xref: /linux/drivers/tty/serial/sh-sci.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/bitops.h>
21 #include <linux/clk.h>
22 #include <linux/console.h>
23 #include <linux/cpufreq.h>
24 #include <linux/ctype.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/ioport.h>
34 #include <linux/ktime.h>
35 #include <linux/major.h>
36 #include <linux/minmax.h>
37 #include <linux/mm.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/platform_device.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/reset.h>
43 #include <linux/scatterlist.h>
44 #include <linux/serial.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial_sci.h>
47 #include <linux/sh_dma.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/sysrq.h>
51 #include <linux/timer.h>
52 #include <linux/tty.h>
53 #include <linux/tty_flip.h>
54 
55 #ifdef CONFIG_SUPERH
56 #include <asm/platform_early.h>
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "rsci.h"
61 #include "serial_mctrl_gpio.h"
62 #include "sh-sci-common.h"
63 
64 #define SCI_MAJOR		204
65 #define SCI_MINOR_START		8
66 
67 /*
68  * SCI register subset common for all port types.
69  * Not all registers will exist on all parts.
70  */
71 enum {
72 	SCSMR,		/* Serial Mode Register */
73 	SCBRR,		/* Bit Rate Register */
74 	SCSCR,		/* Serial Control Register */
75 	SCxSR,		/* Serial Status Register */
76 	SCFCR,		/* FIFO Control Register */
77 	SCFDR,		/* FIFO Data Count Register */
78 	SCxTDR,		/* Transmit (FIFO) Data Register */
79 	SCxRDR,		/* Receive (FIFO) Data Register */
80 	SCLSR,		/* Line Status Register */
81 	SCTFDR,		/* Transmit FIFO Data Count Register */
82 	SCRFDR,		/* Receive FIFO Data Count Register */
83 	SCSPTR,		/* Serial Port Register */
84 	HSSRR,		/* Sampling Rate Register */
85 	SCPCR,		/* Serial Port Control Register */
86 	SCPDR,		/* Serial Port Data Register */
87 	SCDL,		/* BRG Frequency Division Register */
88 	SCCKS,		/* BRG Clock Select Register */
89 	HSRTRGR,	/* Rx FIFO Data Count Trigger Register */
90 	HSTTRGR,	/* Tx FIFO Data Count Trigger Register */
91 	SEMR,		/* Serial extended mode register */
92 };
93 
94 /* SCSMR (Serial Mode Register) */
95 #define SCSMR_C_A	BIT(7)	/* Communication Mode */
96 #define SCSMR_CSYNC	BIT(7)	/*   - Clocked synchronous mode */
97 #define SCSMR_ASYNC	0	/*   - Asynchronous mode */
98 #define SCSMR_CHR	BIT(6)	/* 7-bit Character Length */
99 #define SCSMR_PE	BIT(5)	/* Parity Enable */
100 #define SCSMR_ODD	BIT(4)	/* Odd Parity */
101 #define SCSMR_STOP	BIT(3)	/* Stop Bit Length */
102 #define SCSMR_CKS	0x0003	/* Clock Select */
103 
104 /* Serial Mode Register, SCIFA/SCIFB only bits */
105 #define SCSMR_CKEDG	BIT(12)	/* Transmit/Receive Clock Edge Select */
106 #define SCSMR_SRC_MASK	0x0700	/* Sampling Control */
107 #define SCSMR_SRC_16	0x0000	/* Sampling rate 1/16 */
108 #define SCSMR_SRC_5	0x0100	/* Sampling rate 1/5 */
109 #define SCSMR_SRC_7	0x0200	/* Sampling rate 1/7 */
110 #define SCSMR_SRC_11	0x0300	/* Sampling rate 1/11 */
111 #define SCSMR_SRC_13	0x0400	/* Sampling rate 1/13 */
112 #define SCSMR_SRC_17	0x0500	/* Sampling rate 1/17 */
113 #define SCSMR_SRC_19	0x0600	/* Sampling rate 1/19 */
114 #define SCSMR_SRC_27	0x0700	/* Sampling rate 1/27 */
115 
116 /* Serial Control Register, SCI only bits */
117 #define SCSCR_TEIE	BIT(2)  /* Transmit End Interrupt Enable */
118 
119 /* Serial Control Register, SCIFA/SCIFB only bits */
120 #define SCSCR_TDRQE	BIT(15)	/* Tx Data Transfer Request Enable */
121 #define SCSCR_RDRQE	BIT(14)	/* Rx Data Transfer Request Enable */
122 
123 /* Serial Control Register, HSCIF-only bits */
124 #define HSSCR_TOT_SHIFT	14
125 
126 /* SCxSR (Serial Status Register) on SCI */
127 #define SCI_TDRE	BIT(7)	/* Transmit Data Register Empty */
128 #define SCI_RDRF	BIT(6)	/* Receive Data Register Full */
129 #define SCI_ORER	BIT(5)	/* Overrun Error */
130 #define SCI_FER		BIT(4)	/* Framing Error */
131 #define SCI_PER		BIT(3)	/* Parity Error */
132 #define SCI_TEND	BIT(2)	/* Transmit End */
133 #define SCI_RESERVED	0x03	/* All reserved bits */
134 
135 #define SCI_DEFAULT_ERROR_MASK (SCI_PER | SCI_FER)
136 
137 #define SCI_RDxF_CLEAR	(u32)(~(SCI_RESERVED | SCI_RDRF))
138 #define SCI_ERROR_CLEAR	(u32)(~(SCI_RESERVED | SCI_PER | SCI_FER | SCI_ORER))
139 #define SCI_TDxE_CLEAR	(u32)(~(SCI_RESERVED | SCI_TEND | SCI_TDRE))
140 #define SCI_BREAK_CLEAR	(u32)(~(SCI_RESERVED | SCI_PER | SCI_FER | SCI_ORER))
141 
142 /* SCxSR (Serial Status Register) on SCIF, SCIFA, SCIFB, HSCIF */
143 #define SCIF_ER		BIT(7)	/* Receive Error */
144 #define SCIF_TEND	BIT(6)	/* Transmission End */
145 #define SCIF_TDFE	BIT(5)	/* Transmit FIFO Data Empty */
146 #define SCIF_BRK	BIT(4)	/* Break Detect */
147 #define SCIF_FER	BIT(3)	/* Framing Error */
148 #define SCIF_PER	BIT(2)	/* Parity Error */
149 #define SCIF_RDF	BIT(1)	/* Receive FIFO Data Full */
150 #define SCIF_DR		BIT(0)	/* Receive Data Ready */
151 /* SCIF only (optional) */
152 #define SCIF_PERC	0xf000	/* Number of Parity Errors */
153 #define SCIF_FERC	0x0f00	/* Number of Framing Errors */
154 /*SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 only */
155 #define SCIFA_ORER	BIT(9)	/* Overrun Error */
156 
157 #define SCIF_DEFAULT_ERROR_MASK (SCIF_PER | SCIF_FER | SCIF_BRK | SCIF_ER)
158 
159 #define SCIF_RDxF_CLEAR		(u32)(~(SCIF_DR | SCIF_RDF))
160 #define SCIF_ERROR_CLEAR	(u32)(~(SCIF_PER | SCIF_FER | SCIF_ER))
161 #define SCIF_TDxE_CLEAR		(u32)(~(SCIF_TDFE))
162 #define SCIF_BREAK_CLEAR	(u32)(~(SCIF_PER | SCIF_FER | SCIF_BRK))
163 
164 /* SCFCR (FIFO Control Register) */
165 #define SCFCR_RTRG1	BIT(7)	/* Receive FIFO Data Count Trigger */
166 #define SCFCR_RTRG0	BIT(6)
167 #define SCFCR_TTRG1	BIT(5)	/* Transmit FIFO Data Count Trigger */
168 #define SCFCR_TTRG0	BIT(4)
169 #define SCFCR_MCE	BIT(3)	/* Modem Control Enable */
170 #define SCFCR_TFRST	BIT(2)	/* Transmit FIFO Data Register Reset */
171 #define SCFCR_RFRST	BIT(1)	/* Receive FIFO Data Register Reset */
172 #define SCFCR_LOOP	BIT(0)	/* Loopback Test */
173 
174 /* SCLSR (Line Status Register) on (H)SCIF */
175 #define SCLSR_TO	BIT(2)	/* Timeout */
176 #define SCLSR_ORER	BIT(0)	/* Overrun Error */
177 
178 /* SCSPTR (Serial Port Register), optional */
179 #define SCSPTR_RTSIO	BIT(7)	/* Serial Port RTS# Pin Input/Output */
180 #define SCSPTR_RTSDT	BIT(6)	/* Serial Port RTS# Pin Data */
181 #define SCSPTR_CTSIO	BIT(5)	/* Serial Port CTS# Pin Input/Output */
182 #define SCSPTR_CTSDT	BIT(4)	/* Serial Port CTS# Pin Data */
183 #define SCSPTR_SCKIO	BIT(3)	/* Serial Port Clock Pin Input/Output */
184 #define SCSPTR_SCKDT	BIT(2)	/* Serial Port Clock Pin Data */
185 #define SCSPTR_SPB2IO	BIT(1)	/* Serial Port Break Input/Output */
186 #define SCSPTR_SPB2DT	BIT(0)	/* Serial Port Break Data */
187 
188 /* HSSRR HSCIF */
189 #define HSCIF_SRE	BIT(15)	/* Sampling Rate Register Enable */
190 #define HSCIF_SRDE	BIT(14) /* Sampling Point Register Enable */
191 
192 #define HSCIF_SRHP_SHIFT	8
193 #define HSCIF_SRHP_MASK		0x0f00
194 
195 /* SCPCR (Serial Port Control Register), SCIFA/SCIFB only */
196 #define SCPCR_RTSC	BIT(4)	/* Serial Port RTS# Pin / Output Pin */
197 #define SCPCR_CTSC	BIT(3)	/* Serial Port CTS# Pin / Input Pin */
198 #define SCPCR_SCKC	BIT(2)	/* Serial Port SCK Pin / Output Pin */
199 #define SCPCR_RXDC	BIT(1)	/* Serial Port RXD Pin / Input Pin */
200 #define SCPCR_TXDC	BIT(0)	/* Serial Port TXD Pin / Output Pin */
201 
202 /* SCPDR (Serial Port Data Register), SCIFA/SCIFB only */
203 #define SCPDR_RTSD	BIT(4)	/* Serial Port RTS# Output Pin Data */
204 #define SCPDR_CTSD	BIT(3)	/* Serial Port CTS# Input Pin Data */
205 #define SCPDR_SCKD	BIT(2)	/* Serial Port SCK Output Pin Data */
206 #define SCPDR_RXDD	BIT(1)	/* Serial Port RXD Input Pin Data */
207 #define SCPDR_TXDD	BIT(0)	/* Serial Port TXD Output Pin Data */
208 
209 /*
210  * BRG Clock Select Register (Some SCIF and HSCIF)
211  * The Baud Rate Generator for external clock can provide a clock source for
212  * the sampling clock. It outputs either its frequency divided clock, or the
213  * (undivided) (H)SCK external clock.
214  */
215 #define SCCKS_CKS	BIT(15)	/* Select (H)SCK (1) or divided SC_CLK (0) */
216 #define SCCKS_XIN	BIT(14)	/* SC_CLK uses bus clock (1) or SCIF_CLK (0) */
217 
218 #define SCxSR_TEND(port)	(((port)->type == PORT_SCI) ? SCI_TEND   : SCIF_TEND)
219 #define SCxSR_RDxF(port)	(((port)->type == PORT_SCI) ? SCI_RDRF   : SCIF_DR | SCIF_RDF)
220 #define SCxSR_TDxE(port)	(((port)->type == PORT_SCI) ? SCI_TDRE   : SCIF_TDFE)
221 #define SCxSR_FER(port)		(((port)->type == PORT_SCI) ? SCI_FER    : SCIF_FER)
222 #define SCxSR_PER(port)		(((port)->type == PORT_SCI) ? SCI_PER    : SCIF_PER)
223 #define SCxSR_BRK(port)		(((port)->type == PORT_SCI) ? 0x00       : SCIF_BRK)
224 
225 #define SCxSR_ERRORS(port)	(to_sci_port(port)->params->error_mask)
226 
227 #define SCxSR_RDxF_CLEAR(port) \
228 	(((port)->type == PORT_SCI) ? SCI_RDxF_CLEAR : SCIF_RDxF_CLEAR)
229 #define SCxSR_ERROR_CLEAR(port) \
230 	(to_sci_port(port)->params->error_clear)
231 #define SCxSR_TDxE_CLEAR(port) \
232 	(((port)->type == PORT_SCI) ? SCI_TDxE_CLEAR : SCIF_TDxE_CLEAR)
233 #define SCxSR_BREAK_CLEAR(port) \
234 	(((port)->type == PORT_SCI) ? SCI_BREAK_CLEAR : SCIF_BREAK_CLEAR)
235 
236 #define SCIx_IRQ_IS_MUXED(port)			\
237 	((port)->irqs[SCIx_ERI_IRQ] ==	\
238 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
239 	((port)->irqs[SCIx_ERI_IRQ] &&	\
240 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
241 
242 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
243 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
244 				SCI_SR(19) | SCI_SR(27)
245 
246 /* Iterate over all supported sampling rates, from high to low */
247 #define for_each_sr(_sr, _port)						\
248 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
249 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
250 
251 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
252 
253 #define SCI_PUBLIC_PORT_ID(port) (((port) & BIT(7)) ? PORT_GENERIC : (port))
254 
255 static struct sci_port sci_ports[SCI_NPORTS];
256 static unsigned long sci_ports_in_use;
257 static struct uart_driver sci_uart_driver;
258 static bool sci_uart_earlycon;
259 static bool sci_uart_earlycon_dev_probing;
260 
261 static const struct sci_port_params_bits sci_sci_port_params_bits = {
262 	.rxtx_enable = SCSCR_RE | SCSCR_TE,
263 	.te_clear = SCSCR_TE | SCSCR_TEIE,
264 	.poll_sent_bits = SCI_TDRE | SCI_TEND
265 };
266 
267 static const struct sci_port_params_bits sci_scif_port_params_bits = {
268 	.rxtx_enable = SCSCR_RE | SCSCR_TE,
269 	.te_clear = SCSCR_TE | SCSCR_TEIE,
270 	.poll_sent_bits = SCIF_TDFE | SCIF_TEND
271 };
272 
273 static const struct sci_common_regs sci_common_regs = {
274 	.status = SCxSR,
275 	.control = SCSCR,
276 };
277 
278 struct sci_suspend_regs {
279 	u16 scdl;
280 	u16 sccks;
281 	u16 scsmr;
282 	u16 scscr;
283 	u16 scfcr;
284 	u16 scsptr;
285 	u16 hssrr;
286 	u16 scpcr;
287 	u16 scpdr;
288 	u8 scbrr;
289 	u8 semr;
290 };
291 
292 static size_t sci_suspend_regs_size(void)
293 {
294 	return sizeof(struct sci_suspend_regs);
295 }
296 
297 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
298 	/*
299 	 * Common SCI definitions, dependent on the port's regshift
300 	 * value.
301 	 */
302 	[SCIx_SCI_REGTYPE] = {
303 		.regs = {
304 			[SCSMR]		= { 0x00,  8 },
305 			[SCBRR]		= { 0x01,  8 },
306 			[SCSCR]		= { 0x02,  8 },
307 			[SCxTDR]	= { 0x03,  8 },
308 			[SCxSR]		= { 0x04,  8 },
309 			[SCxRDR]	= { 0x05,  8 },
310 		},
311 		.fifosize = 1,
312 		.overrun_reg = SCxSR,
313 		.overrun_mask = SCI_ORER,
314 		.sampling_rate_mask = SCI_SR(32),
315 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
316 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
317 		.param_bits = &sci_sci_port_params_bits,
318 		.common_regs = &sci_common_regs,
319 	},
320 
321 	/*
322 	 * Common definitions for legacy IrDA ports.
323 	 */
324 	[SCIx_IRDA_REGTYPE] = {
325 		.regs = {
326 			[SCSMR]		= { 0x00,  8 },
327 			[SCBRR]		= { 0x02,  8 },
328 			[SCSCR]		= { 0x04,  8 },
329 			[SCxTDR]	= { 0x06,  8 },
330 			[SCxSR]		= { 0x08, 16 },
331 			[SCxRDR]	= { 0x0a,  8 },
332 			[SCFCR]		= { 0x0c,  8 },
333 			[SCFDR]		= { 0x0e, 16 },
334 		},
335 		.fifosize = 1,
336 		.overrun_reg = SCxSR,
337 		.overrun_mask = SCI_ORER,
338 		.sampling_rate_mask = SCI_SR(32),
339 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
340 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
341 		.param_bits = &sci_scif_port_params_bits,
342 		.common_regs = &sci_common_regs,
343 	},
344 
345 	/*
346 	 * Common SCIFA definitions.
347 	 */
348 	[SCIx_SCIFA_REGTYPE] = {
349 		.regs = {
350 			[SCSMR]		= { 0x00, 16 },
351 			[SCBRR]		= { 0x04,  8 },
352 			[SCSCR]		= { 0x08, 16 },
353 			[SCxTDR]	= { 0x20,  8 },
354 			[SCxSR]		= { 0x14, 16 },
355 			[SCxRDR]	= { 0x24,  8 },
356 			[SCFCR]		= { 0x18, 16 },
357 			[SCFDR]		= { 0x1c, 16 },
358 			[SCPCR]		= { 0x30, 16 },
359 			[SCPDR]		= { 0x34, 16 },
360 		},
361 		.fifosize = 64,
362 		.overrun_reg = SCxSR,
363 		.overrun_mask = SCIFA_ORER,
364 		.sampling_rate_mask = SCI_SR_SCIFAB,
365 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
366 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
367 		.param_bits = &sci_scif_port_params_bits,
368 		.common_regs = &sci_common_regs,
369 	},
370 
371 	/*
372 	 * Common SCIFB definitions.
373 	 */
374 	[SCIx_SCIFB_REGTYPE] = {
375 		.regs = {
376 			[SCSMR]		= { 0x00, 16 },
377 			[SCBRR]		= { 0x04,  8 },
378 			[SCSCR]		= { 0x08, 16 },
379 			[SCxTDR]	= { 0x40,  8 },
380 			[SCxSR]		= { 0x14, 16 },
381 			[SCxRDR]	= { 0x60,  8 },
382 			[SCFCR]		= { 0x18, 16 },
383 			[SCTFDR]	= { 0x38, 16 },
384 			[SCRFDR]	= { 0x3c, 16 },
385 			[SCPCR]		= { 0x30, 16 },
386 			[SCPDR]		= { 0x34, 16 },
387 		},
388 		.fifosize = 256,
389 		.overrun_reg = SCxSR,
390 		.overrun_mask = SCIFA_ORER,
391 		.sampling_rate_mask = SCI_SR_SCIFAB,
392 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
393 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
394 		.param_bits = &sci_scif_port_params_bits,
395 		.common_regs = &sci_common_regs,
396 	},
397 
398 	/*
399 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
400 	 * count registers.
401 	 */
402 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
403 		.regs = {
404 			[SCSMR]		= { 0x00, 16 },
405 			[SCBRR]		= { 0x04,  8 },
406 			[SCSCR]		= { 0x08, 16 },
407 			[SCxTDR]	= { 0x0c,  8 },
408 			[SCxSR]		= { 0x10, 16 },
409 			[SCxRDR]	= { 0x14,  8 },
410 			[SCFCR]		= { 0x18, 16 },
411 			[SCFDR]		= { 0x1c, 16 },
412 			[SCSPTR]	= { 0x20, 16 },
413 			[SCLSR]		= { 0x24, 16 },
414 		},
415 		.fifosize = 16,
416 		.overrun_reg = SCLSR,
417 		.overrun_mask = SCLSR_ORER,
418 		.sampling_rate_mask = SCI_SR(32),
419 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
420 		.error_clear = SCIF_ERROR_CLEAR,
421 		.param_bits = &sci_scif_port_params_bits,
422 		.common_regs = &sci_common_regs,
423 	},
424 
425 	/*
426 	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T1.
427 	 * It looks like a normal SCIF with FIFO data, but with a
428 	 * compressed address space. Also, the break out of interrupts
429 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
430 	 */
431 	[SCIx_RZ_SCIFA_REGTYPE] = {
432 		.regs = {
433 			[SCSMR]		= { 0x00, 16 },
434 			[SCBRR]		= { 0x02,  8 },
435 			[SCSCR]		= { 0x04, 16 },
436 			[SCxTDR]	= { 0x06,  8 },
437 			[SCxSR]		= { 0x08, 16 },
438 			[SCxRDR]	= { 0x0A,  8 },
439 			[SCFCR]		= { 0x0C, 16 },
440 			[SCFDR]		= { 0x0E, 16 },
441 			[SCSPTR]	= { 0x10, 16 },
442 			[SCLSR]		= { 0x12, 16 },
443 			[SEMR]		= { 0x14, 8 },
444 		},
445 		.fifosize = 16,
446 		.overrun_reg = SCLSR,
447 		.overrun_mask = SCLSR_ORER,
448 		.sampling_rate_mask = SCI_SR(32),
449 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
450 		.error_clear = SCIF_ERROR_CLEAR,
451 		.param_bits = &sci_scif_port_params_bits,
452 		.common_regs = &sci_common_regs,
453 	},
454 
455 	/*
456 	 * The "SCIF" that is in RZ/V2H(P) SoC is similar to one found on RZ/G2L SoC
457 	 * with below differences,
458 	 * - Break out of interrupts are different: ERI, BRI, RXI, TXI, TEI, DRI,
459 	 *   TEI-DRI, RXI-EDGE and TXI-EDGE.
460 	 * - SCSMR register does not have CM bit (BIT(7)) ie it does not support synchronous mode.
461 	 * - SCFCR register does not have SCFCR_MCE bit.
462 	 * - SCSPTR register has only bits SCSPTR_SPB2DT and SCSPTR_SPB2IO.
463 	 */
464 	[SCIx_RZV2H_SCIF_REGTYPE] = {
465 		.regs = {
466 			[SCSMR]		= { 0x00, 16 },
467 			[SCBRR]		= { 0x02,  8 },
468 			[SCSCR]		= { 0x04, 16 },
469 			[SCxTDR]	= { 0x06,  8 },
470 			[SCxSR]		= { 0x08, 16 },
471 			[SCxRDR]	= { 0x0a,  8 },
472 			[SCFCR]		= { 0x0c, 16 },
473 			[SCFDR]		= { 0x0e, 16 },
474 			[SCSPTR]	= { 0x10, 16 },
475 			[SCLSR]		= { 0x12, 16 },
476 			[SEMR]		= { 0x14, 8 },
477 		},
478 		.fifosize = 16,
479 		.overrun_reg = SCLSR,
480 		.overrun_mask = SCLSR_ORER,
481 		.sampling_rate_mask = SCI_SR(32),
482 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
483 		.error_clear = SCIF_ERROR_CLEAR,
484 		.param_bits = &sci_scif_port_params_bits,
485 		.common_regs = &sci_common_regs,
486 	},
487 
488 	/*
489 	 * Common SH-3 SCIF definitions.
490 	 */
491 	[SCIx_SH3_SCIF_REGTYPE] = {
492 		.regs = {
493 			[SCSMR]		= { 0x00,  8 },
494 			[SCBRR]		= { 0x02,  8 },
495 			[SCSCR]		= { 0x04,  8 },
496 			[SCxTDR]	= { 0x06,  8 },
497 			[SCxSR]		= { 0x08, 16 },
498 			[SCxRDR]	= { 0x0a,  8 },
499 			[SCFCR]		= { 0x0c,  8 },
500 			[SCFDR]		= { 0x0e, 16 },
501 		},
502 		.fifosize = 16,
503 		.overrun_reg = SCLSR,
504 		.overrun_mask = SCLSR_ORER,
505 		.sampling_rate_mask = SCI_SR(32),
506 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
507 		.error_clear = SCIF_ERROR_CLEAR,
508 		.param_bits = &sci_scif_port_params_bits,
509 		.common_regs = &sci_common_regs,
510 	},
511 
512 	/*
513 	 * Common SH-4(A) SCIF(B) definitions.
514 	 */
515 	[SCIx_SH4_SCIF_REGTYPE] = {
516 		.regs = {
517 			[SCSMR]		= { 0x00, 16 },
518 			[SCBRR]		= { 0x04,  8 },
519 			[SCSCR]		= { 0x08, 16 },
520 			[SCxTDR]	= { 0x0c,  8 },
521 			[SCxSR]		= { 0x10, 16 },
522 			[SCxRDR]	= { 0x14,  8 },
523 			[SCFCR]		= { 0x18, 16 },
524 			[SCFDR]		= { 0x1c, 16 },
525 			[SCSPTR]	= { 0x20, 16 },
526 			[SCLSR]		= { 0x24, 16 },
527 		},
528 		.fifosize = 16,
529 		.overrun_reg = SCLSR,
530 		.overrun_mask = SCLSR_ORER,
531 		.sampling_rate_mask = SCI_SR(32),
532 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
533 		.error_clear = SCIF_ERROR_CLEAR,
534 		.param_bits = &sci_scif_port_params_bits,
535 		.common_regs = &sci_common_regs,
536 	},
537 
538 	/*
539 	 * Common SCIF definitions for ports with a Baud Rate Generator for
540 	 * External Clock (BRG).
541 	 */
542 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
543 		.regs = {
544 			[SCSMR]		= { 0x00, 16 },
545 			[SCBRR]		= { 0x04,  8 },
546 			[SCSCR]		= { 0x08, 16 },
547 			[SCxTDR]	= { 0x0c,  8 },
548 			[SCxSR]		= { 0x10, 16 },
549 			[SCxRDR]	= { 0x14,  8 },
550 			[SCFCR]		= { 0x18, 16 },
551 			[SCFDR]		= { 0x1c, 16 },
552 			[SCSPTR]	= { 0x20, 16 },
553 			[SCLSR]		= { 0x24, 16 },
554 			[SCDL]		= { 0x30, 16 },
555 			[SCCKS]		= { 0x34, 16 },
556 		},
557 		.fifosize = 16,
558 		.overrun_reg = SCLSR,
559 		.overrun_mask = SCLSR_ORER,
560 		.sampling_rate_mask = SCI_SR(32),
561 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
562 		.error_clear = SCIF_ERROR_CLEAR,
563 		.param_bits = &sci_scif_port_params_bits,
564 		.common_regs = &sci_common_regs,
565 	},
566 
567 	/*
568 	 * Common HSCIF definitions.
569 	 */
570 	[SCIx_HSCIF_REGTYPE] = {
571 		.regs = {
572 			[SCSMR]		= { 0x00, 16 },
573 			[SCBRR]		= { 0x04,  8 },
574 			[SCSCR]		= { 0x08, 16 },
575 			[SCxTDR]	= { 0x0c,  8 },
576 			[SCxSR]		= { 0x10, 16 },
577 			[SCxRDR]	= { 0x14,  8 },
578 			[SCFCR]		= { 0x18, 16 },
579 			[SCFDR]		= { 0x1c, 16 },
580 			[SCSPTR]	= { 0x20, 16 },
581 			[SCLSR]		= { 0x24, 16 },
582 			[HSSRR]		= { 0x40, 16 },
583 			[SCDL]		= { 0x30, 16 },
584 			[SCCKS]		= { 0x34, 16 },
585 			[HSRTRGR]	= { 0x54, 16 },
586 			[HSTTRGR]	= { 0x58, 16 },
587 		},
588 		.fifosize = 128,
589 		.overrun_reg = SCLSR,
590 		.overrun_mask = SCLSR_ORER,
591 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
592 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
593 		.error_clear = SCIF_ERROR_CLEAR,
594 		.param_bits = &sci_scif_port_params_bits,
595 		.common_regs = &sci_common_regs,
596 	},
597 
598 	/*
599 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
600 	 * register.
601 	 */
602 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
603 		.regs = {
604 			[SCSMR]		= { 0x00, 16 },
605 			[SCBRR]		= { 0x04,  8 },
606 			[SCSCR]		= { 0x08, 16 },
607 			[SCxTDR]	= { 0x0c,  8 },
608 			[SCxSR]		= { 0x10, 16 },
609 			[SCxRDR]	= { 0x14,  8 },
610 			[SCFCR]		= { 0x18, 16 },
611 			[SCFDR]		= { 0x1c, 16 },
612 			[SCLSR]		= { 0x24, 16 },
613 		},
614 		.fifosize = 16,
615 		.overrun_reg = SCLSR,
616 		.overrun_mask = SCLSR_ORER,
617 		.sampling_rate_mask = SCI_SR(32),
618 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
619 		.error_clear = SCIF_ERROR_CLEAR,
620 		.param_bits = &sci_scif_port_params_bits,
621 		.common_regs = &sci_common_regs,
622 	},
623 
624 	/*
625 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
626 	 * count registers.
627 	 */
628 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
629 		.regs = {
630 			[SCSMR]		= { 0x00, 16 },
631 			[SCBRR]		= { 0x04,  8 },
632 			[SCSCR]		= { 0x08, 16 },
633 			[SCxTDR]	= { 0x0c,  8 },
634 			[SCxSR]		= { 0x10, 16 },
635 			[SCxRDR]	= { 0x14,  8 },
636 			[SCFCR]		= { 0x18, 16 },
637 			[SCFDR]		= { 0x1c, 16 },
638 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
639 			[SCRFDR]	= { 0x20, 16 },
640 			[SCSPTR]	= { 0x24, 16 },
641 			[SCLSR]		= { 0x28, 16 },
642 		},
643 		.fifosize = 16,
644 		.overrun_reg = SCLSR,
645 		.overrun_mask = SCLSR_ORER,
646 		.sampling_rate_mask = SCI_SR(32),
647 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
648 		.error_clear = SCIF_ERROR_CLEAR,
649 		.param_bits = &sci_scif_port_params_bits,
650 		.common_regs = &sci_common_regs,
651 	},
652 
653 	/*
654 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
655 	 * registers.
656 	 */
657 	[SCIx_SH7705_SCIF_REGTYPE] = {
658 		.regs = {
659 			[SCSMR]		= { 0x00, 16 },
660 			[SCBRR]		= { 0x04,  8 },
661 			[SCSCR]		= { 0x08, 16 },
662 			[SCxTDR]	= { 0x20,  8 },
663 			[SCxSR]		= { 0x14, 16 },
664 			[SCxRDR]	= { 0x24,  8 },
665 			[SCFCR]		= { 0x18, 16 },
666 			[SCFDR]		= { 0x1c, 16 },
667 		},
668 		.fifosize = 64,
669 		.overrun_reg = SCxSR,
670 		.overrun_mask = SCIFA_ORER,
671 		.sampling_rate_mask = SCI_SR(16),
672 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
673 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
674 		.param_bits = &sci_scif_port_params_bits,
675 		.common_regs = &sci_common_regs,
676 	},
677 };
678 
679 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
680 
681 /*
682  * The "offset" here is rather misleading, in that it refers to an enum
683  * value relative to the port mapping rather than the fixed offset
684  * itself, which needs to be manually retrieved from the platform's
685  * register map for the given port.
686  */
687 static unsigned int sci_serial_in(struct uart_port *p, int offset)
688 {
689 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
690 
691 	if (reg->size == 8)
692 		return ioread8(p->membase + (reg->offset << p->regshift));
693 	else if (reg->size == 16)
694 		return ioread16(p->membase + (reg->offset << p->regshift));
695 	else
696 		WARN(1, "Invalid register access\n");
697 
698 	return 0;
699 }
700 
701 static void sci_serial_out(struct uart_port *p, int offset, int value)
702 {
703 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
704 
705 	if (reg->size == 8)
706 		iowrite8(value, p->membase + (reg->offset << p->regshift));
707 	else if (reg->size == 16)
708 		iowrite16(value, p->membase + (reg->offset << p->regshift));
709 	else
710 		WARN(1, "Invalid register access\n");
711 }
712 
713 void sci_port_enable(struct sci_port *sci_port)
714 {
715 	unsigned int i;
716 
717 	if (!sci_port->port.dev)
718 		return;
719 
720 	pm_runtime_get_sync(sci_port->port.dev);
721 
722 	for (i = 0; i < SCI_NUM_CLKS; i++) {
723 		clk_prepare_enable(sci_port->clks[i]);
724 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
725 	}
726 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
727 }
728 EXPORT_SYMBOL_NS_GPL(sci_port_enable, "SH_SCI");
729 
730 void sci_port_disable(struct sci_port *sci_port)
731 {
732 	unsigned int i;
733 
734 	if (!sci_port->port.dev)
735 		return;
736 
737 	for (i = SCI_NUM_CLKS; i-- > 0; )
738 		clk_disable_unprepare(sci_port->clks[i]);
739 
740 	pm_runtime_put_sync(sci_port->port.dev);
741 }
742 EXPORT_SYMBOL_NS_GPL(sci_port_disable, "SH_SCI");
743 
744 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
745 {
746 	/*
747 	 * Not all ports (such as SCIFA) will support REIE. Rather than
748 	 * special-casing the port type, we check the port initialization
749 	 * IRQ enable mask to see whether the IRQ is desired at all. If
750 	 * it's unset, it's logically inferred that there's no point in
751 	 * testing for it.
752 	 */
753 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
754 }
755 
756 static void sci_start_tx(struct uart_port *port)
757 {
758 	struct sci_port *s = to_sci_port(port);
759 	unsigned short ctrl;
760 
761 #ifdef CONFIG_SERIAL_SH_SCI_DMA
762 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
763 		u16 new, scr = sci_serial_in(port, SCSCR);
764 		if (s->chan_tx)
765 			new = scr | SCSCR_TDRQE;
766 		else
767 			new = scr & ~SCSCR_TDRQE;
768 		if (new != scr)
769 			sci_serial_out(port, SCSCR, new);
770 	}
771 
772 	if (s->chan_tx && !kfifo_is_empty(&port->state->port.xmit_fifo) &&
773 	    dma_submit_error(s->cookie_tx)) {
774 		if (s->regtype == SCIx_RZ_SCIFA_REGTYPE)
775 			/* Switch irq from SCIF to DMA */
776 			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
777 
778 		s->cookie_tx = 0;
779 		schedule_work(&s->work_tx);
780 	}
781 #endif
782 
783 	if (!s->chan_tx || s->regtype == SCIx_RZ_SCIFA_REGTYPE ||
784 	    s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
785 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
786 		ctrl = sci_serial_in(port, SCSCR);
787 
788 		/*
789 		 * For SCI, TE (transmit enable) must be set after setting TIE
790 		 * (transmit interrupt enable) or in the same instruction to start
791 		 * the transmit process.
792 		 */
793 		if (s->type == PORT_SCI)
794 			ctrl |= SCSCR_TE;
795 
796 		sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
797 	}
798 }
799 
800 static void sci_stop_tx(struct uart_port *port)
801 {
802 	struct sci_port *s = to_sci_port(port);
803 	unsigned short ctrl;
804 
805 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
806 	ctrl = sci_serial_in(port, SCSCR);
807 
808 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
809 		ctrl &= ~SCSCR_TDRQE;
810 
811 	ctrl &= ~SCSCR_TIE;
812 
813 	sci_serial_out(port, SCSCR, ctrl);
814 
815 #ifdef CONFIG_SERIAL_SH_SCI_DMA
816 	if (s->chan_tx &&
817 	    !dma_submit_error(s->cookie_tx)) {
818 		dmaengine_terminate_async(s->chan_tx);
819 		s->cookie_tx = -EINVAL;
820 	}
821 #endif
822 }
823 
824 static void sci_start_rx(struct uart_port *port)
825 {
826 	struct sci_port *s = to_sci_port(port);
827 	unsigned short ctrl;
828 
829 	ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
830 
831 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
832 		ctrl &= ~SCSCR_RDRQE;
833 
834 	sci_serial_out(port, SCSCR, ctrl);
835 }
836 
837 static void sci_stop_rx(struct uart_port *port)
838 {
839 	struct sci_port *s = to_sci_port(port);
840 	unsigned short ctrl;
841 
842 	ctrl = sci_serial_in(port, SCSCR);
843 
844 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
845 		ctrl &= ~SCSCR_RDRQE;
846 
847 	ctrl &= ~port_rx_irq_mask(port);
848 
849 	sci_serial_out(port, SCSCR, ctrl);
850 }
851 
852 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
853 {
854 	struct sci_port *s = to_sci_port(port);
855 
856 	if (s->type == PORT_SCI) {
857 		/* Just store the mask */
858 		sci_serial_out(port, SCxSR, mask);
859 	} else if (s->params->overrun_mask == SCIFA_ORER) {
860 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
861 		/* Only clear the status bits we want to clear */
862 		sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
863 	} else {
864 		/* Store the mask, clear parity/framing errors */
865 		sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
866 	}
867 }
868 
869 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
870     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
871 
872 #ifdef CONFIG_CONSOLE_POLL
873 static int sci_poll_get_char(struct uart_port *port)
874 {
875 	unsigned short status;
876 	struct sci_port *s = to_sci_port(port);
877 	int c;
878 
879 	do {
880 		status = sci_serial_in(port, SCxSR);
881 		if (status & SCxSR_ERRORS(port)) {
882 			s->ops->clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
883 			continue;
884 		}
885 		break;
886 	} while (1);
887 
888 	if (!(status & SCxSR_RDxF(port)))
889 		return NO_POLL_CHAR;
890 
891 	c = sci_serial_in(port, SCxRDR);
892 
893 	/* Dummy read */
894 	sci_serial_in(port, SCxSR);
895 	s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
896 
897 	return c;
898 }
899 #endif
900 
901 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
902 {
903 	struct sci_port *s = to_sci_port(port);
904 	const struct sci_common_regs *regs = s->params->common_regs;
905 	unsigned int status;
906 
907 	do {
908 		status = s->ops->read_reg(port, regs->status);
909 	} while (!(status & SCxSR_TDxE(port)));
910 
911 	sci_serial_out(port, SCxTDR, c);
912 	s->ops->clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
913 }
914 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
915 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
916 
917 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
918 {
919 	struct sci_port *s = to_sci_port(port);
920 
921 	/*
922 	 * Use port-specific handler if provided.
923 	 */
924 	if (s->cfg->ops && s->cfg->ops->init_pins) {
925 		s->cfg->ops->init_pins(port, cflag);
926 		return;
927 	}
928 
929 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
930 		u16 data = sci_serial_in(port, SCPDR);
931 		u16 ctrl = sci_serial_in(port, SCPCR);
932 
933 		/* Enable RXD and TXD pin functions */
934 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
935 		if (s->has_rtscts) {
936 			/* RTS# is output, active low, unless autorts */
937 			if (!(port->mctrl & TIOCM_RTS)) {
938 				ctrl |= SCPCR_RTSC;
939 				data |= SCPDR_RTSD;
940 			} else if (!s->autorts) {
941 				ctrl |= SCPCR_RTSC;
942 				data &= ~SCPDR_RTSD;
943 			} else {
944 				/* Enable RTS# pin function */
945 				ctrl &= ~SCPCR_RTSC;
946 			}
947 			/* Enable CTS# pin function */
948 			ctrl &= ~SCPCR_CTSC;
949 		}
950 		sci_serial_out(port, SCPDR, data);
951 		sci_serial_out(port, SCPCR, ctrl);
952 	} else if (sci_getreg(port, SCSPTR)->size && s->regtype != SCIx_RZV2H_SCIF_REGTYPE) {
953 		u16 status = sci_serial_in(port, SCSPTR);
954 
955 		/* RTS# is always output; and active low, unless autorts */
956 		status |= SCSPTR_RTSIO;
957 		if (!(port->mctrl & TIOCM_RTS))
958 			status |= SCSPTR_RTSDT;
959 		else if (!s->autorts)
960 			status &= ~SCSPTR_RTSDT;
961 		/* CTS# and SCK are inputs */
962 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
963 		sci_serial_out(port, SCSPTR, status);
964 	}
965 }
966 
967 static int sci_txfill(struct uart_port *port)
968 {
969 	struct sci_port *s = to_sci_port(port);
970 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
971 	const struct plat_sci_reg *reg;
972 
973 	reg = sci_getreg(port, SCTFDR);
974 	if (reg->size)
975 		return sci_serial_in(port, SCTFDR) & fifo_mask;
976 
977 	reg = sci_getreg(port, SCFDR);
978 	if (reg->size)
979 		return sci_serial_in(port, SCFDR) >> 8;
980 
981 	return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
982 }
983 
984 static int sci_txroom(struct uart_port *port)
985 {
986 	return port->fifosize - sci_txfill(port);
987 }
988 
989 static int sci_rxfill(struct uart_port *port)
990 {
991 	struct sci_port *s = to_sci_port(port);
992 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
993 	const struct plat_sci_reg *reg;
994 
995 	reg = sci_getreg(port, SCRFDR);
996 	if (reg->size)
997 		return sci_serial_in(port, SCRFDR) & fifo_mask;
998 
999 	reg = sci_getreg(port, SCFDR);
1000 	if (reg->size)
1001 		return sci_serial_in(port, SCFDR) & fifo_mask;
1002 
1003 	return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
1004 }
1005 
1006 /* ********************************************************************** *
1007  *                   the interrupt related routines                       *
1008  * ********************************************************************** */
1009 
1010 static void sci_transmit_chars(struct uart_port *port)
1011 {
1012 	struct tty_port *tport = &port->state->port;
1013 	unsigned int stopped = uart_tx_stopped(port);
1014 	struct sci_port *s = to_sci_port(port);
1015 	unsigned short status;
1016 	unsigned short ctrl;
1017 	int count;
1018 
1019 	status = sci_serial_in(port, SCxSR);
1020 	if (!(status & SCxSR_TDxE(port))) {
1021 		ctrl = sci_serial_in(port, SCSCR);
1022 		if (kfifo_is_empty(&tport->xmit_fifo))
1023 			ctrl &= ~SCSCR_TIE;
1024 		else
1025 			ctrl |= SCSCR_TIE;
1026 		sci_serial_out(port, SCSCR, ctrl);
1027 		return;
1028 	}
1029 
1030 	count = sci_txroom(port);
1031 
1032 	do {
1033 		unsigned char c;
1034 
1035 		if (port->x_char) {
1036 			c = port->x_char;
1037 			port->x_char = 0;
1038 		} else if (stopped || !kfifo_get(&tport->xmit_fifo, &c)) {
1039 			if (s->type == PORT_SCI &&
1040 			    kfifo_is_empty(&tport->xmit_fifo)) {
1041 				ctrl = sci_serial_in(port, SCSCR);
1042 				ctrl &= ~SCSCR_TE;
1043 				sci_serial_out(port, SCSCR, ctrl);
1044 				return;
1045 			}
1046 			break;
1047 		}
1048 
1049 		sci_serial_out(port, SCxTDR, c);
1050 		s->tx_occurred = true;
1051 
1052 		port->icount.tx++;
1053 	} while (--count > 0);
1054 
1055 	s->ops->clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
1056 
1057 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1058 		uart_write_wakeup(port);
1059 	if (kfifo_is_empty(&tport->xmit_fifo)) {
1060 		if (s->type == PORT_SCI) {
1061 			ctrl = sci_serial_in(port, SCSCR);
1062 			ctrl &= ~SCSCR_TIE;
1063 			ctrl |= SCSCR_TEIE;
1064 			sci_serial_out(port, SCSCR, ctrl);
1065 		}
1066 
1067 		sci_stop_tx(port);
1068 	}
1069 }
1070 
1071 static void sci_receive_chars(struct uart_port *port)
1072 {
1073 	struct tty_port *tport = &port->state->port;
1074 	struct sci_port *s = to_sci_port(port);
1075 	int i, count, copied = 0;
1076 	unsigned short status;
1077 	unsigned char flag;
1078 
1079 	status = sci_serial_in(port, SCxSR);
1080 	if (!(status & SCxSR_RDxF(port)))
1081 		return;
1082 
1083 	while (1) {
1084 		/* Don't copy more bytes than there is room for in the buffer */
1085 		count = tty_buffer_request_room(tport, sci_rxfill(port));
1086 
1087 		/* If for any reason we can't copy more data, we're done! */
1088 		if (count == 0)
1089 			break;
1090 
1091 		if (s->type == PORT_SCI) {
1092 			char c = sci_serial_in(port, SCxRDR);
1093 			if (uart_handle_sysrq_char(port, c))
1094 				count = 0;
1095 			else
1096 				tty_insert_flip_char(tport, c, TTY_NORMAL);
1097 		} else {
1098 			for (i = 0; i < count; i++) {
1099 				char c;
1100 
1101 				if (s->type == PORT_SCIF ||
1102 				    s->type == PORT_HSCIF) {
1103 					status = sci_serial_in(port, SCxSR);
1104 					c = sci_serial_in(port, SCxRDR);
1105 				} else {
1106 					c = sci_serial_in(port, SCxRDR);
1107 					status = sci_serial_in(port, SCxSR);
1108 				}
1109 				if (uart_handle_sysrq_char(port, c)) {
1110 					count--; i--;
1111 					continue;
1112 				}
1113 
1114 				/* Store data and status */
1115 				if (status & SCxSR_FER(port)) {
1116 					flag = TTY_FRAME;
1117 					port->icount.frame++;
1118 				} else if (status & SCxSR_PER(port)) {
1119 					flag = TTY_PARITY;
1120 					port->icount.parity++;
1121 				} else
1122 					flag = TTY_NORMAL;
1123 
1124 				tty_insert_flip_char(tport, c, flag);
1125 			}
1126 		}
1127 
1128 		sci_serial_in(port, SCxSR); /* dummy read */
1129 		s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1130 
1131 		copied += count;
1132 		port->icount.rx += count;
1133 	}
1134 
1135 	if (copied) {
1136 		/* Tell the rest of the system the news. New characters! */
1137 		tty_flip_buffer_push(tport);
1138 	} else {
1139 		/* TTY buffers full; read from RX reg to prevent lockup */
1140 		sci_serial_in(port, SCxRDR);
1141 		sci_serial_in(port, SCxSR); /* dummy read */
1142 		s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1143 	}
1144 }
1145 
1146 static int sci_handle_errors(struct uart_port *port)
1147 {
1148 	int copied = 0;
1149 	struct sci_port *s = to_sci_port(port);
1150 	const struct sci_common_regs *regs = s->params->common_regs;
1151 	unsigned int status = s->ops->read_reg(port, regs->status);
1152 	struct tty_port *tport = &port->state->port;
1153 
1154 	/* Handle overruns */
1155 	if (status & s->params->overrun_mask) {
1156 		port->icount.overrun++;
1157 
1158 		/* overrun error */
1159 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
1160 			copied++;
1161 	}
1162 
1163 	if (status & SCxSR_FER(port)) {
1164 		/* frame error */
1165 		port->icount.frame++;
1166 
1167 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1168 			copied++;
1169 	}
1170 
1171 	if (status & SCxSR_PER(port)) {
1172 		/* parity error */
1173 		port->icount.parity++;
1174 
1175 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1176 			copied++;
1177 	}
1178 
1179 	if (copied)
1180 		tty_flip_buffer_push(tport);
1181 
1182 	return copied;
1183 }
1184 
1185 static bool sci_is_rsci_type(u8 type)
1186 {
1187 	return (type == RSCI_PORT_SCIF16 || type == RSCI_PORT_SCIF32);
1188 }
1189 
1190 static int sci_handle_fifo_overrun(struct uart_port *port)
1191 {
1192 	struct tty_port *tport = &port->state->port;
1193 	struct sci_port *s = to_sci_port(port);
1194 	const struct plat_sci_reg *reg;
1195 	int copied = 0;
1196 	u32 status;
1197 
1198 	if (!sci_is_rsci_type(s->type)) {
1199 		reg = sci_getreg(port, s->params->overrun_reg);
1200 		if (!reg->size)
1201 			return 0;
1202 	}
1203 
1204 	status = s->ops->read_reg(port, s->params->overrun_reg);
1205 	if (status & s->params->overrun_mask) {
1206 		if (sci_is_rsci_type(s->type)) {
1207 			/*
1208 			 * All of the CFCLR_*C clearing bits match the corresponding
1209 			 * CSR_*status bits. So, reuse the overrun mask for clearing.
1210 			 */
1211 			s->ops->clear_SCxSR(port, s->params->overrun_mask);
1212 		} else {
1213 			status &= ~s->params->overrun_mask;
1214 			s->ops->write_reg(port, s->params->overrun_reg, status);
1215 		}
1216 
1217 		port->icount.overrun++;
1218 
1219 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1220 		tty_flip_buffer_push(tport);
1221 		copied++;
1222 	}
1223 
1224 	return copied;
1225 }
1226 
1227 static int sci_handle_breaks(struct uart_port *port)
1228 {
1229 	int copied = 0;
1230 	unsigned short status = sci_serial_in(port, SCxSR);
1231 	struct tty_port *tport = &port->state->port;
1232 
1233 	if (uart_handle_break(port))
1234 		return 0;
1235 
1236 	if (status & SCxSR_BRK(port)) {
1237 		port->icount.brk++;
1238 
1239 		/* Notify of BREAK */
1240 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1241 			copied++;
1242 	}
1243 
1244 	if (copied)
1245 		tty_flip_buffer_push(tport);
1246 
1247 	copied += sci_handle_fifo_overrun(port);
1248 
1249 	return copied;
1250 }
1251 
1252 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1253 {
1254 	struct sci_port *s = to_sci_port(port);
1255 	unsigned int bits;
1256 
1257 	if (rx_trig >= port->fifosize)
1258 		rx_trig = port->fifosize - 1;
1259 	if (rx_trig < 1)
1260 		rx_trig = 1;
1261 
1262 	/* HSCIF can be set to an arbitrary level. */
1263 	if (sci_getreg(port, HSRTRGR)->size) {
1264 		sci_serial_out(port, HSRTRGR, rx_trig);
1265 		return rx_trig;
1266 	}
1267 
1268 	switch (s->type) {
1269 	case PORT_SCIF:
1270 		if (rx_trig < 4) {
1271 			bits = 0;
1272 			rx_trig = 1;
1273 		} else if (rx_trig < 8) {
1274 			bits = SCFCR_RTRG0;
1275 			rx_trig = 4;
1276 		} else if (rx_trig < 14) {
1277 			bits = SCFCR_RTRG1;
1278 			rx_trig = 8;
1279 		} else {
1280 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1281 			rx_trig = 14;
1282 		}
1283 		break;
1284 	case PORT_SCIFA:
1285 	case PORT_SCIFB:
1286 		if (rx_trig < 16) {
1287 			bits = 0;
1288 			rx_trig = 1;
1289 		} else if (rx_trig < 32) {
1290 			bits = SCFCR_RTRG0;
1291 			rx_trig = 16;
1292 		} else if (rx_trig < 48) {
1293 			bits = SCFCR_RTRG1;
1294 			rx_trig = 32;
1295 		} else {
1296 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1297 			rx_trig = 48;
1298 		}
1299 		break;
1300 	default:
1301 		WARN(1, "unknown FIFO configuration");
1302 		return 1;
1303 	}
1304 
1305 	sci_serial_out(port, SCFCR,
1306 		       (sci_serial_in(port, SCFCR) &
1307 			~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1308 
1309 	return rx_trig;
1310 }
1311 
1312 static int scif_rtrg_enabled(struct uart_port *port)
1313 {
1314 	if (sci_getreg(port, HSRTRGR)->size)
1315 		return sci_serial_in(port, HSRTRGR) != 0;
1316 	else
1317 		return (sci_serial_in(port, SCFCR) &
1318 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1319 }
1320 
1321 static void rx_fifo_timer_fn(struct timer_list *t)
1322 {
1323 	struct sci_port *s = timer_container_of(s, t, rx_fifo_timer);
1324 	struct uart_port *port = &s->port;
1325 
1326 	dev_dbg(port->dev, "Rx timed out\n");
1327 	s->ops->set_rtrg(port, 1);
1328 }
1329 
1330 static ssize_t rx_fifo_trigger_show(struct device *dev,
1331 				    struct device_attribute *attr, char *buf)
1332 {
1333 	struct uart_port *port = dev_get_drvdata(dev);
1334 	struct sci_port *sci = to_sci_port(port);
1335 
1336 	return sprintf(buf, "%d\n", sci->rx_trigger);
1337 }
1338 
1339 static ssize_t rx_fifo_trigger_store(struct device *dev,
1340 				     struct device_attribute *attr,
1341 				     const char *buf, size_t count)
1342 {
1343 	struct uart_port *port = dev_get_drvdata(dev);
1344 	struct sci_port *sci = to_sci_port(port);
1345 	int ret;
1346 	long r;
1347 
1348 	ret = kstrtol(buf, 0, &r);
1349 	if (ret)
1350 		return ret;
1351 
1352 	sci->rx_trigger = sci->ops->set_rtrg(port, r);
1353 	if (sci->type == PORT_SCIFA || sci->type == PORT_SCIFB)
1354 		sci->ops->set_rtrg(port, 1);
1355 
1356 	return count;
1357 }
1358 
1359 static DEVICE_ATTR_RW(rx_fifo_trigger);
1360 
1361 static ssize_t rx_fifo_timeout_show(struct device *dev,
1362 			       struct device_attribute *attr,
1363 			       char *buf)
1364 {
1365 	struct uart_port *port = dev_get_drvdata(dev);
1366 	struct sci_port *sci = to_sci_port(port);
1367 	int v;
1368 
1369 	if (sci->type == PORT_HSCIF)
1370 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1371 	else
1372 		v = sci->rx_fifo_timeout;
1373 
1374 	return sprintf(buf, "%d\n", v);
1375 }
1376 
1377 static ssize_t rx_fifo_timeout_store(struct device *dev,
1378 				struct device_attribute *attr,
1379 				const char *buf,
1380 				size_t count)
1381 {
1382 	struct uart_port *port = dev_get_drvdata(dev);
1383 	struct sci_port *sci = to_sci_port(port);
1384 	int ret;
1385 	long r;
1386 
1387 	ret = kstrtol(buf, 0, &r);
1388 	if (ret)
1389 		return ret;
1390 
1391 	if (sci->type == PORT_HSCIF) {
1392 		if (r < 0 || r > 3)
1393 			return -EINVAL;
1394 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1395 	} else {
1396 		sci->rx_fifo_timeout = r;
1397 		sci->ops->set_rtrg(port, 1);
1398 		if (r > 0)
1399 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1400 	}
1401 
1402 	return count;
1403 }
1404 
1405 static DEVICE_ATTR_RW(rx_fifo_timeout);
1406 
1407 
1408 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1409 static void sci_dma_tx_complete(void *arg)
1410 {
1411 	struct sci_port *s = arg;
1412 	struct uart_port *port = &s->port;
1413 	struct tty_port *tport = &port->state->port;
1414 	unsigned long flags;
1415 
1416 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1417 
1418 	uart_port_lock_irqsave(port, &flags);
1419 
1420 	uart_xmit_advance(port, s->tx_dma_len);
1421 
1422 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1423 		uart_write_wakeup(port);
1424 
1425 	s->tx_occurred = true;
1426 
1427 	if (!kfifo_is_empty(&tport->xmit_fifo)) {
1428 		s->cookie_tx = 0;
1429 		schedule_work(&s->work_tx);
1430 	} else {
1431 		s->cookie_tx = -EINVAL;
1432 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1433 		    s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1434 			u16 ctrl = sci_serial_in(port, SCSCR);
1435 			sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1436 			if (s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1437 				/* Switch irq from DMA to SCIF */
1438 				dmaengine_pause(s->chan_tx_saved);
1439 				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1440 			}
1441 		}
1442 	}
1443 
1444 	uart_port_unlock_irqrestore(port, flags);
1445 }
1446 
1447 /* Locking: called with port lock held */
1448 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1449 {
1450 	struct uart_port *port = &s->port;
1451 	struct tty_port *tport = &port->state->port;
1452 	int copied;
1453 
1454 	copied = tty_insert_flip_string(tport, buf, count);
1455 	if (copied < count)
1456 		port->icount.buf_overrun++;
1457 
1458 	port->icount.rx += copied;
1459 
1460 	return copied;
1461 }
1462 
1463 static int sci_dma_rx_find_active(struct sci_port *s)
1464 {
1465 	unsigned int i;
1466 
1467 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1468 		if (s->active_rx == s->cookie_rx[i])
1469 			return i;
1470 
1471 	return -1;
1472 }
1473 
1474 /* Must only be called with uart_port_lock taken */
1475 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1476 {
1477 	unsigned int i;
1478 
1479 	s->chan_rx = NULL;
1480 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1481 		s->cookie_rx[i] = -EINVAL;
1482 	s->active_rx = 0;
1483 }
1484 
1485 static void sci_dma_rx_release(struct sci_port *s)
1486 {
1487 	struct dma_chan *chan = s->chan_rx_saved;
1488 	struct uart_port *port = &s->port;
1489 	unsigned long flags;
1490 
1491 	uart_port_lock_irqsave(port, &flags);
1492 	s->chan_rx_saved = NULL;
1493 	sci_dma_rx_chan_invalidate(s);
1494 	uart_port_unlock_irqrestore(port, flags);
1495 
1496 	dmaengine_terminate_sync(chan);
1497 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1498 			  sg_dma_address(&s->sg_rx[0]));
1499 	dma_release_channel(chan);
1500 }
1501 
1502 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1503 {
1504 	long sec = usec / 1000000;
1505 	long nsec = (usec % 1000000) * 1000;
1506 	ktime_t t = ktime_set(sec, nsec);
1507 
1508 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1509 }
1510 
1511 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1512 {
1513 	struct uart_port *port = &s->port;
1514 	u16 scr;
1515 
1516 	/* Direct new serial port interrupts back to CPU */
1517 	scr = sci_serial_in(port, SCSCR);
1518 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1519 	    s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1520 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1521 		if (s->regtype == SCIx_RZ_SCIFA_REGTYPE)
1522 			s->ops->set_rtrg(port, s->rx_trigger);
1523 		else
1524 			scr &= ~SCSCR_RDRQE;
1525 	}
1526 	sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
1527 }
1528 
1529 static void sci_dma_rx_complete(void *arg)
1530 {
1531 	struct sci_port *s = arg;
1532 	struct dma_chan *chan = s->chan_rx;
1533 	struct uart_port *port = &s->port;
1534 	struct dma_async_tx_descriptor *desc;
1535 	unsigned long flags;
1536 	int active, count = 0;
1537 
1538 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1539 		s->active_rx);
1540 
1541 	hrtimer_cancel(&s->rx_timer);
1542 
1543 	uart_port_lock_irqsave(port, &flags);
1544 
1545 	active = sci_dma_rx_find_active(s);
1546 	if (active >= 0)
1547 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1548 
1549 	if (count)
1550 		tty_flip_buffer_push(&port->state->port);
1551 
1552 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1553 				       DMA_DEV_TO_MEM,
1554 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1555 	if (!desc)
1556 		goto fail;
1557 
1558 	desc->callback = sci_dma_rx_complete;
1559 	desc->callback_param = s;
1560 	s->cookie_rx[active] = dmaengine_submit(desc);
1561 	if (dma_submit_error(s->cookie_rx[active]))
1562 		goto fail;
1563 
1564 	s->active_rx = s->cookie_rx[!active];
1565 
1566 	dma_async_issue_pending(chan);
1567 
1568 	uart_port_unlock_irqrestore(port, flags);
1569 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1570 		__func__, s->cookie_rx[active], active, s->active_rx);
1571 
1572 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1573 
1574 	return;
1575 
1576 fail:
1577 	/* Switch to PIO */
1578 	dmaengine_terminate_async(chan);
1579 	sci_dma_rx_chan_invalidate(s);
1580 	sci_dma_rx_reenable_irq(s);
1581 	uart_port_unlock_irqrestore(port, flags);
1582 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1583 }
1584 
1585 static void sci_dma_tx_release(struct sci_port *s)
1586 {
1587 	struct dma_chan *chan = s->chan_tx_saved;
1588 
1589 	cancel_work_sync(&s->work_tx);
1590 	s->chan_tx_saved = s->chan_tx = NULL;
1591 	s->cookie_tx = -EINVAL;
1592 	dmaengine_terminate_sync(chan);
1593 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1594 			 DMA_TO_DEVICE);
1595 	dma_release_channel(chan);
1596 }
1597 
1598 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1599 {
1600 	struct dma_chan *chan = s->chan_rx;
1601 	struct uart_port *port = &s->port;
1602 	unsigned long flags;
1603 	int i;
1604 
1605 	for (i = 0; i < 2; i++) {
1606 		struct scatterlist *sg = &s->sg_rx[i];
1607 		struct dma_async_tx_descriptor *desc;
1608 
1609 		desc = dmaengine_prep_slave_sg(chan,
1610 			sg, 1, DMA_DEV_TO_MEM,
1611 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1612 		if (!desc)
1613 			goto fail;
1614 
1615 		desc->callback = sci_dma_rx_complete;
1616 		desc->callback_param = s;
1617 		s->cookie_rx[i] = dmaengine_submit(desc);
1618 		if (dma_submit_error(s->cookie_rx[i]))
1619 			goto fail;
1620 
1621 	}
1622 
1623 	s->active_rx = s->cookie_rx[0];
1624 
1625 	dma_async_issue_pending(chan);
1626 	return 0;
1627 
1628 fail:
1629 	/* Switch to PIO */
1630 	if (!port_lock_held)
1631 		uart_port_lock_irqsave(port, &flags);
1632 	if (i)
1633 		dmaengine_terminate_async(chan);
1634 	sci_dma_rx_chan_invalidate(s);
1635 	sci_start_rx(port);
1636 	if (!port_lock_held)
1637 		uart_port_unlock_irqrestore(port, flags);
1638 	return -EAGAIN;
1639 }
1640 
1641 static void sci_dma_tx_work_fn(struct work_struct *work)
1642 {
1643 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1644 	struct dma_async_tx_descriptor *desc;
1645 	struct dma_chan *chan = s->chan_tx;
1646 	struct uart_port *port = &s->port;
1647 	struct tty_port *tport = &port->state->port;
1648 	unsigned long flags;
1649 	unsigned int tail;
1650 	dma_addr_t buf;
1651 
1652 	/*
1653 	 * DMA is idle now.
1654 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1655 	 * offsets and lengths. Since it is a circular buffer, we have to
1656 	 * transmit till the end, and then the rest. Take the port lock to get a
1657 	 * consistent xmit buffer state.
1658 	 */
1659 	uart_port_lock_irq(port);
1660 	s->tx_dma_len = kfifo_out_linear(&tport->xmit_fifo, &tail,
1661 			UART_XMIT_SIZE);
1662 	buf = s->tx_dma_addr + tail;
1663 	if (!s->tx_dma_len) {
1664 		/* Transmit buffer has been flushed */
1665 		uart_port_unlock_irq(port);
1666 		return;
1667 	}
1668 
1669 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1670 					   DMA_MEM_TO_DEV,
1671 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1672 	if (!desc) {
1673 		uart_port_unlock_irq(port);
1674 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1675 		goto switch_to_pio;
1676 	}
1677 
1678 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1679 				   DMA_TO_DEVICE);
1680 
1681 	desc->callback = sci_dma_tx_complete;
1682 	desc->callback_param = s;
1683 	s->cookie_tx = dmaengine_submit(desc);
1684 	if (dma_submit_error(s->cookie_tx)) {
1685 		uart_port_unlock_irq(port);
1686 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1687 		goto switch_to_pio;
1688 	}
1689 
1690 	uart_port_unlock_irq(port);
1691 	dev_dbg(port->dev, "%s: %p: %u, cookie %d\n",
1692 		__func__, tport->xmit_buf, tail, s->cookie_tx);
1693 
1694 	dma_async_issue_pending(chan);
1695 	return;
1696 
1697 switch_to_pio:
1698 	uart_port_lock_irqsave(port, &flags);
1699 	s->chan_tx = NULL;
1700 	sci_start_tx(port);
1701 	uart_port_unlock_irqrestore(port, flags);
1702 	return;
1703 }
1704 
1705 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1706 {
1707 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1708 	struct dma_chan *chan = s->chan_rx;
1709 	struct uart_port *port = &s->port;
1710 	struct dma_tx_state state;
1711 	enum dma_status status;
1712 	unsigned long flags;
1713 	unsigned int read;
1714 	int active, count;
1715 
1716 	dev_dbg(port->dev, "DMA Rx timed out\n");
1717 
1718 	uart_port_lock_irqsave(port, &flags);
1719 
1720 	active = sci_dma_rx_find_active(s);
1721 	if (active < 0) {
1722 		uart_port_unlock_irqrestore(port, flags);
1723 		return HRTIMER_NORESTART;
1724 	}
1725 
1726 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1727 	if (status == DMA_COMPLETE) {
1728 		uart_port_unlock_irqrestore(port, flags);
1729 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1730 			s->active_rx, active);
1731 
1732 		/* Let packet complete handler take care of the packet */
1733 		return HRTIMER_NORESTART;
1734 	}
1735 
1736 	dmaengine_pause(chan);
1737 
1738 	/*
1739 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1740 	 * data keeps on coming until transaction is complete so check
1741 	 * for DMA_COMPLETE again
1742 	 * Let packet complete handler take care of the packet
1743 	 */
1744 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1745 	if (status == DMA_COMPLETE) {
1746 		uart_port_unlock_irqrestore(port, flags);
1747 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1748 		return HRTIMER_NORESTART;
1749 	}
1750 
1751 	/* Handle incomplete DMA receive */
1752 	dmaengine_terminate_async(s->chan_rx);
1753 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1754 
1755 	if (read) {
1756 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1757 		if (count)
1758 			tty_flip_buffer_push(&port->state->port);
1759 	}
1760 
1761 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1762 	    s->regtype == SCIx_RZ_SCIFA_REGTYPE)
1763 		sci_dma_rx_submit(s, true);
1764 
1765 	sci_dma_rx_reenable_irq(s);
1766 
1767 	uart_port_unlock_irqrestore(port, flags);
1768 
1769 	return HRTIMER_NORESTART;
1770 }
1771 
1772 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1773 					     enum dma_transfer_direction dir)
1774 {
1775 	struct dma_chan *chan;
1776 	struct dma_slave_config cfg;
1777 	int ret;
1778 
1779 	chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1780 	if (IS_ERR(chan)) {
1781 		dev_dbg(port->dev, "dma_request_chan failed\n");
1782 		return NULL;
1783 	}
1784 
1785 	memset(&cfg, 0, sizeof(cfg));
1786 	cfg.direction = dir;
1787 	cfg.dst_addr = port->mapbase +
1788 		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1789 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1790 	cfg.src_addr = port->mapbase +
1791 		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1792 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1793 
1794 	ret = dmaengine_slave_config(chan, &cfg);
1795 	if (ret) {
1796 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1797 		dma_release_channel(chan);
1798 		return NULL;
1799 	}
1800 
1801 	return chan;
1802 }
1803 
1804 static void sci_request_dma(struct uart_port *port)
1805 {
1806 	struct sci_port *s = to_sci_port(port);
1807 	struct tty_port *tport = &port->state->port;
1808 	struct dma_chan *chan;
1809 
1810 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1811 
1812 	/*
1813 	 * DMA on console may interfere with Kernel log messages which use
1814 	 * plain putchar(). So, simply don't use it with a console.
1815 	 */
1816 	if (uart_console(port))
1817 		return;
1818 
1819 	if (!port->dev->of_node)
1820 		return;
1821 
1822 	s->cookie_tx = -EINVAL;
1823 
1824 	/*
1825 	 * Don't request a dma channel if no channel was specified
1826 	 * in the device tree.
1827 	 */
1828 	if (!of_property_present(port->dev->of_node, "dmas"))
1829 		return;
1830 
1831 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1832 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1833 	if (chan) {
1834 		/* UART circular tx buffer is an aligned page. */
1835 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1836 						tport->xmit_buf,
1837 						UART_XMIT_SIZE,
1838 						DMA_TO_DEVICE);
1839 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1840 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1841 			dma_release_channel(chan);
1842 		} else {
1843 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1844 				__func__, UART_XMIT_SIZE,
1845 				tport->xmit_buf, &s->tx_dma_addr);
1846 
1847 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1848 			s->chan_tx_saved = s->chan_tx = chan;
1849 		}
1850 	}
1851 
1852 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1853 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1854 	if (chan) {
1855 		unsigned int i;
1856 		dma_addr_t dma;
1857 		void *buf;
1858 
1859 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1860 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1861 					 &dma, GFP_KERNEL);
1862 		if (!buf) {
1863 			dev_warn(port->dev,
1864 				 "Failed to allocate Rx dma buffer, using PIO\n");
1865 			dma_release_channel(chan);
1866 			return;
1867 		}
1868 
1869 		for (i = 0; i < 2; i++) {
1870 			struct scatterlist *sg = &s->sg_rx[i];
1871 
1872 			sg_init_table(sg, 1);
1873 			s->rx_buf[i] = buf;
1874 			sg_dma_address(sg) = dma;
1875 			sg_dma_len(sg) = s->buf_len_rx;
1876 
1877 			buf += s->buf_len_rx;
1878 			dma += s->buf_len_rx;
1879 		}
1880 
1881 		hrtimer_setup(&s->rx_timer, sci_dma_rx_timer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1882 
1883 		s->chan_rx_saved = s->chan_rx = chan;
1884 
1885 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1886 		    s->regtype == SCIx_RZ_SCIFA_REGTYPE)
1887 			sci_dma_rx_submit(s, false);
1888 	}
1889 }
1890 
1891 static void sci_free_dma(struct uart_port *port)
1892 {
1893 	struct sci_port *s = to_sci_port(port);
1894 
1895 	if (s->chan_tx_saved)
1896 		sci_dma_tx_release(s);
1897 	if (s->chan_rx_saved)
1898 		sci_dma_rx_release(s);
1899 }
1900 
1901 static void sci_flush_buffer(struct uart_port *port)
1902 {
1903 	struct sci_port *s = to_sci_port(port);
1904 
1905 	/*
1906 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1907 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1908 	 * pending transfers
1909 	 */
1910 	s->tx_dma_len = 0;
1911 	if (s->chan_tx) {
1912 		dmaengine_terminate_async(s->chan_tx);
1913 		s->cookie_tx = -EINVAL;
1914 	}
1915 }
1916 
1917 static void sci_dma_check_tx_occurred(struct sci_port *s)
1918 {
1919 	struct dma_tx_state state;
1920 	enum dma_status status;
1921 
1922 	if (!s->chan_tx || s->cookie_tx <= 0)
1923 		return;
1924 
1925 	status = dmaengine_tx_status(s->chan_tx, s->cookie_tx, &state);
1926 	if (status == DMA_COMPLETE || status == DMA_IN_PROGRESS)
1927 		s->tx_occurred = true;
1928 }
1929 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1930 static inline void sci_request_dma(struct uart_port *port)
1931 {
1932 }
1933 
1934 static inline void sci_free_dma(struct uart_port *port)
1935 {
1936 }
1937 
1938 static void sci_dma_check_tx_occurred(struct sci_port *s)
1939 {
1940 }
1941 
1942 #define sci_flush_buffer	NULL
1943 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1944 
1945 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1946 {
1947 	struct uart_port *port = ptr;
1948 	struct sci_port *s = to_sci_port(port);
1949 
1950 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1951 	if (s->chan_rx) {
1952 		u16 scr = sci_serial_in(port, SCSCR);
1953 		u16 ssr = sci_serial_in(port, SCxSR);
1954 
1955 		/* Disable future Rx interrupts */
1956 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1957 		    s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1958 			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1959 			if (s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1960 				s->ops->set_rtrg(port, 1);
1961 				scr |= SCSCR_RIE;
1962 			} else {
1963 				scr |= SCSCR_RDRQE;
1964 			}
1965 		} else {
1966 			if (sci_dma_rx_submit(s, false) < 0)
1967 				goto handle_pio;
1968 
1969 			scr &= ~SCSCR_RIE;
1970 		}
1971 		sci_serial_out(port, SCSCR, scr);
1972 		/* Clear current interrupt */
1973 		sci_serial_out(port, SCxSR,
1974 			       ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1975 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1976 			jiffies, s->rx_timeout);
1977 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1978 
1979 		return IRQ_HANDLED;
1980 	}
1981 
1982 handle_pio:
1983 #endif
1984 
1985 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1986 		if (!s->ops->rtrg_enabled(port))
1987 			s->ops->set_rtrg(port, s->rx_trigger);
1988 
1989 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1990 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1991 	}
1992 
1993 	/* I think sci_receive_chars has to be called irrespective
1994 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1995 	 * to be disabled?
1996 	 */
1997 	s->ops->receive_chars(port);
1998 
1999 	return IRQ_HANDLED;
2000 }
2001 
2002 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
2003 {
2004 	struct uart_port *port = ptr;
2005 	unsigned long flags;
2006 	struct sci_port *s = to_sci_port(port);
2007 
2008 	uart_port_lock_irqsave(port, &flags);
2009 	s->ops->transmit_chars(port);
2010 	uart_port_unlock_irqrestore(port, flags);
2011 
2012 	return IRQ_HANDLED;
2013 }
2014 
2015 static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
2016 {
2017 	struct uart_port *port = ptr;
2018 	struct sci_port *s = to_sci_port(port);
2019 	const struct sci_common_regs *regs = s->params->common_regs;
2020 	unsigned long flags;
2021 	u32 ctrl;
2022 
2023 	if (s->type != PORT_SCI && !sci_is_rsci_type(s->type))
2024 		return sci_tx_interrupt(irq, ptr);
2025 
2026 	uart_port_lock_irqsave(port, &flags);
2027 	ctrl = s->ops->read_reg(port, regs->control) &
2028 		~(s->params->param_bits->te_clear);
2029 	s->ops->write_reg(port, regs->control, ctrl);
2030 	uart_port_unlock_irqrestore(port, flags);
2031 
2032 	return IRQ_HANDLED;
2033 }
2034 
2035 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
2036 {
2037 	struct uart_port *port = ptr;
2038 	struct sci_port *s = to_sci_port(port);
2039 
2040 	/* Handle BREAKs */
2041 	sci_handle_breaks(port);
2042 
2043 	/* drop invalid character received before break was detected */
2044 	sci_serial_in(port, SCxRDR);
2045 
2046 	s->ops->clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
2047 
2048 	return IRQ_HANDLED;
2049 }
2050 
2051 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
2052 {
2053 	struct uart_port *port = ptr;
2054 	struct sci_port *s = to_sci_port(port);
2055 
2056 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
2057 		/* Break and Error interrupts are muxed */
2058 		unsigned short ssr_status = sci_serial_in(port, SCxSR);
2059 
2060 		/* Break Interrupt */
2061 		if (ssr_status & SCxSR_BRK(port))
2062 			sci_br_interrupt(irq, ptr);
2063 
2064 		/* Break only? */
2065 		if (!(ssr_status & SCxSR_ERRORS(port)))
2066 			return IRQ_HANDLED;
2067 	}
2068 
2069 	/* Handle errors */
2070 	if (s->type == PORT_SCI) {
2071 		if (sci_handle_errors(port)) {
2072 			/* discard character in rx buffer */
2073 			sci_serial_in(port, SCxSR);
2074 			s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
2075 		}
2076 	} else {
2077 		sci_handle_fifo_overrun(port);
2078 		if (!s->chan_rx)
2079 			s->ops->receive_chars(port);
2080 	}
2081 
2082 	s->ops->clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
2083 
2084 	/* Kick the transmission */
2085 	if (!s->chan_tx)
2086 		sci_tx_interrupt(irq, ptr);
2087 
2088 	return IRQ_HANDLED;
2089 }
2090 
2091 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
2092 {
2093 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
2094 	struct uart_port *port = ptr;
2095 	struct sci_port *s = to_sci_port(port);
2096 	irqreturn_t ret = IRQ_NONE;
2097 
2098 	ssr_status = sci_serial_in(port, SCxSR);
2099 	scr_status = sci_serial_in(port, SCSCR);
2100 	if (s->params->overrun_reg == SCxSR)
2101 		orer_status = ssr_status;
2102 	else if (sci_getreg(port, s->params->overrun_reg)->size)
2103 		orer_status = sci_serial_in(port, s->params->overrun_reg);
2104 
2105 	err_enabled = scr_status & port_rx_irq_mask(port);
2106 
2107 	/* Tx Interrupt */
2108 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
2109 	    !s->chan_tx)
2110 		ret = sci_tx_interrupt(irq, ptr);
2111 
2112 	/*
2113 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
2114 	 * DR flags
2115 	 */
2116 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
2117 	    (scr_status & SCSCR_RIE))
2118 		ret = sci_rx_interrupt(irq, ptr);
2119 
2120 	/* Error Interrupt */
2121 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
2122 		ret = sci_er_interrupt(irq, ptr);
2123 
2124 	/* Break Interrupt */
2125 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
2126 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
2127 		ret = sci_br_interrupt(irq, ptr);
2128 
2129 	/* Overrun Interrupt */
2130 	if (orer_status & s->params->overrun_mask) {
2131 		sci_handle_fifo_overrun(port);
2132 		ret = IRQ_HANDLED;
2133 	}
2134 
2135 	return ret;
2136 }
2137 
2138 static const struct sci_irq_desc {
2139 	const char	*desc;
2140 	irq_handler_t	handler;
2141 } sci_irq_desc[] = {
2142 	/*
2143 	 * Split out handlers, the default case.
2144 	 */
2145 	[SCIx_ERI_IRQ] = {
2146 		.desc = "rx err",
2147 		.handler = sci_er_interrupt,
2148 	},
2149 
2150 	[SCIx_RXI_IRQ] = {
2151 		.desc = "rx full",
2152 		.handler = sci_rx_interrupt,
2153 	},
2154 
2155 	[SCIx_TXI_IRQ] = {
2156 		.desc = "tx empty",
2157 		.handler = sci_tx_interrupt,
2158 	},
2159 
2160 	[SCIx_BRI_IRQ] = {
2161 		.desc = "break",
2162 		.handler = sci_br_interrupt,
2163 	},
2164 
2165 	[SCIx_DRI_IRQ] = {
2166 		.desc = "rx ready",
2167 		.handler = sci_rx_interrupt,
2168 	},
2169 
2170 	[SCIx_TEI_IRQ] = {
2171 		.desc = "tx end",
2172 		.handler = sci_tx_end_interrupt,
2173 	},
2174 
2175 	/*
2176 	 * Special muxed handler.
2177 	 */
2178 	[SCIx_MUX_IRQ] = {
2179 		.desc = "mux",
2180 		.handler = sci_mpxed_interrupt,
2181 	},
2182 };
2183 
2184 static int sci_request_irq(struct sci_port *port)
2185 {
2186 	struct uart_port *up = &port->port;
2187 	int i, j, w, ret = 0;
2188 
2189 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
2190 		const struct sci_irq_desc *desc;
2191 		int irq;
2192 
2193 		/* Check if already registered (muxed) */
2194 		for (w = 0; w < i; w++)
2195 			if (port->irqs[w] == port->irqs[i])
2196 				w = i + 1;
2197 		if (w > i)
2198 			continue;
2199 
2200 		if (SCIx_IRQ_IS_MUXED(port)) {
2201 			i = SCIx_MUX_IRQ;
2202 			irq = up->irq;
2203 		} else {
2204 			irq = port->irqs[i];
2205 
2206 			/*
2207 			 * Certain port types won't support all of the
2208 			 * available interrupt sources.
2209 			 */
2210 			if (unlikely(irq < 0))
2211 				continue;
2212 		}
2213 
2214 		desc = sci_irq_desc + i;
2215 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
2216 					    dev_name(up->dev), desc->desc);
2217 		if (!port->irqstr[j]) {
2218 			ret = -ENOMEM;
2219 			goto out_nomem;
2220 		}
2221 
2222 		ret = request_irq(irq, desc->handler, up->irqflags,
2223 				  port->irqstr[j], port);
2224 		if (unlikely(ret)) {
2225 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
2226 			goto out_noirq;
2227 		}
2228 	}
2229 
2230 	return 0;
2231 
2232 out_noirq:
2233 	while (--i >= 0)
2234 		free_irq(port->irqs[i], port);
2235 
2236 out_nomem:
2237 	while (--j >= 0)
2238 		kfree(port->irqstr[j]);
2239 
2240 	return ret;
2241 }
2242 
2243 static void sci_free_irq(struct sci_port *port)
2244 {
2245 	int i, j;
2246 
2247 	/*
2248 	 * Intentionally in reverse order so we iterate over the muxed
2249 	 * IRQ first.
2250 	 */
2251 	for (i = 0; i < SCIx_NR_IRQS; i++) {
2252 		int irq = port->irqs[i];
2253 
2254 		/*
2255 		 * Certain port types won't support all of the available
2256 		 * interrupt sources.
2257 		 */
2258 		if (unlikely(irq < 0))
2259 			continue;
2260 
2261 		/* Check if already freed (irq was muxed) */
2262 		for (j = 0; j < i; j++)
2263 			if (port->irqs[j] == irq)
2264 				j = i + 1;
2265 		if (j > i)
2266 			continue;
2267 
2268 		free_irq(port->irqs[i], port);
2269 		kfree(port->irqstr[i]);
2270 
2271 		if (SCIx_IRQ_IS_MUXED(port)) {
2272 			/* If there's only one IRQ, we're done. */
2273 			return;
2274 		}
2275 	}
2276 }
2277 
2278 static unsigned int sci_tx_empty(struct uart_port *port)
2279 {
2280 	unsigned short status = sci_serial_in(port, SCxSR);
2281 	unsigned short in_tx_fifo = sci_txfill(port);
2282 	struct sci_port *s = to_sci_port(port);
2283 
2284 	sci_dma_check_tx_occurred(s);
2285 
2286 	if (!s->tx_occurred)
2287 		return TIOCSER_TEMT;
2288 
2289 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2290 }
2291 
2292 static void sci_set_rts(struct uart_port *port, bool state)
2293 {
2294 	struct sci_port *s = to_sci_port(port);
2295 
2296 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
2297 		u16 data = sci_serial_in(port, SCPDR);
2298 
2299 		/* Active low */
2300 		if (state)
2301 			data &= ~SCPDR_RTSD;
2302 		else
2303 			data |= SCPDR_RTSD;
2304 		sci_serial_out(port, SCPDR, data);
2305 
2306 		/* RTS# is output */
2307 		sci_serial_out(port, SCPCR,
2308 			       sci_serial_in(port, SCPCR) | SCPCR_RTSC);
2309 	} else if (sci_getreg(port, SCSPTR)->size) {
2310 		u16 ctrl = sci_serial_in(port, SCSPTR);
2311 
2312 		/* Active low */
2313 		if (state)
2314 			ctrl &= ~SCSPTR_RTSDT;
2315 		else
2316 			ctrl |= SCSPTR_RTSDT;
2317 		sci_serial_out(port, SCSPTR, ctrl);
2318 	}
2319 }
2320 
2321 static bool sci_get_cts(struct uart_port *port)
2322 {
2323 	struct sci_port *s = to_sci_port(port);
2324 
2325 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
2326 		/* Active low */
2327 		return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
2328 	} else if (sci_getreg(port, SCSPTR)->size) {
2329 		/* Active low */
2330 		return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
2331 	}
2332 
2333 	return true;
2334 }
2335 
2336 /*
2337  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2338  * CTS/RTS is supported in hardware by at least one port and controlled
2339  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2340  * handled via the ->init_pins() op, which is a bit of a one-way street,
2341  * lacking any ability to defer pin control -- this will later be
2342  * converted over to the GPIO framework).
2343  *
2344  * Other modes (such as loopback) are supported generically on certain
2345  * port types, but not others. For these it's sufficient to test for the
2346  * existence of the support register and simply ignore the port type.
2347  */
2348 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2349 {
2350 	struct sci_port *s = to_sci_port(port);
2351 
2352 	if (mctrl & TIOCM_LOOP) {
2353 		const struct plat_sci_reg *reg;
2354 
2355 		/*
2356 		 * Standard loopback mode for SCFCR ports.
2357 		 */
2358 		reg = sci_getreg(port, SCFCR);
2359 		if (reg->size)
2360 			sci_serial_out(port, SCFCR,
2361 				       sci_serial_in(port, SCFCR) | SCFCR_LOOP);
2362 	}
2363 
2364 	mctrl_gpio_set(s->gpios, mctrl);
2365 
2366 	if (!s->has_rtscts)
2367 		return;
2368 
2369 	if (!(mctrl & TIOCM_RTS)) {
2370 		/* Disable Auto RTS */
2371 		if (s->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2372 			sci_serial_out(port, SCFCR,
2373 				       sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
2374 
2375 		/* Clear RTS */
2376 		sci_set_rts(port, 0);
2377 	} else if (s->autorts) {
2378 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
2379 			/* Enable RTS# pin function */
2380 			sci_serial_out(port, SCPCR,
2381 				sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
2382 		}
2383 
2384 		/* Enable Auto RTS */
2385 		if (s->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2386 			sci_serial_out(port, SCFCR,
2387 				       sci_serial_in(port, SCFCR) | SCFCR_MCE);
2388 	} else {
2389 		/* Set RTS */
2390 		sci_set_rts(port, 1);
2391 	}
2392 }
2393 
2394 static unsigned int sci_get_mctrl(struct uart_port *port)
2395 {
2396 	struct sci_port *s = to_sci_port(port);
2397 	struct mctrl_gpios *gpios = s->gpios;
2398 	unsigned int mctrl = 0;
2399 
2400 	mctrl_gpio_get(gpios, &mctrl);
2401 
2402 	/*
2403 	 * CTS/RTS is handled in hardware when supported, while nothing
2404 	 * else is wired up.
2405 	 */
2406 	if (s->autorts) {
2407 		if (sci_get_cts(port))
2408 			mctrl |= TIOCM_CTS;
2409 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2410 		mctrl |= TIOCM_CTS;
2411 	}
2412 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2413 		mctrl |= TIOCM_DSR;
2414 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2415 		mctrl |= TIOCM_CAR;
2416 
2417 	return mctrl;
2418 }
2419 
2420 static void sci_enable_ms(struct uart_port *port)
2421 {
2422 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2423 }
2424 
2425 static void sci_break_ctl(struct uart_port *port, int break_state)
2426 {
2427 	unsigned short scscr, scsptr;
2428 	unsigned long flags;
2429 
2430 	/* check whether the port has SCSPTR */
2431 	if (!sci_getreg(port, SCSPTR)->size) {
2432 		/*
2433 		 * Not supported by hardware. Most parts couple break and rx
2434 		 * interrupts together, with break detection always enabled.
2435 		 */
2436 		return;
2437 	}
2438 
2439 	uart_port_lock_irqsave(port, &flags);
2440 	scsptr = sci_serial_in(port, SCSPTR);
2441 	scscr = sci_serial_in(port, SCSCR);
2442 
2443 	if (break_state == -1) {
2444 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2445 		scscr &= ~SCSCR_TE;
2446 	} else {
2447 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2448 		scscr |= SCSCR_TE;
2449 	}
2450 
2451 	sci_serial_out(port, SCSPTR, scsptr);
2452 	sci_serial_out(port, SCSCR, scscr);
2453 	uart_port_unlock_irqrestore(port, flags);
2454 }
2455 
2456 static void sci_shutdown_complete(struct uart_port *port)
2457 {
2458 	struct sci_port *s = to_sci_port(port);
2459 	u16 scr;
2460 
2461 	scr = sci_serial_in(port, SCSCR);
2462 	sci_serial_out(port, SCSCR,
2463 		       scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2464 }
2465 
2466 int sci_startup(struct uart_port *port)
2467 {
2468 	struct sci_port *s = to_sci_port(port);
2469 	int ret;
2470 
2471 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2472 
2473 	s->tx_occurred = false;
2474 	sci_request_dma(port);
2475 
2476 	ret = sci_request_irq(s);
2477 	if (unlikely(ret < 0)) {
2478 		sci_free_dma(port);
2479 		return ret;
2480 	}
2481 
2482 	return 0;
2483 }
2484 EXPORT_SYMBOL_NS_GPL(sci_startup, "SH_SCI");
2485 
2486 void sci_shutdown(struct uart_port *port)
2487 {
2488 	struct sci_port *s = to_sci_port(port);
2489 	unsigned long flags;
2490 
2491 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2492 
2493 	s->autorts = false;
2494 	mctrl_gpio_disable_ms_sync(to_sci_port(port)->gpios);
2495 
2496 	uart_port_lock_irqsave(port, &flags);
2497 	s->port.ops->stop_rx(port);
2498 	s->port.ops->stop_tx(port);
2499 	s->ops->shutdown_complete(port);
2500 	uart_port_unlock_irqrestore(port, flags);
2501 
2502 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2503 	if (s->chan_rx_saved) {
2504 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2505 			port->line);
2506 		hrtimer_cancel(&s->rx_timer);
2507 	}
2508 #endif
2509 
2510 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2511 		timer_delete_sync(&s->rx_fifo_timer);
2512 	sci_free_irq(s);
2513 	sci_free_dma(port);
2514 }
2515 EXPORT_SYMBOL_NS_GPL(sci_shutdown, "SH_SCI");
2516 
2517 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2518 			unsigned int *srr)
2519 {
2520 	unsigned long freq = s->clk_rates[SCI_SCK];
2521 	int err, min_err = INT_MAX;
2522 	unsigned int sr;
2523 
2524 	if (s->type != PORT_HSCIF)
2525 		freq *= 2;
2526 
2527 	for_each_sr(sr, s) {
2528 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2529 		if (abs(err) >= abs(min_err))
2530 			continue;
2531 
2532 		min_err = err;
2533 		*srr = sr - 1;
2534 
2535 		if (!err)
2536 			break;
2537 	}
2538 
2539 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2540 		*srr + 1);
2541 	return min_err;
2542 }
2543 
2544 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2545 			unsigned long freq, unsigned int *dlr,
2546 			unsigned int *srr)
2547 {
2548 	int err, min_err = INT_MAX;
2549 	unsigned int sr, dl;
2550 
2551 	if (s->type != PORT_HSCIF)
2552 		freq *= 2;
2553 
2554 	for_each_sr(sr, s) {
2555 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2556 		dl = clamp(dl, 1U, 65535U);
2557 
2558 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2559 		if (abs(err) >= abs(min_err))
2560 			continue;
2561 
2562 		min_err = err;
2563 		*dlr = dl;
2564 		*srr = sr - 1;
2565 
2566 		if (!err)
2567 			break;
2568 	}
2569 
2570 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2571 		min_err, *dlr, *srr + 1);
2572 	return min_err;
2573 }
2574 
2575 /* calculate sample rate, BRR, and clock select */
2576 int sci_scbrr_calc(struct sci_port *s, unsigned int bps, unsigned int *brr,
2577 		   unsigned int *srr, unsigned int *cks)
2578 {
2579 	unsigned long freq = s->clk_rates[SCI_FCK];
2580 	unsigned int sr, br, prediv, scrate, c;
2581 	int err, min_err = INT_MAX;
2582 
2583 	if (s->type != PORT_HSCIF)
2584 		freq *= 2;
2585 
2586 	/*
2587 	 * Find the combination of sample rate and clock select with the
2588 	 * smallest deviation from the desired baud rate.
2589 	 * Prefer high sample rates to maximise the receive margin.
2590 	 *
2591 	 * M: Receive margin (%)
2592 	 * N: Ratio of bit rate to clock (N = sampling rate)
2593 	 * D: Clock duty (D = 0 to 1.0)
2594 	 * L: Frame length (L = 9 to 12)
2595 	 * F: Absolute value of clock frequency deviation
2596 	 *
2597 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2598 	 *      (|D - 0.5| / N * (1 + F))|
2599 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2600 	 */
2601 	for_each_sr(sr, s) {
2602 		for (c = 0; c <= 3; c++) {
2603 			/* integerized formulas from HSCIF documentation */
2604 			prediv = sr << (2 * c + 1);
2605 
2606 			/*
2607 			 * We need to calculate:
2608 			 *
2609 			 *     br = freq / (prediv * bps) clamped to [1..256]
2610 			 *     err = freq / (br * prediv) - bps
2611 			 *
2612 			 * Watch out for overflow when calculating the desired
2613 			 * sampling clock rate!
2614 			 */
2615 			if (bps > UINT_MAX / prediv)
2616 				break;
2617 
2618 			scrate = prediv * bps;
2619 			br = DIV_ROUND_CLOSEST(freq, scrate);
2620 			br = clamp(br, 1U, 256U);
2621 
2622 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2623 			if (abs(err) >= abs(min_err))
2624 				continue;
2625 
2626 			min_err = err;
2627 			*brr = br - 1;
2628 			*srr = sr - 1;
2629 			*cks = c;
2630 
2631 			if (!err)
2632 				goto found;
2633 		}
2634 	}
2635 
2636 found:
2637 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2638 		min_err, *brr, *srr + 1, *cks);
2639 	return min_err;
2640 }
2641 EXPORT_SYMBOL_NS_GPL(sci_scbrr_calc, "SH_SCI");
2642 
2643 static void sci_reset(struct uart_port *port)
2644 {
2645 	const struct plat_sci_reg *reg;
2646 	unsigned int status;
2647 	struct sci_port *s = to_sci_port(port);
2648 
2649 	sci_serial_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2650 
2651 	reg = sci_getreg(port, SCFCR);
2652 	if (reg->size)
2653 		sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2654 
2655 	s->ops->clear_SCxSR(port,
2656 			    SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2657 			    SCxSR_BREAK_CLEAR(port));
2658 	if (sci_getreg(port, SCLSR)->size) {
2659 		status = sci_serial_in(port, SCLSR);
2660 		status &= ~(SCLSR_TO | SCLSR_ORER);
2661 		sci_serial_out(port, SCLSR, status);
2662 	}
2663 
2664 	if (s->rx_trigger > 1) {
2665 		if (s->rx_fifo_timeout) {
2666 			s->ops->set_rtrg(port, 1);
2667 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2668 		} else {
2669 			if (s->type == PORT_SCIFA ||
2670 			    s->type == PORT_SCIFB)
2671 				s->ops->set_rtrg(port, 1);
2672 			else
2673 				s->ops->set_rtrg(port, s->rx_trigger);
2674 		}
2675 	}
2676 }
2677 
2678 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2679 		            const struct ktermios *old)
2680 {
2681 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2682 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2683 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2684 	struct sci_port *s = to_sci_port(port);
2685 	const struct plat_sci_reg *reg;
2686 	int min_err = INT_MAX, err;
2687 	unsigned long max_freq = 0;
2688 	int best_clk = -1;
2689 	unsigned long flags;
2690 
2691 	if ((termios->c_cflag & CSIZE) == CS7) {
2692 		smr_val |= SCSMR_CHR;
2693 	} else {
2694 		termios->c_cflag &= ~CSIZE;
2695 		termios->c_cflag |= CS8;
2696 	}
2697 	if (termios->c_cflag & PARENB)
2698 		smr_val |= SCSMR_PE;
2699 	if (termios->c_cflag & PARODD)
2700 		smr_val |= SCSMR_PE | SCSMR_ODD;
2701 	if (termios->c_cflag & CSTOPB)
2702 		smr_val |= SCSMR_STOP;
2703 
2704 	/*
2705 	 * earlyprintk comes here early on with port->uartclk set to zero.
2706 	 * the clock framework is not up and running at this point so here
2707 	 * we assume that 115200 is the maximum baud rate. please note that
2708 	 * the baud rate is not programmed during earlyprintk - it is assumed
2709 	 * that the previous boot loader has enabled required clocks and
2710 	 * setup the baud rate generator hardware for us already.
2711 	 */
2712 	if (!port->uartclk) {
2713 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2714 		goto done;
2715 	}
2716 
2717 	for (i = 0; i < SCI_NUM_CLKS; i++)
2718 		max_freq = max(max_freq, s->clk_rates[i]);
2719 
2720 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2721 	if (!baud)
2722 		goto done;
2723 
2724 	/*
2725 	 * There can be multiple sources for the sampling clock.  Find the one
2726 	 * that gives us the smallest deviation from the desired baud rate.
2727 	 */
2728 
2729 	/* Optional Undivided External Clock */
2730 	if (s->clk_rates[SCI_SCK] && s->type != PORT_SCIFA &&
2731 	    s->type != PORT_SCIFB) {
2732 		err = sci_sck_calc(s, baud, &srr1);
2733 		if (abs(err) < abs(min_err)) {
2734 			best_clk = SCI_SCK;
2735 			scr_val = SCSCR_CKE1;
2736 			sccks = SCCKS_CKS;
2737 			min_err = err;
2738 			srr = srr1;
2739 			if (!err)
2740 				goto done;
2741 		}
2742 	}
2743 
2744 	/* Optional BRG Frequency Divided External Clock */
2745 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2746 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2747 				   &srr1);
2748 		if (abs(err) < abs(min_err)) {
2749 			best_clk = SCI_SCIF_CLK;
2750 			scr_val = SCSCR_CKE1;
2751 			sccks = 0;
2752 			min_err = err;
2753 			dl = dl1;
2754 			srr = srr1;
2755 			if (!err)
2756 				goto done;
2757 		}
2758 	}
2759 
2760 	/* Optional BRG Frequency Divided Internal Clock */
2761 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2762 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2763 				   &srr1);
2764 		if (abs(err) < abs(min_err)) {
2765 			best_clk = SCI_BRG_INT;
2766 			scr_val = SCSCR_CKE1;
2767 			sccks = SCCKS_XIN;
2768 			min_err = err;
2769 			dl = dl1;
2770 			srr = srr1;
2771 			if (!min_err)
2772 				goto done;
2773 		}
2774 	}
2775 
2776 	/* Divided Functional Clock using standard Bit Rate Register */
2777 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2778 	if (abs(err) < abs(min_err)) {
2779 		best_clk = SCI_FCK;
2780 		scr_val = 0;
2781 		min_err = err;
2782 		brr = brr1;
2783 		srr = srr1;
2784 		cks = cks1;
2785 	}
2786 
2787 done:
2788 	if (best_clk >= 0)
2789 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2790 			s->clks[best_clk], baud, min_err);
2791 
2792 	sci_port_enable(s);
2793 
2794 	/*
2795 	 * Program the optional External Baud Rate Generator (BRG) first.
2796 	 * It controls the mux to select (H)SCK or frequency divided clock.
2797 	 */
2798 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2799 		sci_serial_out(port, SCDL, dl);
2800 		sci_serial_out(port, SCCKS, sccks);
2801 	}
2802 
2803 	uart_port_lock_irqsave(port, &flags);
2804 
2805 	sci_reset(port);
2806 
2807 	uart_update_timeout(port, termios->c_cflag, baud);
2808 
2809 	/* byte size and parity */
2810 	bits = tty_get_frame_size(termios->c_cflag);
2811 
2812 	if (sci_getreg(port, SEMR)->size)
2813 		sci_serial_out(port, SEMR, 0);
2814 
2815 	if (best_clk >= 0) {
2816 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
2817 			switch (srr + 1) {
2818 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2819 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2820 			case 11: smr_val |= SCSMR_SRC_11; break;
2821 			case 13: smr_val |= SCSMR_SRC_13; break;
2822 			case 16: smr_val |= SCSMR_SRC_16; break;
2823 			case 17: smr_val |= SCSMR_SRC_17; break;
2824 			case 19: smr_val |= SCSMR_SRC_19; break;
2825 			case 27: smr_val |= SCSMR_SRC_27; break;
2826 			}
2827 		smr_val |= cks;
2828 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2829 		sci_serial_out(port, SCSMR, smr_val);
2830 		sci_serial_out(port, SCBRR, brr);
2831 		if (sci_getreg(port, HSSRR)->size) {
2832 			unsigned int hssrr = srr | HSCIF_SRE;
2833 			/* Calculate deviation from intended rate at the
2834 			 * center of the last stop bit in sampling clocks.
2835 			 */
2836 			int last_stop = bits * 2 - 1;
2837 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2838 							  (int)(srr + 1),
2839 							  2 * (int)baud);
2840 
2841 			if (abs(deviation) >= 2) {
2842 				/* At least two sampling clocks off at the
2843 				 * last stop bit; we can increase the error
2844 				 * margin by shifting the sampling point.
2845 				 */
2846 				int shift = clamp(deviation / 2, -8, 7);
2847 
2848 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2849 					 HSCIF_SRHP_MASK;
2850 				hssrr |= HSCIF_SRDE;
2851 			}
2852 			sci_serial_out(port, HSSRR, hssrr);
2853 		}
2854 
2855 		/* Wait one bit interval */
2856 		udelay((1000000 + (baud - 1)) / baud);
2857 	} else {
2858 		/* Don't touch the bit rate configuration */
2859 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2860 		smr_val |= sci_serial_in(port, SCSMR) &
2861 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2862 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2863 		sci_serial_out(port, SCSMR, smr_val);
2864 	}
2865 
2866 	sci_init_pins(port, termios->c_cflag);
2867 
2868 	port->status &= ~UPSTAT_AUTOCTS;
2869 	s->autorts = false;
2870 	reg = sci_getreg(port, SCFCR);
2871 	if (reg->size) {
2872 		unsigned short ctrl = sci_serial_in(port, SCFCR);
2873 
2874 		if ((port->flags & UPF_HARD_FLOW) &&
2875 		    (termios->c_cflag & CRTSCTS)) {
2876 			/* There is no CTS interrupt to restart the hardware */
2877 			port->status |= UPSTAT_AUTOCTS;
2878 			/* MCE is enabled when RTS is raised */
2879 			s->autorts = true;
2880 		}
2881 
2882 		/*
2883 		 * As we've done a sci_reset() above, ensure we don't
2884 		 * interfere with the FIFOs while toggling MCE. As the
2885 		 * reset values could still be set, simply mask them out.
2886 		 */
2887 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2888 
2889 		sci_serial_out(port, SCFCR, ctrl);
2890 	}
2891 	if (port->flags & UPF_HARD_FLOW) {
2892 		/* Refresh (Auto) RTS */
2893 		sci_set_mctrl(port, port->mctrl);
2894 	}
2895 
2896 	/*
2897 	 * For SCI, TE (transmit enable) must be set after setting TIE
2898 	 * (transmit interrupt enable) or in the same instruction to
2899 	 * start the transmitting process. So skip setting TE here for SCI.
2900 	 */
2901 	if (s->type != PORT_SCI)
2902 		scr_val |= SCSCR_TE;
2903 	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2904 	sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2905 	if ((srr + 1 == 5) &&
2906 	    (s->type == PORT_SCIFA || s->type == PORT_SCIFB)) {
2907 		/*
2908 		 * In asynchronous mode, when the sampling rate is 1/5, first
2909 		 * received data may become invalid on some SCIFA and SCIFB.
2910 		 * To avoid this problem wait more than 1 serial data time (1
2911 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2912 		 */
2913 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2914 	}
2915 
2916 	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2917 	s->rx_frame = (10000 * bits) / (baud / 100);
2918 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2919 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2920 #endif
2921 
2922 	if ((termios->c_cflag & CREAD) != 0)
2923 		sci_start_rx(port);
2924 
2925 	uart_port_unlock_irqrestore(port, flags);
2926 
2927 	sci_port_disable(s);
2928 
2929 	if (UART_ENABLE_MS(port, termios->c_cflag))
2930 		sci_enable_ms(port);
2931 }
2932 
2933 void sci_pm(struct uart_port *port, unsigned int state,
2934 		   unsigned int oldstate)
2935 {
2936 	struct sci_port *sci_port = to_sci_port(port);
2937 
2938 	switch (state) {
2939 	case UART_PM_STATE_OFF:
2940 		sci_port_disable(sci_port);
2941 		break;
2942 	default:
2943 		sci_port_enable(sci_port);
2944 		break;
2945 	}
2946 }
2947 EXPORT_SYMBOL_NS_GPL(sci_pm, "SH_SCI");
2948 
2949 static const char *sci_type(struct uart_port *port)
2950 {
2951 	struct sci_port *s = to_sci_port(port);
2952 
2953 	switch (s->type) {
2954 	case PORT_IRDA:
2955 		return "irda";
2956 	case PORT_SCI:
2957 		return "sci";
2958 	case PORT_SCIF:
2959 		return "scif";
2960 	case PORT_SCIFA:
2961 		return "scifa";
2962 	case PORT_SCIFB:
2963 		return "scifb";
2964 	case PORT_HSCIF:
2965 		return "hscif";
2966 	}
2967 
2968 	return NULL;
2969 }
2970 
2971 static int sci_remap_port(struct uart_port *port)
2972 {
2973 	struct sci_port *sport = to_sci_port(port);
2974 
2975 	/*
2976 	 * Nothing to do if there's already an established membase.
2977 	 */
2978 	if (port->membase)
2979 		return 0;
2980 
2981 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2982 		port->membase = ioremap(port->mapbase, sport->reg_size);
2983 		if (unlikely(!port->membase)) {
2984 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2985 			return -ENXIO;
2986 		}
2987 	} else {
2988 		/*
2989 		 * For the simple (and majority of) cases where we don't
2990 		 * need to do any remapping, just cast the cookie
2991 		 * directly.
2992 		 */
2993 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2994 	}
2995 
2996 	return 0;
2997 }
2998 
2999 void sci_release_port(struct uart_port *port)
3000 {
3001 	struct sci_port *sport = to_sci_port(port);
3002 
3003 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
3004 		iounmap(port->membase);
3005 		port->membase = NULL;
3006 	}
3007 
3008 	release_mem_region(port->mapbase, sport->reg_size);
3009 }
3010 EXPORT_SYMBOL_NS_GPL(sci_release_port, "SH_SCI");
3011 
3012 int sci_request_port(struct uart_port *port)
3013 {
3014 	struct resource *res;
3015 	struct sci_port *sport = to_sci_port(port);
3016 	int ret;
3017 
3018 	res = request_mem_region(port->mapbase, sport->reg_size,
3019 				 dev_name(port->dev));
3020 	if (unlikely(res == NULL)) {
3021 		dev_err(port->dev, "request_mem_region failed.");
3022 		return -EBUSY;
3023 	}
3024 
3025 	ret = sci_remap_port(port);
3026 	if (unlikely(ret != 0)) {
3027 		release_resource(res);
3028 		return ret;
3029 	}
3030 
3031 	return 0;
3032 }
3033 EXPORT_SYMBOL_NS_GPL(sci_request_port, "SH_SCI");
3034 
3035 void sci_config_port(struct uart_port *port, int flags)
3036 {
3037 	if (flags & UART_CONFIG_TYPE) {
3038 		struct sci_port *sport = to_sci_port(port);
3039 		port->type = SCI_PUBLIC_PORT_ID(sport->type);
3040 		sci_request_port(port);
3041 	}
3042 }
3043 EXPORT_SYMBOL_NS_GPL(sci_config_port, "SH_SCI");
3044 
3045 int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
3046 {
3047 	if (ser->baud_base < 2400)
3048 		/* No paper tape reader for Mitch.. */
3049 		return -EINVAL;
3050 
3051 	return 0;
3052 }
3053 EXPORT_SYMBOL_NS_GPL(sci_verify_port, "SH_SCI");
3054 
3055 static void sci_prepare_console_write(struct uart_port *port, u32 ctrl)
3056 {
3057 	struct sci_port *s = to_sci_port(port);
3058 	u32 ctrl_temp =
3059 		s->params->param_bits->rxtx_enable |
3060 		(s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3061 		(ctrl & (SCSCR_CKE1 | SCSCR_CKE0)) |
3062 		s->hscif_tot;
3063 	sci_serial_out(port, SCSCR, ctrl_temp);
3064 }
3065 
3066 static void sci_console_save(struct uart_port *port)
3067 {
3068 	struct sci_port *s = to_sci_port(port);
3069 	struct sci_suspend_regs *regs = s->suspend_regs;
3070 
3071 	if (sci_getreg(port, SCDL)->size)
3072 		regs->scdl = sci_serial_in(port, SCDL);
3073 	if (sci_getreg(port, SCCKS)->size)
3074 		regs->sccks = sci_serial_in(port, SCCKS);
3075 	if (sci_getreg(port, SCSMR)->size)
3076 		regs->scsmr = sci_serial_in(port, SCSMR);
3077 	if (sci_getreg(port, SCSCR)->size)
3078 		regs->scscr = sci_serial_in(port, SCSCR);
3079 	if (sci_getreg(port, SCFCR)->size)
3080 		regs->scfcr = sci_serial_in(port, SCFCR);
3081 	if (sci_getreg(port, SCSPTR)->size)
3082 		regs->scsptr = sci_serial_in(port, SCSPTR);
3083 	if (sci_getreg(port, SCBRR)->size)
3084 		regs->scbrr = sci_serial_in(port, SCBRR);
3085 	if (sci_getreg(port, HSSRR)->size)
3086 		regs->hssrr = sci_serial_in(port, HSSRR);
3087 	if (sci_getreg(port, SCPCR)->size)
3088 		regs->scpcr = sci_serial_in(port, SCPCR);
3089 	if (sci_getreg(port, SCPDR)->size)
3090 		regs->scpdr = sci_serial_in(port, SCPDR);
3091 	if (sci_getreg(port, SEMR)->size)
3092 		regs->semr = sci_serial_in(port, SEMR);
3093 }
3094 
3095 static void sci_console_restore(struct uart_port *port)
3096 {
3097 	struct sci_port *s = to_sci_port(port);
3098 	struct sci_suspend_regs *regs = s->suspend_regs;
3099 
3100 	if (sci_getreg(port, SCDL)->size)
3101 		sci_serial_out(port, SCDL, regs->scdl);
3102 	if (sci_getreg(port, SCCKS)->size)
3103 		sci_serial_out(port, SCCKS, regs->sccks);
3104 	if (sci_getreg(port, SCSMR)->size)
3105 		sci_serial_out(port, SCSMR, regs->scsmr);
3106 	if (sci_getreg(port, SCSCR)->size)
3107 		sci_serial_out(port, SCSCR, regs->scscr);
3108 	if (sci_getreg(port, SCFCR)->size)
3109 		sci_serial_out(port, SCFCR, regs->scfcr);
3110 	if (sci_getreg(port, SCSPTR)->size)
3111 		sci_serial_out(port, SCSPTR, regs->scsptr);
3112 	if (sci_getreg(port, SCBRR)->size)
3113 		sci_serial_out(port, SCBRR, regs->scbrr);
3114 	if (sci_getreg(port, HSSRR)->size)
3115 		sci_serial_out(port, HSSRR, regs->hssrr);
3116 	if (sci_getreg(port, SCPCR)->size)
3117 		sci_serial_out(port, SCPCR, regs->scpcr);
3118 	if (sci_getreg(port, SCPDR)->size)
3119 		sci_serial_out(port, SCPDR, regs->scpdr);
3120 	if (sci_getreg(port, SEMR)->size)
3121 		sci_serial_out(port, SEMR, regs->semr);
3122 }
3123 
3124 static const struct uart_ops sci_uart_ops = {
3125 	.tx_empty	= sci_tx_empty,
3126 	.set_mctrl	= sci_set_mctrl,
3127 	.get_mctrl	= sci_get_mctrl,
3128 	.start_tx	= sci_start_tx,
3129 	.stop_tx	= sci_stop_tx,
3130 	.stop_rx	= sci_stop_rx,
3131 	.enable_ms	= sci_enable_ms,
3132 	.break_ctl	= sci_break_ctl,
3133 	.startup	= sci_startup,
3134 	.shutdown	= sci_shutdown,
3135 	.flush_buffer	= sci_flush_buffer,
3136 	.set_termios	= sci_set_termios,
3137 	.pm		= sci_pm,
3138 	.type		= sci_type,
3139 	.release_port	= sci_release_port,
3140 	.request_port	= sci_request_port,
3141 	.config_port	= sci_config_port,
3142 	.verify_port	= sci_verify_port,
3143 #ifdef CONFIG_CONSOLE_POLL
3144 	.poll_get_char	= sci_poll_get_char,
3145 	.poll_put_char	= sci_poll_put_char,
3146 #endif
3147 };
3148 
3149 static const struct sci_port_ops sci_port_ops = {
3150 	.read_reg		= sci_serial_in,
3151 	.write_reg		= sci_serial_out,
3152 	.clear_SCxSR		= sci_clear_SCxSR,
3153 	.transmit_chars		= sci_transmit_chars,
3154 	.receive_chars		= sci_receive_chars,
3155 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3156     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3157 	.poll_put_char		= sci_poll_put_char,
3158 #endif
3159 	.set_rtrg		= scif_set_rtrg,
3160 	.rtrg_enabled		= scif_rtrg_enabled,
3161 	.shutdown_complete	= sci_shutdown_complete,
3162 	.prepare_console_write	= sci_prepare_console_write,
3163 	.console_save		= sci_console_save,
3164 	.console_restore	= sci_console_restore,
3165 	.suspend_regs_size	= sci_suspend_regs_size,
3166 };
3167 
3168 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
3169 {
3170 	const char *clk_names[] = {
3171 		[SCI_FCK] = "fck",
3172 		[SCI_SCK] = "sck",
3173 		[SCI_BRG_INT] = "brg_int",
3174 		[SCI_SCIF_CLK] = "scif_clk",
3175 		[SCI_FCK_DIV4] = "tclk_div4",
3176 		[SCI_FCK_DIV16] = "tclk_div16",
3177 		[SCI_FCK_DIV64] = "tclk_div64",
3178 	};
3179 	struct clk *clk;
3180 	unsigned int i;
3181 
3182 	if (sci_port->type == PORT_HSCIF) {
3183 		clk_names[SCI_SCK] = "hsck";
3184 	} else if (sci_port->type == RSCI_PORT_SCIF16) {
3185 		clk_names[SCI_FCK] = "operation";
3186 		clk_names[SCI_BRG_INT] = "bus";
3187 	} else if (sci_port->type == RSCI_PORT_SCIF32) {
3188 		clk_names[SCI_FCK] = "tclk";
3189 		clk_names[SCI_BRG_INT] = "pclk";
3190 	}
3191 
3192 	for (i = 0; i < SCI_NUM_CLKS; i++) {
3193 		const char *name = clk_names[i];
3194 
3195 		clk = devm_clk_get_optional(dev, name);
3196 		if (IS_ERR(clk))
3197 			return PTR_ERR(clk);
3198 
3199 		if (!clk && sci_port->type == RSCI_PORT_SCIF16 &&
3200 		    (i == SCI_FCK || i == SCI_BRG_INT))
3201 			return dev_err_probe(dev, -ENODEV, "failed to get %s\n", name);
3202 
3203 		if (!clk && sci_port->type == RSCI_PORT_SCIF32 &&
3204 		    (i != SCI_SCK && i != SCI_SCIF_CLK))
3205 			return dev_err_probe(dev, -ENODEV, "failed to get %s\n", name);
3206 
3207 		if (!clk && i == SCI_FCK) {
3208 			/*
3209 			 * Not all SH platforms declare a clock lookup entry
3210 			 * for SCI devices, in which case we need to get the
3211 			 * global "peripheral_clk" clock.
3212 			 */
3213 			clk = devm_clk_get(dev, "peripheral_clk");
3214 			if (IS_ERR(clk))
3215 				return dev_err_probe(dev, PTR_ERR(clk), "failed to get %s\n", name);
3216 		}
3217 
3218 		if (!clk)
3219 			dev_dbg(dev, "failed to get %s\n", name);
3220 		else
3221 			dev_dbg(dev, "clk %s is %pC rate %lu\n", name, clk, clk_get_rate(clk));
3222 		sci_port->clks[i] = clk;
3223 	}
3224 	return 0;
3225 }
3226 
3227 static const struct sci_port_params *
3228 sci_probe_regmap(const struct plat_sci_port *cfg, struct sci_port *sci_port)
3229 {
3230 	unsigned int regtype;
3231 
3232 	sci_port->ops = &sci_port_ops;
3233 	sci_port->port.ops = &sci_uart_ops;
3234 
3235 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
3236 		return &sci_port_params[cfg->regtype];
3237 
3238 	switch (cfg->type) {
3239 	case PORT_SCI:
3240 		regtype = SCIx_SCI_REGTYPE;
3241 		break;
3242 	case PORT_IRDA:
3243 		regtype = SCIx_IRDA_REGTYPE;
3244 		break;
3245 	case PORT_SCIFA:
3246 		regtype = SCIx_SCIFA_REGTYPE;
3247 		break;
3248 	case PORT_SCIFB:
3249 		regtype = SCIx_SCIFB_REGTYPE;
3250 		break;
3251 	case PORT_SCIF:
3252 		/*
3253 		 * The SH-4 is a bit of a misnomer here, although that's
3254 		 * where this particular port layout originated. This
3255 		 * configuration (or some slight variation thereof)
3256 		 * remains the dominant model for all SCIFs.
3257 		 */
3258 		regtype = SCIx_SH4_SCIF_REGTYPE;
3259 		break;
3260 	case PORT_HSCIF:
3261 		regtype = SCIx_HSCIF_REGTYPE;
3262 		break;
3263 	default:
3264 		pr_err("Can't probe register map for given port\n");
3265 		return NULL;
3266 	}
3267 
3268 	return &sci_port_params[regtype];
3269 }
3270 
3271 static int sci_init_single(struct platform_device *dev,
3272 			   struct sci_port *sci_port, unsigned int index,
3273 			   const struct plat_sci_port *p, bool early)
3274 {
3275 	struct uart_port *port = &sci_port->port;
3276 	const struct resource *res;
3277 	unsigned int i;
3278 	int ret;
3279 
3280 	sci_port->cfg	= p;
3281 
3282 	sci_port->type	= p->type;
3283 	sci_port->regtype = p->regtype;
3284 
3285 	port->iotype	= UPIO_MEM;
3286 	port->line	= index;
3287 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
3288 
3289 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
3290 	if (res == NULL)
3291 		return -ENOMEM;
3292 
3293 	port->mapbase = res->start;
3294 	sci_port->reg_size = resource_size(res);
3295 
3296 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
3297 		if (i)
3298 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
3299 		else
3300 			sci_port->irqs[i] = platform_get_irq(dev, i);
3301 	}
3302 
3303 	/*
3304 	 * The fourth interrupt on SCI and RSCI port is transmit end interrupt, so
3305 	 * shuffle the interrupts.
3306 	 */
3307 	if (p->type == PORT_SCI || sci_is_rsci_type(p->type))
3308 		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
3309 
3310 	/* The SCI generates several interrupts. They can be muxed together or
3311 	 * connected to different interrupt lines. In the muxed case only one
3312 	 * interrupt resource is specified as there is only one interrupt ID.
3313 	 * In the non-muxed case, up to 6 interrupt signals might be generated
3314 	 * from the SCI, however those signals might have their own individual
3315 	 * interrupt ID numbers, or muxed together with another interrupt.
3316 	 */
3317 	if (sci_port->irqs[0] < 0)
3318 		return -ENXIO;
3319 
3320 	if (sci_port->irqs[1] < 0)
3321 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
3322 			sci_port->irqs[i] = sci_port->irqs[0];
3323 
3324 	switch (p->type) {
3325 	case PORT_SCIFB:
3326 		sci_port->rx_trigger = 48;
3327 		break;
3328 	case PORT_HSCIF:
3329 		sci_port->rx_trigger = 64;
3330 		break;
3331 	case PORT_SCIFA:
3332 	case RSCI_PORT_SCIF32:
3333 		sci_port->rx_trigger = 32;
3334 		break;
3335 	case PORT_SCIF:
3336 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
3337 			/* RX triggering not implemented for this IP */
3338 			sci_port->rx_trigger = 1;
3339 		else
3340 			sci_port->rx_trigger = 8;
3341 		break;
3342 	case RSCI_PORT_SCIF16:
3343 		sci_port->rx_trigger = 16;
3344 		break;
3345 	default:
3346 		sci_port->rx_trigger = 1;
3347 		break;
3348 	}
3349 
3350 	sci_port->rx_fifo_timeout = 0;
3351 	sci_port->hscif_tot = 0;
3352 
3353 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
3354 	 * match the SoC datasheet, this should be investigated. Let platform
3355 	 * data override the sampling rate for now.
3356 	 */
3357 	sci_port->sampling_rate_mask = p->sampling_rate
3358 				     ? SCI_SR(p->sampling_rate)
3359 				     : sci_port->params->sampling_rate_mask;
3360 
3361 	if (!early) {
3362 		ret = sci_init_clocks(sci_port, &dev->dev);
3363 		if (ret < 0)
3364 			return ret;
3365 	}
3366 
3367 	port->type		= SCI_PUBLIC_PORT_ID(p->type);
3368 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3369 	port->fifosize		= sci_port->params->fifosize;
3370 
3371 	if (p->type == PORT_SCI && !dev->dev.of_node) {
3372 		if (sci_port->reg_size >= 0x20)
3373 			port->regshift = 2;
3374 		else
3375 			port->regshift = 1;
3376 	}
3377 
3378 	/*
3379 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3380 	 * for the multi-IRQ ports, which is where we are primarily
3381 	 * concerned with the shutdown path synchronization.
3382 	 *
3383 	 * For the muxed case there's nothing more to do.
3384 	 */
3385 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3386 	port->irqflags		= 0;
3387 
3388 	return 0;
3389 }
3390 
3391 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3392     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3393 static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3394 {
3395 	to_sci_port(port)->ops->poll_put_char(port, ch);
3396 }
3397 
3398 /*
3399  *	Print a string to the serial port trying not to disturb
3400  *	any possible real use of the port...
3401  */
3402 static void serial_console_write(struct console *co, const char *s,
3403 				 unsigned count)
3404 {
3405 	struct sci_port *sci_port = &sci_ports[co->index];
3406 	struct uart_port *port = &sci_port->port;
3407 	const struct sci_common_regs *regs = sci_port->params->common_regs;
3408 	unsigned int bits;
3409 	u32 ctrl;
3410 	unsigned long flags;
3411 	int locked = 1;
3412 
3413 	if (port->sysrq)
3414 		locked = 0;
3415 	else if (oops_in_progress)
3416 		locked = uart_port_trylock_irqsave(port, &flags);
3417 	else
3418 		uart_port_lock_irqsave(port, &flags);
3419 
3420 	/* first save SCSCR then disable interrupts, keep clock source */
3421 
3422 	ctrl = sci_port->ops->read_reg(port, regs->control);
3423 	sci_port->ops->prepare_console_write(port, ctrl);
3424 
3425 	uart_console_write(port, s, count, serial_console_putchar);
3426 
3427 	/* wait until fifo is empty and last bit has been transmitted */
3428 
3429 	bits = sci_port->params->param_bits->poll_sent_bits;
3430 
3431 	while ((sci_port->ops->read_reg(port, regs->status) & bits) != bits)
3432 		cpu_relax();
3433 
3434 	/* restore the SCSCR */
3435 	if (sci_port->ops->finish_console_write)
3436 		sci_port->ops->finish_console_write(port, ctrl);
3437 	else
3438 		sci_port->ops->write_reg(port, regs->control, ctrl);
3439 
3440 	if (locked)
3441 		uart_port_unlock_irqrestore(port, flags);
3442 }
3443 
3444 static int serial_console_setup(struct console *co, char *options)
3445 {
3446 	struct sci_port *sci_port;
3447 	struct uart_port *port;
3448 	int baud = 115200;
3449 	int bits = 8;
3450 	int parity = 'n';
3451 	int flow = 'n';
3452 	int ret;
3453 
3454 	/*
3455 	 * Refuse to handle any bogus ports.
3456 	 */
3457 	if (co->index < 0 || co->index >= SCI_NPORTS)
3458 		return -ENODEV;
3459 
3460 	sci_port = &sci_ports[co->index];
3461 	port = &sci_port->port;
3462 
3463 	/*
3464 	 * Refuse to handle uninitialized ports.
3465 	 */
3466 	if (!port->ops)
3467 		return -ENODEV;
3468 
3469 	ret = sci_remap_port(port);
3470 	if (unlikely(ret != 0))
3471 		return ret;
3472 
3473 	if (options)
3474 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3475 
3476 	return uart_set_options(port, co, baud, parity, bits, flow);
3477 }
3478 
3479 static struct console serial_console = {
3480 	.name		= "ttySC",
3481 	.device		= uart_console_device,
3482 	.write		= serial_console_write,
3483 	.setup		= serial_console_setup,
3484 	.flags		= CON_PRINTBUFFER,
3485 	.index		= -1,
3486 	.data		= &sci_uart_driver,
3487 };
3488 
3489 #ifdef CONFIG_SUPERH
3490 static char early_serial_buf[32];
3491 
3492 static int early_serial_console_setup(struct console *co, char *options)
3493 {
3494 	/*
3495 	 * This early console is always registered using the earlyprintk=
3496 	 * parameter, which does not call add_preferred_console(). Thus
3497 	 * @options is always NULL and the options for this early console
3498 	 * are passed using a custom buffer.
3499 	 */
3500 	WARN_ON(options);
3501 
3502 	return serial_console_setup(co, early_serial_buf);
3503 }
3504 
3505 static struct console early_serial_console = {
3506 	.name           = "early_ttySC",
3507 	.write          = serial_console_write,
3508 	.setup		= early_serial_console_setup,
3509 	.flags          = CON_PRINTBUFFER,
3510 	.index		= -1,
3511 };
3512 
3513 static int sci_probe_earlyprintk(struct platform_device *pdev)
3514 {
3515 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3516 	struct sci_port *sp = &sci_ports[pdev->id];
3517 
3518 	if (early_serial_console.data)
3519 		return -EEXIST;
3520 
3521 	early_serial_console.index = pdev->id;
3522 
3523 	sp->params = sci_probe_regmap(cfg, sp);
3524 	if (!sp->params)
3525 		return -ENODEV;
3526 
3527 	sci_init_single(pdev, sp, pdev->id, cfg, true);
3528 
3529 	if (!strstr(early_serial_buf, "keep"))
3530 		early_serial_console.flags |= CON_BOOT;
3531 
3532 	register_console(&early_serial_console);
3533 	return 0;
3534 }
3535 #endif
3536 
3537 #define SCI_CONSOLE	(&serial_console)
3538 
3539 #else
3540 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3541 {
3542 	return -EINVAL;
3543 }
3544 
3545 #define SCI_CONSOLE	NULL
3546 
3547 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3548 
3549 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3550 
3551 static DEFINE_MUTEX(sci_uart_registration_lock);
3552 static struct uart_driver sci_uart_driver = {
3553 	.owner		= THIS_MODULE,
3554 	.driver_name	= "sci",
3555 	.dev_name	= "ttySC",
3556 	.major		= SCI_MAJOR,
3557 	.minor		= SCI_MINOR_START,
3558 	.nr		= SCI_NPORTS,
3559 	.cons		= SCI_CONSOLE,
3560 };
3561 
3562 static void sci_remove(struct platform_device *dev)
3563 {
3564 	struct sci_port *s = platform_get_drvdata(dev);
3565 
3566 	sci_ports_in_use &= ~BIT(s->port.line);
3567 	uart_remove_one_port(&sci_uart_driver, &s->port);
3568 
3569 	if (s->port.fifosize > 1) {
3570 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3571 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3572 	}
3573 }
3574 
3575 static const struct sci_of_data of_sci_scif_sh2 = {
3576 	.type = PORT_SCIF,
3577 	.regtype = SCIx_SH2_SCIF_FIFODATA_REGTYPE,
3578 	.ops = &sci_port_ops,
3579 	.uart_ops = &sci_uart_ops,
3580 	.params = &sci_port_params[SCIx_SH2_SCIF_FIFODATA_REGTYPE],
3581 };
3582 
3583 static const struct sci_of_data of_sci_scif_rz_scifa = {
3584 	.type = PORT_SCIF,
3585 	.regtype = SCIx_RZ_SCIFA_REGTYPE,
3586 	.ops = &sci_port_ops,
3587 	.uart_ops = &sci_uart_ops,
3588 	.params = &sci_port_params[SCIx_RZ_SCIFA_REGTYPE],
3589 };
3590 
3591 static const struct sci_of_data of_sci_scif_rzv2h = {
3592 	.type = PORT_SCIF,
3593 	.regtype = SCIx_RZV2H_SCIF_REGTYPE,
3594 	.ops = &sci_port_ops,
3595 	.uart_ops = &sci_uart_ops,
3596 	.params = &sci_port_params[SCIx_RZV2H_SCIF_REGTYPE],
3597 };
3598 
3599 static const struct sci_of_data of_sci_rcar_scif = {
3600 	.type = PORT_SCIF,
3601 	.regtype = SCIx_SH4_SCIF_BRG_REGTYPE,
3602 	.ops = &sci_port_ops,
3603 	.uart_ops = &sci_uart_ops,
3604 	.params = &sci_port_params[SCIx_SH4_SCIF_BRG_REGTYPE],
3605 };
3606 
3607 static const struct sci_of_data of_sci_scif_sh4 = {
3608 	.type = PORT_SCIF,
3609 	.regtype = SCIx_SH4_SCIF_REGTYPE,
3610 	.ops = &sci_port_ops,
3611 	.uart_ops = &sci_uart_ops,
3612 	.params = &sci_port_params[SCIx_SH4_SCIF_REGTYPE],
3613 };
3614 
3615 static const struct sci_of_data of_sci_scifa = {
3616 	.type = PORT_SCIFA,
3617 	.regtype = SCIx_SCIFA_REGTYPE,
3618 	.ops = &sci_port_ops,
3619 	.uart_ops = &sci_uart_ops,
3620 	.params = &sci_port_params[SCIx_SCIFA_REGTYPE],
3621 };
3622 
3623 static const struct sci_of_data of_sci_scifb = {
3624 	.type = PORT_SCIFB,
3625 	.regtype = SCIx_SCIFB_REGTYPE,
3626 	.ops = &sci_port_ops,
3627 	.uart_ops = &sci_uart_ops,
3628 	.params = &sci_port_params[SCIx_SCIFB_REGTYPE],
3629 };
3630 
3631 static const struct sci_of_data of_sci_hscif = {
3632 	.type = PORT_HSCIF,
3633 	.regtype = SCIx_HSCIF_REGTYPE,
3634 	.ops = &sci_port_ops,
3635 	.uart_ops = &sci_uart_ops,
3636 	.params = &sci_port_params[SCIx_HSCIF_REGTYPE],
3637 };
3638 
3639 static const struct sci_of_data of_sci_sci = {
3640 	.type = PORT_SCI,
3641 	.regtype = SCIx_SCI_REGTYPE,
3642 	.ops = &sci_port_ops,
3643 	.uart_ops = &sci_uart_ops,
3644 	.params = &sci_port_params[SCIx_SCI_REGTYPE],
3645 };
3646 
3647 static const struct of_device_id of_sci_match[] __maybe_unused = {
3648 	/* SoC-specific types */
3649 	{
3650 		.compatible = "renesas,scif-r7s72100",
3651 		.data = &of_sci_scif_sh2,
3652 	},
3653 	{
3654 		.compatible = "renesas,scif-r7s9210",
3655 		.data = &of_sci_scif_rz_scifa,
3656 	},
3657 	{
3658 		.compatible = "renesas,scif-r9a07g044",
3659 		.data = &of_sci_scif_rz_scifa,
3660 	},
3661 	{
3662 		.compatible = "renesas,scif-r9a09g057",
3663 		.data = &of_sci_scif_rzv2h,
3664 	},
3665 #ifdef CONFIG_SERIAL_RSCI
3666 	{
3667 		.compatible = "renesas,r9a09g047-rsci",
3668 		.data = &of_rsci_rzg3e_data,
3669 	},
3670 	{
3671 		.compatible = "renesas,r9a09g077-rsci",
3672 		.data = &of_rsci_rzt2h_data,
3673 	},
3674 #endif	/* CONFIG_SERIAL_RSCI */
3675 	/* Family-specific types */
3676 	{
3677 		.compatible = "renesas,rcar-gen1-scif",
3678 		.data = &of_sci_rcar_scif,
3679 	}, {
3680 		.compatible = "renesas,rcar-gen2-scif",
3681 		.data = &of_sci_rcar_scif,
3682 	}, {
3683 		.compatible = "renesas,rcar-gen3-scif",
3684 		.data = &of_sci_rcar_scif
3685 	}, {
3686 		.compatible = "renesas,rcar-gen4-scif",
3687 		.data = &of_sci_rcar_scif
3688 	}, {
3689 		.compatible = "renesas,rcar-gen5-scif",
3690 		.data = &of_sci_rcar_scif
3691 	},
3692 	/* Generic types */
3693 	{
3694 		.compatible = "renesas,scif",
3695 		.data = &of_sci_scif_sh4,
3696 	}, {
3697 		.compatible = "renesas,scifa",
3698 		.data = &of_sci_scifa,
3699 	}, {
3700 		.compatible = "renesas,scifb",
3701 		.data = &of_sci_scifb,
3702 	}, {
3703 		.compatible = "renesas,hscif",
3704 		.data = &of_sci_hscif,
3705 	}, {
3706 		.compatible = "renesas,sci",
3707 		.data = &of_sci_sci,
3708 	}, {
3709 		/* Terminator */
3710 	},
3711 };
3712 MODULE_DEVICE_TABLE(of, of_sci_match);
3713 
3714 static void sci_reset_control_assert(void *data)
3715 {
3716 	reset_control_assert(data);
3717 }
3718 
3719 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3720 					  unsigned int *dev_id)
3721 {
3722 	struct device_node *np = pdev->dev.of_node;
3723 	struct reset_control *rstc;
3724 	struct plat_sci_port *p;
3725 	struct sci_port *sp;
3726 	const struct sci_of_data *data;
3727 	int id, ret;
3728 
3729 	if (!IS_ENABLED(CONFIG_OF) || !np)
3730 		return ERR_PTR(-EINVAL);
3731 
3732 	data = of_device_get_match_data(&pdev->dev);
3733 
3734 	rstc = devm_reset_control_array_get_optional_exclusive(&pdev->dev);
3735 	if (IS_ERR(rstc))
3736 		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3737 					     "failed to get reset ctrl\n"));
3738 
3739 	ret = reset_control_deassert(rstc);
3740 	if (ret) {
3741 		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3742 		return ERR_PTR(ret);
3743 	}
3744 
3745 	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3746 	if (ret) {
3747 		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3748 			ret);
3749 		return ERR_PTR(ret);
3750 	}
3751 
3752 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3753 	if (!p)
3754 		return ERR_PTR(-ENOMEM);
3755 
3756 	/* Get the line number from the aliases node. */
3757 	id = of_alias_get_id(np, "serial");
3758 	if (id < 0 && ~sci_ports_in_use)
3759 		id = ffz(sci_ports_in_use);
3760 	if (id < 0) {
3761 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3762 		return ERR_PTR(-EINVAL);
3763 	}
3764 	if (id >= ARRAY_SIZE(sci_ports)) {
3765 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3766 		return ERR_PTR(-EINVAL);
3767 	}
3768 
3769 	sp = &sci_ports[id];
3770 	sp->rstc = rstc;
3771 	*dev_id = id;
3772 
3773 	p->type = data->type;
3774 	p->regtype = data->regtype;
3775 
3776 	sp->ops = data->ops;
3777 	sp->port.ops = data->uart_ops;
3778 	sp->params = data->params;
3779 
3780 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3781 
3782 	return p;
3783 }
3784 
3785 static int sci_probe_single(struct platform_device *dev,
3786 				      unsigned int index,
3787 				      struct plat_sci_port *p,
3788 				      struct sci_port *sciport,
3789 				      struct resource *sci_res)
3790 {
3791 	int ret;
3792 
3793 	/* Sanity check */
3794 	if (unlikely(index >= SCI_NPORTS)) {
3795 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3796 			   index+1, SCI_NPORTS);
3797 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3798 		return -EINVAL;
3799 	}
3800 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3801 	if (sci_ports_in_use & BIT(index))
3802 		return -EBUSY;
3803 
3804 	mutex_lock(&sci_uart_registration_lock);
3805 	if (!sci_uart_driver.state) {
3806 		ret = uart_register_driver(&sci_uart_driver);
3807 		if (ret) {
3808 			mutex_unlock(&sci_uart_registration_lock);
3809 			return ret;
3810 		}
3811 	}
3812 	mutex_unlock(&sci_uart_registration_lock);
3813 
3814 	ret = sci_init_single(dev, sciport, index, p, false);
3815 	if (ret)
3816 		return ret;
3817 
3818 	sciport->port.dev = &dev->dev;
3819 	ret = devm_pm_runtime_enable(&dev->dev);
3820 	if (ret)
3821 		return ret;
3822 
3823 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3824 	if (IS_ERR(sciport->gpios))
3825 		return PTR_ERR(sciport->gpios);
3826 
3827 	if (sciport->has_rtscts) {
3828 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3829 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3830 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3831 			return -EINVAL;
3832 		}
3833 		sciport->port.flags |= UPF_HARD_FLOW;
3834 	}
3835 
3836 	if (sci_uart_earlycon && sci_ports[0].port.mapbase == sci_res->start) {
3837 		/*
3838 		 * In case:
3839 		 * - this is the earlycon port (mapped on index 0 in sci_ports[]) and
3840 		 * - it now maps to an alias other than zero and
3841 		 * - the earlycon is still alive (e.g., "earlycon keep_bootcon" is
3842 		 *   available in bootargs)
3843 		 *
3844 		 * we need to avoid disabling clocks and PM domains through the runtime
3845 		 * PM APIs called in __device_attach(). For this, increment the runtime
3846 		 * PM reference counter (the clocks and PM domains were already enabled
3847 		 * by the bootloader). Otherwise the earlycon may access the HW when it
3848 		 * has no clocks enabled leading to failures (infinite loop in
3849 		 * sci_poll_put_char()).
3850 		 */
3851 		pm_runtime_get_noresume(&dev->dev);
3852 
3853 		/*
3854 		 * Skip cleanup the sci_port[0] in early_console_exit(), this
3855 		 * port is the same as the earlycon one.
3856 		 */
3857 		sci_uart_earlycon_dev_probing = true;
3858 	}
3859 
3860 	return uart_add_one_port(&sci_uart_driver, &sciport->port);
3861 }
3862 
3863 static int sci_probe(struct platform_device *dev)
3864 {
3865 	struct plat_sci_port *p;
3866 	struct resource *res;
3867 	struct sci_port *sp;
3868 	unsigned int dev_id;
3869 	int ret;
3870 
3871 	/*
3872 	 * If we've come here via earlyprintk initialization, head off to
3873 	 * the special early probe. We don't have sufficient device state
3874 	 * to make it beyond this yet.
3875 	 */
3876 #ifdef CONFIG_SUPERH
3877 	if (is_sh_early_platform_device(dev))
3878 		return sci_probe_earlyprintk(dev);
3879 #endif
3880 
3881 	if (dev->dev.of_node) {
3882 		p = sci_parse_dt(dev, &dev_id);
3883 		if (IS_ERR(p))
3884 			return PTR_ERR(p);
3885 		sp = &sci_ports[dev_id];
3886 	} else {
3887 		p = dev->dev.platform_data;
3888 		if (p == NULL) {
3889 			dev_err(&dev->dev, "no platform data supplied\n");
3890 			return -EINVAL;
3891 		}
3892 
3893 		dev_id = dev->id;
3894 		sp = &sci_ports[dev_id];
3895 		sp->params = sci_probe_regmap(p, sp);
3896 		if (!sp->params)
3897 			return -ENODEV;
3898 	}
3899 
3900 	sp->suspend_regs = devm_kzalloc(&dev->dev,
3901 					sp->ops->suspend_regs_size(),
3902 					GFP_KERNEL);
3903 	if (!sp->suspend_regs)
3904 		return -ENOMEM;
3905 
3906 	/*
3907 	 * In case:
3908 	 * - the probed port alias is zero (as the one used by earlycon), and
3909 	 * - the earlycon is still active (e.g., "earlycon keep_bootcon" in
3910 	 *   bootargs)
3911 	 *
3912 	 * defer the probe of this serial. This is a debug scenario and the user
3913 	 * must be aware of it.
3914 	 *
3915 	 * Except when the probed port is the same as the earlycon port.
3916 	 */
3917 
3918 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
3919 	if (!res)
3920 		return -ENODEV;
3921 
3922 	if (sci_uart_earlycon && sp == &sci_ports[0] && sp->port.mapbase != res->start)
3923 		return dev_err_probe(&dev->dev, -EBUSY, "sci_port[0] is used by earlycon!\n");
3924 
3925 	platform_set_drvdata(dev, sp);
3926 
3927 	ret = sci_probe_single(dev, dev_id, p, sp, res);
3928 	if (ret)
3929 		return ret;
3930 
3931 	if (sp->port.fifosize > 1) {
3932 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3933 		if (ret)
3934 			return ret;
3935 
3936 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3937 		if (ret) {
3938 			device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3939 			return ret;
3940 		}
3941 	}
3942 
3943 #ifdef CONFIG_SH_STANDARD_BIOS
3944 	sh_bios_gdb_detach();
3945 #endif
3946 
3947 	sci_ports_in_use |= BIT(dev_id);
3948 	return 0;
3949 }
3950 
3951 static int sci_suspend(struct device *dev)
3952 {
3953 	struct sci_port *sport = dev_get_drvdata(dev);
3954 
3955 	if (sport) {
3956 		uart_suspend_port(&sci_uart_driver, &sport->port);
3957 
3958 		if (!console_suspend_enabled && uart_console(&sport->port)) {
3959 			if (sport->ops->console_save)
3960 				sport->ops->console_save(&sport->port);
3961 		}
3962 		else
3963 			return reset_control_assert(sport->rstc);
3964 	}
3965 
3966 	return 0;
3967 }
3968 
3969 static int sci_resume(struct device *dev)
3970 {
3971 	struct sci_port *sport = dev_get_drvdata(dev);
3972 
3973 	if (sport) {
3974 		if (!console_suspend_enabled && uart_console(&sport->port)) {
3975 			if (sport->ops->console_restore)
3976 				sport->ops->console_restore(&sport->port);
3977 		} else {
3978 			int ret = reset_control_deassert(sport->rstc);
3979 
3980 			if (ret)
3981 				return ret;
3982 		}
3983 
3984 		uart_resume_port(&sci_uart_driver, &sport->port);
3985 	}
3986 
3987 	return 0;
3988 }
3989 
3990 static DEFINE_SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3991 
3992 static struct platform_driver sci_driver = {
3993 	.probe		= sci_probe,
3994 	.remove		= sci_remove,
3995 	.driver		= {
3996 		.name	= "sh-sci",
3997 		.pm	= pm_sleep_ptr(&sci_dev_pm_ops),
3998 		.of_match_table = of_match_ptr(of_sci_match),
3999 	},
4000 };
4001 
4002 static int __init sci_init(void)
4003 {
4004 	pr_info("%s\n", banner);
4005 
4006 	return platform_driver_register(&sci_driver);
4007 }
4008 
4009 static void __exit sci_exit(void)
4010 {
4011 	platform_driver_unregister(&sci_driver);
4012 
4013 	if (sci_uart_driver.state)
4014 		uart_unregister_driver(&sci_uart_driver);
4015 }
4016 
4017 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
4018 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
4019 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
4020 #endif
4021 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
4022 static struct plat_sci_port port_cfg;
4023 
4024 static int early_console_exit(struct console *co)
4025 {
4026 	struct sci_port *sci_port = &sci_ports[0];
4027 
4028 	/*
4029 	 * Clean the slot used by earlycon. A new SCI device might
4030 	 * map to this slot.
4031 	 */
4032 	if (!sci_uart_earlycon_dev_probing) {
4033 		memset(sci_port, 0, sizeof(*sci_port));
4034 		sci_uart_earlycon = false;
4035 	}
4036 
4037 	return 0;
4038 }
4039 
4040 int __init scix_early_console_setup(struct earlycon_device *device,
4041 				    const struct sci_of_data *data)
4042 {
4043 	const struct sci_common_regs *regs;
4044 
4045 	if (!device->port.membase)
4046 		return -ENODEV;
4047 
4048 	device->port.type = SCI_PUBLIC_PORT_ID(data->type);
4049 
4050 	sci_ports[0].port = device->port;
4051 	sci_ports[0].type = data->type;
4052 	sci_ports[0].regtype = data->regtype;
4053 
4054 	port_cfg.type = data->type;
4055 	port_cfg.regtype = data->regtype;
4056 
4057 	sci_ports[0].cfg = &port_cfg;
4058 	sci_ports[0].params = data->params;
4059 	sci_ports[0].ops = data->ops;
4060 	sci_ports[0].port.ops = data->uart_ops;
4061 	sci_uart_earlycon = true;
4062 	regs = sci_ports[0].params->common_regs;
4063 
4064 	port_cfg.scscr = sci_ports[0].ops->read_reg(&sci_ports[0].port, regs->control);
4065 	sci_ports[0].ops->write_reg(&sci_ports[0].port,
4066 				    regs->control,
4067 				    sci_ports[0].params->param_bits->rxtx_enable | port_cfg.scscr);
4068 
4069 	device->con->write = serial_console_write;
4070 	device->con->exit = early_console_exit;
4071 
4072 	return 0;
4073 }
4074 static int __init sci_early_console_setup(struct earlycon_device *device,
4075 					  const char *opt)
4076 {
4077 	return scix_early_console_setup(device, &of_sci_sci);
4078 }
4079 static int __init scif_early_console_setup(struct earlycon_device *device,
4080 					  const char *opt)
4081 {
4082 	return scix_early_console_setup(device, &of_sci_scif_sh4);
4083 }
4084 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
4085 					  const char *opt)
4086 {
4087 	return scix_early_console_setup(device, &of_sci_scif_rz_scifa);
4088 }
4089 
4090 static int __init rzv2hscif_early_console_setup(struct earlycon_device *device,
4091 						const char *opt)
4092 {
4093 	return scix_early_console_setup(device, &of_sci_scif_rzv2h);
4094 }
4095 
4096 static int __init scifa_early_console_setup(struct earlycon_device *device,
4097 					  const char *opt)
4098 {
4099 	return scix_early_console_setup(device, &of_sci_scifa);
4100 }
4101 static int __init scifb_early_console_setup(struct earlycon_device *device,
4102 					  const char *opt)
4103 {
4104 	return scix_early_console_setup(device, &of_sci_scifb);
4105 }
4106 static int __init hscif_early_console_setup(struct earlycon_device *device,
4107 					  const char *opt)
4108 {
4109 	return scix_early_console_setup(device, &of_sci_hscif);
4110 }
4111 
4112 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
4113 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
4114 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
4115 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
4116 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a09g057", rzv2hscif_early_console_setup);
4117 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
4118 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
4119 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
4120 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
4121 
4122 module_init(sci_init);
4123 module_exit(sci_exit);
4124 
4125 MODULE_LICENSE("GPL");
4126 MODULE_ALIAS("platform:sh-sci");
4127 MODULE_AUTHOR("Paul Mundt");
4128 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
4129