xref: /linux/drivers/tty/serial/sh-sci.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Copyright (C) 2015 Glider bvba
6  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
7  *
8  * based off of the old drivers/char/sh-sci.c by:
9  *
10  *   Copyright (C) 1999, 2000  Niibe Yutaka
11  *   Copyright (C) 2000  Sugioka Toshinobu
12  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
13  *   Modified to support SecureEdge. David McCullough (2002)
14  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
15  *   Removed SH7300 support (Jul 2007).
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  */
21 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
22 #define SUPPORT_SYSRQ
23 #endif
24 
25 #undef DEBUG
26 
27 #include <linux/clk.h>
28 #include <linux/console.h>
29 #include <linux/ctype.h>
30 #include <linux/cpufreq.h>
31 #include <linux/delay.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/errno.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/ioport.h>
39 #include <linux/major.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "sh-sci.h"
61 
62 /* Offsets into the sci_port->irqs array */
63 enum {
64 	SCIx_ERI_IRQ,
65 	SCIx_RXI_IRQ,
66 	SCIx_TXI_IRQ,
67 	SCIx_BRI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 enum SCI_CLKS {
80 	SCI_FCK,		/* Functional Clock */
81 	SCI_SCK,		/* Optional External Clock */
82 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84 	SCI_NUM_CLKS
85 };
86 
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x)		BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
90 
91 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 				SCI_SR(19) | SCI_SR(27)
94 
95 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
97 
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port)						\
100 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
101 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102 
103 struct sci_port {
104 	struct uart_port	port;
105 
106 	/* Platform configuration */
107 	struct plat_sci_port	*cfg;
108 	unsigned int		overrun_reg;
109 	unsigned int		overrun_mask;
110 	unsigned int		error_mask;
111 	unsigned int		error_clear;
112 	unsigned int		sampling_rate_mask;
113 	resource_size_t		reg_size;
114 
115 	/* Break timer */
116 	struct timer_list	break_timer;
117 	int			break_flag;
118 
119 	/* Clocks */
120 	struct clk		*clks[SCI_NUM_CLKS];
121 	unsigned long		clk_rates[SCI_NUM_CLKS];
122 
123 	int			irqs[SCIx_NR_IRQS];
124 	char			*irqstr[SCIx_NR_IRQS];
125 
126 	struct dma_chan			*chan_tx;
127 	struct dma_chan			*chan_rx;
128 
129 #ifdef CONFIG_SERIAL_SH_SCI_DMA
130 	dma_cookie_t			cookie_tx;
131 	dma_cookie_t			cookie_rx[2];
132 	dma_cookie_t			active_rx;
133 	dma_addr_t			tx_dma_addr;
134 	unsigned int			tx_dma_len;
135 	struct scatterlist		sg_rx[2];
136 	void				*rx_buf[2];
137 	size_t				buf_len_rx;
138 	struct work_struct		work_tx;
139 	struct timer_list		rx_timer;
140 	unsigned int			rx_timeout;
141 #endif
142 };
143 
144 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
145 
146 static struct sci_port sci_ports[SCI_NPORTS];
147 static struct uart_driver sci_uart_driver;
148 
149 static inline struct sci_port *
150 to_sci_port(struct uart_port *uart)
151 {
152 	return container_of(uart, struct sci_port, port);
153 }
154 
155 struct plat_sci_reg {
156 	u8 offset, size;
157 };
158 
159 /* Helper for invalidating specific entries of an inherited map. */
160 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
161 
162 static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
163 	[SCIx_PROBE_REGTYPE] = {
164 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
165 	},
166 
167 	/*
168 	 * Common SCI definitions, dependent on the port's regshift
169 	 * value.
170 	 */
171 	[SCIx_SCI_REGTYPE] = {
172 		[SCSMR]		= { 0x00,  8 },
173 		[SCBRR]		= { 0x01,  8 },
174 		[SCSCR]		= { 0x02,  8 },
175 		[SCxTDR]	= { 0x03,  8 },
176 		[SCxSR]		= { 0x04,  8 },
177 		[SCxRDR]	= { 0x05,  8 },
178 		[SCFCR]		= sci_reg_invalid,
179 		[SCFDR]		= sci_reg_invalid,
180 		[SCTFDR]	= sci_reg_invalid,
181 		[SCRFDR]	= sci_reg_invalid,
182 		[SCSPTR]	= sci_reg_invalid,
183 		[SCLSR]		= sci_reg_invalid,
184 		[HSSRR]		= sci_reg_invalid,
185 		[SCPCR]		= sci_reg_invalid,
186 		[SCPDR]		= sci_reg_invalid,
187 		[SCDL]		= sci_reg_invalid,
188 		[SCCKS]		= sci_reg_invalid,
189 	},
190 
191 	/*
192 	 * Common definitions for legacy IrDA ports, dependent on
193 	 * regshift value.
194 	 */
195 	[SCIx_IRDA_REGTYPE] = {
196 		[SCSMR]		= { 0x00,  8 },
197 		[SCBRR]		= { 0x01,  8 },
198 		[SCSCR]		= { 0x02,  8 },
199 		[SCxTDR]	= { 0x03,  8 },
200 		[SCxSR]		= { 0x04,  8 },
201 		[SCxRDR]	= { 0x05,  8 },
202 		[SCFCR]		= { 0x06,  8 },
203 		[SCFDR]		= { 0x07, 16 },
204 		[SCTFDR]	= sci_reg_invalid,
205 		[SCRFDR]	= sci_reg_invalid,
206 		[SCSPTR]	= sci_reg_invalid,
207 		[SCLSR]		= sci_reg_invalid,
208 		[HSSRR]		= sci_reg_invalid,
209 		[SCPCR]		= sci_reg_invalid,
210 		[SCPDR]		= sci_reg_invalid,
211 		[SCDL]		= sci_reg_invalid,
212 		[SCCKS]		= sci_reg_invalid,
213 	},
214 
215 	/*
216 	 * Common SCIFA definitions.
217 	 */
218 	[SCIx_SCIFA_REGTYPE] = {
219 		[SCSMR]		= { 0x00, 16 },
220 		[SCBRR]		= { 0x04,  8 },
221 		[SCSCR]		= { 0x08, 16 },
222 		[SCxTDR]	= { 0x20,  8 },
223 		[SCxSR]		= { 0x14, 16 },
224 		[SCxRDR]	= { 0x24,  8 },
225 		[SCFCR]		= { 0x18, 16 },
226 		[SCFDR]		= { 0x1c, 16 },
227 		[SCTFDR]	= sci_reg_invalid,
228 		[SCRFDR]	= sci_reg_invalid,
229 		[SCSPTR]	= sci_reg_invalid,
230 		[SCLSR]		= sci_reg_invalid,
231 		[HSSRR]		= sci_reg_invalid,
232 		[SCPCR]		= { 0x30, 16 },
233 		[SCPDR]		= { 0x34, 16 },
234 		[SCDL]		= sci_reg_invalid,
235 		[SCCKS]		= sci_reg_invalid,
236 	},
237 
238 	/*
239 	 * Common SCIFB definitions.
240 	 */
241 	[SCIx_SCIFB_REGTYPE] = {
242 		[SCSMR]		= { 0x00, 16 },
243 		[SCBRR]		= { 0x04,  8 },
244 		[SCSCR]		= { 0x08, 16 },
245 		[SCxTDR]	= { 0x40,  8 },
246 		[SCxSR]		= { 0x14, 16 },
247 		[SCxRDR]	= { 0x60,  8 },
248 		[SCFCR]		= { 0x18, 16 },
249 		[SCFDR]		= sci_reg_invalid,
250 		[SCTFDR]	= { 0x38, 16 },
251 		[SCRFDR]	= { 0x3c, 16 },
252 		[SCSPTR]	= sci_reg_invalid,
253 		[SCLSR]		= sci_reg_invalid,
254 		[HSSRR]		= sci_reg_invalid,
255 		[SCPCR]		= { 0x30, 16 },
256 		[SCPDR]		= { 0x34, 16 },
257 		[SCDL]		= sci_reg_invalid,
258 		[SCCKS]		= sci_reg_invalid,
259 	},
260 
261 	/*
262 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
263 	 * count registers.
264 	 */
265 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
266 		[SCSMR]		= { 0x00, 16 },
267 		[SCBRR]		= { 0x04,  8 },
268 		[SCSCR]		= { 0x08, 16 },
269 		[SCxTDR]	= { 0x0c,  8 },
270 		[SCxSR]		= { 0x10, 16 },
271 		[SCxRDR]	= { 0x14,  8 },
272 		[SCFCR]		= { 0x18, 16 },
273 		[SCFDR]		= { 0x1c, 16 },
274 		[SCTFDR]	= sci_reg_invalid,
275 		[SCRFDR]	= sci_reg_invalid,
276 		[SCSPTR]	= { 0x20, 16 },
277 		[SCLSR]		= { 0x24, 16 },
278 		[HSSRR]		= sci_reg_invalid,
279 		[SCPCR]		= sci_reg_invalid,
280 		[SCPDR]		= sci_reg_invalid,
281 		[SCDL]		= sci_reg_invalid,
282 		[SCCKS]		= sci_reg_invalid,
283 	},
284 
285 	/*
286 	 * Common SH-3 SCIF definitions.
287 	 */
288 	[SCIx_SH3_SCIF_REGTYPE] = {
289 		[SCSMR]		= { 0x00,  8 },
290 		[SCBRR]		= { 0x02,  8 },
291 		[SCSCR]		= { 0x04,  8 },
292 		[SCxTDR]	= { 0x06,  8 },
293 		[SCxSR]		= { 0x08, 16 },
294 		[SCxRDR]	= { 0x0a,  8 },
295 		[SCFCR]		= { 0x0c,  8 },
296 		[SCFDR]		= { 0x0e, 16 },
297 		[SCTFDR]	= sci_reg_invalid,
298 		[SCRFDR]	= sci_reg_invalid,
299 		[SCSPTR]	= sci_reg_invalid,
300 		[SCLSR]		= sci_reg_invalid,
301 		[HSSRR]		= sci_reg_invalid,
302 		[SCPCR]		= sci_reg_invalid,
303 		[SCPDR]		= sci_reg_invalid,
304 		[SCDL]		= sci_reg_invalid,
305 		[SCCKS]		= sci_reg_invalid,
306 	},
307 
308 	/*
309 	 * Common SH-4(A) SCIF(B) definitions.
310 	 */
311 	[SCIx_SH4_SCIF_REGTYPE] = {
312 		[SCSMR]		= { 0x00, 16 },
313 		[SCBRR]		= { 0x04,  8 },
314 		[SCSCR]		= { 0x08, 16 },
315 		[SCxTDR]	= { 0x0c,  8 },
316 		[SCxSR]		= { 0x10, 16 },
317 		[SCxRDR]	= { 0x14,  8 },
318 		[SCFCR]		= { 0x18, 16 },
319 		[SCFDR]		= { 0x1c, 16 },
320 		[SCTFDR]	= sci_reg_invalid,
321 		[SCRFDR]	= sci_reg_invalid,
322 		[SCSPTR]	= { 0x20, 16 },
323 		[SCLSR]		= { 0x24, 16 },
324 		[HSSRR]		= sci_reg_invalid,
325 		[SCPCR]		= sci_reg_invalid,
326 		[SCPDR]		= sci_reg_invalid,
327 		[SCDL]		= sci_reg_invalid,
328 		[SCCKS]		= sci_reg_invalid,
329 	},
330 
331 	/*
332 	 * Common SCIF definitions for ports with a Baud Rate Generator for
333 	 * External Clock (BRG).
334 	 */
335 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
336 		[SCSMR]		= { 0x00, 16 },
337 		[SCBRR]		= { 0x04,  8 },
338 		[SCSCR]		= { 0x08, 16 },
339 		[SCxTDR]	= { 0x0c,  8 },
340 		[SCxSR]		= { 0x10, 16 },
341 		[SCxRDR]	= { 0x14,  8 },
342 		[SCFCR]		= { 0x18, 16 },
343 		[SCFDR]		= { 0x1c, 16 },
344 		[SCTFDR]	= sci_reg_invalid,
345 		[SCRFDR]	= sci_reg_invalid,
346 		[SCSPTR]	= { 0x20, 16 },
347 		[SCLSR]		= { 0x24, 16 },
348 		[HSSRR]		= sci_reg_invalid,
349 		[SCPCR]		= sci_reg_invalid,
350 		[SCPDR]		= sci_reg_invalid,
351 		[SCDL]		= { 0x30, 16 },
352 		[SCCKS]		= { 0x34, 16 },
353 	},
354 
355 	/*
356 	 * Common HSCIF definitions.
357 	 */
358 	[SCIx_HSCIF_REGTYPE] = {
359 		[SCSMR]		= { 0x00, 16 },
360 		[SCBRR]		= { 0x04,  8 },
361 		[SCSCR]		= { 0x08, 16 },
362 		[SCxTDR]	= { 0x0c,  8 },
363 		[SCxSR]		= { 0x10, 16 },
364 		[SCxRDR]	= { 0x14,  8 },
365 		[SCFCR]		= { 0x18, 16 },
366 		[SCFDR]		= { 0x1c, 16 },
367 		[SCTFDR]	= sci_reg_invalid,
368 		[SCRFDR]	= sci_reg_invalid,
369 		[SCSPTR]	= { 0x20, 16 },
370 		[SCLSR]		= { 0x24, 16 },
371 		[HSSRR]		= { 0x40, 16 },
372 		[SCPCR]		= sci_reg_invalid,
373 		[SCPDR]		= sci_reg_invalid,
374 		[SCDL]		= { 0x30, 16 },
375 		[SCCKS]		= { 0x34, 16 },
376 	},
377 
378 	/*
379 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
380 	 * register.
381 	 */
382 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
383 		[SCSMR]		= { 0x00, 16 },
384 		[SCBRR]		= { 0x04,  8 },
385 		[SCSCR]		= { 0x08, 16 },
386 		[SCxTDR]	= { 0x0c,  8 },
387 		[SCxSR]		= { 0x10, 16 },
388 		[SCxRDR]	= { 0x14,  8 },
389 		[SCFCR]		= { 0x18, 16 },
390 		[SCFDR]		= { 0x1c, 16 },
391 		[SCTFDR]	= sci_reg_invalid,
392 		[SCRFDR]	= sci_reg_invalid,
393 		[SCSPTR]	= sci_reg_invalid,
394 		[SCLSR]		= { 0x24, 16 },
395 		[HSSRR]		= sci_reg_invalid,
396 		[SCPCR]		= sci_reg_invalid,
397 		[SCPDR]		= sci_reg_invalid,
398 		[SCDL]		= sci_reg_invalid,
399 		[SCCKS]		= sci_reg_invalid,
400 	},
401 
402 	/*
403 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
404 	 * count registers.
405 	 */
406 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
407 		[SCSMR]		= { 0x00, 16 },
408 		[SCBRR]		= { 0x04,  8 },
409 		[SCSCR]		= { 0x08, 16 },
410 		[SCxTDR]	= { 0x0c,  8 },
411 		[SCxSR]		= { 0x10, 16 },
412 		[SCxRDR]	= { 0x14,  8 },
413 		[SCFCR]		= { 0x18, 16 },
414 		[SCFDR]		= { 0x1c, 16 },
415 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
416 		[SCRFDR]	= { 0x20, 16 },
417 		[SCSPTR]	= { 0x24, 16 },
418 		[SCLSR]		= { 0x28, 16 },
419 		[HSSRR]		= sci_reg_invalid,
420 		[SCPCR]		= sci_reg_invalid,
421 		[SCPDR]		= sci_reg_invalid,
422 		[SCDL]		= sci_reg_invalid,
423 		[SCCKS]		= sci_reg_invalid,
424 	},
425 
426 	/*
427 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
428 	 * registers.
429 	 */
430 	[SCIx_SH7705_SCIF_REGTYPE] = {
431 		[SCSMR]		= { 0x00, 16 },
432 		[SCBRR]		= { 0x04,  8 },
433 		[SCSCR]		= { 0x08, 16 },
434 		[SCxTDR]	= { 0x20,  8 },
435 		[SCxSR]		= { 0x14, 16 },
436 		[SCxRDR]	= { 0x24,  8 },
437 		[SCFCR]		= { 0x18, 16 },
438 		[SCFDR]		= { 0x1c, 16 },
439 		[SCTFDR]	= sci_reg_invalid,
440 		[SCRFDR]	= sci_reg_invalid,
441 		[SCSPTR]	= sci_reg_invalid,
442 		[SCLSR]		= sci_reg_invalid,
443 		[HSSRR]		= sci_reg_invalid,
444 		[SCPCR]		= sci_reg_invalid,
445 		[SCPDR]		= sci_reg_invalid,
446 		[SCDL]		= sci_reg_invalid,
447 		[SCCKS]		= sci_reg_invalid,
448 	},
449 };
450 
451 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
452 
453 /*
454  * The "offset" here is rather misleading, in that it refers to an enum
455  * value relative to the port mapping rather than the fixed offset
456  * itself, which needs to be manually retrieved from the platform's
457  * register map for the given port.
458  */
459 static unsigned int sci_serial_in(struct uart_port *p, int offset)
460 {
461 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
462 
463 	if (reg->size == 8)
464 		return ioread8(p->membase + (reg->offset << p->regshift));
465 	else if (reg->size == 16)
466 		return ioread16(p->membase + (reg->offset << p->regshift));
467 	else
468 		WARN(1, "Invalid register access\n");
469 
470 	return 0;
471 }
472 
473 static void sci_serial_out(struct uart_port *p, int offset, int value)
474 {
475 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
476 
477 	if (reg->size == 8)
478 		iowrite8(value, p->membase + (reg->offset << p->regshift));
479 	else if (reg->size == 16)
480 		iowrite16(value, p->membase + (reg->offset << p->regshift));
481 	else
482 		WARN(1, "Invalid register access\n");
483 }
484 
485 static int sci_probe_regmap(struct plat_sci_port *cfg)
486 {
487 	switch (cfg->type) {
488 	case PORT_SCI:
489 		cfg->regtype = SCIx_SCI_REGTYPE;
490 		break;
491 	case PORT_IRDA:
492 		cfg->regtype = SCIx_IRDA_REGTYPE;
493 		break;
494 	case PORT_SCIFA:
495 		cfg->regtype = SCIx_SCIFA_REGTYPE;
496 		break;
497 	case PORT_SCIFB:
498 		cfg->regtype = SCIx_SCIFB_REGTYPE;
499 		break;
500 	case PORT_SCIF:
501 		/*
502 		 * The SH-4 is a bit of a misnomer here, although that's
503 		 * where this particular port layout originated. This
504 		 * configuration (or some slight variation thereof)
505 		 * remains the dominant model for all SCIFs.
506 		 */
507 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
508 		break;
509 	case PORT_HSCIF:
510 		cfg->regtype = SCIx_HSCIF_REGTYPE;
511 		break;
512 	default:
513 		pr_err("Can't probe register map for given port\n");
514 		return -EINVAL;
515 	}
516 
517 	return 0;
518 }
519 
520 static void sci_port_enable(struct sci_port *sci_port)
521 {
522 	unsigned int i;
523 
524 	if (!sci_port->port.dev)
525 		return;
526 
527 	pm_runtime_get_sync(sci_port->port.dev);
528 
529 	for (i = 0; i < SCI_NUM_CLKS; i++) {
530 		clk_prepare_enable(sci_port->clks[i]);
531 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
532 	}
533 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
534 }
535 
536 static void sci_port_disable(struct sci_port *sci_port)
537 {
538 	unsigned int i;
539 
540 	if (!sci_port->port.dev)
541 		return;
542 
543 	/* Cancel the break timer to ensure that the timer handler will not try
544 	 * to access the hardware with clocks and power disabled. Reset the
545 	 * break flag to make the break debouncing state machine ready for the
546 	 * next break.
547 	 */
548 	del_timer_sync(&sci_port->break_timer);
549 	sci_port->break_flag = 0;
550 
551 	for (i = SCI_NUM_CLKS; i-- > 0; )
552 		clk_disable_unprepare(sci_port->clks[i]);
553 
554 	pm_runtime_put_sync(sci_port->port.dev);
555 }
556 
557 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
558 {
559 	/*
560 	 * Not all ports (such as SCIFA) will support REIE. Rather than
561 	 * special-casing the port type, we check the port initialization
562 	 * IRQ enable mask to see whether the IRQ is desired at all. If
563 	 * it's unset, it's logically inferred that there's no point in
564 	 * testing for it.
565 	 */
566 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
567 }
568 
569 static void sci_start_tx(struct uart_port *port)
570 {
571 	struct sci_port *s = to_sci_port(port);
572 	unsigned short ctrl;
573 
574 #ifdef CONFIG_SERIAL_SH_SCI_DMA
575 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
576 		u16 new, scr = serial_port_in(port, SCSCR);
577 		if (s->chan_tx)
578 			new = scr | SCSCR_TDRQE;
579 		else
580 			new = scr & ~SCSCR_TDRQE;
581 		if (new != scr)
582 			serial_port_out(port, SCSCR, new);
583 	}
584 
585 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
586 	    dma_submit_error(s->cookie_tx)) {
587 		s->cookie_tx = 0;
588 		schedule_work(&s->work_tx);
589 	}
590 #endif
591 
592 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
593 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
594 		ctrl = serial_port_in(port, SCSCR);
595 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
596 	}
597 }
598 
599 static void sci_stop_tx(struct uart_port *port)
600 {
601 	unsigned short ctrl;
602 
603 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
604 	ctrl = serial_port_in(port, SCSCR);
605 
606 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
607 		ctrl &= ~SCSCR_TDRQE;
608 
609 	ctrl &= ~SCSCR_TIE;
610 
611 	serial_port_out(port, SCSCR, ctrl);
612 }
613 
614 static void sci_start_rx(struct uart_port *port)
615 {
616 	unsigned short ctrl;
617 
618 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
619 
620 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
621 		ctrl &= ~SCSCR_RDRQE;
622 
623 	serial_port_out(port, SCSCR, ctrl);
624 }
625 
626 static void sci_stop_rx(struct uart_port *port)
627 {
628 	unsigned short ctrl;
629 
630 	ctrl = serial_port_in(port, SCSCR);
631 
632 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
633 		ctrl &= ~SCSCR_RDRQE;
634 
635 	ctrl &= ~port_rx_irq_mask(port);
636 
637 	serial_port_out(port, SCSCR, ctrl);
638 }
639 
640 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
641 {
642 	if (port->type == PORT_SCI) {
643 		/* Just store the mask */
644 		serial_port_out(port, SCxSR, mask);
645 	} else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
646 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
647 		/* Only clear the status bits we want to clear */
648 		serial_port_out(port, SCxSR,
649 				serial_port_in(port, SCxSR) & mask);
650 	} else {
651 		/* Store the mask, clear parity/framing errors */
652 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
653 	}
654 }
655 
656 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
657     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
658 
659 #ifdef CONFIG_CONSOLE_POLL
660 static int sci_poll_get_char(struct uart_port *port)
661 {
662 	unsigned short status;
663 	int c;
664 
665 	do {
666 		status = serial_port_in(port, SCxSR);
667 		if (status & SCxSR_ERRORS(port)) {
668 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
669 			continue;
670 		}
671 		break;
672 	} while (1);
673 
674 	if (!(status & SCxSR_RDxF(port)))
675 		return NO_POLL_CHAR;
676 
677 	c = serial_port_in(port, SCxRDR);
678 
679 	/* Dummy read */
680 	serial_port_in(port, SCxSR);
681 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
682 
683 	return c;
684 }
685 #endif
686 
687 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
688 {
689 	unsigned short status;
690 
691 	do {
692 		status = serial_port_in(port, SCxSR);
693 	} while (!(status & SCxSR_TDxE(port)));
694 
695 	serial_port_out(port, SCxTDR, c);
696 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
697 }
698 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
699 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
700 
701 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
702 {
703 	struct sci_port *s = to_sci_port(port);
704 	const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
705 
706 	/*
707 	 * Use port-specific handler if provided.
708 	 */
709 	if (s->cfg->ops && s->cfg->ops->init_pins) {
710 		s->cfg->ops->init_pins(port, cflag);
711 		return;
712 	}
713 
714 	/*
715 	 * For the generic path SCSPTR is necessary. Bail out if that's
716 	 * unavailable, too.
717 	 */
718 	if (!reg->size)
719 		return;
720 
721 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
722 	    ((!(cflag & CRTSCTS)))) {
723 		unsigned short status;
724 
725 		status = serial_port_in(port, SCSPTR);
726 		status &= ~SCSPTR_CTSIO;
727 		status |= SCSPTR_RTSIO;
728 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
729 	}
730 }
731 
732 static int sci_txfill(struct uart_port *port)
733 {
734 	const struct plat_sci_reg *reg;
735 
736 	reg = sci_getreg(port, SCTFDR);
737 	if (reg->size)
738 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
739 
740 	reg = sci_getreg(port, SCFDR);
741 	if (reg->size)
742 		return serial_port_in(port, SCFDR) >> 8;
743 
744 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
745 }
746 
747 static int sci_txroom(struct uart_port *port)
748 {
749 	return port->fifosize - sci_txfill(port);
750 }
751 
752 static int sci_rxfill(struct uart_port *port)
753 {
754 	const struct plat_sci_reg *reg;
755 
756 	reg = sci_getreg(port, SCRFDR);
757 	if (reg->size)
758 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
759 
760 	reg = sci_getreg(port, SCFDR);
761 	if (reg->size)
762 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
763 
764 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
765 }
766 
767 /*
768  * SCI helper for checking the state of the muxed port/RXD pins.
769  */
770 static inline int sci_rxd_in(struct uart_port *port)
771 {
772 	struct sci_port *s = to_sci_port(port);
773 
774 	if (s->cfg->port_reg <= 0)
775 		return 1;
776 
777 	/* Cast for ARM damage */
778 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
779 }
780 
781 /* ********************************************************************** *
782  *                   the interrupt related routines                       *
783  * ********************************************************************** */
784 
785 static void sci_transmit_chars(struct uart_port *port)
786 {
787 	struct circ_buf *xmit = &port->state->xmit;
788 	unsigned int stopped = uart_tx_stopped(port);
789 	unsigned short status;
790 	unsigned short ctrl;
791 	int count;
792 
793 	status = serial_port_in(port, SCxSR);
794 	if (!(status & SCxSR_TDxE(port))) {
795 		ctrl = serial_port_in(port, SCSCR);
796 		if (uart_circ_empty(xmit))
797 			ctrl &= ~SCSCR_TIE;
798 		else
799 			ctrl |= SCSCR_TIE;
800 		serial_port_out(port, SCSCR, ctrl);
801 		return;
802 	}
803 
804 	count = sci_txroom(port);
805 
806 	do {
807 		unsigned char c;
808 
809 		if (port->x_char) {
810 			c = port->x_char;
811 			port->x_char = 0;
812 		} else if (!uart_circ_empty(xmit) && !stopped) {
813 			c = xmit->buf[xmit->tail];
814 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
815 		} else {
816 			break;
817 		}
818 
819 		serial_port_out(port, SCxTDR, c);
820 
821 		port->icount.tx++;
822 	} while (--count > 0);
823 
824 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
825 
826 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
827 		uart_write_wakeup(port);
828 	if (uart_circ_empty(xmit)) {
829 		sci_stop_tx(port);
830 	} else {
831 		ctrl = serial_port_in(port, SCSCR);
832 
833 		if (port->type != PORT_SCI) {
834 			serial_port_in(port, SCxSR); /* Dummy read */
835 			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
836 		}
837 
838 		ctrl |= SCSCR_TIE;
839 		serial_port_out(port, SCSCR, ctrl);
840 	}
841 }
842 
843 /* On SH3, SCIF may read end-of-break as a space->mark char */
844 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
845 
846 static void sci_receive_chars(struct uart_port *port)
847 {
848 	struct sci_port *sci_port = to_sci_port(port);
849 	struct tty_port *tport = &port->state->port;
850 	int i, count, copied = 0;
851 	unsigned short status;
852 	unsigned char flag;
853 
854 	status = serial_port_in(port, SCxSR);
855 	if (!(status & SCxSR_RDxF(port)))
856 		return;
857 
858 	while (1) {
859 		/* Don't copy more bytes than there is room for in the buffer */
860 		count = tty_buffer_request_room(tport, sci_rxfill(port));
861 
862 		/* If for any reason we can't copy more data, we're done! */
863 		if (count == 0)
864 			break;
865 
866 		if (port->type == PORT_SCI) {
867 			char c = serial_port_in(port, SCxRDR);
868 			if (uart_handle_sysrq_char(port, c) ||
869 			    sci_port->break_flag)
870 				count = 0;
871 			else
872 				tty_insert_flip_char(tport, c, TTY_NORMAL);
873 		} else {
874 			for (i = 0; i < count; i++) {
875 				char c = serial_port_in(port, SCxRDR);
876 
877 				status = serial_port_in(port, SCxSR);
878 #if defined(CONFIG_CPU_SH3)
879 				/* Skip "chars" during break */
880 				if (sci_port->break_flag) {
881 					if ((c == 0) &&
882 					    (status & SCxSR_FER(port))) {
883 						count--; i--;
884 						continue;
885 					}
886 
887 					/* Nonzero => end-of-break */
888 					dev_dbg(port->dev, "debounce<%02x>\n", c);
889 					sci_port->break_flag = 0;
890 
891 					if (STEPFN(c)) {
892 						count--; i--;
893 						continue;
894 					}
895 				}
896 #endif /* CONFIG_CPU_SH3 */
897 				if (uart_handle_sysrq_char(port, c)) {
898 					count--; i--;
899 					continue;
900 				}
901 
902 				/* Store data and status */
903 				if (status & SCxSR_FER(port)) {
904 					flag = TTY_FRAME;
905 					port->icount.frame++;
906 					dev_notice(port->dev, "frame error\n");
907 				} else if (status & SCxSR_PER(port)) {
908 					flag = TTY_PARITY;
909 					port->icount.parity++;
910 					dev_notice(port->dev, "parity error\n");
911 				} else
912 					flag = TTY_NORMAL;
913 
914 				tty_insert_flip_char(tport, c, flag);
915 			}
916 		}
917 
918 		serial_port_in(port, SCxSR); /* dummy read */
919 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
920 
921 		copied += count;
922 		port->icount.rx += count;
923 	}
924 
925 	if (copied) {
926 		/* Tell the rest of the system the news. New characters! */
927 		tty_flip_buffer_push(tport);
928 	} else {
929 		serial_port_in(port, SCxSR); /* dummy read */
930 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
931 	}
932 }
933 
934 #define SCI_BREAK_JIFFIES (HZ/20)
935 
936 /*
937  * The sci generates interrupts during the break,
938  * 1 per millisecond or so during the break period, for 9600 baud.
939  * So dont bother disabling interrupts.
940  * But dont want more than 1 break event.
941  * Use a kernel timer to periodically poll the rx line until
942  * the break is finished.
943  */
944 static inline void sci_schedule_break_timer(struct sci_port *port)
945 {
946 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
947 }
948 
949 /* Ensure that two consecutive samples find the break over. */
950 static void sci_break_timer(unsigned long data)
951 {
952 	struct sci_port *port = (struct sci_port *)data;
953 
954 	if (sci_rxd_in(&port->port) == 0) {
955 		port->break_flag = 1;
956 		sci_schedule_break_timer(port);
957 	} else if (port->break_flag == 1) {
958 		/* break is over. */
959 		port->break_flag = 2;
960 		sci_schedule_break_timer(port);
961 	} else
962 		port->break_flag = 0;
963 }
964 
965 static int sci_handle_errors(struct uart_port *port)
966 {
967 	int copied = 0;
968 	unsigned short status = serial_port_in(port, SCxSR);
969 	struct tty_port *tport = &port->state->port;
970 	struct sci_port *s = to_sci_port(port);
971 
972 	/* Handle overruns */
973 	if (status & s->overrun_mask) {
974 		port->icount.overrun++;
975 
976 		/* overrun error */
977 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
978 			copied++;
979 
980 		dev_notice(port->dev, "overrun error\n");
981 	}
982 
983 	if (status & SCxSR_FER(port)) {
984 		if (sci_rxd_in(port) == 0) {
985 			/* Notify of BREAK */
986 			struct sci_port *sci_port = to_sci_port(port);
987 
988 			if (!sci_port->break_flag) {
989 				port->icount.brk++;
990 
991 				sci_port->break_flag = 1;
992 				sci_schedule_break_timer(sci_port);
993 
994 				/* Do sysrq handling. */
995 				if (uart_handle_break(port))
996 					return 0;
997 
998 				dev_dbg(port->dev, "BREAK detected\n");
999 
1000 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1001 					copied++;
1002 			}
1003 
1004 		} else {
1005 			/* frame error */
1006 			port->icount.frame++;
1007 
1008 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1009 				copied++;
1010 
1011 			dev_notice(port->dev, "frame error\n");
1012 		}
1013 	}
1014 
1015 	if (status & SCxSR_PER(port)) {
1016 		/* parity error */
1017 		port->icount.parity++;
1018 
1019 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1020 			copied++;
1021 
1022 		dev_notice(port->dev, "parity error\n");
1023 	}
1024 
1025 	if (copied)
1026 		tty_flip_buffer_push(tport);
1027 
1028 	return copied;
1029 }
1030 
1031 static int sci_handle_fifo_overrun(struct uart_port *port)
1032 {
1033 	struct tty_port *tport = &port->state->port;
1034 	struct sci_port *s = to_sci_port(port);
1035 	const struct plat_sci_reg *reg;
1036 	int copied = 0;
1037 	u16 status;
1038 
1039 	reg = sci_getreg(port, s->overrun_reg);
1040 	if (!reg->size)
1041 		return 0;
1042 
1043 	status = serial_port_in(port, s->overrun_reg);
1044 	if (status & s->overrun_mask) {
1045 		status &= ~s->overrun_mask;
1046 		serial_port_out(port, s->overrun_reg, status);
1047 
1048 		port->icount.overrun++;
1049 
1050 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1051 		tty_flip_buffer_push(tport);
1052 
1053 		dev_dbg(port->dev, "overrun error\n");
1054 		copied++;
1055 	}
1056 
1057 	return copied;
1058 }
1059 
1060 static int sci_handle_breaks(struct uart_port *port)
1061 {
1062 	int copied = 0;
1063 	unsigned short status = serial_port_in(port, SCxSR);
1064 	struct tty_port *tport = &port->state->port;
1065 	struct sci_port *s = to_sci_port(port);
1066 
1067 	if (uart_handle_break(port))
1068 		return 0;
1069 
1070 	if (!s->break_flag && status & SCxSR_BRK(port)) {
1071 #if defined(CONFIG_CPU_SH3)
1072 		/* Debounce break */
1073 		s->break_flag = 1;
1074 #endif
1075 
1076 		port->icount.brk++;
1077 
1078 		/* Notify of BREAK */
1079 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1080 			copied++;
1081 
1082 		dev_dbg(port->dev, "BREAK detected\n");
1083 	}
1084 
1085 	if (copied)
1086 		tty_flip_buffer_push(tport);
1087 
1088 	copied += sci_handle_fifo_overrun(port);
1089 
1090 	return copied;
1091 }
1092 
1093 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1094 static void sci_dma_tx_complete(void *arg)
1095 {
1096 	struct sci_port *s = arg;
1097 	struct uart_port *port = &s->port;
1098 	struct circ_buf *xmit = &port->state->xmit;
1099 	unsigned long flags;
1100 
1101 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1102 
1103 	spin_lock_irqsave(&port->lock, flags);
1104 
1105 	xmit->tail += s->tx_dma_len;
1106 	xmit->tail &= UART_XMIT_SIZE - 1;
1107 
1108 	port->icount.tx += s->tx_dma_len;
1109 
1110 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1111 		uart_write_wakeup(port);
1112 
1113 	if (!uart_circ_empty(xmit)) {
1114 		s->cookie_tx = 0;
1115 		schedule_work(&s->work_tx);
1116 	} else {
1117 		s->cookie_tx = -EINVAL;
1118 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1119 			u16 ctrl = serial_port_in(port, SCSCR);
1120 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1121 		}
1122 	}
1123 
1124 	spin_unlock_irqrestore(&port->lock, flags);
1125 }
1126 
1127 /* Locking: called with port lock held */
1128 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1129 {
1130 	struct uart_port *port = &s->port;
1131 	struct tty_port *tport = &port->state->port;
1132 	int copied;
1133 
1134 	copied = tty_insert_flip_string(tport, buf, count);
1135 	if (copied < count) {
1136 		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1137 			 count - copied);
1138 		port->icount.buf_overrun++;
1139 	}
1140 
1141 	port->icount.rx += copied;
1142 
1143 	return copied;
1144 }
1145 
1146 static int sci_dma_rx_find_active(struct sci_port *s)
1147 {
1148 	unsigned int i;
1149 
1150 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1151 		if (s->active_rx == s->cookie_rx[i])
1152 			return i;
1153 
1154 	dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__,
1155 		s->active_rx);
1156 	return -1;
1157 }
1158 
1159 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1160 {
1161 	struct dma_chan *chan = s->chan_rx;
1162 	struct uart_port *port = &s->port;
1163 	unsigned long flags;
1164 
1165 	spin_lock_irqsave(&port->lock, flags);
1166 	s->chan_rx = NULL;
1167 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1168 	spin_unlock_irqrestore(&port->lock, flags);
1169 	dmaengine_terminate_all(chan);
1170 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1171 			  sg_dma_address(&s->sg_rx[0]));
1172 	dma_release_channel(chan);
1173 	if (enable_pio)
1174 		sci_start_rx(port);
1175 }
1176 
1177 static void sci_dma_rx_complete(void *arg)
1178 {
1179 	struct sci_port *s = arg;
1180 	struct dma_chan *chan = s->chan_rx;
1181 	struct uart_port *port = &s->port;
1182 	struct dma_async_tx_descriptor *desc;
1183 	unsigned long flags;
1184 	int active, count = 0;
1185 
1186 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1187 		s->active_rx);
1188 
1189 	spin_lock_irqsave(&port->lock, flags);
1190 
1191 	active = sci_dma_rx_find_active(s);
1192 	if (active >= 0)
1193 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1194 
1195 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1196 
1197 	if (count)
1198 		tty_flip_buffer_push(&port->state->port);
1199 
1200 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1201 				       DMA_DEV_TO_MEM,
1202 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1203 	if (!desc)
1204 		goto fail;
1205 
1206 	desc->callback = sci_dma_rx_complete;
1207 	desc->callback_param = s;
1208 	s->cookie_rx[active] = dmaengine_submit(desc);
1209 	if (dma_submit_error(s->cookie_rx[active]))
1210 		goto fail;
1211 
1212 	s->active_rx = s->cookie_rx[!active];
1213 
1214 	dma_async_issue_pending(chan);
1215 
1216 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1217 		__func__, s->cookie_rx[active], active, s->active_rx);
1218 	spin_unlock_irqrestore(&port->lock, flags);
1219 	return;
1220 
1221 fail:
1222 	spin_unlock_irqrestore(&port->lock, flags);
1223 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1224 	sci_rx_dma_release(s, true);
1225 }
1226 
1227 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1228 {
1229 	struct dma_chan *chan = s->chan_tx;
1230 	struct uart_port *port = &s->port;
1231 	unsigned long flags;
1232 
1233 	spin_lock_irqsave(&port->lock, flags);
1234 	s->chan_tx = NULL;
1235 	s->cookie_tx = -EINVAL;
1236 	spin_unlock_irqrestore(&port->lock, flags);
1237 	dmaengine_terminate_all(chan);
1238 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1239 			 DMA_TO_DEVICE);
1240 	dma_release_channel(chan);
1241 	if (enable_pio)
1242 		sci_start_tx(port);
1243 }
1244 
1245 static void sci_submit_rx(struct sci_port *s)
1246 {
1247 	struct dma_chan *chan = s->chan_rx;
1248 	int i;
1249 
1250 	for (i = 0; i < 2; i++) {
1251 		struct scatterlist *sg = &s->sg_rx[i];
1252 		struct dma_async_tx_descriptor *desc;
1253 
1254 		desc = dmaengine_prep_slave_sg(chan,
1255 			sg, 1, DMA_DEV_TO_MEM,
1256 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1257 		if (!desc)
1258 			goto fail;
1259 
1260 		desc->callback = sci_dma_rx_complete;
1261 		desc->callback_param = s;
1262 		s->cookie_rx[i] = dmaengine_submit(desc);
1263 		if (dma_submit_error(s->cookie_rx[i]))
1264 			goto fail;
1265 
1266 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1267 			s->cookie_rx[i], i);
1268 	}
1269 
1270 	s->active_rx = s->cookie_rx[0];
1271 
1272 	dma_async_issue_pending(chan);
1273 	return;
1274 
1275 fail:
1276 	if (i)
1277 		dmaengine_terminate_all(chan);
1278 	for (i = 0; i < 2; i++)
1279 		s->cookie_rx[i] = -EINVAL;
1280 	s->active_rx = -EINVAL;
1281 	dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n");
1282 	sci_rx_dma_release(s, true);
1283 }
1284 
1285 static void work_fn_tx(struct work_struct *work)
1286 {
1287 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1288 	struct dma_async_tx_descriptor *desc;
1289 	struct dma_chan *chan = s->chan_tx;
1290 	struct uart_port *port = &s->port;
1291 	struct circ_buf *xmit = &port->state->xmit;
1292 	dma_addr_t buf;
1293 
1294 	/*
1295 	 * DMA is idle now.
1296 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1297 	 * offsets and lengths. Since it is a circular buffer, we have to
1298 	 * transmit till the end, and then the rest. Take the port lock to get a
1299 	 * consistent xmit buffer state.
1300 	 */
1301 	spin_lock_irq(&port->lock);
1302 	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1303 	s->tx_dma_len = min_t(unsigned int,
1304 		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1305 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1306 	spin_unlock_irq(&port->lock);
1307 
1308 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1309 					   DMA_MEM_TO_DEV,
1310 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1311 	if (!desc) {
1312 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1313 		/* switch to PIO */
1314 		sci_tx_dma_release(s, true);
1315 		return;
1316 	}
1317 
1318 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1319 				   DMA_TO_DEVICE);
1320 
1321 	spin_lock_irq(&port->lock);
1322 	desc->callback = sci_dma_tx_complete;
1323 	desc->callback_param = s;
1324 	spin_unlock_irq(&port->lock);
1325 	s->cookie_tx = dmaengine_submit(desc);
1326 	if (dma_submit_error(s->cookie_tx)) {
1327 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1328 		/* switch to PIO */
1329 		sci_tx_dma_release(s, true);
1330 		return;
1331 	}
1332 
1333 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1334 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1335 
1336 	dma_async_issue_pending(chan);
1337 }
1338 
1339 static void rx_timer_fn(unsigned long arg)
1340 {
1341 	struct sci_port *s = (struct sci_port *)arg;
1342 	struct dma_chan *chan = s->chan_rx;
1343 	struct uart_port *port = &s->port;
1344 	struct dma_tx_state state;
1345 	enum dma_status status;
1346 	unsigned long flags;
1347 	unsigned int read;
1348 	int active, count;
1349 	u16 scr;
1350 
1351 	spin_lock_irqsave(&port->lock, flags);
1352 
1353 	dev_dbg(port->dev, "DMA Rx timed out\n");
1354 
1355 	active = sci_dma_rx_find_active(s);
1356 	if (active < 0) {
1357 		spin_unlock_irqrestore(&port->lock, flags);
1358 		return;
1359 	}
1360 
1361 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1362 	if (status == DMA_COMPLETE) {
1363 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1364 			s->active_rx, active);
1365 		spin_unlock_irqrestore(&port->lock, flags);
1366 
1367 		/* Let packet complete handler take care of the packet */
1368 		return;
1369 	}
1370 
1371 	dmaengine_pause(chan);
1372 
1373 	/*
1374 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1375 	 * data keeps on coming until transaction is complete so check
1376 	 * for DMA_COMPLETE again
1377 	 * Let packet complete handler take care of the packet
1378 	 */
1379 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1380 	if (status == DMA_COMPLETE) {
1381 		spin_unlock_irqrestore(&port->lock, flags);
1382 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1383 		return;
1384 	}
1385 
1386 	/* Handle incomplete DMA receive */
1387 	dmaengine_terminate_all(s->chan_rx);
1388 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1389 	dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read,
1390 		s->active_rx);
1391 
1392 	if (read) {
1393 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1394 		if (count)
1395 			tty_flip_buffer_push(&port->state->port);
1396 	}
1397 
1398 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1399 		sci_submit_rx(s);
1400 
1401 	/* Direct new serial port interrupts back to CPU */
1402 	scr = serial_port_in(port, SCSCR);
1403 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1404 		scr &= ~SCSCR_RDRQE;
1405 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1406 	}
1407 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1408 
1409 	spin_unlock_irqrestore(&port->lock, flags);
1410 }
1411 
1412 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1413 					     enum dma_transfer_direction dir,
1414 					     unsigned int id)
1415 {
1416 	dma_cap_mask_t mask;
1417 	struct dma_chan *chan;
1418 	struct dma_slave_config cfg;
1419 	int ret;
1420 
1421 	dma_cap_zero(mask);
1422 	dma_cap_set(DMA_SLAVE, mask);
1423 
1424 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1425 					(void *)(unsigned long)id, port->dev,
1426 					dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1427 	if (!chan) {
1428 		dev_warn(port->dev,
1429 			 "dma_request_slave_channel_compat failed\n");
1430 		return NULL;
1431 	}
1432 
1433 	memset(&cfg, 0, sizeof(cfg));
1434 	cfg.direction = dir;
1435 	if (dir == DMA_MEM_TO_DEV) {
1436 		cfg.dst_addr = port->mapbase +
1437 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1438 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1439 	} else {
1440 		cfg.src_addr = port->mapbase +
1441 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1442 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1443 	}
1444 
1445 	ret = dmaengine_slave_config(chan, &cfg);
1446 	if (ret) {
1447 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1448 		dma_release_channel(chan);
1449 		return NULL;
1450 	}
1451 
1452 	return chan;
1453 }
1454 
1455 static void sci_request_dma(struct uart_port *port)
1456 {
1457 	struct sci_port *s = to_sci_port(port);
1458 	struct dma_chan *chan;
1459 
1460 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1461 
1462 	if (!port->dev->of_node &&
1463 	    (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1464 		return;
1465 
1466 	s->cookie_tx = -EINVAL;
1467 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
1468 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1469 	if (chan) {
1470 		s->chan_tx = chan;
1471 		/* UART circular tx buffer is an aligned page. */
1472 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1473 						port->state->xmit.buf,
1474 						UART_XMIT_SIZE,
1475 						DMA_TO_DEVICE);
1476 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1477 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1478 			dma_release_channel(chan);
1479 			s->chan_tx = NULL;
1480 		} else {
1481 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1482 				__func__, UART_XMIT_SIZE,
1483 				port->state->xmit.buf, &s->tx_dma_addr);
1484 		}
1485 
1486 		INIT_WORK(&s->work_tx, work_fn_tx);
1487 	}
1488 
1489 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1490 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1491 	if (chan) {
1492 		unsigned int i;
1493 		dma_addr_t dma;
1494 		void *buf;
1495 
1496 		s->chan_rx = chan;
1497 
1498 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1499 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1500 					 &dma, GFP_KERNEL);
1501 		if (!buf) {
1502 			dev_warn(port->dev,
1503 				 "Failed to allocate Rx dma buffer, using PIO\n");
1504 			dma_release_channel(chan);
1505 			s->chan_rx = NULL;
1506 			return;
1507 		}
1508 
1509 		for (i = 0; i < 2; i++) {
1510 			struct scatterlist *sg = &s->sg_rx[i];
1511 
1512 			sg_init_table(sg, 1);
1513 			s->rx_buf[i] = buf;
1514 			sg_dma_address(sg) = dma;
1515 			sg_dma_len(sg) = s->buf_len_rx;
1516 
1517 			buf += s->buf_len_rx;
1518 			dma += s->buf_len_rx;
1519 		}
1520 
1521 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1522 
1523 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1524 			sci_submit_rx(s);
1525 	}
1526 }
1527 
1528 static void sci_free_dma(struct uart_port *port)
1529 {
1530 	struct sci_port *s = to_sci_port(port);
1531 
1532 	if (s->chan_tx)
1533 		sci_tx_dma_release(s, false);
1534 	if (s->chan_rx)
1535 		sci_rx_dma_release(s, false);
1536 }
1537 #else
1538 static inline void sci_request_dma(struct uart_port *port)
1539 {
1540 }
1541 
1542 static inline void sci_free_dma(struct uart_port *port)
1543 {
1544 }
1545 #endif
1546 
1547 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1548 {
1549 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1550 	struct uart_port *port = ptr;
1551 	struct sci_port *s = to_sci_port(port);
1552 
1553 	if (s->chan_rx) {
1554 		u16 scr = serial_port_in(port, SCSCR);
1555 		u16 ssr = serial_port_in(port, SCxSR);
1556 
1557 		/* Disable future Rx interrupts */
1558 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1559 			disable_irq_nosync(irq);
1560 			scr |= SCSCR_RDRQE;
1561 		} else {
1562 			scr &= ~SCSCR_RIE;
1563 			sci_submit_rx(s);
1564 		}
1565 		serial_port_out(port, SCSCR, scr);
1566 		/* Clear current interrupt */
1567 		serial_port_out(port, SCxSR,
1568 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1569 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1570 			jiffies, s->rx_timeout);
1571 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1572 
1573 		return IRQ_HANDLED;
1574 	}
1575 #endif
1576 
1577 	/* I think sci_receive_chars has to be called irrespective
1578 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1579 	 * to be disabled?
1580 	 */
1581 	sci_receive_chars(ptr);
1582 
1583 	return IRQ_HANDLED;
1584 }
1585 
1586 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1587 {
1588 	struct uart_port *port = ptr;
1589 	unsigned long flags;
1590 
1591 	spin_lock_irqsave(&port->lock, flags);
1592 	sci_transmit_chars(port);
1593 	spin_unlock_irqrestore(&port->lock, flags);
1594 
1595 	return IRQ_HANDLED;
1596 }
1597 
1598 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1599 {
1600 	struct uart_port *port = ptr;
1601 	struct sci_port *s = to_sci_port(port);
1602 
1603 	/* Handle errors */
1604 	if (port->type == PORT_SCI) {
1605 		if (sci_handle_errors(port)) {
1606 			/* discard character in rx buffer */
1607 			serial_port_in(port, SCxSR);
1608 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1609 		}
1610 	} else {
1611 		sci_handle_fifo_overrun(port);
1612 		if (!s->chan_rx)
1613 			sci_receive_chars(ptr);
1614 	}
1615 
1616 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1617 
1618 	/* Kick the transmission */
1619 	if (!s->chan_tx)
1620 		sci_tx_interrupt(irq, ptr);
1621 
1622 	return IRQ_HANDLED;
1623 }
1624 
1625 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1626 {
1627 	struct uart_port *port = ptr;
1628 
1629 	/* Handle BREAKs */
1630 	sci_handle_breaks(port);
1631 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1632 
1633 	return IRQ_HANDLED;
1634 }
1635 
1636 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1637 {
1638 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1639 	struct uart_port *port = ptr;
1640 	struct sci_port *s = to_sci_port(port);
1641 	irqreturn_t ret = IRQ_NONE;
1642 
1643 	ssr_status = serial_port_in(port, SCxSR);
1644 	scr_status = serial_port_in(port, SCSCR);
1645 	if (s->overrun_reg == SCxSR)
1646 		orer_status = ssr_status;
1647 	else {
1648 		if (sci_getreg(port, s->overrun_reg)->size)
1649 			orer_status = serial_port_in(port, s->overrun_reg);
1650 	}
1651 
1652 	err_enabled = scr_status & port_rx_irq_mask(port);
1653 
1654 	/* Tx Interrupt */
1655 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1656 	    !s->chan_tx)
1657 		ret = sci_tx_interrupt(irq, ptr);
1658 
1659 	/*
1660 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1661 	 * DR flags
1662 	 */
1663 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1664 	    (scr_status & SCSCR_RIE))
1665 		ret = sci_rx_interrupt(irq, ptr);
1666 
1667 	/* Error Interrupt */
1668 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1669 		ret = sci_er_interrupt(irq, ptr);
1670 
1671 	/* Break Interrupt */
1672 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1673 		ret = sci_br_interrupt(irq, ptr);
1674 
1675 	/* Overrun Interrupt */
1676 	if (orer_status & s->overrun_mask) {
1677 		sci_handle_fifo_overrun(port);
1678 		ret = IRQ_HANDLED;
1679 	}
1680 
1681 	return ret;
1682 }
1683 
1684 static const struct sci_irq_desc {
1685 	const char	*desc;
1686 	irq_handler_t	handler;
1687 } sci_irq_desc[] = {
1688 	/*
1689 	 * Split out handlers, the default case.
1690 	 */
1691 	[SCIx_ERI_IRQ] = {
1692 		.desc = "rx err",
1693 		.handler = sci_er_interrupt,
1694 	},
1695 
1696 	[SCIx_RXI_IRQ] = {
1697 		.desc = "rx full",
1698 		.handler = sci_rx_interrupt,
1699 	},
1700 
1701 	[SCIx_TXI_IRQ] = {
1702 		.desc = "tx empty",
1703 		.handler = sci_tx_interrupt,
1704 	},
1705 
1706 	[SCIx_BRI_IRQ] = {
1707 		.desc = "break",
1708 		.handler = sci_br_interrupt,
1709 	},
1710 
1711 	/*
1712 	 * Special muxed handler.
1713 	 */
1714 	[SCIx_MUX_IRQ] = {
1715 		.desc = "mux",
1716 		.handler = sci_mpxed_interrupt,
1717 	},
1718 };
1719 
1720 static int sci_request_irq(struct sci_port *port)
1721 {
1722 	struct uart_port *up = &port->port;
1723 	int i, j, ret = 0;
1724 
1725 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1726 		const struct sci_irq_desc *desc;
1727 		int irq;
1728 
1729 		if (SCIx_IRQ_IS_MUXED(port)) {
1730 			i = SCIx_MUX_IRQ;
1731 			irq = up->irq;
1732 		} else {
1733 			irq = port->irqs[i];
1734 
1735 			/*
1736 			 * Certain port types won't support all of the
1737 			 * available interrupt sources.
1738 			 */
1739 			if (unlikely(irq < 0))
1740 				continue;
1741 		}
1742 
1743 		desc = sci_irq_desc + i;
1744 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1745 					    dev_name(up->dev), desc->desc);
1746 		if (!port->irqstr[j])
1747 			goto out_nomem;
1748 
1749 		ret = request_irq(irq, desc->handler, up->irqflags,
1750 				  port->irqstr[j], port);
1751 		if (unlikely(ret)) {
1752 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1753 			goto out_noirq;
1754 		}
1755 	}
1756 
1757 	return 0;
1758 
1759 out_noirq:
1760 	while (--i >= 0)
1761 		free_irq(port->irqs[i], port);
1762 
1763 out_nomem:
1764 	while (--j >= 0)
1765 		kfree(port->irqstr[j]);
1766 
1767 	return ret;
1768 }
1769 
1770 static void sci_free_irq(struct sci_port *port)
1771 {
1772 	int i;
1773 
1774 	/*
1775 	 * Intentionally in reverse order so we iterate over the muxed
1776 	 * IRQ first.
1777 	 */
1778 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1779 		int irq = port->irqs[i];
1780 
1781 		/*
1782 		 * Certain port types won't support all of the available
1783 		 * interrupt sources.
1784 		 */
1785 		if (unlikely(irq < 0))
1786 			continue;
1787 
1788 		free_irq(port->irqs[i], port);
1789 		kfree(port->irqstr[i]);
1790 
1791 		if (SCIx_IRQ_IS_MUXED(port)) {
1792 			/* If there's only one IRQ, we're done. */
1793 			return;
1794 		}
1795 	}
1796 }
1797 
1798 static unsigned int sci_tx_empty(struct uart_port *port)
1799 {
1800 	unsigned short status = serial_port_in(port, SCxSR);
1801 	unsigned short in_tx_fifo = sci_txfill(port);
1802 
1803 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1804 }
1805 
1806 /*
1807  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1808  * CTS/RTS is supported in hardware by at least one port and controlled
1809  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1810  * handled via the ->init_pins() op, which is a bit of a one-way street,
1811  * lacking any ability to defer pin control -- this will later be
1812  * converted over to the GPIO framework).
1813  *
1814  * Other modes (such as loopback) are supported generically on certain
1815  * port types, but not others. For these it's sufficient to test for the
1816  * existence of the support register and simply ignore the port type.
1817  */
1818 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1819 {
1820 	if (mctrl & TIOCM_LOOP) {
1821 		const struct plat_sci_reg *reg;
1822 
1823 		/*
1824 		 * Standard loopback mode for SCFCR ports.
1825 		 */
1826 		reg = sci_getreg(port, SCFCR);
1827 		if (reg->size)
1828 			serial_port_out(port, SCFCR,
1829 					serial_port_in(port, SCFCR) |
1830 					SCFCR_LOOP);
1831 	}
1832 }
1833 
1834 static unsigned int sci_get_mctrl(struct uart_port *port)
1835 {
1836 	/*
1837 	 * CTS/RTS is handled in hardware when supported, while nothing
1838 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1839 	 */
1840 	return TIOCM_DSR | TIOCM_CAR;
1841 }
1842 
1843 static void sci_break_ctl(struct uart_port *port, int break_state)
1844 {
1845 	struct sci_port *s = to_sci_port(port);
1846 	const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1847 	unsigned short scscr, scsptr;
1848 
1849 	/* check wheter the port has SCSPTR */
1850 	if (!reg->size) {
1851 		/*
1852 		 * Not supported by hardware. Most parts couple break and rx
1853 		 * interrupts together, with break detection always enabled.
1854 		 */
1855 		return;
1856 	}
1857 
1858 	scsptr = serial_port_in(port, SCSPTR);
1859 	scscr = serial_port_in(port, SCSCR);
1860 
1861 	if (break_state == -1) {
1862 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1863 		scscr &= ~SCSCR_TE;
1864 	} else {
1865 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1866 		scscr |= SCSCR_TE;
1867 	}
1868 
1869 	serial_port_out(port, SCSPTR, scsptr);
1870 	serial_port_out(port, SCSCR, scscr);
1871 }
1872 
1873 static int sci_startup(struct uart_port *port)
1874 {
1875 	struct sci_port *s = to_sci_port(port);
1876 	unsigned long flags;
1877 	int ret;
1878 
1879 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1880 
1881 	ret = sci_request_irq(s);
1882 	if (unlikely(ret < 0))
1883 		return ret;
1884 
1885 	sci_request_dma(port);
1886 
1887 	spin_lock_irqsave(&port->lock, flags);
1888 	sci_start_tx(port);
1889 	sci_start_rx(port);
1890 	spin_unlock_irqrestore(&port->lock, flags);
1891 
1892 	return 0;
1893 }
1894 
1895 static void sci_shutdown(struct uart_port *port)
1896 {
1897 	struct sci_port *s = to_sci_port(port);
1898 	unsigned long flags;
1899 
1900 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1901 
1902 	spin_lock_irqsave(&port->lock, flags);
1903 	sci_stop_rx(port);
1904 	sci_stop_tx(port);
1905 	spin_unlock_irqrestore(&port->lock, flags);
1906 
1907 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1908 	if (s->chan_rx) {
1909 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
1910 			port->line);
1911 		del_timer_sync(&s->rx_timer);
1912 	}
1913 #endif
1914 
1915 	sci_free_dma(port);
1916 	sci_free_irq(s);
1917 }
1918 
1919 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
1920 			unsigned int *srr)
1921 {
1922 	unsigned long freq = s->clk_rates[SCI_SCK];
1923 	int err, min_err = INT_MAX;
1924 	unsigned int sr;
1925 
1926 	if (s->port.type != PORT_HSCIF)
1927 		freq *= 2;
1928 
1929 	for_each_sr(sr, s) {
1930 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
1931 		if (abs(err) >= abs(min_err))
1932 			continue;
1933 
1934 		min_err = err;
1935 		*srr = sr - 1;
1936 
1937 		if (!err)
1938 			break;
1939 	}
1940 
1941 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
1942 		*srr + 1);
1943 	return min_err;
1944 }
1945 
1946 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
1947 			unsigned long freq, unsigned int *dlr,
1948 			unsigned int *srr)
1949 {
1950 	int err, min_err = INT_MAX;
1951 	unsigned int sr, dl;
1952 
1953 	if (s->port.type != PORT_HSCIF)
1954 		freq *= 2;
1955 
1956 	for_each_sr(sr, s) {
1957 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
1958 		dl = clamp(dl, 1U, 65535U);
1959 
1960 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
1961 		if (abs(err) >= abs(min_err))
1962 			continue;
1963 
1964 		min_err = err;
1965 		*dlr = dl;
1966 		*srr = sr - 1;
1967 
1968 		if (!err)
1969 			break;
1970 	}
1971 
1972 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
1973 		min_err, *dlr, *srr + 1);
1974 	return min_err;
1975 }
1976 
1977 /* calculate sample rate, BRR, and clock select */
1978 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1979 			  unsigned int *brr, unsigned int *srr,
1980 			  unsigned int *cks)
1981 {
1982 	unsigned long freq = s->clk_rates[SCI_FCK];
1983 	unsigned int sr, br, prediv, scrate, c;
1984 	int err, min_err = INT_MAX;
1985 
1986 	if (s->port.type != PORT_HSCIF)
1987 		freq *= 2;
1988 
1989 	/*
1990 	 * Find the combination of sample rate and clock select with the
1991 	 * smallest deviation from the desired baud rate.
1992 	 * Prefer high sample rates to maximise the receive margin.
1993 	 *
1994 	 * M: Receive margin (%)
1995 	 * N: Ratio of bit rate to clock (N = sampling rate)
1996 	 * D: Clock duty (D = 0 to 1.0)
1997 	 * L: Frame length (L = 9 to 12)
1998 	 * F: Absolute value of clock frequency deviation
1999 	 *
2000 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2001 	 *      (|D - 0.5| / N * (1 + F))|
2002 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2003 	 */
2004 	for_each_sr(sr, s) {
2005 		for (c = 0; c <= 3; c++) {
2006 			/* integerized formulas from HSCIF documentation */
2007 			prediv = sr * (1 << (2 * c + 1));
2008 
2009 			/*
2010 			 * We need to calculate:
2011 			 *
2012 			 *     br = freq / (prediv * bps) clamped to [1..256]
2013 			 *     err = freq / (br * prediv) - bps
2014 			 *
2015 			 * Watch out for overflow when calculating the desired
2016 			 * sampling clock rate!
2017 			 */
2018 			if (bps > UINT_MAX / prediv)
2019 				break;
2020 
2021 			scrate = prediv * bps;
2022 			br = DIV_ROUND_CLOSEST(freq, scrate);
2023 			br = clamp(br, 1U, 256U);
2024 
2025 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2026 			if (abs(err) >= abs(min_err))
2027 				continue;
2028 
2029 			min_err = err;
2030 			*brr = br - 1;
2031 			*srr = sr - 1;
2032 			*cks = c;
2033 
2034 			if (!err)
2035 				goto found;
2036 		}
2037 	}
2038 
2039 found:
2040 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2041 		min_err, *brr, *srr + 1, *cks);
2042 	return min_err;
2043 }
2044 
2045 static void sci_reset(struct uart_port *port)
2046 {
2047 	const struct plat_sci_reg *reg;
2048 	unsigned int status;
2049 
2050 	do {
2051 		status = serial_port_in(port, SCxSR);
2052 	} while (!(status & SCxSR_TEND(port)));
2053 
2054 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
2055 
2056 	reg = sci_getreg(port, SCFCR);
2057 	if (reg->size)
2058 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2059 }
2060 
2061 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2062 			    struct ktermios *old)
2063 {
2064 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i;
2065 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2066 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2067 	struct sci_port *s = to_sci_port(port);
2068 	const struct plat_sci_reg *reg;
2069 	int min_err = INT_MAX, err;
2070 	unsigned long max_freq = 0;
2071 	int best_clk = -1;
2072 
2073 	if ((termios->c_cflag & CSIZE) == CS7)
2074 		smr_val |= SCSMR_CHR;
2075 	if (termios->c_cflag & PARENB)
2076 		smr_val |= SCSMR_PE;
2077 	if (termios->c_cflag & PARODD)
2078 		smr_val |= SCSMR_PE | SCSMR_ODD;
2079 	if (termios->c_cflag & CSTOPB)
2080 		smr_val |= SCSMR_STOP;
2081 
2082 	/*
2083 	 * earlyprintk comes here early on with port->uartclk set to zero.
2084 	 * the clock framework is not up and running at this point so here
2085 	 * we assume that 115200 is the maximum baud rate. please note that
2086 	 * the baud rate is not programmed during earlyprintk - it is assumed
2087 	 * that the previous boot loader has enabled required clocks and
2088 	 * setup the baud rate generator hardware for us already.
2089 	 */
2090 	if (!port->uartclk) {
2091 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2092 		goto done;
2093 	}
2094 
2095 	for (i = 0; i < SCI_NUM_CLKS; i++)
2096 		max_freq = max(max_freq, s->clk_rates[i]);
2097 
2098 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2099 	if (!baud)
2100 		goto done;
2101 
2102 	/*
2103 	 * There can be multiple sources for the sampling clock.  Find the one
2104 	 * that gives us the smallest deviation from the desired baud rate.
2105 	 */
2106 
2107 	/* Optional Undivided External Clock */
2108 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2109 	    port->type != PORT_SCIFB) {
2110 		err = sci_sck_calc(s, baud, &srr1);
2111 		if (abs(err) < abs(min_err)) {
2112 			best_clk = SCI_SCK;
2113 			scr_val = SCSCR_CKE1;
2114 			sccks = SCCKS_CKS;
2115 			min_err = err;
2116 			srr = srr1;
2117 			if (!err)
2118 				goto done;
2119 		}
2120 	}
2121 
2122 	/* Optional BRG Frequency Divided External Clock */
2123 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2124 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2125 				   &srr1);
2126 		if (abs(err) < abs(min_err)) {
2127 			best_clk = SCI_SCIF_CLK;
2128 			scr_val = SCSCR_CKE1;
2129 			sccks = 0;
2130 			min_err = err;
2131 			dl = dl1;
2132 			srr = srr1;
2133 			if (!err)
2134 				goto done;
2135 		}
2136 	}
2137 
2138 	/* Optional BRG Frequency Divided Internal Clock */
2139 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2140 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2141 				   &srr1);
2142 		if (abs(err) < abs(min_err)) {
2143 			best_clk = SCI_BRG_INT;
2144 			scr_val = SCSCR_CKE1;
2145 			sccks = SCCKS_XIN;
2146 			min_err = err;
2147 			dl = dl1;
2148 			srr = srr1;
2149 			if (!min_err)
2150 				goto done;
2151 		}
2152 	}
2153 
2154 	/* Divided Functional Clock using standard Bit Rate Register */
2155 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2156 	if (abs(err) < abs(min_err)) {
2157 		best_clk = SCI_FCK;
2158 		scr_val = 0;
2159 		min_err = err;
2160 		brr = brr1;
2161 		srr = srr1;
2162 		cks = cks1;
2163 	}
2164 
2165 done:
2166 	if (best_clk >= 0)
2167 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2168 			s->clks[best_clk], baud, min_err);
2169 
2170 	sci_port_enable(s);
2171 
2172 	/*
2173 	 * Program the optional External Baud Rate Generator (BRG) first.
2174 	 * It controls the mux to select (H)SCK or frequency divided clock.
2175 	 */
2176 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2177 		serial_port_out(port, SCDL, dl);
2178 		serial_port_out(port, SCCKS, sccks);
2179 	}
2180 
2181 	sci_reset(port);
2182 
2183 	uart_update_timeout(port, termios->c_cflag, baud);
2184 
2185 	if (best_clk >= 0) {
2186 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2187 			switch (srr + 1) {
2188 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2189 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2190 			case 11: smr_val |= SCSMR_SRC_11; break;
2191 			case 13: smr_val |= SCSMR_SRC_13; break;
2192 			case 16: smr_val |= SCSMR_SRC_16; break;
2193 			case 17: smr_val |= SCSMR_SRC_17; break;
2194 			case 19: smr_val |= SCSMR_SRC_19; break;
2195 			case 27: smr_val |= SCSMR_SRC_27; break;
2196 			}
2197 		smr_val |= cks;
2198 		dev_dbg(port->dev,
2199 			 "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2200 			 scr_val, smr_val, brr, sccks, dl, srr);
2201 		serial_port_out(port, SCSCR, scr_val);
2202 		serial_port_out(port, SCSMR, smr_val);
2203 		serial_port_out(port, SCBRR, brr);
2204 		if (sci_getreg(port, HSSRR)->size)
2205 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2206 
2207 		/* Wait one bit interval */
2208 		udelay((1000000 + (baud - 1)) / baud);
2209 	} else {
2210 		/* Don't touch the bit rate configuration */
2211 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2212 		smr_val |= serial_port_in(port, SCSMR) &
2213 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2214 		dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2215 		serial_port_out(port, SCSCR, scr_val);
2216 		serial_port_out(port, SCSMR, smr_val);
2217 	}
2218 
2219 	sci_init_pins(port, termios->c_cflag);
2220 
2221 	reg = sci_getreg(port, SCFCR);
2222 	if (reg->size) {
2223 		unsigned short ctrl = serial_port_in(port, SCFCR);
2224 
2225 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
2226 			if (termios->c_cflag & CRTSCTS)
2227 				ctrl |= SCFCR_MCE;
2228 			else
2229 				ctrl &= ~SCFCR_MCE;
2230 		}
2231 
2232 		/*
2233 		 * As we've done a sci_reset() above, ensure we don't
2234 		 * interfere with the FIFOs while toggling MCE. As the
2235 		 * reset values could still be set, simply mask them out.
2236 		 */
2237 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2238 
2239 		serial_port_out(port, SCFCR, ctrl);
2240 	}
2241 
2242 	scr_val |= s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0);
2243 	dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2244 	serial_port_out(port, SCSCR, scr_val);
2245 	if ((srr + 1 == 5) &&
2246 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2247 		/*
2248 		 * In asynchronous mode, when the sampling rate is 1/5, first
2249 		 * received data may become invalid on some SCIFA and SCIFB.
2250 		 * To avoid this problem wait more than 1 serial data time (1
2251 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2252 		 */
2253 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2254 	}
2255 
2256 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2257 	/*
2258 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2259 	 * See serial_core.c::uart_update_timeout().
2260 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2261 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2262 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2263 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2264 	 * value obtained by this formula is too small. Therefore, if the value
2265 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2266 	 */
2267 	if (s->chan_rx) {
2268 		unsigned int bits;
2269 
2270 		/* byte size and parity */
2271 		switch (termios->c_cflag & CSIZE) {
2272 		case CS5:
2273 			bits = 7;
2274 			break;
2275 		case CS6:
2276 			bits = 8;
2277 			break;
2278 		case CS7:
2279 			bits = 9;
2280 			break;
2281 		default:
2282 			bits = 10;
2283 			break;
2284 		}
2285 
2286 		if (termios->c_cflag & CSTOPB)
2287 			bits++;
2288 		if (termios->c_cflag & PARENB)
2289 			bits++;
2290 		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2291 					     (baud / 10), 10);
2292 		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2293 			s->rx_timeout * 1000 / HZ, port->timeout);
2294 		if (s->rx_timeout < msecs_to_jiffies(20))
2295 			s->rx_timeout = msecs_to_jiffies(20);
2296 	}
2297 #endif
2298 
2299 	if ((termios->c_cflag & CREAD) != 0)
2300 		sci_start_rx(port);
2301 
2302 	sci_port_disable(s);
2303 }
2304 
2305 static void sci_pm(struct uart_port *port, unsigned int state,
2306 		   unsigned int oldstate)
2307 {
2308 	struct sci_port *sci_port = to_sci_port(port);
2309 
2310 	switch (state) {
2311 	case UART_PM_STATE_OFF:
2312 		sci_port_disable(sci_port);
2313 		break;
2314 	default:
2315 		sci_port_enable(sci_port);
2316 		break;
2317 	}
2318 }
2319 
2320 static const char *sci_type(struct uart_port *port)
2321 {
2322 	switch (port->type) {
2323 	case PORT_IRDA:
2324 		return "irda";
2325 	case PORT_SCI:
2326 		return "sci";
2327 	case PORT_SCIF:
2328 		return "scif";
2329 	case PORT_SCIFA:
2330 		return "scifa";
2331 	case PORT_SCIFB:
2332 		return "scifb";
2333 	case PORT_HSCIF:
2334 		return "hscif";
2335 	}
2336 
2337 	return NULL;
2338 }
2339 
2340 static int sci_remap_port(struct uart_port *port)
2341 {
2342 	struct sci_port *sport = to_sci_port(port);
2343 
2344 	/*
2345 	 * Nothing to do if there's already an established membase.
2346 	 */
2347 	if (port->membase)
2348 		return 0;
2349 
2350 	if (port->flags & UPF_IOREMAP) {
2351 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2352 		if (unlikely(!port->membase)) {
2353 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2354 			return -ENXIO;
2355 		}
2356 	} else {
2357 		/*
2358 		 * For the simple (and majority of) cases where we don't
2359 		 * need to do any remapping, just cast the cookie
2360 		 * directly.
2361 		 */
2362 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2363 	}
2364 
2365 	return 0;
2366 }
2367 
2368 static void sci_release_port(struct uart_port *port)
2369 {
2370 	struct sci_port *sport = to_sci_port(port);
2371 
2372 	if (port->flags & UPF_IOREMAP) {
2373 		iounmap(port->membase);
2374 		port->membase = NULL;
2375 	}
2376 
2377 	release_mem_region(port->mapbase, sport->reg_size);
2378 }
2379 
2380 static int sci_request_port(struct uart_port *port)
2381 {
2382 	struct resource *res;
2383 	struct sci_port *sport = to_sci_port(port);
2384 	int ret;
2385 
2386 	res = request_mem_region(port->mapbase, sport->reg_size,
2387 				 dev_name(port->dev));
2388 	if (unlikely(res == NULL)) {
2389 		dev_err(port->dev, "request_mem_region failed.");
2390 		return -EBUSY;
2391 	}
2392 
2393 	ret = sci_remap_port(port);
2394 	if (unlikely(ret != 0)) {
2395 		release_resource(res);
2396 		return ret;
2397 	}
2398 
2399 	return 0;
2400 }
2401 
2402 static void sci_config_port(struct uart_port *port, int flags)
2403 {
2404 	if (flags & UART_CONFIG_TYPE) {
2405 		struct sci_port *sport = to_sci_port(port);
2406 
2407 		port->type = sport->cfg->type;
2408 		sci_request_port(port);
2409 	}
2410 }
2411 
2412 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2413 {
2414 	if (ser->baud_base < 2400)
2415 		/* No paper tape reader for Mitch.. */
2416 		return -EINVAL;
2417 
2418 	return 0;
2419 }
2420 
2421 static struct uart_ops sci_uart_ops = {
2422 	.tx_empty	= sci_tx_empty,
2423 	.set_mctrl	= sci_set_mctrl,
2424 	.get_mctrl	= sci_get_mctrl,
2425 	.start_tx	= sci_start_tx,
2426 	.stop_tx	= sci_stop_tx,
2427 	.stop_rx	= sci_stop_rx,
2428 	.break_ctl	= sci_break_ctl,
2429 	.startup	= sci_startup,
2430 	.shutdown	= sci_shutdown,
2431 	.set_termios	= sci_set_termios,
2432 	.pm		= sci_pm,
2433 	.type		= sci_type,
2434 	.release_port	= sci_release_port,
2435 	.request_port	= sci_request_port,
2436 	.config_port	= sci_config_port,
2437 	.verify_port	= sci_verify_port,
2438 #ifdef CONFIG_CONSOLE_POLL
2439 	.poll_get_char	= sci_poll_get_char,
2440 	.poll_put_char	= sci_poll_put_char,
2441 #endif
2442 };
2443 
2444 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2445 {
2446 	const char *clk_names[] = {
2447 		[SCI_FCK] = "fck",
2448 		[SCI_SCK] = "sck",
2449 		[SCI_BRG_INT] = "brg_int",
2450 		[SCI_SCIF_CLK] = "scif_clk",
2451 	};
2452 	struct clk *clk;
2453 	unsigned int i;
2454 
2455 	if (sci_port->cfg->type == PORT_HSCIF)
2456 		clk_names[SCI_SCK] = "hsck";
2457 
2458 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2459 		clk = devm_clk_get(dev, clk_names[i]);
2460 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2461 			return -EPROBE_DEFER;
2462 
2463 		if (IS_ERR(clk) && i == SCI_FCK) {
2464 			/*
2465 			 * "fck" used to be called "sci_ick", and we need to
2466 			 * maintain DT backward compatibility.
2467 			 */
2468 			clk = devm_clk_get(dev, "sci_ick");
2469 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2470 				return -EPROBE_DEFER;
2471 
2472 			if (!IS_ERR(clk))
2473 				goto found;
2474 
2475 			/*
2476 			 * Not all SH platforms declare a clock lookup entry
2477 			 * for SCI devices, in which case we need to get the
2478 			 * global "peripheral_clk" clock.
2479 			 */
2480 			clk = devm_clk_get(dev, "peripheral_clk");
2481 			if (!IS_ERR(clk))
2482 				goto found;
2483 
2484 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2485 				PTR_ERR(clk));
2486 			return PTR_ERR(clk);
2487 		}
2488 
2489 found:
2490 		if (IS_ERR(clk))
2491 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2492 				PTR_ERR(clk));
2493 		else
2494 			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2495 				clk, clk);
2496 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2497 	}
2498 	return 0;
2499 }
2500 
2501 static int sci_init_single(struct platform_device *dev,
2502 			   struct sci_port *sci_port, unsigned int index,
2503 			   struct plat_sci_port *p, bool early)
2504 {
2505 	struct uart_port *port = &sci_port->port;
2506 	const struct resource *res;
2507 	unsigned int i;
2508 	int ret;
2509 
2510 	sci_port->cfg	= p;
2511 
2512 	port->ops	= &sci_uart_ops;
2513 	port->iotype	= UPIO_MEM;
2514 	port->line	= index;
2515 
2516 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2517 	if (res == NULL)
2518 		return -ENOMEM;
2519 
2520 	port->mapbase = res->start;
2521 	sci_port->reg_size = resource_size(res);
2522 
2523 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2524 		sci_port->irqs[i] = platform_get_irq(dev, i);
2525 
2526 	/* The SCI generates several interrupts. They can be muxed together or
2527 	 * connected to different interrupt lines. In the muxed case only one
2528 	 * interrupt resource is specified. In the non-muxed case three or four
2529 	 * interrupt resources are specified, as the BRI interrupt is optional.
2530 	 */
2531 	if (sci_port->irqs[0] < 0)
2532 		return -ENXIO;
2533 
2534 	if (sci_port->irqs[1] < 0) {
2535 		sci_port->irqs[1] = sci_port->irqs[0];
2536 		sci_port->irqs[2] = sci_port->irqs[0];
2537 		sci_port->irqs[3] = sci_port->irqs[0];
2538 	}
2539 
2540 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2541 		ret = sci_probe_regmap(p);
2542 		if (unlikely(ret))
2543 			return ret;
2544 	}
2545 
2546 	switch (p->type) {
2547 	case PORT_SCIFB:
2548 		port->fifosize = 256;
2549 		sci_port->overrun_reg = SCxSR;
2550 		sci_port->overrun_mask = SCIFA_ORER;
2551 		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2552 		break;
2553 	case PORT_HSCIF:
2554 		port->fifosize = 128;
2555 		sci_port->overrun_reg = SCLSR;
2556 		sci_port->overrun_mask = SCLSR_ORER;
2557 		sci_port->sampling_rate_mask = SCI_SR_RANGE(8, 32);
2558 		break;
2559 	case PORT_SCIFA:
2560 		port->fifosize = 64;
2561 		sci_port->overrun_reg = SCxSR;
2562 		sci_port->overrun_mask = SCIFA_ORER;
2563 		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2564 		break;
2565 	case PORT_SCIF:
2566 		port->fifosize = 16;
2567 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2568 			sci_port->overrun_reg = SCxSR;
2569 			sci_port->overrun_mask = SCIFA_ORER;
2570 			sci_port->sampling_rate_mask = SCI_SR(16);
2571 		} else {
2572 			sci_port->overrun_reg = SCLSR;
2573 			sci_port->overrun_mask = SCLSR_ORER;
2574 			sci_port->sampling_rate_mask = SCI_SR(32);
2575 		}
2576 		break;
2577 	default:
2578 		port->fifosize = 1;
2579 		sci_port->overrun_reg = SCxSR;
2580 		sci_port->overrun_mask = SCI_ORER;
2581 		sci_port->sampling_rate_mask = SCI_SR(32);
2582 		break;
2583 	}
2584 
2585 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2586 	 * match the SoC datasheet, this should be investigated. Let platform
2587 	 * data override the sampling rate for now.
2588 	 */
2589 	if (p->sampling_rate)
2590 		sci_port->sampling_rate_mask = SCI_SR(p->sampling_rate);
2591 
2592 	if (!early) {
2593 		ret = sci_init_clocks(sci_port, &dev->dev);
2594 		if (ret < 0)
2595 			return ret;
2596 
2597 		port->dev = &dev->dev;
2598 
2599 		pm_runtime_enable(&dev->dev);
2600 	}
2601 
2602 	sci_port->break_timer.data = (unsigned long)sci_port;
2603 	sci_port->break_timer.function = sci_break_timer;
2604 	init_timer(&sci_port->break_timer);
2605 
2606 	/*
2607 	 * Establish some sensible defaults for the error detection.
2608 	 */
2609 	if (p->type == PORT_SCI) {
2610 		sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2611 		sci_port->error_clear = SCI_ERROR_CLEAR;
2612 	} else {
2613 		sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2614 		sci_port->error_clear = SCIF_ERROR_CLEAR;
2615 	}
2616 
2617 	/*
2618 	 * Make the error mask inclusive of overrun detection, if
2619 	 * supported.
2620 	 */
2621 	if (sci_port->overrun_reg == SCxSR) {
2622 		sci_port->error_mask |= sci_port->overrun_mask;
2623 		sci_port->error_clear &= ~sci_port->overrun_mask;
2624 	}
2625 
2626 	port->type		= p->type;
2627 	port->flags		= UPF_FIXED_PORT | p->flags;
2628 	port->regshift		= p->regshift;
2629 
2630 	/*
2631 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2632 	 * for the multi-IRQ ports, which is where we are primarily
2633 	 * concerned with the shutdown path synchronization.
2634 	 *
2635 	 * For the muxed case there's nothing more to do.
2636 	 */
2637 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2638 	port->irqflags		= 0;
2639 
2640 	port->serial_in		= sci_serial_in;
2641 	port->serial_out	= sci_serial_out;
2642 
2643 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2644 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2645 			p->dma_slave_tx, p->dma_slave_rx);
2646 
2647 	return 0;
2648 }
2649 
2650 static void sci_cleanup_single(struct sci_port *port)
2651 {
2652 	pm_runtime_disable(port->port.dev);
2653 }
2654 
2655 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2656     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2657 static void serial_console_putchar(struct uart_port *port, int ch)
2658 {
2659 	sci_poll_put_char(port, ch);
2660 }
2661 
2662 /*
2663  *	Print a string to the serial port trying not to disturb
2664  *	any possible real use of the port...
2665  */
2666 static void serial_console_write(struct console *co, const char *s,
2667 				 unsigned count)
2668 {
2669 	struct sci_port *sci_port = &sci_ports[co->index];
2670 	struct uart_port *port = &sci_port->port;
2671 	unsigned short bits, ctrl, ctrl_temp;
2672 	unsigned long flags;
2673 	int locked = 1;
2674 
2675 	local_irq_save(flags);
2676 #if defined(SUPPORT_SYSRQ)
2677 	if (port->sysrq)
2678 		locked = 0;
2679 	else
2680 #endif
2681 	if (oops_in_progress)
2682 		locked = spin_trylock(&port->lock);
2683 	else
2684 		spin_lock(&port->lock);
2685 
2686 	/* first save SCSCR then disable interrupts, keep clock source */
2687 	ctrl = serial_port_in(port, SCSCR);
2688 	ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2689 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2690 	serial_port_out(port, SCSCR, ctrl_temp);
2691 
2692 	uart_console_write(port, s, count, serial_console_putchar);
2693 
2694 	/* wait until fifo is empty and last bit has been transmitted */
2695 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2696 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2697 		cpu_relax();
2698 
2699 	/* restore the SCSCR */
2700 	serial_port_out(port, SCSCR, ctrl);
2701 
2702 	if (locked)
2703 		spin_unlock(&port->lock);
2704 	local_irq_restore(flags);
2705 }
2706 
2707 static int serial_console_setup(struct console *co, char *options)
2708 {
2709 	struct sci_port *sci_port;
2710 	struct uart_port *port;
2711 	int baud = 115200;
2712 	int bits = 8;
2713 	int parity = 'n';
2714 	int flow = 'n';
2715 	int ret;
2716 
2717 	/*
2718 	 * Refuse to handle any bogus ports.
2719 	 */
2720 	if (co->index < 0 || co->index >= SCI_NPORTS)
2721 		return -ENODEV;
2722 
2723 	sci_port = &sci_ports[co->index];
2724 	port = &sci_port->port;
2725 
2726 	/*
2727 	 * Refuse to handle uninitialized ports.
2728 	 */
2729 	if (!port->ops)
2730 		return -ENODEV;
2731 
2732 	ret = sci_remap_port(port);
2733 	if (unlikely(ret != 0))
2734 		return ret;
2735 
2736 	if (options)
2737 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2738 
2739 	return uart_set_options(port, co, baud, parity, bits, flow);
2740 }
2741 
2742 static struct console serial_console = {
2743 	.name		= "ttySC",
2744 	.device		= uart_console_device,
2745 	.write		= serial_console_write,
2746 	.setup		= serial_console_setup,
2747 	.flags		= CON_PRINTBUFFER,
2748 	.index		= -1,
2749 	.data		= &sci_uart_driver,
2750 };
2751 
2752 static struct console early_serial_console = {
2753 	.name           = "early_ttySC",
2754 	.write          = serial_console_write,
2755 	.flags          = CON_PRINTBUFFER,
2756 	.index		= -1,
2757 };
2758 
2759 static char early_serial_buf[32];
2760 
2761 static int sci_probe_earlyprintk(struct platform_device *pdev)
2762 {
2763 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2764 
2765 	if (early_serial_console.data)
2766 		return -EEXIST;
2767 
2768 	early_serial_console.index = pdev->id;
2769 
2770 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2771 
2772 	serial_console_setup(&early_serial_console, early_serial_buf);
2773 
2774 	if (!strstr(early_serial_buf, "keep"))
2775 		early_serial_console.flags |= CON_BOOT;
2776 
2777 	register_console(&early_serial_console);
2778 	return 0;
2779 }
2780 
2781 #define SCI_CONSOLE	(&serial_console)
2782 
2783 #else
2784 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2785 {
2786 	return -EINVAL;
2787 }
2788 
2789 #define SCI_CONSOLE	NULL
2790 
2791 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2792 
2793 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2794 
2795 static struct uart_driver sci_uart_driver = {
2796 	.owner		= THIS_MODULE,
2797 	.driver_name	= "sci",
2798 	.dev_name	= "ttySC",
2799 	.major		= SCI_MAJOR,
2800 	.minor		= SCI_MINOR_START,
2801 	.nr		= SCI_NPORTS,
2802 	.cons		= SCI_CONSOLE,
2803 };
2804 
2805 static int sci_remove(struct platform_device *dev)
2806 {
2807 	struct sci_port *port = platform_get_drvdata(dev);
2808 
2809 	uart_remove_one_port(&sci_uart_driver, &port->port);
2810 
2811 	sci_cleanup_single(port);
2812 
2813 	return 0;
2814 }
2815 
2816 
2817 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
2818 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
2819 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
2820 
2821 static const struct of_device_id of_sci_match[] = {
2822 	/* SoC-specific types */
2823 	{
2824 		.compatible = "renesas,scif-r7s72100",
2825 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2826 	},
2827 	/* Family-specific types */
2828 	{
2829 		.compatible = "renesas,rcar-gen1-scif",
2830 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2831 	}, {
2832 		.compatible = "renesas,rcar-gen2-scif",
2833 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2834 	}, {
2835 		.compatible = "renesas,rcar-gen3-scif",
2836 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2837 	},
2838 	/* Generic types */
2839 	{
2840 		.compatible = "renesas,scif",
2841 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2842 	}, {
2843 		.compatible = "renesas,scifa",
2844 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2845 	}, {
2846 		.compatible = "renesas,scifb",
2847 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
2848 	}, {
2849 		.compatible = "renesas,hscif",
2850 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
2851 	}, {
2852 		.compatible = "renesas,sci",
2853 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
2854 	}, {
2855 		/* Terminator */
2856 	},
2857 };
2858 MODULE_DEVICE_TABLE(of, of_sci_match);
2859 
2860 static struct plat_sci_port *
2861 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2862 {
2863 	struct device_node *np = pdev->dev.of_node;
2864 	const struct of_device_id *match;
2865 	struct plat_sci_port *p;
2866 	int id;
2867 
2868 	if (!IS_ENABLED(CONFIG_OF) || !np)
2869 		return NULL;
2870 
2871 	match = of_match_node(of_sci_match, np);
2872 	if (!match)
2873 		return NULL;
2874 
2875 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2876 	if (!p)
2877 		return NULL;
2878 
2879 	/* Get the line number from the aliases node. */
2880 	id = of_alias_get_id(np, "serial");
2881 	if (id < 0) {
2882 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2883 		return NULL;
2884 	}
2885 
2886 	*dev_id = id;
2887 
2888 	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2889 	p->type = SCI_OF_TYPE(match->data);
2890 	p->regtype = SCI_OF_REGTYPE(match->data);
2891 	p->scscr = SCSCR_RE | SCSCR_TE;
2892 
2893 	return p;
2894 }
2895 
2896 static int sci_probe_single(struct platform_device *dev,
2897 				      unsigned int index,
2898 				      struct plat_sci_port *p,
2899 				      struct sci_port *sciport)
2900 {
2901 	int ret;
2902 
2903 	/* Sanity check */
2904 	if (unlikely(index >= SCI_NPORTS)) {
2905 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2906 			   index+1, SCI_NPORTS);
2907 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2908 		return -EINVAL;
2909 	}
2910 
2911 	ret = sci_init_single(dev, sciport, index, p, false);
2912 	if (ret)
2913 		return ret;
2914 
2915 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2916 	if (ret) {
2917 		sci_cleanup_single(sciport);
2918 		return ret;
2919 	}
2920 
2921 	return 0;
2922 }
2923 
2924 static int sci_probe(struct platform_device *dev)
2925 {
2926 	struct plat_sci_port *p;
2927 	struct sci_port *sp;
2928 	unsigned int dev_id;
2929 	int ret;
2930 
2931 	/*
2932 	 * If we've come here via earlyprintk initialization, head off to
2933 	 * the special early probe. We don't have sufficient device state
2934 	 * to make it beyond this yet.
2935 	 */
2936 	if (is_early_platform_device(dev))
2937 		return sci_probe_earlyprintk(dev);
2938 
2939 	if (dev->dev.of_node) {
2940 		p = sci_parse_dt(dev, &dev_id);
2941 		if (p == NULL)
2942 			return -EINVAL;
2943 	} else {
2944 		p = dev->dev.platform_data;
2945 		if (p == NULL) {
2946 			dev_err(&dev->dev, "no platform data supplied\n");
2947 			return -EINVAL;
2948 		}
2949 
2950 		dev_id = dev->id;
2951 	}
2952 
2953 	sp = &sci_ports[dev_id];
2954 	platform_set_drvdata(dev, sp);
2955 
2956 	ret = sci_probe_single(dev, dev_id, p, sp);
2957 	if (ret)
2958 		return ret;
2959 
2960 #ifdef CONFIG_SH_STANDARD_BIOS
2961 	sh_bios_gdb_detach();
2962 #endif
2963 
2964 	return 0;
2965 }
2966 
2967 static __maybe_unused int sci_suspend(struct device *dev)
2968 {
2969 	struct sci_port *sport = dev_get_drvdata(dev);
2970 
2971 	if (sport)
2972 		uart_suspend_port(&sci_uart_driver, &sport->port);
2973 
2974 	return 0;
2975 }
2976 
2977 static __maybe_unused int sci_resume(struct device *dev)
2978 {
2979 	struct sci_port *sport = dev_get_drvdata(dev);
2980 
2981 	if (sport)
2982 		uart_resume_port(&sci_uart_driver, &sport->port);
2983 
2984 	return 0;
2985 }
2986 
2987 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2988 
2989 static struct platform_driver sci_driver = {
2990 	.probe		= sci_probe,
2991 	.remove		= sci_remove,
2992 	.driver		= {
2993 		.name	= "sh-sci",
2994 		.pm	= &sci_dev_pm_ops,
2995 		.of_match_table = of_match_ptr(of_sci_match),
2996 	},
2997 };
2998 
2999 static int __init sci_init(void)
3000 {
3001 	int ret;
3002 
3003 	pr_info("%s\n", banner);
3004 
3005 	ret = uart_register_driver(&sci_uart_driver);
3006 	if (likely(ret == 0)) {
3007 		ret = platform_driver_register(&sci_driver);
3008 		if (unlikely(ret))
3009 			uart_unregister_driver(&sci_uart_driver);
3010 	}
3011 
3012 	return ret;
3013 }
3014 
3015 static void __exit sci_exit(void)
3016 {
3017 	platform_driver_unregister(&sci_driver);
3018 	uart_unregister_driver(&sci_uart_driver);
3019 }
3020 
3021 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3022 early_platform_init_buffer("earlyprintk", &sci_driver,
3023 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3024 #endif
3025 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3026 static struct __init plat_sci_port port_cfg;
3027 
3028 static int __init early_console_setup(struct earlycon_device *device,
3029 				      int type)
3030 {
3031 	if (!device->port.membase)
3032 		return -ENODEV;
3033 
3034 	device->port.serial_in = sci_serial_in;
3035 	device->port.serial_out	= sci_serial_out;
3036 	device->port.type = type;
3037 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3038 	sci_ports[0].cfg = &port_cfg;
3039 	sci_ports[0].cfg->type = type;
3040 	sci_probe_regmap(sci_ports[0].cfg);
3041 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR) |
3042 			 SCSCR_RE | SCSCR_TE;
3043 	sci_serial_out(&sci_ports[0].port, SCSCR, port_cfg.scscr);
3044 
3045 	device->con->write = serial_console_write;
3046 	return 0;
3047 }
3048 static int __init sci_early_console_setup(struct earlycon_device *device,
3049 					  const char *opt)
3050 {
3051 	return early_console_setup(device, PORT_SCI);
3052 }
3053 static int __init scif_early_console_setup(struct earlycon_device *device,
3054 					  const char *opt)
3055 {
3056 	return early_console_setup(device, PORT_SCIF);
3057 }
3058 static int __init scifa_early_console_setup(struct earlycon_device *device,
3059 					  const char *opt)
3060 {
3061 	return early_console_setup(device, PORT_SCIFA);
3062 }
3063 static int __init scifb_early_console_setup(struct earlycon_device *device,
3064 					  const char *opt)
3065 {
3066 	return early_console_setup(device, PORT_SCIFB);
3067 }
3068 static int __init hscif_early_console_setup(struct earlycon_device *device,
3069 					  const char *opt)
3070 {
3071 	return early_console_setup(device, PORT_HSCIF);
3072 }
3073 
3074 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3075 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3076 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3077 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3078 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3079 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3080 
3081 module_init(sci_init);
3082 module_exit(sci_exit);
3083 
3084 MODULE_LICENSE("GPL");
3085 MODULE_ALIAS("platform:sh-sci");
3086 MODULE_AUTHOR("Paul Mundt");
3087 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3088