xref: /linux/drivers/tty/serial/jsm/jsm_tty.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /************************************************************************
3  * Copyright 2003 Digi International (www.digi.com)
4  *
5  * Copyright (C) 2004 IBM Corporation. All rights reserved.
6  *
7  * Contact Information:
8  * Scott H Kilau <Scott_Kilau@digi.com>
9  * Ananda Venkatarman <mansarov@us.ibm.com>
10  * Modifications:
11  * 01/19/06:	changed jsm_input routine to use the dynamically allocated
12  *		tty_buffer changes. Contributors: Scott Kilau and Ananda V.
13  ***********************************************************************/
14 #include <linux/tty.h>
15 #include <linux/tty_flip.h>
16 #include <linux/serial_reg.h>
17 #include <linux/delay.h>	/* For udelay */
18 #include <linux/pci.h>
19 #include <linux/slab.h>
20 
21 #include "jsm.h"
22 
23 static DECLARE_BITMAP(linemap, MAXLINES);
24 
25 static void jsm_carrier(struct jsm_channel *ch);
26 
27 static inline int jsm_get_mstat(struct jsm_channel *ch)
28 {
29 	unsigned char mstat;
30 	int result;
31 
32 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "start\n");
33 
34 	mstat = (ch->ch_mostat | ch->ch_mistat);
35 
36 	result = 0;
37 
38 	if (mstat & UART_MCR_DTR)
39 		result |= TIOCM_DTR;
40 	if (mstat & UART_MCR_RTS)
41 		result |= TIOCM_RTS;
42 	if (mstat & UART_MSR_CTS)
43 		result |= TIOCM_CTS;
44 	if (mstat & UART_MSR_DSR)
45 		result |= TIOCM_DSR;
46 	if (mstat & UART_MSR_RI)
47 		result |= TIOCM_RI;
48 	if (mstat & UART_MSR_DCD)
49 		result |= TIOCM_CD;
50 
51 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n");
52 	return result;
53 }
54 
55 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
56 {
57 	return TIOCSER_TEMT;
58 }
59 
60 /*
61  * Return modem signals to ld.
62  */
63 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
64 {
65 	int result;
66 	struct jsm_channel *channel =
67 		container_of(port, struct jsm_channel, uart_port);
68 
69 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
70 
71 	result = jsm_get_mstat(channel);
72 
73 	if (result < 0)
74 		return -ENXIO;
75 
76 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
77 
78 	return result;
79 }
80 
81 /*
82  * jsm_set_modem_info()
83  *
84  * Set modem signals, called by ld.
85  */
86 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
87 {
88 	struct jsm_channel *channel =
89 		container_of(port, struct jsm_channel, uart_port);
90 
91 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
92 
93 	if (mctrl & TIOCM_RTS)
94 		channel->ch_mostat |= UART_MCR_RTS;
95 	else
96 		channel->ch_mostat &= ~UART_MCR_RTS;
97 
98 	if (mctrl & TIOCM_DTR)
99 		channel->ch_mostat |= UART_MCR_DTR;
100 	else
101 		channel->ch_mostat &= ~UART_MCR_DTR;
102 
103 	channel->ch_bd->bd_ops->assert_modem_signals(channel);
104 
105 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
106 	udelay(10);
107 }
108 
109 /*
110  * jsm_tty_write()
111  *
112  * Take data from the user or kernel and send it out to the FEP.
113  * In here exists all the Transparent Print magic as well.
114  */
115 static void jsm_tty_write(struct uart_port *port)
116 {
117 	struct jsm_channel *channel;
118 
119 	channel = container_of(port, struct jsm_channel, uart_port);
120 	channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
121 }
122 
123 static void jsm_tty_start_tx(struct uart_port *port)
124 {
125 	struct jsm_channel *channel =
126 		container_of(port, struct jsm_channel, uart_port);
127 
128 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
129 
130 	channel->ch_flags &= ~(CH_STOP);
131 	jsm_tty_write(port);
132 
133 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
134 }
135 
136 static void jsm_tty_stop_tx(struct uart_port *port)
137 {
138 	struct jsm_channel *channel =
139 		container_of(port, struct jsm_channel, uart_port);
140 
141 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
142 
143 	channel->ch_flags |= (CH_STOP);
144 
145 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
146 }
147 
148 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
149 {
150 	unsigned long lock_flags;
151 	struct jsm_channel *channel =
152 		container_of(port, struct jsm_channel, uart_port);
153 	struct ktermios *termios;
154 
155 	spin_lock_irqsave(&port->lock, lock_flags);
156 	termios = &port->state->port.tty->termios;
157 	if (ch == termios->c_cc[VSTART])
158 		channel->ch_bd->bd_ops->send_start_character(channel);
159 
160 	if (ch == termios->c_cc[VSTOP])
161 		channel->ch_bd->bd_ops->send_stop_character(channel);
162 	spin_unlock_irqrestore(&port->lock, lock_flags);
163 }
164 
165 static void jsm_tty_stop_rx(struct uart_port *port)
166 {
167 	struct jsm_channel *channel =
168 		container_of(port, struct jsm_channel, uart_port);
169 
170 	channel->ch_bd->bd_ops->disable_receiver(channel);
171 }
172 
173 static void jsm_tty_break(struct uart_port *port, int break_state)
174 {
175 	unsigned long lock_flags;
176 	struct jsm_channel *channel =
177 		container_of(port, struct jsm_channel, uart_port);
178 
179 	spin_lock_irqsave(&port->lock, lock_flags);
180 	if (break_state == -1)
181 		channel->ch_bd->bd_ops->send_break(channel);
182 	else
183 		channel->ch_bd->bd_ops->clear_break(channel);
184 
185 	spin_unlock_irqrestore(&port->lock, lock_flags);
186 }
187 
188 static int jsm_tty_open(struct uart_port *port)
189 {
190 	struct jsm_board *brd;
191 	struct jsm_channel *channel =
192 		container_of(port, struct jsm_channel, uart_port);
193 	struct ktermios *termios;
194 
195 	/* Get board pointer from our array of majors we have allocated */
196 	brd = channel->ch_bd;
197 
198 	/*
199 	 * Allocate channel buffers for read/write/error.
200 	 * Set flag, so we don't get trounced on.
201 	 */
202 	channel->ch_flags |= (CH_OPENING);
203 
204 	/* Drop locks, as malloc with GFP_KERNEL can sleep */
205 
206 	if (!channel->ch_rqueue) {
207 		channel->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL);
208 		if (!channel->ch_rqueue) {
209 			jsm_dbg(INIT, &channel->ch_bd->pci_dev,
210 				"unable to allocate read queue buf\n");
211 			return -ENOMEM;
212 		}
213 	}
214 	if (!channel->ch_equeue) {
215 		channel->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL);
216 		if (!channel->ch_equeue) {
217 			jsm_dbg(INIT, &channel->ch_bd->pci_dev,
218 				"unable to allocate error queue buf\n");
219 			return -ENOMEM;
220 		}
221 	}
222 
223 	channel->ch_flags &= ~(CH_OPENING);
224 	/*
225 	 * Initialize if neither terminal is open.
226 	 */
227 	jsm_dbg(OPEN, &channel->ch_bd->pci_dev,
228 		"jsm_open: initializing channel in open...\n");
229 
230 	/*
231 	 * Flush input queues.
232 	 */
233 	channel->ch_r_head = channel->ch_r_tail = 0;
234 	channel->ch_e_head = channel->ch_e_tail = 0;
235 
236 	brd->bd_ops->flush_uart_write(channel);
237 	brd->bd_ops->flush_uart_read(channel);
238 
239 	channel->ch_flags = 0;
240 	channel->ch_cached_lsr = 0;
241 	channel->ch_stops_sent = 0;
242 
243 	termios = &port->state->port.tty->termios;
244 	channel->ch_c_cflag	= termios->c_cflag;
245 	channel->ch_c_iflag	= termios->c_iflag;
246 	channel->ch_c_oflag	= termios->c_oflag;
247 	channel->ch_c_lflag	= termios->c_lflag;
248 	channel->ch_startc	= termios->c_cc[VSTART];
249 	channel->ch_stopc	= termios->c_cc[VSTOP];
250 
251 	/* Tell UART to init itself */
252 	brd->bd_ops->uart_init(channel);
253 
254 	/*
255 	 * Run param in case we changed anything
256 	 */
257 	brd->bd_ops->param(channel);
258 
259 	jsm_carrier(channel);
260 
261 	channel->ch_open_count++;
262 
263 	jsm_dbg(OPEN, &channel->ch_bd->pci_dev, "finish\n");
264 	return 0;
265 }
266 
267 static void jsm_tty_close(struct uart_port *port)
268 {
269 	struct jsm_board *bd;
270 	struct jsm_channel *channel =
271 		container_of(port, struct jsm_channel, uart_port);
272 
273 	jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "start\n");
274 
275 	bd = channel->ch_bd;
276 
277 	channel->ch_flags &= ~(CH_STOPI);
278 
279 	channel->ch_open_count--;
280 
281 	/*
282 	 * If we have HUPCL set, lower DTR and RTS
283 	 */
284 	if (channel->ch_c_cflag & HUPCL) {
285 		jsm_dbg(CLOSE, &channel->ch_bd->pci_dev,
286 			"Close. HUPCL set, dropping DTR/RTS\n");
287 
288 		/* Drop RTS/DTR */
289 		channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
290 		bd->bd_ops->assert_modem_signals(channel);
291 	}
292 
293 	/* Turn off UART interrupts for this port */
294 	channel->ch_bd->bd_ops->uart_off(channel);
295 
296 	jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "finish\n");
297 }
298 
299 static void jsm_tty_set_termios(struct uart_port *port,
300 				 struct ktermios *termios,
301 				 struct ktermios *old_termios)
302 {
303 	unsigned long lock_flags;
304 	struct jsm_channel *channel =
305 		container_of(port, struct jsm_channel, uart_port);
306 
307 	spin_lock_irqsave(&port->lock, lock_flags);
308 	channel->ch_c_cflag	= termios->c_cflag;
309 	channel->ch_c_iflag	= termios->c_iflag;
310 	channel->ch_c_oflag	= termios->c_oflag;
311 	channel->ch_c_lflag	= termios->c_lflag;
312 	channel->ch_startc	= termios->c_cc[VSTART];
313 	channel->ch_stopc	= termios->c_cc[VSTOP];
314 
315 	channel->ch_bd->bd_ops->param(channel);
316 	jsm_carrier(channel);
317 	spin_unlock_irqrestore(&port->lock, lock_flags);
318 }
319 
320 static const char *jsm_tty_type(struct uart_port *port)
321 {
322 	return "jsm";
323 }
324 
325 static void jsm_tty_release_port(struct uart_port *port)
326 {
327 }
328 
329 static int jsm_tty_request_port(struct uart_port *port)
330 {
331 	return 0;
332 }
333 
334 static void jsm_config_port(struct uart_port *port, int flags)
335 {
336 	port->type = PORT_JSM;
337 }
338 
339 static const struct uart_ops jsm_ops = {
340 	.tx_empty	= jsm_tty_tx_empty,
341 	.set_mctrl	= jsm_tty_set_mctrl,
342 	.get_mctrl	= jsm_tty_get_mctrl,
343 	.stop_tx	= jsm_tty_stop_tx,
344 	.start_tx	= jsm_tty_start_tx,
345 	.send_xchar	= jsm_tty_send_xchar,
346 	.stop_rx	= jsm_tty_stop_rx,
347 	.break_ctl	= jsm_tty_break,
348 	.startup	= jsm_tty_open,
349 	.shutdown	= jsm_tty_close,
350 	.set_termios	= jsm_tty_set_termios,
351 	.type		= jsm_tty_type,
352 	.release_port	= jsm_tty_release_port,
353 	.request_port	= jsm_tty_request_port,
354 	.config_port	= jsm_config_port,
355 };
356 
357 /*
358  * jsm_tty_init()
359  *
360  * Init the tty subsystem.  Called once per board after board has been
361  * downloaded and init'ed.
362  */
363 int jsm_tty_init(struct jsm_board *brd)
364 {
365 	int i;
366 	void __iomem *vaddr;
367 	struct jsm_channel *ch;
368 
369 	if (!brd)
370 		return -ENXIO;
371 
372 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
373 
374 	/*
375 	 * Initialize board structure elements.
376 	 */
377 
378 	brd->nasync = brd->maxports;
379 
380 	/*
381 	 * Allocate channel memory that might not have been allocated
382 	 * when the driver was first loaded.
383 	 */
384 	for (i = 0; i < brd->nasync; i++) {
385 		if (!brd->channels[i]) {
386 
387 			/*
388 			 * Okay to malloc with GFP_KERNEL, we are not at
389 			 * interrupt context, and there are no locks held.
390 			 */
391 			brd->channels[i] = kzalloc(sizeof(struct jsm_channel), GFP_KERNEL);
392 			if (!brd->channels[i]) {
393 				jsm_dbg(CORE, &brd->pci_dev,
394 					"%s:%d Unable to allocate memory for channel struct\n",
395 					__FILE__, __LINE__);
396 			}
397 		}
398 	}
399 
400 	ch = brd->channels[0];
401 	vaddr = brd->re_map_membase;
402 
403 	/* Set up channel variables */
404 	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
405 
406 		if (!brd->channels[i])
407 			continue;
408 
409 		spin_lock_init(&ch->ch_lock);
410 
411 		if (brd->bd_uart_offset == 0x200)
412 			ch->ch_neo_uart =  vaddr + (brd->bd_uart_offset * i);
413 		else
414 			ch->ch_cls_uart =  vaddr + (brd->bd_uart_offset * i);
415 
416 		ch->ch_bd = brd;
417 		ch->ch_portnum = i;
418 
419 		/* .25 second delay */
420 		ch->ch_close_delay = 250;
421 
422 		init_waitqueue_head(&ch->ch_flags_wait);
423 	}
424 
425 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
426 	return 0;
427 }
428 
429 int jsm_uart_port_init(struct jsm_board *brd)
430 {
431 	int i, rc;
432 	unsigned int line;
433 	struct jsm_channel *ch;
434 
435 	if (!brd)
436 		return -ENXIO;
437 
438 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
439 
440 	/*
441 	 * Initialize board structure elements.
442 	 */
443 
444 	brd->nasync = brd->maxports;
445 
446 	/* Set up channel variables */
447 	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
448 
449 		if (!brd->channels[i])
450 			continue;
451 
452 		brd->channels[i]->uart_port.irq = brd->irq;
453 		brd->channels[i]->uart_port.uartclk = 14745600;
454 		brd->channels[i]->uart_port.type = PORT_JSM;
455 		brd->channels[i]->uart_port.iotype = UPIO_MEM;
456 		brd->channels[i]->uart_port.membase = brd->re_map_membase;
457 		brd->channels[i]->uart_port.fifosize = 16;
458 		brd->channels[i]->uart_port.ops = &jsm_ops;
459 		line = find_first_zero_bit(linemap, MAXLINES);
460 		if (line >= MAXLINES) {
461 			printk(KERN_INFO "jsm: linemap is full, added device failed\n");
462 			continue;
463 		} else
464 			set_bit(line, linemap);
465 		brd->channels[i]->uart_port.line = line;
466 		rc = uart_add_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
467 		if (rc) {
468 			printk(KERN_INFO "jsm: Port %d failed. Aborting...\n", i);
469 			return rc;
470 		} else
471 			printk(KERN_INFO "jsm: Port %d added\n", i);
472 	}
473 
474 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
475 	return 0;
476 }
477 
478 int jsm_remove_uart_port(struct jsm_board *brd)
479 {
480 	int i;
481 	struct jsm_channel *ch;
482 
483 	if (!brd)
484 		return -ENXIO;
485 
486 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
487 
488 	/*
489 	 * Initialize board structure elements.
490 	 */
491 
492 	brd->nasync = brd->maxports;
493 
494 	/* Set up channel variables */
495 	for (i = 0; i < brd->nasync; i++) {
496 
497 		if (!brd->channels[i])
498 			continue;
499 
500 		ch = brd->channels[i];
501 
502 		clear_bit(ch->uart_port.line, linemap);
503 		uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
504 	}
505 
506 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
507 	return 0;
508 }
509 
510 void jsm_input(struct jsm_channel *ch)
511 {
512 	struct jsm_board *bd;
513 	struct tty_struct *tp;
514 	struct tty_port *port;
515 	u32 rmask;
516 	u16 head;
517 	u16 tail;
518 	int data_len;
519 	unsigned long lock_flags;
520 	int len = 0;
521 	int s = 0;
522 	int i = 0;
523 
524 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n");
525 
526 	port = &ch->uart_port.state->port;
527 	tp = port->tty;
528 
529 	bd = ch->ch_bd;
530 	if (!bd)
531 		return;
532 
533 	spin_lock_irqsave(&ch->ch_lock, lock_flags);
534 
535 	/*
536 	 *Figure the number of characters in the buffer.
537 	 *Exit immediately if none.
538 	 */
539 
540 	rmask = RQUEUEMASK;
541 
542 	head = ch->ch_r_head & rmask;
543 	tail = ch->ch_r_tail & rmask;
544 
545 	data_len = (head - tail) & rmask;
546 	if (data_len == 0) {
547 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
548 		return;
549 	}
550 
551 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n");
552 
553 	/*
554 	 *If the device is not open, or CREAD is off, flush
555 	 *input data and return immediately.
556 	 */
557 	if (!tp || !C_CREAD(tp)) {
558 
559 		jsm_dbg(READ, &ch->ch_bd->pci_dev,
560 			"input. dropping %d bytes on port %d...\n",
561 			data_len, ch->ch_portnum);
562 		ch->ch_r_head = tail;
563 
564 		/* Force queue flow control to be released, if needed */
565 		jsm_check_queue_flow_control(ch);
566 
567 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
568 		return;
569 	}
570 
571 	/*
572 	 * If we are throttled, simply don't read any data.
573 	 */
574 	if (ch->ch_flags & CH_STOPI) {
575 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
576 		jsm_dbg(READ, &ch->ch_bd->pci_dev,
577 			"Port %d throttled, not reading any data. head: %x tail: %x\n",
578 			ch->ch_portnum, head, tail);
579 		return;
580 	}
581 
582 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start 2\n");
583 
584 	len = tty_buffer_request_room(port, data_len);
585 
586 	/*
587 	 * len now contains the most amount of data we can copy,
588 	 * bounded either by the flip buffer size or the amount
589 	 * of data the card actually has pending...
590 	 */
591 	while (len) {
592 		s = ((head >= tail) ? head : RQUEUESIZE) - tail;
593 		s = min(s, len);
594 
595 		if (s <= 0)
596 			break;
597 
598 			/*
599 			 * If conditions are such that ld needs to see all
600 			 * UART errors, we will have to walk each character
601 			 * and error byte and send them to the buffer one at
602 			 * a time.
603 			 */
604 
605 		if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
606 			for (i = 0; i < s; i++) {
607 				/*
608 				 * Give the Linux ld the flags in the
609 				 * format it likes.
610 				 */
611 				if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
612 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i),  TTY_BREAK);
613 				else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
614 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_PARITY);
615 				else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
616 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_FRAME);
617 				else
618 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
619 			}
620 		} else {
621 			tty_insert_flip_string(port, ch->ch_rqueue + tail, s);
622 		}
623 		tail += s;
624 		len -= s;
625 		/* Flip queue if needed */
626 		tail &= rmask;
627 	}
628 
629 	ch->ch_r_tail = tail & rmask;
630 	ch->ch_e_tail = tail & rmask;
631 	jsm_check_queue_flow_control(ch);
632 	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
633 
634 	/* Tell the tty layer its okay to "eat" the data now */
635 	tty_flip_buffer_push(port);
636 
637 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n");
638 }
639 
640 static void jsm_carrier(struct jsm_channel *ch)
641 {
642 	struct jsm_board *bd;
643 
644 	int virt_carrier = 0;
645 	int phys_carrier = 0;
646 
647 	jsm_dbg(CARR, &ch->ch_bd->pci_dev, "start\n");
648 
649 	bd = ch->ch_bd;
650 	if (!bd)
651 		return;
652 
653 	if (ch->ch_mistat & UART_MSR_DCD) {
654 		jsm_dbg(CARR, &ch->ch_bd->pci_dev, "mistat: %x D_CD: %x\n",
655 			ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
656 		phys_carrier = 1;
657 	}
658 
659 	if (ch->ch_c_cflag & CLOCAL)
660 		virt_carrier = 1;
661 
662 	jsm_dbg(CARR, &ch->ch_bd->pci_dev, "DCD: physical: %d virt: %d\n",
663 		phys_carrier, virt_carrier);
664 
665 	/*
666 	 * Test for a VIRTUAL carrier transition to HIGH.
667 	 */
668 	if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
669 
670 		/*
671 		 * When carrier rises, wake any threads waiting
672 		 * for carrier in the open routine.
673 		 */
674 
675 		jsm_dbg(CARR, &ch->ch_bd->pci_dev, "carrier: virt DCD rose\n");
676 
677 		if (waitqueue_active(&(ch->ch_flags_wait)))
678 			wake_up_interruptible(&ch->ch_flags_wait);
679 	}
680 
681 	/*
682 	 * Test for a PHYSICAL carrier transition to HIGH.
683 	 */
684 	if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
685 
686 		/*
687 		 * When carrier rises, wake any threads waiting
688 		 * for carrier in the open routine.
689 		 */
690 
691 		jsm_dbg(CARR, &ch->ch_bd->pci_dev,
692 			"carrier: physical DCD rose\n");
693 
694 		if (waitqueue_active(&(ch->ch_flags_wait)))
695 			wake_up_interruptible(&ch->ch_flags_wait);
696 	}
697 
698 	/*
699 	 *  Test for a PHYSICAL transition to low, so long as we aren't
700 	 *  currently ignoring physical transitions (which is what "virtual
701 	 *  carrier" indicates).
702 	 *
703 	 *  The transition of the virtual carrier to low really doesn't
704 	 *  matter... it really only means "ignore carrier state", not
705 	 *  "make pretend that carrier is there".
706 	 */
707 	if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
708 			&& (phys_carrier == 0)) {
709 		/*
710 		 *	When carrier drops:
711 		 *
712 		 *	Drop carrier on all open units.
713 		 *
714 		 *	Flush queues, waking up any task waiting in the
715 		 *	line discipline.
716 		 *
717 		 *	Send a hangup to the control terminal.
718 		 *
719 		 *	Enable all select calls.
720 		 */
721 		if (waitqueue_active(&(ch->ch_flags_wait)))
722 			wake_up_interruptible(&ch->ch_flags_wait);
723 	}
724 
725 	/*
726 	 *  Make sure that our cached values reflect the current reality.
727 	 */
728 	if (virt_carrier == 1)
729 		ch->ch_flags |= CH_FCAR;
730 	else
731 		ch->ch_flags &= ~CH_FCAR;
732 
733 	if (phys_carrier == 1)
734 		ch->ch_flags |= CH_CD;
735 	else
736 		ch->ch_flags &= ~CH_CD;
737 }
738 
739 
740 void jsm_check_queue_flow_control(struct jsm_channel *ch)
741 {
742 	struct board_ops *bd_ops = ch->ch_bd->bd_ops;
743 	int qleft;
744 
745 	/* Store how much space we have left in the queue */
746 	if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
747 		qleft += RQUEUEMASK + 1;
748 
749 	/*
750 	 * Check to see if we should enforce flow control on our queue because
751 	 * the ld (or user) isn't reading data out of our queue fast enuf.
752 	 *
753 	 * NOTE: This is done based on what the current flow control of the
754 	 * port is set for.
755 	 *
756 	 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
757 	 *	This will cause the UART's FIFO to back up, and force
758 	 *	the RTS signal to be dropped.
759 	 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
760 	 *	the other side, in hopes it will stop sending data to us.
761 	 * 3) NONE - Nothing we can do.  We will simply drop any extra data
762 	 *	that gets sent into us when the queue fills up.
763 	 */
764 	if (qleft < 256) {
765 		/* HWFLOW */
766 		if (ch->ch_c_cflag & CRTSCTS) {
767 			if (!(ch->ch_flags & CH_RECEIVER_OFF)) {
768 				bd_ops->disable_receiver(ch);
769 				ch->ch_flags |= (CH_RECEIVER_OFF);
770 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
771 					"Internal queue hit hilevel mark (%d)! Turning off interrupts\n",
772 					qleft);
773 			}
774 		}
775 		/* SWFLOW */
776 		else if (ch->ch_c_iflag & IXOFF) {
777 			if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
778 				bd_ops->send_stop_character(ch);
779 				ch->ch_stops_sent++;
780 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
781 					"Sending stop char! Times sent: %x\n",
782 					ch->ch_stops_sent);
783 			}
784 		}
785 	}
786 
787 	/*
788 	 * Check to see if we should unenforce flow control because
789 	 * ld (or user) finally read enuf data out of our queue.
790 	 *
791 	 * NOTE: This is done based on what the current flow control of the
792 	 * port is set for.
793 	 *
794 	 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
795 	 *	This will cause the UART's FIFO to raise RTS back up,
796 	 *	which will allow the other side to start sending data again.
797 	 * 2) SWFLOW (IXOFF) - Send a start character to
798 	 *	the other side, so it will start sending data to us again.
799 	 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
800 	 *	other side, we don't need to do anything now.
801 	 */
802 	if (qleft > (RQUEUESIZE / 2)) {
803 		/* HWFLOW */
804 		if (ch->ch_c_cflag & CRTSCTS) {
805 			if (ch->ch_flags & CH_RECEIVER_OFF) {
806 				bd_ops->enable_receiver(ch);
807 				ch->ch_flags &= ~(CH_RECEIVER_OFF);
808 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
809 					"Internal queue hit lowlevel mark (%d)! Turning on interrupts\n",
810 					qleft);
811 			}
812 		}
813 		/* SWFLOW */
814 		else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
815 			ch->ch_stops_sent = 0;
816 			bd_ops->send_start_character(ch);
817 			jsm_dbg(READ, &ch->ch_bd->pci_dev,
818 				"Sending start char!\n");
819 		}
820 	}
821 }
822