1 /* 2 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) 3 * 4 * Copyright (C) 2002 - 2011 Paul Mundt 5 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). 6 * 7 * based off of the old drivers/char/sh-sci.c by: 8 * 9 * Copyright (C) 1999, 2000 Niibe Yutaka 10 * Copyright (C) 2000 Sugioka Toshinobu 11 * Modified to support multiple serial ports. Stuart Menefy (May 2000). 12 * Modified to support SecureEdge. David McCullough (2002) 13 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). 14 * Removed SH7300 support (Jul 2007). 15 * 16 * This file is subject to the terms and conditions of the GNU General Public 17 * License. See the file "COPYING" in the main directory of this archive 18 * for more details. 19 */ 20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 21 #define SUPPORT_SYSRQ 22 #endif 23 24 #undef DEBUG 25 26 #include <linux/module.h> 27 #include <linux/errno.h> 28 #include <linux/timer.h> 29 #include <linux/interrupt.h> 30 #include <linux/tty.h> 31 #include <linux/tty_flip.h> 32 #include <linux/serial.h> 33 #include <linux/major.h> 34 #include <linux/string.h> 35 #include <linux/sysrq.h> 36 #include <linux/ioport.h> 37 #include <linux/mm.h> 38 #include <linux/init.h> 39 #include <linux/delay.h> 40 #include <linux/console.h> 41 #include <linux/platform_device.h> 42 #include <linux/serial_sci.h> 43 #include <linux/notifier.h> 44 #include <linux/pm_runtime.h> 45 #include <linux/cpufreq.h> 46 #include <linux/clk.h> 47 #include <linux/ctype.h> 48 #include <linux/err.h> 49 #include <linux/dmaengine.h> 50 #include <linux/dma-mapping.h> 51 #include <linux/scatterlist.h> 52 #include <linux/slab.h> 53 54 #ifdef CONFIG_SUPERH 55 #include <asm/sh_bios.h> 56 #endif 57 58 #include "sh-sci.h" 59 60 struct sci_port { 61 struct uart_port port; 62 63 /* Platform configuration */ 64 struct plat_sci_port *cfg; 65 66 /* Break timer */ 67 struct timer_list break_timer; 68 int break_flag; 69 70 /* Interface clock */ 71 struct clk *iclk; 72 /* Function clock */ 73 struct clk *fclk; 74 75 char *irqstr[SCIx_NR_IRQS]; 76 77 struct dma_chan *chan_tx; 78 struct dma_chan *chan_rx; 79 80 #ifdef CONFIG_SERIAL_SH_SCI_DMA 81 struct dma_async_tx_descriptor *desc_tx; 82 struct dma_async_tx_descriptor *desc_rx[2]; 83 dma_cookie_t cookie_tx; 84 dma_cookie_t cookie_rx[2]; 85 dma_cookie_t active_rx; 86 struct scatterlist sg_tx; 87 unsigned int sg_len_tx; 88 struct scatterlist sg_rx[2]; 89 size_t buf_len_rx; 90 struct sh_dmae_slave param_tx; 91 struct sh_dmae_slave param_rx; 92 struct work_struct work_tx; 93 struct work_struct work_rx; 94 struct timer_list rx_timer; 95 unsigned int rx_timeout; 96 #endif 97 98 struct notifier_block freq_transition; 99 100 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 101 unsigned short saved_smr; 102 unsigned short saved_fcr; 103 unsigned char saved_brr; 104 #endif 105 }; 106 107 /* Function prototypes */ 108 static void sci_start_tx(struct uart_port *port); 109 static void sci_stop_tx(struct uart_port *port); 110 static void sci_start_rx(struct uart_port *port); 111 112 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS 113 114 static struct sci_port sci_ports[SCI_NPORTS]; 115 static struct uart_driver sci_uart_driver; 116 117 static inline struct sci_port * 118 to_sci_port(struct uart_port *uart) 119 { 120 return container_of(uart, struct sci_port, port); 121 } 122 123 struct plat_sci_reg { 124 u8 offset, size; 125 }; 126 127 /* Helper for invalidating specific entries of an inherited map. */ 128 #define sci_reg_invalid { .offset = 0, .size = 0 } 129 130 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = { 131 [SCIx_PROBE_REGTYPE] = { 132 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid, 133 }, 134 135 /* 136 * Common SCI definitions, dependent on the port's regshift 137 * value. 138 */ 139 [SCIx_SCI_REGTYPE] = { 140 [SCSMR] = { 0x00, 8 }, 141 [SCBRR] = { 0x01, 8 }, 142 [SCSCR] = { 0x02, 8 }, 143 [SCxTDR] = { 0x03, 8 }, 144 [SCxSR] = { 0x04, 8 }, 145 [SCxRDR] = { 0x05, 8 }, 146 [SCFCR] = sci_reg_invalid, 147 [SCFDR] = sci_reg_invalid, 148 [SCTFDR] = sci_reg_invalid, 149 [SCRFDR] = sci_reg_invalid, 150 [SCSPTR] = sci_reg_invalid, 151 [SCLSR] = sci_reg_invalid, 152 }, 153 154 /* 155 * Common definitions for legacy IrDA ports, dependent on 156 * regshift value. 157 */ 158 [SCIx_IRDA_REGTYPE] = { 159 [SCSMR] = { 0x00, 8 }, 160 [SCBRR] = { 0x01, 8 }, 161 [SCSCR] = { 0x02, 8 }, 162 [SCxTDR] = { 0x03, 8 }, 163 [SCxSR] = { 0x04, 8 }, 164 [SCxRDR] = { 0x05, 8 }, 165 [SCFCR] = { 0x06, 8 }, 166 [SCFDR] = { 0x07, 16 }, 167 [SCTFDR] = sci_reg_invalid, 168 [SCRFDR] = sci_reg_invalid, 169 [SCSPTR] = sci_reg_invalid, 170 [SCLSR] = sci_reg_invalid, 171 }, 172 173 /* 174 * Common SCIFA definitions. 175 */ 176 [SCIx_SCIFA_REGTYPE] = { 177 [SCSMR] = { 0x00, 16 }, 178 [SCBRR] = { 0x04, 8 }, 179 [SCSCR] = { 0x08, 16 }, 180 [SCxTDR] = { 0x20, 8 }, 181 [SCxSR] = { 0x14, 16 }, 182 [SCxRDR] = { 0x24, 8 }, 183 [SCFCR] = { 0x18, 16 }, 184 [SCFDR] = { 0x1c, 16 }, 185 [SCTFDR] = sci_reg_invalid, 186 [SCRFDR] = sci_reg_invalid, 187 [SCSPTR] = sci_reg_invalid, 188 [SCLSR] = sci_reg_invalid, 189 }, 190 191 /* 192 * Common SCIFB definitions. 193 */ 194 [SCIx_SCIFB_REGTYPE] = { 195 [SCSMR] = { 0x00, 16 }, 196 [SCBRR] = { 0x04, 8 }, 197 [SCSCR] = { 0x08, 16 }, 198 [SCxTDR] = { 0x40, 8 }, 199 [SCxSR] = { 0x14, 16 }, 200 [SCxRDR] = { 0x60, 8 }, 201 [SCFCR] = { 0x18, 16 }, 202 [SCFDR] = { 0x1c, 16 }, 203 [SCTFDR] = sci_reg_invalid, 204 [SCRFDR] = sci_reg_invalid, 205 [SCSPTR] = sci_reg_invalid, 206 [SCLSR] = sci_reg_invalid, 207 }, 208 209 /* 210 * Common SH-2(A) SCIF definitions for ports with FIFO data 211 * count registers. 212 */ 213 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = { 214 [SCSMR] = { 0x00, 16 }, 215 [SCBRR] = { 0x04, 8 }, 216 [SCSCR] = { 0x08, 16 }, 217 [SCxTDR] = { 0x0c, 8 }, 218 [SCxSR] = { 0x10, 16 }, 219 [SCxRDR] = { 0x14, 8 }, 220 [SCFCR] = { 0x18, 16 }, 221 [SCFDR] = { 0x1c, 16 }, 222 [SCTFDR] = sci_reg_invalid, 223 [SCRFDR] = sci_reg_invalid, 224 [SCSPTR] = { 0x20, 16 }, 225 [SCLSR] = { 0x24, 16 }, 226 }, 227 228 /* 229 * Common SH-3 SCIF definitions. 230 */ 231 [SCIx_SH3_SCIF_REGTYPE] = { 232 [SCSMR] = { 0x00, 8 }, 233 [SCBRR] = { 0x02, 8 }, 234 [SCSCR] = { 0x04, 8 }, 235 [SCxTDR] = { 0x06, 8 }, 236 [SCxSR] = { 0x08, 16 }, 237 [SCxRDR] = { 0x0a, 8 }, 238 [SCFCR] = { 0x0c, 8 }, 239 [SCFDR] = { 0x0e, 16 }, 240 [SCTFDR] = sci_reg_invalid, 241 [SCRFDR] = sci_reg_invalid, 242 [SCSPTR] = sci_reg_invalid, 243 [SCLSR] = sci_reg_invalid, 244 }, 245 246 /* 247 * Common SH-4(A) SCIF(B) definitions. 248 */ 249 [SCIx_SH4_SCIF_REGTYPE] = { 250 [SCSMR] = { 0x00, 16 }, 251 [SCBRR] = { 0x04, 8 }, 252 [SCSCR] = { 0x08, 16 }, 253 [SCxTDR] = { 0x0c, 8 }, 254 [SCxSR] = { 0x10, 16 }, 255 [SCxRDR] = { 0x14, 8 }, 256 [SCFCR] = { 0x18, 16 }, 257 [SCFDR] = { 0x1c, 16 }, 258 [SCTFDR] = sci_reg_invalid, 259 [SCRFDR] = sci_reg_invalid, 260 [SCSPTR] = { 0x20, 16 }, 261 [SCLSR] = { 0x24, 16 }, 262 }, 263 264 /* 265 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR 266 * register. 267 */ 268 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = { 269 [SCSMR] = { 0x00, 16 }, 270 [SCBRR] = { 0x04, 8 }, 271 [SCSCR] = { 0x08, 16 }, 272 [SCxTDR] = { 0x0c, 8 }, 273 [SCxSR] = { 0x10, 16 }, 274 [SCxRDR] = { 0x14, 8 }, 275 [SCFCR] = { 0x18, 16 }, 276 [SCFDR] = { 0x1c, 16 }, 277 [SCTFDR] = sci_reg_invalid, 278 [SCRFDR] = sci_reg_invalid, 279 [SCSPTR] = sci_reg_invalid, 280 [SCLSR] = { 0x24, 16 }, 281 }, 282 283 /* 284 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data 285 * count registers. 286 */ 287 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = { 288 [SCSMR] = { 0x00, 16 }, 289 [SCBRR] = { 0x04, 8 }, 290 [SCSCR] = { 0x08, 16 }, 291 [SCxTDR] = { 0x0c, 8 }, 292 [SCxSR] = { 0x10, 16 }, 293 [SCxRDR] = { 0x14, 8 }, 294 [SCFCR] = { 0x18, 16 }, 295 [SCFDR] = { 0x1c, 16 }, 296 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */ 297 [SCRFDR] = { 0x20, 16 }, 298 [SCSPTR] = { 0x24, 16 }, 299 [SCLSR] = { 0x28, 16 }, 300 }, 301 302 /* 303 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR 304 * registers. 305 */ 306 [SCIx_SH7705_SCIF_REGTYPE] = { 307 [SCSMR] = { 0x00, 16 }, 308 [SCBRR] = { 0x04, 8 }, 309 [SCSCR] = { 0x08, 16 }, 310 [SCxTDR] = { 0x20, 8 }, 311 [SCxSR] = { 0x14, 16 }, 312 [SCxRDR] = { 0x24, 8 }, 313 [SCFCR] = { 0x18, 16 }, 314 [SCFDR] = { 0x1c, 16 }, 315 [SCTFDR] = sci_reg_invalid, 316 [SCRFDR] = sci_reg_invalid, 317 [SCSPTR] = sci_reg_invalid, 318 [SCLSR] = sci_reg_invalid, 319 }, 320 }; 321 322 #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset) 323 324 /* 325 * The "offset" here is rather misleading, in that it refers to an enum 326 * value relative to the port mapping rather than the fixed offset 327 * itself, which needs to be manually retrieved from the platform's 328 * register map for the given port. 329 */ 330 static unsigned int sci_serial_in(struct uart_port *p, int offset) 331 { 332 struct plat_sci_reg *reg = sci_getreg(p, offset); 333 334 if (reg->size == 8) 335 return ioread8(p->membase + (reg->offset << p->regshift)); 336 else if (reg->size == 16) 337 return ioread16(p->membase + (reg->offset << p->regshift)); 338 else 339 WARN(1, "Invalid register access\n"); 340 341 return 0; 342 } 343 344 static void sci_serial_out(struct uart_port *p, int offset, int value) 345 { 346 struct plat_sci_reg *reg = sci_getreg(p, offset); 347 348 if (reg->size == 8) 349 iowrite8(value, p->membase + (reg->offset << p->regshift)); 350 else if (reg->size == 16) 351 iowrite16(value, p->membase + (reg->offset << p->regshift)); 352 else 353 WARN(1, "Invalid register access\n"); 354 } 355 356 #define sci_in(up, offset) (up->serial_in(up, offset)) 357 #define sci_out(up, offset, value) (up->serial_out(up, offset, value)) 358 359 static int sci_probe_regmap(struct plat_sci_port *cfg) 360 { 361 switch (cfg->type) { 362 case PORT_SCI: 363 cfg->regtype = SCIx_SCI_REGTYPE; 364 break; 365 case PORT_IRDA: 366 cfg->regtype = SCIx_IRDA_REGTYPE; 367 break; 368 case PORT_SCIFA: 369 cfg->regtype = SCIx_SCIFA_REGTYPE; 370 break; 371 case PORT_SCIFB: 372 cfg->regtype = SCIx_SCIFB_REGTYPE; 373 break; 374 case PORT_SCIF: 375 /* 376 * The SH-4 is a bit of a misnomer here, although that's 377 * where this particular port layout originated. This 378 * configuration (or some slight variation thereof) 379 * remains the dominant model for all SCIFs. 380 */ 381 cfg->regtype = SCIx_SH4_SCIF_REGTYPE; 382 break; 383 default: 384 printk(KERN_ERR "Can't probe register map for given port\n"); 385 return -EINVAL; 386 } 387 388 return 0; 389 } 390 391 static void sci_port_enable(struct sci_port *sci_port) 392 { 393 if (!sci_port->port.dev) 394 return; 395 396 pm_runtime_get_sync(sci_port->port.dev); 397 398 clk_enable(sci_port->iclk); 399 sci_port->port.uartclk = clk_get_rate(sci_port->iclk); 400 clk_enable(sci_port->fclk); 401 } 402 403 static void sci_port_disable(struct sci_port *sci_port) 404 { 405 if (!sci_port->port.dev) 406 return; 407 408 clk_disable(sci_port->fclk); 409 clk_disable(sci_port->iclk); 410 411 pm_runtime_put_sync(sci_port->port.dev); 412 } 413 414 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) 415 416 #ifdef CONFIG_CONSOLE_POLL 417 static int sci_poll_get_char(struct uart_port *port) 418 { 419 unsigned short status; 420 int c; 421 422 do { 423 status = sci_in(port, SCxSR); 424 if (status & SCxSR_ERRORS(port)) { 425 sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); 426 continue; 427 } 428 break; 429 } while (1); 430 431 if (!(status & SCxSR_RDxF(port))) 432 return NO_POLL_CHAR; 433 434 c = sci_in(port, SCxRDR); 435 436 /* Dummy read */ 437 sci_in(port, SCxSR); 438 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 439 440 return c; 441 } 442 #endif 443 444 static void sci_poll_put_char(struct uart_port *port, unsigned char c) 445 { 446 unsigned short status; 447 448 do { 449 status = sci_in(port, SCxSR); 450 } while (!(status & SCxSR_TDxE(port))); 451 452 sci_out(port, SCxTDR, c); 453 sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); 454 } 455 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */ 456 457 static void sci_init_pins(struct uart_port *port, unsigned int cflag) 458 { 459 struct sci_port *s = to_sci_port(port); 460 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR; 461 462 /* 463 * Use port-specific handler if provided. 464 */ 465 if (s->cfg->ops && s->cfg->ops->init_pins) { 466 s->cfg->ops->init_pins(port, cflag); 467 return; 468 } 469 470 /* 471 * For the generic path SCSPTR is necessary. Bail out if that's 472 * unavailable, too. 473 */ 474 if (!reg->size) 475 return; 476 477 if (!(cflag & CRTSCTS)) 478 sci_out(port, SCSPTR, 0x0080); /* Set RTS = 1 */ 479 } 480 481 static int sci_txfill(struct uart_port *port) 482 { 483 struct plat_sci_reg *reg; 484 485 reg = sci_getreg(port, SCTFDR); 486 if (reg->size) 487 return sci_in(port, SCTFDR) & 0xff; 488 489 reg = sci_getreg(port, SCFDR); 490 if (reg->size) 491 return sci_in(port, SCFDR) >> 8; 492 493 return !(sci_in(port, SCxSR) & SCI_TDRE); 494 } 495 496 static int sci_txroom(struct uart_port *port) 497 { 498 return port->fifosize - sci_txfill(port); 499 } 500 501 static int sci_rxfill(struct uart_port *port) 502 { 503 struct plat_sci_reg *reg; 504 505 reg = sci_getreg(port, SCRFDR); 506 if (reg->size) 507 return sci_in(port, SCRFDR) & 0xff; 508 509 reg = sci_getreg(port, SCFDR); 510 if (reg->size) 511 return sci_in(port, SCFDR) & ((port->fifosize << 1) - 1); 512 513 return (sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; 514 } 515 516 /* 517 * SCI helper for checking the state of the muxed port/RXD pins. 518 */ 519 static inline int sci_rxd_in(struct uart_port *port) 520 { 521 struct sci_port *s = to_sci_port(port); 522 523 if (s->cfg->port_reg <= 0) 524 return 1; 525 526 return !!__raw_readb(s->cfg->port_reg); 527 } 528 529 /* ********************************************************************** * 530 * the interrupt related routines * 531 * ********************************************************************** */ 532 533 static void sci_transmit_chars(struct uart_port *port) 534 { 535 struct circ_buf *xmit = &port->state->xmit; 536 unsigned int stopped = uart_tx_stopped(port); 537 unsigned short status; 538 unsigned short ctrl; 539 int count; 540 541 status = sci_in(port, SCxSR); 542 if (!(status & SCxSR_TDxE(port))) { 543 ctrl = sci_in(port, SCSCR); 544 if (uart_circ_empty(xmit)) 545 ctrl &= ~SCSCR_TIE; 546 else 547 ctrl |= SCSCR_TIE; 548 sci_out(port, SCSCR, ctrl); 549 return; 550 } 551 552 count = sci_txroom(port); 553 554 do { 555 unsigned char c; 556 557 if (port->x_char) { 558 c = port->x_char; 559 port->x_char = 0; 560 } else if (!uart_circ_empty(xmit) && !stopped) { 561 c = xmit->buf[xmit->tail]; 562 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 563 } else { 564 break; 565 } 566 567 sci_out(port, SCxTDR, c); 568 569 port->icount.tx++; 570 } while (--count > 0); 571 572 sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); 573 574 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 575 uart_write_wakeup(port); 576 if (uart_circ_empty(xmit)) { 577 sci_stop_tx(port); 578 } else { 579 ctrl = sci_in(port, SCSCR); 580 581 if (port->type != PORT_SCI) { 582 sci_in(port, SCxSR); /* Dummy read */ 583 sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); 584 } 585 586 ctrl |= SCSCR_TIE; 587 sci_out(port, SCSCR, ctrl); 588 } 589 } 590 591 /* On SH3, SCIF may read end-of-break as a space->mark char */ 592 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); }) 593 594 static void sci_receive_chars(struct uart_port *port) 595 { 596 struct sci_port *sci_port = to_sci_port(port); 597 struct tty_struct *tty = port->state->port.tty; 598 int i, count, copied = 0; 599 unsigned short status; 600 unsigned char flag; 601 602 status = sci_in(port, SCxSR); 603 if (!(status & SCxSR_RDxF(port))) 604 return; 605 606 while (1) { 607 /* Don't copy more bytes than there is room for in the buffer */ 608 count = tty_buffer_request_room(tty, sci_rxfill(port)); 609 610 /* If for any reason we can't copy more data, we're done! */ 611 if (count == 0) 612 break; 613 614 if (port->type == PORT_SCI) { 615 char c = sci_in(port, SCxRDR); 616 if (uart_handle_sysrq_char(port, c) || 617 sci_port->break_flag) 618 count = 0; 619 else 620 tty_insert_flip_char(tty, c, TTY_NORMAL); 621 } else { 622 for (i = 0; i < count; i++) { 623 char c = sci_in(port, SCxRDR); 624 status = sci_in(port, SCxSR); 625 #if defined(CONFIG_CPU_SH3) 626 /* Skip "chars" during break */ 627 if (sci_port->break_flag) { 628 if ((c == 0) && 629 (status & SCxSR_FER(port))) { 630 count--; i--; 631 continue; 632 } 633 634 /* Nonzero => end-of-break */ 635 dev_dbg(port->dev, "debounce<%02x>\n", c); 636 sci_port->break_flag = 0; 637 638 if (STEPFN(c)) { 639 count--; i--; 640 continue; 641 } 642 } 643 #endif /* CONFIG_CPU_SH3 */ 644 if (uart_handle_sysrq_char(port, c)) { 645 count--; i--; 646 continue; 647 } 648 649 /* Store data and status */ 650 if (status & SCxSR_FER(port)) { 651 flag = TTY_FRAME; 652 dev_notice(port->dev, "frame error\n"); 653 } else if (status & SCxSR_PER(port)) { 654 flag = TTY_PARITY; 655 dev_notice(port->dev, "parity error\n"); 656 } else 657 flag = TTY_NORMAL; 658 659 tty_insert_flip_char(tty, c, flag); 660 } 661 } 662 663 sci_in(port, SCxSR); /* dummy read */ 664 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 665 666 copied += count; 667 port->icount.rx += count; 668 } 669 670 if (copied) { 671 /* Tell the rest of the system the news. New characters! */ 672 tty_flip_buffer_push(tty); 673 } else { 674 sci_in(port, SCxSR); /* dummy read */ 675 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 676 } 677 } 678 679 #define SCI_BREAK_JIFFIES (HZ/20) 680 681 /* 682 * The sci generates interrupts during the break, 683 * 1 per millisecond or so during the break period, for 9600 baud. 684 * So dont bother disabling interrupts. 685 * But dont want more than 1 break event. 686 * Use a kernel timer to periodically poll the rx line until 687 * the break is finished. 688 */ 689 static inline void sci_schedule_break_timer(struct sci_port *port) 690 { 691 mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES); 692 } 693 694 /* Ensure that two consecutive samples find the break over. */ 695 static void sci_break_timer(unsigned long data) 696 { 697 struct sci_port *port = (struct sci_port *)data; 698 699 sci_port_enable(port); 700 701 if (sci_rxd_in(&port->port) == 0) { 702 port->break_flag = 1; 703 sci_schedule_break_timer(port); 704 } else if (port->break_flag == 1) { 705 /* break is over. */ 706 port->break_flag = 2; 707 sci_schedule_break_timer(port); 708 } else 709 port->break_flag = 0; 710 711 sci_port_disable(port); 712 } 713 714 static int sci_handle_errors(struct uart_port *port) 715 { 716 int copied = 0; 717 unsigned short status = sci_in(port, SCxSR); 718 struct tty_struct *tty = port->state->port.tty; 719 struct sci_port *s = to_sci_port(port); 720 721 /* 722 * Handle overruns, if supported. 723 */ 724 if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) { 725 if (status & (1 << s->cfg->overrun_bit)) { 726 /* overrun error */ 727 if (tty_insert_flip_char(tty, 0, TTY_OVERRUN)) 728 copied++; 729 730 dev_notice(port->dev, "overrun error"); 731 } 732 } 733 734 if (status & SCxSR_FER(port)) { 735 if (sci_rxd_in(port) == 0) { 736 /* Notify of BREAK */ 737 struct sci_port *sci_port = to_sci_port(port); 738 739 if (!sci_port->break_flag) { 740 sci_port->break_flag = 1; 741 sci_schedule_break_timer(sci_port); 742 743 /* Do sysrq handling. */ 744 if (uart_handle_break(port)) 745 return 0; 746 747 dev_dbg(port->dev, "BREAK detected\n"); 748 749 if (tty_insert_flip_char(tty, 0, TTY_BREAK)) 750 copied++; 751 } 752 753 } else { 754 /* frame error */ 755 if (tty_insert_flip_char(tty, 0, TTY_FRAME)) 756 copied++; 757 758 dev_notice(port->dev, "frame error\n"); 759 } 760 } 761 762 if (status & SCxSR_PER(port)) { 763 /* parity error */ 764 if (tty_insert_flip_char(tty, 0, TTY_PARITY)) 765 copied++; 766 767 dev_notice(port->dev, "parity error"); 768 } 769 770 if (copied) 771 tty_flip_buffer_push(tty); 772 773 return copied; 774 } 775 776 static int sci_handle_fifo_overrun(struct uart_port *port) 777 { 778 struct tty_struct *tty = port->state->port.tty; 779 struct sci_port *s = to_sci_port(port); 780 struct plat_sci_reg *reg; 781 int copied = 0; 782 783 reg = sci_getreg(port, SCLSR); 784 if (!reg->size) 785 return 0; 786 787 if ((sci_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) { 788 sci_out(port, SCLSR, 0); 789 790 tty_insert_flip_char(tty, 0, TTY_OVERRUN); 791 tty_flip_buffer_push(tty); 792 793 dev_notice(port->dev, "overrun error\n"); 794 copied++; 795 } 796 797 return copied; 798 } 799 800 static int sci_handle_breaks(struct uart_port *port) 801 { 802 int copied = 0; 803 unsigned short status = sci_in(port, SCxSR); 804 struct tty_struct *tty = port->state->port.tty; 805 struct sci_port *s = to_sci_port(port); 806 807 if (uart_handle_break(port)) 808 return 0; 809 810 if (!s->break_flag && status & SCxSR_BRK(port)) { 811 #if defined(CONFIG_CPU_SH3) 812 /* Debounce break */ 813 s->break_flag = 1; 814 #endif 815 /* Notify of BREAK */ 816 if (tty_insert_flip_char(tty, 0, TTY_BREAK)) 817 copied++; 818 819 dev_dbg(port->dev, "BREAK detected\n"); 820 } 821 822 if (copied) 823 tty_flip_buffer_push(tty); 824 825 copied += sci_handle_fifo_overrun(port); 826 827 return copied; 828 } 829 830 static irqreturn_t sci_rx_interrupt(int irq, void *ptr) 831 { 832 #ifdef CONFIG_SERIAL_SH_SCI_DMA 833 struct uart_port *port = ptr; 834 struct sci_port *s = to_sci_port(port); 835 836 if (s->chan_rx) { 837 u16 scr = sci_in(port, SCSCR); 838 u16 ssr = sci_in(port, SCxSR); 839 840 /* Disable future Rx interrupts */ 841 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 842 disable_irq_nosync(irq); 843 scr |= 0x4000; 844 } else { 845 scr &= ~SCSCR_RIE; 846 } 847 sci_out(port, SCSCR, scr); 848 /* Clear current interrupt */ 849 sci_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port))); 850 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n", 851 jiffies, s->rx_timeout); 852 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 853 854 return IRQ_HANDLED; 855 } 856 #endif 857 858 /* I think sci_receive_chars has to be called irrespective 859 * of whether the I_IXOFF is set, otherwise, how is the interrupt 860 * to be disabled? 861 */ 862 sci_receive_chars(ptr); 863 864 return IRQ_HANDLED; 865 } 866 867 static irqreturn_t sci_tx_interrupt(int irq, void *ptr) 868 { 869 struct uart_port *port = ptr; 870 unsigned long flags; 871 872 spin_lock_irqsave(&port->lock, flags); 873 sci_transmit_chars(port); 874 spin_unlock_irqrestore(&port->lock, flags); 875 876 return IRQ_HANDLED; 877 } 878 879 static irqreturn_t sci_er_interrupt(int irq, void *ptr) 880 { 881 struct uart_port *port = ptr; 882 883 /* Handle errors */ 884 if (port->type == PORT_SCI) { 885 if (sci_handle_errors(port)) { 886 /* discard character in rx buffer */ 887 sci_in(port, SCxSR); 888 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 889 } 890 } else { 891 sci_handle_fifo_overrun(port); 892 sci_rx_interrupt(irq, ptr); 893 } 894 895 sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); 896 897 /* Kick the transmission */ 898 sci_tx_interrupt(irq, ptr); 899 900 return IRQ_HANDLED; 901 } 902 903 static irqreturn_t sci_br_interrupt(int irq, void *ptr) 904 { 905 struct uart_port *port = ptr; 906 907 /* Handle BREAKs */ 908 sci_handle_breaks(port); 909 sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port)); 910 911 return IRQ_HANDLED; 912 } 913 914 static inline unsigned long port_rx_irq_mask(struct uart_port *port) 915 { 916 /* 917 * Not all ports (such as SCIFA) will support REIE. Rather than 918 * special-casing the port type, we check the port initialization 919 * IRQ enable mask to see whether the IRQ is desired at all. If 920 * it's unset, it's logically inferred that there's no point in 921 * testing for it. 922 */ 923 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE); 924 } 925 926 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) 927 { 928 unsigned short ssr_status, scr_status, err_enabled; 929 struct uart_port *port = ptr; 930 struct sci_port *s = to_sci_port(port); 931 irqreturn_t ret = IRQ_NONE; 932 933 ssr_status = sci_in(port, SCxSR); 934 scr_status = sci_in(port, SCSCR); 935 err_enabled = scr_status & port_rx_irq_mask(port); 936 937 /* Tx Interrupt */ 938 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) && 939 !s->chan_tx) 940 ret = sci_tx_interrupt(irq, ptr); 941 942 /* 943 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / 944 * DR flags 945 */ 946 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && 947 (scr_status & SCSCR_RIE)) 948 ret = sci_rx_interrupt(irq, ptr); 949 950 /* Error Interrupt */ 951 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) 952 ret = sci_er_interrupt(irq, ptr); 953 954 /* Break Interrupt */ 955 if ((ssr_status & SCxSR_BRK(port)) && err_enabled) 956 ret = sci_br_interrupt(irq, ptr); 957 958 return ret; 959 } 960 961 /* 962 * Here we define a transition notifier so that we can update all of our 963 * ports' baud rate when the peripheral clock changes. 964 */ 965 static int sci_notifier(struct notifier_block *self, 966 unsigned long phase, void *p) 967 { 968 struct sci_port *sci_port; 969 unsigned long flags; 970 971 sci_port = container_of(self, struct sci_port, freq_transition); 972 973 if ((phase == CPUFREQ_POSTCHANGE) || 974 (phase == CPUFREQ_RESUMECHANGE)) { 975 struct uart_port *port = &sci_port->port; 976 977 spin_lock_irqsave(&port->lock, flags); 978 port->uartclk = clk_get_rate(sci_port->iclk); 979 spin_unlock_irqrestore(&port->lock, flags); 980 } 981 982 return NOTIFY_OK; 983 } 984 985 static struct sci_irq_desc { 986 const char *desc; 987 irq_handler_t handler; 988 } sci_irq_desc[] = { 989 /* 990 * Split out handlers, the default case. 991 */ 992 [SCIx_ERI_IRQ] = { 993 .desc = "rx err", 994 .handler = sci_er_interrupt, 995 }, 996 997 [SCIx_RXI_IRQ] = { 998 .desc = "rx full", 999 .handler = sci_rx_interrupt, 1000 }, 1001 1002 [SCIx_TXI_IRQ] = { 1003 .desc = "tx empty", 1004 .handler = sci_tx_interrupt, 1005 }, 1006 1007 [SCIx_BRI_IRQ] = { 1008 .desc = "break", 1009 .handler = sci_br_interrupt, 1010 }, 1011 1012 /* 1013 * Special muxed handler. 1014 */ 1015 [SCIx_MUX_IRQ] = { 1016 .desc = "mux", 1017 .handler = sci_mpxed_interrupt, 1018 }, 1019 }; 1020 1021 static int sci_request_irq(struct sci_port *port) 1022 { 1023 struct uart_port *up = &port->port; 1024 int i, j, ret = 0; 1025 1026 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) { 1027 struct sci_irq_desc *desc; 1028 unsigned int irq; 1029 1030 if (SCIx_IRQ_IS_MUXED(port)) { 1031 i = SCIx_MUX_IRQ; 1032 irq = up->irq; 1033 } else 1034 irq = port->cfg->irqs[i]; 1035 1036 desc = sci_irq_desc + i; 1037 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s", 1038 dev_name(up->dev), desc->desc); 1039 if (!port->irqstr[j]) { 1040 dev_err(up->dev, "Failed to allocate %s IRQ string\n", 1041 desc->desc); 1042 goto out_nomem; 1043 } 1044 1045 ret = request_irq(irq, desc->handler, up->irqflags, 1046 port->irqstr[j], port); 1047 if (unlikely(ret)) { 1048 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc); 1049 goto out_noirq; 1050 } 1051 } 1052 1053 return 0; 1054 1055 out_noirq: 1056 while (--i >= 0) 1057 free_irq(port->cfg->irqs[i], port); 1058 1059 out_nomem: 1060 while (--j >= 0) 1061 kfree(port->irqstr[j]); 1062 1063 return ret; 1064 } 1065 1066 static void sci_free_irq(struct sci_port *port) 1067 { 1068 int i; 1069 1070 /* 1071 * Intentionally in reverse order so we iterate over the muxed 1072 * IRQ first. 1073 */ 1074 for (i = 0; i < SCIx_NR_IRQS; i++) { 1075 free_irq(port->cfg->irqs[i], port); 1076 kfree(port->irqstr[i]); 1077 1078 if (SCIx_IRQ_IS_MUXED(port)) { 1079 /* If there's only one IRQ, we're done. */ 1080 return; 1081 } 1082 } 1083 } 1084 1085 static unsigned int sci_tx_empty(struct uart_port *port) 1086 { 1087 unsigned short status = sci_in(port, SCxSR); 1088 unsigned short in_tx_fifo = sci_txfill(port); 1089 1090 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; 1091 } 1092 1093 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) 1094 { 1095 /* This routine is used for seting signals of: DTR, DCD, CTS/RTS */ 1096 /* We use SCIF's hardware for CTS/RTS, so don't need any for that. */ 1097 /* If you have signals for DTR and DCD, please implement here. */ 1098 } 1099 1100 static unsigned int sci_get_mctrl(struct uart_port *port) 1101 { 1102 /* This routine is used for getting signals of: DTR, DCD, DSR, RI, 1103 and CTS/RTS */ 1104 1105 return TIOCM_DTR | TIOCM_RTS | TIOCM_CTS | TIOCM_DSR; 1106 } 1107 1108 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1109 static void sci_dma_tx_complete(void *arg) 1110 { 1111 struct sci_port *s = arg; 1112 struct uart_port *port = &s->port; 1113 struct circ_buf *xmit = &port->state->xmit; 1114 unsigned long flags; 1115 1116 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1117 1118 spin_lock_irqsave(&port->lock, flags); 1119 1120 xmit->tail += sg_dma_len(&s->sg_tx); 1121 xmit->tail &= UART_XMIT_SIZE - 1; 1122 1123 port->icount.tx += sg_dma_len(&s->sg_tx); 1124 1125 async_tx_ack(s->desc_tx); 1126 s->cookie_tx = -EINVAL; 1127 s->desc_tx = NULL; 1128 1129 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1130 uart_write_wakeup(port); 1131 1132 if (!uart_circ_empty(xmit)) { 1133 schedule_work(&s->work_tx); 1134 } else if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1135 u16 ctrl = sci_in(port, SCSCR); 1136 sci_out(port, SCSCR, ctrl & ~SCSCR_TIE); 1137 } 1138 1139 spin_unlock_irqrestore(&port->lock, flags); 1140 } 1141 1142 /* Locking: called with port lock held */ 1143 static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty, 1144 size_t count) 1145 { 1146 struct uart_port *port = &s->port; 1147 int i, active, room; 1148 1149 room = tty_buffer_request_room(tty, count); 1150 1151 if (s->active_rx == s->cookie_rx[0]) { 1152 active = 0; 1153 } else if (s->active_rx == s->cookie_rx[1]) { 1154 active = 1; 1155 } else { 1156 dev_err(port->dev, "cookie %d not found!\n", s->active_rx); 1157 return 0; 1158 } 1159 1160 if (room < count) 1161 dev_warn(port->dev, "Rx overrun: dropping %u bytes\n", 1162 count - room); 1163 if (!room) 1164 return room; 1165 1166 for (i = 0; i < room; i++) 1167 tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i], 1168 TTY_NORMAL); 1169 1170 port->icount.rx += room; 1171 1172 return room; 1173 } 1174 1175 static void sci_dma_rx_complete(void *arg) 1176 { 1177 struct sci_port *s = arg; 1178 struct uart_port *port = &s->port; 1179 struct tty_struct *tty = port->state->port.tty; 1180 unsigned long flags; 1181 int count; 1182 1183 dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx); 1184 1185 spin_lock_irqsave(&port->lock, flags); 1186 1187 count = sci_dma_rx_push(s, tty, s->buf_len_rx); 1188 1189 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 1190 1191 spin_unlock_irqrestore(&port->lock, flags); 1192 1193 if (count) 1194 tty_flip_buffer_push(tty); 1195 1196 schedule_work(&s->work_rx); 1197 } 1198 1199 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio) 1200 { 1201 struct dma_chan *chan = s->chan_rx; 1202 struct uart_port *port = &s->port; 1203 1204 s->chan_rx = NULL; 1205 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL; 1206 dma_release_channel(chan); 1207 if (sg_dma_address(&s->sg_rx[0])) 1208 dma_free_coherent(port->dev, s->buf_len_rx * 2, 1209 sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0])); 1210 if (enable_pio) 1211 sci_start_rx(port); 1212 } 1213 1214 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio) 1215 { 1216 struct dma_chan *chan = s->chan_tx; 1217 struct uart_port *port = &s->port; 1218 1219 s->chan_tx = NULL; 1220 s->cookie_tx = -EINVAL; 1221 dma_release_channel(chan); 1222 if (enable_pio) 1223 sci_start_tx(port); 1224 } 1225 1226 static void sci_submit_rx(struct sci_port *s) 1227 { 1228 struct dma_chan *chan = s->chan_rx; 1229 int i; 1230 1231 for (i = 0; i < 2; i++) { 1232 struct scatterlist *sg = &s->sg_rx[i]; 1233 struct dma_async_tx_descriptor *desc; 1234 1235 desc = chan->device->device_prep_slave_sg(chan, 1236 sg, 1, DMA_FROM_DEVICE, DMA_PREP_INTERRUPT); 1237 1238 if (desc) { 1239 s->desc_rx[i] = desc; 1240 desc->callback = sci_dma_rx_complete; 1241 desc->callback_param = s; 1242 s->cookie_rx[i] = desc->tx_submit(desc); 1243 } 1244 1245 if (!desc || s->cookie_rx[i] < 0) { 1246 if (i) { 1247 async_tx_ack(s->desc_rx[0]); 1248 s->cookie_rx[0] = -EINVAL; 1249 } 1250 if (desc) { 1251 async_tx_ack(desc); 1252 s->cookie_rx[i] = -EINVAL; 1253 } 1254 dev_warn(s->port.dev, 1255 "failed to re-start DMA, using PIO\n"); 1256 sci_rx_dma_release(s, true); 1257 return; 1258 } 1259 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__, 1260 s->cookie_rx[i], i); 1261 } 1262 1263 s->active_rx = s->cookie_rx[0]; 1264 1265 dma_async_issue_pending(chan); 1266 } 1267 1268 static void work_fn_rx(struct work_struct *work) 1269 { 1270 struct sci_port *s = container_of(work, struct sci_port, work_rx); 1271 struct uart_port *port = &s->port; 1272 struct dma_async_tx_descriptor *desc; 1273 int new; 1274 1275 if (s->active_rx == s->cookie_rx[0]) { 1276 new = 0; 1277 } else if (s->active_rx == s->cookie_rx[1]) { 1278 new = 1; 1279 } else { 1280 dev_err(port->dev, "cookie %d not found!\n", s->active_rx); 1281 return; 1282 } 1283 desc = s->desc_rx[new]; 1284 1285 if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) != 1286 DMA_SUCCESS) { 1287 /* Handle incomplete DMA receive */ 1288 struct tty_struct *tty = port->state->port.tty; 1289 struct dma_chan *chan = s->chan_rx; 1290 struct sh_desc *sh_desc = container_of(desc, struct sh_desc, 1291 async_tx); 1292 unsigned long flags; 1293 int count; 1294 1295 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); 1296 dev_dbg(port->dev, "Read %u bytes with cookie %d\n", 1297 sh_desc->partial, sh_desc->cookie); 1298 1299 spin_lock_irqsave(&port->lock, flags); 1300 count = sci_dma_rx_push(s, tty, sh_desc->partial); 1301 spin_unlock_irqrestore(&port->lock, flags); 1302 1303 if (count) 1304 tty_flip_buffer_push(tty); 1305 1306 sci_submit_rx(s); 1307 1308 return; 1309 } 1310 1311 s->cookie_rx[new] = desc->tx_submit(desc); 1312 if (s->cookie_rx[new] < 0) { 1313 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); 1314 sci_rx_dma_release(s, true); 1315 return; 1316 } 1317 1318 s->active_rx = s->cookie_rx[!new]; 1319 1320 dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__, 1321 s->cookie_rx[new], new, s->active_rx); 1322 } 1323 1324 static void work_fn_tx(struct work_struct *work) 1325 { 1326 struct sci_port *s = container_of(work, struct sci_port, work_tx); 1327 struct dma_async_tx_descriptor *desc; 1328 struct dma_chan *chan = s->chan_tx; 1329 struct uart_port *port = &s->port; 1330 struct circ_buf *xmit = &port->state->xmit; 1331 struct scatterlist *sg = &s->sg_tx; 1332 1333 /* 1334 * DMA is idle now. 1335 * Port xmit buffer is already mapped, and it is one page... Just adjust 1336 * offsets and lengths. Since it is a circular buffer, we have to 1337 * transmit till the end, and then the rest. Take the port lock to get a 1338 * consistent xmit buffer state. 1339 */ 1340 spin_lock_irq(&port->lock); 1341 sg->offset = xmit->tail & (UART_XMIT_SIZE - 1); 1342 sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) + 1343 sg->offset; 1344 sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE), 1345 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); 1346 spin_unlock_irq(&port->lock); 1347 1348 BUG_ON(!sg_dma_len(sg)); 1349 1350 desc = chan->device->device_prep_slave_sg(chan, 1351 sg, s->sg_len_tx, DMA_TO_DEVICE, 1352 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1353 if (!desc) { 1354 /* switch to PIO */ 1355 sci_tx_dma_release(s, true); 1356 return; 1357 } 1358 1359 dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE); 1360 1361 spin_lock_irq(&port->lock); 1362 s->desc_tx = desc; 1363 desc->callback = sci_dma_tx_complete; 1364 desc->callback_param = s; 1365 spin_unlock_irq(&port->lock); 1366 s->cookie_tx = desc->tx_submit(desc); 1367 if (s->cookie_tx < 0) { 1368 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); 1369 /* switch to PIO */ 1370 sci_tx_dma_release(s, true); 1371 return; 1372 } 1373 1374 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__, 1375 xmit->buf, xmit->tail, xmit->head, s->cookie_tx); 1376 1377 dma_async_issue_pending(chan); 1378 } 1379 #endif 1380 1381 static void sci_start_tx(struct uart_port *port) 1382 { 1383 struct sci_port *s = to_sci_port(port); 1384 unsigned short ctrl; 1385 1386 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1387 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1388 u16 new, scr = sci_in(port, SCSCR); 1389 if (s->chan_tx) 1390 new = scr | 0x8000; 1391 else 1392 new = scr & ~0x8000; 1393 if (new != scr) 1394 sci_out(port, SCSCR, new); 1395 } 1396 1397 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) && 1398 s->cookie_tx < 0) 1399 schedule_work(&s->work_tx); 1400 #endif 1401 1402 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1403 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ 1404 ctrl = sci_in(port, SCSCR); 1405 sci_out(port, SCSCR, ctrl | SCSCR_TIE); 1406 } 1407 } 1408 1409 static void sci_stop_tx(struct uart_port *port) 1410 { 1411 unsigned short ctrl; 1412 1413 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ 1414 ctrl = sci_in(port, SCSCR); 1415 1416 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1417 ctrl &= ~0x8000; 1418 1419 ctrl &= ~SCSCR_TIE; 1420 1421 sci_out(port, SCSCR, ctrl); 1422 } 1423 1424 static void sci_start_rx(struct uart_port *port) 1425 { 1426 unsigned short ctrl; 1427 1428 ctrl = sci_in(port, SCSCR) | port_rx_irq_mask(port); 1429 1430 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1431 ctrl &= ~0x4000; 1432 1433 sci_out(port, SCSCR, ctrl); 1434 } 1435 1436 static void sci_stop_rx(struct uart_port *port) 1437 { 1438 unsigned short ctrl; 1439 1440 ctrl = sci_in(port, SCSCR); 1441 1442 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1443 ctrl &= ~0x4000; 1444 1445 ctrl &= ~port_rx_irq_mask(port); 1446 1447 sci_out(port, SCSCR, ctrl); 1448 } 1449 1450 static void sci_enable_ms(struct uart_port *port) 1451 { 1452 /* Nothing here yet .. */ 1453 } 1454 1455 static void sci_break_ctl(struct uart_port *port, int break_state) 1456 { 1457 /* Nothing here yet .. */ 1458 } 1459 1460 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1461 static bool filter(struct dma_chan *chan, void *slave) 1462 { 1463 struct sh_dmae_slave *param = slave; 1464 1465 dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__, 1466 param->slave_id); 1467 1468 chan->private = param; 1469 return true; 1470 } 1471 1472 static void rx_timer_fn(unsigned long arg) 1473 { 1474 struct sci_port *s = (struct sci_port *)arg; 1475 struct uart_port *port = &s->port; 1476 u16 scr = sci_in(port, SCSCR); 1477 1478 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1479 scr &= ~0x4000; 1480 enable_irq(s->cfg->irqs[1]); 1481 } 1482 sci_out(port, SCSCR, scr | SCSCR_RIE); 1483 dev_dbg(port->dev, "DMA Rx timed out\n"); 1484 schedule_work(&s->work_rx); 1485 } 1486 1487 static void sci_request_dma(struct uart_port *port) 1488 { 1489 struct sci_port *s = to_sci_port(port); 1490 struct sh_dmae_slave *param; 1491 struct dma_chan *chan; 1492 dma_cap_mask_t mask; 1493 int nent; 1494 1495 dev_dbg(port->dev, "%s: port %d\n", __func__, 1496 port->line); 1497 1498 if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0) 1499 return; 1500 1501 dma_cap_zero(mask); 1502 dma_cap_set(DMA_SLAVE, mask); 1503 1504 param = &s->param_tx; 1505 1506 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */ 1507 param->slave_id = s->cfg->dma_slave_tx; 1508 1509 s->cookie_tx = -EINVAL; 1510 chan = dma_request_channel(mask, filter, param); 1511 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); 1512 if (chan) { 1513 s->chan_tx = chan; 1514 sg_init_table(&s->sg_tx, 1); 1515 /* UART circular tx buffer is an aligned page. */ 1516 BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK); 1517 sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf), 1518 UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK); 1519 nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE); 1520 if (!nent) 1521 sci_tx_dma_release(s, false); 1522 else 1523 dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__, 1524 sg_dma_len(&s->sg_tx), 1525 port->state->xmit.buf, sg_dma_address(&s->sg_tx)); 1526 1527 s->sg_len_tx = nent; 1528 1529 INIT_WORK(&s->work_tx, work_fn_tx); 1530 } 1531 1532 param = &s->param_rx; 1533 1534 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */ 1535 param->slave_id = s->cfg->dma_slave_rx; 1536 1537 chan = dma_request_channel(mask, filter, param); 1538 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); 1539 if (chan) { 1540 dma_addr_t dma[2]; 1541 void *buf[2]; 1542 int i; 1543 1544 s->chan_rx = chan; 1545 1546 s->buf_len_rx = 2 * max(16, (int)port->fifosize); 1547 buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2, 1548 &dma[0], GFP_KERNEL); 1549 1550 if (!buf[0]) { 1551 dev_warn(port->dev, 1552 "failed to allocate dma buffer, using PIO\n"); 1553 sci_rx_dma_release(s, true); 1554 return; 1555 } 1556 1557 buf[1] = buf[0] + s->buf_len_rx; 1558 dma[1] = dma[0] + s->buf_len_rx; 1559 1560 for (i = 0; i < 2; i++) { 1561 struct scatterlist *sg = &s->sg_rx[i]; 1562 1563 sg_init_table(sg, 1); 1564 sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx, 1565 (int)buf[i] & ~PAGE_MASK); 1566 sg_dma_address(sg) = dma[i]; 1567 } 1568 1569 INIT_WORK(&s->work_rx, work_fn_rx); 1570 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s); 1571 1572 sci_submit_rx(s); 1573 } 1574 } 1575 1576 static void sci_free_dma(struct uart_port *port) 1577 { 1578 struct sci_port *s = to_sci_port(port); 1579 1580 if (s->chan_tx) 1581 sci_tx_dma_release(s, false); 1582 if (s->chan_rx) 1583 sci_rx_dma_release(s, false); 1584 } 1585 #else 1586 static inline void sci_request_dma(struct uart_port *port) 1587 { 1588 } 1589 1590 static inline void sci_free_dma(struct uart_port *port) 1591 { 1592 } 1593 #endif 1594 1595 static int sci_startup(struct uart_port *port) 1596 { 1597 struct sci_port *s = to_sci_port(port); 1598 int ret; 1599 1600 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1601 1602 sci_port_enable(s); 1603 1604 ret = sci_request_irq(s); 1605 if (unlikely(ret < 0)) 1606 return ret; 1607 1608 sci_request_dma(port); 1609 1610 sci_start_tx(port); 1611 sci_start_rx(port); 1612 1613 return 0; 1614 } 1615 1616 static void sci_shutdown(struct uart_port *port) 1617 { 1618 struct sci_port *s = to_sci_port(port); 1619 1620 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1621 1622 sci_stop_rx(port); 1623 sci_stop_tx(port); 1624 1625 sci_free_dma(port); 1626 sci_free_irq(s); 1627 1628 sci_port_disable(s); 1629 } 1630 1631 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps, 1632 unsigned long freq) 1633 { 1634 switch (algo_id) { 1635 case SCBRR_ALGO_1: 1636 return ((freq + 16 * bps) / (16 * bps) - 1); 1637 case SCBRR_ALGO_2: 1638 return ((freq + 16 * bps) / (32 * bps) - 1); 1639 case SCBRR_ALGO_3: 1640 return (((freq * 2) + 16 * bps) / (16 * bps) - 1); 1641 case SCBRR_ALGO_4: 1642 return (((freq * 2) + 16 * bps) / (32 * bps) - 1); 1643 case SCBRR_ALGO_5: 1644 return (((freq * 1000 / 32) / bps) - 1); 1645 } 1646 1647 /* Warn, but use a safe default */ 1648 WARN_ON(1); 1649 1650 return ((freq + 16 * bps) / (32 * bps) - 1); 1651 } 1652 1653 static void sci_reset(struct uart_port *port) 1654 { 1655 unsigned int status; 1656 1657 do { 1658 status = sci_in(port, SCxSR); 1659 } while (!(status & SCxSR_TEND(port))); 1660 1661 sci_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */ 1662 1663 if (port->type != PORT_SCI) 1664 sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); 1665 } 1666 1667 static void sci_set_termios(struct uart_port *port, struct ktermios *termios, 1668 struct ktermios *old) 1669 { 1670 struct sci_port *s = to_sci_port(port); 1671 unsigned int baud, smr_val, max_baud; 1672 int t = -1; 1673 u16 scfcr = 0; 1674 1675 /* 1676 * earlyprintk comes here early on with port->uartclk set to zero. 1677 * the clock framework is not up and running at this point so here 1678 * we assume that 115200 is the maximum baud rate. please note that 1679 * the baud rate is not programmed during earlyprintk - it is assumed 1680 * that the previous boot loader has enabled required clocks and 1681 * setup the baud rate generator hardware for us already. 1682 */ 1683 max_baud = port->uartclk ? port->uartclk / 16 : 115200; 1684 1685 baud = uart_get_baud_rate(port, termios, old, 0, max_baud); 1686 if (likely(baud && port->uartclk)) 1687 t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk); 1688 1689 sci_port_enable(s); 1690 1691 sci_reset(port); 1692 1693 smr_val = sci_in(port, SCSMR) & 3; 1694 1695 if ((termios->c_cflag & CSIZE) == CS7) 1696 smr_val |= 0x40; 1697 if (termios->c_cflag & PARENB) 1698 smr_val |= 0x20; 1699 if (termios->c_cflag & PARODD) 1700 smr_val |= 0x30; 1701 if (termios->c_cflag & CSTOPB) 1702 smr_val |= 0x08; 1703 1704 uart_update_timeout(port, termios->c_cflag, baud); 1705 1706 sci_out(port, SCSMR, smr_val); 1707 1708 dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t, 1709 s->cfg->scscr); 1710 1711 if (t > 0) { 1712 if (t >= 256) { 1713 sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1); 1714 t >>= 2; 1715 } else 1716 sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3); 1717 1718 sci_out(port, SCBRR, t); 1719 udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */ 1720 } 1721 1722 sci_init_pins(port, termios->c_cflag); 1723 sci_out(port, SCFCR, scfcr | ((termios->c_cflag & CRTSCTS) ? SCFCR_MCE : 0)); 1724 1725 sci_out(port, SCSCR, s->cfg->scscr); 1726 1727 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1728 /* 1729 * Calculate delay for 1.5 DMA buffers: see 1730 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits 1731 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function 1732 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)." 1733 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO 1734 * sizes), but it has been found out experimentally, that this is not 1735 * enough: the driver too often needlessly runs on a DMA timeout. 20ms 1736 * as a minimum seem to work perfectly. 1737 */ 1738 if (s->chan_rx) { 1739 s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 / 1740 port->fifosize / 2; 1741 dev_dbg(port->dev, 1742 "DMA Rx t-out %ums, tty t-out %u jiffies\n", 1743 s->rx_timeout * 1000 / HZ, port->timeout); 1744 if (s->rx_timeout < msecs_to_jiffies(20)) 1745 s->rx_timeout = msecs_to_jiffies(20); 1746 } 1747 #endif 1748 1749 if ((termios->c_cflag & CREAD) != 0) 1750 sci_start_rx(port); 1751 1752 sci_port_disable(s); 1753 } 1754 1755 static const char *sci_type(struct uart_port *port) 1756 { 1757 switch (port->type) { 1758 case PORT_IRDA: 1759 return "irda"; 1760 case PORT_SCI: 1761 return "sci"; 1762 case PORT_SCIF: 1763 return "scif"; 1764 case PORT_SCIFA: 1765 return "scifa"; 1766 case PORT_SCIFB: 1767 return "scifb"; 1768 } 1769 1770 return NULL; 1771 } 1772 1773 static inline unsigned long sci_port_size(struct uart_port *port) 1774 { 1775 /* 1776 * Pick an arbitrary size that encapsulates all of the base 1777 * registers by default. This can be optimized later, or derived 1778 * from platform resource data at such a time that ports begin to 1779 * behave more erratically. 1780 */ 1781 return 64; 1782 } 1783 1784 static int sci_remap_port(struct uart_port *port) 1785 { 1786 unsigned long size = sci_port_size(port); 1787 1788 /* 1789 * Nothing to do if there's already an established membase. 1790 */ 1791 if (port->membase) 1792 return 0; 1793 1794 if (port->flags & UPF_IOREMAP) { 1795 port->membase = ioremap_nocache(port->mapbase, size); 1796 if (unlikely(!port->membase)) { 1797 dev_err(port->dev, "can't remap port#%d\n", port->line); 1798 return -ENXIO; 1799 } 1800 } else { 1801 /* 1802 * For the simple (and majority of) cases where we don't 1803 * need to do any remapping, just cast the cookie 1804 * directly. 1805 */ 1806 port->membase = (void __iomem *)port->mapbase; 1807 } 1808 1809 return 0; 1810 } 1811 1812 static void sci_release_port(struct uart_port *port) 1813 { 1814 if (port->flags & UPF_IOREMAP) { 1815 iounmap(port->membase); 1816 port->membase = NULL; 1817 } 1818 1819 release_mem_region(port->mapbase, sci_port_size(port)); 1820 } 1821 1822 static int sci_request_port(struct uart_port *port) 1823 { 1824 unsigned long size = sci_port_size(port); 1825 struct resource *res; 1826 int ret; 1827 1828 res = request_mem_region(port->mapbase, size, dev_name(port->dev)); 1829 if (unlikely(res == NULL)) 1830 return -EBUSY; 1831 1832 ret = sci_remap_port(port); 1833 if (unlikely(ret != 0)) { 1834 release_resource(res); 1835 return ret; 1836 } 1837 1838 return 0; 1839 } 1840 1841 static void sci_config_port(struct uart_port *port, int flags) 1842 { 1843 if (flags & UART_CONFIG_TYPE) { 1844 struct sci_port *sport = to_sci_port(port); 1845 1846 port->type = sport->cfg->type; 1847 sci_request_port(port); 1848 } 1849 } 1850 1851 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) 1852 { 1853 struct sci_port *s = to_sci_port(port); 1854 1855 if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs) 1856 return -EINVAL; 1857 if (ser->baud_base < 2400) 1858 /* No paper tape reader for Mitch.. */ 1859 return -EINVAL; 1860 1861 return 0; 1862 } 1863 1864 static struct uart_ops sci_uart_ops = { 1865 .tx_empty = sci_tx_empty, 1866 .set_mctrl = sci_set_mctrl, 1867 .get_mctrl = sci_get_mctrl, 1868 .start_tx = sci_start_tx, 1869 .stop_tx = sci_stop_tx, 1870 .stop_rx = sci_stop_rx, 1871 .enable_ms = sci_enable_ms, 1872 .break_ctl = sci_break_ctl, 1873 .startup = sci_startup, 1874 .shutdown = sci_shutdown, 1875 .set_termios = sci_set_termios, 1876 .type = sci_type, 1877 .release_port = sci_release_port, 1878 .request_port = sci_request_port, 1879 .config_port = sci_config_port, 1880 .verify_port = sci_verify_port, 1881 #ifdef CONFIG_CONSOLE_POLL 1882 .poll_get_char = sci_poll_get_char, 1883 .poll_put_char = sci_poll_put_char, 1884 #endif 1885 }; 1886 1887 static int __devinit sci_init_single(struct platform_device *dev, 1888 struct sci_port *sci_port, 1889 unsigned int index, 1890 struct plat_sci_port *p) 1891 { 1892 struct uart_port *port = &sci_port->port; 1893 int ret; 1894 1895 port->ops = &sci_uart_ops; 1896 port->iotype = UPIO_MEM; 1897 port->line = index; 1898 1899 switch (p->type) { 1900 case PORT_SCIFB: 1901 port->fifosize = 256; 1902 break; 1903 case PORT_SCIFA: 1904 port->fifosize = 64; 1905 break; 1906 case PORT_SCIF: 1907 port->fifosize = 16; 1908 break; 1909 default: 1910 port->fifosize = 1; 1911 break; 1912 } 1913 1914 if (p->regtype == SCIx_PROBE_REGTYPE) { 1915 ret = sci_probe_regmap(p); 1916 if (unlikely(ret)) 1917 return ret; 1918 } 1919 1920 if (dev) { 1921 sci_port->iclk = clk_get(&dev->dev, "sci_ick"); 1922 if (IS_ERR(sci_port->iclk)) { 1923 sci_port->iclk = clk_get(&dev->dev, "peripheral_clk"); 1924 if (IS_ERR(sci_port->iclk)) { 1925 dev_err(&dev->dev, "can't get iclk\n"); 1926 return PTR_ERR(sci_port->iclk); 1927 } 1928 } 1929 1930 /* 1931 * The function clock is optional, ignore it if we can't 1932 * find it. 1933 */ 1934 sci_port->fclk = clk_get(&dev->dev, "sci_fck"); 1935 if (IS_ERR(sci_port->fclk)) 1936 sci_port->fclk = NULL; 1937 1938 port->dev = &dev->dev; 1939 1940 pm_runtime_irq_safe(&dev->dev); 1941 pm_runtime_enable(&dev->dev); 1942 } 1943 1944 sci_port->break_timer.data = (unsigned long)sci_port; 1945 sci_port->break_timer.function = sci_break_timer; 1946 init_timer(&sci_port->break_timer); 1947 1948 /* 1949 * Establish some sensible defaults for the error detection. 1950 */ 1951 if (!p->error_mask) 1952 p->error_mask = (p->type == PORT_SCI) ? 1953 SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK; 1954 1955 /* 1956 * Establish sensible defaults for the overrun detection, unless 1957 * the part has explicitly disabled support for it. 1958 */ 1959 if (p->overrun_bit != SCIx_NOT_SUPPORTED) { 1960 if (p->type == PORT_SCI) 1961 p->overrun_bit = 5; 1962 else if (p->scbrr_algo_id == SCBRR_ALGO_4) 1963 p->overrun_bit = 9; 1964 else 1965 p->overrun_bit = 0; 1966 1967 /* 1968 * Make the error mask inclusive of overrun detection, if 1969 * supported. 1970 */ 1971 p->error_mask |= (1 << p->overrun_bit); 1972 } 1973 1974 sci_port->cfg = p; 1975 1976 port->mapbase = p->mapbase; 1977 port->type = p->type; 1978 port->flags = p->flags; 1979 port->regshift = p->regshift; 1980 1981 /* 1982 * The UART port needs an IRQ value, so we peg this to the RX IRQ 1983 * for the multi-IRQ ports, which is where we are primarily 1984 * concerned with the shutdown path synchronization. 1985 * 1986 * For the muxed case there's nothing more to do. 1987 */ 1988 port->irq = p->irqs[SCIx_RXI_IRQ]; 1989 port->irqflags = 0; 1990 1991 port->serial_in = sci_serial_in; 1992 port->serial_out = sci_serial_out; 1993 1994 if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0) 1995 dev_dbg(port->dev, "DMA tx %d, rx %d\n", 1996 p->dma_slave_tx, p->dma_slave_rx); 1997 1998 return 0; 1999 } 2000 2001 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 2002 static void serial_console_putchar(struct uart_port *port, int ch) 2003 { 2004 sci_poll_put_char(port, ch); 2005 } 2006 2007 /* 2008 * Print a string to the serial port trying not to disturb 2009 * any possible real use of the port... 2010 */ 2011 static void serial_console_write(struct console *co, const char *s, 2012 unsigned count) 2013 { 2014 struct sci_port *sci_port = &sci_ports[co->index]; 2015 struct uart_port *port = &sci_port->port; 2016 unsigned short bits; 2017 2018 sci_port_enable(sci_port); 2019 2020 uart_console_write(port, s, count, serial_console_putchar); 2021 2022 /* wait until fifo is empty and last bit has been transmitted */ 2023 bits = SCxSR_TDxE(port) | SCxSR_TEND(port); 2024 while ((sci_in(port, SCxSR) & bits) != bits) 2025 cpu_relax(); 2026 2027 sci_port_disable(sci_port); 2028 } 2029 2030 static int __devinit serial_console_setup(struct console *co, char *options) 2031 { 2032 struct sci_port *sci_port; 2033 struct uart_port *port; 2034 int baud = 115200; 2035 int bits = 8; 2036 int parity = 'n'; 2037 int flow = 'n'; 2038 int ret; 2039 2040 /* 2041 * Refuse to handle any bogus ports. 2042 */ 2043 if (co->index < 0 || co->index >= SCI_NPORTS) 2044 return -ENODEV; 2045 2046 sci_port = &sci_ports[co->index]; 2047 port = &sci_port->port; 2048 2049 /* 2050 * Refuse to handle uninitialized ports. 2051 */ 2052 if (!port->ops) 2053 return -ENODEV; 2054 2055 ret = sci_remap_port(port); 2056 if (unlikely(ret != 0)) 2057 return ret; 2058 2059 sci_port_enable(sci_port); 2060 2061 if (options) 2062 uart_parse_options(options, &baud, &parity, &bits, &flow); 2063 2064 sci_port_disable(sci_port); 2065 2066 return uart_set_options(port, co, baud, parity, bits, flow); 2067 } 2068 2069 static struct console serial_console = { 2070 .name = "ttySC", 2071 .device = uart_console_device, 2072 .write = serial_console_write, 2073 .setup = serial_console_setup, 2074 .flags = CON_PRINTBUFFER, 2075 .index = -1, 2076 .data = &sci_uart_driver, 2077 }; 2078 2079 static struct console early_serial_console = { 2080 .name = "early_ttySC", 2081 .write = serial_console_write, 2082 .flags = CON_PRINTBUFFER, 2083 .index = -1, 2084 }; 2085 2086 static char early_serial_buf[32]; 2087 2088 static int __devinit sci_probe_earlyprintk(struct platform_device *pdev) 2089 { 2090 struct plat_sci_port *cfg = pdev->dev.platform_data; 2091 2092 if (early_serial_console.data) 2093 return -EEXIST; 2094 2095 early_serial_console.index = pdev->id; 2096 2097 sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg); 2098 2099 serial_console_setup(&early_serial_console, early_serial_buf); 2100 2101 if (!strstr(early_serial_buf, "keep")) 2102 early_serial_console.flags |= CON_BOOT; 2103 2104 register_console(&early_serial_console); 2105 return 0; 2106 } 2107 2108 #define uart_console(port) ((port)->cons->index == (port)->line) 2109 2110 static int sci_runtime_suspend(struct device *dev) 2111 { 2112 struct sci_port *sci_port = dev_get_drvdata(dev); 2113 struct uart_port *port = &sci_port->port; 2114 2115 if (uart_console(port)) { 2116 sci_port->saved_smr = sci_in(port, SCSMR); 2117 sci_port->saved_brr = sci_in(port, SCBRR); 2118 sci_port->saved_fcr = sci_in(port, SCFCR); 2119 } 2120 return 0; 2121 } 2122 2123 static int sci_runtime_resume(struct device *dev) 2124 { 2125 struct sci_port *sci_port = dev_get_drvdata(dev); 2126 struct uart_port *port = &sci_port->port; 2127 2128 if (uart_console(port)) { 2129 sci_reset(port); 2130 sci_out(port, SCSMR, sci_port->saved_smr); 2131 sci_out(port, SCBRR, sci_port->saved_brr); 2132 sci_out(port, SCFCR, sci_port->saved_fcr); 2133 sci_out(port, SCSCR, sci_port->cfg->scscr); 2134 } 2135 return 0; 2136 } 2137 2138 #define SCI_CONSOLE (&serial_console) 2139 2140 #else 2141 static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev) 2142 { 2143 return -EINVAL; 2144 } 2145 2146 #define SCI_CONSOLE NULL 2147 #define sci_runtime_suspend NULL 2148 #define sci_runtime_resume NULL 2149 2150 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */ 2151 2152 static char banner[] __initdata = 2153 KERN_INFO "SuperH SCI(F) driver initialized\n"; 2154 2155 static struct uart_driver sci_uart_driver = { 2156 .owner = THIS_MODULE, 2157 .driver_name = "sci", 2158 .dev_name = "ttySC", 2159 .major = SCI_MAJOR, 2160 .minor = SCI_MINOR_START, 2161 .nr = SCI_NPORTS, 2162 .cons = SCI_CONSOLE, 2163 }; 2164 2165 static int sci_remove(struct platform_device *dev) 2166 { 2167 struct sci_port *port = platform_get_drvdata(dev); 2168 2169 cpufreq_unregister_notifier(&port->freq_transition, 2170 CPUFREQ_TRANSITION_NOTIFIER); 2171 2172 uart_remove_one_port(&sci_uart_driver, &port->port); 2173 2174 clk_put(port->iclk); 2175 clk_put(port->fclk); 2176 2177 pm_runtime_disable(&dev->dev); 2178 return 0; 2179 } 2180 2181 static int __devinit sci_probe_single(struct platform_device *dev, 2182 unsigned int index, 2183 struct plat_sci_port *p, 2184 struct sci_port *sciport) 2185 { 2186 int ret; 2187 2188 /* Sanity check */ 2189 if (unlikely(index >= SCI_NPORTS)) { 2190 dev_notice(&dev->dev, "Attempting to register port " 2191 "%d when only %d are available.\n", 2192 index+1, SCI_NPORTS); 2193 dev_notice(&dev->dev, "Consider bumping " 2194 "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); 2195 return 0; 2196 } 2197 2198 ret = sci_init_single(dev, sciport, index, p); 2199 if (ret) 2200 return ret; 2201 2202 return uart_add_one_port(&sci_uart_driver, &sciport->port); 2203 } 2204 2205 static int __devinit sci_probe(struct platform_device *dev) 2206 { 2207 struct plat_sci_port *p = dev->dev.platform_data; 2208 struct sci_port *sp = &sci_ports[dev->id]; 2209 int ret; 2210 2211 /* 2212 * If we've come here via earlyprintk initialization, head off to 2213 * the special early probe. We don't have sufficient device state 2214 * to make it beyond this yet. 2215 */ 2216 if (is_early_platform_device(dev)) 2217 return sci_probe_earlyprintk(dev); 2218 2219 platform_set_drvdata(dev, sp); 2220 2221 ret = sci_probe_single(dev, dev->id, p, sp); 2222 if (ret) 2223 goto err_unreg; 2224 2225 sp->freq_transition.notifier_call = sci_notifier; 2226 2227 ret = cpufreq_register_notifier(&sp->freq_transition, 2228 CPUFREQ_TRANSITION_NOTIFIER); 2229 if (unlikely(ret < 0)) 2230 goto err_unreg; 2231 2232 #ifdef CONFIG_SH_STANDARD_BIOS 2233 sh_bios_gdb_detach(); 2234 #endif 2235 2236 return 0; 2237 2238 err_unreg: 2239 sci_remove(dev); 2240 return ret; 2241 } 2242 2243 static int sci_suspend(struct device *dev) 2244 { 2245 struct sci_port *sport = dev_get_drvdata(dev); 2246 2247 if (sport) 2248 uart_suspend_port(&sci_uart_driver, &sport->port); 2249 2250 return 0; 2251 } 2252 2253 static int sci_resume(struct device *dev) 2254 { 2255 struct sci_port *sport = dev_get_drvdata(dev); 2256 2257 if (sport) 2258 uart_resume_port(&sci_uart_driver, &sport->port); 2259 2260 return 0; 2261 } 2262 2263 static const struct dev_pm_ops sci_dev_pm_ops = { 2264 .runtime_suspend = sci_runtime_suspend, 2265 .runtime_resume = sci_runtime_resume, 2266 .suspend = sci_suspend, 2267 .resume = sci_resume, 2268 }; 2269 2270 static struct platform_driver sci_driver = { 2271 .probe = sci_probe, 2272 .remove = sci_remove, 2273 .driver = { 2274 .name = "sh-sci", 2275 .owner = THIS_MODULE, 2276 .pm = &sci_dev_pm_ops, 2277 }, 2278 }; 2279 2280 static int __init sci_init(void) 2281 { 2282 int ret; 2283 2284 printk(banner); 2285 2286 ret = uart_register_driver(&sci_uart_driver); 2287 if (likely(ret == 0)) { 2288 ret = platform_driver_register(&sci_driver); 2289 if (unlikely(ret)) 2290 uart_unregister_driver(&sci_uart_driver); 2291 } 2292 2293 return ret; 2294 } 2295 2296 static void __exit sci_exit(void) 2297 { 2298 platform_driver_unregister(&sci_driver); 2299 uart_unregister_driver(&sci_uart_driver); 2300 } 2301 2302 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 2303 early_platform_init_buffer("earlyprintk", &sci_driver, 2304 early_serial_buf, ARRAY_SIZE(early_serial_buf)); 2305 #endif 2306 module_init(sci_init); 2307 module_exit(sci_exit); 2308 2309 MODULE_LICENSE("GPL"); 2310 MODULE_ALIAS("platform:sh-sci"); 2311 MODULE_AUTHOR("Paul Mundt"); 2312 MODULE_DESCRIPTION("SuperH SCI(F) serial driver"); 2313