xref: /linux/drivers/tty/serial/sh-sci.c (revision aa6085a06716dbfa9b01c0235cc36f1e9b3e1e3e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/minmax.h>
35 #include <linux/module.h>
36 #include <linux/mm.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/reset.h>
41 #include <linux/scatterlist.h>
42 #include <linux/serial.h>
43 #include <linux/serial_sci.h>
44 #include <linux/sh_dma.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/sysrq.h>
48 #include <linux/timer.h>
49 #include <linux/tty.h>
50 #include <linux/tty_flip.h>
51 
52 #ifdef CONFIG_SUPERH
53 #include <asm/sh_bios.h>
54 #include <asm/platform_early.h>
55 #endif
56 
57 #include "rsci.h"
58 #include "serial_mctrl_gpio.h"
59 #include "sh-sci.h"
60 #include "sh-sci-common.h"
61 
62 #define SCIx_IRQ_IS_MUXED(port)			\
63 	((port)->irqs[SCIx_ERI_IRQ] ==	\
64 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
65 	((port)->irqs[SCIx_ERI_IRQ] &&	\
66 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
67 
68 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
69 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
70 				SCI_SR(19) | SCI_SR(27)
71 
72 /* Iterate over all supported sampling rates, from high to low */
73 #define for_each_sr(_sr, _port)						\
74 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
75 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
76 
77 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
78 
79 #define SCI_PUBLIC_PORT_ID(port) (((port) & BIT(7)) ? PORT_GENERIC : (port))
80 
81 static struct sci_port sci_ports[SCI_NPORTS];
82 static unsigned long sci_ports_in_use;
83 static struct uart_driver sci_uart_driver;
84 static bool sci_uart_earlycon;
85 static bool sci_uart_earlycon_dev_probing;
86 
87 static const struct sci_port_params_bits sci_sci_port_params_bits = {
88 	.rxtx_enable = SCSCR_RE | SCSCR_TE,
89 	.te_clear = SCSCR_TE | SCSCR_TEIE,
90 	.poll_sent_bits = SCI_TDRE | SCI_TEND
91 };
92 
93 static const struct sci_port_params_bits sci_scif_port_params_bits = {
94 	.rxtx_enable = SCSCR_RE | SCSCR_TE,
95 	.te_clear = SCSCR_TE | SCSCR_TEIE,
96 	.poll_sent_bits = SCIF_TDFE | SCIF_TEND
97 };
98 
99 static const struct sci_common_regs sci_common_regs = {
100 	.status = SCxSR,
101 	.control = SCSCR,
102 };
103 
104 struct sci_suspend_regs {
105 	u16 scdl;
106 	u16 sccks;
107 	u16 scsmr;
108 	u16 scscr;
109 	u16 scfcr;
110 	u16 scsptr;
111 	u16 hssrr;
112 	u16 scpcr;
113 	u16 scpdr;
114 	u8 scbrr;
115 	u8 semr;
116 };
117 
sci_suspend_regs_size(void)118 static size_t sci_suspend_regs_size(void)
119 {
120 	return sizeof(struct sci_suspend_regs);
121 }
122 
123 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
124 	/*
125 	 * Common SCI definitions, dependent on the port's regshift
126 	 * value.
127 	 */
128 	[SCIx_SCI_REGTYPE] = {
129 		.regs = {
130 			[SCSMR]		= { 0x00,  8 },
131 			[SCBRR]		= { 0x01,  8 },
132 			[SCSCR]		= { 0x02,  8 },
133 			[SCxTDR]	= { 0x03,  8 },
134 			[SCxSR]		= { 0x04,  8 },
135 			[SCxRDR]	= { 0x05,  8 },
136 		},
137 		.fifosize = 1,
138 		.overrun_reg = SCxSR,
139 		.overrun_mask = SCI_ORER,
140 		.sampling_rate_mask = SCI_SR(32),
141 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
142 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
143 		.param_bits = &sci_sci_port_params_bits,
144 		.common_regs = &sci_common_regs,
145 	},
146 
147 	/*
148 	 * Common definitions for legacy IrDA ports.
149 	 */
150 	[SCIx_IRDA_REGTYPE] = {
151 		.regs = {
152 			[SCSMR]		= { 0x00,  8 },
153 			[SCBRR]		= { 0x02,  8 },
154 			[SCSCR]		= { 0x04,  8 },
155 			[SCxTDR]	= { 0x06,  8 },
156 			[SCxSR]		= { 0x08, 16 },
157 			[SCxRDR]	= { 0x0a,  8 },
158 			[SCFCR]		= { 0x0c,  8 },
159 			[SCFDR]		= { 0x0e, 16 },
160 		},
161 		.fifosize = 1,
162 		.overrun_reg = SCxSR,
163 		.overrun_mask = SCI_ORER,
164 		.sampling_rate_mask = SCI_SR(32),
165 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
166 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
167 		.param_bits = &sci_scif_port_params_bits,
168 		.common_regs = &sci_common_regs,
169 	},
170 
171 	/*
172 	 * Common SCIFA definitions.
173 	 */
174 	[SCIx_SCIFA_REGTYPE] = {
175 		.regs = {
176 			[SCSMR]		= { 0x00, 16 },
177 			[SCBRR]		= { 0x04,  8 },
178 			[SCSCR]		= { 0x08, 16 },
179 			[SCxTDR]	= { 0x20,  8 },
180 			[SCxSR]		= { 0x14, 16 },
181 			[SCxRDR]	= { 0x24,  8 },
182 			[SCFCR]		= { 0x18, 16 },
183 			[SCFDR]		= { 0x1c, 16 },
184 			[SCPCR]		= { 0x30, 16 },
185 			[SCPDR]		= { 0x34, 16 },
186 		},
187 		.fifosize = 64,
188 		.overrun_reg = SCxSR,
189 		.overrun_mask = SCIFA_ORER,
190 		.sampling_rate_mask = SCI_SR_SCIFAB,
191 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
192 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
193 		.param_bits = &sci_scif_port_params_bits,
194 		.common_regs = &sci_common_regs,
195 	},
196 
197 	/*
198 	 * Common SCIFB definitions.
199 	 */
200 	[SCIx_SCIFB_REGTYPE] = {
201 		.regs = {
202 			[SCSMR]		= { 0x00, 16 },
203 			[SCBRR]		= { 0x04,  8 },
204 			[SCSCR]		= { 0x08, 16 },
205 			[SCxTDR]	= { 0x40,  8 },
206 			[SCxSR]		= { 0x14, 16 },
207 			[SCxRDR]	= { 0x60,  8 },
208 			[SCFCR]		= { 0x18, 16 },
209 			[SCTFDR]	= { 0x38, 16 },
210 			[SCRFDR]	= { 0x3c, 16 },
211 			[SCPCR]		= { 0x30, 16 },
212 			[SCPDR]		= { 0x34, 16 },
213 		},
214 		.fifosize = 256,
215 		.overrun_reg = SCxSR,
216 		.overrun_mask = SCIFA_ORER,
217 		.sampling_rate_mask = SCI_SR_SCIFAB,
218 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
219 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
220 		.param_bits = &sci_scif_port_params_bits,
221 		.common_regs = &sci_common_regs,
222 	},
223 
224 	/*
225 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
226 	 * count registers.
227 	 */
228 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
229 		.regs = {
230 			[SCSMR]		= { 0x00, 16 },
231 			[SCBRR]		= { 0x04,  8 },
232 			[SCSCR]		= { 0x08, 16 },
233 			[SCxTDR]	= { 0x0c,  8 },
234 			[SCxSR]		= { 0x10, 16 },
235 			[SCxRDR]	= { 0x14,  8 },
236 			[SCFCR]		= { 0x18, 16 },
237 			[SCFDR]		= { 0x1c, 16 },
238 			[SCSPTR]	= { 0x20, 16 },
239 			[SCLSR]		= { 0x24, 16 },
240 		},
241 		.fifosize = 16,
242 		.overrun_reg = SCLSR,
243 		.overrun_mask = SCLSR_ORER,
244 		.sampling_rate_mask = SCI_SR(32),
245 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
246 		.error_clear = SCIF_ERROR_CLEAR,
247 		.param_bits = &sci_scif_port_params_bits,
248 		.common_regs = &sci_common_regs,
249 	},
250 
251 	/*
252 	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T1.
253 	 * It looks like a normal SCIF with FIFO data, but with a
254 	 * compressed address space. Also, the break out of interrupts
255 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
256 	 */
257 	[SCIx_RZ_SCIFA_REGTYPE] = {
258 		.regs = {
259 			[SCSMR]		= { 0x00, 16 },
260 			[SCBRR]		= { 0x02,  8 },
261 			[SCSCR]		= { 0x04, 16 },
262 			[SCxTDR]	= { 0x06,  8 },
263 			[SCxSR]		= { 0x08, 16 },
264 			[SCxRDR]	= { 0x0A,  8 },
265 			[SCFCR]		= { 0x0C, 16 },
266 			[SCFDR]		= { 0x0E, 16 },
267 			[SCSPTR]	= { 0x10, 16 },
268 			[SCLSR]		= { 0x12, 16 },
269 			[SEMR]		= { 0x14, 8 },
270 		},
271 		.fifosize = 16,
272 		.overrun_reg = SCLSR,
273 		.overrun_mask = SCLSR_ORER,
274 		.sampling_rate_mask = SCI_SR(32),
275 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
276 		.error_clear = SCIF_ERROR_CLEAR,
277 		.param_bits = &sci_scif_port_params_bits,
278 		.common_regs = &sci_common_regs,
279 	},
280 
281 	/*
282 	 * The "SCIF" that is in RZ/V2H(P) SoC is similar to one found on RZ/G2L SoC
283 	 * with below differences,
284 	 * - Break out of interrupts are different: ERI, BRI, RXI, TXI, TEI, DRI,
285 	 *   TEI-DRI, RXI-EDGE and TXI-EDGE.
286 	 * - SCSMR register does not have CM bit (BIT(7)) ie it does not support synchronous mode.
287 	 * - SCFCR register does not have SCFCR_MCE bit.
288 	 * - SCSPTR register has only bits SCSPTR_SPB2DT and SCSPTR_SPB2IO.
289 	 */
290 	[SCIx_RZV2H_SCIF_REGTYPE] = {
291 		.regs = {
292 			[SCSMR]		= { 0x00, 16 },
293 			[SCBRR]		= { 0x02,  8 },
294 			[SCSCR]		= { 0x04, 16 },
295 			[SCxTDR]	= { 0x06,  8 },
296 			[SCxSR]		= { 0x08, 16 },
297 			[SCxRDR]	= { 0x0a,  8 },
298 			[SCFCR]		= { 0x0c, 16 },
299 			[SCFDR]		= { 0x0e, 16 },
300 			[SCSPTR]	= { 0x10, 16 },
301 			[SCLSR]		= { 0x12, 16 },
302 			[SEMR]		= { 0x14, 8 },
303 		},
304 		.fifosize = 16,
305 		.overrun_reg = SCLSR,
306 		.overrun_mask = SCLSR_ORER,
307 		.sampling_rate_mask = SCI_SR(32),
308 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
309 		.error_clear = SCIF_ERROR_CLEAR,
310 		.param_bits = &sci_scif_port_params_bits,
311 		.common_regs = &sci_common_regs,
312 	},
313 
314 	/*
315 	 * Common SH-3 SCIF definitions.
316 	 */
317 	[SCIx_SH3_SCIF_REGTYPE] = {
318 		.regs = {
319 			[SCSMR]		= { 0x00,  8 },
320 			[SCBRR]		= { 0x02,  8 },
321 			[SCSCR]		= { 0x04,  8 },
322 			[SCxTDR]	= { 0x06,  8 },
323 			[SCxSR]		= { 0x08, 16 },
324 			[SCxRDR]	= { 0x0a,  8 },
325 			[SCFCR]		= { 0x0c,  8 },
326 			[SCFDR]		= { 0x0e, 16 },
327 		},
328 		.fifosize = 16,
329 		.overrun_reg = SCLSR,
330 		.overrun_mask = SCLSR_ORER,
331 		.sampling_rate_mask = SCI_SR(32),
332 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
333 		.error_clear = SCIF_ERROR_CLEAR,
334 		.param_bits = &sci_scif_port_params_bits,
335 		.common_regs = &sci_common_regs,
336 	},
337 
338 	/*
339 	 * Common SH-4(A) SCIF(B) definitions.
340 	 */
341 	[SCIx_SH4_SCIF_REGTYPE] = {
342 		.regs = {
343 			[SCSMR]		= { 0x00, 16 },
344 			[SCBRR]		= { 0x04,  8 },
345 			[SCSCR]		= { 0x08, 16 },
346 			[SCxTDR]	= { 0x0c,  8 },
347 			[SCxSR]		= { 0x10, 16 },
348 			[SCxRDR]	= { 0x14,  8 },
349 			[SCFCR]		= { 0x18, 16 },
350 			[SCFDR]		= { 0x1c, 16 },
351 			[SCSPTR]	= { 0x20, 16 },
352 			[SCLSR]		= { 0x24, 16 },
353 		},
354 		.fifosize = 16,
355 		.overrun_reg = SCLSR,
356 		.overrun_mask = SCLSR_ORER,
357 		.sampling_rate_mask = SCI_SR(32),
358 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
359 		.error_clear = SCIF_ERROR_CLEAR,
360 		.param_bits = &sci_scif_port_params_bits,
361 		.common_regs = &sci_common_regs,
362 	},
363 
364 	/*
365 	 * Common SCIF definitions for ports with a Baud Rate Generator for
366 	 * External Clock (BRG).
367 	 */
368 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
369 		.regs = {
370 			[SCSMR]		= { 0x00, 16 },
371 			[SCBRR]		= { 0x04,  8 },
372 			[SCSCR]		= { 0x08, 16 },
373 			[SCxTDR]	= { 0x0c,  8 },
374 			[SCxSR]		= { 0x10, 16 },
375 			[SCxRDR]	= { 0x14,  8 },
376 			[SCFCR]		= { 0x18, 16 },
377 			[SCFDR]		= { 0x1c, 16 },
378 			[SCSPTR]	= { 0x20, 16 },
379 			[SCLSR]		= { 0x24, 16 },
380 			[SCDL]		= { 0x30, 16 },
381 			[SCCKS]		= { 0x34, 16 },
382 		},
383 		.fifosize = 16,
384 		.overrun_reg = SCLSR,
385 		.overrun_mask = SCLSR_ORER,
386 		.sampling_rate_mask = SCI_SR(32),
387 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
388 		.error_clear = SCIF_ERROR_CLEAR,
389 		.param_bits = &sci_scif_port_params_bits,
390 		.common_regs = &sci_common_regs,
391 	},
392 
393 	/*
394 	 * Common HSCIF definitions.
395 	 */
396 	[SCIx_HSCIF_REGTYPE] = {
397 		.regs = {
398 			[SCSMR]		= { 0x00, 16 },
399 			[SCBRR]		= { 0x04,  8 },
400 			[SCSCR]		= { 0x08, 16 },
401 			[SCxTDR]	= { 0x0c,  8 },
402 			[SCxSR]		= { 0x10, 16 },
403 			[SCxRDR]	= { 0x14,  8 },
404 			[SCFCR]		= { 0x18, 16 },
405 			[SCFDR]		= { 0x1c, 16 },
406 			[SCSPTR]	= { 0x20, 16 },
407 			[SCLSR]		= { 0x24, 16 },
408 			[HSSRR]		= { 0x40, 16 },
409 			[SCDL]		= { 0x30, 16 },
410 			[SCCKS]		= { 0x34, 16 },
411 			[HSRTRGR]	= { 0x54, 16 },
412 			[HSTTRGR]	= { 0x58, 16 },
413 		},
414 		.fifosize = 128,
415 		.overrun_reg = SCLSR,
416 		.overrun_mask = SCLSR_ORER,
417 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
418 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
419 		.error_clear = SCIF_ERROR_CLEAR,
420 		.param_bits = &sci_scif_port_params_bits,
421 		.common_regs = &sci_common_regs,
422 	},
423 
424 	/*
425 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
426 	 * register.
427 	 */
428 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
429 		.regs = {
430 			[SCSMR]		= { 0x00, 16 },
431 			[SCBRR]		= { 0x04,  8 },
432 			[SCSCR]		= { 0x08, 16 },
433 			[SCxTDR]	= { 0x0c,  8 },
434 			[SCxSR]		= { 0x10, 16 },
435 			[SCxRDR]	= { 0x14,  8 },
436 			[SCFCR]		= { 0x18, 16 },
437 			[SCFDR]		= { 0x1c, 16 },
438 			[SCLSR]		= { 0x24, 16 },
439 		},
440 		.fifosize = 16,
441 		.overrun_reg = SCLSR,
442 		.overrun_mask = SCLSR_ORER,
443 		.sampling_rate_mask = SCI_SR(32),
444 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
445 		.error_clear = SCIF_ERROR_CLEAR,
446 		.param_bits = &sci_scif_port_params_bits,
447 		.common_regs = &sci_common_regs,
448 	},
449 
450 	/*
451 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
452 	 * count registers.
453 	 */
454 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
455 		.regs = {
456 			[SCSMR]		= { 0x00, 16 },
457 			[SCBRR]		= { 0x04,  8 },
458 			[SCSCR]		= { 0x08, 16 },
459 			[SCxTDR]	= { 0x0c,  8 },
460 			[SCxSR]		= { 0x10, 16 },
461 			[SCxRDR]	= { 0x14,  8 },
462 			[SCFCR]		= { 0x18, 16 },
463 			[SCFDR]		= { 0x1c, 16 },
464 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
465 			[SCRFDR]	= { 0x20, 16 },
466 			[SCSPTR]	= { 0x24, 16 },
467 			[SCLSR]		= { 0x28, 16 },
468 		},
469 		.fifosize = 16,
470 		.overrun_reg = SCLSR,
471 		.overrun_mask = SCLSR_ORER,
472 		.sampling_rate_mask = SCI_SR(32),
473 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
474 		.error_clear = SCIF_ERROR_CLEAR,
475 		.param_bits = &sci_scif_port_params_bits,
476 		.common_regs = &sci_common_regs,
477 	},
478 
479 	/*
480 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
481 	 * registers.
482 	 */
483 	[SCIx_SH7705_SCIF_REGTYPE] = {
484 		.regs = {
485 			[SCSMR]		= { 0x00, 16 },
486 			[SCBRR]		= { 0x04,  8 },
487 			[SCSCR]		= { 0x08, 16 },
488 			[SCxTDR]	= { 0x20,  8 },
489 			[SCxSR]		= { 0x14, 16 },
490 			[SCxRDR]	= { 0x24,  8 },
491 			[SCFCR]		= { 0x18, 16 },
492 			[SCFDR]		= { 0x1c, 16 },
493 		},
494 		.fifosize = 64,
495 		.overrun_reg = SCxSR,
496 		.overrun_mask = SCIFA_ORER,
497 		.sampling_rate_mask = SCI_SR(16),
498 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
499 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
500 		.param_bits = &sci_scif_port_params_bits,
501 		.common_regs = &sci_common_regs,
502 	},
503 };
504 
505 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
506 
507 /*
508  * The "offset" here is rather misleading, in that it refers to an enum
509  * value relative to the port mapping rather than the fixed offset
510  * itself, which needs to be manually retrieved from the platform's
511  * register map for the given port.
512  */
sci_serial_in(struct uart_port * p,int offset)513 static unsigned int sci_serial_in(struct uart_port *p, int offset)
514 {
515 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
516 
517 	if (reg->size == 8)
518 		return ioread8(p->membase + (reg->offset << p->regshift));
519 	else if (reg->size == 16)
520 		return ioread16(p->membase + (reg->offset << p->regshift));
521 	else
522 		WARN(1, "Invalid register access\n");
523 
524 	return 0;
525 }
526 
sci_serial_out(struct uart_port * p,int offset,int value)527 static void sci_serial_out(struct uart_port *p, int offset, int value)
528 {
529 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
530 
531 	if (reg->size == 8)
532 		iowrite8(value, p->membase + (reg->offset << p->regshift));
533 	else if (reg->size == 16)
534 		iowrite16(value, p->membase + (reg->offset << p->regshift));
535 	else
536 		WARN(1, "Invalid register access\n");
537 }
538 
sci_port_enable(struct sci_port * sci_port)539 void sci_port_enable(struct sci_port *sci_port)
540 {
541 	unsigned int i;
542 
543 	if (!sci_port->port.dev)
544 		return;
545 
546 	pm_runtime_get_sync(sci_port->port.dev);
547 
548 	for (i = 0; i < SCI_NUM_CLKS; i++) {
549 		clk_prepare_enable(sci_port->clks[i]);
550 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
551 	}
552 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
553 }
554 EXPORT_SYMBOL_NS_GPL(sci_port_enable, "SH_SCI");
555 
sci_port_disable(struct sci_port * sci_port)556 void sci_port_disable(struct sci_port *sci_port)
557 {
558 	unsigned int i;
559 
560 	if (!sci_port->port.dev)
561 		return;
562 
563 	for (i = SCI_NUM_CLKS; i-- > 0; )
564 		clk_disable_unprepare(sci_port->clks[i]);
565 
566 	pm_runtime_put_sync(sci_port->port.dev);
567 }
568 EXPORT_SYMBOL_NS_GPL(sci_port_disable, "SH_SCI");
569 
port_rx_irq_mask(struct uart_port * port)570 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
571 {
572 	/*
573 	 * Not all ports (such as SCIFA) will support REIE. Rather than
574 	 * special-casing the port type, we check the port initialization
575 	 * IRQ enable mask to see whether the IRQ is desired at all. If
576 	 * it's unset, it's logically inferred that there's no point in
577 	 * testing for it.
578 	 */
579 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
580 }
581 
sci_start_tx(struct uart_port * port)582 static void sci_start_tx(struct uart_port *port)
583 {
584 	struct sci_port *s = to_sci_port(port);
585 	unsigned short ctrl;
586 
587 #ifdef CONFIG_SERIAL_SH_SCI_DMA
588 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
589 		u16 new, scr = sci_serial_in(port, SCSCR);
590 		if (s->chan_tx)
591 			new = scr | SCSCR_TDRQE;
592 		else
593 			new = scr & ~SCSCR_TDRQE;
594 		if (new != scr)
595 			sci_serial_out(port, SCSCR, new);
596 	}
597 
598 	if (s->chan_tx && !kfifo_is_empty(&port->state->port.xmit_fifo) &&
599 	    dma_submit_error(s->cookie_tx)) {
600 		if (s->regtype == SCIx_RZ_SCIFA_REGTYPE)
601 			/* Switch irq from SCIF to DMA */
602 			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
603 
604 		s->cookie_tx = 0;
605 		schedule_work(&s->work_tx);
606 	}
607 #endif
608 
609 	if (!s->chan_tx || s->regtype == SCIx_RZ_SCIFA_REGTYPE ||
610 	    s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
611 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
612 		ctrl = sci_serial_in(port, SCSCR);
613 
614 		/*
615 		 * For SCI, TE (transmit enable) must be set after setting TIE
616 		 * (transmit interrupt enable) or in the same instruction to start
617 		 * the transmit process.
618 		 */
619 		if (s->type == PORT_SCI)
620 			ctrl |= SCSCR_TE;
621 
622 		sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
623 	}
624 }
625 
sci_stop_tx(struct uart_port * port)626 static void sci_stop_tx(struct uart_port *port)
627 {
628 	struct sci_port *s = to_sci_port(port);
629 	unsigned short ctrl;
630 
631 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
632 	ctrl = sci_serial_in(port, SCSCR);
633 
634 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
635 		ctrl &= ~SCSCR_TDRQE;
636 
637 	ctrl &= ~SCSCR_TIE;
638 
639 	sci_serial_out(port, SCSCR, ctrl);
640 
641 #ifdef CONFIG_SERIAL_SH_SCI_DMA
642 	if (s->chan_tx &&
643 	    !dma_submit_error(s->cookie_tx)) {
644 		dmaengine_terminate_async(s->chan_tx);
645 		s->cookie_tx = -EINVAL;
646 	}
647 #endif
648 }
649 
sci_start_rx(struct uart_port * port)650 static void sci_start_rx(struct uart_port *port)
651 {
652 	struct sci_port *s = to_sci_port(port);
653 	unsigned short ctrl;
654 
655 	ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
656 
657 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
658 		ctrl &= ~SCSCR_RDRQE;
659 
660 	sci_serial_out(port, SCSCR, ctrl);
661 }
662 
sci_stop_rx(struct uart_port * port)663 static void sci_stop_rx(struct uart_port *port)
664 {
665 	struct sci_port *s = to_sci_port(port);
666 	unsigned short ctrl;
667 
668 	ctrl = sci_serial_in(port, SCSCR);
669 
670 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
671 		ctrl &= ~SCSCR_RDRQE;
672 
673 	ctrl &= ~port_rx_irq_mask(port);
674 
675 	sci_serial_out(port, SCSCR, ctrl);
676 }
677 
sci_clear_SCxSR(struct uart_port * port,unsigned int mask)678 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
679 {
680 	struct sci_port *s = to_sci_port(port);
681 
682 	if (s->type == PORT_SCI) {
683 		/* Just store the mask */
684 		sci_serial_out(port, SCxSR, mask);
685 	} else if (s->params->overrun_mask == SCIFA_ORER) {
686 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
687 		/* Only clear the status bits we want to clear */
688 		sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
689 	} else {
690 		/* Store the mask, clear parity/framing errors */
691 		sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
692 	}
693 }
694 
695 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
696     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
697 
698 #ifdef CONFIG_CONSOLE_POLL
sci_poll_get_char(struct uart_port * port)699 static int sci_poll_get_char(struct uart_port *port)
700 {
701 	unsigned short status;
702 	struct sci_port *s = to_sci_port(port);
703 	int c;
704 
705 	do {
706 		status = sci_serial_in(port, SCxSR);
707 		if (status & SCxSR_ERRORS(port)) {
708 			s->ops->clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
709 			continue;
710 		}
711 		break;
712 	} while (1);
713 
714 	if (!(status & SCxSR_RDxF(port)))
715 		return NO_POLL_CHAR;
716 
717 	c = sci_serial_in(port, SCxRDR);
718 
719 	/* Dummy read */
720 	sci_serial_in(port, SCxSR);
721 	s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
722 
723 	return c;
724 }
725 #endif
726 
sci_poll_put_char(struct uart_port * port,unsigned char c)727 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
728 {
729 	struct sci_port *s = to_sci_port(port);
730 	const struct sci_common_regs *regs = s->params->common_regs;
731 	unsigned int status;
732 
733 	do {
734 		status = s->ops->read_reg(port, regs->status);
735 	} while (!(status & SCxSR_TDxE(port)));
736 
737 	sci_serial_out(port, SCxTDR, c);
738 	s->ops->clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
739 }
740 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
741 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
742 
sci_init_pins(struct uart_port * port,unsigned int cflag)743 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
744 {
745 	struct sci_port *s = to_sci_port(port);
746 
747 	/*
748 	 * Use port-specific handler if provided.
749 	 */
750 	if (s->cfg->ops && s->cfg->ops->init_pins) {
751 		s->cfg->ops->init_pins(port, cflag);
752 		return;
753 	}
754 
755 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
756 		u16 data = sci_serial_in(port, SCPDR);
757 		u16 ctrl = sci_serial_in(port, SCPCR);
758 
759 		/* Enable RXD and TXD pin functions */
760 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
761 		if (s->has_rtscts) {
762 			/* RTS# is output, active low, unless autorts */
763 			if (!(port->mctrl & TIOCM_RTS)) {
764 				ctrl |= SCPCR_RTSC;
765 				data |= SCPDR_RTSD;
766 			} else if (!s->autorts) {
767 				ctrl |= SCPCR_RTSC;
768 				data &= ~SCPDR_RTSD;
769 			} else {
770 				/* Enable RTS# pin function */
771 				ctrl &= ~SCPCR_RTSC;
772 			}
773 			/* Enable CTS# pin function */
774 			ctrl &= ~SCPCR_CTSC;
775 		}
776 		sci_serial_out(port, SCPDR, data);
777 		sci_serial_out(port, SCPCR, ctrl);
778 	} else if (sci_getreg(port, SCSPTR)->size && s->regtype != SCIx_RZV2H_SCIF_REGTYPE) {
779 		u16 status = sci_serial_in(port, SCSPTR);
780 
781 		/* RTS# is always output; and active low, unless autorts */
782 		status |= SCSPTR_RTSIO;
783 		if (!(port->mctrl & TIOCM_RTS))
784 			status |= SCSPTR_RTSDT;
785 		else if (!s->autorts)
786 			status &= ~SCSPTR_RTSDT;
787 		/* CTS# and SCK are inputs */
788 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
789 		sci_serial_out(port, SCSPTR, status);
790 	}
791 }
792 
sci_txfill(struct uart_port * port)793 static int sci_txfill(struct uart_port *port)
794 {
795 	struct sci_port *s = to_sci_port(port);
796 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
797 	const struct plat_sci_reg *reg;
798 
799 	reg = sci_getreg(port, SCTFDR);
800 	if (reg->size)
801 		return sci_serial_in(port, SCTFDR) & fifo_mask;
802 
803 	reg = sci_getreg(port, SCFDR);
804 	if (reg->size)
805 		return sci_serial_in(port, SCFDR) >> 8;
806 
807 	return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
808 }
809 
sci_txroom(struct uart_port * port)810 static int sci_txroom(struct uart_port *port)
811 {
812 	return port->fifosize - sci_txfill(port);
813 }
814 
sci_rxfill(struct uart_port * port)815 static int sci_rxfill(struct uart_port *port)
816 {
817 	struct sci_port *s = to_sci_port(port);
818 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
819 	const struct plat_sci_reg *reg;
820 
821 	reg = sci_getreg(port, SCRFDR);
822 	if (reg->size)
823 		return sci_serial_in(port, SCRFDR) & fifo_mask;
824 
825 	reg = sci_getreg(port, SCFDR);
826 	if (reg->size)
827 		return sci_serial_in(port, SCFDR) & fifo_mask;
828 
829 	return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
830 }
831 
832 /* ********************************************************************** *
833  *                   the interrupt related routines                       *
834  * ********************************************************************** */
835 
sci_transmit_chars(struct uart_port * port)836 static void sci_transmit_chars(struct uart_port *port)
837 {
838 	struct tty_port *tport = &port->state->port;
839 	unsigned int stopped = uart_tx_stopped(port);
840 	struct sci_port *s = to_sci_port(port);
841 	unsigned short status;
842 	unsigned short ctrl;
843 	int count;
844 
845 	status = sci_serial_in(port, SCxSR);
846 	if (!(status & SCxSR_TDxE(port))) {
847 		ctrl = sci_serial_in(port, SCSCR);
848 		if (kfifo_is_empty(&tport->xmit_fifo))
849 			ctrl &= ~SCSCR_TIE;
850 		else
851 			ctrl |= SCSCR_TIE;
852 		sci_serial_out(port, SCSCR, ctrl);
853 		return;
854 	}
855 
856 	count = sci_txroom(port);
857 
858 	do {
859 		unsigned char c;
860 
861 		if (port->x_char) {
862 			c = port->x_char;
863 			port->x_char = 0;
864 		} else if (stopped || !kfifo_get(&tport->xmit_fifo, &c)) {
865 			if (s->type == PORT_SCI &&
866 			    kfifo_is_empty(&tport->xmit_fifo)) {
867 				ctrl = sci_serial_in(port, SCSCR);
868 				ctrl &= ~SCSCR_TE;
869 				sci_serial_out(port, SCSCR, ctrl);
870 				return;
871 			}
872 			break;
873 		}
874 
875 		sci_serial_out(port, SCxTDR, c);
876 		s->tx_occurred = true;
877 
878 		port->icount.tx++;
879 	} while (--count > 0);
880 
881 	s->ops->clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
882 
883 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
884 		uart_write_wakeup(port);
885 	if (kfifo_is_empty(&tport->xmit_fifo)) {
886 		if (s->type == PORT_SCI) {
887 			ctrl = sci_serial_in(port, SCSCR);
888 			ctrl &= ~SCSCR_TIE;
889 			ctrl |= SCSCR_TEIE;
890 			sci_serial_out(port, SCSCR, ctrl);
891 		}
892 
893 		sci_stop_tx(port);
894 	}
895 }
896 
sci_receive_chars(struct uart_port * port)897 static void sci_receive_chars(struct uart_port *port)
898 {
899 	struct tty_port *tport = &port->state->port;
900 	struct sci_port *s = to_sci_port(port);
901 	int i, count, copied = 0;
902 	unsigned short status;
903 	unsigned char flag;
904 
905 	status = sci_serial_in(port, SCxSR);
906 	if (!(status & SCxSR_RDxF(port)))
907 		return;
908 
909 	while (1) {
910 		/* Don't copy more bytes than there is room for in the buffer */
911 		count = tty_buffer_request_room(tport, sci_rxfill(port));
912 
913 		/* If for any reason we can't copy more data, we're done! */
914 		if (count == 0)
915 			break;
916 
917 		if (s->type == PORT_SCI) {
918 			char c = sci_serial_in(port, SCxRDR);
919 			if (uart_handle_sysrq_char(port, c))
920 				count = 0;
921 			else
922 				tty_insert_flip_char(tport, c, TTY_NORMAL);
923 		} else {
924 			for (i = 0; i < count; i++) {
925 				char c;
926 
927 				if (s->type == PORT_SCIF ||
928 				    s->type == PORT_HSCIF) {
929 					status = sci_serial_in(port, SCxSR);
930 					c = sci_serial_in(port, SCxRDR);
931 				} else {
932 					c = sci_serial_in(port, SCxRDR);
933 					status = sci_serial_in(port, SCxSR);
934 				}
935 				if (uart_handle_sysrq_char(port, c)) {
936 					count--; i--;
937 					continue;
938 				}
939 
940 				/* Store data and status */
941 				if (status & SCxSR_FER(port)) {
942 					flag = TTY_FRAME;
943 					port->icount.frame++;
944 				} else if (status & SCxSR_PER(port)) {
945 					flag = TTY_PARITY;
946 					port->icount.parity++;
947 				} else
948 					flag = TTY_NORMAL;
949 
950 				tty_insert_flip_char(tport, c, flag);
951 			}
952 		}
953 
954 		sci_serial_in(port, SCxSR); /* dummy read */
955 		s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
956 
957 		copied += count;
958 		port->icount.rx += count;
959 	}
960 
961 	if (copied) {
962 		/* Tell the rest of the system the news. New characters! */
963 		tty_flip_buffer_push(tport);
964 	} else {
965 		/* TTY buffers full; read from RX reg to prevent lockup */
966 		sci_serial_in(port, SCxRDR);
967 		sci_serial_in(port, SCxSR); /* dummy read */
968 		s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
969 	}
970 }
971 
sci_handle_errors(struct uart_port * port)972 static int sci_handle_errors(struct uart_port *port)
973 {
974 	int copied = 0;
975 	struct sci_port *s = to_sci_port(port);
976 	const struct sci_common_regs *regs = s->params->common_regs;
977 	unsigned int status = s->ops->read_reg(port, regs->status);
978 	struct tty_port *tport = &port->state->port;
979 
980 	/* Handle overruns */
981 	if (status & s->params->overrun_mask) {
982 		port->icount.overrun++;
983 
984 		/* overrun error */
985 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
986 			copied++;
987 	}
988 
989 	if (status & SCxSR_FER(port)) {
990 		/* frame error */
991 		port->icount.frame++;
992 
993 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
994 			copied++;
995 	}
996 
997 	if (status & SCxSR_PER(port)) {
998 		/* parity error */
999 		port->icount.parity++;
1000 
1001 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1002 			copied++;
1003 	}
1004 
1005 	if (copied)
1006 		tty_flip_buffer_push(tport);
1007 
1008 	return copied;
1009 }
1010 
sci_handle_fifo_overrun(struct uart_port * port)1011 static int sci_handle_fifo_overrun(struct uart_port *port)
1012 {
1013 	struct tty_port *tport = &port->state->port;
1014 	struct sci_port *s = to_sci_port(port);
1015 	const struct plat_sci_reg *reg;
1016 	int copied = 0;
1017 	u32 status;
1018 
1019 	if (s->type != SCI_PORT_RSCI) {
1020 		reg = sci_getreg(port, s->params->overrun_reg);
1021 		if (!reg->size)
1022 			return 0;
1023 	}
1024 
1025 	status = s->ops->read_reg(port, s->params->overrun_reg);
1026 	if (status & s->params->overrun_mask) {
1027 		status &= ~s->params->overrun_mask;
1028 		s->ops->write_reg(port, s->params->overrun_reg, status);
1029 
1030 		port->icount.overrun++;
1031 
1032 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1033 		tty_flip_buffer_push(tport);
1034 		copied++;
1035 	}
1036 
1037 	return copied;
1038 }
1039 
sci_handle_breaks(struct uart_port * port)1040 static int sci_handle_breaks(struct uart_port *port)
1041 {
1042 	int copied = 0;
1043 	unsigned short status = sci_serial_in(port, SCxSR);
1044 	struct tty_port *tport = &port->state->port;
1045 
1046 	if (uart_handle_break(port))
1047 		return 0;
1048 
1049 	if (status & SCxSR_BRK(port)) {
1050 		port->icount.brk++;
1051 
1052 		/* Notify of BREAK */
1053 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1054 			copied++;
1055 	}
1056 
1057 	if (copied)
1058 		tty_flip_buffer_push(tport);
1059 
1060 	copied += sci_handle_fifo_overrun(port);
1061 
1062 	return copied;
1063 }
1064 
scif_set_rtrg(struct uart_port * port,int rx_trig)1065 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1066 {
1067 	struct sci_port *s = to_sci_port(port);
1068 	unsigned int bits;
1069 
1070 	if (rx_trig >= port->fifosize)
1071 		rx_trig = port->fifosize - 1;
1072 	if (rx_trig < 1)
1073 		rx_trig = 1;
1074 
1075 	/* HSCIF can be set to an arbitrary level. */
1076 	if (sci_getreg(port, HSRTRGR)->size) {
1077 		sci_serial_out(port, HSRTRGR, rx_trig);
1078 		return rx_trig;
1079 	}
1080 
1081 	switch (s->type) {
1082 	case PORT_SCIF:
1083 		if (rx_trig < 4) {
1084 			bits = 0;
1085 			rx_trig = 1;
1086 		} else if (rx_trig < 8) {
1087 			bits = SCFCR_RTRG0;
1088 			rx_trig = 4;
1089 		} else if (rx_trig < 14) {
1090 			bits = SCFCR_RTRG1;
1091 			rx_trig = 8;
1092 		} else {
1093 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1094 			rx_trig = 14;
1095 		}
1096 		break;
1097 	case PORT_SCIFA:
1098 	case PORT_SCIFB:
1099 		if (rx_trig < 16) {
1100 			bits = 0;
1101 			rx_trig = 1;
1102 		} else if (rx_trig < 32) {
1103 			bits = SCFCR_RTRG0;
1104 			rx_trig = 16;
1105 		} else if (rx_trig < 48) {
1106 			bits = SCFCR_RTRG1;
1107 			rx_trig = 32;
1108 		} else {
1109 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1110 			rx_trig = 48;
1111 		}
1112 		break;
1113 	default:
1114 		WARN(1, "unknown FIFO configuration");
1115 		return 1;
1116 	}
1117 
1118 	sci_serial_out(port, SCFCR,
1119 		       (sci_serial_in(port, SCFCR) &
1120 			~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1121 
1122 	return rx_trig;
1123 }
1124 
scif_rtrg_enabled(struct uart_port * port)1125 static int scif_rtrg_enabled(struct uart_port *port)
1126 {
1127 	if (sci_getreg(port, HSRTRGR)->size)
1128 		return sci_serial_in(port, HSRTRGR) != 0;
1129 	else
1130 		return (sci_serial_in(port, SCFCR) &
1131 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1132 }
1133 
rx_fifo_timer_fn(struct timer_list * t)1134 static void rx_fifo_timer_fn(struct timer_list *t)
1135 {
1136 	struct sci_port *s = timer_container_of(s, t, rx_fifo_timer);
1137 	struct uart_port *port = &s->port;
1138 
1139 	dev_dbg(port->dev, "Rx timed out\n");
1140 	s->ops->set_rtrg(port, 1);
1141 }
1142 
rx_fifo_trigger_show(struct device * dev,struct device_attribute * attr,char * buf)1143 static ssize_t rx_fifo_trigger_show(struct device *dev,
1144 				    struct device_attribute *attr, char *buf)
1145 {
1146 	struct uart_port *port = dev_get_drvdata(dev);
1147 	struct sci_port *sci = to_sci_port(port);
1148 
1149 	return sprintf(buf, "%d\n", sci->rx_trigger);
1150 }
1151 
rx_fifo_trigger_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1152 static ssize_t rx_fifo_trigger_store(struct device *dev,
1153 				     struct device_attribute *attr,
1154 				     const char *buf, size_t count)
1155 {
1156 	struct uart_port *port = dev_get_drvdata(dev);
1157 	struct sci_port *sci = to_sci_port(port);
1158 	int ret;
1159 	long r;
1160 
1161 	ret = kstrtol(buf, 0, &r);
1162 	if (ret)
1163 		return ret;
1164 
1165 	sci->rx_trigger = sci->ops->set_rtrg(port, r);
1166 	if (sci->type == PORT_SCIFA || sci->type == PORT_SCIFB)
1167 		sci->ops->set_rtrg(port, 1);
1168 
1169 	return count;
1170 }
1171 
1172 static DEVICE_ATTR_RW(rx_fifo_trigger);
1173 
rx_fifo_timeout_show(struct device * dev,struct device_attribute * attr,char * buf)1174 static ssize_t rx_fifo_timeout_show(struct device *dev,
1175 			       struct device_attribute *attr,
1176 			       char *buf)
1177 {
1178 	struct uart_port *port = dev_get_drvdata(dev);
1179 	struct sci_port *sci = to_sci_port(port);
1180 	int v;
1181 
1182 	if (sci->type == PORT_HSCIF)
1183 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1184 	else
1185 		v = sci->rx_fifo_timeout;
1186 
1187 	return sprintf(buf, "%d\n", v);
1188 }
1189 
rx_fifo_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1190 static ssize_t rx_fifo_timeout_store(struct device *dev,
1191 				struct device_attribute *attr,
1192 				const char *buf,
1193 				size_t count)
1194 {
1195 	struct uart_port *port = dev_get_drvdata(dev);
1196 	struct sci_port *sci = to_sci_port(port);
1197 	int ret;
1198 	long r;
1199 
1200 	ret = kstrtol(buf, 0, &r);
1201 	if (ret)
1202 		return ret;
1203 
1204 	if (sci->type == PORT_HSCIF) {
1205 		if (r < 0 || r > 3)
1206 			return -EINVAL;
1207 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1208 	} else {
1209 		sci->rx_fifo_timeout = r;
1210 		sci->ops->set_rtrg(port, 1);
1211 		if (r > 0)
1212 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1213 	}
1214 
1215 	return count;
1216 }
1217 
1218 static DEVICE_ATTR_RW(rx_fifo_timeout);
1219 
1220 
1221 #ifdef CONFIG_SERIAL_SH_SCI_DMA
sci_dma_tx_complete(void * arg)1222 static void sci_dma_tx_complete(void *arg)
1223 {
1224 	struct sci_port *s = arg;
1225 	struct uart_port *port = &s->port;
1226 	struct tty_port *tport = &port->state->port;
1227 	unsigned long flags;
1228 
1229 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1230 
1231 	uart_port_lock_irqsave(port, &flags);
1232 
1233 	uart_xmit_advance(port, s->tx_dma_len);
1234 
1235 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1236 		uart_write_wakeup(port);
1237 
1238 	s->tx_occurred = true;
1239 
1240 	if (!kfifo_is_empty(&tport->xmit_fifo)) {
1241 		s->cookie_tx = 0;
1242 		schedule_work(&s->work_tx);
1243 	} else {
1244 		s->cookie_tx = -EINVAL;
1245 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1246 		    s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1247 			u16 ctrl = sci_serial_in(port, SCSCR);
1248 			sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1249 			if (s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1250 				/* Switch irq from DMA to SCIF */
1251 				dmaengine_pause(s->chan_tx_saved);
1252 				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1253 			}
1254 		}
1255 	}
1256 
1257 	uart_port_unlock_irqrestore(port, flags);
1258 }
1259 
1260 /* Locking: called with port lock held */
sci_dma_rx_push(struct sci_port * s,void * buf,size_t count)1261 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1262 {
1263 	struct uart_port *port = &s->port;
1264 	struct tty_port *tport = &port->state->port;
1265 	int copied;
1266 
1267 	copied = tty_insert_flip_string(tport, buf, count);
1268 	if (copied < count)
1269 		port->icount.buf_overrun++;
1270 
1271 	port->icount.rx += copied;
1272 
1273 	return copied;
1274 }
1275 
sci_dma_rx_find_active(struct sci_port * s)1276 static int sci_dma_rx_find_active(struct sci_port *s)
1277 {
1278 	unsigned int i;
1279 
1280 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1281 		if (s->active_rx == s->cookie_rx[i])
1282 			return i;
1283 
1284 	return -1;
1285 }
1286 
1287 /* Must only be called with uart_port_lock taken */
sci_dma_rx_chan_invalidate(struct sci_port * s)1288 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1289 {
1290 	unsigned int i;
1291 
1292 	s->chan_rx = NULL;
1293 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1294 		s->cookie_rx[i] = -EINVAL;
1295 	s->active_rx = 0;
1296 }
1297 
sci_dma_rx_release(struct sci_port * s)1298 static void sci_dma_rx_release(struct sci_port *s)
1299 {
1300 	struct dma_chan *chan = s->chan_rx_saved;
1301 	struct uart_port *port = &s->port;
1302 	unsigned long flags;
1303 
1304 	uart_port_lock_irqsave(port, &flags);
1305 	s->chan_rx_saved = NULL;
1306 	sci_dma_rx_chan_invalidate(s);
1307 	uart_port_unlock_irqrestore(port, flags);
1308 
1309 	dmaengine_terminate_sync(chan);
1310 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1311 			  sg_dma_address(&s->sg_rx[0]));
1312 	dma_release_channel(chan);
1313 }
1314 
start_hrtimer_us(struct hrtimer * hrt,unsigned long usec)1315 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1316 {
1317 	long sec = usec / 1000000;
1318 	long nsec = (usec % 1000000) * 1000;
1319 	ktime_t t = ktime_set(sec, nsec);
1320 
1321 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1322 }
1323 
sci_dma_rx_reenable_irq(struct sci_port * s)1324 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1325 {
1326 	struct uart_port *port = &s->port;
1327 	u16 scr;
1328 
1329 	/* Direct new serial port interrupts back to CPU */
1330 	scr = sci_serial_in(port, SCSCR);
1331 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1332 	    s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1333 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1334 		if (s->regtype == SCIx_RZ_SCIFA_REGTYPE)
1335 			s->ops->set_rtrg(port, s->rx_trigger);
1336 		else
1337 			scr &= ~SCSCR_RDRQE;
1338 	}
1339 	sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
1340 }
1341 
sci_dma_rx_complete(void * arg)1342 static void sci_dma_rx_complete(void *arg)
1343 {
1344 	struct sci_port *s = arg;
1345 	struct dma_chan *chan = s->chan_rx;
1346 	struct uart_port *port = &s->port;
1347 	struct dma_async_tx_descriptor *desc;
1348 	unsigned long flags;
1349 	int active, count = 0;
1350 
1351 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1352 		s->active_rx);
1353 
1354 	hrtimer_cancel(&s->rx_timer);
1355 
1356 	uart_port_lock_irqsave(port, &flags);
1357 
1358 	active = sci_dma_rx_find_active(s);
1359 	if (active >= 0)
1360 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1361 
1362 	if (count)
1363 		tty_flip_buffer_push(&port->state->port);
1364 
1365 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1366 				       DMA_DEV_TO_MEM,
1367 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1368 	if (!desc)
1369 		goto fail;
1370 
1371 	desc->callback = sci_dma_rx_complete;
1372 	desc->callback_param = s;
1373 	s->cookie_rx[active] = dmaengine_submit(desc);
1374 	if (dma_submit_error(s->cookie_rx[active]))
1375 		goto fail;
1376 
1377 	s->active_rx = s->cookie_rx[!active];
1378 
1379 	dma_async_issue_pending(chan);
1380 
1381 	uart_port_unlock_irqrestore(port, flags);
1382 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1383 		__func__, s->cookie_rx[active], active, s->active_rx);
1384 
1385 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1386 
1387 	return;
1388 
1389 fail:
1390 	/* Switch to PIO */
1391 	dmaengine_terminate_async(chan);
1392 	sci_dma_rx_chan_invalidate(s);
1393 	sci_dma_rx_reenable_irq(s);
1394 	uart_port_unlock_irqrestore(port, flags);
1395 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1396 }
1397 
sci_dma_tx_release(struct sci_port * s)1398 static void sci_dma_tx_release(struct sci_port *s)
1399 {
1400 	struct dma_chan *chan = s->chan_tx_saved;
1401 
1402 	cancel_work_sync(&s->work_tx);
1403 	s->chan_tx_saved = s->chan_tx = NULL;
1404 	s->cookie_tx = -EINVAL;
1405 	dmaengine_terminate_sync(chan);
1406 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1407 			 DMA_TO_DEVICE);
1408 	dma_release_channel(chan);
1409 }
1410 
sci_dma_rx_submit(struct sci_port * s,bool port_lock_held)1411 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1412 {
1413 	struct dma_chan *chan = s->chan_rx;
1414 	struct uart_port *port = &s->port;
1415 	unsigned long flags;
1416 	int i;
1417 
1418 	for (i = 0; i < 2; i++) {
1419 		struct scatterlist *sg = &s->sg_rx[i];
1420 		struct dma_async_tx_descriptor *desc;
1421 
1422 		desc = dmaengine_prep_slave_sg(chan,
1423 			sg, 1, DMA_DEV_TO_MEM,
1424 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1425 		if (!desc)
1426 			goto fail;
1427 
1428 		desc->callback = sci_dma_rx_complete;
1429 		desc->callback_param = s;
1430 		s->cookie_rx[i] = dmaengine_submit(desc);
1431 		if (dma_submit_error(s->cookie_rx[i]))
1432 			goto fail;
1433 
1434 	}
1435 
1436 	s->active_rx = s->cookie_rx[0];
1437 
1438 	dma_async_issue_pending(chan);
1439 	return 0;
1440 
1441 fail:
1442 	/* Switch to PIO */
1443 	if (!port_lock_held)
1444 		uart_port_lock_irqsave(port, &flags);
1445 	if (i)
1446 		dmaengine_terminate_async(chan);
1447 	sci_dma_rx_chan_invalidate(s);
1448 	sci_start_rx(port);
1449 	if (!port_lock_held)
1450 		uart_port_unlock_irqrestore(port, flags);
1451 	return -EAGAIN;
1452 }
1453 
sci_dma_tx_work_fn(struct work_struct * work)1454 static void sci_dma_tx_work_fn(struct work_struct *work)
1455 {
1456 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1457 	struct dma_async_tx_descriptor *desc;
1458 	struct dma_chan *chan = s->chan_tx;
1459 	struct uart_port *port = &s->port;
1460 	struct tty_port *tport = &port->state->port;
1461 	unsigned long flags;
1462 	unsigned int tail;
1463 	dma_addr_t buf;
1464 
1465 	/*
1466 	 * DMA is idle now.
1467 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1468 	 * offsets and lengths. Since it is a circular buffer, we have to
1469 	 * transmit till the end, and then the rest. Take the port lock to get a
1470 	 * consistent xmit buffer state.
1471 	 */
1472 	uart_port_lock_irq(port);
1473 	s->tx_dma_len = kfifo_out_linear(&tport->xmit_fifo, &tail,
1474 			UART_XMIT_SIZE);
1475 	buf = s->tx_dma_addr + tail;
1476 	if (!s->tx_dma_len) {
1477 		/* Transmit buffer has been flushed */
1478 		uart_port_unlock_irq(port);
1479 		return;
1480 	}
1481 
1482 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1483 					   DMA_MEM_TO_DEV,
1484 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1485 	if (!desc) {
1486 		uart_port_unlock_irq(port);
1487 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1488 		goto switch_to_pio;
1489 	}
1490 
1491 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1492 				   DMA_TO_DEVICE);
1493 
1494 	desc->callback = sci_dma_tx_complete;
1495 	desc->callback_param = s;
1496 	s->cookie_tx = dmaengine_submit(desc);
1497 	if (dma_submit_error(s->cookie_tx)) {
1498 		uart_port_unlock_irq(port);
1499 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1500 		goto switch_to_pio;
1501 	}
1502 
1503 	uart_port_unlock_irq(port);
1504 	dev_dbg(port->dev, "%s: %p: %u, cookie %d\n",
1505 		__func__, tport->xmit_buf, tail, s->cookie_tx);
1506 
1507 	dma_async_issue_pending(chan);
1508 	return;
1509 
1510 switch_to_pio:
1511 	uart_port_lock_irqsave(port, &flags);
1512 	s->chan_tx = NULL;
1513 	sci_start_tx(port);
1514 	uart_port_unlock_irqrestore(port, flags);
1515 	return;
1516 }
1517 
sci_dma_rx_timer_fn(struct hrtimer * t)1518 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1519 {
1520 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1521 	struct dma_chan *chan = s->chan_rx;
1522 	struct uart_port *port = &s->port;
1523 	struct dma_tx_state state;
1524 	enum dma_status status;
1525 	unsigned long flags;
1526 	unsigned int read;
1527 	int active, count;
1528 
1529 	dev_dbg(port->dev, "DMA Rx timed out\n");
1530 
1531 	uart_port_lock_irqsave(port, &flags);
1532 
1533 	active = sci_dma_rx_find_active(s);
1534 	if (active < 0) {
1535 		uart_port_unlock_irqrestore(port, flags);
1536 		return HRTIMER_NORESTART;
1537 	}
1538 
1539 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1540 	if (status == DMA_COMPLETE) {
1541 		uart_port_unlock_irqrestore(port, flags);
1542 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1543 			s->active_rx, active);
1544 
1545 		/* Let packet complete handler take care of the packet */
1546 		return HRTIMER_NORESTART;
1547 	}
1548 
1549 	dmaengine_pause(chan);
1550 
1551 	/*
1552 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1553 	 * data keeps on coming until transaction is complete so check
1554 	 * for DMA_COMPLETE again
1555 	 * Let packet complete handler take care of the packet
1556 	 */
1557 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1558 	if (status == DMA_COMPLETE) {
1559 		uart_port_unlock_irqrestore(port, flags);
1560 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1561 		return HRTIMER_NORESTART;
1562 	}
1563 
1564 	/* Handle incomplete DMA receive */
1565 	dmaengine_terminate_async(s->chan_rx);
1566 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1567 
1568 	if (read) {
1569 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1570 		if (count)
1571 			tty_flip_buffer_push(&port->state->port);
1572 	}
1573 
1574 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1575 	    s->regtype == SCIx_RZ_SCIFA_REGTYPE)
1576 		sci_dma_rx_submit(s, true);
1577 
1578 	sci_dma_rx_reenable_irq(s);
1579 
1580 	uart_port_unlock_irqrestore(port, flags);
1581 
1582 	return HRTIMER_NORESTART;
1583 }
1584 
sci_request_dma_chan(struct uart_port * port,enum dma_transfer_direction dir)1585 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1586 					     enum dma_transfer_direction dir)
1587 {
1588 	struct dma_chan *chan;
1589 	struct dma_slave_config cfg;
1590 	int ret;
1591 
1592 	chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1593 	if (IS_ERR(chan)) {
1594 		dev_dbg(port->dev, "dma_request_chan failed\n");
1595 		return NULL;
1596 	}
1597 
1598 	memset(&cfg, 0, sizeof(cfg));
1599 	cfg.direction = dir;
1600 	cfg.dst_addr = port->mapbase +
1601 		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1602 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1603 	cfg.src_addr = port->mapbase +
1604 		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1605 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1606 
1607 	ret = dmaengine_slave_config(chan, &cfg);
1608 	if (ret) {
1609 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1610 		dma_release_channel(chan);
1611 		return NULL;
1612 	}
1613 
1614 	return chan;
1615 }
1616 
sci_request_dma(struct uart_port * port)1617 static void sci_request_dma(struct uart_port *port)
1618 {
1619 	struct sci_port *s = to_sci_port(port);
1620 	struct tty_port *tport = &port->state->port;
1621 	struct dma_chan *chan;
1622 
1623 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1624 
1625 	/*
1626 	 * DMA on console may interfere with Kernel log messages which use
1627 	 * plain putchar(). So, simply don't use it with a console.
1628 	 */
1629 	if (uart_console(port))
1630 		return;
1631 
1632 	if (!port->dev->of_node)
1633 		return;
1634 
1635 	s->cookie_tx = -EINVAL;
1636 
1637 	/*
1638 	 * Don't request a dma channel if no channel was specified
1639 	 * in the device tree.
1640 	 */
1641 	if (!of_property_present(port->dev->of_node, "dmas"))
1642 		return;
1643 
1644 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1645 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1646 	if (chan) {
1647 		/* UART circular tx buffer is an aligned page. */
1648 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1649 						tport->xmit_buf,
1650 						UART_XMIT_SIZE,
1651 						DMA_TO_DEVICE);
1652 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1653 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1654 			dma_release_channel(chan);
1655 		} else {
1656 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1657 				__func__, UART_XMIT_SIZE,
1658 				tport->xmit_buf, &s->tx_dma_addr);
1659 
1660 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1661 			s->chan_tx_saved = s->chan_tx = chan;
1662 		}
1663 	}
1664 
1665 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1666 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1667 	if (chan) {
1668 		unsigned int i;
1669 		dma_addr_t dma;
1670 		void *buf;
1671 
1672 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1673 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1674 					 &dma, GFP_KERNEL);
1675 		if (!buf) {
1676 			dev_warn(port->dev,
1677 				 "Failed to allocate Rx dma buffer, using PIO\n");
1678 			dma_release_channel(chan);
1679 			return;
1680 		}
1681 
1682 		for (i = 0; i < 2; i++) {
1683 			struct scatterlist *sg = &s->sg_rx[i];
1684 
1685 			sg_init_table(sg, 1);
1686 			s->rx_buf[i] = buf;
1687 			sg_dma_address(sg) = dma;
1688 			sg_dma_len(sg) = s->buf_len_rx;
1689 
1690 			buf += s->buf_len_rx;
1691 			dma += s->buf_len_rx;
1692 		}
1693 
1694 		hrtimer_setup(&s->rx_timer, sci_dma_rx_timer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1695 
1696 		s->chan_rx_saved = s->chan_rx = chan;
1697 
1698 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1699 		    s->regtype == SCIx_RZ_SCIFA_REGTYPE)
1700 			sci_dma_rx_submit(s, false);
1701 	}
1702 }
1703 
sci_free_dma(struct uart_port * port)1704 static void sci_free_dma(struct uart_port *port)
1705 {
1706 	struct sci_port *s = to_sci_port(port);
1707 
1708 	if (s->chan_tx_saved)
1709 		sci_dma_tx_release(s);
1710 	if (s->chan_rx_saved)
1711 		sci_dma_rx_release(s);
1712 }
1713 
sci_flush_buffer(struct uart_port * port)1714 static void sci_flush_buffer(struct uart_port *port)
1715 {
1716 	struct sci_port *s = to_sci_port(port);
1717 
1718 	/*
1719 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1720 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1721 	 * pending transfers
1722 	 */
1723 	s->tx_dma_len = 0;
1724 	if (s->chan_tx) {
1725 		dmaengine_terminate_async(s->chan_tx);
1726 		s->cookie_tx = -EINVAL;
1727 	}
1728 }
1729 
sci_dma_check_tx_occurred(struct sci_port * s)1730 static void sci_dma_check_tx_occurred(struct sci_port *s)
1731 {
1732 	struct dma_tx_state state;
1733 	enum dma_status status;
1734 
1735 	if (!s->chan_tx)
1736 		return;
1737 
1738 	status = dmaengine_tx_status(s->chan_tx, s->cookie_tx, &state);
1739 	if (status == DMA_COMPLETE || status == DMA_IN_PROGRESS)
1740 		s->tx_occurred = true;
1741 }
1742 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
sci_request_dma(struct uart_port * port)1743 static inline void sci_request_dma(struct uart_port *port)
1744 {
1745 }
1746 
sci_free_dma(struct uart_port * port)1747 static inline void sci_free_dma(struct uart_port *port)
1748 {
1749 }
1750 
sci_dma_check_tx_occurred(struct sci_port * s)1751 static void sci_dma_check_tx_occurred(struct sci_port *s)
1752 {
1753 }
1754 
1755 #define sci_flush_buffer	NULL
1756 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1757 
sci_rx_interrupt(int irq,void * ptr)1758 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1759 {
1760 	struct uart_port *port = ptr;
1761 	struct sci_port *s = to_sci_port(port);
1762 
1763 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1764 	if (s->chan_rx) {
1765 		u16 scr = sci_serial_in(port, SCSCR);
1766 		u16 ssr = sci_serial_in(port, SCxSR);
1767 
1768 		/* Disable future Rx interrupts */
1769 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1770 		    s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1771 			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1772 			if (s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1773 				s->ops->set_rtrg(port, 1);
1774 				scr |= SCSCR_RIE;
1775 			} else {
1776 				scr |= SCSCR_RDRQE;
1777 			}
1778 		} else {
1779 			if (sci_dma_rx_submit(s, false) < 0)
1780 				goto handle_pio;
1781 
1782 			scr &= ~SCSCR_RIE;
1783 		}
1784 		sci_serial_out(port, SCSCR, scr);
1785 		/* Clear current interrupt */
1786 		sci_serial_out(port, SCxSR,
1787 			       ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1788 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1789 			jiffies, s->rx_timeout);
1790 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1791 
1792 		return IRQ_HANDLED;
1793 	}
1794 
1795 handle_pio:
1796 #endif
1797 
1798 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1799 		if (!s->ops->rtrg_enabled(port))
1800 			s->ops->set_rtrg(port, s->rx_trigger);
1801 
1802 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1803 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1804 	}
1805 
1806 	/* I think sci_receive_chars has to be called irrespective
1807 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1808 	 * to be disabled?
1809 	 */
1810 	s->ops->receive_chars(port);
1811 
1812 	return IRQ_HANDLED;
1813 }
1814 
sci_tx_interrupt(int irq,void * ptr)1815 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1816 {
1817 	struct uart_port *port = ptr;
1818 	unsigned long flags;
1819 	struct sci_port *s = to_sci_port(port);
1820 
1821 	uart_port_lock_irqsave(port, &flags);
1822 	s->ops->transmit_chars(port);
1823 	uart_port_unlock_irqrestore(port, flags);
1824 
1825 	return IRQ_HANDLED;
1826 }
1827 
sci_tx_end_interrupt(int irq,void * ptr)1828 static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1829 {
1830 	struct uart_port *port = ptr;
1831 	struct sci_port *s = to_sci_port(port);
1832 	const struct sci_common_regs *regs = s->params->common_regs;
1833 	unsigned long flags;
1834 	u32 ctrl;
1835 
1836 	if (s->type != PORT_SCI && s->type != SCI_PORT_RSCI)
1837 		return sci_tx_interrupt(irq, ptr);
1838 
1839 	uart_port_lock_irqsave(port, &flags);
1840 	ctrl = s->ops->read_reg(port, regs->control) &
1841 		~(s->params->param_bits->te_clear);
1842 	s->ops->write_reg(port, regs->control, ctrl);
1843 	uart_port_unlock_irqrestore(port, flags);
1844 
1845 	return IRQ_HANDLED;
1846 }
1847 
sci_br_interrupt(int irq,void * ptr)1848 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1849 {
1850 	struct uart_port *port = ptr;
1851 	struct sci_port *s = to_sci_port(port);
1852 
1853 	/* Handle BREAKs */
1854 	sci_handle_breaks(port);
1855 
1856 	/* drop invalid character received before break was detected */
1857 	sci_serial_in(port, SCxRDR);
1858 
1859 	s->ops->clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1860 
1861 	return IRQ_HANDLED;
1862 }
1863 
sci_er_interrupt(int irq,void * ptr)1864 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1865 {
1866 	struct uart_port *port = ptr;
1867 	struct sci_port *s = to_sci_port(port);
1868 
1869 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1870 		/* Break and Error interrupts are muxed */
1871 		unsigned short ssr_status = sci_serial_in(port, SCxSR);
1872 
1873 		/* Break Interrupt */
1874 		if (ssr_status & SCxSR_BRK(port))
1875 			sci_br_interrupt(irq, ptr);
1876 
1877 		/* Break only? */
1878 		if (!(ssr_status & SCxSR_ERRORS(port)))
1879 			return IRQ_HANDLED;
1880 	}
1881 
1882 	/* Handle errors */
1883 	if (s->type == PORT_SCI) {
1884 		if (sci_handle_errors(port)) {
1885 			/* discard character in rx buffer */
1886 			sci_serial_in(port, SCxSR);
1887 			s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1888 		}
1889 	} else {
1890 		sci_handle_fifo_overrun(port);
1891 		if (!s->chan_rx)
1892 			s->ops->receive_chars(port);
1893 	}
1894 
1895 	s->ops->clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1896 
1897 	/* Kick the transmission */
1898 	if (!s->chan_tx)
1899 		sci_tx_interrupt(irq, ptr);
1900 
1901 	return IRQ_HANDLED;
1902 }
1903 
sci_mpxed_interrupt(int irq,void * ptr)1904 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1905 {
1906 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1907 	struct uart_port *port = ptr;
1908 	struct sci_port *s = to_sci_port(port);
1909 	irqreturn_t ret = IRQ_NONE;
1910 
1911 	ssr_status = sci_serial_in(port, SCxSR);
1912 	scr_status = sci_serial_in(port, SCSCR);
1913 	if (s->params->overrun_reg == SCxSR)
1914 		orer_status = ssr_status;
1915 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1916 		orer_status = sci_serial_in(port, s->params->overrun_reg);
1917 
1918 	err_enabled = scr_status & port_rx_irq_mask(port);
1919 
1920 	/* Tx Interrupt */
1921 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1922 	    !s->chan_tx)
1923 		ret = sci_tx_interrupt(irq, ptr);
1924 
1925 	/*
1926 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1927 	 * DR flags
1928 	 */
1929 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1930 	    (scr_status & SCSCR_RIE))
1931 		ret = sci_rx_interrupt(irq, ptr);
1932 
1933 	/* Error Interrupt */
1934 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1935 		ret = sci_er_interrupt(irq, ptr);
1936 
1937 	/* Break Interrupt */
1938 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1939 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1940 		ret = sci_br_interrupt(irq, ptr);
1941 
1942 	/* Overrun Interrupt */
1943 	if (orer_status & s->params->overrun_mask) {
1944 		sci_handle_fifo_overrun(port);
1945 		ret = IRQ_HANDLED;
1946 	}
1947 
1948 	return ret;
1949 }
1950 
1951 static const struct sci_irq_desc {
1952 	const char	*desc;
1953 	irq_handler_t	handler;
1954 } sci_irq_desc[] = {
1955 	/*
1956 	 * Split out handlers, the default case.
1957 	 */
1958 	[SCIx_ERI_IRQ] = {
1959 		.desc = "rx err",
1960 		.handler = sci_er_interrupt,
1961 	},
1962 
1963 	[SCIx_RXI_IRQ] = {
1964 		.desc = "rx full",
1965 		.handler = sci_rx_interrupt,
1966 	},
1967 
1968 	[SCIx_TXI_IRQ] = {
1969 		.desc = "tx empty",
1970 		.handler = sci_tx_interrupt,
1971 	},
1972 
1973 	[SCIx_BRI_IRQ] = {
1974 		.desc = "break",
1975 		.handler = sci_br_interrupt,
1976 	},
1977 
1978 	[SCIx_DRI_IRQ] = {
1979 		.desc = "rx ready",
1980 		.handler = sci_rx_interrupt,
1981 	},
1982 
1983 	[SCIx_TEI_IRQ] = {
1984 		.desc = "tx end",
1985 		.handler = sci_tx_end_interrupt,
1986 	},
1987 
1988 	/*
1989 	 * Special muxed handler.
1990 	 */
1991 	[SCIx_MUX_IRQ] = {
1992 		.desc = "mux",
1993 		.handler = sci_mpxed_interrupt,
1994 	},
1995 };
1996 
sci_request_irq(struct sci_port * port)1997 static int sci_request_irq(struct sci_port *port)
1998 {
1999 	struct uart_port *up = &port->port;
2000 	int i, j, w, ret = 0;
2001 
2002 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
2003 		const struct sci_irq_desc *desc;
2004 		int irq;
2005 
2006 		/* Check if already registered (muxed) */
2007 		for (w = 0; w < i; w++)
2008 			if (port->irqs[w] == port->irqs[i])
2009 				w = i + 1;
2010 		if (w > i)
2011 			continue;
2012 
2013 		if (SCIx_IRQ_IS_MUXED(port)) {
2014 			i = SCIx_MUX_IRQ;
2015 			irq = up->irq;
2016 		} else {
2017 			irq = port->irqs[i];
2018 
2019 			/*
2020 			 * Certain port types won't support all of the
2021 			 * available interrupt sources.
2022 			 */
2023 			if (unlikely(irq < 0))
2024 				continue;
2025 		}
2026 
2027 		desc = sci_irq_desc + i;
2028 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
2029 					    dev_name(up->dev), desc->desc);
2030 		if (!port->irqstr[j]) {
2031 			ret = -ENOMEM;
2032 			goto out_nomem;
2033 		}
2034 
2035 		ret = request_irq(irq, desc->handler, up->irqflags,
2036 				  port->irqstr[j], port);
2037 		if (unlikely(ret)) {
2038 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
2039 			goto out_noirq;
2040 		}
2041 	}
2042 
2043 	return 0;
2044 
2045 out_noirq:
2046 	while (--i >= 0)
2047 		free_irq(port->irqs[i], port);
2048 
2049 out_nomem:
2050 	while (--j >= 0)
2051 		kfree(port->irqstr[j]);
2052 
2053 	return ret;
2054 }
2055 
sci_free_irq(struct sci_port * port)2056 static void sci_free_irq(struct sci_port *port)
2057 {
2058 	int i, j;
2059 
2060 	/*
2061 	 * Intentionally in reverse order so we iterate over the muxed
2062 	 * IRQ first.
2063 	 */
2064 	for (i = 0; i < SCIx_NR_IRQS; i++) {
2065 		int irq = port->irqs[i];
2066 
2067 		/*
2068 		 * Certain port types won't support all of the available
2069 		 * interrupt sources.
2070 		 */
2071 		if (unlikely(irq < 0))
2072 			continue;
2073 
2074 		/* Check if already freed (irq was muxed) */
2075 		for (j = 0; j < i; j++)
2076 			if (port->irqs[j] == irq)
2077 				j = i + 1;
2078 		if (j > i)
2079 			continue;
2080 
2081 		free_irq(port->irqs[i], port);
2082 		kfree(port->irqstr[i]);
2083 
2084 		if (SCIx_IRQ_IS_MUXED(port)) {
2085 			/* If there's only one IRQ, we're done. */
2086 			return;
2087 		}
2088 	}
2089 }
2090 
sci_tx_empty(struct uart_port * port)2091 static unsigned int sci_tx_empty(struct uart_port *port)
2092 {
2093 	unsigned short status = sci_serial_in(port, SCxSR);
2094 	unsigned short in_tx_fifo = sci_txfill(port);
2095 	struct sci_port *s = to_sci_port(port);
2096 
2097 	sci_dma_check_tx_occurred(s);
2098 
2099 	if (!s->tx_occurred)
2100 		return TIOCSER_TEMT;
2101 
2102 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2103 }
2104 
sci_set_rts(struct uart_port * port,bool state)2105 static void sci_set_rts(struct uart_port *port, bool state)
2106 {
2107 	struct sci_port *s = to_sci_port(port);
2108 
2109 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
2110 		u16 data = sci_serial_in(port, SCPDR);
2111 
2112 		/* Active low */
2113 		if (state)
2114 			data &= ~SCPDR_RTSD;
2115 		else
2116 			data |= SCPDR_RTSD;
2117 		sci_serial_out(port, SCPDR, data);
2118 
2119 		/* RTS# is output */
2120 		sci_serial_out(port, SCPCR,
2121 			       sci_serial_in(port, SCPCR) | SCPCR_RTSC);
2122 	} else if (sci_getreg(port, SCSPTR)->size) {
2123 		u16 ctrl = sci_serial_in(port, SCSPTR);
2124 
2125 		/* Active low */
2126 		if (state)
2127 			ctrl &= ~SCSPTR_RTSDT;
2128 		else
2129 			ctrl |= SCSPTR_RTSDT;
2130 		sci_serial_out(port, SCSPTR, ctrl);
2131 	}
2132 }
2133 
sci_get_cts(struct uart_port * port)2134 static bool sci_get_cts(struct uart_port *port)
2135 {
2136 	struct sci_port *s = to_sci_port(port);
2137 
2138 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
2139 		/* Active low */
2140 		return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
2141 	} else if (sci_getreg(port, SCSPTR)->size) {
2142 		/* Active low */
2143 		return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
2144 	}
2145 
2146 	return true;
2147 }
2148 
2149 /*
2150  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2151  * CTS/RTS is supported in hardware by at least one port and controlled
2152  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2153  * handled via the ->init_pins() op, which is a bit of a one-way street,
2154  * lacking any ability to defer pin control -- this will later be
2155  * converted over to the GPIO framework).
2156  *
2157  * Other modes (such as loopback) are supported generically on certain
2158  * port types, but not others. For these it's sufficient to test for the
2159  * existence of the support register and simply ignore the port type.
2160  */
sci_set_mctrl(struct uart_port * port,unsigned int mctrl)2161 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2162 {
2163 	struct sci_port *s = to_sci_port(port);
2164 
2165 	if (mctrl & TIOCM_LOOP) {
2166 		const struct plat_sci_reg *reg;
2167 
2168 		/*
2169 		 * Standard loopback mode for SCFCR ports.
2170 		 */
2171 		reg = sci_getreg(port, SCFCR);
2172 		if (reg->size)
2173 			sci_serial_out(port, SCFCR,
2174 				       sci_serial_in(port, SCFCR) | SCFCR_LOOP);
2175 	}
2176 
2177 	mctrl_gpio_set(s->gpios, mctrl);
2178 
2179 	if (!s->has_rtscts)
2180 		return;
2181 
2182 	if (!(mctrl & TIOCM_RTS)) {
2183 		/* Disable Auto RTS */
2184 		if (s->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2185 			sci_serial_out(port, SCFCR,
2186 				       sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
2187 
2188 		/* Clear RTS */
2189 		sci_set_rts(port, 0);
2190 	} else if (s->autorts) {
2191 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
2192 			/* Enable RTS# pin function */
2193 			sci_serial_out(port, SCPCR,
2194 				sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
2195 		}
2196 
2197 		/* Enable Auto RTS */
2198 		if (s->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2199 			sci_serial_out(port, SCFCR,
2200 				       sci_serial_in(port, SCFCR) | SCFCR_MCE);
2201 	} else {
2202 		/* Set RTS */
2203 		sci_set_rts(port, 1);
2204 	}
2205 }
2206 
sci_get_mctrl(struct uart_port * port)2207 static unsigned int sci_get_mctrl(struct uart_port *port)
2208 {
2209 	struct sci_port *s = to_sci_port(port);
2210 	struct mctrl_gpios *gpios = s->gpios;
2211 	unsigned int mctrl = 0;
2212 
2213 	mctrl_gpio_get(gpios, &mctrl);
2214 
2215 	/*
2216 	 * CTS/RTS is handled in hardware when supported, while nothing
2217 	 * else is wired up.
2218 	 */
2219 	if (s->autorts) {
2220 		if (sci_get_cts(port))
2221 			mctrl |= TIOCM_CTS;
2222 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2223 		mctrl |= TIOCM_CTS;
2224 	}
2225 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2226 		mctrl |= TIOCM_DSR;
2227 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2228 		mctrl |= TIOCM_CAR;
2229 
2230 	return mctrl;
2231 }
2232 
sci_enable_ms(struct uart_port * port)2233 static void sci_enable_ms(struct uart_port *port)
2234 {
2235 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2236 }
2237 
sci_break_ctl(struct uart_port * port,int break_state)2238 static void sci_break_ctl(struct uart_port *port, int break_state)
2239 {
2240 	unsigned short scscr, scsptr;
2241 	unsigned long flags;
2242 
2243 	/* check whether the port has SCSPTR */
2244 	if (!sci_getreg(port, SCSPTR)->size) {
2245 		/*
2246 		 * Not supported by hardware. Most parts couple break and rx
2247 		 * interrupts together, with break detection always enabled.
2248 		 */
2249 		return;
2250 	}
2251 
2252 	uart_port_lock_irqsave(port, &flags);
2253 	scsptr = sci_serial_in(port, SCSPTR);
2254 	scscr = sci_serial_in(port, SCSCR);
2255 
2256 	if (break_state == -1) {
2257 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2258 		scscr &= ~SCSCR_TE;
2259 	} else {
2260 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2261 		scscr |= SCSCR_TE;
2262 	}
2263 
2264 	sci_serial_out(port, SCSPTR, scsptr);
2265 	sci_serial_out(port, SCSCR, scscr);
2266 	uart_port_unlock_irqrestore(port, flags);
2267 }
2268 
sci_shutdown_complete(struct uart_port * port)2269 static void sci_shutdown_complete(struct uart_port *port)
2270 {
2271 	struct sci_port *s = to_sci_port(port);
2272 	u16 scr;
2273 
2274 	scr = sci_serial_in(port, SCSCR);
2275 	sci_serial_out(port, SCSCR,
2276 		       scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2277 }
2278 
sci_startup(struct uart_port * port)2279 int sci_startup(struct uart_port *port)
2280 {
2281 	struct sci_port *s = to_sci_port(port);
2282 	int ret;
2283 
2284 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2285 
2286 	s->tx_occurred = false;
2287 	sci_request_dma(port);
2288 
2289 	ret = sci_request_irq(s);
2290 	if (unlikely(ret < 0)) {
2291 		sci_free_dma(port);
2292 		return ret;
2293 	}
2294 
2295 	return 0;
2296 }
2297 EXPORT_SYMBOL_NS_GPL(sci_startup, "SH_SCI");
2298 
sci_shutdown(struct uart_port * port)2299 void sci_shutdown(struct uart_port *port)
2300 {
2301 	struct sci_port *s = to_sci_port(port);
2302 	unsigned long flags;
2303 
2304 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2305 
2306 	s->autorts = false;
2307 	mctrl_gpio_disable_ms_sync(to_sci_port(port)->gpios);
2308 
2309 	uart_port_lock_irqsave(port, &flags);
2310 	s->port.ops->stop_rx(port);
2311 	s->port.ops->stop_tx(port);
2312 	s->ops->shutdown_complete(port);
2313 	uart_port_unlock_irqrestore(port, flags);
2314 
2315 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2316 	if (s->chan_rx_saved) {
2317 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2318 			port->line);
2319 		hrtimer_cancel(&s->rx_timer);
2320 	}
2321 #endif
2322 
2323 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2324 		timer_delete_sync(&s->rx_fifo_timer);
2325 	sci_free_irq(s);
2326 	sci_free_dma(port);
2327 }
2328 EXPORT_SYMBOL_NS_GPL(sci_shutdown, "SH_SCI");
2329 
sci_sck_calc(struct sci_port * s,unsigned int bps,unsigned int * srr)2330 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2331 			unsigned int *srr)
2332 {
2333 	unsigned long freq = s->clk_rates[SCI_SCK];
2334 	int err, min_err = INT_MAX;
2335 	unsigned int sr;
2336 
2337 	if (s->type != PORT_HSCIF)
2338 		freq *= 2;
2339 
2340 	for_each_sr(sr, s) {
2341 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2342 		if (abs(err) >= abs(min_err))
2343 			continue;
2344 
2345 		min_err = err;
2346 		*srr = sr - 1;
2347 
2348 		if (!err)
2349 			break;
2350 	}
2351 
2352 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2353 		*srr + 1);
2354 	return min_err;
2355 }
2356 
sci_brg_calc(struct sci_port * s,unsigned int bps,unsigned long freq,unsigned int * dlr,unsigned int * srr)2357 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2358 			unsigned long freq, unsigned int *dlr,
2359 			unsigned int *srr)
2360 {
2361 	int err, min_err = INT_MAX;
2362 	unsigned int sr, dl;
2363 
2364 	if (s->type != PORT_HSCIF)
2365 		freq *= 2;
2366 
2367 	for_each_sr(sr, s) {
2368 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2369 		dl = clamp(dl, 1U, 65535U);
2370 
2371 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2372 		if (abs(err) >= abs(min_err))
2373 			continue;
2374 
2375 		min_err = err;
2376 		*dlr = dl;
2377 		*srr = sr - 1;
2378 
2379 		if (!err)
2380 			break;
2381 	}
2382 
2383 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2384 		min_err, *dlr, *srr + 1);
2385 	return min_err;
2386 }
2387 
2388 /* calculate sample rate, BRR, and clock select */
sci_scbrr_calc(struct sci_port * s,unsigned int bps,unsigned int * brr,unsigned int * srr,unsigned int * cks)2389 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2390 		   unsigned int *brr, unsigned int *srr,
2391 		   unsigned int *cks)
2392 {
2393 	unsigned long freq = s->clk_rates[SCI_FCK];
2394 	unsigned int sr, br, prediv, scrate, c;
2395 	int err, min_err = INT_MAX;
2396 
2397 	if (s->type != PORT_HSCIF)
2398 		freq *= 2;
2399 
2400 	/*
2401 	 * Find the combination of sample rate and clock select with the
2402 	 * smallest deviation from the desired baud rate.
2403 	 * Prefer high sample rates to maximise the receive margin.
2404 	 *
2405 	 * M: Receive margin (%)
2406 	 * N: Ratio of bit rate to clock (N = sampling rate)
2407 	 * D: Clock duty (D = 0 to 1.0)
2408 	 * L: Frame length (L = 9 to 12)
2409 	 * F: Absolute value of clock frequency deviation
2410 	 *
2411 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2412 	 *      (|D - 0.5| / N * (1 + F))|
2413 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2414 	 */
2415 	for_each_sr(sr, s) {
2416 		for (c = 0; c <= 3; c++) {
2417 			/* integerized formulas from HSCIF documentation */
2418 			prediv = sr << (2 * c + 1);
2419 
2420 			/*
2421 			 * We need to calculate:
2422 			 *
2423 			 *     br = freq / (prediv * bps) clamped to [1..256]
2424 			 *     err = freq / (br * prediv) - bps
2425 			 *
2426 			 * Watch out for overflow when calculating the desired
2427 			 * sampling clock rate!
2428 			 */
2429 			if (bps > UINT_MAX / prediv)
2430 				break;
2431 
2432 			scrate = prediv * bps;
2433 			br = DIV_ROUND_CLOSEST(freq, scrate);
2434 			br = clamp(br, 1U, 256U);
2435 
2436 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2437 			if (abs(err) >= abs(min_err))
2438 				continue;
2439 
2440 			min_err = err;
2441 			*brr = br - 1;
2442 			*srr = sr - 1;
2443 			*cks = c;
2444 
2445 			if (!err)
2446 				goto found;
2447 		}
2448 	}
2449 
2450 found:
2451 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2452 		min_err, *brr, *srr + 1, *cks);
2453 	return min_err;
2454 }
2455 
sci_reset(struct uart_port * port)2456 static void sci_reset(struct uart_port *port)
2457 {
2458 	const struct plat_sci_reg *reg;
2459 	unsigned int status;
2460 	struct sci_port *s = to_sci_port(port);
2461 
2462 	sci_serial_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2463 
2464 	reg = sci_getreg(port, SCFCR);
2465 	if (reg->size)
2466 		sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2467 
2468 	s->ops->clear_SCxSR(port,
2469 			    SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2470 			    SCxSR_BREAK_CLEAR(port));
2471 	if (sci_getreg(port, SCLSR)->size) {
2472 		status = sci_serial_in(port, SCLSR);
2473 		status &= ~(SCLSR_TO | SCLSR_ORER);
2474 		sci_serial_out(port, SCLSR, status);
2475 	}
2476 
2477 	if (s->rx_trigger > 1) {
2478 		if (s->rx_fifo_timeout) {
2479 			s->ops->set_rtrg(port, 1);
2480 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2481 		} else {
2482 			if (s->type == PORT_SCIFA ||
2483 			    s->type == PORT_SCIFB)
2484 				s->ops->set_rtrg(port, 1);
2485 			else
2486 				s->ops->set_rtrg(port, s->rx_trigger);
2487 		}
2488 	}
2489 }
2490 
sci_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2491 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2492 		            const struct ktermios *old)
2493 {
2494 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2495 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2496 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2497 	struct sci_port *s = to_sci_port(port);
2498 	const struct plat_sci_reg *reg;
2499 	int min_err = INT_MAX, err;
2500 	unsigned long max_freq = 0;
2501 	int best_clk = -1;
2502 	unsigned long flags;
2503 
2504 	if ((termios->c_cflag & CSIZE) == CS7) {
2505 		smr_val |= SCSMR_CHR;
2506 	} else {
2507 		termios->c_cflag &= ~CSIZE;
2508 		termios->c_cflag |= CS8;
2509 	}
2510 	if (termios->c_cflag & PARENB)
2511 		smr_val |= SCSMR_PE;
2512 	if (termios->c_cflag & PARODD)
2513 		smr_val |= SCSMR_PE | SCSMR_ODD;
2514 	if (termios->c_cflag & CSTOPB)
2515 		smr_val |= SCSMR_STOP;
2516 
2517 	/*
2518 	 * earlyprintk comes here early on with port->uartclk set to zero.
2519 	 * the clock framework is not up and running at this point so here
2520 	 * we assume that 115200 is the maximum baud rate. please note that
2521 	 * the baud rate is not programmed during earlyprintk - it is assumed
2522 	 * that the previous boot loader has enabled required clocks and
2523 	 * setup the baud rate generator hardware for us already.
2524 	 */
2525 	if (!port->uartclk) {
2526 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2527 		goto done;
2528 	}
2529 
2530 	for (i = 0; i < SCI_NUM_CLKS; i++)
2531 		max_freq = max(max_freq, s->clk_rates[i]);
2532 
2533 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2534 	if (!baud)
2535 		goto done;
2536 
2537 	/*
2538 	 * There can be multiple sources for the sampling clock.  Find the one
2539 	 * that gives us the smallest deviation from the desired baud rate.
2540 	 */
2541 
2542 	/* Optional Undivided External Clock */
2543 	if (s->clk_rates[SCI_SCK] && s->type != PORT_SCIFA &&
2544 	    s->type != PORT_SCIFB) {
2545 		err = sci_sck_calc(s, baud, &srr1);
2546 		if (abs(err) < abs(min_err)) {
2547 			best_clk = SCI_SCK;
2548 			scr_val = SCSCR_CKE1;
2549 			sccks = SCCKS_CKS;
2550 			min_err = err;
2551 			srr = srr1;
2552 			if (!err)
2553 				goto done;
2554 		}
2555 	}
2556 
2557 	/* Optional BRG Frequency Divided External Clock */
2558 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2559 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2560 				   &srr1);
2561 		if (abs(err) < abs(min_err)) {
2562 			best_clk = SCI_SCIF_CLK;
2563 			scr_val = SCSCR_CKE1;
2564 			sccks = 0;
2565 			min_err = err;
2566 			dl = dl1;
2567 			srr = srr1;
2568 			if (!err)
2569 				goto done;
2570 		}
2571 	}
2572 
2573 	/* Optional BRG Frequency Divided Internal Clock */
2574 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2575 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2576 				   &srr1);
2577 		if (abs(err) < abs(min_err)) {
2578 			best_clk = SCI_BRG_INT;
2579 			scr_val = SCSCR_CKE1;
2580 			sccks = SCCKS_XIN;
2581 			min_err = err;
2582 			dl = dl1;
2583 			srr = srr1;
2584 			if (!min_err)
2585 				goto done;
2586 		}
2587 	}
2588 
2589 	/* Divided Functional Clock using standard Bit Rate Register */
2590 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2591 	if (abs(err) < abs(min_err)) {
2592 		best_clk = SCI_FCK;
2593 		scr_val = 0;
2594 		min_err = err;
2595 		brr = brr1;
2596 		srr = srr1;
2597 		cks = cks1;
2598 	}
2599 
2600 done:
2601 	if (best_clk >= 0)
2602 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2603 			s->clks[best_clk], baud, min_err);
2604 
2605 	sci_port_enable(s);
2606 
2607 	/*
2608 	 * Program the optional External Baud Rate Generator (BRG) first.
2609 	 * It controls the mux to select (H)SCK or frequency divided clock.
2610 	 */
2611 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2612 		sci_serial_out(port, SCDL, dl);
2613 		sci_serial_out(port, SCCKS, sccks);
2614 	}
2615 
2616 	uart_port_lock_irqsave(port, &flags);
2617 
2618 	sci_reset(port);
2619 
2620 	uart_update_timeout(port, termios->c_cflag, baud);
2621 
2622 	/* byte size and parity */
2623 	bits = tty_get_frame_size(termios->c_cflag);
2624 
2625 	if (sci_getreg(port, SEMR)->size)
2626 		sci_serial_out(port, SEMR, 0);
2627 
2628 	if (best_clk >= 0) {
2629 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
2630 			switch (srr + 1) {
2631 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2632 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2633 			case 11: smr_val |= SCSMR_SRC_11; break;
2634 			case 13: smr_val |= SCSMR_SRC_13; break;
2635 			case 16: smr_val |= SCSMR_SRC_16; break;
2636 			case 17: smr_val |= SCSMR_SRC_17; break;
2637 			case 19: smr_val |= SCSMR_SRC_19; break;
2638 			case 27: smr_val |= SCSMR_SRC_27; break;
2639 			}
2640 		smr_val |= cks;
2641 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2642 		sci_serial_out(port, SCSMR, smr_val);
2643 		sci_serial_out(port, SCBRR, brr);
2644 		if (sci_getreg(port, HSSRR)->size) {
2645 			unsigned int hssrr = srr | HSCIF_SRE;
2646 			/* Calculate deviation from intended rate at the
2647 			 * center of the last stop bit in sampling clocks.
2648 			 */
2649 			int last_stop = bits * 2 - 1;
2650 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2651 							  (int)(srr + 1),
2652 							  2 * (int)baud);
2653 
2654 			if (abs(deviation) >= 2) {
2655 				/* At least two sampling clocks off at the
2656 				 * last stop bit; we can increase the error
2657 				 * margin by shifting the sampling point.
2658 				 */
2659 				int shift = clamp(deviation / 2, -8, 7);
2660 
2661 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2662 					 HSCIF_SRHP_MASK;
2663 				hssrr |= HSCIF_SRDE;
2664 			}
2665 			sci_serial_out(port, HSSRR, hssrr);
2666 		}
2667 
2668 		/* Wait one bit interval */
2669 		udelay((1000000 + (baud - 1)) / baud);
2670 	} else {
2671 		/* Don't touch the bit rate configuration */
2672 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2673 		smr_val |= sci_serial_in(port, SCSMR) &
2674 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2675 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2676 		sci_serial_out(port, SCSMR, smr_val);
2677 	}
2678 
2679 	sci_init_pins(port, termios->c_cflag);
2680 
2681 	port->status &= ~UPSTAT_AUTOCTS;
2682 	s->autorts = false;
2683 	reg = sci_getreg(port, SCFCR);
2684 	if (reg->size) {
2685 		unsigned short ctrl = sci_serial_in(port, SCFCR);
2686 
2687 		if ((port->flags & UPF_HARD_FLOW) &&
2688 		    (termios->c_cflag & CRTSCTS)) {
2689 			/* There is no CTS interrupt to restart the hardware */
2690 			port->status |= UPSTAT_AUTOCTS;
2691 			/* MCE is enabled when RTS is raised */
2692 			s->autorts = true;
2693 		}
2694 
2695 		/*
2696 		 * As we've done a sci_reset() above, ensure we don't
2697 		 * interfere with the FIFOs while toggling MCE. As the
2698 		 * reset values could still be set, simply mask them out.
2699 		 */
2700 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2701 
2702 		sci_serial_out(port, SCFCR, ctrl);
2703 	}
2704 	if (port->flags & UPF_HARD_FLOW) {
2705 		/* Refresh (Auto) RTS */
2706 		sci_set_mctrl(port, port->mctrl);
2707 	}
2708 
2709 	/*
2710 	 * For SCI, TE (transmit enable) must be set after setting TIE
2711 	 * (transmit interrupt enable) or in the same instruction to
2712 	 * start the transmitting process. So skip setting TE here for SCI.
2713 	 */
2714 	if (s->type != PORT_SCI)
2715 		scr_val |= SCSCR_TE;
2716 	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2717 	sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2718 	if ((srr + 1 == 5) &&
2719 	    (s->type == PORT_SCIFA || s->type == PORT_SCIFB)) {
2720 		/*
2721 		 * In asynchronous mode, when the sampling rate is 1/5, first
2722 		 * received data may become invalid on some SCIFA and SCIFB.
2723 		 * To avoid this problem wait more than 1 serial data time (1
2724 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2725 		 */
2726 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2727 	}
2728 
2729 	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2730 	s->rx_frame = (10000 * bits) / (baud / 100);
2731 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2732 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2733 #endif
2734 
2735 	if ((termios->c_cflag & CREAD) != 0)
2736 		sci_start_rx(port);
2737 
2738 	uart_port_unlock_irqrestore(port, flags);
2739 
2740 	sci_port_disable(s);
2741 
2742 	if (UART_ENABLE_MS(port, termios->c_cflag))
2743 		sci_enable_ms(port);
2744 }
2745 
sci_pm(struct uart_port * port,unsigned int state,unsigned int oldstate)2746 void sci_pm(struct uart_port *port, unsigned int state,
2747 		   unsigned int oldstate)
2748 {
2749 	struct sci_port *sci_port = to_sci_port(port);
2750 
2751 	switch (state) {
2752 	case UART_PM_STATE_OFF:
2753 		sci_port_disable(sci_port);
2754 		break;
2755 	default:
2756 		sci_port_enable(sci_port);
2757 		break;
2758 	}
2759 }
2760 EXPORT_SYMBOL_NS_GPL(sci_pm, "SH_SCI");
2761 
sci_type(struct uart_port * port)2762 static const char *sci_type(struct uart_port *port)
2763 {
2764 	struct sci_port *s = to_sci_port(port);
2765 
2766 	switch (s->type) {
2767 	case PORT_IRDA:
2768 		return "irda";
2769 	case PORT_SCI:
2770 		return "sci";
2771 	case PORT_SCIF:
2772 		return "scif";
2773 	case PORT_SCIFA:
2774 		return "scifa";
2775 	case PORT_SCIFB:
2776 		return "scifb";
2777 	case PORT_HSCIF:
2778 		return "hscif";
2779 	}
2780 
2781 	return NULL;
2782 }
2783 
sci_remap_port(struct uart_port * port)2784 static int sci_remap_port(struct uart_port *port)
2785 {
2786 	struct sci_port *sport = to_sci_port(port);
2787 
2788 	/*
2789 	 * Nothing to do if there's already an established membase.
2790 	 */
2791 	if (port->membase)
2792 		return 0;
2793 
2794 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2795 		port->membase = ioremap(port->mapbase, sport->reg_size);
2796 		if (unlikely(!port->membase)) {
2797 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2798 			return -ENXIO;
2799 		}
2800 	} else {
2801 		/*
2802 		 * For the simple (and majority of) cases where we don't
2803 		 * need to do any remapping, just cast the cookie
2804 		 * directly.
2805 		 */
2806 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2807 	}
2808 
2809 	return 0;
2810 }
2811 
sci_release_port(struct uart_port * port)2812 void sci_release_port(struct uart_port *port)
2813 {
2814 	struct sci_port *sport = to_sci_port(port);
2815 
2816 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2817 		iounmap(port->membase);
2818 		port->membase = NULL;
2819 	}
2820 
2821 	release_mem_region(port->mapbase, sport->reg_size);
2822 }
2823 EXPORT_SYMBOL_NS_GPL(sci_release_port, "SH_SCI");
2824 
sci_request_port(struct uart_port * port)2825 int sci_request_port(struct uart_port *port)
2826 {
2827 	struct resource *res;
2828 	struct sci_port *sport = to_sci_port(port);
2829 	int ret;
2830 
2831 	res = request_mem_region(port->mapbase, sport->reg_size,
2832 				 dev_name(port->dev));
2833 	if (unlikely(res == NULL)) {
2834 		dev_err(port->dev, "request_mem_region failed.");
2835 		return -EBUSY;
2836 	}
2837 
2838 	ret = sci_remap_port(port);
2839 	if (unlikely(ret != 0)) {
2840 		release_resource(res);
2841 		return ret;
2842 	}
2843 
2844 	return 0;
2845 }
2846 EXPORT_SYMBOL_NS_GPL(sci_request_port, "SH_SCI");
2847 
sci_config_port(struct uart_port * port,int flags)2848 void sci_config_port(struct uart_port *port, int flags)
2849 {
2850 	if (flags & UART_CONFIG_TYPE) {
2851 		struct sci_port *sport = to_sci_port(port);
2852 		port->type = SCI_PUBLIC_PORT_ID(sport->type);
2853 		sci_request_port(port);
2854 	}
2855 }
2856 EXPORT_SYMBOL_NS_GPL(sci_config_port, "SH_SCI");
2857 
sci_verify_port(struct uart_port * port,struct serial_struct * ser)2858 int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2859 {
2860 	if (ser->baud_base < 2400)
2861 		/* No paper tape reader for Mitch.. */
2862 		return -EINVAL;
2863 
2864 	return 0;
2865 }
2866 EXPORT_SYMBOL_NS_GPL(sci_verify_port, "SH_SCI");
2867 
sci_prepare_console_write(struct uart_port * port,u32 ctrl)2868 static void sci_prepare_console_write(struct uart_port *port, u32 ctrl)
2869 {
2870 	struct sci_port *s = to_sci_port(port);
2871 	u32 ctrl_temp =
2872 		s->params->param_bits->rxtx_enable |
2873 		(s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2874 		(ctrl & (SCSCR_CKE1 | SCSCR_CKE0)) |
2875 		s->hscif_tot;
2876 	sci_serial_out(port, SCSCR, ctrl_temp);
2877 }
2878 
sci_console_save(struct uart_port * port)2879 static void sci_console_save(struct uart_port *port)
2880 {
2881 	struct sci_port *s = to_sci_port(port);
2882 	struct sci_suspend_regs *regs = s->suspend_regs;
2883 
2884 	if (sci_getreg(port, SCDL)->size)
2885 		regs->scdl = sci_serial_in(port, SCDL);
2886 	if (sci_getreg(port, SCCKS)->size)
2887 		regs->sccks = sci_serial_in(port, SCCKS);
2888 	if (sci_getreg(port, SCSMR)->size)
2889 		regs->scsmr = sci_serial_in(port, SCSMR);
2890 	if (sci_getreg(port, SCSCR)->size)
2891 		regs->scscr = sci_serial_in(port, SCSCR);
2892 	if (sci_getreg(port, SCFCR)->size)
2893 		regs->scfcr = sci_serial_in(port, SCFCR);
2894 	if (sci_getreg(port, SCSPTR)->size)
2895 		regs->scsptr = sci_serial_in(port, SCSPTR);
2896 	if (sci_getreg(port, SCBRR)->size)
2897 		regs->scbrr = sci_serial_in(port, SCBRR);
2898 	if (sci_getreg(port, HSSRR)->size)
2899 		regs->hssrr = sci_serial_in(port, HSSRR);
2900 	if (sci_getreg(port, SCPCR)->size)
2901 		regs->scpcr = sci_serial_in(port, SCPCR);
2902 	if (sci_getreg(port, SCPDR)->size)
2903 		regs->scpdr = sci_serial_in(port, SCPDR);
2904 	if (sci_getreg(port, SEMR)->size)
2905 		regs->semr = sci_serial_in(port, SEMR);
2906 }
2907 
sci_console_restore(struct uart_port * port)2908 static void sci_console_restore(struct uart_port *port)
2909 {
2910 	struct sci_port *s = to_sci_port(port);
2911 	struct sci_suspend_regs *regs = s->suspend_regs;
2912 
2913 	if (sci_getreg(port, SCDL)->size)
2914 		sci_serial_out(port, SCDL, regs->scdl);
2915 	if (sci_getreg(port, SCCKS)->size)
2916 		sci_serial_out(port, SCCKS, regs->sccks);
2917 	if (sci_getreg(port, SCSMR)->size)
2918 		sci_serial_out(port, SCSMR, regs->scsmr);
2919 	if (sci_getreg(port, SCSCR)->size)
2920 		sci_serial_out(port, SCSCR, regs->scscr);
2921 	if (sci_getreg(port, SCFCR)->size)
2922 		sci_serial_out(port, SCFCR, regs->scfcr);
2923 	if (sci_getreg(port, SCSPTR)->size)
2924 		sci_serial_out(port, SCSPTR, regs->scsptr);
2925 	if (sci_getreg(port, SCBRR)->size)
2926 		sci_serial_out(port, SCBRR, regs->scbrr);
2927 	if (sci_getreg(port, HSSRR)->size)
2928 		sci_serial_out(port, HSSRR, regs->hssrr);
2929 	if (sci_getreg(port, SCPCR)->size)
2930 		sci_serial_out(port, SCPCR, regs->scpcr);
2931 	if (sci_getreg(port, SCPDR)->size)
2932 		sci_serial_out(port, SCPDR, regs->scpdr);
2933 	if (sci_getreg(port, SEMR)->size)
2934 		sci_serial_out(port, SEMR, regs->semr);
2935 }
2936 
2937 static const struct uart_ops sci_uart_ops = {
2938 	.tx_empty	= sci_tx_empty,
2939 	.set_mctrl	= sci_set_mctrl,
2940 	.get_mctrl	= sci_get_mctrl,
2941 	.start_tx	= sci_start_tx,
2942 	.stop_tx	= sci_stop_tx,
2943 	.stop_rx	= sci_stop_rx,
2944 	.enable_ms	= sci_enable_ms,
2945 	.break_ctl	= sci_break_ctl,
2946 	.startup	= sci_startup,
2947 	.shutdown	= sci_shutdown,
2948 	.flush_buffer	= sci_flush_buffer,
2949 	.set_termios	= sci_set_termios,
2950 	.pm		= sci_pm,
2951 	.type		= sci_type,
2952 	.release_port	= sci_release_port,
2953 	.request_port	= sci_request_port,
2954 	.config_port	= sci_config_port,
2955 	.verify_port	= sci_verify_port,
2956 #ifdef CONFIG_CONSOLE_POLL
2957 	.poll_get_char	= sci_poll_get_char,
2958 	.poll_put_char	= sci_poll_put_char,
2959 #endif
2960 };
2961 
2962 static const struct sci_port_ops sci_port_ops = {
2963 	.read_reg		= sci_serial_in,
2964 	.write_reg		= sci_serial_out,
2965 	.clear_SCxSR		= sci_clear_SCxSR,
2966 	.transmit_chars		= sci_transmit_chars,
2967 	.receive_chars		= sci_receive_chars,
2968 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2969     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2970 	.poll_put_char		= sci_poll_put_char,
2971 #endif
2972 	.set_rtrg		= scif_set_rtrg,
2973 	.rtrg_enabled		= scif_rtrg_enabled,
2974 	.shutdown_complete	= sci_shutdown_complete,
2975 	.prepare_console_write	= sci_prepare_console_write,
2976 	.console_save		= sci_console_save,
2977 	.console_restore	= sci_console_restore,
2978 	.suspend_regs_size	= sci_suspend_regs_size,
2979 };
2980 
sci_init_clocks(struct sci_port * sci_port,struct device * dev)2981 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2982 {
2983 	const char *clk_names[] = {
2984 		[SCI_FCK] = "fck",
2985 		[SCI_SCK] = "sck",
2986 		[SCI_BRG_INT] = "brg_int",
2987 		[SCI_SCIF_CLK] = "scif_clk",
2988 	};
2989 	struct clk *clk;
2990 	unsigned int i;
2991 
2992 	if (sci_port->type == PORT_HSCIF) {
2993 		clk_names[SCI_SCK] = "hsck";
2994 	} else if (sci_port->type == SCI_PORT_RSCI) {
2995 		clk_names[SCI_FCK] = "operation";
2996 		clk_names[SCI_BRG_INT] = "bus";
2997 	}
2998 
2999 	for (i = 0; i < SCI_NUM_CLKS; i++) {
3000 		const char *name = clk_names[i];
3001 
3002 		clk = devm_clk_get_optional(dev, name);
3003 		if (IS_ERR(clk))
3004 			return PTR_ERR(clk);
3005 
3006 		if (!clk && sci_port->type == SCI_PORT_RSCI &&
3007 		    (i == SCI_FCK || i == SCI_BRG_INT)) {
3008 			return dev_err_probe(dev, -ENODEV,
3009 					     "failed to get %s\n",
3010 					     name);
3011 		}
3012 
3013 		if (!clk && i == SCI_FCK) {
3014 			/*
3015 			 * Not all SH platforms declare a clock lookup entry
3016 			 * for SCI devices, in which case we need to get the
3017 			 * global "peripheral_clk" clock.
3018 			 */
3019 			clk = devm_clk_get(dev, "peripheral_clk");
3020 			if (IS_ERR(clk))
3021 				return dev_err_probe(dev, PTR_ERR(clk),
3022 						     "failed to get %s\n",
3023 						     name);
3024 		}
3025 
3026 		if (!clk)
3027 			dev_dbg(dev, "failed to get %s\n", name);
3028 		else
3029 			dev_dbg(dev, "clk %s is %pC rate %lu\n", name,
3030 				clk, clk_get_rate(clk));
3031 		sci_port->clks[i] = clk;
3032 	}
3033 	return 0;
3034 }
3035 
3036 static const struct sci_port_params *
sci_probe_regmap(const struct plat_sci_port * cfg,struct sci_port * sci_port)3037 sci_probe_regmap(const struct plat_sci_port *cfg, struct sci_port *sci_port)
3038 {
3039 	unsigned int regtype;
3040 
3041 	sci_port->ops = &sci_port_ops;
3042 	sci_port->port.ops = &sci_uart_ops;
3043 
3044 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
3045 		return &sci_port_params[cfg->regtype];
3046 
3047 	switch (cfg->type) {
3048 	case PORT_SCI:
3049 		regtype = SCIx_SCI_REGTYPE;
3050 		break;
3051 	case PORT_IRDA:
3052 		regtype = SCIx_IRDA_REGTYPE;
3053 		break;
3054 	case PORT_SCIFA:
3055 		regtype = SCIx_SCIFA_REGTYPE;
3056 		break;
3057 	case PORT_SCIFB:
3058 		regtype = SCIx_SCIFB_REGTYPE;
3059 		break;
3060 	case PORT_SCIF:
3061 		/*
3062 		 * The SH-4 is a bit of a misnomer here, although that's
3063 		 * where this particular port layout originated. This
3064 		 * configuration (or some slight variation thereof)
3065 		 * remains the dominant model for all SCIFs.
3066 		 */
3067 		regtype = SCIx_SH4_SCIF_REGTYPE;
3068 		break;
3069 	case PORT_HSCIF:
3070 		regtype = SCIx_HSCIF_REGTYPE;
3071 		break;
3072 	default:
3073 		pr_err("Can't probe register map for given port\n");
3074 		return NULL;
3075 	}
3076 
3077 	return &sci_port_params[regtype];
3078 }
3079 
sci_init_single(struct platform_device * dev,struct sci_port * sci_port,unsigned int index,const struct plat_sci_port * p,bool early)3080 static int sci_init_single(struct platform_device *dev,
3081 			   struct sci_port *sci_port, unsigned int index,
3082 			   const struct plat_sci_port *p, bool early)
3083 {
3084 	struct uart_port *port = &sci_port->port;
3085 	const struct resource *res;
3086 	unsigned int i;
3087 	int ret;
3088 
3089 	sci_port->cfg	= p;
3090 
3091 	sci_port->type	= p->type;
3092 	sci_port->regtype = p->regtype;
3093 
3094 	port->iotype	= UPIO_MEM;
3095 	port->line	= index;
3096 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
3097 
3098 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
3099 	if (res == NULL)
3100 		return -ENOMEM;
3101 
3102 	port->mapbase = res->start;
3103 	sci_port->reg_size = resource_size(res);
3104 
3105 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
3106 		if (i)
3107 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
3108 		else
3109 			sci_port->irqs[i] = platform_get_irq(dev, i);
3110 	}
3111 
3112 	/*
3113 	 * The fourth interrupt on SCI and RSCI port is transmit end interrupt, so
3114 	 * shuffle the interrupts.
3115 	 */
3116 	if (p->type == PORT_SCI || p->type == SCI_PORT_RSCI)
3117 		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
3118 
3119 	/* The SCI generates several interrupts. They can be muxed together or
3120 	 * connected to different interrupt lines. In the muxed case only one
3121 	 * interrupt resource is specified as there is only one interrupt ID.
3122 	 * In the non-muxed case, up to 6 interrupt signals might be generated
3123 	 * from the SCI, however those signals might have their own individual
3124 	 * interrupt ID numbers, or muxed together with another interrupt.
3125 	 */
3126 	if (sci_port->irqs[0] < 0)
3127 		return -ENXIO;
3128 
3129 	if (sci_port->irqs[1] < 0)
3130 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
3131 			sci_port->irqs[i] = sci_port->irqs[0];
3132 
3133 	switch (p->type) {
3134 	case PORT_SCIFB:
3135 		sci_port->rx_trigger = 48;
3136 		break;
3137 	case PORT_HSCIF:
3138 		sci_port->rx_trigger = 64;
3139 		break;
3140 	case PORT_SCIFA:
3141 		sci_port->rx_trigger = 32;
3142 		break;
3143 	case PORT_SCIF:
3144 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
3145 			/* RX triggering not implemented for this IP */
3146 			sci_port->rx_trigger = 1;
3147 		else
3148 			sci_port->rx_trigger = 8;
3149 		break;
3150 	case SCI_PORT_RSCI:
3151 		sci_port->rx_trigger = 15;
3152 		break;
3153 	default:
3154 		sci_port->rx_trigger = 1;
3155 		break;
3156 	}
3157 
3158 	sci_port->rx_fifo_timeout = 0;
3159 	sci_port->hscif_tot = 0;
3160 
3161 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
3162 	 * match the SoC datasheet, this should be investigated. Let platform
3163 	 * data override the sampling rate for now.
3164 	 */
3165 	sci_port->sampling_rate_mask = p->sampling_rate
3166 				     ? SCI_SR(p->sampling_rate)
3167 				     : sci_port->params->sampling_rate_mask;
3168 
3169 	if (!early) {
3170 		ret = sci_init_clocks(sci_port, &dev->dev);
3171 		if (ret < 0)
3172 			return ret;
3173 	}
3174 
3175 	port->type		= SCI_PUBLIC_PORT_ID(p->type);
3176 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3177 	port->fifosize		= sci_port->params->fifosize;
3178 
3179 	if (p->type == PORT_SCI && !dev->dev.of_node) {
3180 		if (sci_port->reg_size >= 0x20)
3181 			port->regshift = 2;
3182 		else
3183 			port->regshift = 1;
3184 	}
3185 
3186 	/*
3187 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3188 	 * for the multi-IRQ ports, which is where we are primarily
3189 	 * concerned with the shutdown path synchronization.
3190 	 *
3191 	 * For the muxed case there's nothing more to do.
3192 	 */
3193 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3194 	port->irqflags		= 0;
3195 
3196 	return 0;
3197 }
3198 
3199 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3200     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
serial_console_putchar(struct uart_port * port,unsigned char ch)3201 static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3202 {
3203 	to_sci_port(port)->ops->poll_put_char(port, ch);
3204 }
3205 
3206 /*
3207  *	Print a string to the serial port trying not to disturb
3208  *	any possible real use of the port...
3209  */
serial_console_write(struct console * co,const char * s,unsigned count)3210 static void serial_console_write(struct console *co, const char *s,
3211 				 unsigned count)
3212 {
3213 	struct sci_port *sci_port = &sci_ports[co->index];
3214 	struct uart_port *port = &sci_port->port;
3215 	const struct sci_common_regs *regs = sci_port->params->common_regs;
3216 	unsigned int bits;
3217 	u32 ctrl;
3218 	unsigned long flags;
3219 	int locked = 1;
3220 
3221 	if (port->sysrq)
3222 		locked = 0;
3223 	else if (oops_in_progress)
3224 		locked = uart_port_trylock_irqsave(port, &flags);
3225 	else
3226 		uart_port_lock_irqsave(port, &flags);
3227 
3228 	/* first save SCSCR then disable interrupts, keep clock source */
3229 
3230 	ctrl = sci_port->ops->read_reg(port, regs->control);
3231 	sci_port->ops->prepare_console_write(port, ctrl);
3232 
3233 	uart_console_write(port, s, count, serial_console_putchar);
3234 
3235 	/* wait until fifo is empty and last bit has been transmitted */
3236 
3237 	bits = sci_port->params->param_bits->poll_sent_bits;
3238 
3239 	while ((sci_port->ops->read_reg(port, regs->status) & bits) != bits)
3240 		cpu_relax();
3241 
3242 	/* restore the SCSCR */
3243 	sci_port->ops->write_reg(port, regs->control, ctrl);
3244 
3245 	if (locked)
3246 		uart_port_unlock_irqrestore(port, flags);
3247 }
3248 
serial_console_setup(struct console * co,char * options)3249 static int serial_console_setup(struct console *co, char *options)
3250 {
3251 	struct sci_port *sci_port;
3252 	struct uart_port *port;
3253 	int baud = 115200;
3254 	int bits = 8;
3255 	int parity = 'n';
3256 	int flow = 'n';
3257 	int ret;
3258 
3259 	/*
3260 	 * Refuse to handle any bogus ports.
3261 	 */
3262 	if (co->index < 0 || co->index >= SCI_NPORTS)
3263 		return -ENODEV;
3264 
3265 	sci_port = &sci_ports[co->index];
3266 	port = &sci_port->port;
3267 
3268 	/*
3269 	 * Refuse to handle uninitialized ports.
3270 	 */
3271 	if (!port->ops)
3272 		return -ENODEV;
3273 
3274 	ret = sci_remap_port(port);
3275 	if (unlikely(ret != 0))
3276 		return ret;
3277 
3278 	if (options)
3279 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3280 
3281 	return uart_set_options(port, co, baud, parity, bits, flow);
3282 }
3283 
3284 static struct console serial_console = {
3285 	.name		= "ttySC",
3286 	.device		= uart_console_device,
3287 	.write		= serial_console_write,
3288 	.setup		= serial_console_setup,
3289 	.flags		= CON_PRINTBUFFER,
3290 	.index		= -1,
3291 	.data		= &sci_uart_driver,
3292 };
3293 
3294 #ifdef CONFIG_SUPERH
3295 static char early_serial_buf[32];
3296 
early_serial_console_setup(struct console * co,char * options)3297 static int early_serial_console_setup(struct console *co, char *options)
3298 {
3299 	/*
3300 	 * This early console is always registered using the earlyprintk=
3301 	 * parameter, which does not call add_preferred_console(). Thus
3302 	 * @options is always NULL and the options for this early console
3303 	 * are passed using a custom buffer.
3304 	 */
3305 	WARN_ON(options);
3306 
3307 	return serial_console_setup(co, early_serial_buf);
3308 }
3309 
3310 static struct console early_serial_console = {
3311 	.name           = "early_ttySC",
3312 	.write          = serial_console_write,
3313 	.setup		= early_serial_console_setup,
3314 	.flags          = CON_PRINTBUFFER,
3315 	.index		= -1,
3316 };
3317 
sci_probe_earlyprintk(struct platform_device * pdev)3318 static int sci_probe_earlyprintk(struct platform_device *pdev)
3319 {
3320 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3321 	struct sci_port *sp = &sci_ports[pdev->id];
3322 
3323 	if (early_serial_console.data)
3324 		return -EEXIST;
3325 
3326 	early_serial_console.index = pdev->id;
3327 
3328 	sp->params = sci_probe_regmap(cfg, sp);
3329 	if (!sp->params)
3330 		return -ENODEV;
3331 
3332 	sci_init_single(pdev, sp, pdev->id, cfg, true);
3333 
3334 	if (!strstr(early_serial_buf, "keep"))
3335 		early_serial_console.flags |= CON_BOOT;
3336 
3337 	register_console(&early_serial_console);
3338 	return 0;
3339 }
3340 #endif
3341 
3342 #define SCI_CONSOLE	(&serial_console)
3343 
3344 #else
sci_probe_earlyprintk(struct platform_device * pdev)3345 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3346 {
3347 	return -EINVAL;
3348 }
3349 
3350 #define SCI_CONSOLE	NULL
3351 
3352 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3353 
3354 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3355 
3356 static DEFINE_MUTEX(sci_uart_registration_lock);
3357 static struct uart_driver sci_uart_driver = {
3358 	.owner		= THIS_MODULE,
3359 	.driver_name	= "sci",
3360 	.dev_name	= "ttySC",
3361 	.major		= SCI_MAJOR,
3362 	.minor		= SCI_MINOR_START,
3363 	.nr		= SCI_NPORTS,
3364 	.cons		= SCI_CONSOLE,
3365 };
3366 
sci_remove(struct platform_device * dev)3367 static void sci_remove(struct platform_device *dev)
3368 {
3369 	struct sci_port *s = platform_get_drvdata(dev);
3370 	unsigned int type = s->type;	/* uart_remove_... clears it */
3371 
3372 	sci_ports_in_use &= ~BIT(s->port.line);
3373 	uart_remove_one_port(&sci_uart_driver, &s->port);
3374 
3375 	if (s->port.fifosize > 1)
3376 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3377 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF ||
3378 	    type == SCI_PORT_RSCI)
3379 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3380 }
3381 
3382 static const struct sci_of_data of_sci_scif_sh2 = {
3383 	.type = PORT_SCIF,
3384 	.regtype = SCIx_SH2_SCIF_FIFODATA_REGTYPE,
3385 	.ops = &sci_port_ops,
3386 	.uart_ops = &sci_uart_ops,
3387 	.params = &sci_port_params[SCIx_SH2_SCIF_FIFODATA_REGTYPE],
3388 };
3389 
3390 static const struct sci_of_data of_sci_scif_rz_scifa = {
3391 	.type = PORT_SCIF,
3392 	.regtype = SCIx_RZ_SCIFA_REGTYPE,
3393 	.ops = &sci_port_ops,
3394 	.uart_ops = &sci_uart_ops,
3395 	.params = &sci_port_params[SCIx_RZ_SCIFA_REGTYPE],
3396 };
3397 
3398 static const struct sci_of_data of_sci_scif_rzv2h = {
3399 	.type = PORT_SCIF,
3400 	.regtype = SCIx_RZV2H_SCIF_REGTYPE,
3401 	.ops = &sci_port_ops,
3402 	.uart_ops = &sci_uart_ops,
3403 	.params = &sci_port_params[SCIx_RZV2H_SCIF_REGTYPE],
3404 };
3405 
3406 static const struct sci_of_data of_sci_rcar_scif = {
3407 	.type = PORT_SCIF,
3408 	.regtype = SCIx_SH4_SCIF_BRG_REGTYPE,
3409 	.ops = &sci_port_ops,
3410 	.uart_ops = &sci_uart_ops,
3411 	.params = &sci_port_params[SCIx_SH4_SCIF_BRG_REGTYPE],
3412 };
3413 
3414 static const struct sci_of_data of_sci_scif_sh4 = {
3415 	.type = PORT_SCIF,
3416 	.regtype = SCIx_SH4_SCIF_REGTYPE,
3417 	.ops = &sci_port_ops,
3418 	.uart_ops = &sci_uart_ops,
3419 	.params = &sci_port_params[SCIx_SH4_SCIF_REGTYPE],
3420 };
3421 
3422 static const struct sci_of_data of_sci_scifa = {
3423 	.type = PORT_SCIFA,
3424 	.regtype = SCIx_SCIFA_REGTYPE,
3425 	.ops = &sci_port_ops,
3426 	.uart_ops = &sci_uart_ops,
3427 	.params = &sci_port_params[SCIx_SCIFA_REGTYPE],
3428 };
3429 
3430 static const struct sci_of_data of_sci_scifb = {
3431 	.type = PORT_SCIFB,
3432 	.regtype = SCIx_SCIFB_REGTYPE,
3433 	.ops = &sci_port_ops,
3434 	.uart_ops = &sci_uart_ops,
3435 	.params = &sci_port_params[SCIx_SCIFB_REGTYPE],
3436 };
3437 
3438 static const struct sci_of_data of_sci_hscif = {
3439 	.type = PORT_HSCIF,
3440 	.regtype = SCIx_HSCIF_REGTYPE,
3441 	.ops = &sci_port_ops,
3442 	.uart_ops = &sci_uart_ops,
3443 	.params = &sci_port_params[SCIx_HSCIF_REGTYPE],
3444 };
3445 
3446 static const struct sci_of_data of_sci_sci = {
3447 	.type = PORT_SCI,
3448 	.regtype = SCIx_SCI_REGTYPE,
3449 	.ops = &sci_port_ops,
3450 	.uart_ops = &sci_uart_ops,
3451 	.params = &sci_port_params[SCIx_SCI_REGTYPE],
3452 };
3453 
3454 static const struct of_device_id of_sci_match[] __maybe_unused = {
3455 	/* SoC-specific types */
3456 	{
3457 		.compatible = "renesas,scif-r7s72100",
3458 		.data = &of_sci_scif_sh2,
3459 	},
3460 	{
3461 		.compatible = "renesas,scif-r7s9210",
3462 		.data = &of_sci_scif_rz_scifa,
3463 	},
3464 	{
3465 		.compatible = "renesas,scif-r9a07g044",
3466 		.data = &of_sci_scif_rz_scifa,
3467 	},
3468 	{
3469 		.compatible = "renesas,scif-r9a09g057",
3470 		.data = &of_sci_scif_rzv2h,
3471 	},
3472 #ifdef CONFIG_SERIAL_RSCI
3473 	{
3474 		.compatible = "renesas,r9a09g077-rsci",
3475 		.data = &of_sci_rsci_data,
3476 	},
3477 #endif	/* CONFIG_SERIAL_RSCI */
3478 	/* Family-specific types */
3479 	{
3480 		.compatible = "renesas,rcar-gen1-scif",
3481 		.data = &of_sci_rcar_scif,
3482 	}, {
3483 		.compatible = "renesas,rcar-gen2-scif",
3484 		.data = &of_sci_rcar_scif,
3485 	}, {
3486 		.compatible = "renesas,rcar-gen3-scif",
3487 		.data = &of_sci_rcar_scif
3488 	}, {
3489 		.compatible = "renesas,rcar-gen4-scif",
3490 		.data = &of_sci_rcar_scif
3491 	}, {
3492 		.compatible = "renesas,rcar-gen5-scif",
3493 		.data = &of_sci_rcar_scif
3494 	},
3495 	/* Generic types */
3496 	{
3497 		.compatible = "renesas,scif",
3498 		.data = &of_sci_scif_sh4,
3499 	}, {
3500 		.compatible = "renesas,scifa",
3501 		.data = &of_sci_scifa,
3502 	}, {
3503 		.compatible = "renesas,scifb",
3504 		.data = &of_sci_scifb,
3505 	}, {
3506 		.compatible = "renesas,hscif",
3507 		.data = &of_sci_hscif,
3508 	}, {
3509 		.compatible = "renesas,sci",
3510 		.data = &of_sci_sci,
3511 	}, {
3512 		/* Terminator */
3513 	},
3514 };
3515 MODULE_DEVICE_TABLE(of, of_sci_match);
3516 
sci_reset_control_assert(void * data)3517 static void sci_reset_control_assert(void *data)
3518 {
3519 	reset_control_assert(data);
3520 }
3521 
sci_parse_dt(struct platform_device * pdev,unsigned int * dev_id)3522 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3523 					  unsigned int *dev_id)
3524 {
3525 	struct device_node *np = pdev->dev.of_node;
3526 	struct reset_control *rstc;
3527 	struct plat_sci_port *p;
3528 	struct sci_port *sp;
3529 	const struct sci_of_data *data;
3530 	int id, ret;
3531 
3532 	if (!IS_ENABLED(CONFIG_OF) || !np)
3533 		return ERR_PTR(-EINVAL);
3534 
3535 	data = of_device_get_match_data(&pdev->dev);
3536 
3537 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3538 	if (IS_ERR(rstc))
3539 		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3540 					     "failed to get reset ctrl\n"));
3541 
3542 	ret = reset_control_deassert(rstc);
3543 	if (ret) {
3544 		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3545 		return ERR_PTR(ret);
3546 	}
3547 
3548 	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3549 	if (ret) {
3550 		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3551 			ret);
3552 		return ERR_PTR(ret);
3553 	}
3554 
3555 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3556 	if (!p)
3557 		return ERR_PTR(-ENOMEM);
3558 
3559 	/* Get the line number from the aliases node. */
3560 	id = of_alias_get_id(np, "serial");
3561 	if (id < 0 && ~sci_ports_in_use)
3562 		id = ffz(sci_ports_in_use);
3563 	if (id < 0) {
3564 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3565 		return ERR_PTR(-EINVAL);
3566 	}
3567 	if (id >= ARRAY_SIZE(sci_ports)) {
3568 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3569 		return ERR_PTR(-EINVAL);
3570 	}
3571 
3572 	sp = &sci_ports[id];
3573 	sp->rstc = rstc;
3574 	*dev_id = id;
3575 
3576 	p->type = data->type;
3577 	p->regtype = data->regtype;
3578 
3579 	sp->ops = data->ops;
3580 	sp->port.ops = data->uart_ops;
3581 	sp->params = data->params;
3582 
3583 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3584 
3585 	return p;
3586 }
3587 
sci_probe_single(struct platform_device * dev,unsigned int index,struct plat_sci_port * p,struct sci_port * sciport,struct resource * sci_res)3588 static int sci_probe_single(struct platform_device *dev,
3589 				      unsigned int index,
3590 				      struct plat_sci_port *p,
3591 				      struct sci_port *sciport,
3592 				      struct resource *sci_res)
3593 {
3594 	int ret;
3595 
3596 	/* Sanity check */
3597 	if (unlikely(index >= SCI_NPORTS)) {
3598 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3599 			   index+1, SCI_NPORTS);
3600 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3601 		return -EINVAL;
3602 	}
3603 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3604 	if (sci_ports_in_use & BIT(index))
3605 		return -EBUSY;
3606 
3607 	mutex_lock(&sci_uart_registration_lock);
3608 	if (!sci_uart_driver.state) {
3609 		ret = uart_register_driver(&sci_uart_driver);
3610 		if (ret) {
3611 			mutex_unlock(&sci_uart_registration_lock);
3612 			return ret;
3613 		}
3614 	}
3615 	mutex_unlock(&sci_uart_registration_lock);
3616 
3617 	ret = sci_init_single(dev, sciport, index, p, false);
3618 	if (ret)
3619 		return ret;
3620 
3621 	sciport->port.dev = &dev->dev;
3622 	ret = devm_pm_runtime_enable(&dev->dev);
3623 	if (ret)
3624 		return ret;
3625 
3626 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3627 	if (IS_ERR(sciport->gpios))
3628 		return PTR_ERR(sciport->gpios);
3629 
3630 	if (sciport->has_rtscts) {
3631 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3632 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3633 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3634 			return -EINVAL;
3635 		}
3636 		sciport->port.flags |= UPF_HARD_FLOW;
3637 	}
3638 
3639 	if (sci_uart_earlycon && sci_ports[0].port.mapbase == sci_res->start) {
3640 		/*
3641 		 * In case:
3642 		 * - this is the earlycon port (mapped on index 0 in sci_ports[]) and
3643 		 * - it now maps to an alias other than zero and
3644 		 * - the earlycon is still alive (e.g., "earlycon keep_bootcon" is
3645 		 *   available in bootargs)
3646 		 *
3647 		 * we need to avoid disabling clocks and PM domains through the runtime
3648 		 * PM APIs called in __device_attach(). For this, increment the runtime
3649 		 * PM reference counter (the clocks and PM domains were already enabled
3650 		 * by the bootloader). Otherwise the earlycon may access the HW when it
3651 		 * has no clocks enabled leading to failures (infinite loop in
3652 		 * sci_poll_put_char()).
3653 		 */
3654 		pm_runtime_get_noresume(&dev->dev);
3655 
3656 		/*
3657 		 * Skip cleanup the sci_port[0] in early_console_exit(), this
3658 		 * port is the same as the earlycon one.
3659 		 */
3660 		sci_uart_earlycon_dev_probing = true;
3661 	}
3662 
3663 	return uart_add_one_port(&sci_uart_driver, &sciport->port);
3664 }
3665 
sci_probe(struct platform_device * dev)3666 static int sci_probe(struct platform_device *dev)
3667 {
3668 	struct plat_sci_port *p;
3669 	struct resource *res;
3670 	struct sci_port *sp;
3671 	unsigned int dev_id;
3672 	int ret;
3673 
3674 	/*
3675 	 * If we've come here via earlyprintk initialization, head off to
3676 	 * the special early probe. We don't have sufficient device state
3677 	 * to make it beyond this yet.
3678 	 */
3679 #ifdef CONFIG_SUPERH
3680 	if (is_sh_early_platform_device(dev))
3681 		return sci_probe_earlyprintk(dev);
3682 #endif
3683 
3684 	if (dev->dev.of_node) {
3685 		p = sci_parse_dt(dev, &dev_id);
3686 		if (IS_ERR(p))
3687 			return PTR_ERR(p);
3688 		sp = &sci_ports[dev_id];
3689 	} else {
3690 		p = dev->dev.platform_data;
3691 		if (p == NULL) {
3692 			dev_err(&dev->dev, "no platform data supplied\n");
3693 			return -EINVAL;
3694 		}
3695 
3696 		dev_id = dev->id;
3697 		sp = &sci_ports[dev_id];
3698 		sp->params = sci_probe_regmap(p, sp);
3699 		if (!sp->params)
3700 			return -ENODEV;
3701 	}
3702 
3703 	sp->suspend_regs = devm_kzalloc(&dev->dev,
3704 					sp->ops->suspend_regs_size(),
3705 					GFP_KERNEL);
3706 	if (!sp->suspend_regs)
3707 		return -ENOMEM;
3708 
3709 	/*
3710 	 * In case:
3711 	 * - the probed port alias is zero (as the one used by earlycon), and
3712 	 * - the earlycon is still active (e.g., "earlycon keep_bootcon" in
3713 	 *   bootargs)
3714 	 *
3715 	 * defer the probe of this serial. This is a debug scenario and the user
3716 	 * must be aware of it.
3717 	 *
3718 	 * Except when the probed port is the same as the earlycon port.
3719 	 */
3720 
3721 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
3722 	if (!res)
3723 		return -ENODEV;
3724 
3725 	if (sci_uart_earlycon && sp == &sci_ports[0] && sp->port.mapbase != res->start)
3726 		return dev_err_probe(&dev->dev, -EBUSY, "sci_port[0] is used by earlycon!\n");
3727 
3728 	platform_set_drvdata(dev, sp);
3729 
3730 	ret = sci_probe_single(dev, dev_id, p, sp, res);
3731 	if (ret)
3732 		return ret;
3733 
3734 	if (sp->port.fifosize > 1) {
3735 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3736 		if (ret)
3737 			return ret;
3738 	}
3739 	if (sp->type == PORT_SCIFA || sp->type == PORT_SCIFB ||
3740 	    sp->type == PORT_HSCIF || sp->type == SCI_PORT_RSCI) {
3741 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3742 		if (ret) {
3743 			if (sp->port.fifosize > 1) {
3744 				device_remove_file(&dev->dev,
3745 						   &dev_attr_rx_fifo_trigger);
3746 			}
3747 			return ret;
3748 		}
3749 	}
3750 
3751 #ifdef CONFIG_SH_STANDARD_BIOS
3752 	sh_bios_gdb_detach();
3753 #endif
3754 
3755 	sci_ports_in_use |= BIT(dev_id);
3756 	return 0;
3757 }
3758 
sci_suspend(struct device * dev)3759 static int sci_suspend(struct device *dev)
3760 {
3761 	struct sci_port *sport = dev_get_drvdata(dev);
3762 
3763 	if (sport) {
3764 		uart_suspend_port(&sci_uart_driver, &sport->port);
3765 
3766 		if (!console_suspend_enabled && uart_console(&sport->port)) {
3767 			if (sport->ops->console_save)
3768 				sport->ops->console_save(&sport->port);
3769 		}
3770 		else
3771 			return reset_control_assert(sport->rstc);
3772 	}
3773 
3774 	return 0;
3775 }
3776 
sci_resume(struct device * dev)3777 static int sci_resume(struct device *dev)
3778 {
3779 	struct sci_port *sport = dev_get_drvdata(dev);
3780 
3781 	if (sport) {
3782 		if (!console_suspend_enabled && uart_console(&sport->port)) {
3783 			if (sport->ops->console_restore)
3784 				sport->ops->console_restore(&sport->port);
3785 		} else {
3786 			int ret = reset_control_deassert(sport->rstc);
3787 
3788 			if (ret)
3789 				return ret;
3790 		}
3791 
3792 		uart_resume_port(&sci_uart_driver, &sport->port);
3793 	}
3794 
3795 	return 0;
3796 }
3797 
3798 static DEFINE_SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3799 
3800 static struct platform_driver sci_driver = {
3801 	.probe		= sci_probe,
3802 	.remove		= sci_remove,
3803 	.driver		= {
3804 		.name	= "sh-sci",
3805 		.pm	= pm_sleep_ptr(&sci_dev_pm_ops),
3806 		.of_match_table = of_match_ptr(of_sci_match),
3807 	},
3808 };
3809 
sci_init(void)3810 static int __init sci_init(void)
3811 {
3812 	pr_info("%s\n", banner);
3813 
3814 	return platform_driver_register(&sci_driver);
3815 }
3816 
sci_exit(void)3817 static void __exit sci_exit(void)
3818 {
3819 	platform_driver_unregister(&sci_driver);
3820 
3821 	if (sci_uart_driver.state)
3822 		uart_unregister_driver(&sci_uart_driver);
3823 }
3824 
3825 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3826 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3827 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3828 #endif
3829 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3830 static struct plat_sci_port port_cfg;
3831 
early_console_exit(struct console * co)3832 static int early_console_exit(struct console *co)
3833 {
3834 	struct sci_port *sci_port = &sci_ports[0];
3835 
3836 	/*
3837 	 * Clean the slot used by earlycon. A new SCI device might
3838 	 * map to this slot.
3839 	 */
3840 	if (!sci_uart_earlycon_dev_probing) {
3841 		memset(sci_port, 0, sizeof(*sci_port));
3842 		sci_uart_earlycon = false;
3843 	}
3844 
3845 	return 0;
3846 }
3847 
scix_early_console_setup(struct earlycon_device * device,const struct sci_of_data * data)3848 int __init scix_early_console_setup(struct earlycon_device *device,
3849 				    const struct sci_of_data *data)
3850 {
3851 	const struct sci_common_regs *regs;
3852 
3853 	if (!device->port.membase)
3854 		return -ENODEV;
3855 
3856 	device->port.type = SCI_PUBLIC_PORT_ID(data->type);
3857 
3858 	sci_ports[0].port = device->port;
3859 	sci_ports[0].type = data->type;
3860 	sci_ports[0].regtype = data->regtype;
3861 
3862 	port_cfg.type = data->type;
3863 	port_cfg.regtype = data->regtype;
3864 
3865 	sci_ports[0].cfg = &port_cfg;
3866 	sci_ports[0].params = data->params;
3867 	sci_ports[0].ops = data->ops;
3868 	sci_ports[0].port.ops = data->uart_ops;
3869 	sci_uart_earlycon = true;
3870 	regs = sci_ports[0].params->common_regs;
3871 
3872 	port_cfg.scscr = sci_ports[0].ops->read_reg(&sci_ports[0].port, regs->control);
3873 	sci_ports[0].ops->write_reg(&sci_ports[0].port,
3874 				    regs->control,
3875 				    sci_ports[0].params->param_bits->rxtx_enable | port_cfg.scscr);
3876 
3877 	device->con->write = serial_console_write;
3878 	device->con->exit = early_console_exit;
3879 
3880 	return 0;
3881 }
sci_early_console_setup(struct earlycon_device * device,const char * opt)3882 static int __init sci_early_console_setup(struct earlycon_device *device,
3883 					  const char *opt)
3884 {
3885 	return scix_early_console_setup(device, &of_sci_sci);
3886 }
scif_early_console_setup(struct earlycon_device * device,const char * opt)3887 static int __init scif_early_console_setup(struct earlycon_device *device,
3888 					  const char *opt)
3889 {
3890 	return scix_early_console_setup(device, &of_sci_scif_sh4);
3891 }
rzscifa_early_console_setup(struct earlycon_device * device,const char * opt)3892 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3893 					  const char *opt)
3894 {
3895 	return scix_early_console_setup(device, &of_sci_scif_rz_scifa);
3896 }
3897 
rzv2hscif_early_console_setup(struct earlycon_device * device,const char * opt)3898 static int __init rzv2hscif_early_console_setup(struct earlycon_device *device,
3899 						const char *opt)
3900 {
3901 	return scix_early_console_setup(device, &of_sci_scif_rzv2h);
3902 }
3903 
scifa_early_console_setup(struct earlycon_device * device,const char * opt)3904 static int __init scifa_early_console_setup(struct earlycon_device *device,
3905 					  const char *opt)
3906 {
3907 	return scix_early_console_setup(device, &of_sci_scifa);
3908 }
scifb_early_console_setup(struct earlycon_device * device,const char * opt)3909 static int __init scifb_early_console_setup(struct earlycon_device *device,
3910 					  const char *opt)
3911 {
3912 	return scix_early_console_setup(device, &of_sci_scifb);
3913 }
hscif_early_console_setup(struct earlycon_device * device,const char * opt)3914 static int __init hscif_early_console_setup(struct earlycon_device *device,
3915 					  const char *opt)
3916 {
3917 	return scix_early_console_setup(device, &of_sci_hscif);
3918 }
3919 
3920 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3921 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3922 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3923 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3924 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a09g057", rzv2hscif_early_console_setup);
3925 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3926 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3927 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3928 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3929 
3930 module_init(sci_init);
3931 module_exit(sci_exit);
3932 
3933 MODULE_LICENSE("GPL");
3934 MODULE_ALIAS("platform:sh-sci");
3935 MODULE_AUTHOR("Paul Mundt");
3936 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3937