xref: /linux/drivers/tty/serial/sh-sci.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/clk.h>
27 #include <linux/console.h>
28 #include <linux/ctype.h>
29 #include <linux/cpufreq.h>
30 #include <linux/delay.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/ioport.h>
38 #include <linux/major.h>
39 #include <linux/module.h>
40 #include <linux/mm.h>
41 #include <linux/notifier.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "sh-sci.h"
61 
62 /* Offsets into the sci_port->irqs array */
63 enum {
64 	SCIx_ERI_IRQ,
65 	SCIx_RXI_IRQ,
66 	SCIx_TXI_IRQ,
67 	SCIx_BRI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 struct sci_port {
80 	struct uart_port	port;
81 
82 	/* Platform configuration */
83 	struct plat_sci_port	*cfg;
84 	unsigned int		overrun_reg;
85 	unsigned int		overrun_mask;
86 	unsigned int		error_mask;
87 	unsigned int		sampling_rate;
88 	resource_size_t		reg_size;
89 
90 	/* Break timer */
91 	struct timer_list	break_timer;
92 	int			break_flag;
93 
94 	/* Interface clock */
95 	struct clk		*iclk;
96 	/* Function clock */
97 	struct clk		*fclk;
98 
99 	int			irqs[SCIx_NR_IRQS];
100 	char			*irqstr[SCIx_NR_IRQS];
101 
102 	struct dma_chan			*chan_tx;
103 	struct dma_chan			*chan_rx;
104 
105 #ifdef CONFIG_SERIAL_SH_SCI_DMA
106 	struct dma_async_tx_descriptor	*desc_tx;
107 	struct dma_async_tx_descriptor	*desc_rx[2];
108 	dma_cookie_t			cookie_tx;
109 	dma_cookie_t			cookie_rx[2];
110 	dma_cookie_t			active_rx;
111 	struct scatterlist		sg_tx;
112 	unsigned int			sg_len_tx;
113 	struct scatterlist		sg_rx[2];
114 	size_t				buf_len_rx;
115 	struct sh_dmae_slave		param_tx;
116 	struct sh_dmae_slave		param_rx;
117 	struct work_struct		work_tx;
118 	struct work_struct		work_rx;
119 	struct timer_list		rx_timer;
120 	unsigned int			rx_timeout;
121 #endif
122 
123 	struct notifier_block		freq_transition;
124 };
125 
126 /* Function prototypes */
127 static void sci_start_tx(struct uart_port *port);
128 static void sci_stop_tx(struct uart_port *port);
129 static void sci_start_rx(struct uart_port *port);
130 
131 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
132 
133 static struct sci_port sci_ports[SCI_NPORTS];
134 static struct uart_driver sci_uart_driver;
135 
136 static inline struct sci_port *
137 to_sci_port(struct uart_port *uart)
138 {
139 	return container_of(uart, struct sci_port, port);
140 }
141 
142 struct plat_sci_reg {
143 	u8 offset, size;
144 };
145 
146 /* Helper for invalidating specific entries of an inherited map. */
147 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
148 
149 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
150 	[SCIx_PROBE_REGTYPE] = {
151 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
152 	},
153 
154 	/*
155 	 * Common SCI definitions, dependent on the port's regshift
156 	 * value.
157 	 */
158 	[SCIx_SCI_REGTYPE] = {
159 		[SCSMR]		= { 0x00,  8 },
160 		[SCBRR]		= { 0x01,  8 },
161 		[SCSCR]		= { 0x02,  8 },
162 		[SCxTDR]	= { 0x03,  8 },
163 		[SCxSR]		= { 0x04,  8 },
164 		[SCxRDR]	= { 0x05,  8 },
165 		[SCFCR]		= sci_reg_invalid,
166 		[SCFDR]		= sci_reg_invalid,
167 		[SCTFDR]	= sci_reg_invalid,
168 		[SCRFDR]	= sci_reg_invalid,
169 		[SCSPTR]	= sci_reg_invalid,
170 		[SCLSR]		= sci_reg_invalid,
171 		[HSSRR]		= sci_reg_invalid,
172 		[SCPCR]		= sci_reg_invalid,
173 		[SCPDR]		= sci_reg_invalid,
174 	},
175 
176 	/*
177 	 * Common definitions for legacy IrDA ports, dependent on
178 	 * regshift value.
179 	 */
180 	[SCIx_IRDA_REGTYPE] = {
181 		[SCSMR]		= { 0x00,  8 },
182 		[SCBRR]		= { 0x01,  8 },
183 		[SCSCR]		= { 0x02,  8 },
184 		[SCxTDR]	= { 0x03,  8 },
185 		[SCxSR]		= { 0x04,  8 },
186 		[SCxRDR]	= { 0x05,  8 },
187 		[SCFCR]		= { 0x06,  8 },
188 		[SCFDR]		= { 0x07, 16 },
189 		[SCTFDR]	= sci_reg_invalid,
190 		[SCRFDR]	= sci_reg_invalid,
191 		[SCSPTR]	= sci_reg_invalid,
192 		[SCLSR]		= sci_reg_invalid,
193 		[HSSRR]		= sci_reg_invalid,
194 		[SCPCR]		= sci_reg_invalid,
195 		[SCPDR]		= sci_reg_invalid,
196 	},
197 
198 	/*
199 	 * Common SCIFA definitions.
200 	 */
201 	[SCIx_SCIFA_REGTYPE] = {
202 		[SCSMR]		= { 0x00, 16 },
203 		[SCBRR]		= { 0x04,  8 },
204 		[SCSCR]		= { 0x08, 16 },
205 		[SCxTDR]	= { 0x20,  8 },
206 		[SCxSR]		= { 0x14, 16 },
207 		[SCxRDR]	= { 0x24,  8 },
208 		[SCFCR]		= { 0x18, 16 },
209 		[SCFDR]		= { 0x1c, 16 },
210 		[SCTFDR]	= sci_reg_invalid,
211 		[SCRFDR]	= sci_reg_invalid,
212 		[SCSPTR]	= sci_reg_invalid,
213 		[SCLSR]		= sci_reg_invalid,
214 		[HSSRR]		= sci_reg_invalid,
215 		[SCPCR]		= { 0x30, 16 },
216 		[SCPDR]		= { 0x34, 16 },
217 	},
218 
219 	/*
220 	 * Common SCIFB definitions.
221 	 */
222 	[SCIx_SCIFB_REGTYPE] = {
223 		[SCSMR]		= { 0x00, 16 },
224 		[SCBRR]		= { 0x04,  8 },
225 		[SCSCR]		= { 0x08, 16 },
226 		[SCxTDR]	= { 0x40,  8 },
227 		[SCxSR]		= { 0x14, 16 },
228 		[SCxRDR]	= { 0x60,  8 },
229 		[SCFCR]		= { 0x18, 16 },
230 		[SCFDR]		= sci_reg_invalid,
231 		[SCTFDR]	= { 0x38, 16 },
232 		[SCRFDR]	= { 0x3c, 16 },
233 		[SCSPTR]	= sci_reg_invalid,
234 		[SCLSR]		= sci_reg_invalid,
235 		[HSSRR]		= sci_reg_invalid,
236 		[SCPCR]		= { 0x30, 16 },
237 		[SCPDR]		= { 0x34, 16 },
238 	},
239 
240 	/*
241 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
242 	 * count registers.
243 	 */
244 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
245 		[SCSMR]		= { 0x00, 16 },
246 		[SCBRR]		= { 0x04,  8 },
247 		[SCSCR]		= { 0x08, 16 },
248 		[SCxTDR]	= { 0x0c,  8 },
249 		[SCxSR]		= { 0x10, 16 },
250 		[SCxRDR]	= { 0x14,  8 },
251 		[SCFCR]		= { 0x18, 16 },
252 		[SCFDR]		= { 0x1c, 16 },
253 		[SCTFDR]	= sci_reg_invalid,
254 		[SCRFDR]	= sci_reg_invalid,
255 		[SCSPTR]	= { 0x20, 16 },
256 		[SCLSR]		= { 0x24, 16 },
257 		[HSSRR]		= sci_reg_invalid,
258 		[SCPCR]		= sci_reg_invalid,
259 		[SCPDR]		= sci_reg_invalid,
260 	},
261 
262 	/*
263 	 * Common SH-3 SCIF definitions.
264 	 */
265 	[SCIx_SH3_SCIF_REGTYPE] = {
266 		[SCSMR]		= { 0x00,  8 },
267 		[SCBRR]		= { 0x02,  8 },
268 		[SCSCR]		= { 0x04,  8 },
269 		[SCxTDR]	= { 0x06,  8 },
270 		[SCxSR]		= { 0x08, 16 },
271 		[SCxRDR]	= { 0x0a,  8 },
272 		[SCFCR]		= { 0x0c,  8 },
273 		[SCFDR]		= { 0x0e, 16 },
274 		[SCTFDR]	= sci_reg_invalid,
275 		[SCRFDR]	= sci_reg_invalid,
276 		[SCSPTR]	= sci_reg_invalid,
277 		[SCLSR]		= sci_reg_invalid,
278 		[HSSRR]		= sci_reg_invalid,
279 		[SCPCR]		= sci_reg_invalid,
280 		[SCPDR]		= sci_reg_invalid,
281 	},
282 
283 	/*
284 	 * Common SH-4(A) SCIF(B) definitions.
285 	 */
286 	[SCIx_SH4_SCIF_REGTYPE] = {
287 		[SCSMR]		= { 0x00, 16 },
288 		[SCBRR]		= { 0x04,  8 },
289 		[SCSCR]		= { 0x08, 16 },
290 		[SCxTDR]	= { 0x0c,  8 },
291 		[SCxSR]		= { 0x10, 16 },
292 		[SCxRDR]	= { 0x14,  8 },
293 		[SCFCR]		= { 0x18, 16 },
294 		[SCFDR]		= { 0x1c, 16 },
295 		[SCTFDR]	= sci_reg_invalid,
296 		[SCRFDR]	= sci_reg_invalid,
297 		[SCSPTR]	= { 0x20, 16 },
298 		[SCLSR]		= { 0x24, 16 },
299 		[HSSRR]		= sci_reg_invalid,
300 		[SCPCR]		= sci_reg_invalid,
301 		[SCPDR]		= sci_reg_invalid,
302 	},
303 
304 	/*
305 	 * Common HSCIF definitions.
306 	 */
307 	[SCIx_HSCIF_REGTYPE] = {
308 		[SCSMR]		= { 0x00, 16 },
309 		[SCBRR]		= { 0x04,  8 },
310 		[SCSCR]		= { 0x08, 16 },
311 		[SCxTDR]	= { 0x0c,  8 },
312 		[SCxSR]		= { 0x10, 16 },
313 		[SCxRDR]	= { 0x14,  8 },
314 		[SCFCR]		= { 0x18, 16 },
315 		[SCFDR]		= { 0x1c, 16 },
316 		[SCTFDR]	= sci_reg_invalid,
317 		[SCRFDR]	= sci_reg_invalid,
318 		[SCSPTR]	= { 0x20, 16 },
319 		[SCLSR]		= { 0x24, 16 },
320 		[HSSRR]		= { 0x40, 16 },
321 		[SCPCR]		= sci_reg_invalid,
322 		[SCPDR]		= sci_reg_invalid,
323 	},
324 
325 	/*
326 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
327 	 * register.
328 	 */
329 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
330 		[SCSMR]		= { 0x00, 16 },
331 		[SCBRR]		= { 0x04,  8 },
332 		[SCSCR]		= { 0x08, 16 },
333 		[SCxTDR]	= { 0x0c,  8 },
334 		[SCxSR]		= { 0x10, 16 },
335 		[SCxRDR]	= { 0x14,  8 },
336 		[SCFCR]		= { 0x18, 16 },
337 		[SCFDR]		= { 0x1c, 16 },
338 		[SCTFDR]	= sci_reg_invalid,
339 		[SCRFDR]	= sci_reg_invalid,
340 		[SCSPTR]	= sci_reg_invalid,
341 		[SCLSR]		= { 0x24, 16 },
342 		[HSSRR]		= sci_reg_invalid,
343 		[SCPCR]		= sci_reg_invalid,
344 		[SCPDR]		= sci_reg_invalid,
345 	},
346 
347 	/*
348 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
349 	 * count registers.
350 	 */
351 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
352 		[SCSMR]		= { 0x00, 16 },
353 		[SCBRR]		= { 0x04,  8 },
354 		[SCSCR]		= { 0x08, 16 },
355 		[SCxTDR]	= { 0x0c,  8 },
356 		[SCxSR]		= { 0x10, 16 },
357 		[SCxRDR]	= { 0x14,  8 },
358 		[SCFCR]		= { 0x18, 16 },
359 		[SCFDR]		= { 0x1c, 16 },
360 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
361 		[SCRFDR]	= { 0x20, 16 },
362 		[SCSPTR]	= { 0x24, 16 },
363 		[SCLSR]		= { 0x28, 16 },
364 		[HSSRR]		= sci_reg_invalid,
365 		[SCPCR]		= sci_reg_invalid,
366 		[SCPDR]		= sci_reg_invalid,
367 	},
368 
369 	/*
370 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
371 	 * registers.
372 	 */
373 	[SCIx_SH7705_SCIF_REGTYPE] = {
374 		[SCSMR]		= { 0x00, 16 },
375 		[SCBRR]		= { 0x04,  8 },
376 		[SCSCR]		= { 0x08, 16 },
377 		[SCxTDR]	= { 0x20,  8 },
378 		[SCxSR]		= { 0x14, 16 },
379 		[SCxRDR]	= { 0x24,  8 },
380 		[SCFCR]		= { 0x18, 16 },
381 		[SCFDR]		= { 0x1c, 16 },
382 		[SCTFDR]	= sci_reg_invalid,
383 		[SCRFDR]	= sci_reg_invalid,
384 		[SCSPTR]	= sci_reg_invalid,
385 		[SCLSR]		= sci_reg_invalid,
386 		[HSSRR]		= sci_reg_invalid,
387 		[SCPCR]		= sci_reg_invalid,
388 		[SCPDR]		= sci_reg_invalid,
389 	},
390 };
391 
392 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
393 
394 /*
395  * The "offset" here is rather misleading, in that it refers to an enum
396  * value relative to the port mapping rather than the fixed offset
397  * itself, which needs to be manually retrieved from the platform's
398  * register map for the given port.
399  */
400 static unsigned int sci_serial_in(struct uart_port *p, int offset)
401 {
402 	struct plat_sci_reg *reg = sci_getreg(p, offset);
403 
404 	if (reg->size == 8)
405 		return ioread8(p->membase + (reg->offset << p->regshift));
406 	else if (reg->size == 16)
407 		return ioread16(p->membase + (reg->offset << p->regshift));
408 	else
409 		WARN(1, "Invalid register access\n");
410 
411 	return 0;
412 }
413 
414 static void sci_serial_out(struct uart_port *p, int offset, int value)
415 {
416 	struct plat_sci_reg *reg = sci_getreg(p, offset);
417 
418 	if (reg->size == 8)
419 		iowrite8(value, p->membase + (reg->offset << p->regshift));
420 	else if (reg->size == 16)
421 		iowrite16(value, p->membase + (reg->offset << p->regshift));
422 	else
423 		WARN(1, "Invalid register access\n");
424 }
425 
426 static int sci_probe_regmap(struct plat_sci_port *cfg)
427 {
428 	switch (cfg->type) {
429 	case PORT_SCI:
430 		cfg->regtype = SCIx_SCI_REGTYPE;
431 		break;
432 	case PORT_IRDA:
433 		cfg->regtype = SCIx_IRDA_REGTYPE;
434 		break;
435 	case PORT_SCIFA:
436 		cfg->regtype = SCIx_SCIFA_REGTYPE;
437 		break;
438 	case PORT_SCIFB:
439 		cfg->regtype = SCIx_SCIFB_REGTYPE;
440 		break;
441 	case PORT_SCIF:
442 		/*
443 		 * The SH-4 is a bit of a misnomer here, although that's
444 		 * where this particular port layout originated. This
445 		 * configuration (or some slight variation thereof)
446 		 * remains the dominant model for all SCIFs.
447 		 */
448 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
449 		break;
450 	case PORT_HSCIF:
451 		cfg->regtype = SCIx_HSCIF_REGTYPE;
452 		break;
453 	default:
454 		pr_err("Can't probe register map for given port\n");
455 		return -EINVAL;
456 	}
457 
458 	return 0;
459 }
460 
461 static void sci_port_enable(struct sci_port *sci_port)
462 {
463 	if (!sci_port->port.dev)
464 		return;
465 
466 	pm_runtime_get_sync(sci_port->port.dev);
467 
468 	clk_prepare_enable(sci_port->iclk);
469 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
470 	clk_prepare_enable(sci_port->fclk);
471 }
472 
473 static void sci_port_disable(struct sci_port *sci_port)
474 {
475 	if (!sci_port->port.dev)
476 		return;
477 
478 	/* Cancel the break timer to ensure that the timer handler will not try
479 	 * to access the hardware with clocks and power disabled. Reset the
480 	 * break flag to make the break debouncing state machine ready for the
481 	 * next break.
482 	 */
483 	del_timer_sync(&sci_port->break_timer);
484 	sci_port->break_flag = 0;
485 
486 	clk_disable_unprepare(sci_port->fclk);
487 	clk_disable_unprepare(sci_port->iclk);
488 
489 	pm_runtime_put_sync(sci_port->port.dev);
490 }
491 
492 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
493 
494 #ifdef CONFIG_CONSOLE_POLL
495 static int sci_poll_get_char(struct uart_port *port)
496 {
497 	unsigned short status;
498 	int c;
499 
500 	do {
501 		status = serial_port_in(port, SCxSR);
502 		if (status & SCxSR_ERRORS(port)) {
503 			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
504 			continue;
505 		}
506 		break;
507 	} while (1);
508 
509 	if (!(status & SCxSR_RDxF(port)))
510 		return NO_POLL_CHAR;
511 
512 	c = serial_port_in(port, SCxRDR);
513 
514 	/* Dummy read */
515 	serial_port_in(port, SCxSR);
516 	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
517 
518 	return c;
519 }
520 #endif
521 
522 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
523 {
524 	unsigned short status;
525 
526 	do {
527 		status = serial_port_in(port, SCxSR);
528 	} while (!(status & SCxSR_TDxE(port)));
529 
530 	serial_port_out(port, SCxTDR, c);
531 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
532 }
533 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
534 
535 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
536 {
537 	struct sci_port *s = to_sci_port(port);
538 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
539 
540 	/*
541 	 * Use port-specific handler if provided.
542 	 */
543 	if (s->cfg->ops && s->cfg->ops->init_pins) {
544 		s->cfg->ops->init_pins(port, cflag);
545 		return;
546 	}
547 
548 	/*
549 	 * For the generic path SCSPTR is necessary. Bail out if that's
550 	 * unavailable, too.
551 	 */
552 	if (!reg->size)
553 		return;
554 
555 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
556 	    ((!(cflag & CRTSCTS)))) {
557 		unsigned short status;
558 
559 		status = serial_port_in(port, SCSPTR);
560 		status &= ~SCSPTR_CTSIO;
561 		status |= SCSPTR_RTSIO;
562 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
563 	}
564 }
565 
566 static int sci_txfill(struct uart_port *port)
567 {
568 	struct plat_sci_reg *reg;
569 
570 	reg = sci_getreg(port, SCTFDR);
571 	if (reg->size)
572 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
573 
574 	reg = sci_getreg(port, SCFDR);
575 	if (reg->size)
576 		return serial_port_in(port, SCFDR) >> 8;
577 
578 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
579 }
580 
581 static int sci_txroom(struct uart_port *port)
582 {
583 	return port->fifosize - sci_txfill(port);
584 }
585 
586 static int sci_rxfill(struct uart_port *port)
587 {
588 	struct plat_sci_reg *reg;
589 
590 	reg = sci_getreg(port, SCRFDR);
591 	if (reg->size)
592 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
593 
594 	reg = sci_getreg(port, SCFDR);
595 	if (reg->size)
596 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
597 
598 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
599 }
600 
601 /*
602  * SCI helper for checking the state of the muxed port/RXD pins.
603  */
604 static inline int sci_rxd_in(struct uart_port *port)
605 {
606 	struct sci_port *s = to_sci_port(port);
607 
608 	if (s->cfg->port_reg <= 0)
609 		return 1;
610 
611 	/* Cast for ARM damage */
612 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
613 }
614 
615 /* ********************************************************************** *
616  *                   the interrupt related routines                       *
617  * ********************************************************************** */
618 
619 static void sci_transmit_chars(struct uart_port *port)
620 {
621 	struct circ_buf *xmit = &port->state->xmit;
622 	unsigned int stopped = uart_tx_stopped(port);
623 	unsigned short status;
624 	unsigned short ctrl;
625 	int count;
626 
627 	status = serial_port_in(port, SCxSR);
628 	if (!(status & SCxSR_TDxE(port))) {
629 		ctrl = serial_port_in(port, SCSCR);
630 		if (uart_circ_empty(xmit))
631 			ctrl &= ~SCSCR_TIE;
632 		else
633 			ctrl |= SCSCR_TIE;
634 		serial_port_out(port, SCSCR, ctrl);
635 		return;
636 	}
637 
638 	count = sci_txroom(port);
639 
640 	do {
641 		unsigned char c;
642 
643 		if (port->x_char) {
644 			c = port->x_char;
645 			port->x_char = 0;
646 		} else if (!uart_circ_empty(xmit) && !stopped) {
647 			c = xmit->buf[xmit->tail];
648 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
649 		} else {
650 			break;
651 		}
652 
653 		serial_port_out(port, SCxTDR, c);
654 
655 		port->icount.tx++;
656 	} while (--count > 0);
657 
658 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
659 
660 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
661 		uart_write_wakeup(port);
662 	if (uart_circ_empty(xmit)) {
663 		sci_stop_tx(port);
664 	} else {
665 		ctrl = serial_port_in(port, SCSCR);
666 
667 		if (port->type != PORT_SCI) {
668 			serial_port_in(port, SCxSR); /* Dummy read */
669 			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
670 		}
671 
672 		ctrl |= SCSCR_TIE;
673 		serial_port_out(port, SCSCR, ctrl);
674 	}
675 }
676 
677 /* On SH3, SCIF may read end-of-break as a space->mark char */
678 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
679 
680 static void sci_receive_chars(struct uart_port *port)
681 {
682 	struct sci_port *sci_port = to_sci_port(port);
683 	struct tty_port *tport = &port->state->port;
684 	int i, count, copied = 0;
685 	unsigned short status;
686 	unsigned char flag;
687 
688 	status = serial_port_in(port, SCxSR);
689 	if (!(status & SCxSR_RDxF(port)))
690 		return;
691 
692 	while (1) {
693 		/* Don't copy more bytes than there is room for in the buffer */
694 		count = tty_buffer_request_room(tport, sci_rxfill(port));
695 
696 		/* If for any reason we can't copy more data, we're done! */
697 		if (count == 0)
698 			break;
699 
700 		if (port->type == PORT_SCI) {
701 			char c = serial_port_in(port, SCxRDR);
702 			if (uart_handle_sysrq_char(port, c) ||
703 			    sci_port->break_flag)
704 				count = 0;
705 			else
706 				tty_insert_flip_char(tport, c, TTY_NORMAL);
707 		} else {
708 			for (i = 0; i < count; i++) {
709 				char c = serial_port_in(port, SCxRDR);
710 
711 				status = serial_port_in(port, SCxSR);
712 #if defined(CONFIG_CPU_SH3)
713 				/* Skip "chars" during break */
714 				if (sci_port->break_flag) {
715 					if ((c == 0) &&
716 					    (status & SCxSR_FER(port))) {
717 						count--; i--;
718 						continue;
719 					}
720 
721 					/* Nonzero => end-of-break */
722 					dev_dbg(port->dev, "debounce<%02x>\n", c);
723 					sci_port->break_flag = 0;
724 
725 					if (STEPFN(c)) {
726 						count--; i--;
727 						continue;
728 					}
729 				}
730 #endif /* CONFIG_CPU_SH3 */
731 				if (uart_handle_sysrq_char(port, c)) {
732 					count--; i--;
733 					continue;
734 				}
735 
736 				/* Store data and status */
737 				if (status & SCxSR_FER(port)) {
738 					flag = TTY_FRAME;
739 					port->icount.frame++;
740 					dev_notice(port->dev, "frame error\n");
741 				} else if (status & SCxSR_PER(port)) {
742 					flag = TTY_PARITY;
743 					port->icount.parity++;
744 					dev_notice(port->dev, "parity error\n");
745 				} else
746 					flag = TTY_NORMAL;
747 
748 				tty_insert_flip_char(tport, c, flag);
749 			}
750 		}
751 
752 		serial_port_in(port, SCxSR); /* dummy read */
753 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
754 
755 		copied += count;
756 		port->icount.rx += count;
757 	}
758 
759 	if (copied) {
760 		/* Tell the rest of the system the news. New characters! */
761 		tty_flip_buffer_push(tport);
762 	} else {
763 		serial_port_in(port, SCxSR); /* dummy read */
764 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
765 	}
766 }
767 
768 #define SCI_BREAK_JIFFIES (HZ/20)
769 
770 /*
771  * The sci generates interrupts during the break,
772  * 1 per millisecond or so during the break period, for 9600 baud.
773  * So dont bother disabling interrupts.
774  * But dont want more than 1 break event.
775  * Use a kernel timer to periodically poll the rx line until
776  * the break is finished.
777  */
778 static inline void sci_schedule_break_timer(struct sci_port *port)
779 {
780 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
781 }
782 
783 /* Ensure that two consecutive samples find the break over. */
784 static void sci_break_timer(unsigned long data)
785 {
786 	struct sci_port *port = (struct sci_port *)data;
787 
788 	if (sci_rxd_in(&port->port) == 0) {
789 		port->break_flag = 1;
790 		sci_schedule_break_timer(port);
791 	} else if (port->break_flag == 1) {
792 		/* break is over. */
793 		port->break_flag = 2;
794 		sci_schedule_break_timer(port);
795 	} else
796 		port->break_flag = 0;
797 }
798 
799 static int sci_handle_errors(struct uart_port *port)
800 {
801 	int copied = 0;
802 	unsigned short status = serial_port_in(port, SCxSR);
803 	struct tty_port *tport = &port->state->port;
804 	struct sci_port *s = to_sci_port(port);
805 
806 	/* Handle overruns */
807 	if (status & s->overrun_mask) {
808 		port->icount.overrun++;
809 
810 		/* overrun error */
811 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
812 			copied++;
813 
814 		dev_notice(port->dev, "overrun error\n");
815 	}
816 
817 	if (status & SCxSR_FER(port)) {
818 		if (sci_rxd_in(port) == 0) {
819 			/* Notify of BREAK */
820 			struct sci_port *sci_port = to_sci_port(port);
821 
822 			if (!sci_port->break_flag) {
823 				port->icount.brk++;
824 
825 				sci_port->break_flag = 1;
826 				sci_schedule_break_timer(sci_port);
827 
828 				/* Do sysrq handling. */
829 				if (uart_handle_break(port))
830 					return 0;
831 
832 				dev_dbg(port->dev, "BREAK detected\n");
833 
834 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
835 					copied++;
836 			}
837 
838 		} else {
839 			/* frame error */
840 			port->icount.frame++;
841 
842 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
843 				copied++;
844 
845 			dev_notice(port->dev, "frame error\n");
846 		}
847 	}
848 
849 	if (status & SCxSR_PER(port)) {
850 		/* parity error */
851 		port->icount.parity++;
852 
853 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
854 			copied++;
855 
856 		dev_notice(port->dev, "parity error\n");
857 	}
858 
859 	if (copied)
860 		tty_flip_buffer_push(tport);
861 
862 	return copied;
863 }
864 
865 static int sci_handle_fifo_overrun(struct uart_port *port)
866 {
867 	struct tty_port *tport = &port->state->port;
868 	struct sci_port *s = to_sci_port(port);
869 	struct plat_sci_reg *reg;
870 	int copied = 0;
871 	u16 status;
872 
873 	reg = sci_getreg(port, s->overrun_reg);
874 	if (!reg->size)
875 		return 0;
876 
877 	status = serial_port_in(port, s->overrun_reg);
878 	if (status & s->overrun_mask) {
879 		status &= ~s->overrun_mask;
880 		serial_port_out(port, s->overrun_reg, status);
881 
882 		port->icount.overrun++;
883 
884 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
885 		tty_flip_buffer_push(tport);
886 
887 		dev_dbg(port->dev, "overrun error\n");
888 		copied++;
889 	}
890 
891 	return copied;
892 }
893 
894 static int sci_handle_breaks(struct uart_port *port)
895 {
896 	int copied = 0;
897 	unsigned short status = serial_port_in(port, SCxSR);
898 	struct tty_port *tport = &port->state->port;
899 	struct sci_port *s = to_sci_port(port);
900 
901 	if (uart_handle_break(port))
902 		return 0;
903 
904 	if (!s->break_flag && status & SCxSR_BRK(port)) {
905 #if defined(CONFIG_CPU_SH3)
906 		/* Debounce break */
907 		s->break_flag = 1;
908 #endif
909 
910 		port->icount.brk++;
911 
912 		/* Notify of BREAK */
913 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
914 			copied++;
915 
916 		dev_dbg(port->dev, "BREAK detected\n");
917 	}
918 
919 	if (copied)
920 		tty_flip_buffer_push(tport);
921 
922 	copied += sci_handle_fifo_overrun(port);
923 
924 	return copied;
925 }
926 
927 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
928 {
929 #ifdef CONFIG_SERIAL_SH_SCI_DMA
930 	struct uart_port *port = ptr;
931 	struct sci_port *s = to_sci_port(port);
932 
933 	if (s->chan_rx) {
934 		u16 scr = serial_port_in(port, SCSCR);
935 		u16 ssr = serial_port_in(port, SCxSR);
936 
937 		/* Disable future Rx interrupts */
938 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
939 			disable_irq_nosync(irq);
940 			scr |= SCSCR_RDRQE;
941 		} else {
942 			scr &= ~SCSCR_RIE;
943 		}
944 		serial_port_out(port, SCSCR, scr);
945 		/* Clear current interrupt */
946 		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
947 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
948 			jiffies, s->rx_timeout);
949 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
950 
951 		return IRQ_HANDLED;
952 	}
953 #endif
954 
955 	/* I think sci_receive_chars has to be called irrespective
956 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
957 	 * to be disabled?
958 	 */
959 	sci_receive_chars(ptr);
960 
961 	return IRQ_HANDLED;
962 }
963 
964 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
965 {
966 	struct uart_port *port = ptr;
967 	unsigned long flags;
968 
969 	spin_lock_irqsave(&port->lock, flags);
970 	sci_transmit_chars(port);
971 	spin_unlock_irqrestore(&port->lock, flags);
972 
973 	return IRQ_HANDLED;
974 }
975 
976 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
977 {
978 	struct uart_port *port = ptr;
979 
980 	/* Handle errors */
981 	if (port->type == PORT_SCI) {
982 		if (sci_handle_errors(port)) {
983 			/* discard character in rx buffer */
984 			serial_port_in(port, SCxSR);
985 			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
986 		}
987 	} else {
988 		sci_handle_fifo_overrun(port);
989 		sci_rx_interrupt(irq, ptr);
990 	}
991 
992 	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
993 
994 	/* Kick the transmission */
995 	sci_tx_interrupt(irq, ptr);
996 
997 	return IRQ_HANDLED;
998 }
999 
1000 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1001 {
1002 	struct uart_port *port = ptr;
1003 
1004 	/* Handle BREAKs */
1005 	sci_handle_breaks(port);
1006 	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
1007 
1008 	return IRQ_HANDLED;
1009 }
1010 
1011 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
1012 {
1013 	/*
1014 	 * Not all ports (such as SCIFA) will support REIE. Rather than
1015 	 * special-casing the port type, we check the port initialization
1016 	 * IRQ enable mask to see whether the IRQ is desired at all. If
1017 	 * it's unset, it's logically inferred that there's no point in
1018 	 * testing for it.
1019 	 */
1020 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
1021 }
1022 
1023 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1024 {
1025 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1026 	struct uart_port *port = ptr;
1027 	struct sci_port *s = to_sci_port(port);
1028 	irqreturn_t ret = IRQ_NONE;
1029 
1030 	ssr_status = serial_port_in(port, SCxSR);
1031 	scr_status = serial_port_in(port, SCSCR);
1032 	if (s->overrun_reg == SCxSR)
1033 		orer_status = ssr_status;
1034 	else {
1035 		if (sci_getreg(port, s->overrun_reg)->size)
1036 			orer_status = serial_port_in(port, s->overrun_reg);
1037 	}
1038 
1039 	err_enabled = scr_status & port_rx_irq_mask(port);
1040 
1041 	/* Tx Interrupt */
1042 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1043 	    !s->chan_tx)
1044 		ret = sci_tx_interrupt(irq, ptr);
1045 
1046 	/*
1047 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1048 	 * DR flags
1049 	 */
1050 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1051 	    (scr_status & SCSCR_RIE)) {
1052 		if (port->type == PORT_SCIF || port->type == PORT_HSCIF)
1053 			sci_handle_fifo_overrun(port);
1054 		ret = sci_rx_interrupt(irq, ptr);
1055 	}
1056 
1057 	/* Error Interrupt */
1058 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1059 		ret = sci_er_interrupt(irq, ptr);
1060 
1061 	/* Break Interrupt */
1062 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1063 		ret = sci_br_interrupt(irq, ptr);
1064 
1065 	/* Overrun Interrupt */
1066 	if (orer_status & s->overrun_mask)
1067 		sci_handle_fifo_overrun(port);
1068 
1069 	return ret;
1070 }
1071 
1072 /*
1073  * Here we define a transition notifier so that we can update all of our
1074  * ports' baud rate when the peripheral clock changes.
1075  */
1076 static int sci_notifier(struct notifier_block *self,
1077 			unsigned long phase, void *p)
1078 {
1079 	struct sci_port *sci_port;
1080 	unsigned long flags;
1081 
1082 	sci_port = container_of(self, struct sci_port, freq_transition);
1083 
1084 	if (phase == CPUFREQ_POSTCHANGE) {
1085 		struct uart_port *port = &sci_port->port;
1086 
1087 		spin_lock_irqsave(&port->lock, flags);
1088 		port->uartclk = clk_get_rate(sci_port->iclk);
1089 		spin_unlock_irqrestore(&port->lock, flags);
1090 	}
1091 
1092 	return NOTIFY_OK;
1093 }
1094 
1095 static struct sci_irq_desc {
1096 	const char	*desc;
1097 	irq_handler_t	handler;
1098 } sci_irq_desc[] = {
1099 	/*
1100 	 * Split out handlers, the default case.
1101 	 */
1102 	[SCIx_ERI_IRQ] = {
1103 		.desc = "rx err",
1104 		.handler = sci_er_interrupt,
1105 	},
1106 
1107 	[SCIx_RXI_IRQ] = {
1108 		.desc = "rx full",
1109 		.handler = sci_rx_interrupt,
1110 	},
1111 
1112 	[SCIx_TXI_IRQ] = {
1113 		.desc = "tx empty",
1114 		.handler = sci_tx_interrupt,
1115 	},
1116 
1117 	[SCIx_BRI_IRQ] = {
1118 		.desc = "break",
1119 		.handler = sci_br_interrupt,
1120 	},
1121 
1122 	/*
1123 	 * Special muxed handler.
1124 	 */
1125 	[SCIx_MUX_IRQ] = {
1126 		.desc = "mux",
1127 		.handler = sci_mpxed_interrupt,
1128 	},
1129 };
1130 
1131 static int sci_request_irq(struct sci_port *port)
1132 {
1133 	struct uart_port *up = &port->port;
1134 	int i, j, ret = 0;
1135 
1136 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1137 		struct sci_irq_desc *desc;
1138 		int irq;
1139 
1140 		if (SCIx_IRQ_IS_MUXED(port)) {
1141 			i = SCIx_MUX_IRQ;
1142 			irq = up->irq;
1143 		} else {
1144 			irq = port->irqs[i];
1145 
1146 			/*
1147 			 * Certain port types won't support all of the
1148 			 * available interrupt sources.
1149 			 */
1150 			if (unlikely(irq < 0))
1151 				continue;
1152 		}
1153 
1154 		desc = sci_irq_desc + i;
1155 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1156 					    dev_name(up->dev), desc->desc);
1157 		if (!port->irqstr[j]) {
1158 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1159 				desc->desc);
1160 			goto out_nomem;
1161 		}
1162 
1163 		ret = request_irq(irq, desc->handler, up->irqflags,
1164 				  port->irqstr[j], port);
1165 		if (unlikely(ret)) {
1166 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1167 			goto out_noirq;
1168 		}
1169 	}
1170 
1171 	return 0;
1172 
1173 out_noirq:
1174 	while (--i >= 0)
1175 		free_irq(port->irqs[i], port);
1176 
1177 out_nomem:
1178 	while (--j >= 0)
1179 		kfree(port->irqstr[j]);
1180 
1181 	return ret;
1182 }
1183 
1184 static void sci_free_irq(struct sci_port *port)
1185 {
1186 	int i;
1187 
1188 	/*
1189 	 * Intentionally in reverse order so we iterate over the muxed
1190 	 * IRQ first.
1191 	 */
1192 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1193 		int irq = port->irqs[i];
1194 
1195 		/*
1196 		 * Certain port types won't support all of the available
1197 		 * interrupt sources.
1198 		 */
1199 		if (unlikely(irq < 0))
1200 			continue;
1201 
1202 		free_irq(port->irqs[i], port);
1203 		kfree(port->irqstr[i]);
1204 
1205 		if (SCIx_IRQ_IS_MUXED(port)) {
1206 			/* If there's only one IRQ, we're done. */
1207 			return;
1208 		}
1209 	}
1210 }
1211 
1212 static unsigned int sci_tx_empty(struct uart_port *port)
1213 {
1214 	unsigned short status = serial_port_in(port, SCxSR);
1215 	unsigned short in_tx_fifo = sci_txfill(port);
1216 
1217 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1218 }
1219 
1220 /*
1221  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1222  * CTS/RTS is supported in hardware by at least one port and controlled
1223  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1224  * handled via the ->init_pins() op, which is a bit of a one-way street,
1225  * lacking any ability to defer pin control -- this will later be
1226  * converted over to the GPIO framework).
1227  *
1228  * Other modes (such as loopback) are supported generically on certain
1229  * port types, but not others. For these it's sufficient to test for the
1230  * existence of the support register and simply ignore the port type.
1231  */
1232 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1233 {
1234 	if (mctrl & TIOCM_LOOP) {
1235 		struct plat_sci_reg *reg;
1236 
1237 		/*
1238 		 * Standard loopback mode for SCFCR ports.
1239 		 */
1240 		reg = sci_getreg(port, SCFCR);
1241 		if (reg->size)
1242 			serial_port_out(port, SCFCR,
1243 					serial_port_in(port, SCFCR) |
1244 					SCFCR_LOOP);
1245 	}
1246 }
1247 
1248 static unsigned int sci_get_mctrl(struct uart_port *port)
1249 {
1250 	/*
1251 	 * CTS/RTS is handled in hardware when supported, while nothing
1252 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1253 	 */
1254 	return TIOCM_DSR | TIOCM_CAR;
1255 }
1256 
1257 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1258 static void sci_dma_tx_complete(void *arg)
1259 {
1260 	struct sci_port *s = arg;
1261 	struct uart_port *port = &s->port;
1262 	struct circ_buf *xmit = &port->state->xmit;
1263 	unsigned long flags;
1264 
1265 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1266 
1267 	spin_lock_irqsave(&port->lock, flags);
1268 
1269 	xmit->tail += sg_dma_len(&s->sg_tx);
1270 	xmit->tail &= UART_XMIT_SIZE - 1;
1271 
1272 	port->icount.tx += sg_dma_len(&s->sg_tx);
1273 
1274 	async_tx_ack(s->desc_tx);
1275 	s->desc_tx = NULL;
1276 
1277 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1278 		uart_write_wakeup(port);
1279 
1280 	if (!uart_circ_empty(xmit)) {
1281 		s->cookie_tx = 0;
1282 		schedule_work(&s->work_tx);
1283 	} else {
1284 		s->cookie_tx = -EINVAL;
1285 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1286 			u16 ctrl = serial_port_in(port, SCSCR);
1287 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1288 		}
1289 	}
1290 
1291 	spin_unlock_irqrestore(&port->lock, flags);
1292 }
1293 
1294 /* Locking: called with port lock held */
1295 static int sci_dma_rx_push(struct sci_port *s, size_t count)
1296 {
1297 	struct uart_port *port = &s->port;
1298 	struct tty_port *tport = &port->state->port;
1299 	int i, active, room;
1300 
1301 	room = tty_buffer_request_room(tport, count);
1302 
1303 	if (s->active_rx == s->cookie_rx[0]) {
1304 		active = 0;
1305 	} else if (s->active_rx == s->cookie_rx[1]) {
1306 		active = 1;
1307 	} else {
1308 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1309 		return 0;
1310 	}
1311 
1312 	if (room < count)
1313 		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1314 			 count - room);
1315 	if (!room)
1316 		return room;
1317 
1318 	for (i = 0; i < room; i++)
1319 		tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1320 				     TTY_NORMAL);
1321 
1322 	port->icount.rx += room;
1323 
1324 	return room;
1325 }
1326 
1327 static void sci_dma_rx_complete(void *arg)
1328 {
1329 	struct sci_port *s = arg;
1330 	struct uart_port *port = &s->port;
1331 	unsigned long flags;
1332 	int count;
1333 
1334 	dev_dbg(port->dev, "%s(%d) active #%d\n",
1335 		__func__, port->line, s->active_rx);
1336 
1337 	spin_lock_irqsave(&port->lock, flags);
1338 
1339 	count = sci_dma_rx_push(s, s->buf_len_rx);
1340 
1341 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1342 
1343 	spin_unlock_irqrestore(&port->lock, flags);
1344 
1345 	if (count)
1346 		tty_flip_buffer_push(&port->state->port);
1347 
1348 	schedule_work(&s->work_rx);
1349 }
1350 
1351 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1352 {
1353 	struct dma_chan *chan = s->chan_rx;
1354 	struct uart_port *port = &s->port;
1355 
1356 	s->chan_rx = NULL;
1357 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1358 	dma_release_channel(chan);
1359 	if (sg_dma_address(&s->sg_rx[0]))
1360 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1361 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1362 	if (enable_pio)
1363 		sci_start_rx(port);
1364 }
1365 
1366 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1367 {
1368 	struct dma_chan *chan = s->chan_tx;
1369 	struct uart_port *port = &s->port;
1370 
1371 	s->chan_tx = NULL;
1372 	s->cookie_tx = -EINVAL;
1373 	dma_release_channel(chan);
1374 	if (enable_pio)
1375 		sci_start_tx(port);
1376 }
1377 
1378 static void sci_submit_rx(struct sci_port *s)
1379 {
1380 	struct dma_chan *chan = s->chan_rx;
1381 	int i;
1382 
1383 	for (i = 0; i < 2; i++) {
1384 		struct scatterlist *sg = &s->sg_rx[i];
1385 		struct dma_async_tx_descriptor *desc;
1386 
1387 		desc = dmaengine_prep_slave_sg(chan,
1388 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1389 
1390 		if (desc) {
1391 			s->desc_rx[i] = desc;
1392 			desc->callback = sci_dma_rx_complete;
1393 			desc->callback_param = s;
1394 			s->cookie_rx[i] = desc->tx_submit(desc);
1395 		}
1396 
1397 		if (!desc || s->cookie_rx[i] < 0) {
1398 			if (i) {
1399 				async_tx_ack(s->desc_rx[0]);
1400 				s->cookie_rx[0] = -EINVAL;
1401 			}
1402 			if (desc) {
1403 				async_tx_ack(desc);
1404 				s->cookie_rx[i] = -EINVAL;
1405 			}
1406 			dev_warn(s->port.dev,
1407 				 "failed to re-start DMA, using PIO\n");
1408 			sci_rx_dma_release(s, true);
1409 			return;
1410 		}
1411 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n",
1412 			__func__, s->cookie_rx[i], i);
1413 	}
1414 
1415 	s->active_rx = s->cookie_rx[0];
1416 
1417 	dma_async_issue_pending(chan);
1418 }
1419 
1420 static void work_fn_rx(struct work_struct *work)
1421 {
1422 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1423 	struct uart_port *port = &s->port;
1424 	struct dma_async_tx_descriptor *desc;
1425 	int new;
1426 
1427 	if (s->active_rx == s->cookie_rx[0]) {
1428 		new = 0;
1429 	} else if (s->active_rx == s->cookie_rx[1]) {
1430 		new = 1;
1431 	} else {
1432 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1433 		return;
1434 	}
1435 	desc = s->desc_rx[new];
1436 
1437 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1438 	    DMA_COMPLETE) {
1439 		/* Handle incomplete DMA receive */
1440 		struct dma_chan *chan = s->chan_rx;
1441 		struct shdma_desc *sh_desc = container_of(desc,
1442 					struct shdma_desc, async_tx);
1443 		unsigned long flags;
1444 		int count;
1445 
1446 		dmaengine_terminate_all(chan);
1447 		dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
1448 			sh_desc->partial, sh_desc->cookie);
1449 
1450 		spin_lock_irqsave(&port->lock, flags);
1451 		count = sci_dma_rx_push(s, sh_desc->partial);
1452 		spin_unlock_irqrestore(&port->lock, flags);
1453 
1454 		if (count)
1455 			tty_flip_buffer_push(&port->state->port);
1456 
1457 		sci_submit_rx(s);
1458 
1459 		return;
1460 	}
1461 
1462 	s->cookie_rx[new] = desc->tx_submit(desc);
1463 	if (s->cookie_rx[new] < 0) {
1464 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1465 		sci_rx_dma_release(s, true);
1466 		return;
1467 	}
1468 
1469 	s->active_rx = s->cookie_rx[!new];
1470 
1471 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n",
1472 		__func__, s->cookie_rx[new], new, s->active_rx);
1473 }
1474 
1475 static void work_fn_tx(struct work_struct *work)
1476 {
1477 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1478 	struct dma_async_tx_descriptor *desc;
1479 	struct dma_chan *chan = s->chan_tx;
1480 	struct uart_port *port = &s->port;
1481 	struct circ_buf *xmit = &port->state->xmit;
1482 	struct scatterlist *sg = &s->sg_tx;
1483 
1484 	/*
1485 	 * DMA is idle now.
1486 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1487 	 * offsets and lengths. Since it is a circular buffer, we have to
1488 	 * transmit till the end, and then the rest. Take the port lock to get a
1489 	 * consistent xmit buffer state.
1490 	 */
1491 	spin_lock_irq(&port->lock);
1492 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1493 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1494 		sg->offset;
1495 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1496 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1497 	spin_unlock_irq(&port->lock);
1498 
1499 	BUG_ON(!sg_dma_len(sg));
1500 
1501 	desc = dmaengine_prep_slave_sg(chan,
1502 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1503 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1504 	if (!desc) {
1505 		/* switch to PIO */
1506 		sci_tx_dma_release(s, true);
1507 		return;
1508 	}
1509 
1510 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1511 
1512 	spin_lock_irq(&port->lock);
1513 	s->desc_tx = desc;
1514 	desc->callback = sci_dma_tx_complete;
1515 	desc->callback_param = s;
1516 	spin_unlock_irq(&port->lock);
1517 	s->cookie_tx = desc->tx_submit(desc);
1518 	if (s->cookie_tx < 0) {
1519 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1520 		/* switch to PIO */
1521 		sci_tx_dma_release(s, true);
1522 		return;
1523 	}
1524 
1525 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1526 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1527 
1528 	dma_async_issue_pending(chan);
1529 }
1530 #endif
1531 
1532 static void sci_start_tx(struct uart_port *port)
1533 {
1534 	struct sci_port *s = to_sci_port(port);
1535 	unsigned short ctrl;
1536 
1537 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1538 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1539 		u16 new, scr = serial_port_in(port, SCSCR);
1540 		if (s->chan_tx)
1541 			new = scr | SCSCR_TDRQE;
1542 		else
1543 			new = scr & ~SCSCR_TDRQE;
1544 		if (new != scr)
1545 			serial_port_out(port, SCSCR, new);
1546 	}
1547 
1548 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1549 	    s->cookie_tx < 0) {
1550 		s->cookie_tx = 0;
1551 		schedule_work(&s->work_tx);
1552 	}
1553 #endif
1554 
1555 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1556 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1557 		ctrl = serial_port_in(port, SCSCR);
1558 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1559 	}
1560 }
1561 
1562 static void sci_stop_tx(struct uart_port *port)
1563 {
1564 	unsigned short ctrl;
1565 
1566 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1567 	ctrl = serial_port_in(port, SCSCR);
1568 
1569 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1570 		ctrl &= ~SCSCR_TDRQE;
1571 
1572 	ctrl &= ~SCSCR_TIE;
1573 
1574 	serial_port_out(port, SCSCR, ctrl);
1575 }
1576 
1577 static void sci_start_rx(struct uart_port *port)
1578 {
1579 	unsigned short ctrl;
1580 
1581 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1582 
1583 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1584 		ctrl &= ~SCSCR_RDRQE;
1585 
1586 	serial_port_out(port, SCSCR, ctrl);
1587 }
1588 
1589 static void sci_stop_rx(struct uart_port *port)
1590 {
1591 	unsigned short ctrl;
1592 
1593 	ctrl = serial_port_in(port, SCSCR);
1594 
1595 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1596 		ctrl &= ~SCSCR_RDRQE;
1597 
1598 	ctrl &= ~port_rx_irq_mask(port);
1599 
1600 	serial_port_out(port, SCSCR, ctrl);
1601 }
1602 
1603 static void sci_break_ctl(struct uart_port *port, int break_state)
1604 {
1605 	struct sci_port *s = to_sci_port(port);
1606 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1607 	unsigned short scscr, scsptr;
1608 
1609 	/* check wheter the port has SCSPTR */
1610 	if (!reg->size) {
1611 		/*
1612 		 * Not supported by hardware. Most parts couple break and rx
1613 		 * interrupts together, with break detection always enabled.
1614 		 */
1615 		return;
1616 	}
1617 
1618 	scsptr = serial_port_in(port, SCSPTR);
1619 	scscr = serial_port_in(port, SCSCR);
1620 
1621 	if (break_state == -1) {
1622 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1623 		scscr &= ~SCSCR_TE;
1624 	} else {
1625 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1626 		scscr |= SCSCR_TE;
1627 	}
1628 
1629 	serial_port_out(port, SCSPTR, scsptr);
1630 	serial_port_out(port, SCSCR, scscr);
1631 }
1632 
1633 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1634 static bool filter(struct dma_chan *chan, void *slave)
1635 {
1636 	struct sh_dmae_slave *param = slave;
1637 
1638 	dev_dbg(chan->device->dev, "%s: slave ID %d\n",
1639 		__func__, param->shdma_slave.slave_id);
1640 
1641 	chan->private = &param->shdma_slave;
1642 	return true;
1643 }
1644 
1645 static void rx_timer_fn(unsigned long arg)
1646 {
1647 	struct sci_port *s = (struct sci_port *)arg;
1648 	struct uart_port *port = &s->port;
1649 	u16 scr = serial_port_in(port, SCSCR);
1650 
1651 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1652 		scr &= ~SCSCR_RDRQE;
1653 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1654 	}
1655 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1656 	dev_dbg(port->dev, "DMA Rx timed out\n");
1657 	schedule_work(&s->work_rx);
1658 }
1659 
1660 static void sci_request_dma(struct uart_port *port)
1661 {
1662 	struct sci_port *s = to_sci_port(port);
1663 	struct sh_dmae_slave *param;
1664 	struct dma_chan *chan;
1665 	dma_cap_mask_t mask;
1666 	int nent;
1667 
1668 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1669 
1670 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1671 		return;
1672 
1673 	dma_cap_zero(mask);
1674 	dma_cap_set(DMA_SLAVE, mask);
1675 
1676 	param = &s->param_tx;
1677 
1678 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1679 	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1680 
1681 	s->cookie_tx = -EINVAL;
1682 	chan = dma_request_channel(mask, filter, param);
1683 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1684 	if (chan) {
1685 		s->chan_tx = chan;
1686 		sg_init_table(&s->sg_tx, 1);
1687 		/* UART circular tx buffer is an aligned page. */
1688 		BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1689 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1690 			    UART_XMIT_SIZE,
1691 			    (uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1692 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1693 		if (!nent)
1694 			sci_tx_dma_release(s, false);
1695 		else
1696 			dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n",
1697 				__func__,
1698 				sg_dma_len(&s->sg_tx), port->state->xmit.buf,
1699 				&sg_dma_address(&s->sg_tx));
1700 
1701 		s->sg_len_tx = nent;
1702 
1703 		INIT_WORK(&s->work_tx, work_fn_tx);
1704 	}
1705 
1706 	param = &s->param_rx;
1707 
1708 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1709 	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1710 
1711 	chan = dma_request_channel(mask, filter, param);
1712 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1713 	if (chan) {
1714 		dma_addr_t dma[2];
1715 		void *buf[2];
1716 		int i;
1717 
1718 		s->chan_rx = chan;
1719 
1720 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1721 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1722 					    &dma[0], GFP_KERNEL);
1723 
1724 		if (!buf[0]) {
1725 			dev_warn(port->dev,
1726 				 "failed to allocate dma buffer, using PIO\n");
1727 			sci_rx_dma_release(s, true);
1728 			return;
1729 		}
1730 
1731 		buf[1] = buf[0] + s->buf_len_rx;
1732 		dma[1] = dma[0] + s->buf_len_rx;
1733 
1734 		for (i = 0; i < 2; i++) {
1735 			struct scatterlist *sg = &s->sg_rx[i];
1736 
1737 			sg_init_table(sg, 1);
1738 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1739 				    (uintptr_t)buf[i] & ~PAGE_MASK);
1740 			sg_dma_address(sg) = dma[i];
1741 		}
1742 
1743 		INIT_WORK(&s->work_rx, work_fn_rx);
1744 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1745 
1746 		sci_submit_rx(s);
1747 	}
1748 }
1749 
1750 static void sci_free_dma(struct uart_port *port)
1751 {
1752 	struct sci_port *s = to_sci_port(port);
1753 
1754 	if (s->chan_tx)
1755 		sci_tx_dma_release(s, false);
1756 	if (s->chan_rx)
1757 		sci_rx_dma_release(s, false);
1758 }
1759 #else
1760 static inline void sci_request_dma(struct uart_port *port)
1761 {
1762 }
1763 
1764 static inline void sci_free_dma(struct uart_port *port)
1765 {
1766 }
1767 #endif
1768 
1769 static int sci_startup(struct uart_port *port)
1770 {
1771 	struct sci_port *s = to_sci_port(port);
1772 	unsigned long flags;
1773 	int ret;
1774 
1775 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1776 
1777 	ret = sci_request_irq(s);
1778 	if (unlikely(ret < 0))
1779 		return ret;
1780 
1781 	sci_request_dma(port);
1782 
1783 	spin_lock_irqsave(&port->lock, flags);
1784 	sci_start_tx(port);
1785 	sci_start_rx(port);
1786 	spin_unlock_irqrestore(&port->lock, flags);
1787 
1788 	return 0;
1789 }
1790 
1791 static void sci_shutdown(struct uart_port *port)
1792 {
1793 	struct sci_port *s = to_sci_port(port);
1794 	unsigned long flags;
1795 
1796 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1797 
1798 	spin_lock_irqsave(&port->lock, flags);
1799 	sci_stop_rx(port);
1800 	sci_stop_tx(port);
1801 	spin_unlock_irqrestore(&port->lock, flags);
1802 
1803 	sci_free_dma(port);
1804 	sci_free_irq(s);
1805 }
1806 
1807 static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1808 				   unsigned long freq)
1809 {
1810 	if (s->sampling_rate)
1811 		return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
1812 
1813 	/* Warn, but use a safe default */
1814 	WARN_ON(1);
1815 
1816 	return ((freq + 16 * bps) / (32 * bps) - 1);
1817 }
1818 
1819 /* calculate frame length from SMR */
1820 static int sci_baud_calc_frame_len(unsigned int smr_val)
1821 {
1822 	int len = 10;
1823 
1824 	if (smr_val & SCSMR_CHR)
1825 		len--;
1826 	if (smr_val & SCSMR_PE)
1827 		len++;
1828 	if (smr_val & SCSMR_STOP)
1829 		len++;
1830 
1831 	return len;
1832 }
1833 
1834 
1835 /* calculate sample rate, BRR, and clock select for HSCIF */
1836 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1837 				int *brr, unsigned int *srr,
1838 				unsigned int *cks, int frame_len)
1839 {
1840 	int sr, c, br, err, recv_margin;
1841 	int min_err = 1000; /* 100% */
1842 	int recv_max_margin = 0;
1843 
1844 	/* Find the combination of sample rate and clock select with the
1845 	   smallest deviation from the desired baud rate. */
1846 	for (sr = 8; sr <= 32; sr++) {
1847 		for (c = 0; c <= 3; c++) {
1848 			/* integerized formulas from HSCIF documentation */
1849 			br = DIV_ROUND_CLOSEST(freq, (sr *
1850 					      (1 << (2 * c + 1)) * bps)) - 1;
1851 			br = clamp(br, 0, 255);
1852 			err = DIV_ROUND_CLOSEST(freq, ((br + 1) * bps * sr *
1853 					       (1 << (2 * c + 1)) / 1000)) -
1854 					       1000;
1855 			/* Calc recv margin
1856 			 * M: Receive margin (%)
1857 			 * N: Ratio of bit rate to clock (N = sampling rate)
1858 			 * D: Clock duty (D = 0 to 1.0)
1859 			 * L: Frame length (L = 9 to 12)
1860 			 * F: Absolute value of clock frequency deviation
1861 			 *
1862 			 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
1863 			 *      (|D - 0.5| / N * (1 + F))|
1864 			 *  NOTE: Usually, treat D for 0.5, F is 0 by this
1865 			 *        calculation.
1866 			 */
1867 			recv_margin = abs((500 -
1868 					DIV_ROUND_CLOSEST(1000, sr << 1)) / 10);
1869 			if (abs(min_err) > abs(err)) {
1870 				min_err = err;
1871 				recv_max_margin = recv_margin;
1872 			} else if ((min_err == err) &&
1873 				   (recv_margin > recv_max_margin))
1874 				recv_max_margin = recv_margin;
1875 			else
1876 				continue;
1877 
1878 			*brr = br;
1879 			*srr = sr - 1;
1880 			*cks = c;
1881 		}
1882 	}
1883 
1884 	if (min_err == 1000) {
1885 		WARN_ON(1);
1886 		/* use defaults */
1887 		*brr = 255;
1888 		*srr = 15;
1889 		*cks = 0;
1890 	}
1891 }
1892 
1893 static void sci_reset(struct uart_port *port)
1894 {
1895 	struct plat_sci_reg *reg;
1896 	unsigned int status;
1897 
1898 	do {
1899 		status = serial_port_in(port, SCxSR);
1900 	} while (!(status & SCxSR_TEND(port)));
1901 
1902 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1903 
1904 	reg = sci_getreg(port, SCFCR);
1905 	if (reg->size)
1906 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1907 }
1908 
1909 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1910 			    struct ktermios *old)
1911 {
1912 	struct sci_port *s = to_sci_port(port);
1913 	struct plat_sci_reg *reg;
1914 	unsigned int baud, smr_val = 0, max_baud, cks = 0;
1915 	int t = -1;
1916 	unsigned int srr = 15;
1917 
1918 	if ((termios->c_cflag & CSIZE) == CS7)
1919 		smr_val |= SCSMR_CHR;
1920 	if (termios->c_cflag & PARENB)
1921 		smr_val |= SCSMR_PE;
1922 	if (termios->c_cflag & PARODD)
1923 		smr_val |= SCSMR_PE | SCSMR_ODD;
1924 	if (termios->c_cflag & CSTOPB)
1925 		smr_val |= SCSMR_STOP;
1926 
1927 	/*
1928 	 * earlyprintk comes here early on with port->uartclk set to zero.
1929 	 * the clock framework is not up and running at this point so here
1930 	 * we assume that 115200 is the maximum baud rate. please note that
1931 	 * the baud rate is not programmed during earlyprintk - it is assumed
1932 	 * that the previous boot loader has enabled required clocks and
1933 	 * setup the baud rate generator hardware for us already.
1934 	 */
1935 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1936 
1937 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1938 	if (likely(baud && port->uartclk)) {
1939 		if (s->cfg->type == PORT_HSCIF) {
1940 			int frame_len = sci_baud_calc_frame_len(smr_val);
1941 			sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1942 					    &cks, frame_len);
1943 		} else {
1944 			t = sci_scbrr_calc(s, baud, port->uartclk);
1945 			for (cks = 0; t >= 256 && cks <= 3; cks++)
1946 				t >>= 2;
1947 		}
1948 	}
1949 
1950 	sci_port_enable(s);
1951 
1952 	sci_reset(port);
1953 
1954 	smr_val |= serial_port_in(port, SCSMR) & 3;
1955 
1956 	uart_update_timeout(port, termios->c_cflag, baud);
1957 
1958 	dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1959 		__func__, smr_val, cks, t, s->cfg->scscr);
1960 
1961 	if (t >= 0) {
1962 		serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks);
1963 		serial_port_out(port, SCBRR, t);
1964 		reg = sci_getreg(port, HSSRR);
1965 		if (reg->size)
1966 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
1967 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1968 	} else
1969 		serial_port_out(port, SCSMR, smr_val);
1970 
1971 	sci_init_pins(port, termios->c_cflag);
1972 
1973 	reg = sci_getreg(port, SCFCR);
1974 	if (reg->size) {
1975 		unsigned short ctrl = serial_port_in(port, SCFCR);
1976 
1977 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1978 			if (termios->c_cflag & CRTSCTS)
1979 				ctrl |= SCFCR_MCE;
1980 			else
1981 				ctrl &= ~SCFCR_MCE;
1982 		}
1983 
1984 		/*
1985 		 * As we've done a sci_reset() above, ensure we don't
1986 		 * interfere with the FIFOs while toggling MCE. As the
1987 		 * reset values could still be set, simply mask them out.
1988 		 */
1989 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1990 
1991 		serial_port_out(port, SCFCR, ctrl);
1992 	}
1993 
1994 	serial_port_out(port, SCSCR, s->cfg->scscr);
1995 
1996 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1997 	/*
1998 	 * Calculate delay for 2 DMA buffers (4 FIFO).
1999 	 * See drivers/serial/serial_core.c::uart_update_timeout(). With 10
2000 	 * bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
2001 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
2002 	 * Then below we calculate 5 jiffies (20ms) for 2 DMA buffers (4 FIFO
2003 	 * sizes), but when performing a faster transfer, value obtained by
2004 	 * this formula is may not enough. Therefore, if value is smaller than
2005 	 * 20msec, this sets 20msec as timeout of DMA.
2006 	 */
2007 	if (s->chan_rx) {
2008 		unsigned int bits;
2009 
2010 		/* byte size and parity */
2011 		switch (termios->c_cflag & CSIZE) {
2012 		case CS5:
2013 			bits = 7;
2014 			break;
2015 		case CS6:
2016 			bits = 8;
2017 			break;
2018 		case CS7:
2019 			bits = 9;
2020 			break;
2021 		default:
2022 			bits = 10;
2023 			break;
2024 		}
2025 
2026 		if (termios->c_cflag & CSTOPB)
2027 			bits++;
2028 		if (termios->c_cflag & PARENB)
2029 			bits++;
2030 		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2031 					     (baud / 10), 10);
2032 		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2033 			s->rx_timeout * 1000 / HZ, port->timeout);
2034 		if (s->rx_timeout < msecs_to_jiffies(20))
2035 			s->rx_timeout = msecs_to_jiffies(20);
2036 	}
2037 #endif
2038 
2039 	if ((termios->c_cflag & CREAD) != 0)
2040 		sci_start_rx(port);
2041 
2042 	sci_port_disable(s);
2043 }
2044 
2045 static void sci_pm(struct uart_port *port, unsigned int state,
2046 		   unsigned int oldstate)
2047 {
2048 	struct sci_port *sci_port = to_sci_port(port);
2049 
2050 	switch (state) {
2051 	case UART_PM_STATE_OFF:
2052 		sci_port_disable(sci_port);
2053 		break;
2054 	default:
2055 		sci_port_enable(sci_port);
2056 		break;
2057 	}
2058 }
2059 
2060 static const char *sci_type(struct uart_port *port)
2061 {
2062 	switch (port->type) {
2063 	case PORT_IRDA:
2064 		return "irda";
2065 	case PORT_SCI:
2066 		return "sci";
2067 	case PORT_SCIF:
2068 		return "scif";
2069 	case PORT_SCIFA:
2070 		return "scifa";
2071 	case PORT_SCIFB:
2072 		return "scifb";
2073 	case PORT_HSCIF:
2074 		return "hscif";
2075 	}
2076 
2077 	return NULL;
2078 }
2079 
2080 static int sci_remap_port(struct uart_port *port)
2081 {
2082 	struct sci_port *sport = to_sci_port(port);
2083 
2084 	/*
2085 	 * Nothing to do if there's already an established membase.
2086 	 */
2087 	if (port->membase)
2088 		return 0;
2089 
2090 	if (port->flags & UPF_IOREMAP) {
2091 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2092 		if (unlikely(!port->membase)) {
2093 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2094 			return -ENXIO;
2095 		}
2096 	} else {
2097 		/*
2098 		 * For the simple (and majority of) cases where we don't
2099 		 * need to do any remapping, just cast the cookie
2100 		 * directly.
2101 		 */
2102 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2103 	}
2104 
2105 	return 0;
2106 }
2107 
2108 static void sci_release_port(struct uart_port *port)
2109 {
2110 	struct sci_port *sport = to_sci_port(port);
2111 
2112 	if (port->flags & UPF_IOREMAP) {
2113 		iounmap(port->membase);
2114 		port->membase = NULL;
2115 	}
2116 
2117 	release_mem_region(port->mapbase, sport->reg_size);
2118 }
2119 
2120 static int sci_request_port(struct uart_port *port)
2121 {
2122 	struct resource *res;
2123 	struct sci_port *sport = to_sci_port(port);
2124 	int ret;
2125 
2126 	res = request_mem_region(port->mapbase, sport->reg_size,
2127 				 dev_name(port->dev));
2128 	if (unlikely(res == NULL)) {
2129 		dev_err(port->dev, "request_mem_region failed.");
2130 		return -EBUSY;
2131 	}
2132 
2133 	ret = sci_remap_port(port);
2134 	if (unlikely(ret != 0)) {
2135 		release_resource(res);
2136 		return ret;
2137 	}
2138 
2139 	return 0;
2140 }
2141 
2142 static void sci_config_port(struct uart_port *port, int flags)
2143 {
2144 	if (flags & UART_CONFIG_TYPE) {
2145 		struct sci_port *sport = to_sci_port(port);
2146 
2147 		port->type = sport->cfg->type;
2148 		sci_request_port(port);
2149 	}
2150 }
2151 
2152 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2153 {
2154 	if (ser->baud_base < 2400)
2155 		/* No paper tape reader for Mitch.. */
2156 		return -EINVAL;
2157 
2158 	return 0;
2159 }
2160 
2161 static struct uart_ops sci_uart_ops = {
2162 	.tx_empty	= sci_tx_empty,
2163 	.set_mctrl	= sci_set_mctrl,
2164 	.get_mctrl	= sci_get_mctrl,
2165 	.start_tx	= sci_start_tx,
2166 	.stop_tx	= sci_stop_tx,
2167 	.stop_rx	= sci_stop_rx,
2168 	.break_ctl	= sci_break_ctl,
2169 	.startup	= sci_startup,
2170 	.shutdown	= sci_shutdown,
2171 	.set_termios	= sci_set_termios,
2172 	.pm		= sci_pm,
2173 	.type		= sci_type,
2174 	.release_port	= sci_release_port,
2175 	.request_port	= sci_request_port,
2176 	.config_port	= sci_config_port,
2177 	.verify_port	= sci_verify_port,
2178 #ifdef CONFIG_CONSOLE_POLL
2179 	.poll_get_char	= sci_poll_get_char,
2180 	.poll_put_char	= sci_poll_put_char,
2181 #endif
2182 };
2183 
2184 static int sci_init_single(struct platform_device *dev,
2185 			   struct sci_port *sci_port, unsigned int index,
2186 			   struct plat_sci_port *p, bool early)
2187 {
2188 	struct uart_port *port = &sci_port->port;
2189 	const struct resource *res;
2190 	unsigned int sampling_rate;
2191 	unsigned int i;
2192 	int ret;
2193 
2194 	sci_port->cfg	= p;
2195 
2196 	port->ops	= &sci_uart_ops;
2197 	port->iotype	= UPIO_MEM;
2198 	port->line	= index;
2199 
2200 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2201 	if (res == NULL)
2202 		return -ENOMEM;
2203 
2204 	port->mapbase = res->start;
2205 	sci_port->reg_size = resource_size(res);
2206 
2207 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2208 		sci_port->irqs[i] = platform_get_irq(dev, i);
2209 
2210 	/* The SCI generates several interrupts. They can be muxed together or
2211 	 * connected to different interrupt lines. In the muxed case only one
2212 	 * interrupt resource is specified. In the non-muxed case three or four
2213 	 * interrupt resources are specified, as the BRI interrupt is optional.
2214 	 */
2215 	if (sci_port->irqs[0] < 0)
2216 		return -ENXIO;
2217 
2218 	if (sci_port->irqs[1] < 0) {
2219 		sci_port->irqs[1] = sci_port->irqs[0];
2220 		sci_port->irqs[2] = sci_port->irqs[0];
2221 		sci_port->irqs[3] = sci_port->irqs[0];
2222 	}
2223 
2224 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2225 		ret = sci_probe_regmap(p);
2226 		if (unlikely(ret))
2227 			return ret;
2228 	}
2229 
2230 	switch (p->type) {
2231 	case PORT_SCIFB:
2232 		port->fifosize = 256;
2233 		sci_port->overrun_reg = SCxSR;
2234 		sci_port->overrun_mask = SCIFA_ORER;
2235 		sampling_rate = 16;
2236 		break;
2237 	case PORT_HSCIF:
2238 		port->fifosize = 128;
2239 		sampling_rate = 0;
2240 		sci_port->overrun_reg = SCLSR;
2241 		sci_port->overrun_mask = SCLSR_ORER;
2242 		break;
2243 	case PORT_SCIFA:
2244 		port->fifosize = 64;
2245 		sci_port->overrun_reg = SCxSR;
2246 		sci_port->overrun_mask = SCIFA_ORER;
2247 		sampling_rate = 16;
2248 		break;
2249 	case PORT_SCIF:
2250 		port->fifosize = 16;
2251 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2252 			sci_port->overrun_reg = SCxSR;
2253 			sci_port->overrun_mask = SCIFA_ORER;
2254 			sampling_rate = 16;
2255 		} else {
2256 			sci_port->overrun_reg = SCLSR;
2257 			sci_port->overrun_mask = SCLSR_ORER;
2258 			sampling_rate = 32;
2259 		}
2260 		break;
2261 	default:
2262 		port->fifosize = 1;
2263 		sci_port->overrun_reg = SCxSR;
2264 		sci_port->overrun_mask = SCI_ORER;
2265 		sampling_rate = 32;
2266 		break;
2267 	}
2268 
2269 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2270 	 * match the SoC datasheet, this should be investigated. Let platform
2271 	 * data override the sampling rate for now.
2272 	 */
2273 	sci_port->sampling_rate = p->sampling_rate ? p->sampling_rate
2274 				: sampling_rate;
2275 
2276 	if (!early) {
2277 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2278 		if (IS_ERR(sci_port->iclk)) {
2279 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2280 			if (IS_ERR(sci_port->iclk)) {
2281 				dev_err(&dev->dev, "can't get iclk\n");
2282 				return PTR_ERR(sci_port->iclk);
2283 			}
2284 		}
2285 
2286 		/*
2287 		 * The function clock is optional, ignore it if we can't
2288 		 * find it.
2289 		 */
2290 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2291 		if (IS_ERR(sci_port->fclk))
2292 			sci_port->fclk = NULL;
2293 
2294 		port->dev = &dev->dev;
2295 
2296 		pm_runtime_enable(&dev->dev);
2297 	}
2298 
2299 	sci_port->break_timer.data = (unsigned long)sci_port;
2300 	sci_port->break_timer.function = sci_break_timer;
2301 	init_timer(&sci_port->break_timer);
2302 
2303 	/*
2304 	 * Establish some sensible defaults for the error detection.
2305 	 */
2306 	sci_port->error_mask = (p->type == PORT_SCI) ?
2307 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2308 
2309 	/*
2310 	 * Make the error mask inclusive of overrun detection, if
2311 	 * supported.
2312 	 */
2313 	if (sci_port->overrun_reg == SCxSR)
2314 		sci_port->error_mask |= sci_port->overrun_mask;
2315 
2316 	port->type		= p->type;
2317 	port->flags		= UPF_FIXED_PORT | p->flags;
2318 	port->regshift		= p->regshift;
2319 
2320 	/*
2321 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2322 	 * for the multi-IRQ ports, which is where we are primarily
2323 	 * concerned with the shutdown path synchronization.
2324 	 *
2325 	 * For the muxed case there's nothing more to do.
2326 	 */
2327 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2328 	port->irqflags		= 0;
2329 
2330 	port->serial_in		= sci_serial_in;
2331 	port->serial_out	= sci_serial_out;
2332 
2333 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2334 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2335 			p->dma_slave_tx, p->dma_slave_rx);
2336 
2337 	return 0;
2338 }
2339 
2340 static void sci_cleanup_single(struct sci_port *port)
2341 {
2342 	clk_put(port->iclk);
2343 	clk_put(port->fclk);
2344 
2345 	pm_runtime_disable(port->port.dev);
2346 }
2347 
2348 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2349 static void serial_console_putchar(struct uart_port *port, int ch)
2350 {
2351 	sci_poll_put_char(port, ch);
2352 }
2353 
2354 /*
2355  *	Print a string to the serial port trying not to disturb
2356  *	any possible real use of the port...
2357  */
2358 static void serial_console_write(struct console *co, const char *s,
2359 				 unsigned count)
2360 {
2361 	struct sci_port *sci_port = &sci_ports[co->index];
2362 	struct uart_port *port = &sci_port->port;
2363 	unsigned short bits, ctrl;
2364 	unsigned long flags;
2365 	int locked = 1;
2366 
2367 	local_irq_save(flags);
2368 	if (port->sysrq)
2369 		locked = 0;
2370 	else if (oops_in_progress)
2371 		locked = spin_trylock(&port->lock);
2372 	else
2373 		spin_lock(&port->lock);
2374 
2375 	/* first save the SCSCR then disable the interrupts */
2376 	ctrl = serial_port_in(port, SCSCR);
2377 	serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2378 
2379 	uart_console_write(port, s, count, serial_console_putchar);
2380 
2381 	/* wait until fifo is empty and last bit has been transmitted */
2382 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2383 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2384 		cpu_relax();
2385 
2386 	/* restore the SCSCR */
2387 	serial_port_out(port, SCSCR, ctrl);
2388 
2389 	if (locked)
2390 		spin_unlock(&port->lock);
2391 	local_irq_restore(flags);
2392 }
2393 
2394 static int serial_console_setup(struct console *co, char *options)
2395 {
2396 	struct sci_port *sci_port;
2397 	struct uart_port *port;
2398 	int baud = 115200;
2399 	int bits = 8;
2400 	int parity = 'n';
2401 	int flow = 'n';
2402 	int ret;
2403 
2404 	/*
2405 	 * Refuse to handle any bogus ports.
2406 	 */
2407 	if (co->index < 0 || co->index >= SCI_NPORTS)
2408 		return -ENODEV;
2409 
2410 	sci_port = &sci_ports[co->index];
2411 	port = &sci_port->port;
2412 
2413 	/*
2414 	 * Refuse to handle uninitialized ports.
2415 	 */
2416 	if (!port->ops)
2417 		return -ENODEV;
2418 
2419 	ret = sci_remap_port(port);
2420 	if (unlikely(ret != 0))
2421 		return ret;
2422 
2423 	if (options)
2424 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2425 
2426 	return uart_set_options(port, co, baud, parity, bits, flow);
2427 }
2428 
2429 static struct console serial_console = {
2430 	.name		= "ttySC",
2431 	.device		= uart_console_device,
2432 	.write		= serial_console_write,
2433 	.setup		= serial_console_setup,
2434 	.flags		= CON_PRINTBUFFER,
2435 	.index		= -1,
2436 	.data		= &sci_uart_driver,
2437 };
2438 
2439 static struct console early_serial_console = {
2440 	.name           = "early_ttySC",
2441 	.write          = serial_console_write,
2442 	.flags          = CON_PRINTBUFFER,
2443 	.index		= -1,
2444 };
2445 
2446 static char early_serial_buf[32];
2447 
2448 static int sci_probe_earlyprintk(struct platform_device *pdev)
2449 {
2450 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2451 
2452 	if (early_serial_console.data)
2453 		return -EEXIST;
2454 
2455 	early_serial_console.index = pdev->id;
2456 
2457 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2458 
2459 	serial_console_setup(&early_serial_console, early_serial_buf);
2460 
2461 	if (!strstr(early_serial_buf, "keep"))
2462 		early_serial_console.flags |= CON_BOOT;
2463 
2464 	register_console(&early_serial_console);
2465 	return 0;
2466 }
2467 
2468 #define SCI_CONSOLE	(&serial_console)
2469 
2470 #else
2471 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2472 {
2473 	return -EINVAL;
2474 }
2475 
2476 #define SCI_CONSOLE	NULL
2477 
2478 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2479 
2480 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2481 
2482 static struct uart_driver sci_uart_driver = {
2483 	.owner		= THIS_MODULE,
2484 	.driver_name	= "sci",
2485 	.dev_name	= "ttySC",
2486 	.major		= SCI_MAJOR,
2487 	.minor		= SCI_MINOR_START,
2488 	.nr		= SCI_NPORTS,
2489 	.cons		= SCI_CONSOLE,
2490 };
2491 
2492 static int sci_remove(struct platform_device *dev)
2493 {
2494 	struct sci_port *port = platform_get_drvdata(dev);
2495 
2496 	cpufreq_unregister_notifier(&port->freq_transition,
2497 				    CPUFREQ_TRANSITION_NOTIFIER);
2498 
2499 	uart_remove_one_port(&sci_uart_driver, &port->port);
2500 
2501 	sci_cleanup_single(port);
2502 
2503 	return 0;
2504 }
2505 
2506 struct sci_port_info {
2507 	unsigned int type;
2508 	unsigned int regtype;
2509 };
2510 
2511 static const struct of_device_id of_sci_match[] = {
2512 	{
2513 		.compatible = "renesas,scif",
2514 		.data = &(const struct sci_port_info) {
2515 			.type = PORT_SCIF,
2516 			.regtype = SCIx_SH4_SCIF_REGTYPE,
2517 		},
2518 	}, {
2519 		.compatible = "renesas,scifa",
2520 		.data = &(const struct sci_port_info) {
2521 			.type = PORT_SCIFA,
2522 			.regtype = SCIx_SCIFA_REGTYPE,
2523 		},
2524 	}, {
2525 		.compatible = "renesas,scifb",
2526 		.data = &(const struct sci_port_info) {
2527 			.type = PORT_SCIFB,
2528 			.regtype = SCIx_SCIFB_REGTYPE,
2529 		},
2530 	}, {
2531 		.compatible = "renesas,hscif",
2532 		.data = &(const struct sci_port_info) {
2533 			.type = PORT_HSCIF,
2534 			.regtype = SCIx_HSCIF_REGTYPE,
2535 		},
2536 	}, {
2537 		.compatible = "renesas,sci",
2538 		.data = &(const struct sci_port_info) {
2539 			.type = PORT_SCI,
2540 			.regtype = SCIx_SCI_REGTYPE,
2541 		},
2542 	}, {
2543 		/* Terminator */
2544 	},
2545 };
2546 MODULE_DEVICE_TABLE(of, of_sci_match);
2547 
2548 static struct plat_sci_port *
2549 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2550 {
2551 	struct device_node *np = pdev->dev.of_node;
2552 	const struct of_device_id *match;
2553 	const struct sci_port_info *info;
2554 	struct plat_sci_port *p;
2555 	int id;
2556 
2557 	if (!IS_ENABLED(CONFIG_OF) || !np)
2558 		return NULL;
2559 
2560 	match = of_match_node(of_sci_match, pdev->dev.of_node);
2561 	if (!match)
2562 		return NULL;
2563 
2564 	info = match->data;
2565 
2566 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2567 	if (!p) {
2568 		dev_err(&pdev->dev, "failed to allocate DT config data\n");
2569 		return NULL;
2570 	}
2571 
2572 	/* Get the line number for the aliases node. */
2573 	id = of_alias_get_id(np, "serial");
2574 	if (id < 0) {
2575 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2576 		return NULL;
2577 	}
2578 
2579 	*dev_id = id;
2580 
2581 	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2582 	p->type = info->type;
2583 	p->regtype = info->regtype;
2584 	p->scscr = SCSCR_RE | SCSCR_TE;
2585 
2586 	return p;
2587 }
2588 
2589 static int sci_probe_single(struct platform_device *dev,
2590 				      unsigned int index,
2591 				      struct plat_sci_port *p,
2592 				      struct sci_port *sciport)
2593 {
2594 	int ret;
2595 
2596 	/* Sanity check */
2597 	if (unlikely(index >= SCI_NPORTS)) {
2598 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2599 			   index+1, SCI_NPORTS);
2600 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2601 		return -EINVAL;
2602 	}
2603 
2604 	ret = sci_init_single(dev, sciport, index, p, false);
2605 	if (ret)
2606 		return ret;
2607 
2608 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2609 	if (ret) {
2610 		sci_cleanup_single(sciport);
2611 		return ret;
2612 	}
2613 
2614 	return 0;
2615 }
2616 
2617 static int sci_probe(struct platform_device *dev)
2618 {
2619 	struct plat_sci_port *p;
2620 	struct sci_port *sp;
2621 	unsigned int dev_id;
2622 	int ret;
2623 
2624 	/*
2625 	 * If we've come here via earlyprintk initialization, head off to
2626 	 * the special early probe. We don't have sufficient device state
2627 	 * to make it beyond this yet.
2628 	 */
2629 	if (is_early_platform_device(dev))
2630 		return sci_probe_earlyprintk(dev);
2631 
2632 	if (dev->dev.of_node) {
2633 		p = sci_parse_dt(dev, &dev_id);
2634 		if (p == NULL)
2635 			return -EINVAL;
2636 	} else {
2637 		p = dev->dev.platform_data;
2638 		if (p == NULL) {
2639 			dev_err(&dev->dev, "no platform data supplied\n");
2640 			return -EINVAL;
2641 		}
2642 
2643 		dev_id = dev->id;
2644 	}
2645 
2646 	sp = &sci_ports[dev_id];
2647 	platform_set_drvdata(dev, sp);
2648 
2649 	ret = sci_probe_single(dev, dev_id, p, sp);
2650 	if (ret)
2651 		return ret;
2652 
2653 	sp->freq_transition.notifier_call = sci_notifier;
2654 
2655 	ret = cpufreq_register_notifier(&sp->freq_transition,
2656 					CPUFREQ_TRANSITION_NOTIFIER);
2657 	if (unlikely(ret < 0)) {
2658 		uart_remove_one_port(&sci_uart_driver, &sp->port);
2659 		sci_cleanup_single(sp);
2660 		return ret;
2661 	}
2662 
2663 #ifdef CONFIG_SH_STANDARD_BIOS
2664 	sh_bios_gdb_detach();
2665 #endif
2666 
2667 	return 0;
2668 }
2669 
2670 static __maybe_unused int sci_suspend(struct device *dev)
2671 {
2672 	struct sci_port *sport = dev_get_drvdata(dev);
2673 
2674 	if (sport)
2675 		uart_suspend_port(&sci_uart_driver, &sport->port);
2676 
2677 	return 0;
2678 }
2679 
2680 static __maybe_unused int sci_resume(struct device *dev)
2681 {
2682 	struct sci_port *sport = dev_get_drvdata(dev);
2683 
2684 	if (sport)
2685 		uart_resume_port(&sci_uart_driver, &sport->port);
2686 
2687 	return 0;
2688 }
2689 
2690 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2691 
2692 static struct platform_driver sci_driver = {
2693 	.probe		= sci_probe,
2694 	.remove		= sci_remove,
2695 	.driver		= {
2696 		.name	= "sh-sci",
2697 		.pm	= &sci_dev_pm_ops,
2698 		.of_match_table = of_match_ptr(of_sci_match),
2699 	},
2700 };
2701 
2702 static int __init sci_init(void)
2703 {
2704 	int ret;
2705 
2706 	pr_info("%s\n", banner);
2707 
2708 	ret = uart_register_driver(&sci_uart_driver);
2709 	if (likely(ret == 0)) {
2710 		ret = platform_driver_register(&sci_driver);
2711 		if (unlikely(ret))
2712 			uart_unregister_driver(&sci_uart_driver);
2713 	}
2714 
2715 	return ret;
2716 }
2717 
2718 static void __exit sci_exit(void)
2719 {
2720 	platform_driver_unregister(&sci_driver);
2721 	uart_unregister_driver(&sci_uart_driver);
2722 }
2723 
2724 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2725 early_platform_init_buffer("earlyprintk", &sci_driver,
2726 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2727 #endif
2728 module_init(sci_init);
2729 module_exit(sci_exit);
2730 
2731 MODULE_LICENSE("GPL");
2732 MODULE_ALIAS("platform:sh-sci");
2733 MODULE_AUTHOR("Paul Mundt");
2734 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
2735