xref: /linux/drivers/tty/serial/sh-sci.c (revision 068df0f34e81bc06c5eb5012ec2eda25624e87aa)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/module.h>
27 #include <linux/errno.h>
28 #include <linux/timer.h>
29 #include <linux/interrupt.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial.h>
33 #include <linux/major.h>
34 #include <linux/string.h>
35 #include <linux/sysrq.h>
36 #include <linux/ioport.h>
37 #include <linux/mm.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/console.h>
41 #include <linux/platform_device.h>
42 #include <linux/serial_sci.h>
43 #include <linux/notifier.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/cpufreq.h>
46 #include <linux/clk.h>
47 #include <linux/ctype.h>
48 #include <linux/err.h>
49 #include <linux/dmaengine.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/scatterlist.h>
52 #include <linux/slab.h>
53 
54 #ifdef CONFIG_SUPERH
55 #include <asm/sh_bios.h>
56 #endif
57 
58 #include "sh-sci.h"
59 
60 struct sci_port {
61 	struct uart_port	port;
62 
63 	/* Platform configuration */
64 	struct plat_sci_port	*cfg;
65 
66 	/* Break timer */
67 	struct timer_list	break_timer;
68 	int			break_flag;
69 
70 	/* Interface clock */
71 	struct clk		*iclk;
72 	/* Function clock */
73 	struct clk		*fclk;
74 
75 	char			*irqstr[SCIx_NR_IRQS];
76 
77 	struct dma_chan			*chan_tx;
78 	struct dma_chan			*chan_rx;
79 
80 #ifdef CONFIG_SERIAL_SH_SCI_DMA
81 	struct dma_async_tx_descriptor	*desc_tx;
82 	struct dma_async_tx_descriptor	*desc_rx[2];
83 	dma_cookie_t			cookie_tx;
84 	dma_cookie_t			cookie_rx[2];
85 	dma_cookie_t			active_rx;
86 	struct scatterlist		sg_tx;
87 	unsigned int			sg_len_tx;
88 	struct scatterlist		sg_rx[2];
89 	size_t				buf_len_rx;
90 	struct sh_dmae_slave		param_tx;
91 	struct sh_dmae_slave		param_rx;
92 	struct work_struct		work_tx;
93 	struct work_struct		work_rx;
94 	struct timer_list		rx_timer;
95 	unsigned int			rx_timeout;
96 #endif
97 
98 	struct notifier_block		freq_transition;
99 
100 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
101 	unsigned short saved_smr;
102 	unsigned short saved_fcr;
103 	unsigned char saved_brr;
104 #endif
105 };
106 
107 /* Function prototypes */
108 static void sci_start_tx(struct uart_port *port);
109 static void sci_stop_tx(struct uart_port *port);
110 static void sci_start_rx(struct uart_port *port);
111 
112 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
113 
114 static struct sci_port sci_ports[SCI_NPORTS];
115 static struct uart_driver sci_uart_driver;
116 
117 static inline struct sci_port *
118 to_sci_port(struct uart_port *uart)
119 {
120 	return container_of(uart, struct sci_port, port);
121 }
122 
123 struct plat_sci_reg {
124 	u8 offset, size;
125 };
126 
127 /* Helper for invalidating specific entries of an inherited map. */
128 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
129 
130 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
131 	[SCIx_PROBE_REGTYPE] = {
132 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
133 	},
134 
135 	/*
136 	 * Common SCI definitions, dependent on the port's regshift
137 	 * value.
138 	 */
139 	[SCIx_SCI_REGTYPE] = {
140 		[SCSMR]		= { 0x00,  8 },
141 		[SCBRR]		= { 0x01,  8 },
142 		[SCSCR]		= { 0x02,  8 },
143 		[SCxTDR]	= { 0x03,  8 },
144 		[SCxSR]		= { 0x04,  8 },
145 		[SCxRDR]	= { 0x05,  8 },
146 		[SCFCR]		= sci_reg_invalid,
147 		[SCFDR]		= sci_reg_invalid,
148 		[SCTFDR]	= sci_reg_invalid,
149 		[SCRFDR]	= sci_reg_invalid,
150 		[SCSPTR]	= sci_reg_invalid,
151 		[SCLSR]		= sci_reg_invalid,
152 	},
153 
154 	/*
155 	 * Common definitions for legacy IrDA ports, dependent on
156 	 * regshift value.
157 	 */
158 	[SCIx_IRDA_REGTYPE] = {
159 		[SCSMR]		= { 0x00,  8 },
160 		[SCBRR]		= { 0x01,  8 },
161 		[SCSCR]		= { 0x02,  8 },
162 		[SCxTDR]	= { 0x03,  8 },
163 		[SCxSR]		= { 0x04,  8 },
164 		[SCxRDR]	= { 0x05,  8 },
165 		[SCFCR]		= { 0x06,  8 },
166 		[SCFDR]		= { 0x07, 16 },
167 		[SCTFDR]	= sci_reg_invalid,
168 		[SCRFDR]	= sci_reg_invalid,
169 		[SCSPTR]	= sci_reg_invalid,
170 		[SCLSR]		= sci_reg_invalid,
171 	},
172 
173 	/*
174 	 * Common SCIFA definitions.
175 	 */
176 	[SCIx_SCIFA_REGTYPE] = {
177 		[SCSMR]		= { 0x00, 16 },
178 		[SCBRR]		= { 0x04,  8 },
179 		[SCSCR]		= { 0x08, 16 },
180 		[SCxTDR]	= { 0x20,  8 },
181 		[SCxSR]		= { 0x14, 16 },
182 		[SCxRDR]	= { 0x24,  8 },
183 		[SCFCR]		= { 0x18, 16 },
184 		[SCFDR]		= { 0x1c, 16 },
185 		[SCTFDR]	= sci_reg_invalid,
186 		[SCRFDR]	= sci_reg_invalid,
187 		[SCSPTR]	= sci_reg_invalid,
188 		[SCLSR]		= sci_reg_invalid,
189 	},
190 
191 	/*
192 	 * Common SCIFB definitions.
193 	 */
194 	[SCIx_SCIFB_REGTYPE] = {
195 		[SCSMR]		= { 0x00, 16 },
196 		[SCBRR]		= { 0x04,  8 },
197 		[SCSCR]		= { 0x08, 16 },
198 		[SCxTDR]	= { 0x40,  8 },
199 		[SCxSR]		= { 0x14, 16 },
200 		[SCxRDR]	= { 0x60,  8 },
201 		[SCFCR]		= { 0x18, 16 },
202 		[SCFDR]		= { 0x1c, 16 },
203 		[SCTFDR]	= sci_reg_invalid,
204 		[SCRFDR]	= sci_reg_invalid,
205 		[SCSPTR]	= sci_reg_invalid,
206 		[SCLSR]		= sci_reg_invalid,
207 	},
208 
209 	/*
210 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
211 	 * count registers.
212 	 */
213 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
214 		[SCSMR]		= { 0x00, 16 },
215 		[SCBRR]		= { 0x04,  8 },
216 		[SCSCR]		= { 0x08, 16 },
217 		[SCxTDR]	= { 0x0c,  8 },
218 		[SCxSR]		= { 0x10, 16 },
219 		[SCxRDR]	= { 0x14,  8 },
220 		[SCFCR]		= { 0x18, 16 },
221 		[SCFDR]		= { 0x1c, 16 },
222 		[SCTFDR]	= sci_reg_invalid,
223 		[SCRFDR]	= sci_reg_invalid,
224 		[SCSPTR]	= { 0x20, 16 },
225 		[SCLSR]		= { 0x24, 16 },
226 	},
227 
228 	/*
229 	 * Common SH-3 SCIF definitions.
230 	 */
231 	[SCIx_SH3_SCIF_REGTYPE] = {
232 		[SCSMR]		= { 0x00,  8 },
233 		[SCBRR]		= { 0x02,  8 },
234 		[SCSCR]		= { 0x04,  8 },
235 		[SCxTDR]	= { 0x06,  8 },
236 		[SCxSR]		= { 0x08, 16 },
237 		[SCxRDR]	= { 0x0a,  8 },
238 		[SCFCR]		= { 0x0c,  8 },
239 		[SCFDR]		= { 0x0e, 16 },
240 		[SCTFDR]	= sci_reg_invalid,
241 		[SCRFDR]	= sci_reg_invalid,
242 		[SCSPTR]	= sci_reg_invalid,
243 		[SCLSR]		= sci_reg_invalid,
244 	},
245 
246 	/*
247 	 * Common SH-4(A) SCIF(B) definitions.
248 	 */
249 	[SCIx_SH4_SCIF_REGTYPE] = {
250 		[SCSMR]		= { 0x00, 16 },
251 		[SCBRR]		= { 0x04,  8 },
252 		[SCSCR]		= { 0x08, 16 },
253 		[SCxTDR]	= { 0x0c,  8 },
254 		[SCxSR]		= { 0x10, 16 },
255 		[SCxRDR]	= { 0x14,  8 },
256 		[SCFCR]		= { 0x18, 16 },
257 		[SCFDR]		= { 0x1c, 16 },
258 		[SCTFDR]	= sci_reg_invalid,
259 		[SCRFDR]	= sci_reg_invalid,
260 		[SCSPTR]	= { 0x20, 16 },
261 		[SCLSR]		= { 0x24, 16 },
262 	},
263 
264 	/*
265 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
266 	 * register.
267 	 */
268 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
269 		[SCSMR]		= { 0x00, 16 },
270 		[SCBRR]		= { 0x04,  8 },
271 		[SCSCR]		= { 0x08, 16 },
272 		[SCxTDR]	= { 0x0c,  8 },
273 		[SCxSR]		= { 0x10, 16 },
274 		[SCxRDR]	= { 0x14,  8 },
275 		[SCFCR]		= { 0x18, 16 },
276 		[SCFDR]		= { 0x1c, 16 },
277 		[SCTFDR]	= sci_reg_invalid,
278 		[SCRFDR]	= sci_reg_invalid,
279 		[SCSPTR]	= sci_reg_invalid,
280 		[SCLSR]		= { 0x24, 16 },
281 	},
282 
283 	/*
284 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
285 	 * count registers.
286 	 */
287 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
288 		[SCSMR]		= { 0x00, 16 },
289 		[SCBRR]		= { 0x04,  8 },
290 		[SCSCR]		= { 0x08, 16 },
291 		[SCxTDR]	= { 0x0c,  8 },
292 		[SCxSR]		= { 0x10, 16 },
293 		[SCxRDR]	= { 0x14,  8 },
294 		[SCFCR]		= { 0x18, 16 },
295 		[SCFDR]		= { 0x1c, 16 },
296 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
297 		[SCRFDR]	= { 0x20, 16 },
298 		[SCSPTR]	= { 0x24, 16 },
299 		[SCLSR]		= { 0x28, 16 },
300 	},
301 
302 	/*
303 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
304 	 * registers.
305 	 */
306 	[SCIx_SH7705_SCIF_REGTYPE] = {
307 		[SCSMR]		= { 0x00, 16 },
308 		[SCBRR]		= { 0x04,  8 },
309 		[SCSCR]		= { 0x08, 16 },
310 		[SCxTDR]	= { 0x20,  8 },
311 		[SCxSR]		= { 0x14, 16 },
312 		[SCxRDR]	= { 0x24,  8 },
313 		[SCFCR]		= { 0x18, 16 },
314 		[SCFDR]		= { 0x1c, 16 },
315 		[SCTFDR]	= sci_reg_invalid,
316 		[SCRFDR]	= sci_reg_invalid,
317 		[SCSPTR]	= sci_reg_invalid,
318 		[SCLSR]		= sci_reg_invalid,
319 	},
320 };
321 
322 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
323 
324 /*
325  * The "offset" here is rather misleading, in that it refers to an enum
326  * value relative to the port mapping rather than the fixed offset
327  * itself, which needs to be manually retrieved from the platform's
328  * register map for the given port.
329  */
330 static unsigned int sci_serial_in(struct uart_port *p, int offset)
331 {
332 	struct plat_sci_reg *reg = sci_getreg(p, offset);
333 
334 	if (reg->size == 8)
335 		return ioread8(p->membase + (reg->offset << p->regshift));
336 	else if (reg->size == 16)
337 		return ioread16(p->membase + (reg->offset << p->regshift));
338 	else
339 		WARN(1, "Invalid register access\n");
340 
341 	return 0;
342 }
343 
344 static void sci_serial_out(struct uart_port *p, int offset, int value)
345 {
346 	struct plat_sci_reg *reg = sci_getreg(p, offset);
347 
348 	if (reg->size == 8)
349 		iowrite8(value, p->membase + (reg->offset << p->regshift));
350 	else if (reg->size == 16)
351 		iowrite16(value, p->membase + (reg->offset << p->regshift));
352 	else
353 		WARN(1, "Invalid register access\n");
354 }
355 
356 #define sci_in(up, offset)		(up->serial_in(up, offset))
357 #define sci_out(up, offset, value)	(up->serial_out(up, offset, value))
358 
359 static int sci_probe_regmap(struct plat_sci_port *cfg)
360 {
361 	switch (cfg->type) {
362 	case PORT_SCI:
363 		cfg->regtype = SCIx_SCI_REGTYPE;
364 		break;
365 	case PORT_IRDA:
366 		cfg->regtype = SCIx_IRDA_REGTYPE;
367 		break;
368 	case PORT_SCIFA:
369 		cfg->regtype = SCIx_SCIFA_REGTYPE;
370 		break;
371 	case PORT_SCIFB:
372 		cfg->regtype = SCIx_SCIFB_REGTYPE;
373 		break;
374 	case PORT_SCIF:
375 		/*
376 		 * The SH-4 is a bit of a misnomer here, although that's
377 		 * where this particular port layout originated. This
378 		 * configuration (or some slight variation thereof)
379 		 * remains the dominant model for all SCIFs.
380 		 */
381 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
382 		break;
383 	default:
384 		printk(KERN_ERR "Can't probe register map for given port\n");
385 		return -EINVAL;
386 	}
387 
388 	return 0;
389 }
390 
391 static void sci_port_enable(struct sci_port *sci_port)
392 {
393 	if (!sci_port->port.dev)
394 		return;
395 
396 	pm_runtime_get_sync(sci_port->port.dev);
397 
398 	clk_enable(sci_port->iclk);
399 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
400 	clk_enable(sci_port->fclk);
401 }
402 
403 static void sci_port_disable(struct sci_port *sci_port)
404 {
405 	if (!sci_port->port.dev)
406 		return;
407 
408 	clk_disable(sci_port->fclk);
409 	clk_disable(sci_port->iclk);
410 
411 	pm_runtime_put_sync(sci_port->port.dev);
412 }
413 
414 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
415 
416 #ifdef CONFIG_CONSOLE_POLL
417 static int sci_poll_get_char(struct uart_port *port)
418 {
419 	unsigned short status;
420 	int c;
421 
422 	do {
423 		status = sci_in(port, SCxSR);
424 		if (status & SCxSR_ERRORS(port)) {
425 			sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
426 			continue;
427 		}
428 		break;
429 	} while (1);
430 
431 	if (!(status & SCxSR_RDxF(port)))
432 		return NO_POLL_CHAR;
433 
434 	c = sci_in(port, SCxRDR);
435 
436 	/* Dummy read */
437 	sci_in(port, SCxSR);
438 	sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
439 
440 	return c;
441 }
442 #endif
443 
444 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
445 {
446 	unsigned short status;
447 
448 	do {
449 		status = sci_in(port, SCxSR);
450 	} while (!(status & SCxSR_TDxE(port)));
451 
452 	sci_out(port, SCxTDR, c);
453 	sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
454 }
455 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
456 
457 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
458 {
459 	struct sci_port *s = to_sci_port(port);
460 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
461 
462 	/*
463 	 * Use port-specific handler if provided.
464 	 */
465 	if (s->cfg->ops && s->cfg->ops->init_pins) {
466 		s->cfg->ops->init_pins(port, cflag);
467 		return;
468 	}
469 
470 	/*
471 	 * For the generic path SCSPTR is necessary. Bail out if that's
472 	 * unavailable, too.
473 	 */
474 	if (!reg->size)
475 		return;
476 
477 	if (!(cflag & CRTSCTS))
478 		sci_out(port, SCSPTR, 0x0080); /* Set RTS = 1 */
479 }
480 
481 static int sci_txfill(struct uart_port *port)
482 {
483 	struct plat_sci_reg *reg;
484 
485 	reg = sci_getreg(port, SCTFDR);
486 	if (reg->size)
487 		return sci_in(port, SCTFDR) & 0xff;
488 
489 	reg = sci_getreg(port, SCFDR);
490 	if (reg->size)
491 		return sci_in(port, SCFDR) >> 8;
492 
493 	return !(sci_in(port, SCxSR) & SCI_TDRE);
494 }
495 
496 static int sci_txroom(struct uart_port *port)
497 {
498 	return port->fifosize - sci_txfill(port);
499 }
500 
501 static int sci_rxfill(struct uart_port *port)
502 {
503 	struct plat_sci_reg *reg;
504 
505 	reg = sci_getreg(port, SCRFDR);
506 	if (reg->size)
507 		return sci_in(port, SCRFDR) & 0xff;
508 
509 	reg = sci_getreg(port, SCFDR);
510 	if (reg->size)
511 		return sci_in(port, SCFDR) & ((port->fifosize << 1) - 1);
512 
513 	return (sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
514 }
515 
516 /*
517  * SCI helper for checking the state of the muxed port/RXD pins.
518  */
519 static inline int sci_rxd_in(struct uart_port *port)
520 {
521 	struct sci_port *s = to_sci_port(port);
522 
523 	if (s->cfg->port_reg <= 0)
524 		return 1;
525 
526 	return !!__raw_readb(s->cfg->port_reg);
527 }
528 
529 /* ********************************************************************** *
530  *                   the interrupt related routines                       *
531  * ********************************************************************** */
532 
533 static void sci_transmit_chars(struct uart_port *port)
534 {
535 	struct circ_buf *xmit = &port->state->xmit;
536 	unsigned int stopped = uart_tx_stopped(port);
537 	unsigned short status;
538 	unsigned short ctrl;
539 	int count;
540 
541 	status = sci_in(port, SCxSR);
542 	if (!(status & SCxSR_TDxE(port))) {
543 		ctrl = sci_in(port, SCSCR);
544 		if (uart_circ_empty(xmit))
545 			ctrl &= ~SCSCR_TIE;
546 		else
547 			ctrl |= SCSCR_TIE;
548 		sci_out(port, SCSCR, ctrl);
549 		return;
550 	}
551 
552 	count = sci_txroom(port);
553 
554 	do {
555 		unsigned char c;
556 
557 		if (port->x_char) {
558 			c = port->x_char;
559 			port->x_char = 0;
560 		} else if (!uart_circ_empty(xmit) && !stopped) {
561 			c = xmit->buf[xmit->tail];
562 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
563 		} else {
564 			break;
565 		}
566 
567 		sci_out(port, SCxTDR, c);
568 
569 		port->icount.tx++;
570 	} while (--count > 0);
571 
572 	sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
573 
574 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
575 		uart_write_wakeup(port);
576 	if (uart_circ_empty(xmit)) {
577 		sci_stop_tx(port);
578 	} else {
579 		ctrl = sci_in(port, SCSCR);
580 
581 		if (port->type != PORT_SCI) {
582 			sci_in(port, SCxSR); /* Dummy read */
583 			sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
584 		}
585 
586 		ctrl |= SCSCR_TIE;
587 		sci_out(port, SCSCR, ctrl);
588 	}
589 }
590 
591 /* On SH3, SCIF may read end-of-break as a space->mark char */
592 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
593 
594 static void sci_receive_chars(struct uart_port *port)
595 {
596 	struct sci_port *sci_port = to_sci_port(port);
597 	struct tty_struct *tty = port->state->port.tty;
598 	int i, count, copied = 0;
599 	unsigned short status;
600 	unsigned char flag;
601 
602 	status = sci_in(port, SCxSR);
603 	if (!(status & SCxSR_RDxF(port)))
604 		return;
605 
606 	while (1) {
607 		/* Don't copy more bytes than there is room for in the buffer */
608 		count = tty_buffer_request_room(tty, sci_rxfill(port));
609 
610 		/* If for any reason we can't copy more data, we're done! */
611 		if (count == 0)
612 			break;
613 
614 		if (port->type == PORT_SCI) {
615 			char c = sci_in(port, SCxRDR);
616 			if (uart_handle_sysrq_char(port, c) ||
617 			    sci_port->break_flag)
618 				count = 0;
619 			else
620 				tty_insert_flip_char(tty, c, TTY_NORMAL);
621 		} else {
622 			for (i = 0; i < count; i++) {
623 				char c = sci_in(port, SCxRDR);
624 				status = sci_in(port, SCxSR);
625 #if defined(CONFIG_CPU_SH3)
626 				/* Skip "chars" during break */
627 				if (sci_port->break_flag) {
628 					if ((c == 0) &&
629 					    (status & SCxSR_FER(port))) {
630 						count--; i--;
631 						continue;
632 					}
633 
634 					/* Nonzero => end-of-break */
635 					dev_dbg(port->dev, "debounce<%02x>\n", c);
636 					sci_port->break_flag = 0;
637 
638 					if (STEPFN(c)) {
639 						count--; i--;
640 						continue;
641 					}
642 				}
643 #endif /* CONFIG_CPU_SH3 */
644 				if (uart_handle_sysrq_char(port, c)) {
645 					count--; i--;
646 					continue;
647 				}
648 
649 				/* Store data and status */
650 				if (status & SCxSR_FER(port)) {
651 					flag = TTY_FRAME;
652 					dev_notice(port->dev, "frame error\n");
653 				} else if (status & SCxSR_PER(port)) {
654 					flag = TTY_PARITY;
655 					dev_notice(port->dev, "parity error\n");
656 				} else
657 					flag = TTY_NORMAL;
658 
659 				tty_insert_flip_char(tty, c, flag);
660 			}
661 		}
662 
663 		sci_in(port, SCxSR); /* dummy read */
664 		sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
665 
666 		copied += count;
667 		port->icount.rx += count;
668 	}
669 
670 	if (copied) {
671 		/* Tell the rest of the system the news. New characters! */
672 		tty_flip_buffer_push(tty);
673 	} else {
674 		sci_in(port, SCxSR); /* dummy read */
675 		sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
676 	}
677 }
678 
679 #define SCI_BREAK_JIFFIES (HZ/20)
680 
681 /*
682  * The sci generates interrupts during the break,
683  * 1 per millisecond or so during the break period, for 9600 baud.
684  * So dont bother disabling interrupts.
685  * But dont want more than 1 break event.
686  * Use a kernel timer to periodically poll the rx line until
687  * the break is finished.
688  */
689 static inline void sci_schedule_break_timer(struct sci_port *port)
690 {
691 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
692 }
693 
694 /* Ensure that two consecutive samples find the break over. */
695 static void sci_break_timer(unsigned long data)
696 {
697 	struct sci_port *port = (struct sci_port *)data;
698 
699 	sci_port_enable(port);
700 
701 	if (sci_rxd_in(&port->port) == 0) {
702 		port->break_flag = 1;
703 		sci_schedule_break_timer(port);
704 	} else if (port->break_flag == 1) {
705 		/* break is over. */
706 		port->break_flag = 2;
707 		sci_schedule_break_timer(port);
708 	} else
709 		port->break_flag = 0;
710 
711 	sci_port_disable(port);
712 }
713 
714 static int sci_handle_errors(struct uart_port *port)
715 {
716 	int copied = 0;
717 	unsigned short status = sci_in(port, SCxSR);
718 	struct tty_struct *tty = port->state->port.tty;
719 	struct sci_port *s = to_sci_port(port);
720 
721 	/*
722 	 * Handle overruns, if supported.
723 	 */
724 	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
725 		if (status & (1 << s->cfg->overrun_bit)) {
726 			/* overrun error */
727 			if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
728 				copied++;
729 
730 			dev_notice(port->dev, "overrun error");
731 		}
732 	}
733 
734 	if (status & SCxSR_FER(port)) {
735 		if (sci_rxd_in(port) == 0) {
736 			/* Notify of BREAK */
737 			struct sci_port *sci_port = to_sci_port(port);
738 
739 			if (!sci_port->break_flag) {
740 				sci_port->break_flag = 1;
741 				sci_schedule_break_timer(sci_port);
742 
743 				/* Do sysrq handling. */
744 				if (uart_handle_break(port))
745 					return 0;
746 
747 				dev_dbg(port->dev, "BREAK detected\n");
748 
749 				if (tty_insert_flip_char(tty, 0, TTY_BREAK))
750 					copied++;
751 			}
752 
753 		} else {
754 			/* frame error */
755 			if (tty_insert_flip_char(tty, 0, TTY_FRAME))
756 				copied++;
757 
758 			dev_notice(port->dev, "frame error\n");
759 		}
760 	}
761 
762 	if (status & SCxSR_PER(port)) {
763 		/* parity error */
764 		if (tty_insert_flip_char(tty, 0, TTY_PARITY))
765 			copied++;
766 
767 		dev_notice(port->dev, "parity error");
768 	}
769 
770 	if (copied)
771 		tty_flip_buffer_push(tty);
772 
773 	return copied;
774 }
775 
776 static int sci_handle_fifo_overrun(struct uart_port *port)
777 {
778 	struct tty_struct *tty = port->state->port.tty;
779 	struct sci_port *s = to_sci_port(port);
780 	struct plat_sci_reg *reg;
781 	int copied = 0;
782 
783 	reg = sci_getreg(port, SCLSR);
784 	if (!reg->size)
785 		return 0;
786 
787 	if ((sci_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
788 		sci_out(port, SCLSR, 0);
789 
790 		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
791 		tty_flip_buffer_push(tty);
792 
793 		dev_notice(port->dev, "overrun error\n");
794 		copied++;
795 	}
796 
797 	return copied;
798 }
799 
800 static int sci_handle_breaks(struct uart_port *port)
801 {
802 	int copied = 0;
803 	unsigned short status = sci_in(port, SCxSR);
804 	struct tty_struct *tty = port->state->port.tty;
805 	struct sci_port *s = to_sci_port(port);
806 
807 	if (uart_handle_break(port))
808 		return 0;
809 
810 	if (!s->break_flag && status & SCxSR_BRK(port)) {
811 #if defined(CONFIG_CPU_SH3)
812 		/* Debounce break */
813 		s->break_flag = 1;
814 #endif
815 		/* Notify of BREAK */
816 		if (tty_insert_flip_char(tty, 0, TTY_BREAK))
817 			copied++;
818 
819 		dev_dbg(port->dev, "BREAK detected\n");
820 	}
821 
822 	if (copied)
823 		tty_flip_buffer_push(tty);
824 
825 	copied += sci_handle_fifo_overrun(port);
826 
827 	return copied;
828 }
829 
830 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
831 {
832 #ifdef CONFIG_SERIAL_SH_SCI_DMA
833 	struct uart_port *port = ptr;
834 	struct sci_port *s = to_sci_port(port);
835 
836 	if (s->chan_rx) {
837 		u16 scr = sci_in(port, SCSCR);
838 		u16 ssr = sci_in(port, SCxSR);
839 
840 		/* Disable future Rx interrupts */
841 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
842 			disable_irq_nosync(irq);
843 			scr |= 0x4000;
844 		} else {
845 			scr &= ~SCSCR_RIE;
846 		}
847 		sci_out(port, SCSCR, scr);
848 		/* Clear current interrupt */
849 		sci_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
850 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
851 			jiffies, s->rx_timeout);
852 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
853 
854 		return IRQ_HANDLED;
855 	}
856 #endif
857 
858 	/* I think sci_receive_chars has to be called irrespective
859 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
860 	 * to be disabled?
861 	 */
862 	sci_receive_chars(ptr);
863 
864 	return IRQ_HANDLED;
865 }
866 
867 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
868 {
869 	struct uart_port *port = ptr;
870 	unsigned long flags;
871 
872 	spin_lock_irqsave(&port->lock, flags);
873 	sci_transmit_chars(port);
874 	spin_unlock_irqrestore(&port->lock, flags);
875 
876 	return IRQ_HANDLED;
877 }
878 
879 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
880 {
881 	struct uart_port *port = ptr;
882 
883 	/* Handle errors */
884 	if (port->type == PORT_SCI) {
885 		if (sci_handle_errors(port)) {
886 			/* discard character in rx buffer */
887 			sci_in(port, SCxSR);
888 			sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
889 		}
890 	} else {
891 		sci_handle_fifo_overrun(port);
892 		sci_rx_interrupt(irq, ptr);
893 	}
894 
895 	sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
896 
897 	/* Kick the transmission */
898 	sci_tx_interrupt(irq, ptr);
899 
900 	return IRQ_HANDLED;
901 }
902 
903 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
904 {
905 	struct uart_port *port = ptr;
906 
907 	/* Handle BREAKs */
908 	sci_handle_breaks(port);
909 	sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
910 
911 	return IRQ_HANDLED;
912 }
913 
914 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
915 {
916 	/*
917 	 * Not all ports (such as SCIFA) will support REIE. Rather than
918 	 * special-casing the port type, we check the port initialization
919 	 * IRQ enable mask to see whether the IRQ is desired at all. If
920 	 * it's unset, it's logically inferred that there's no point in
921 	 * testing for it.
922 	 */
923 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
924 }
925 
926 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
927 {
928 	unsigned short ssr_status, scr_status, err_enabled;
929 	struct uart_port *port = ptr;
930 	struct sci_port *s = to_sci_port(port);
931 	irqreturn_t ret = IRQ_NONE;
932 
933 	ssr_status = sci_in(port, SCxSR);
934 	scr_status = sci_in(port, SCSCR);
935 	err_enabled = scr_status & port_rx_irq_mask(port);
936 
937 	/* Tx Interrupt */
938 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
939 	    !s->chan_tx)
940 		ret = sci_tx_interrupt(irq, ptr);
941 
942 	/*
943 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
944 	 * DR flags
945 	 */
946 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
947 	    (scr_status & SCSCR_RIE))
948 		ret = sci_rx_interrupt(irq, ptr);
949 
950 	/* Error Interrupt */
951 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
952 		ret = sci_er_interrupt(irq, ptr);
953 
954 	/* Break Interrupt */
955 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
956 		ret = sci_br_interrupt(irq, ptr);
957 
958 	return ret;
959 }
960 
961 /*
962  * Here we define a transition notifier so that we can update all of our
963  * ports' baud rate when the peripheral clock changes.
964  */
965 static int sci_notifier(struct notifier_block *self,
966 			unsigned long phase, void *p)
967 {
968 	struct sci_port *sci_port;
969 	unsigned long flags;
970 
971 	sci_port = container_of(self, struct sci_port, freq_transition);
972 
973 	if ((phase == CPUFREQ_POSTCHANGE) ||
974 	    (phase == CPUFREQ_RESUMECHANGE)) {
975 		struct uart_port *port = &sci_port->port;
976 
977 		spin_lock_irqsave(&port->lock, flags);
978 		port->uartclk = clk_get_rate(sci_port->iclk);
979 		spin_unlock_irqrestore(&port->lock, flags);
980 	}
981 
982 	return NOTIFY_OK;
983 }
984 
985 static struct sci_irq_desc {
986 	const char	*desc;
987 	irq_handler_t	handler;
988 } sci_irq_desc[] = {
989 	/*
990 	 * Split out handlers, the default case.
991 	 */
992 	[SCIx_ERI_IRQ] = {
993 		.desc = "rx err",
994 		.handler = sci_er_interrupt,
995 	},
996 
997 	[SCIx_RXI_IRQ] = {
998 		.desc = "rx full",
999 		.handler = sci_rx_interrupt,
1000 	},
1001 
1002 	[SCIx_TXI_IRQ] = {
1003 		.desc = "tx empty",
1004 		.handler = sci_tx_interrupt,
1005 	},
1006 
1007 	[SCIx_BRI_IRQ] = {
1008 		.desc = "break",
1009 		.handler = sci_br_interrupt,
1010 	},
1011 
1012 	/*
1013 	 * Special muxed handler.
1014 	 */
1015 	[SCIx_MUX_IRQ] = {
1016 		.desc = "mux",
1017 		.handler = sci_mpxed_interrupt,
1018 	},
1019 };
1020 
1021 static int sci_request_irq(struct sci_port *port)
1022 {
1023 	struct uart_port *up = &port->port;
1024 	int i, j, ret = 0;
1025 
1026 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1027 		struct sci_irq_desc *desc;
1028 		unsigned int irq;
1029 
1030 		if (SCIx_IRQ_IS_MUXED(port)) {
1031 			i = SCIx_MUX_IRQ;
1032 			irq = up->irq;
1033 		} else
1034 			irq = port->cfg->irqs[i];
1035 
1036 		desc = sci_irq_desc + i;
1037 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1038 					    dev_name(up->dev), desc->desc);
1039 		if (!port->irqstr[j]) {
1040 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1041 				desc->desc);
1042 			goto out_nomem;
1043 		}
1044 
1045 		ret = request_irq(irq, desc->handler, up->irqflags,
1046 				  port->irqstr[j], port);
1047 		if (unlikely(ret)) {
1048 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1049 			goto out_noirq;
1050 		}
1051 	}
1052 
1053 	return 0;
1054 
1055 out_noirq:
1056 	while (--i >= 0)
1057 		free_irq(port->cfg->irqs[i], port);
1058 
1059 out_nomem:
1060 	while (--j >= 0)
1061 		kfree(port->irqstr[j]);
1062 
1063 	return ret;
1064 }
1065 
1066 static void sci_free_irq(struct sci_port *port)
1067 {
1068 	int i;
1069 
1070 	/*
1071 	 * Intentionally in reverse order so we iterate over the muxed
1072 	 * IRQ first.
1073 	 */
1074 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1075 		free_irq(port->cfg->irqs[i], port);
1076 		kfree(port->irqstr[i]);
1077 
1078 		if (SCIx_IRQ_IS_MUXED(port)) {
1079 			/* If there's only one IRQ, we're done. */
1080 			return;
1081 		}
1082 	}
1083 }
1084 
1085 static unsigned int sci_tx_empty(struct uart_port *port)
1086 {
1087 	unsigned short status = sci_in(port, SCxSR);
1088 	unsigned short in_tx_fifo = sci_txfill(port);
1089 
1090 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1091 }
1092 
1093 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1094 {
1095 	/* This routine is used for seting signals of: DTR, DCD, CTS/RTS */
1096 	/* We use SCIF's hardware for CTS/RTS, so don't need any for that. */
1097 	/* If you have signals for DTR and DCD, please implement here. */
1098 }
1099 
1100 static unsigned int sci_get_mctrl(struct uart_port *port)
1101 {
1102 	/* This routine is used for getting signals of: DTR, DCD, DSR, RI,
1103 	   and CTS/RTS */
1104 
1105 	return TIOCM_DTR | TIOCM_RTS | TIOCM_CTS | TIOCM_DSR;
1106 }
1107 
1108 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1109 static void sci_dma_tx_complete(void *arg)
1110 {
1111 	struct sci_port *s = arg;
1112 	struct uart_port *port = &s->port;
1113 	struct circ_buf *xmit = &port->state->xmit;
1114 	unsigned long flags;
1115 
1116 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1117 
1118 	spin_lock_irqsave(&port->lock, flags);
1119 
1120 	xmit->tail += sg_dma_len(&s->sg_tx);
1121 	xmit->tail &= UART_XMIT_SIZE - 1;
1122 
1123 	port->icount.tx += sg_dma_len(&s->sg_tx);
1124 
1125 	async_tx_ack(s->desc_tx);
1126 	s->cookie_tx = -EINVAL;
1127 	s->desc_tx = NULL;
1128 
1129 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1130 		uart_write_wakeup(port);
1131 
1132 	if (!uart_circ_empty(xmit)) {
1133 		schedule_work(&s->work_tx);
1134 	} else if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1135 		u16 ctrl = sci_in(port, SCSCR);
1136 		sci_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1137 	}
1138 
1139 	spin_unlock_irqrestore(&port->lock, flags);
1140 }
1141 
1142 /* Locking: called with port lock held */
1143 static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
1144 			   size_t count)
1145 {
1146 	struct uart_port *port = &s->port;
1147 	int i, active, room;
1148 
1149 	room = tty_buffer_request_room(tty, count);
1150 
1151 	if (s->active_rx == s->cookie_rx[0]) {
1152 		active = 0;
1153 	} else if (s->active_rx == s->cookie_rx[1]) {
1154 		active = 1;
1155 	} else {
1156 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1157 		return 0;
1158 	}
1159 
1160 	if (room < count)
1161 		dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1162 			 count - room);
1163 	if (!room)
1164 		return room;
1165 
1166 	for (i = 0; i < room; i++)
1167 		tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1168 				     TTY_NORMAL);
1169 
1170 	port->icount.rx += room;
1171 
1172 	return room;
1173 }
1174 
1175 static void sci_dma_rx_complete(void *arg)
1176 {
1177 	struct sci_port *s = arg;
1178 	struct uart_port *port = &s->port;
1179 	struct tty_struct *tty = port->state->port.tty;
1180 	unsigned long flags;
1181 	int count;
1182 
1183 	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1184 
1185 	spin_lock_irqsave(&port->lock, flags);
1186 
1187 	count = sci_dma_rx_push(s, tty, s->buf_len_rx);
1188 
1189 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1190 
1191 	spin_unlock_irqrestore(&port->lock, flags);
1192 
1193 	if (count)
1194 		tty_flip_buffer_push(tty);
1195 
1196 	schedule_work(&s->work_rx);
1197 }
1198 
1199 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1200 {
1201 	struct dma_chan *chan = s->chan_rx;
1202 	struct uart_port *port = &s->port;
1203 
1204 	s->chan_rx = NULL;
1205 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1206 	dma_release_channel(chan);
1207 	if (sg_dma_address(&s->sg_rx[0]))
1208 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1209 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1210 	if (enable_pio)
1211 		sci_start_rx(port);
1212 }
1213 
1214 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1215 {
1216 	struct dma_chan *chan = s->chan_tx;
1217 	struct uart_port *port = &s->port;
1218 
1219 	s->chan_tx = NULL;
1220 	s->cookie_tx = -EINVAL;
1221 	dma_release_channel(chan);
1222 	if (enable_pio)
1223 		sci_start_tx(port);
1224 }
1225 
1226 static void sci_submit_rx(struct sci_port *s)
1227 {
1228 	struct dma_chan *chan = s->chan_rx;
1229 	int i;
1230 
1231 	for (i = 0; i < 2; i++) {
1232 		struct scatterlist *sg = &s->sg_rx[i];
1233 		struct dma_async_tx_descriptor *desc;
1234 
1235 		desc = chan->device->device_prep_slave_sg(chan,
1236 			sg, 1, DMA_FROM_DEVICE, DMA_PREP_INTERRUPT);
1237 
1238 		if (desc) {
1239 			s->desc_rx[i] = desc;
1240 			desc->callback = sci_dma_rx_complete;
1241 			desc->callback_param = s;
1242 			s->cookie_rx[i] = desc->tx_submit(desc);
1243 		}
1244 
1245 		if (!desc || s->cookie_rx[i] < 0) {
1246 			if (i) {
1247 				async_tx_ack(s->desc_rx[0]);
1248 				s->cookie_rx[0] = -EINVAL;
1249 			}
1250 			if (desc) {
1251 				async_tx_ack(desc);
1252 				s->cookie_rx[i] = -EINVAL;
1253 			}
1254 			dev_warn(s->port.dev,
1255 				 "failed to re-start DMA, using PIO\n");
1256 			sci_rx_dma_release(s, true);
1257 			return;
1258 		}
1259 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1260 			s->cookie_rx[i], i);
1261 	}
1262 
1263 	s->active_rx = s->cookie_rx[0];
1264 
1265 	dma_async_issue_pending(chan);
1266 }
1267 
1268 static void work_fn_rx(struct work_struct *work)
1269 {
1270 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1271 	struct uart_port *port = &s->port;
1272 	struct dma_async_tx_descriptor *desc;
1273 	int new;
1274 
1275 	if (s->active_rx == s->cookie_rx[0]) {
1276 		new = 0;
1277 	} else if (s->active_rx == s->cookie_rx[1]) {
1278 		new = 1;
1279 	} else {
1280 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1281 		return;
1282 	}
1283 	desc = s->desc_rx[new];
1284 
1285 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1286 	    DMA_SUCCESS) {
1287 		/* Handle incomplete DMA receive */
1288 		struct tty_struct *tty = port->state->port.tty;
1289 		struct dma_chan *chan = s->chan_rx;
1290 		struct sh_desc *sh_desc = container_of(desc, struct sh_desc,
1291 						       async_tx);
1292 		unsigned long flags;
1293 		int count;
1294 
1295 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1296 		dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1297 			sh_desc->partial, sh_desc->cookie);
1298 
1299 		spin_lock_irqsave(&port->lock, flags);
1300 		count = sci_dma_rx_push(s, tty, sh_desc->partial);
1301 		spin_unlock_irqrestore(&port->lock, flags);
1302 
1303 		if (count)
1304 			tty_flip_buffer_push(tty);
1305 
1306 		sci_submit_rx(s);
1307 
1308 		return;
1309 	}
1310 
1311 	s->cookie_rx[new] = desc->tx_submit(desc);
1312 	if (s->cookie_rx[new] < 0) {
1313 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1314 		sci_rx_dma_release(s, true);
1315 		return;
1316 	}
1317 
1318 	s->active_rx = s->cookie_rx[!new];
1319 
1320 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1321 		s->cookie_rx[new], new, s->active_rx);
1322 }
1323 
1324 static void work_fn_tx(struct work_struct *work)
1325 {
1326 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1327 	struct dma_async_tx_descriptor *desc;
1328 	struct dma_chan *chan = s->chan_tx;
1329 	struct uart_port *port = &s->port;
1330 	struct circ_buf *xmit = &port->state->xmit;
1331 	struct scatterlist *sg = &s->sg_tx;
1332 
1333 	/*
1334 	 * DMA is idle now.
1335 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1336 	 * offsets and lengths. Since it is a circular buffer, we have to
1337 	 * transmit till the end, and then the rest. Take the port lock to get a
1338 	 * consistent xmit buffer state.
1339 	 */
1340 	spin_lock_irq(&port->lock);
1341 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1342 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1343 		sg->offset;
1344 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1345 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1346 	spin_unlock_irq(&port->lock);
1347 
1348 	BUG_ON(!sg_dma_len(sg));
1349 
1350 	desc = chan->device->device_prep_slave_sg(chan,
1351 			sg, s->sg_len_tx, DMA_TO_DEVICE,
1352 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1353 	if (!desc) {
1354 		/* switch to PIO */
1355 		sci_tx_dma_release(s, true);
1356 		return;
1357 	}
1358 
1359 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1360 
1361 	spin_lock_irq(&port->lock);
1362 	s->desc_tx = desc;
1363 	desc->callback = sci_dma_tx_complete;
1364 	desc->callback_param = s;
1365 	spin_unlock_irq(&port->lock);
1366 	s->cookie_tx = desc->tx_submit(desc);
1367 	if (s->cookie_tx < 0) {
1368 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1369 		/* switch to PIO */
1370 		sci_tx_dma_release(s, true);
1371 		return;
1372 	}
1373 
1374 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1375 		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1376 
1377 	dma_async_issue_pending(chan);
1378 }
1379 #endif
1380 
1381 static void sci_start_tx(struct uart_port *port)
1382 {
1383 	struct sci_port *s = to_sci_port(port);
1384 	unsigned short ctrl;
1385 
1386 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1387 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1388 		u16 new, scr = sci_in(port, SCSCR);
1389 		if (s->chan_tx)
1390 			new = scr | 0x8000;
1391 		else
1392 			new = scr & ~0x8000;
1393 		if (new != scr)
1394 			sci_out(port, SCSCR, new);
1395 	}
1396 
1397 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1398 	    s->cookie_tx < 0)
1399 		schedule_work(&s->work_tx);
1400 #endif
1401 
1402 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1403 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1404 		ctrl = sci_in(port, SCSCR);
1405 		sci_out(port, SCSCR, ctrl | SCSCR_TIE);
1406 	}
1407 }
1408 
1409 static void sci_stop_tx(struct uart_port *port)
1410 {
1411 	unsigned short ctrl;
1412 
1413 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1414 	ctrl = sci_in(port, SCSCR);
1415 
1416 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1417 		ctrl &= ~0x8000;
1418 
1419 	ctrl &= ~SCSCR_TIE;
1420 
1421 	sci_out(port, SCSCR, ctrl);
1422 }
1423 
1424 static void sci_start_rx(struct uart_port *port)
1425 {
1426 	unsigned short ctrl;
1427 
1428 	ctrl = sci_in(port, SCSCR) | port_rx_irq_mask(port);
1429 
1430 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1431 		ctrl &= ~0x4000;
1432 
1433 	sci_out(port, SCSCR, ctrl);
1434 }
1435 
1436 static void sci_stop_rx(struct uart_port *port)
1437 {
1438 	unsigned short ctrl;
1439 
1440 	ctrl = sci_in(port, SCSCR);
1441 
1442 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1443 		ctrl &= ~0x4000;
1444 
1445 	ctrl &= ~port_rx_irq_mask(port);
1446 
1447 	sci_out(port, SCSCR, ctrl);
1448 }
1449 
1450 static void sci_enable_ms(struct uart_port *port)
1451 {
1452 	/* Nothing here yet .. */
1453 }
1454 
1455 static void sci_break_ctl(struct uart_port *port, int break_state)
1456 {
1457 	/* Nothing here yet .. */
1458 }
1459 
1460 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1461 static bool filter(struct dma_chan *chan, void *slave)
1462 {
1463 	struct sh_dmae_slave *param = slave;
1464 
1465 	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1466 		param->slave_id);
1467 
1468 	chan->private = param;
1469 	return true;
1470 }
1471 
1472 static void rx_timer_fn(unsigned long arg)
1473 {
1474 	struct sci_port *s = (struct sci_port *)arg;
1475 	struct uart_port *port = &s->port;
1476 	u16 scr = sci_in(port, SCSCR);
1477 
1478 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1479 		scr &= ~0x4000;
1480 		enable_irq(s->cfg->irqs[1]);
1481 	}
1482 	sci_out(port, SCSCR, scr | SCSCR_RIE);
1483 	dev_dbg(port->dev, "DMA Rx timed out\n");
1484 	schedule_work(&s->work_rx);
1485 }
1486 
1487 static void sci_request_dma(struct uart_port *port)
1488 {
1489 	struct sci_port *s = to_sci_port(port);
1490 	struct sh_dmae_slave *param;
1491 	struct dma_chan *chan;
1492 	dma_cap_mask_t mask;
1493 	int nent;
1494 
1495 	dev_dbg(port->dev, "%s: port %d\n", __func__,
1496 		port->line);
1497 
1498 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1499 		return;
1500 
1501 	dma_cap_zero(mask);
1502 	dma_cap_set(DMA_SLAVE, mask);
1503 
1504 	param = &s->param_tx;
1505 
1506 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1507 	param->slave_id = s->cfg->dma_slave_tx;
1508 
1509 	s->cookie_tx = -EINVAL;
1510 	chan = dma_request_channel(mask, filter, param);
1511 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1512 	if (chan) {
1513 		s->chan_tx = chan;
1514 		sg_init_table(&s->sg_tx, 1);
1515 		/* UART circular tx buffer is an aligned page. */
1516 		BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1517 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1518 			    UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
1519 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1520 		if (!nent)
1521 			sci_tx_dma_release(s, false);
1522 		else
1523 			dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1524 				sg_dma_len(&s->sg_tx),
1525 				port->state->xmit.buf, sg_dma_address(&s->sg_tx));
1526 
1527 		s->sg_len_tx = nent;
1528 
1529 		INIT_WORK(&s->work_tx, work_fn_tx);
1530 	}
1531 
1532 	param = &s->param_rx;
1533 
1534 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1535 	param->slave_id = s->cfg->dma_slave_rx;
1536 
1537 	chan = dma_request_channel(mask, filter, param);
1538 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1539 	if (chan) {
1540 		dma_addr_t dma[2];
1541 		void *buf[2];
1542 		int i;
1543 
1544 		s->chan_rx = chan;
1545 
1546 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1547 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1548 					    &dma[0], GFP_KERNEL);
1549 
1550 		if (!buf[0]) {
1551 			dev_warn(port->dev,
1552 				 "failed to allocate dma buffer, using PIO\n");
1553 			sci_rx_dma_release(s, true);
1554 			return;
1555 		}
1556 
1557 		buf[1] = buf[0] + s->buf_len_rx;
1558 		dma[1] = dma[0] + s->buf_len_rx;
1559 
1560 		for (i = 0; i < 2; i++) {
1561 			struct scatterlist *sg = &s->sg_rx[i];
1562 
1563 			sg_init_table(sg, 1);
1564 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1565 				    (int)buf[i] & ~PAGE_MASK);
1566 			sg_dma_address(sg) = dma[i];
1567 		}
1568 
1569 		INIT_WORK(&s->work_rx, work_fn_rx);
1570 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1571 
1572 		sci_submit_rx(s);
1573 	}
1574 }
1575 
1576 static void sci_free_dma(struct uart_port *port)
1577 {
1578 	struct sci_port *s = to_sci_port(port);
1579 
1580 	if (s->chan_tx)
1581 		sci_tx_dma_release(s, false);
1582 	if (s->chan_rx)
1583 		sci_rx_dma_release(s, false);
1584 }
1585 #else
1586 static inline void sci_request_dma(struct uart_port *port)
1587 {
1588 }
1589 
1590 static inline void sci_free_dma(struct uart_port *port)
1591 {
1592 }
1593 #endif
1594 
1595 static int sci_startup(struct uart_port *port)
1596 {
1597 	struct sci_port *s = to_sci_port(port);
1598 	int ret;
1599 
1600 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1601 
1602 	sci_port_enable(s);
1603 
1604 	ret = sci_request_irq(s);
1605 	if (unlikely(ret < 0))
1606 		return ret;
1607 
1608 	sci_request_dma(port);
1609 
1610 	sci_start_tx(port);
1611 	sci_start_rx(port);
1612 
1613 	return 0;
1614 }
1615 
1616 static void sci_shutdown(struct uart_port *port)
1617 {
1618 	struct sci_port *s = to_sci_port(port);
1619 
1620 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1621 
1622 	sci_stop_rx(port);
1623 	sci_stop_tx(port);
1624 
1625 	sci_free_dma(port);
1626 	sci_free_irq(s);
1627 
1628 	sci_port_disable(s);
1629 }
1630 
1631 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1632 				   unsigned long freq)
1633 {
1634 	switch (algo_id) {
1635 	case SCBRR_ALGO_1:
1636 		return ((freq + 16 * bps) / (16 * bps) - 1);
1637 	case SCBRR_ALGO_2:
1638 		return ((freq + 16 * bps) / (32 * bps) - 1);
1639 	case SCBRR_ALGO_3:
1640 		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1641 	case SCBRR_ALGO_4:
1642 		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1643 	case SCBRR_ALGO_5:
1644 		return (((freq * 1000 / 32) / bps) - 1);
1645 	}
1646 
1647 	/* Warn, but use a safe default */
1648 	WARN_ON(1);
1649 
1650 	return ((freq + 16 * bps) / (32 * bps) - 1);
1651 }
1652 
1653 static void sci_reset(struct uart_port *port)
1654 {
1655 	unsigned int status;
1656 
1657 	do {
1658 		status = sci_in(port, SCxSR);
1659 	} while (!(status & SCxSR_TEND(port)));
1660 
1661 	sci_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1662 
1663 	if (port->type != PORT_SCI)
1664 		sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1665 }
1666 
1667 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1668 			    struct ktermios *old)
1669 {
1670 	struct sci_port *s = to_sci_port(port);
1671 	unsigned int baud, smr_val, max_baud;
1672 	int t = -1;
1673 	u16 scfcr = 0;
1674 
1675 	/*
1676 	 * earlyprintk comes here early on with port->uartclk set to zero.
1677 	 * the clock framework is not up and running at this point so here
1678 	 * we assume that 115200 is the maximum baud rate. please note that
1679 	 * the baud rate is not programmed during earlyprintk - it is assumed
1680 	 * that the previous boot loader has enabled required clocks and
1681 	 * setup the baud rate generator hardware for us already.
1682 	 */
1683 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1684 
1685 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1686 	if (likely(baud && port->uartclk))
1687 		t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
1688 
1689 	sci_port_enable(s);
1690 
1691 	sci_reset(port);
1692 
1693 	smr_val = sci_in(port, SCSMR) & 3;
1694 
1695 	if ((termios->c_cflag & CSIZE) == CS7)
1696 		smr_val |= 0x40;
1697 	if (termios->c_cflag & PARENB)
1698 		smr_val |= 0x20;
1699 	if (termios->c_cflag & PARODD)
1700 		smr_val |= 0x30;
1701 	if (termios->c_cflag & CSTOPB)
1702 		smr_val |= 0x08;
1703 
1704 	uart_update_timeout(port, termios->c_cflag, baud);
1705 
1706 	sci_out(port, SCSMR, smr_val);
1707 
1708 	dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
1709 		s->cfg->scscr);
1710 
1711 	if (t > 0) {
1712 		if (t >= 256) {
1713 			sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1);
1714 			t >>= 2;
1715 		} else
1716 			sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3);
1717 
1718 		sci_out(port, SCBRR, t);
1719 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1720 	}
1721 
1722 	sci_init_pins(port, termios->c_cflag);
1723 	sci_out(port, SCFCR, scfcr | ((termios->c_cflag & CRTSCTS) ? SCFCR_MCE : 0));
1724 
1725 	sci_out(port, SCSCR, s->cfg->scscr);
1726 
1727 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1728 	/*
1729 	 * Calculate delay for 1.5 DMA buffers: see
1730 	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1731 	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1732 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1733 	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1734 	 * sizes), but it has been found out experimentally, that this is not
1735 	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1736 	 * as a minimum seem to work perfectly.
1737 	 */
1738 	if (s->chan_rx) {
1739 		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1740 			port->fifosize / 2;
1741 		dev_dbg(port->dev,
1742 			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1743 			s->rx_timeout * 1000 / HZ, port->timeout);
1744 		if (s->rx_timeout < msecs_to_jiffies(20))
1745 			s->rx_timeout = msecs_to_jiffies(20);
1746 	}
1747 #endif
1748 
1749 	if ((termios->c_cflag & CREAD) != 0)
1750 		sci_start_rx(port);
1751 
1752 	sci_port_disable(s);
1753 }
1754 
1755 static const char *sci_type(struct uart_port *port)
1756 {
1757 	switch (port->type) {
1758 	case PORT_IRDA:
1759 		return "irda";
1760 	case PORT_SCI:
1761 		return "sci";
1762 	case PORT_SCIF:
1763 		return "scif";
1764 	case PORT_SCIFA:
1765 		return "scifa";
1766 	case PORT_SCIFB:
1767 		return "scifb";
1768 	}
1769 
1770 	return NULL;
1771 }
1772 
1773 static inline unsigned long sci_port_size(struct uart_port *port)
1774 {
1775 	/*
1776 	 * Pick an arbitrary size that encapsulates all of the base
1777 	 * registers by default. This can be optimized later, or derived
1778 	 * from platform resource data at such a time that ports begin to
1779 	 * behave more erratically.
1780 	 */
1781 	return 64;
1782 }
1783 
1784 static int sci_remap_port(struct uart_port *port)
1785 {
1786 	unsigned long size = sci_port_size(port);
1787 
1788 	/*
1789 	 * Nothing to do if there's already an established membase.
1790 	 */
1791 	if (port->membase)
1792 		return 0;
1793 
1794 	if (port->flags & UPF_IOREMAP) {
1795 		port->membase = ioremap_nocache(port->mapbase, size);
1796 		if (unlikely(!port->membase)) {
1797 			dev_err(port->dev, "can't remap port#%d\n", port->line);
1798 			return -ENXIO;
1799 		}
1800 	} else {
1801 		/*
1802 		 * For the simple (and majority of) cases where we don't
1803 		 * need to do any remapping, just cast the cookie
1804 		 * directly.
1805 		 */
1806 		port->membase = (void __iomem *)port->mapbase;
1807 	}
1808 
1809 	return 0;
1810 }
1811 
1812 static void sci_release_port(struct uart_port *port)
1813 {
1814 	if (port->flags & UPF_IOREMAP) {
1815 		iounmap(port->membase);
1816 		port->membase = NULL;
1817 	}
1818 
1819 	release_mem_region(port->mapbase, sci_port_size(port));
1820 }
1821 
1822 static int sci_request_port(struct uart_port *port)
1823 {
1824 	unsigned long size = sci_port_size(port);
1825 	struct resource *res;
1826 	int ret;
1827 
1828 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
1829 	if (unlikely(res == NULL))
1830 		return -EBUSY;
1831 
1832 	ret = sci_remap_port(port);
1833 	if (unlikely(ret != 0)) {
1834 		release_resource(res);
1835 		return ret;
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 static void sci_config_port(struct uart_port *port, int flags)
1842 {
1843 	if (flags & UART_CONFIG_TYPE) {
1844 		struct sci_port *sport = to_sci_port(port);
1845 
1846 		port->type = sport->cfg->type;
1847 		sci_request_port(port);
1848 	}
1849 }
1850 
1851 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
1852 {
1853 	struct sci_port *s = to_sci_port(port);
1854 
1855 	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
1856 		return -EINVAL;
1857 	if (ser->baud_base < 2400)
1858 		/* No paper tape reader for Mitch.. */
1859 		return -EINVAL;
1860 
1861 	return 0;
1862 }
1863 
1864 static struct uart_ops sci_uart_ops = {
1865 	.tx_empty	= sci_tx_empty,
1866 	.set_mctrl	= sci_set_mctrl,
1867 	.get_mctrl	= sci_get_mctrl,
1868 	.start_tx	= sci_start_tx,
1869 	.stop_tx	= sci_stop_tx,
1870 	.stop_rx	= sci_stop_rx,
1871 	.enable_ms	= sci_enable_ms,
1872 	.break_ctl	= sci_break_ctl,
1873 	.startup	= sci_startup,
1874 	.shutdown	= sci_shutdown,
1875 	.set_termios	= sci_set_termios,
1876 	.type		= sci_type,
1877 	.release_port	= sci_release_port,
1878 	.request_port	= sci_request_port,
1879 	.config_port	= sci_config_port,
1880 	.verify_port	= sci_verify_port,
1881 #ifdef CONFIG_CONSOLE_POLL
1882 	.poll_get_char	= sci_poll_get_char,
1883 	.poll_put_char	= sci_poll_put_char,
1884 #endif
1885 };
1886 
1887 static int __devinit sci_init_single(struct platform_device *dev,
1888 				     struct sci_port *sci_port,
1889 				     unsigned int index,
1890 				     struct plat_sci_port *p)
1891 {
1892 	struct uart_port *port = &sci_port->port;
1893 	int ret;
1894 
1895 	port->ops	= &sci_uart_ops;
1896 	port->iotype	= UPIO_MEM;
1897 	port->line	= index;
1898 
1899 	switch (p->type) {
1900 	case PORT_SCIFB:
1901 		port->fifosize = 256;
1902 		break;
1903 	case PORT_SCIFA:
1904 		port->fifosize = 64;
1905 		break;
1906 	case PORT_SCIF:
1907 		port->fifosize = 16;
1908 		break;
1909 	default:
1910 		port->fifosize = 1;
1911 		break;
1912 	}
1913 
1914 	if (p->regtype == SCIx_PROBE_REGTYPE) {
1915 		ret = sci_probe_regmap(p);
1916 		if (unlikely(ret))
1917 			return ret;
1918 	}
1919 
1920 	if (dev) {
1921 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
1922 		if (IS_ERR(sci_port->iclk)) {
1923 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
1924 			if (IS_ERR(sci_port->iclk)) {
1925 				dev_err(&dev->dev, "can't get iclk\n");
1926 				return PTR_ERR(sci_port->iclk);
1927 			}
1928 		}
1929 
1930 		/*
1931 		 * The function clock is optional, ignore it if we can't
1932 		 * find it.
1933 		 */
1934 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
1935 		if (IS_ERR(sci_port->fclk))
1936 			sci_port->fclk = NULL;
1937 
1938 		port->dev = &dev->dev;
1939 
1940 		pm_runtime_irq_safe(&dev->dev);
1941 		pm_runtime_enable(&dev->dev);
1942 	}
1943 
1944 	sci_port->break_timer.data = (unsigned long)sci_port;
1945 	sci_port->break_timer.function = sci_break_timer;
1946 	init_timer(&sci_port->break_timer);
1947 
1948 	/*
1949 	 * Establish some sensible defaults for the error detection.
1950 	 */
1951 	if (!p->error_mask)
1952 		p->error_mask = (p->type == PORT_SCI) ?
1953 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
1954 
1955 	/*
1956 	 * Establish sensible defaults for the overrun detection, unless
1957 	 * the part has explicitly disabled support for it.
1958 	 */
1959 	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
1960 		if (p->type == PORT_SCI)
1961 			p->overrun_bit = 5;
1962 		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
1963 			p->overrun_bit = 9;
1964 		else
1965 			p->overrun_bit = 0;
1966 
1967 		/*
1968 		 * Make the error mask inclusive of overrun detection, if
1969 		 * supported.
1970 		 */
1971 		p->error_mask |= (1 << p->overrun_bit);
1972 	}
1973 
1974 	sci_port->cfg		= p;
1975 
1976 	port->mapbase		= p->mapbase;
1977 	port->type		= p->type;
1978 	port->flags		= p->flags;
1979 	port->regshift		= p->regshift;
1980 
1981 	/*
1982 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
1983 	 * for the multi-IRQ ports, which is where we are primarily
1984 	 * concerned with the shutdown path synchronization.
1985 	 *
1986 	 * For the muxed case there's nothing more to do.
1987 	 */
1988 	port->irq		= p->irqs[SCIx_RXI_IRQ];
1989 	port->irqflags		= 0;
1990 
1991 	port->serial_in		= sci_serial_in;
1992 	port->serial_out	= sci_serial_out;
1993 
1994 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
1995 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
1996 			p->dma_slave_tx, p->dma_slave_rx);
1997 
1998 	return 0;
1999 }
2000 
2001 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2002 static void serial_console_putchar(struct uart_port *port, int ch)
2003 {
2004 	sci_poll_put_char(port, ch);
2005 }
2006 
2007 /*
2008  *	Print a string to the serial port trying not to disturb
2009  *	any possible real use of the port...
2010  */
2011 static void serial_console_write(struct console *co, const char *s,
2012 				 unsigned count)
2013 {
2014 	struct sci_port *sci_port = &sci_ports[co->index];
2015 	struct uart_port *port = &sci_port->port;
2016 	unsigned short bits;
2017 
2018 	sci_port_enable(sci_port);
2019 
2020 	uart_console_write(port, s, count, serial_console_putchar);
2021 
2022 	/* wait until fifo is empty and last bit has been transmitted */
2023 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2024 	while ((sci_in(port, SCxSR) & bits) != bits)
2025 		cpu_relax();
2026 
2027 	sci_port_disable(sci_port);
2028 }
2029 
2030 static int __devinit serial_console_setup(struct console *co, char *options)
2031 {
2032 	struct sci_port *sci_port;
2033 	struct uart_port *port;
2034 	int baud = 115200;
2035 	int bits = 8;
2036 	int parity = 'n';
2037 	int flow = 'n';
2038 	int ret;
2039 
2040 	/*
2041 	 * Refuse to handle any bogus ports.
2042 	 */
2043 	if (co->index < 0 || co->index >= SCI_NPORTS)
2044 		return -ENODEV;
2045 
2046 	sci_port = &sci_ports[co->index];
2047 	port = &sci_port->port;
2048 
2049 	/*
2050 	 * Refuse to handle uninitialized ports.
2051 	 */
2052 	if (!port->ops)
2053 		return -ENODEV;
2054 
2055 	ret = sci_remap_port(port);
2056 	if (unlikely(ret != 0))
2057 		return ret;
2058 
2059 	sci_port_enable(sci_port);
2060 
2061 	if (options)
2062 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2063 
2064 	sci_port_disable(sci_port);
2065 
2066 	return uart_set_options(port, co, baud, parity, bits, flow);
2067 }
2068 
2069 static struct console serial_console = {
2070 	.name		= "ttySC",
2071 	.device		= uart_console_device,
2072 	.write		= serial_console_write,
2073 	.setup		= serial_console_setup,
2074 	.flags		= CON_PRINTBUFFER,
2075 	.index		= -1,
2076 	.data		= &sci_uart_driver,
2077 };
2078 
2079 static struct console early_serial_console = {
2080 	.name           = "early_ttySC",
2081 	.write          = serial_console_write,
2082 	.flags          = CON_PRINTBUFFER,
2083 	.index		= -1,
2084 };
2085 
2086 static char early_serial_buf[32];
2087 
2088 static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2089 {
2090 	struct plat_sci_port *cfg = pdev->dev.platform_data;
2091 
2092 	if (early_serial_console.data)
2093 		return -EEXIST;
2094 
2095 	early_serial_console.index = pdev->id;
2096 
2097 	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2098 
2099 	serial_console_setup(&early_serial_console, early_serial_buf);
2100 
2101 	if (!strstr(early_serial_buf, "keep"))
2102 		early_serial_console.flags |= CON_BOOT;
2103 
2104 	register_console(&early_serial_console);
2105 	return 0;
2106 }
2107 
2108 #define uart_console(port)	((port)->cons->index == (port)->line)
2109 
2110 static int sci_runtime_suspend(struct device *dev)
2111 {
2112 	struct sci_port *sci_port = dev_get_drvdata(dev);
2113 	struct uart_port *port = &sci_port->port;
2114 
2115 	if (uart_console(port)) {
2116 		sci_port->saved_smr = sci_in(port, SCSMR);
2117 		sci_port->saved_brr = sci_in(port, SCBRR);
2118 		sci_port->saved_fcr = sci_in(port, SCFCR);
2119 	}
2120 	return 0;
2121 }
2122 
2123 static int sci_runtime_resume(struct device *dev)
2124 {
2125 	struct sci_port *sci_port = dev_get_drvdata(dev);
2126 	struct uart_port *port = &sci_port->port;
2127 
2128 	if (uart_console(port)) {
2129 		sci_reset(port);
2130 		sci_out(port, SCSMR, sci_port->saved_smr);
2131 		sci_out(port, SCBRR, sci_port->saved_brr);
2132 		sci_out(port, SCFCR, sci_port->saved_fcr);
2133 		sci_out(port, SCSCR, sci_port->cfg->scscr);
2134 	}
2135 	return 0;
2136 }
2137 
2138 #define SCI_CONSOLE	(&serial_console)
2139 
2140 #else
2141 static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2142 {
2143 	return -EINVAL;
2144 }
2145 
2146 #define SCI_CONSOLE	NULL
2147 #define sci_runtime_suspend	NULL
2148 #define sci_runtime_resume	NULL
2149 
2150 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2151 
2152 static char banner[] __initdata =
2153 	KERN_INFO "SuperH SCI(F) driver initialized\n";
2154 
2155 static struct uart_driver sci_uart_driver = {
2156 	.owner		= THIS_MODULE,
2157 	.driver_name	= "sci",
2158 	.dev_name	= "ttySC",
2159 	.major		= SCI_MAJOR,
2160 	.minor		= SCI_MINOR_START,
2161 	.nr		= SCI_NPORTS,
2162 	.cons		= SCI_CONSOLE,
2163 };
2164 
2165 static int sci_remove(struct platform_device *dev)
2166 {
2167 	struct sci_port *port = platform_get_drvdata(dev);
2168 
2169 	cpufreq_unregister_notifier(&port->freq_transition,
2170 				    CPUFREQ_TRANSITION_NOTIFIER);
2171 
2172 	uart_remove_one_port(&sci_uart_driver, &port->port);
2173 
2174 	clk_put(port->iclk);
2175 	clk_put(port->fclk);
2176 
2177 	pm_runtime_disable(&dev->dev);
2178 	return 0;
2179 }
2180 
2181 static int __devinit sci_probe_single(struct platform_device *dev,
2182 				      unsigned int index,
2183 				      struct plat_sci_port *p,
2184 				      struct sci_port *sciport)
2185 {
2186 	int ret;
2187 
2188 	/* Sanity check */
2189 	if (unlikely(index >= SCI_NPORTS)) {
2190 		dev_notice(&dev->dev, "Attempting to register port "
2191 			   "%d when only %d are available.\n",
2192 			   index+1, SCI_NPORTS);
2193 		dev_notice(&dev->dev, "Consider bumping "
2194 			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2195 		return 0;
2196 	}
2197 
2198 	ret = sci_init_single(dev, sciport, index, p);
2199 	if (ret)
2200 		return ret;
2201 
2202 	return uart_add_one_port(&sci_uart_driver, &sciport->port);
2203 }
2204 
2205 static int __devinit sci_probe(struct platform_device *dev)
2206 {
2207 	struct plat_sci_port *p = dev->dev.platform_data;
2208 	struct sci_port *sp = &sci_ports[dev->id];
2209 	int ret;
2210 
2211 	/*
2212 	 * If we've come here via earlyprintk initialization, head off to
2213 	 * the special early probe. We don't have sufficient device state
2214 	 * to make it beyond this yet.
2215 	 */
2216 	if (is_early_platform_device(dev))
2217 		return sci_probe_earlyprintk(dev);
2218 
2219 	platform_set_drvdata(dev, sp);
2220 
2221 	ret = sci_probe_single(dev, dev->id, p, sp);
2222 	if (ret)
2223 		goto err_unreg;
2224 
2225 	sp->freq_transition.notifier_call = sci_notifier;
2226 
2227 	ret = cpufreq_register_notifier(&sp->freq_transition,
2228 					CPUFREQ_TRANSITION_NOTIFIER);
2229 	if (unlikely(ret < 0))
2230 		goto err_unreg;
2231 
2232 #ifdef CONFIG_SH_STANDARD_BIOS
2233 	sh_bios_gdb_detach();
2234 #endif
2235 
2236 	return 0;
2237 
2238 err_unreg:
2239 	sci_remove(dev);
2240 	return ret;
2241 }
2242 
2243 static int sci_suspend(struct device *dev)
2244 {
2245 	struct sci_port *sport = dev_get_drvdata(dev);
2246 
2247 	if (sport)
2248 		uart_suspend_port(&sci_uart_driver, &sport->port);
2249 
2250 	return 0;
2251 }
2252 
2253 static int sci_resume(struct device *dev)
2254 {
2255 	struct sci_port *sport = dev_get_drvdata(dev);
2256 
2257 	if (sport)
2258 		uart_resume_port(&sci_uart_driver, &sport->port);
2259 
2260 	return 0;
2261 }
2262 
2263 static const struct dev_pm_ops sci_dev_pm_ops = {
2264 	.runtime_suspend = sci_runtime_suspend,
2265 	.runtime_resume = sci_runtime_resume,
2266 	.suspend	= sci_suspend,
2267 	.resume		= sci_resume,
2268 };
2269 
2270 static struct platform_driver sci_driver = {
2271 	.probe		= sci_probe,
2272 	.remove		= sci_remove,
2273 	.driver		= {
2274 		.name	= "sh-sci",
2275 		.owner	= THIS_MODULE,
2276 		.pm	= &sci_dev_pm_ops,
2277 	},
2278 };
2279 
2280 static int __init sci_init(void)
2281 {
2282 	int ret;
2283 
2284 	printk(banner);
2285 
2286 	ret = uart_register_driver(&sci_uart_driver);
2287 	if (likely(ret == 0)) {
2288 		ret = platform_driver_register(&sci_driver);
2289 		if (unlikely(ret))
2290 			uart_unregister_driver(&sci_uart_driver);
2291 	}
2292 
2293 	return ret;
2294 }
2295 
2296 static void __exit sci_exit(void)
2297 {
2298 	platform_driver_unregister(&sci_driver);
2299 	uart_unregister_driver(&sci_uart_driver);
2300 }
2301 
2302 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2303 early_platform_init_buffer("earlyprintk", &sci_driver,
2304 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2305 #endif
2306 module_init(sci_init);
2307 module_exit(sci_exit);
2308 
2309 MODULE_LICENSE("GPL");
2310 MODULE_ALIAS("platform:sh-sci");
2311 MODULE_AUTHOR("Paul Mundt");
2312 MODULE_DESCRIPTION("SuperH SCI(F) serial driver");
2313