xref: /linux/drivers/tty/serial/mvebu-uart.c (revision da5b2ad1c2f18834cb1ce429e2e5a5cf5cbdf21b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ***************************************************************************
4 * Marvell Armada-3700 Serial Driver
5 * Author: Wilson Ding <dingwei@marvell.com>
6 * Copyright (C) 2015 Marvell International Ltd.
7 * ***************************************************************************
8 */
9 
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/console.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/init.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/math64.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/of_device.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/serial.h>
26 #include <linux/serial_core.h>
27 #include <linux/slab.h>
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 
31 /* Register Map */
32 #define UART_STD_RBR		0x00
33 #define UART_EXT_RBR		0x18
34 
35 #define UART_STD_TSH		0x04
36 #define UART_EXT_TSH		0x1C
37 
38 #define UART_STD_CTRL1		0x08
39 #define UART_EXT_CTRL1		0x04
40 #define  CTRL_SOFT_RST		BIT(31)
41 #define  CTRL_TXFIFO_RST	BIT(15)
42 #define  CTRL_RXFIFO_RST	BIT(14)
43 #define  CTRL_SND_BRK_SEQ	BIT(11)
44 #define  CTRL_BRK_DET_INT	BIT(3)
45 #define  CTRL_FRM_ERR_INT	BIT(2)
46 #define  CTRL_PAR_ERR_INT	BIT(1)
47 #define  CTRL_OVR_ERR_INT	BIT(0)
48 #define  CTRL_BRK_INT		(CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \
49 				CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT)
50 
51 #define UART_STD_CTRL2		UART_STD_CTRL1
52 #define UART_EXT_CTRL2		0x20
53 #define  CTRL_STD_TX_RDY_INT	BIT(5)
54 #define  CTRL_EXT_TX_RDY_INT	BIT(6)
55 #define  CTRL_STD_RX_RDY_INT	BIT(4)
56 #define  CTRL_EXT_RX_RDY_INT	BIT(5)
57 
58 #define UART_STAT		0x0C
59 #define  STAT_TX_FIFO_EMP	BIT(13)
60 #define  STAT_TX_FIFO_FUL	BIT(11)
61 #define  STAT_TX_EMP		BIT(6)
62 #define  STAT_STD_TX_RDY	BIT(5)
63 #define  STAT_EXT_TX_RDY	BIT(15)
64 #define  STAT_STD_RX_RDY	BIT(4)
65 #define  STAT_EXT_RX_RDY	BIT(14)
66 #define  STAT_BRK_DET		BIT(3)
67 #define  STAT_FRM_ERR		BIT(2)
68 #define  STAT_PAR_ERR		BIT(1)
69 #define  STAT_OVR_ERR		BIT(0)
70 #define  STAT_BRK_ERR		(STAT_BRK_DET | STAT_FRM_ERR \
71 				 | STAT_PAR_ERR | STAT_OVR_ERR)
72 
73 /*
74  * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART
75  * Clock Control register controls UART1 and bit 20 controls UART2. But in
76  * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an
77  * error in Marvell's documentation. Hence following CLK_DIS macros are swapped.
78  */
79 
80 #define UART_BRDV		0x10
81 /* These bits are located in UART1 address space and control UART2 */
82 #define  UART2_CLK_DIS		BIT(21)
83 /* These bits are located in UART1 address space and control UART1 */
84 #define  UART1_CLK_DIS		BIT(20)
85 /* These bits are located in UART1 address space and control both UARTs */
86 #define  CLK_NO_XTAL		BIT(19)
87 #define  CLK_TBG_DIV1_SHIFT	15
88 #define  CLK_TBG_DIV1_MASK	0x7
89 #define  CLK_TBG_DIV1_MAX	6
90 #define  CLK_TBG_DIV2_SHIFT	12
91 #define  CLK_TBG_DIV2_MASK	0x7
92 #define  CLK_TBG_DIV2_MAX	6
93 #define  CLK_TBG_SEL_SHIFT	10
94 #define  CLK_TBG_SEL_MASK	0x3
95 /* These bits are located in both UARTs address space */
96 #define  BRDV_BAUD_MASK         0x3FF
97 #define  BRDV_BAUD_MAX		BRDV_BAUD_MASK
98 
99 #define UART_OSAMP		0x14
100 #define  OSAMP_DEFAULT_DIVISOR	16
101 #define  OSAMP_DIVISORS_MASK	0x3F3F3F3F
102 #define  OSAMP_MAX_DIVISOR	63
103 
104 #define MVEBU_NR_UARTS		2
105 
106 #define MVEBU_UART_TYPE		"mvebu-uart"
107 #define DRIVER_NAME		"mvebu_serial"
108 
109 enum {
110 	/* Either there is only one summed IRQ... */
111 	UART_IRQ_SUM = 0,
112 	/* ...or there are two separate IRQ for RX and TX */
113 	UART_RX_IRQ = 0,
114 	UART_TX_IRQ,
115 	UART_IRQ_COUNT
116 };
117 
118 /* Diverging register offsets */
119 struct uart_regs_layout {
120 	unsigned int rbr;
121 	unsigned int tsh;
122 	unsigned int ctrl;
123 	unsigned int intr;
124 };
125 
126 /* Diverging flags */
127 struct uart_flags {
128 	unsigned int ctrl_tx_rdy_int;
129 	unsigned int ctrl_rx_rdy_int;
130 	unsigned int stat_tx_rdy;
131 	unsigned int stat_rx_rdy;
132 };
133 
134 /* Driver data, a structure for each UART port */
135 struct mvebu_uart_driver_data {
136 	bool is_ext;
137 	struct uart_regs_layout regs;
138 	struct uart_flags flags;
139 };
140 
141 /* Saved registers during suspend */
142 struct mvebu_uart_pm_regs {
143 	unsigned int rbr;
144 	unsigned int tsh;
145 	unsigned int ctrl;
146 	unsigned int intr;
147 	unsigned int stat;
148 	unsigned int brdv;
149 	unsigned int osamp;
150 };
151 
152 /* MVEBU UART driver structure */
153 struct mvebu_uart {
154 	struct uart_port *port;
155 	struct clk *clk;
156 	int irq[UART_IRQ_COUNT];
157 	struct mvebu_uart_driver_data *data;
158 #if defined(CONFIG_PM)
159 	struct mvebu_uart_pm_regs pm_regs;
160 #endif /* CONFIG_PM */
161 };
162 
163 static struct mvebu_uart *to_mvuart(struct uart_port *port)
164 {
165 	return (struct mvebu_uart *)port->private_data;
166 }
167 
168 #define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext)
169 
170 #define UART_RBR(port) (to_mvuart(port)->data->regs.rbr)
171 #define UART_TSH(port) (to_mvuart(port)->data->regs.tsh)
172 #define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl)
173 #define UART_INTR(port) (to_mvuart(port)->data->regs.intr)
174 
175 #define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int)
176 #define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int)
177 #define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy)
178 #define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy)
179 
180 static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS];
181 
182 static DEFINE_SPINLOCK(mvebu_uart_lock);
183 
184 /* Core UART Driver Operations */
185 static unsigned int mvebu_uart_tx_empty(struct uart_port *port)
186 {
187 	unsigned long flags;
188 	unsigned int st;
189 
190 	uart_port_lock_irqsave(port, &flags);
191 	st = readl(port->membase + UART_STAT);
192 	uart_port_unlock_irqrestore(port, flags);
193 
194 	return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0;
195 }
196 
197 static unsigned int mvebu_uart_get_mctrl(struct uart_port *port)
198 {
199 	return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
200 }
201 
202 static void mvebu_uart_set_mctrl(struct uart_port *port,
203 				 unsigned int mctrl)
204 {
205 /*
206  * Even if we do not support configuring the modem control lines, this
207  * function must be proided to the serial core
208  */
209 }
210 
211 static void mvebu_uart_stop_tx(struct uart_port *port)
212 {
213 	unsigned int ctl = readl(port->membase + UART_INTR(port));
214 
215 	ctl &= ~CTRL_TX_RDY_INT(port);
216 	writel(ctl, port->membase + UART_INTR(port));
217 }
218 
219 static void mvebu_uart_start_tx(struct uart_port *port)
220 {
221 	unsigned int ctl;
222 	unsigned char c;
223 
224 	if (IS_EXTENDED(port) && uart_fifo_get(port, &c))
225 		writel(c, port->membase + UART_TSH(port));
226 
227 	ctl = readl(port->membase + UART_INTR(port));
228 	ctl |= CTRL_TX_RDY_INT(port);
229 	writel(ctl, port->membase + UART_INTR(port));
230 }
231 
232 static void mvebu_uart_stop_rx(struct uart_port *port)
233 {
234 	unsigned int ctl;
235 
236 	ctl = readl(port->membase + UART_CTRL(port));
237 	ctl &= ~CTRL_BRK_INT;
238 	writel(ctl, port->membase + UART_CTRL(port));
239 
240 	ctl = readl(port->membase + UART_INTR(port));
241 	ctl &= ~CTRL_RX_RDY_INT(port);
242 	writel(ctl, port->membase + UART_INTR(port));
243 }
244 
245 static void mvebu_uart_break_ctl(struct uart_port *port, int brk)
246 {
247 	unsigned int ctl;
248 	unsigned long flags;
249 
250 	uart_port_lock_irqsave(port, &flags);
251 	ctl = readl(port->membase + UART_CTRL(port));
252 	if (brk == -1)
253 		ctl |= CTRL_SND_BRK_SEQ;
254 	else
255 		ctl &= ~CTRL_SND_BRK_SEQ;
256 	writel(ctl, port->membase + UART_CTRL(port));
257 	uart_port_unlock_irqrestore(port, flags);
258 }
259 
260 static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status)
261 {
262 	struct tty_port *tport = &port->state->port;
263 	unsigned char ch = 0;
264 	char flag = 0;
265 	int ret;
266 
267 	do {
268 		if (status & STAT_RX_RDY(port)) {
269 			ch = readl(port->membase + UART_RBR(port));
270 			ch &= 0xff;
271 			flag = TTY_NORMAL;
272 			port->icount.rx++;
273 
274 			if (status & STAT_PAR_ERR)
275 				port->icount.parity++;
276 		}
277 
278 		/*
279 		 * For UART2, error bits are not cleared on buffer read.
280 		 * This causes interrupt loop and system hang.
281 		 */
282 		if (IS_EXTENDED(port) && (status & STAT_BRK_ERR)) {
283 			ret = readl(port->membase + UART_STAT);
284 			ret |= STAT_BRK_ERR;
285 			writel(ret, port->membase + UART_STAT);
286 		}
287 
288 		if (status & STAT_BRK_DET) {
289 			port->icount.brk++;
290 			status &= ~(STAT_FRM_ERR | STAT_PAR_ERR);
291 			if (uart_handle_break(port))
292 				goto ignore_char;
293 		}
294 
295 		if (status & STAT_OVR_ERR)
296 			port->icount.overrun++;
297 
298 		if (status & STAT_FRM_ERR)
299 			port->icount.frame++;
300 
301 		if (uart_handle_sysrq_char(port, ch))
302 			goto ignore_char;
303 
304 		if (status & port->ignore_status_mask & STAT_PAR_ERR)
305 			status &= ~STAT_RX_RDY(port);
306 
307 		status &= port->read_status_mask;
308 
309 		if (status & STAT_PAR_ERR)
310 			flag = TTY_PARITY;
311 
312 		status &= ~port->ignore_status_mask;
313 
314 		if (status & STAT_RX_RDY(port))
315 			tty_insert_flip_char(tport, ch, flag);
316 
317 		if (status & STAT_BRK_DET)
318 			tty_insert_flip_char(tport, 0, TTY_BREAK);
319 
320 		if (status & STAT_FRM_ERR)
321 			tty_insert_flip_char(tport, 0, TTY_FRAME);
322 
323 		if (status & STAT_OVR_ERR)
324 			tty_insert_flip_char(tport, 0, TTY_OVERRUN);
325 
326 ignore_char:
327 		status = readl(port->membase + UART_STAT);
328 	} while (status & (STAT_RX_RDY(port) | STAT_BRK_DET));
329 
330 	tty_flip_buffer_push(tport);
331 }
332 
333 static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status)
334 {
335 	u8 ch;
336 
337 	uart_port_tx_limited(port, ch, port->fifosize,
338 		!(readl(port->membase + UART_STAT) & STAT_TX_FIFO_FUL),
339 		writel(ch, port->membase + UART_TSH(port)),
340 		({}));
341 }
342 
343 static irqreturn_t mvebu_uart_isr(int irq, void *dev_id)
344 {
345 	struct uart_port *port = (struct uart_port *)dev_id;
346 	unsigned int st = readl(port->membase + UART_STAT);
347 
348 	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
349 		  STAT_BRK_DET))
350 		mvebu_uart_rx_chars(port, st);
351 
352 	if (st & STAT_TX_RDY(port))
353 		mvebu_uart_tx_chars(port, st);
354 
355 	return IRQ_HANDLED;
356 }
357 
358 static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id)
359 {
360 	struct uart_port *port = (struct uart_port *)dev_id;
361 	unsigned int st = readl(port->membase + UART_STAT);
362 
363 	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
364 			STAT_BRK_DET))
365 		mvebu_uart_rx_chars(port, st);
366 
367 	return IRQ_HANDLED;
368 }
369 
370 static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id)
371 {
372 	struct uart_port *port = (struct uart_port *)dev_id;
373 	unsigned int st = readl(port->membase + UART_STAT);
374 
375 	if (st & STAT_TX_RDY(port))
376 		mvebu_uart_tx_chars(port, st);
377 
378 	return IRQ_HANDLED;
379 }
380 
381 static int mvebu_uart_startup(struct uart_port *port)
382 {
383 	struct mvebu_uart *mvuart = to_mvuart(port);
384 	unsigned int ctl;
385 	int ret;
386 
387 	writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST,
388 	       port->membase + UART_CTRL(port));
389 	udelay(1);
390 
391 	/* Clear the error bits of state register before IRQ request */
392 	ret = readl(port->membase + UART_STAT);
393 	ret |= STAT_BRK_ERR;
394 	writel(ret, port->membase + UART_STAT);
395 
396 	writel(CTRL_BRK_INT, port->membase + UART_CTRL(port));
397 
398 	ctl = readl(port->membase + UART_INTR(port));
399 	ctl |= CTRL_RX_RDY_INT(port);
400 	writel(ctl, port->membase + UART_INTR(port));
401 
402 	if (!mvuart->irq[UART_TX_IRQ]) {
403 		/* Old bindings with just one interrupt (UART0 only) */
404 		ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM],
405 				       mvebu_uart_isr, port->irqflags,
406 				       dev_name(port->dev), port);
407 		if (ret) {
408 			dev_err(port->dev, "unable to request IRQ %d\n",
409 				mvuart->irq[UART_IRQ_SUM]);
410 			return ret;
411 		}
412 	} else {
413 		/* New bindings with an IRQ for RX and TX (both UART) */
414 		ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ],
415 				       mvebu_uart_rx_isr, port->irqflags,
416 				       dev_name(port->dev), port);
417 		if (ret) {
418 			dev_err(port->dev, "unable to request IRQ %d\n",
419 				mvuart->irq[UART_RX_IRQ]);
420 			return ret;
421 		}
422 
423 		ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ],
424 				       mvebu_uart_tx_isr, port->irqflags,
425 				       dev_name(port->dev),
426 				       port);
427 		if (ret) {
428 			dev_err(port->dev, "unable to request IRQ %d\n",
429 				mvuart->irq[UART_TX_IRQ]);
430 			devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ],
431 				      port);
432 			return ret;
433 		}
434 	}
435 
436 	return 0;
437 }
438 
439 static void mvebu_uart_shutdown(struct uart_port *port)
440 {
441 	struct mvebu_uart *mvuart = to_mvuart(port);
442 
443 	writel(0, port->membase + UART_INTR(port));
444 
445 	if (!mvuart->irq[UART_TX_IRQ]) {
446 		devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port);
447 	} else {
448 		devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port);
449 		devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port);
450 	}
451 }
452 
453 static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud)
454 {
455 	unsigned int d_divisor, m_divisor;
456 	unsigned long flags;
457 	u32 brdv, osamp;
458 
459 	if (!port->uartclk)
460 		return 0;
461 
462 	/*
463 	 * The baudrate is derived from the UART clock thanks to divisors:
464 	 *   > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6
465 	 *   > D ("baud generator"): can divide the clock from 1 to 1023
466 	 *   > M ("fractional divisor"): allows a better accuracy (from 1 to 63)
467 	 *
468 	 * Exact formulas for calculating baudrate:
469 	 *
470 	 * with default x16 scheme:
471 	 *   baudrate = xtal / (d * 16)
472 	 *   baudrate = tbg / (d1 * d2 * d * 16)
473 	 *
474 	 * with fractional divisor:
475 	 *   baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4)))
476 	 *   baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4)))
477 	 *
478 	 * Oversampling value:
479 	 *   osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24);
480 	 *
481 	 * Where m1 controls number of clock cycles per bit for bits 1,2,3;
482 	 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10.
483 	 *
484 	 * To simplify baudrate setup set all the M prescalers to the same
485 	 * value. For baudrates 9600 Bd and higher, it is enough to use the
486 	 * default (x16) divisor or fractional divisor with M = 63, so there
487 	 * is no need to use real fractional support (where the M prescalers
488 	 * are not equal).
489 	 *
490 	 * When all the M prescalers are zeroed then default (x16) divisor is
491 	 * used. Default x16 scheme is more stable than M (fractional divisor),
492 	 * so use M only when D divisor is not enough to derive baudrate.
493 	 *
494 	 * Member port->uartclk is either xtal clock rate or TBG clock rate
495 	 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock
496 	 * driver (and UART driver itself cannot change them). Moreover they are
497 	 * shared between both UARTs.
498 	 */
499 
500 	m_divisor = OSAMP_DEFAULT_DIVISOR;
501 	d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
502 
503 	if (d_divisor > BRDV_BAUD_MAX) {
504 		/*
505 		 * Experiments show that small M divisors are unstable.
506 		 * Use maximal possible M = 63 and calculate D divisor.
507 		 */
508 		m_divisor = OSAMP_MAX_DIVISOR;
509 		d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
510 	}
511 
512 	if (d_divisor < 1)
513 		d_divisor = 1;
514 	else if (d_divisor > BRDV_BAUD_MAX)
515 		d_divisor = BRDV_BAUD_MAX;
516 
517 	spin_lock_irqsave(&mvebu_uart_lock, flags);
518 	brdv = readl(port->membase + UART_BRDV);
519 	brdv &= ~BRDV_BAUD_MASK;
520 	brdv |= d_divisor;
521 	writel(brdv, port->membase + UART_BRDV);
522 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
523 
524 	osamp = readl(port->membase + UART_OSAMP);
525 	osamp &= ~OSAMP_DIVISORS_MASK;
526 	if (m_divisor != OSAMP_DEFAULT_DIVISOR)
527 		osamp |= (m_divisor << 0) | (m_divisor << 8) |
528 			(m_divisor << 16) | (m_divisor << 24);
529 	writel(osamp, port->membase + UART_OSAMP);
530 
531 	return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor);
532 }
533 
534 static void mvebu_uart_set_termios(struct uart_port *port,
535 				   struct ktermios *termios,
536 				   const struct ktermios *old)
537 {
538 	unsigned long flags;
539 	unsigned int baud, min_baud, max_baud;
540 
541 	uart_port_lock_irqsave(port, &flags);
542 
543 	port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR |
544 		STAT_TX_RDY(port) | STAT_TX_FIFO_FUL;
545 
546 	if (termios->c_iflag & INPCK)
547 		port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR;
548 
549 	port->ignore_status_mask = 0;
550 	if (termios->c_iflag & IGNPAR)
551 		port->ignore_status_mask |=
552 			STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR;
553 
554 	if ((termios->c_cflag & CREAD) == 0)
555 		port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR;
556 
557 	/*
558 	 * Maximal divisor is 1023 and maximal fractional divisor is 63. And
559 	 * experiments show that baudrates above 1/80 of parent clock rate are
560 	 * not stable. So disallow baudrates above 1/80 of the parent clock
561 	 * rate. If port->uartclk is not available, then
562 	 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud
563 	 * in this case do not matter.
564 	 */
565 	min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX *
566 				OSAMP_MAX_DIVISOR);
567 	max_baud = port->uartclk / 80;
568 
569 	baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud);
570 	baud = mvebu_uart_baud_rate_set(port, baud);
571 
572 	/* In case baudrate cannot be changed, report previous old value */
573 	if (baud == 0 && old)
574 		baud = tty_termios_baud_rate(old);
575 
576 	/* Only the following flag changes are supported */
577 	if (old) {
578 		termios->c_iflag &= INPCK | IGNPAR;
579 		termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR);
580 		termios->c_cflag &= CREAD | CBAUD;
581 		termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD);
582 		termios->c_cflag |= CS8;
583 	}
584 
585 	if (baud != 0) {
586 		tty_termios_encode_baud_rate(termios, baud, baud);
587 		uart_update_timeout(port, termios->c_cflag, baud);
588 	}
589 
590 	uart_port_unlock_irqrestore(port, flags);
591 }
592 
593 static const char *mvebu_uart_type(struct uart_port *port)
594 {
595 	return MVEBU_UART_TYPE;
596 }
597 
598 static void mvebu_uart_release_port(struct uart_port *port)
599 {
600 	/* Nothing to do here */
601 }
602 
603 static int mvebu_uart_request_port(struct uart_port *port)
604 {
605 	return 0;
606 }
607 
608 #ifdef CONFIG_CONSOLE_POLL
609 static int mvebu_uart_get_poll_char(struct uart_port *port)
610 {
611 	unsigned int st = readl(port->membase + UART_STAT);
612 
613 	if (!(st & STAT_RX_RDY(port)))
614 		return NO_POLL_CHAR;
615 
616 	return readl(port->membase + UART_RBR(port));
617 }
618 
619 static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c)
620 {
621 	unsigned int st;
622 
623 	for (;;) {
624 		st = readl(port->membase + UART_STAT);
625 
626 		if (!(st & STAT_TX_FIFO_FUL))
627 			break;
628 
629 		udelay(1);
630 	}
631 
632 	writel(c, port->membase + UART_TSH(port));
633 }
634 #endif
635 
636 static const struct uart_ops mvebu_uart_ops = {
637 	.tx_empty	= mvebu_uart_tx_empty,
638 	.set_mctrl	= mvebu_uart_set_mctrl,
639 	.get_mctrl	= mvebu_uart_get_mctrl,
640 	.stop_tx	= mvebu_uart_stop_tx,
641 	.start_tx	= mvebu_uart_start_tx,
642 	.stop_rx	= mvebu_uart_stop_rx,
643 	.break_ctl	= mvebu_uart_break_ctl,
644 	.startup	= mvebu_uart_startup,
645 	.shutdown	= mvebu_uart_shutdown,
646 	.set_termios	= mvebu_uart_set_termios,
647 	.type		= mvebu_uart_type,
648 	.release_port	= mvebu_uart_release_port,
649 	.request_port	= mvebu_uart_request_port,
650 #ifdef CONFIG_CONSOLE_POLL
651 	.poll_get_char	= mvebu_uart_get_poll_char,
652 	.poll_put_char	= mvebu_uart_put_poll_char,
653 #endif
654 };
655 
656 /* Console Driver Operations  */
657 
658 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
659 /* Early Console */
660 static void mvebu_uart_putc(struct uart_port *port, unsigned char c)
661 {
662 	unsigned int st;
663 
664 	for (;;) {
665 		st = readl(port->membase + UART_STAT);
666 		if (!(st & STAT_TX_FIFO_FUL))
667 			break;
668 	}
669 
670 	/* At early stage, DT is not parsed yet, only use UART0 */
671 	writel(c, port->membase + UART_STD_TSH);
672 
673 	for (;;) {
674 		st = readl(port->membase + UART_STAT);
675 		if (st & STAT_TX_FIFO_EMP)
676 			break;
677 	}
678 }
679 
680 static void mvebu_uart_putc_early_write(struct console *con,
681 					const char *s,
682 					unsigned int n)
683 {
684 	struct earlycon_device *dev = con->data;
685 
686 	uart_console_write(&dev->port, s, n, mvebu_uart_putc);
687 }
688 
689 static int __init
690 mvebu_uart_early_console_setup(struct earlycon_device *device,
691 			       const char *opt)
692 {
693 	if (!device->port.membase)
694 		return -ENODEV;
695 
696 	device->con->write = mvebu_uart_putc_early_write;
697 
698 	return 0;
699 }
700 
701 EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup);
702 OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart",
703 		    mvebu_uart_early_console_setup);
704 
705 static void wait_for_xmitr(struct uart_port *port)
706 {
707 	u32 val;
708 
709 	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
710 				  (val & STAT_TX_RDY(port)), 1, 10000);
711 }
712 
713 static void wait_for_xmite(struct uart_port *port)
714 {
715 	u32 val;
716 
717 	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
718 				  (val & STAT_TX_EMP), 1, 10000);
719 }
720 
721 static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch)
722 {
723 	wait_for_xmitr(port);
724 	writel(ch, port->membase + UART_TSH(port));
725 }
726 
727 static void mvebu_uart_console_write(struct console *co, const char *s,
728 				     unsigned int count)
729 {
730 	struct uart_port *port = &mvebu_uart_ports[co->index];
731 	unsigned long flags;
732 	unsigned int ier, intr, ctl;
733 	int locked = 1;
734 
735 	if (oops_in_progress)
736 		locked = uart_port_trylock_irqsave(port, &flags);
737 	else
738 		uart_port_lock_irqsave(port, &flags);
739 
740 	ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT;
741 	intr = readl(port->membase + UART_INTR(port)) &
742 		(CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port));
743 	writel(0, port->membase + UART_CTRL(port));
744 	writel(0, port->membase + UART_INTR(port));
745 
746 	uart_console_write(port, s, count, mvebu_uart_console_putchar);
747 
748 	wait_for_xmite(port);
749 
750 	if (ier)
751 		writel(ier, port->membase + UART_CTRL(port));
752 
753 	if (intr) {
754 		ctl = intr | readl(port->membase + UART_INTR(port));
755 		writel(ctl, port->membase + UART_INTR(port));
756 	}
757 
758 	if (locked)
759 		uart_port_unlock_irqrestore(port, flags);
760 }
761 
762 static int mvebu_uart_console_setup(struct console *co, char *options)
763 {
764 	struct uart_port *port;
765 	int baud = 9600;
766 	int bits = 8;
767 	int parity = 'n';
768 	int flow = 'n';
769 
770 	if (co->index < 0 || co->index >= MVEBU_NR_UARTS)
771 		return -EINVAL;
772 
773 	port = &mvebu_uart_ports[co->index];
774 
775 	if (!port->mapbase || !port->membase) {
776 		pr_debug("console on ttyMV%i not present\n", co->index);
777 		return -ENODEV;
778 	}
779 
780 	if (options)
781 		uart_parse_options(options, &baud, &parity, &bits, &flow);
782 
783 	return uart_set_options(port, co, baud, parity, bits, flow);
784 }
785 
786 static struct uart_driver mvebu_uart_driver;
787 
788 static struct console mvebu_uart_console = {
789 	.name	= "ttyMV",
790 	.write	= mvebu_uart_console_write,
791 	.device	= uart_console_device,
792 	.setup	= mvebu_uart_console_setup,
793 	.flags	= CON_PRINTBUFFER,
794 	.index	= -1,
795 	.data	= &mvebu_uart_driver,
796 };
797 
798 static int __init mvebu_uart_console_init(void)
799 {
800 	register_console(&mvebu_uart_console);
801 	return 0;
802 }
803 
804 console_initcall(mvebu_uart_console_init);
805 
806 
807 #endif /* CONFIG_SERIAL_MVEBU_CONSOLE */
808 
809 static struct uart_driver mvebu_uart_driver = {
810 	.owner			= THIS_MODULE,
811 	.driver_name		= DRIVER_NAME,
812 	.dev_name		= "ttyMV",
813 	.nr			= MVEBU_NR_UARTS,
814 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
815 	.cons			= &mvebu_uart_console,
816 #endif
817 };
818 
819 #if defined(CONFIG_PM)
820 static int mvebu_uart_suspend(struct device *dev)
821 {
822 	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
823 	struct uart_port *port = mvuart->port;
824 	unsigned long flags;
825 
826 	uart_suspend_port(&mvebu_uart_driver, port);
827 
828 	mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port));
829 	mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port));
830 	mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port));
831 	mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port));
832 	mvuart->pm_regs.stat = readl(port->membase + UART_STAT);
833 	spin_lock_irqsave(&mvebu_uart_lock, flags);
834 	mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV);
835 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
836 	mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP);
837 
838 	device_set_wakeup_enable(dev, true);
839 
840 	return 0;
841 }
842 
843 static int mvebu_uart_resume(struct device *dev)
844 {
845 	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
846 	struct uart_port *port = mvuart->port;
847 	unsigned long flags;
848 
849 	writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port));
850 	writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port));
851 	writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port));
852 	writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port));
853 	writel(mvuart->pm_regs.stat, port->membase + UART_STAT);
854 	spin_lock_irqsave(&mvebu_uart_lock, flags);
855 	writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV);
856 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
857 	writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP);
858 
859 	uart_resume_port(&mvebu_uart_driver, port);
860 
861 	return 0;
862 }
863 
864 static const struct dev_pm_ops mvebu_uart_pm_ops = {
865 	.suspend        = mvebu_uart_suspend,
866 	.resume         = mvebu_uart_resume,
867 };
868 #endif /* CONFIG_PM */
869 
870 static const struct of_device_id mvebu_uart_of_match[];
871 
872 /* Counter to keep track of each UART port id when not using CONFIG_OF */
873 static int uart_num_counter;
874 
875 static int mvebu_uart_probe(struct platform_device *pdev)
876 {
877 	const struct of_device_id *match = of_match_device(mvebu_uart_of_match,
878 							   &pdev->dev);
879 	struct uart_port *port;
880 	struct mvebu_uart *mvuart;
881 	struct resource *reg;
882 	int id, irq;
883 
884 	/* Assume that all UART ports have a DT alias or none has */
885 	id = of_alias_get_id(pdev->dev.of_node, "serial");
886 	if (!pdev->dev.of_node || id < 0)
887 		pdev->id = uart_num_counter++;
888 	else
889 		pdev->id = id;
890 
891 	if (pdev->id >= MVEBU_NR_UARTS) {
892 		dev_err(&pdev->dev, "cannot have more than %d UART ports\n",
893 			MVEBU_NR_UARTS);
894 		return -EINVAL;
895 	}
896 
897 	port = &mvebu_uart_ports[pdev->id];
898 
899 	spin_lock_init(&port->lock);
900 
901 	port->dev        = &pdev->dev;
902 	port->type       = PORT_MVEBU;
903 	port->ops        = &mvebu_uart_ops;
904 	port->regshift   = 0;
905 
906 	port->fifosize   = 32;
907 	port->iotype     = UPIO_MEM32;
908 	port->flags      = UPF_FIXED_PORT;
909 	port->line       = pdev->id;
910 
911 	/*
912 	 * IRQ number is not stored in this structure because we may have two of
913 	 * them per port (RX and TX). Instead, use the driver UART structure
914 	 * array so called ->irq[].
915 	 */
916 	port->irq        = 0;
917 	port->irqflags   = 0;
918 
919 	port->membase = devm_platform_get_and_ioremap_resource(pdev, 0, &reg);
920 	if (IS_ERR(port->membase))
921 		return PTR_ERR(port->membase);
922 	port->mapbase    = reg->start;
923 
924 	mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart),
925 			      GFP_KERNEL);
926 	if (!mvuart)
927 		return -ENOMEM;
928 
929 	/* Get controller data depending on the compatible string */
930 	mvuart->data = (struct mvebu_uart_driver_data *)match->data;
931 	mvuart->port = port;
932 
933 	port->private_data = mvuart;
934 	platform_set_drvdata(pdev, mvuart);
935 
936 	/* Get fixed clock frequency */
937 	mvuart->clk = devm_clk_get(&pdev->dev, NULL);
938 	if (IS_ERR(mvuart->clk)) {
939 		if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER)
940 			return PTR_ERR(mvuart->clk);
941 
942 		if (IS_EXTENDED(port)) {
943 			dev_err(&pdev->dev, "unable to get UART clock\n");
944 			return PTR_ERR(mvuart->clk);
945 		}
946 	} else {
947 		if (!clk_prepare_enable(mvuart->clk))
948 			port->uartclk = clk_get_rate(mvuart->clk);
949 	}
950 
951 	/* Manage interrupts */
952 	if (platform_irq_count(pdev) == 1) {
953 		/* Old bindings: no name on the single unamed UART0 IRQ */
954 		irq = platform_get_irq(pdev, 0);
955 		if (irq < 0)
956 			return irq;
957 
958 		mvuart->irq[UART_IRQ_SUM] = irq;
959 	} else {
960 		/*
961 		 * New bindings: named interrupts (RX, TX) for both UARTS,
962 		 * only make use of uart-rx and uart-tx interrupts, do not use
963 		 * uart-sum of UART0 port.
964 		 */
965 		irq = platform_get_irq_byname(pdev, "uart-rx");
966 		if (irq < 0)
967 			return irq;
968 
969 		mvuart->irq[UART_RX_IRQ] = irq;
970 
971 		irq = platform_get_irq_byname(pdev, "uart-tx");
972 		if (irq < 0)
973 			return irq;
974 
975 		mvuart->irq[UART_TX_IRQ] = irq;
976 	}
977 
978 	/* UART Soft Reset*/
979 	writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port));
980 	udelay(1);
981 	writel(0, port->membase + UART_CTRL(port));
982 
983 	return uart_add_one_port(&mvebu_uart_driver, port);
984 }
985 
986 static struct mvebu_uart_driver_data uart_std_driver_data = {
987 	.is_ext = false,
988 	.regs.rbr = UART_STD_RBR,
989 	.regs.tsh = UART_STD_TSH,
990 	.regs.ctrl = UART_STD_CTRL1,
991 	.regs.intr = UART_STD_CTRL2,
992 	.flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT,
993 	.flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT,
994 	.flags.stat_tx_rdy = STAT_STD_TX_RDY,
995 	.flags.stat_rx_rdy = STAT_STD_RX_RDY,
996 };
997 
998 static struct mvebu_uart_driver_data uart_ext_driver_data = {
999 	.is_ext = true,
1000 	.regs.rbr = UART_EXT_RBR,
1001 	.regs.tsh = UART_EXT_TSH,
1002 	.regs.ctrl = UART_EXT_CTRL1,
1003 	.regs.intr = UART_EXT_CTRL2,
1004 	.flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT,
1005 	.flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT,
1006 	.flags.stat_tx_rdy = STAT_EXT_TX_RDY,
1007 	.flags.stat_rx_rdy = STAT_EXT_RX_RDY,
1008 };
1009 
1010 /* Match table for of_platform binding */
1011 static const struct of_device_id mvebu_uart_of_match[] = {
1012 	{
1013 		.compatible = "marvell,armada-3700-uart",
1014 		.data = (void *)&uart_std_driver_data,
1015 	},
1016 	{
1017 		.compatible = "marvell,armada-3700-uart-ext",
1018 		.data = (void *)&uart_ext_driver_data,
1019 	},
1020 	{}
1021 };
1022 
1023 static struct platform_driver mvebu_uart_platform_driver = {
1024 	.probe	= mvebu_uart_probe,
1025 	.driver	= {
1026 		.name  = "mvebu-uart",
1027 		.of_match_table = of_match_ptr(mvebu_uart_of_match),
1028 		.suppress_bind_attrs = true,
1029 #if defined(CONFIG_PM)
1030 		.pm	= &mvebu_uart_pm_ops,
1031 #endif /* CONFIG_PM */
1032 	},
1033 };
1034 
1035 /* This code is based on clk-fixed-factor.c driver and modified. */
1036 
1037 struct mvebu_uart_clock {
1038 	struct clk_hw clk_hw;
1039 	int clock_idx;
1040 	u32 pm_context_reg1;
1041 	u32 pm_context_reg2;
1042 };
1043 
1044 struct mvebu_uart_clock_base {
1045 	struct mvebu_uart_clock clocks[2];
1046 	unsigned int parent_rates[5];
1047 	int parent_idx;
1048 	unsigned int div;
1049 	void __iomem *reg1;
1050 	void __iomem *reg2;
1051 	bool configured;
1052 };
1053 
1054 #define PARENT_CLOCK_XTAL 4
1055 
1056 #define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw)
1057 #define to_uart_clock_base(uart_clock) container_of(uart_clock, \
1058 	struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx])
1059 
1060 static int mvebu_uart_clock_prepare(struct clk_hw *hw)
1061 {
1062 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1063 	struct mvebu_uart_clock_base *uart_clock_base =
1064 						to_uart_clock_base(uart_clock);
1065 	unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2;
1066 	unsigned int parent_clock_idx, parent_clock_rate;
1067 	unsigned long flags;
1068 	unsigned int d1, d2;
1069 	u64 divisor;
1070 	u32 val;
1071 
1072 	/*
1073 	 * This function just reconfigures UART Clock Control register (located
1074 	 * in UART1 address space which controls both UART1 and UART2) to
1075 	 * selected UART base clock and recalculates current UART1/UART2
1076 	 * divisors in their address spaces, so that final baudrate will not be
1077 	 * changed by switching UART parent clock. This is required for
1078 	 * otherwise kernel's boot log stops working - we need to ensure that
1079 	 * UART baudrate does not change during this setup. It is a one time
1080 	 * operation, it will execute only once and set `configured` to true,
1081 	 * and be skipped on subsequent calls. Because this UART Clock Control
1082 	 * register (UART_BRDV) is shared between UART1 baudrate function,
1083 	 * UART1 clock selector and UART2 clock selector, every access to
1084 	 * UART_BRDV (reg1) needs to be protected by a lock.
1085 	 */
1086 
1087 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1088 
1089 	if (uart_clock_base->configured) {
1090 		spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1091 		return 0;
1092 	}
1093 
1094 	parent_clock_idx = uart_clock_base->parent_idx;
1095 	parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx];
1096 
1097 	val = readl(uart_clock_base->reg1);
1098 
1099 	if (uart_clock_base->div > CLK_TBG_DIV1_MAX) {
1100 		d1 = CLK_TBG_DIV1_MAX;
1101 		d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX;
1102 	} else {
1103 		d1 = uart_clock_base->div;
1104 		d2 = 1;
1105 	}
1106 
1107 	if (val & CLK_NO_XTAL) {
1108 		prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK;
1109 		prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) *
1110 			    ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK);
1111 	} else {
1112 		prev_clock_idx = PARENT_CLOCK_XTAL;
1113 		prev_d1d2 = 1;
1114 	}
1115 
1116 	/* Note that uart_clock_base->parent_rates[i] may not be available */
1117 	prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx];
1118 
1119 	/* Recalculate UART1 divisor so UART1 baudrate does not change */
1120 	if (prev_clock_rate) {
1121 		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1122 						parent_clock_rate * prev_d1d2,
1123 						prev_clock_rate * d1 * d2);
1124 		if (divisor < 1)
1125 			divisor = 1;
1126 		else if (divisor > BRDV_BAUD_MAX)
1127 			divisor = BRDV_BAUD_MAX;
1128 		val = (val & ~BRDV_BAUD_MASK) | divisor;
1129 	}
1130 
1131 	if (parent_clock_idx != PARENT_CLOCK_XTAL) {
1132 		/* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */
1133 		val |= CLK_NO_XTAL;
1134 		val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT);
1135 		val |= d1 << CLK_TBG_DIV1_SHIFT;
1136 		val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT);
1137 		val |= d2 << CLK_TBG_DIV2_SHIFT;
1138 		val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT);
1139 		val |= parent_clock_idx << CLK_TBG_SEL_SHIFT;
1140 	} else {
1141 		/* Use XTAL, TBG bits are then ignored */
1142 		val &= ~CLK_NO_XTAL;
1143 	}
1144 
1145 	writel(val, uart_clock_base->reg1);
1146 
1147 	/* Recalculate UART2 divisor so UART2 baudrate does not change */
1148 	if (prev_clock_rate) {
1149 		val = readl(uart_clock_base->reg2);
1150 		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1151 						parent_clock_rate * prev_d1d2,
1152 						prev_clock_rate * d1 * d2);
1153 		if (divisor < 1)
1154 			divisor = 1;
1155 		else if (divisor > BRDV_BAUD_MAX)
1156 			divisor = BRDV_BAUD_MAX;
1157 		val = (val & ~BRDV_BAUD_MASK) | divisor;
1158 		writel(val, uart_clock_base->reg2);
1159 	}
1160 
1161 	uart_clock_base->configured = true;
1162 
1163 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1164 
1165 	return 0;
1166 }
1167 
1168 static int mvebu_uart_clock_enable(struct clk_hw *hw)
1169 {
1170 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1171 	struct mvebu_uart_clock_base *uart_clock_base =
1172 						to_uart_clock_base(uart_clock);
1173 	unsigned long flags;
1174 	u32 val;
1175 
1176 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1177 
1178 	val = readl(uart_clock_base->reg1);
1179 
1180 	if (uart_clock->clock_idx == 0)
1181 		val &= ~UART1_CLK_DIS;
1182 	else
1183 		val &= ~UART2_CLK_DIS;
1184 
1185 	writel(val, uart_clock_base->reg1);
1186 
1187 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1188 
1189 	return 0;
1190 }
1191 
1192 static void mvebu_uart_clock_disable(struct clk_hw *hw)
1193 {
1194 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1195 	struct mvebu_uart_clock_base *uart_clock_base =
1196 						to_uart_clock_base(uart_clock);
1197 	unsigned long flags;
1198 	u32 val;
1199 
1200 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1201 
1202 	val = readl(uart_clock_base->reg1);
1203 
1204 	if (uart_clock->clock_idx == 0)
1205 		val |= UART1_CLK_DIS;
1206 	else
1207 		val |= UART2_CLK_DIS;
1208 
1209 	writel(val, uart_clock_base->reg1);
1210 
1211 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1212 }
1213 
1214 static int mvebu_uart_clock_is_enabled(struct clk_hw *hw)
1215 {
1216 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1217 	struct mvebu_uart_clock_base *uart_clock_base =
1218 						to_uart_clock_base(uart_clock);
1219 	u32 val;
1220 
1221 	val = readl(uart_clock_base->reg1);
1222 
1223 	if (uart_clock->clock_idx == 0)
1224 		return !(val & UART1_CLK_DIS);
1225 	else
1226 		return !(val & UART2_CLK_DIS);
1227 }
1228 
1229 static int mvebu_uart_clock_save_context(struct clk_hw *hw)
1230 {
1231 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1232 	struct mvebu_uart_clock_base *uart_clock_base =
1233 						to_uart_clock_base(uart_clock);
1234 	unsigned long flags;
1235 
1236 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1237 	uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1);
1238 	uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2);
1239 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1240 
1241 	return 0;
1242 }
1243 
1244 static void mvebu_uart_clock_restore_context(struct clk_hw *hw)
1245 {
1246 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1247 	struct mvebu_uart_clock_base *uart_clock_base =
1248 						to_uart_clock_base(uart_clock);
1249 	unsigned long flags;
1250 
1251 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1252 	writel(uart_clock->pm_context_reg1, uart_clock_base->reg1);
1253 	writel(uart_clock->pm_context_reg2, uart_clock_base->reg2);
1254 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1255 }
1256 
1257 static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw,
1258 						  unsigned long parent_rate)
1259 {
1260 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1261 	struct mvebu_uart_clock_base *uart_clock_base =
1262 						to_uart_clock_base(uart_clock);
1263 
1264 	return parent_rate / uart_clock_base->div;
1265 }
1266 
1267 static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate,
1268 					unsigned long *parent_rate)
1269 {
1270 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1271 	struct mvebu_uart_clock_base *uart_clock_base =
1272 						to_uart_clock_base(uart_clock);
1273 
1274 	return *parent_rate / uart_clock_base->div;
1275 }
1276 
1277 static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate,
1278 				     unsigned long parent_rate)
1279 {
1280 	/*
1281 	 * We must report success but we can do so unconditionally because
1282 	 * mvebu_uart_clock_round_rate returns values that ensure this call is a
1283 	 * nop.
1284 	 */
1285 
1286 	return 0;
1287 }
1288 
1289 static const struct clk_ops mvebu_uart_clock_ops = {
1290 	.prepare = mvebu_uart_clock_prepare,
1291 	.enable = mvebu_uart_clock_enable,
1292 	.disable = mvebu_uart_clock_disable,
1293 	.is_enabled = mvebu_uart_clock_is_enabled,
1294 	.save_context = mvebu_uart_clock_save_context,
1295 	.restore_context = mvebu_uart_clock_restore_context,
1296 	.round_rate = mvebu_uart_clock_round_rate,
1297 	.set_rate = mvebu_uart_clock_set_rate,
1298 	.recalc_rate = mvebu_uart_clock_recalc_rate,
1299 };
1300 
1301 static int mvebu_uart_clock_register(struct device *dev,
1302 				     struct mvebu_uart_clock *uart_clock,
1303 				     const char *name,
1304 				     const char *parent_name)
1305 {
1306 	struct clk_init_data init = { };
1307 
1308 	uart_clock->clk_hw.init = &init;
1309 
1310 	init.name = name;
1311 	init.ops = &mvebu_uart_clock_ops;
1312 	init.flags = 0;
1313 	init.num_parents = 1;
1314 	init.parent_names = &parent_name;
1315 
1316 	return devm_clk_hw_register(dev, &uart_clock->clk_hw);
1317 }
1318 
1319 static int mvebu_uart_clock_probe(struct platform_device *pdev)
1320 {
1321 	static const char *const uart_clk_names[] = { "uart_1", "uart_2" };
1322 	static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P",
1323 							"TBG-A-S", "TBG-B-S",
1324 							"xtal" };
1325 	struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)];
1326 	struct mvebu_uart_clock_base *uart_clock_base;
1327 	struct clk_hw_onecell_data *hw_clk_data;
1328 	struct device *dev = &pdev->dev;
1329 	int i, parent_clk_idx, ret;
1330 	unsigned long div, rate;
1331 	struct resource *res;
1332 	unsigned int d1, d2;
1333 
1334 	BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) !=
1335 		     ARRAY_SIZE(uart_clock_base->clocks));
1336 	BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) !=
1337 		     ARRAY_SIZE(uart_clock_base->parent_rates));
1338 
1339 	uart_clock_base = devm_kzalloc(dev,
1340 				       sizeof(*uart_clock_base),
1341 				       GFP_KERNEL);
1342 	if (!uart_clock_base)
1343 		return -ENOMEM;
1344 
1345 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1346 	if (!res) {
1347 		dev_err(dev, "Couldn't get first register\n");
1348 		return -ENOENT;
1349 	}
1350 
1351 	/*
1352 	 * UART Clock Control register (reg1 / UART_BRDV) is in the address
1353 	 * space of UART1 (standard UART variant), controls parent clock and
1354 	 * dividers for both UART1 and UART2 and is supplied via DT as the first
1355 	 * resource. Therefore use ioremap() rather than ioremap_resource() to
1356 	 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected
1357 	 * by a lock shared between clock and UART driver.
1358 	 */
1359 	uart_clock_base->reg1 = devm_ioremap(dev, res->start,
1360 					     resource_size(res));
1361 	if (!uart_clock_base->reg1)
1362 		return -ENOMEM;
1363 
1364 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1365 	if (!res) {
1366 		dev_err(dev, "Couldn't get second register\n");
1367 		return -ENOENT;
1368 	}
1369 
1370 	/*
1371 	 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address
1372 	 * space of UART2 (extended UART variant), controls only one UART2
1373 	 * specific divider and is supplied via DT as second resource.
1374 	 * Therefore use ioremap() rather than ioremap_resource() to avoid
1375 	 * conflicts with UART2 driver. Access to UART_BRDV is protected by a
1376 	 * by lock shared between clock and UART driver.
1377 	 */
1378 	uart_clock_base->reg2 = devm_ioremap(dev, res->start,
1379 					     resource_size(res));
1380 	if (!uart_clock_base->reg2)
1381 		return -ENOMEM;
1382 
1383 	hw_clk_data = devm_kzalloc(dev,
1384 				   struct_size(hw_clk_data, hws,
1385 					       ARRAY_SIZE(uart_clk_names)),
1386 				   GFP_KERNEL);
1387 	if (!hw_clk_data)
1388 		return -ENOMEM;
1389 
1390 	hw_clk_data->num = ARRAY_SIZE(uart_clk_names);
1391 	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1392 		hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw;
1393 		uart_clock_base->clocks[i].clock_idx = i;
1394 	}
1395 
1396 	parent_clk_idx = -1;
1397 
1398 	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1399 		parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]);
1400 		if (IS_ERR(parent_clks[i])) {
1401 			if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER)
1402 				return -EPROBE_DEFER;
1403 			dev_warn(dev, "Couldn't get the parent clock %s: %ld\n",
1404 				 parent_clk_names[i], PTR_ERR(parent_clks[i]));
1405 			continue;
1406 		}
1407 
1408 		ret = clk_prepare_enable(parent_clks[i]);
1409 		if (ret) {
1410 			dev_warn(dev, "Couldn't enable parent clock %s: %d\n",
1411 				 parent_clk_names[i], ret);
1412 			continue;
1413 		}
1414 		rate = clk_get_rate(parent_clks[i]);
1415 		uart_clock_base->parent_rates[i] = rate;
1416 
1417 		if (i != PARENT_CLOCK_XTAL) {
1418 			/*
1419 			 * Calculate the smallest TBG d1 and d2 divisors that
1420 			 * still can provide 9600 baudrate.
1421 			 */
1422 			d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1423 					  BRDV_BAUD_MAX);
1424 			if (d1 < 1)
1425 				d1 = 1;
1426 			else if (d1 > CLK_TBG_DIV1_MAX)
1427 				d1 = CLK_TBG_DIV1_MAX;
1428 
1429 			d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1430 					  BRDV_BAUD_MAX * d1);
1431 			if (d2 < 1)
1432 				d2 = 1;
1433 			else if (d2 > CLK_TBG_DIV2_MAX)
1434 				d2 = CLK_TBG_DIV2_MAX;
1435 		} else {
1436 			/*
1437 			 * When UART clock uses XTAL clock as a source then it
1438 			 * is not possible to use d1 and d2 divisors.
1439 			 */
1440 			d1 = d2 = 1;
1441 		}
1442 
1443 		/* Skip clock source which cannot provide 9600 baudrate */
1444 		if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2)
1445 			continue;
1446 
1447 		/*
1448 		 * Choose TBG clock source with the smallest divisors. Use XTAL
1449 		 * clock source only in case TBG is not available as XTAL cannot
1450 		 * be used for baudrates higher than 230400.
1451 		 */
1452 		if (parent_clk_idx == -1 ||
1453 		    (i != PARENT_CLOCK_XTAL && div > d1 * d2)) {
1454 			parent_clk_idx = i;
1455 			div = d1 * d2;
1456 		}
1457 	}
1458 
1459 	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1460 		if (i == parent_clk_idx || IS_ERR(parent_clks[i]))
1461 			continue;
1462 		clk_disable_unprepare(parent_clks[i]);
1463 		devm_clk_put(dev, parent_clks[i]);
1464 	}
1465 
1466 	if (parent_clk_idx == -1) {
1467 		dev_err(dev, "No usable parent clock\n");
1468 		return -ENOENT;
1469 	}
1470 
1471 	uart_clock_base->parent_idx = parent_clk_idx;
1472 	uart_clock_base->div = div;
1473 
1474 	dev_notice(dev, "Using parent clock %s as base UART clock\n",
1475 		   __clk_get_name(parent_clks[parent_clk_idx]));
1476 
1477 	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1478 		ret = mvebu_uart_clock_register(dev,
1479 				&uart_clock_base->clocks[i],
1480 				uart_clk_names[i],
1481 				__clk_get_name(parent_clks[parent_clk_idx]));
1482 		if (ret) {
1483 			dev_err(dev, "Can't register UART clock %d: %d\n",
1484 				i, ret);
1485 			return ret;
1486 		}
1487 	}
1488 
1489 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
1490 					   hw_clk_data);
1491 }
1492 
1493 static const struct of_device_id mvebu_uart_clock_of_match[] = {
1494 	{ .compatible = "marvell,armada-3700-uart-clock", },
1495 	{ }
1496 };
1497 
1498 static struct platform_driver mvebu_uart_clock_platform_driver = {
1499 	.probe = mvebu_uart_clock_probe,
1500 	.driver		= {
1501 		.name	= "mvebu-uart-clock",
1502 		.of_match_table = mvebu_uart_clock_of_match,
1503 	},
1504 };
1505 
1506 static int __init mvebu_uart_init(void)
1507 {
1508 	int ret;
1509 
1510 	ret = uart_register_driver(&mvebu_uart_driver);
1511 	if (ret)
1512 		return ret;
1513 
1514 	ret = platform_driver_register(&mvebu_uart_clock_platform_driver);
1515 	if (ret) {
1516 		uart_unregister_driver(&mvebu_uart_driver);
1517 		return ret;
1518 	}
1519 
1520 	ret = platform_driver_register(&mvebu_uart_platform_driver);
1521 	if (ret) {
1522 		platform_driver_unregister(&mvebu_uart_clock_platform_driver);
1523 		uart_unregister_driver(&mvebu_uart_driver);
1524 		return ret;
1525 	}
1526 
1527 	return 0;
1528 }
1529 arch_initcall(mvebu_uart_init);
1530