is not up and running at this point so here
2049 	 * we assume that 115200 is the maximum baud rate. please note that
2050 	 * the baud rate is not programmed during earlyprintk - it is assumed
2051 	 * that the previous boot loader has enabled required clocks and
2052 	 * setup the baud rate generator hardware for us already.
2053 	 */
2054 	if (!port->uartclk) {
2055 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2056 		goto done;
2057 	}
2058 
2059 	for (i = 0; i < SCI_NUM_CLKS; i++)
2060 		max_freq = max(max_freq, s->clk_rates[i]);
2061 
2062 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2063 	if (!baud)
2064 		goto done;
2065 
2066 	/*
2067 	 * There can be multiple sources for the sampling clock.  Find the one
2068 	 * that gives us the smallest deviation from the desired baud rate.
2069 	 */
2070 
2071 	/* Optional Undivided External Clock */
2072 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2073 	    port->type != PORT_SCIFB) {
2074 		err = sci_sck_calc(s, baud, &srr1);
2075 		if (abs(err) < abs(min_err)) {
2076 			best_clk = SCI_SCK;
2077 			scr_val = SCSCR_CKE1;
2078 			sccks = SCCKS_CKS;
2079 			min_err = err;
2080 			srr = srr1;
2081 			if (!err)
2082 				goto done;
2083 		}
2084 	}
2085 
2086 	/* Optional BRG Frequency Divided External Clock */
2087 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2088 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2089 				   &srr1);
2090 		if (abs(err) < abs(min_err)) {
2091 			best_clk = SCI_SCIF_CLK;
2092 			scr_val = SCSCR_CKE1;
2093 			sccks = 0;
2094 			min_err = err;
2095 			dl = dl1;
2096 			srr = srr1;
2097 			if (!err)
2098 				goto done;
2099 		}
2100 	}
2101 
2102 	/* Optional BRG Frequency Divided Internal Clock */
2103 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2104 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2105 				   &srr1);
2106 		if (abs(err) < abs(min_err)) {
2107 			best_clk = SCI_BRG_INT;
2108 			scr_val = SCSCR_CKE1;
2109 			sccks = SCCKS_XIN;
2110 			min_err = err;
2111 			dl = dl1;
2112 			srr = srr1;
2113 			if (!min_err)
2114 				goto done;
2115 		}
2116 	}
2117 
2118 	/* Divided Functional Clock using standard Bit Rate Register */
2119 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2120 	if (abs(err) < abs(min_err)) {
2121 		best_clk = SCI_FCK;
2122 		scr_val = 0;
2123 		min_err = err;
2124 		brr = brr1;
2125 		srr = srr1;
2126 		cks = cks1;
2127 	}
2128 
2129 done:
2130 	if (best_clk >= 0)
2131 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2132 			s->clks[best_clk], baud, min_err);
2133 
2134 	sci_port_enable(s);
2135 
2136 	/*
2137 	 * Program the optional External Baud Rate Generator (BRG) first.
2138 	 * It controls the mux to select (H)SCK or frequency divided clock.
2139 	 */
2140 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2141 		serial_port_out(port, SCDL, dl);
2142 		serial_port_out(port, SCCKS, sccks);
2143 	}
2144 
2145 	sci_reset(port);
2146 
2147 	uart_update_timeout(port, termios->c_cflag, baud);
2148 
2149 	if (best_clk >= 0) {
2150 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2151 			switch (srr + 1) {
2152 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2153 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2154 			case 11: smr_val |= SCSMR_SRC_11; break;
2155 			case 13: smr_val |= SCSMR_SRC_13; break;
2156 			case 16: smr_val |= SCSMR_SRC_16; break;
2157 			case 17: smr_val |= SCSMR_SRC_17; break;
2158 			case 19: smr_val |= SCSMR_SRC_19; break;
2159 			case 27: smr_val |= SCSMR_SRC_27; break;
2160 			}
2161 		smr_val |= cks;
2162 		dev_dbg(port->dev,
2163 			 "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2164 			 scr_val, smr_val, brr, sccks, dl, srr);
2165 		serial_port_out(port, SCSCR, scr_val);
2166 		serial_port_out(port, SCSMR, smr_val);
2167 		serial_port_out(port, SCBRR, brr);
2168 		if (sci_getreg(port, HSSRR)->size)
2169 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2170 
2171 		/* Wait one bit interval */
2172 		udelay((1000000 + (baud - 1)) / baud);
2173 	} else {
2174 		/* Don't touch the bit rate configuration */
2175 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2176 		smr_val |= serial_port_in(port, SCSMR) &
2177 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2178 		dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2179 		serial_port_out(port, SCSCR, scr_val);
2180 		serial_port_out(port, SCSMR, smr_val);
2181 	}
2182 
2183 	sci_init_pins(port, termios->c_cflag);
2184 
2185 	port->status &= ~UPSTAT_AUTOCTS;
2186 	s->autorts = false;
2187 	reg = sci_getreg(port, SCFCR);
2188 	if (reg->size) {
2189 		unsigned short ctrl = serial_port_in(port, SCFCR);
2190 
2191 		if ((port->flags & UPF_HARD_FLOW) &&
2192 		    (termios->c_cflag & CRTSCTS)) {
2193 			/* There is no CTS interrupt to restart the hardware */
2194 			port->status |= UPSTAT_AUTOCTS;
2195 			/* MCE is enabled when RTS is raised */
2196 			s->autorts = true;
2197 		}
2198 
2199 		/*
2200 		 * As we've done a sci_reset() above, ensure we don't
2201 		 * interfere with the FIFOs while toggling MCE. As the
2202 		 * reset values could still be set, simply mask them out.
2203 		 */
2204 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2205 
2206 		serial_port_out(port, SCFCR, ctrl);
2207 	}
2208 
2209 	scr_val |= SCSCR_RE | SCSCR_TE |
2210 		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2211 	dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2212 	serial_port_out(port, SCSCR, scr_val);
2213 	if ((srr + 1 == 5) &&
2214 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2215 		/*
2216 		 * In asynchronous mode, when the sampling rate is 1/5, first
2217 		 * received data may become invalid on some SCIFA and SCIFB.
2218 		 * To avoid this problem wait more than 1 serial data time (1
2219 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2220 		 */
2221 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2222 	}
2223 
2224 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2225 	/*
2226 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2227 	 * See serial_core.c::uart_update_timeout().
2228 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2229 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2230 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2231 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2232 	 * value obtained by this formula is too small. Therefore, if the value
2233 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2234 	 */
2235 	if (s->chan_rx) {
2236 		unsigned int bits;
2237 
2238 		/* byte size and parity */
2239 		switch (termios->c_cflag & CSIZE) {
2240 		case CS5:
2241 			bits = 7;
2242 			break;
2243 		case CS6:
2244 			bits = 8;
2245 			break;
2246 		case CS7:
2247 			bits = 9;
2248 			break;
2249 		default:
2250 			bits = 10;
2251 			break;
2252 		}
2253 
2254 		if (termios->c_cflag & CSTOPB)
2255 			bits++;
2256 		if (termios->c_cflag & PARENB)
2257 			bits++;
2258 		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2259 					     (baud / 10), 10);
2260 		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2261 			s->rx_timeout * 1000 / HZ, port->timeout);
2262 		if (s->rx_timeout < msecs_to_jiffies(20))
2263 			s->rx_timeout = msecs_to_jiffies(20);
2264 	}
2265 #endif
2266 
2267 	if ((termios->c_cflag & CREAD) != 0)
2268 		sci_start_rx(port);
2269 
2270 	sci_port_disable(s);
2271 
2272 	if (UART_ENABLE_MS(port, termios->c_cflag))
2273 		sci_enable_ms(port);
2274 }
2275 
2276 static void sci_pm(struct uart_port *port, unsigned int state,
2277 		   unsigned int oldstate)
2278 {
2279 	struct sci_port *sci_port = to_sci_port(port);
2280 
2281 	switch (state) {
2282 	case UART_PM_STATE_OFF:
2283 		sci_port_disable(sci_port);
2284 		break;
2285 	default:
2286 		sci_port_enable(sci_port);
2287 		break;
2288 	}
2289 }
2290 
2291 static const char *sci_type(struct uart_port *port)
2292 {
2293 	switch (port->type) {
2294 	case PORT_IRDA:
2295 		return "irda";
2296 	case PORT_SCI:
2297 		return "sci";
2298 	case PORT_SCIF:
2299 		return "scif";
2300 	case PORT_SCIFA:
2301 		return "scifa";
2302 	case PORT_SCIFB:
2303 		return "scifb";
2304 	case PORT_HSCIF:
2305 		return "hscif";
2306 	}
2307 
2308 	return NULL;
2309 }
2310 
2311 static int sci_remap_port(struct uart_port *port)
2312 {
2313 	struct sci_port *sport = to_sci_port(port);
2314 
2315 	/*
2316 	 * Nothing to do if there's already an established membase.
2317 	 */
2318 	if (port->membase)
2319 		return 0;
2320 
2321 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2322 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2323 		if (unlikely(!port->membase)) {
2324 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2325 			return -ENXIO;
2326 		}
2327 	} else {
2328 		/*
2329 		 * For the simple (and majority of) cases where we don't
2330 		 * need to do any remapping, just cast the cookie
2331 		 * directly.
2332 		 */
2333 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2334 	}
2335 
2336 	return 0;
2337 }
2338 
2339 static void sci_release_port(struct uart_port *port)
2340 {
2341 	struct sci_port *sport = to_sci_port(port);
2342 
2343 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2344 		iounmap(port->membase);
2345 		port->membase = NULL;
2346 	}
2347 
2348 	release_mem_region(port->mapbase, sport->reg_size);
2349 }
2350 
2351 static int sci_request_port(struct uart_port *port)
2352 {
2353 	struct resource *res;
2354 	struct sci_port *sport = to_sci_port(port);
2355 	int ret;
2356 
2357 	res = request_mem_region(port->mapbase, sport->reg_size,
2358 				 dev_name(port->dev));
2359 	if (unlikely(res == NULL)) {
2360 		dev_err(port->dev, "request_mem_region failed.");
2361 		return -EBUSY;
2362 	}
2363 
2364 	ret = sci_remap_port(port);
2365 	if (unlikely(ret != 0)) {
2366 		release_resource(res);
2367 		return ret;
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 static void sci_config_port(struct uart_port *port, int flags)
2374 {
2375 	if (flags & UART_CONFIG_TYPE) {
2376 		struct sci_port *sport = to_sci_port(port);
2377 
2378 		port->type = sport->cfg->type;
2379 		sci_request_port(port);
2380 	}
2381 }
2382 
2383 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2384 {
2385 	if (ser->baud_base < 2400)
2386 		/* No paper tape reader for Mitch.. */
2387 		return -EINVAL;
2388 
2389 	return 0;
2390 }
2391 
2392 static const struct uart_ops sci_uart_ops = {
2393 	.tx_empty	= sci_tx_empty,
2394 	.set_mctrl	= sci_set_mctrl,
2395 	.get_mctrl	= sci_get_mctrl,
2396 	.start_tx	= sci_start_tx,
2397 	.stop_tx	= sci_stop_tx,
2398 	.stop_rx	= sci_stop_rx,
2399 	.enable_ms	= sci_enable_ms,
2400 	.break_ctl	= sci_break_ctl,
2401 	.startup	= sci_startup,
2402 	.shutdown	= sci_shutdown,
2403 	.set_termios	= sci_set_termios,
2404 	.pm		= sci_pm,
2405 	.type		= sci_type,
2406 	.release_port	= sci_release_port,
2407 	.request_port	= sci_request_port,
2408 	.config_port	= sci_config_port,
2409 	.verify_port	= sci_verify_port,
2410 #ifdef CONFIG_CONSOLE_POLL
2411 	.poll_get_char	= sci_poll_get_char,
2412 	.poll_put_char	= sci_poll_put_char,
2413 #endif
2414 };
2415 
2416 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2417 {
2418 	const char *clk_names[] = {
2419 		[SCI_FCK] = "fck",
2420 		[SCI_SCK] = "sck",
2421 		[SCI_BRG_INT] = "brg_int",
2422 		[SCI_SCIF_CLK] = "scif_clk",
2423 	};
2424 	struct clk *clk;
2425 	unsigned int i;
2426 
2427 	if (sci_port->cfg->type == PORT_HSCIF)
2428 		clk_names[SCI_SCK] = "hsck";
2429 
2430 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2431 		clk = devm_clk_get(dev, clk_names[i]);
2432 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2433 			return -EPROBE_DEFER;
2434 
2435 		if (IS_ERR(clk) && i == SCI_FCK) {
2436 			/*
2437 			 * "fck" used to be called "sci_ick", and we need to
2438 			 * maintain DT backward compatibility.
2439 			 */
2440 			clk = devm_clk_get(dev, "sci_ick");
2441 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2442 				return -EPROBE_DEFER;
2443 
2444 			if (!IS_ERR(clk))
2445 				goto found;
2446 
2447 			/*
2448 			 * Not all SH platforms declare a clock lookup entry
2449 			 * for SCI devices, in which case we need to get the
2450 			 * global "peripheral_clk" clock.
2451 			 */
2452 			clk = devm_clk_get(dev, "peripheral_clk");
2453 			if (!IS_ERR(clk))
2454 				goto found;
2455 
2456 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2457 				PTR_ERR(clk));
2458 			return PTR_ERR(clk);
2459 		}
2460 
2461 found:
2462 		if (IS_ERR(clk))
2463 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2464 				PTR_ERR(clk));
2465 		else
2466 			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2467 				clk, clk);
2468 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2469 	}
2470 	return 0;
2471 }
2472 
2473 static const struct sci_port_params *
2474 sci_probe_regmap(const struct plat_sci_port *cfg)
2475 {
2476 	unsigned int regtype;
2477 
2478 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2479 		return &sci_port_params[cfg->regtype];
2480 
2481 	switch (cfg->type) {
2482 	case PORT_SCI:
2483 		regtype = SCIx_SCI_REGTYPE;
2484 		break;
2485 	case PORT_IRDA:
2486 		regtype = SCIx_IRDA_REGTYPE;
2487 		break;
2488 	case PORT_SCIFA:
2489 		regtype = SCIx_SCIFA_REGTYPE;
2490 		break;
2491 	case PORT_SCIFB:
2492 		regtype = SCIx_SCIFB_REGTYPE;
2493 		break;
2494 	case PORT_SCIF:
2495 		/*
2496 		 * The SH-4 is a bit of a misnomer here, although that's
2497 		 * where this particular port layout originated. This
2498 		 * configuration (or some slight variation thereof)
2499 		 * remains the dominant model for all SCIFs.
2500 		 */
2501 		regtype = SCIx_SH4_SCIF_REGTYPE;
2502 		break;
2503 	case PORT_HSCIF:
2504 		regtype = SCIx_HSCIF_REGTYPE;
2505 		break;
2506 	default:
2507 		pr_err("Can't probe register map for given port\n");
2508 		return NULL;
2509 	}
2510 
2511 	return &sci_port_params[regtype];
2512 }
2513 
2514 static int sci_init_single(struct platform_device *dev,
2515 			   struct sci_port *sci_port, unsigned int index,
2516 			   const struct plat_sci_port *p, bool early)
2517 {
2518 	struct uart_port *port = &sci_port->port;
2519 	const struct resource *res;
2520 	unsigned int i;
2521 	int ret;
2522 
2523 	sci_port->cfg	= p;
2524 
2525 	port->ops	= &sci_uart_ops;
2526 	port->iotype	= UPIO_MEM;
2527 	port->line	= index;
2528 
2529 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2530 	if (res == NULL)
2531 		return -ENOMEM;
2532 
2533 	port->mapbase = res->start;
2534 	sci_port->reg_size = resource_size(res);
2535 
2536 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2537 		sci_port->irqs[i] = platform_get_irq(dev, i);
2538 
2539 	/* The SCI generates several interrupts. They can be muxed together or
2540 	 * connected to different interrupt lines. In the muxed case only one
2541 	 * interrupt resource is specified. In the non-muxed case three or four
2542 	 * interrupt resources are specified, as the BRI interrupt is optional.
2543 	 */
2544 	if (sci_port->irqs[0] < 0)
2545 		return -ENXIO;
2546 
2547 	if (sci_port->irqs[1] < 0) {
2548 		sci_port->irqs[1] = sci_port->irqs[0];
2549 		sci_port->irqs[2] = sci_port->irqs[0];
2550 		sci_port->irqs[3] = sci_port->irqs[0];
2551 	}
2552 
2553 	sci_port->params = sci_probe_regmap(p);
2554 	if (unlikely(sci_port->params == NULL))
2555 		return -EINVAL;
2556 
2557 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2558 	 * match the SoC datasheet, this should be investigated. Let platform
2559 	 * data override the sampling rate for now.
2560 	 */
2561 	sci_port->sampling_rate_mask = p->sampling_rate
2562 				     ? SCI_SR(p->sampling_rate)
2563 				     : sci_port->params->sampling_rate_mask;
2564 
2565 	if (!early) {
2566 		ret = sci_init_clocks(sci_port, &dev->dev);
2567 		if (ret < 0)
2568 			return ret;
2569 
2570 		port->dev = &dev->dev;
2571 
2572 		pm_runtime_enable(&dev->dev);
2573 	}
2574 
2575 	port->type		= p->type;
2576 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2577 	port->fifosize		= sci_port->params->fifosize;
2578 
2579 	if (port->type == PORT_SCI) {
2580 		if (sci_port->reg_size >= 0x20)
2581 			port->regshift = 2;
2582 		else
2583 			port->regshift = 1;
2584 	}
2585 
2586 	/*
2587 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2588 	 * for the multi-IRQ ports, which is where we are primarily
2589 	 * concerned with the shutdown path synchronization.
2590 	 *
2591 	 * For the muxed case there's nothing more to do.
2592 	 */
2593 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2594 	port->irqflags		= 0;
2595 
2596 	port->serial_in		= sci_serial_in;
2597 	port->serial_out	= sci_serial_out;
2598 
2599 	return 0;
2600 }
2601 
2602 static void sci_cleanup_single(struct sci_port *port)
2603 {
2604 	pm_runtime_disable(port->port.dev);
2605 }
2606 
2607 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2608     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2609 static void serial_console_putchar(struct uart_port *port, int ch)
2610 {
2611 	sci_poll_put_char(port, ch);
2612 }
2613 
2614 /*
2615  *	Print a string to the serial port trying not to disturb
2616  *	any possible real use of the port...
2617  */
2618 static void serial_console_write(struct console *co, const char *s,
2619 				 unsigned count)
2620 {
2621 	struct sci_port *sci_port = &sci_ports[co->index];
2622 	struct uart_port *port = &sci_port->port;
2623 	unsigned short bits, ctrl, ctrl_temp;
2624 	unsigned long flags;
2625 	int locked = 1;
2626 
2627 	local_irq_save(flags);
2628 #if defined(SUPPORT_SYSRQ)
2629 	if (port->sysrq)
2630 		locked = 0;
2631 	else
2632 #endif
2633 	if (oops_in_progress)
2634 		locked = spin_trylock(&port->lock);
2635 	else
2636 		spin_lock(&port->lock);
2637 
2638 	/* first save SCSCR then disable interrupts, keep clock source */
2639 	ctrl = serial_port_in(port, SCSCR);
2640 	ctrl_temp = SCSCR_RE | SCSCR_TE |
2641 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2642 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2643 	serial_port_out(port, SCSCR, ctrl_temp);
2644 
2645 	uart_console_write(port, s, count, serial_console_putchar);
2646 
2647 	/* wait until fifo is empty and last bit has been transmitted */
2648 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2649 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2650 		cpu_relax();
2651 
2652 	/* restore the SCSCR */
2653 	serial_port_out(port, SCSCR, ctrl);
2654 
2655 	if (locked)
2656 		spin_unlock(&port->lock);
2657 	local_irq_restore(flags);
2658 }
2659 
2660 static int serial_console_setup(struct console *co, char *options)
2661 {
2662 	struct sci_port *sci_port;
2663 	struct uart_port *port;
2664 	int baud = 115200;
2665 	int bits = 8;
2666 	int parity = 'n';
2667 	int flow = 'n';
2668 	int ret;
2669 
2670 	/*
2671 	 * Refuse to handle any bogus ports.
2672 	 */
2673 	if (co->index < 0 || co->index >= SCI_NPORTS)
2674 		return -ENODEV;
2675 
2676 	sci_port = &sci_ports[co->index];
2677 	port = &sci_port->port;
2678 
2679 	/*
2680 	 * Refuse to handle uninitialized ports.
2681 	 */
2682 	if (!port->ops)
2683 		return -ENODEV;
2684 
2685 	ret = sci_remap_port(port);
2686 	if (unlikely(ret != 0))
2687 		return ret;
2688 
2689 	if (options)
2690 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2691 
2692 	return uart_set_options(port, co, baud, parity, bits, flow);
2693 }
2694 
2695 static struct console serial_console = {
2696 	.name		= "ttySC",
2697 	.device		= uart_console_device,
2698 	.write		= serial_console_write,
2699 	.setup		= serial_console_setup,
2700 	.flags		= CON_PRINTBUFFER,
2701 	.index		= -1,
2702 	.data		= &sci_uart_driver,
2703 };
2704 
2705 static struct console early_serial_console = {
2706 	.name           = "early_ttySC",
2707 	.write          = serial_console_write,
2708 	.flags          = CON_PRINTBUFFER,
2709 	.index		= -1,
2710 };
2711 
2712 static char early_serial_buf[32];
2713 
2714 static int sci_probe_earlyprintk(struct platform_device *pdev)
2715 {
2716 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2717 
2718 	if (early_serial_console.data)
2719 		return -EEXIST;
2720 
2721 	early_serial_console.index = pdev->id;
2722 
2723 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2724 
2725 	serial_console_setup(&early_serial_console, early_serial_buf);
2726 
2727 	if (!strstr(early_serial_buf, "keep"))
2728 		early_serial_console.flags |= CON_BOOT;
2729 
2730 	register_console(&early_serial_console);
2731 	return 0;
2732 }
2733 
2734 #define SCI_CONSOLE	(&serial_console)
2735 
2736 #else
2737 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2738 {
2739 	return -EINVAL;
2740 }
2741 
2742 #define SCI_CONSOLE	NULL
2743 
2744 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2745 
2746 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2747 
2748 static struct uart_driver sci_uart_driver = {
2749 	.owner		= THIS_MODULE,
2750 	.driver_name	= "sci",
2751 	.dev_name	= "ttySC",
2752 	.major		= SCI_MAJOR,
2753 	.minor		= SCI_MINOR_START,
2754 	.nr		= SCI_NPORTS,
2755 	.cons		= SCI_CONSOLE,
2756 };
2757 
2758 static int sci_remove(struct platform_device *dev)
2759 {
2760 	struct sci_port *port = platform_get_drvdata(dev);
2761 
2762 	uart_remove_one_port(&sci_uart_driver, &port->port);
2763 
2764 	sci_cleanup_single(port);
2765 
2766 	return 0;
2767 }
2768 
2769 
2770 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
2771 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
2772 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
2773 
2774 static const struct of_device_id of_sci_match[] = {
2775 	/* SoC-specific types */
2776 	{
2777 		.compatible = "renesas,scif-r7s72100",
2778 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2779 	},
2780 	/* Family-specific types */
2781 	{
2782 		.compatible = "renesas,rcar-gen1-scif",
2783 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2784 	}, {
2785 		.compatible = "renesas,rcar-gen2-scif",
2786 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2787 	}, {
2788 		.compatible = "renesas,rcar-gen3-scif",
2789 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2790 	},
2791 	/* Generic types */
2792 	{
2793 		.compatible = "renesas,scif",
2794 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2795 	}, {
2796 		.compatible = "renesas,scifa",
2797 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2798 	}, {
2799 		.compatible = "renesas,scifb",
2800 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
2801 	}, {
2802 		.compatible = "renesas,hscif",
2803 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
2804 	}, {
2805 		.compatible = "renesas,sci",
2806 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
2807 	}, {
2808 		/* Terminator */
2809 	},
2810 };
2811 MODULE_DEVICE_TABLE(of, of_sci_match);
2812 
2813 static struct plat_sci_port *
2814 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2815 {
2816 	struct device_node *np = pdev->dev.of_node;
2817 	const struct of_device_id *match;
2818 	struct plat_sci_port *p;
2819 	struct sci_port *sp;
2820 	int id;
2821 
2822 	if (!IS_ENABLED(CONFIG_OF) || !np)
2823 		return NULL;
2824 
2825 	match = of_match_node(of_sci_match, np);
2826 	if (!match)
2827 		return NULL;
2828 
2829 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2830 	if (!p)
2831 		return NULL;
2832 
2833 	/* Get the line number from the aliases node. */
2834 	id = of_alias_get_id(np, "serial");
2835 	if (id < 0) {
2836 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2837 		return NULL;
2838 	}
2839 
2840 	sp = &sci_ports[id];
2841 	*dev_id = id;
2842 
2843 	p->type = SCI_OF_TYPE(match->data);
2844 	p->regtype = SCI_OF_REGTYPE(match->data);
2845 
2846 	if (of_find_property(np, "uart-has-rtscts", NULL))
2847 		sp->has_rtscts = true;
2848 
2849 	return p;
2850 }
2851 
2852 static int sci_probe_single(struct platform_device *dev,
2853 				      unsigned int index,
2854 				      struct plat_sci_port *p,
2855 				      struct sci_port *sciport)
2856 {
2857 	int ret;
2858 
2859 	/* Sanity check */
2860 	if (unlikely(index >= SCI_NPORTS)) {
2861 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2862 			   index+1, SCI_NPORTS);
2863 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2864 		return -EINVAL;
2865 	}
2866 
2867 	ret = sci_init_single(dev, sciport, index, p, false);
2868 	if (ret)
2869 		return ret;
2870 
2871 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
2872 	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
2873 		return PTR_ERR(sciport->gpios);
2874 
2875 	if (sciport->has_rtscts) {
2876 		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
2877 							UART_GPIO_CTS)) ||
2878 		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
2879 							UART_GPIO_RTS))) {
2880 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
2881 			return -EINVAL;
2882 		}
2883 		sciport->port.flags |= UPF_HARD_FLOW;
2884 	}
2885 
2886 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2887 	if (ret) {
2888 		sci_cleanup_single(sciport);
2889 		return ret;
2890 	}
2891 
2892 	return 0;
2893 }
2894 
2895 static int sci_probe(struct platform_device *dev)
2896 {
2897 	struct plat_sci_port *p;
2898 	struct sci_port *sp;
2899 	unsigned int dev_id;
2900 	int ret;
2901 
2902 	/*
2903 	 * If we've come here via earlyprintk initialization, head off to
2904 	 * the special early probe. We don't have sufficient device state
2905 	 * to make it beyond this yet.
2906 	 */
2907 	if (is_early_platform_device(dev))
2908 		return sci_probe_earlyprintk(dev);
2909 
2910 	if (dev->dev.of_node) {
2911 		p = sci_parse_dt(dev, &dev_id);
2912 		if (p == NULL)
2913 			return -EINVAL;
2914 	} else {
2915 		p = dev->dev.platform_data;
2916 		if (p == NULL) {
2917 			dev_err(&dev->dev, "no platform data supplied\n");
2918 			return -EINVAL;
2919 		}
2920 
2921 		dev_id = dev->id;
2922 	}
2923 
2924 	sp = &sci_ports[dev_id];
2925 	platform_set_drvdata(dev, sp);
2926 
2927 	ret = sci_probe_single(dev, dev_id, p, sp);
2928 	if (ret)
2929 		return ret;
2930 
2931 #ifdef CONFIG_SH_STANDARD_BIOS
2932 	sh_bios_gdb_detach();
2933 #endif
2934 
2935 	return 0;
2936 }
2937 
2938 static __maybe_unused int sci_suspend(struct device *dev)
2939 {
2940 	struct sci_port *sport = dev_get_drvdata(dev);
2941 
2942 	if (sport)
2943 		uart_suspend_port(&sci_uart_driver, &sport->port);
2944 
2945 	return 0;
2946 }
2947 
2948 static __maybe_unused int sci_resume(struct device *dev)
2949 {
2950 	struct sci_port *sport = dev_get_drvdata(dev);
2951 
2952 	if (sport)
2953 		uart_resume_port(&sci_uart_driver, &sport->port);
2954 
2955 	return 0;
2956 }
2957 
2958 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2959 
2960 static struct platform_driver sci_driver = {
2961 	.probe		= sci_probe,
2962 	.remove		= sci_remove,
2963 	.driver		= {
2964 		.name	= "sh-sci",
2965 		.pm	= &sci_dev_pm_ops,
2966 		.of_match_table = of_match_ptr(of_sci_match),
2967 	},
2968 };
2969 
2970 static int __init sci_init(void)
2971 {
2972 	int ret;
2973 
2974 	pr_info("%s\n", banner);
2975 
2976 	ret = uart_register_driver(&sci_uart_driver);
2977 	if (likely(ret == 0)) {
2978 		ret = platform_driver_register(&sci_driver);
2979 		if (unlikely(ret))
2980 			uart_unregister_driver(&sci_uart_driver);
2981 	}
2982 
2983 	return ret;
2984 }
2985 
2986 static void __exit sci_exit(void)
2987 {
2988 	platform_driver_unregister(&sci_driver);
2989 	uart_unregister_driver(&sci_uart_driver);
2990 }
2991 
2992 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2993 early_platform_init_buffer("earlyprintk", &sci_driver,
2994 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2995 #endif
2996 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
2997 static struct __init plat_sci_port port_cfg;
2998 
2999 static int __init early_console_setup(struct earlycon_device *device,
3000 				      int type)
3001 {
3002 	if (!device->port.membase)
3003 		return -ENODEV;
3004 
3005 	device->port.serial_in = sci_serial_in;
3006 	device->port.serial_out	= sci_serial_out;
3007 	device->port.type = type;
3008 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3009 	port_cfg.type = type;
3010 	sci_ports[0].cfg = &port_cfg;
3011 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3012 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3013 	sci_serial_out(&sci_ports[0].port, SCSCR,
3014 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3015 
3016 	device->con->write = serial_console_write;
3017 	return 0;
3018 }
3019 static int __init sci_early_console_setup(struct earlycon_device *device,
3020 					  const char *opt)
3021 {
3022 	return early_console_setup(device, PORT_SCI);
3023 }
3024 static int __init scif_early_console_setup(struct earlycon_device *device,
3025 					  const char *opt)
3026 {
3027 	return early_console_setup(device, PORT_SCIF);
3028 }
3029 static int __init scifa_early_console_setup(struct earlycon_device *device,
3030 					  const char *opt)
3031 {
3032 	return early_console_setup(device, PORT_SCIFA);
3033 }
3034 static int __init scifb_early_console_setup(struct earlycon_device *device,
3035 					  const char *opt)
3036 {
3037 	return early_console_setup(device, PORT_SCIFB);
3038 }
3039 static int __init hscif_early_console_setup(struct earlycon_device *device,
3040 					  const char *opt)
3041 {
3042 	return early_console_setup(device, PORT_HSCIF);
3043 }
3044 
3045 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3046 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3047 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3048 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3049 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3050 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3051 
3052 module_init(sci_init);
3053 module_exit(sci_exit);
3054 
3055 MODULE_LICENSE("GPL");
3056 MODULE_ALIAS("platform:sh-sci");
3057 MODULE_AUTHOR("Paul Mundt");
3058 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3059