xref: /linux/drivers/tty/serial/jsm/jsm_tty.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /************************************************************************
2  * Copyright 2003 Digi International (www.digi.com)
3  *
4  * Copyright (C) 2004 IBM Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14  * PURPOSE.  See the GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19  * MA  02111-1307, USA.
20  *
21  * Contact Information:
22  * Scott H Kilau <Scott_Kilau@digi.com>
23  * Ananda Venkatarman <mansarov@us.ibm.com>
24  * Modifications:
25  * 01/19/06:	changed jsm_input routine to use the dynamically allocated
26  *		tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27  ***********************************************************************/
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 #include <linux/serial_reg.h>
31 #include <linux/delay.h>	/* For udelay */
32 #include <linux/pci.h>
33 #include <linux/slab.h>
34 
35 #include "jsm.h"
36 
37 static DECLARE_BITMAP(linemap, MAXLINES);
38 
39 static void jsm_carrier(struct jsm_channel *ch);
40 
41 static inline int jsm_get_mstat(struct jsm_channel *ch)
42 {
43 	unsigned char mstat;
44 	unsigned result;
45 
46 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "start\n");
47 
48 	mstat = (ch->ch_mostat | ch->ch_mistat);
49 
50 	result = 0;
51 
52 	if (mstat & UART_MCR_DTR)
53 		result |= TIOCM_DTR;
54 	if (mstat & UART_MCR_RTS)
55 		result |= TIOCM_RTS;
56 	if (mstat & UART_MSR_CTS)
57 		result |= TIOCM_CTS;
58 	if (mstat & UART_MSR_DSR)
59 		result |= TIOCM_DSR;
60 	if (mstat & UART_MSR_RI)
61 		result |= TIOCM_RI;
62 	if (mstat & UART_MSR_DCD)
63 		result |= TIOCM_CD;
64 
65 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n");
66 	return result;
67 }
68 
69 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
70 {
71 	return TIOCSER_TEMT;
72 }
73 
74 /*
75  * Return modem signals to ld.
76  */
77 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
78 {
79 	int result;
80 	struct jsm_channel *channel = (struct jsm_channel *)port;
81 
82 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
83 
84 	result = jsm_get_mstat(channel);
85 
86 	if (result < 0)
87 		return -ENXIO;
88 
89 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
90 
91 	return result;
92 }
93 
94 /*
95  * jsm_set_modem_info()
96  *
97  * Set modem signals, called by ld.
98  */
99 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
100 {
101 	struct jsm_channel *channel = (struct jsm_channel *)port;
102 
103 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
104 
105 	if (mctrl & TIOCM_RTS)
106 		channel->ch_mostat |= UART_MCR_RTS;
107 	else
108 		channel->ch_mostat &= ~UART_MCR_RTS;
109 
110 	if (mctrl & TIOCM_DTR)
111 		channel->ch_mostat |= UART_MCR_DTR;
112 	else
113 		channel->ch_mostat &= ~UART_MCR_DTR;
114 
115 	channel->ch_bd->bd_ops->assert_modem_signals(channel);
116 
117 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
118 	udelay(10);
119 }
120 
121 /*
122  * jsm_tty_write()
123  *
124  * Take data from the user or kernel and send it out to the FEP.
125  * In here exists all the Transparent Print magic as well.
126  */
127 static void jsm_tty_write(struct uart_port *port)
128 {
129 	struct jsm_channel *channel;
130 	channel = container_of(port, struct jsm_channel, uart_port);
131 	channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
132 }
133 
134 static void jsm_tty_start_tx(struct uart_port *port)
135 {
136 	struct jsm_channel *channel = (struct jsm_channel *)port;
137 
138 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
139 
140 	channel->ch_flags &= ~(CH_STOP);
141 	jsm_tty_write(port);
142 
143 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
144 }
145 
146 static void jsm_tty_stop_tx(struct uart_port *port)
147 {
148 	struct jsm_channel *channel = (struct jsm_channel *)port;
149 
150 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
151 
152 	channel->ch_flags |= (CH_STOP);
153 
154 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
155 }
156 
157 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
158 {
159 	unsigned long lock_flags;
160 	struct jsm_channel *channel = (struct jsm_channel *)port;
161 	struct ktermios *termios;
162 
163 	spin_lock_irqsave(&port->lock, lock_flags);
164 	termios = &port->state->port.tty->termios;
165 	if (ch == termios->c_cc[VSTART])
166 		channel->ch_bd->bd_ops->send_start_character(channel);
167 
168 	if (ch == termios->c_cc[VSTOP])
169 		channel->ch_bd->bd_ops->send_stop_character(channel);
170 	spin_unlock_irqrestore(&port->lock, lock_flags);
171 }
172 
173 static void jsm_tty_stop_rx(struct uart_port *port)
174 {
175 	struct jsm_channel *channel = (struct jsm_channel *)port;
176 
177 	channel->ch_bd->bd_ops->disable_receiver(channel);
178 }
179 
180 static void jsm_tty_enable_ms(struct uart_port *port)
181 {
182 	/* Nothing needed */
183 }
184 
185 static void jsm_tty_break(struct uart_port *port, int break_state)
186 {
187 	unsigned long lock_flags;
188 	struct jsm_channel *channel = (struct jsm_channel *)port;
189 
190 	spin_lock_irqsave(&port->lock, lock_flags);
191 	if (break_state == -1)
192 		channel->ch_bd->bd_ops->send_break(channel);
193 	else
194 		channel->ch_bd->bd_ops->clear_break(channel, 0);
195 
196 	spin_unlock_irqrestore(&port->lock, lock_flags);
197 }
198 
199 static int jsm_tty_open(struct uart_port *port)
200 {
201 	struct jsm_board *brd;
202 	struct jsm_channel *channel = (struct jsm_channel *)port;
203 	struct ktermios *termios;
204 
205 	/* Get board pointer from our array of majors we have allocated */
206 	brd = channel->ch_bd;
207 
208 	/*
209 	 * Allocate channel buffers for read/write/error.
210 	 * Set flag, so we don't get trounced on.
211 	 */
212 	channel->ch_flags |= (CH_OPENING);
213 
214 	/* Drop locks, as malloc with GFP_KERNEL can sleep */
215 
216 	if (!channel->ch_rqueue) {
217 		channel->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL);
218 		if (!channel->ch_rqueue) {
219 			jsm_dbg(INIT, &channel->ch_bd->pci_dev,
220 				"unable to allocate read queue buf\n");
221 			return -ENOMEM;
222 		}
223 	}
224 	if (!channel->ch_equeue) {
225 		channel->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL);
226 		if (!channel->ch_equeue) {
227 			jsm_dbg(INIT, &channel->ch_bd->pci_dev,
228 				"unable to allocate error queue buf\n");
229 			return -ENOMEM;
230 		}
231 	}
232 
233 	channel->ch_flags &= ~(CH_OPENING);
234 	/*
235 	 * Initialize if neither terminal is open.
236 	 */
237 	jsm_dbg(OPEN, &channel->ch_bd->pci_dev,
238 		"jsm_open: initializing channel in open...\n");
239 
240 	/*
241 	 * Flush input queues.
242 	 */
243 	channel->ch_r_head = channel->ch_r_tail = 0;
244 	channel->ch_e_head = channel->ch_e_tail = 0;
245 
246 	brd->bd_ops->flush_uart_write(channel);
247 	brd->bd_ops->flush_uart_read(channel);
248 
249 	channel->ch_flags = 0;
250 	channel->ch_cached_lsr = 0;
251 	channel->ch_stops_sent = 0;
252 
253 	termios = &port->state->port.tty->termios;
254 	channel->ch_c_cflag	= termios->c_cflag;
255 	channel->ch_c_iflag	= termios->c_iflag;
256 	channel->ch_c_oflag	= termios->c_oflag;
257 	channel->ch_c_lflag	= termios->c_lflag;
258 	channel->ch_startc	= termios->c_cc[VSTART];
259 	channel->ch_stopc	= termios->c_cc[VSTOP];
260 
261 	/* Tell UART to init itself */
262 	brd->bd_ops->uart_init(channel);
263 
264 	/*
265 	 * Run param in case we changed anything
266 	 */
267 	brd->bd_ops->param(channel);
268 
269 	jsm_carrier(channel);
270 
271 	channel->ch_open_count++;
272 
273 	jsm_dbg(OPEN, &channel->ch_bd->pci_dev, "finish\n");
274 	return 0;
275 }
276 
277 static void jsm_tty_close(struct uart_port *port)
278 {
279 	struct jsm_board *bd;
280 	struct ktermios *ts;
281 	struct jsm_channel *channel = (struct jsm_channel *)port;
282 
283 	jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "start\n");
284 
285 	bd = channel->ch_bd;
286 	ts = &port->state->port.tty->termios;
287 
288 	channel->ch_flags &= ~(CH_STOPI);
289 
290 	channel->ch_open_count--;
291 
292 	/*
293 	 * If we have HUPCL set, lower DTR and RTS
294 	 */
295 	if (channel->ch_c_cflag & HUPCL) {
296 		jsm_dbg(CLOSE, &channel->ch_bd->pci_dev,
297 			"Close. HUPCL set, dropping DTR/RTS\n");
298 
299 		/* Drop RTS/DTR */
300 		channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
301 		bd->bd_ops->assert_modem_signals(channel);
302 	}
303 
304 	/* Turn off UART interrupts for this port */
305 	channel->ch_bd->bd_ops->uart_off(channel);
306 
307 	jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "finish\n");
308 }
309 
310 static void jsm_tty_set_termios(struct uart_port *port,
311 				 struct ktermios *termios,
312 				 struct ktermios *old_termios)
313 {
314 	unsigned long lock_flags;
315 	struct jsm_channel *channel = (struct jsm_channel *)port;
316 
317 	spin_lock_irqsave(&port->lock, lock_flags);
318 	channel->ch_c_cflag	= termios->c_cflag;
319 	channel->ch_c_iflag	= termios->c_iflag;
320 	channel->ch_c_oflag	= termios->c_oflag;
321 	channel->ch_c_lflag	= termios->c_lflag;
322 	channel->ch_startc	= termios->c_cc[VSTART];
323 	channel->ch_stopc	= termios->c_cc[VSTOP];
324 
325 	channel->ch_bd->bd_ops->param(channel);
326 	jsm_carrier(channel);
327 	spin_unlock_irqrestore(&port->lock, lock_flags);
328 }
329 
330 static const char *jsm_tty_type(struct uart_port *port)
331 {
332 	return "jsm";
333 }
334 
335 static void jsm_tty_release_port(struct uart_port *port)
336 {
337 }
338 
339 static int jsm_tty_request_port(struct uart_port *port)
340 {
341 	return 0;
342 }
343 
344 static void jsm_config_port(struct uart_port *port, int flags)
345 {
346 	port->type = PORT_JSM;
347 }
348 
349 static struct uart_ops jsm_ops = {
350 	.tx_empty	= jsm_tty_tx_empty,
351 	.set_mctrl	= jsm_tty_set_mctrl,
352 	.get_mctrl	= jsm_tty_get_mctrl,
353 	.stop_tx	= jsm_tty_stop_tx,
354 	.start_tx	= jsm_tty_start_tx,
355 	.send_xchar	= jsm_tty_send_xchar,
356 	.stop_rx	= jsm_tty_stop_rx,
357 	.enable_ms	= jsm_tty_enable_ms,
358 	.break_ctl	= jsm_tty_break,
359 	.startup	= jsm_tty_open,
360 	.shutdown	= jsm_tty_close,
361 	.set_termios	= jsm_tty_set_termios,
362 	.type		= jsm_tty_type,
363 	.release_port	= jsm_tty_release_port,
364 	.request_port	= jsm_tty_request_port,
365 	.config_port	= jsm_config_port,
366 };
367 
368 /*
369  * jsm_tty_init()
370  *
371  * Init the tty subsystem.  Called once per board after board has been
372  * downloaded and init'ed.
373  */
374 int jsm_tty_init(struct jsm_board *brd)
375 {
376 	int i;
377 	void __iomem *vaddr;
378 	struct jsm_channel *ch;
379 
380 	if (!brd)
381 		return -ENXIO;
382 
383 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
384 
385 	/*
386 	 * Initialize board structure elements.
387 	 */
388 
389 	brd->nasync = brd->maxports;
390 
391 	/*
392 	 * Allocate channel memory that might not have been allocated
393 	 * when the driver was first loaded.
394 	 */
395 	for (i = 0; i < brd->nasync; i++) {
396 		if (!brd->channels[i]) {
397 
398 			/*
399 			 * Okay to malloc with GFP_KERNEL, we are not at
400 			 * interrupt context, and there are no locks held.
401 			 */
402 			brd->channels[i] = kzalloc(sizeof(struct jsm_channel), GFP_KERNEL);
403 			if (!brd->channels[i]) {
404 				jsm_dbg(CORE, &brd->pci_dev,
405 					"%s:%d Unable to allocate memory for channel struct\n",
406 					__FILE__, __LINE__);
407 			}
408 		}
409 	}
410 
411 	ch = brd->channels[0];
412 	vaddr = brd->re_map_membase;
413 
414 	/* Set up channel variables */
415 	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
416 
417 		if (!brd->channels[i])
418 			continue;
419 
420 		spin_lock_init(&ch->ch_lock);
421 
422 		if (brd->bd_uart_offset == 0x200)
423 			ch->ch_neo_uart =  vaddr + (brd->bd_uart_offset * i);
424 
425 		ch->ch_bd = brd;
426 		ch->ch_portnum = i;
427 
428 		/* .25 second delay */
429 		ch->ch_close_delay = 250;
430 
431 		init_waitqueue_head(&ch->ch_flags_wait);
432 	}
433 
434 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
435 	return 0;
436 }
437 
438 int jsm_uart_port_init(struct jsm_board *brd)
439 {
440 	int i, rc;
441 	unsigned int line;
442 	struct jsm_channel *ch;
443 
444 	if (!brd)
445 		return -ENXIO;
446 
447 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
448 
449 	/*
450 	 * Initialize board structure elements.
451 	 */
452 
453 	brd->nasync = brd->maxports;
454 
455 	/* Set up channel variables */
456 	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
457 
458 		if (!brd->channels[i])
459 			continue;
460 
461 		brd->channels[i]->uart_port.irq = brd->irq;
462 		brd->channels[i]->uart_port.uartclk = 14745600;
463 		brd->channels[i]->uart_port.type = PORT_JSM;
464 		brd->channels[i]->uart_port.iotype = UPIO_MEM;
465 		brd->channels[i]->uart_port.membase = brd->re_map_membase;
466 		brd->channels[i]->uart_port.fifosize = 16;
467 		brd->channels[i]->uart_port.ops = &jsm_ops;
468 		line = find_first_zero_bit(linemap, MAXLINES);
469 		if (line >= MAXLINES) {
470 			printk(KERN_INFO "jsm: linemap is full, added device failed\n");
471 			continue;
472 		} else
473 			set_bit(line, linemap);
474 		brd->channels[i]->uart_port.line = line;
475 		rc = uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port);
476 		if (rc){
477 			printk(KERN_INFO "jsm: Port %d failed. Aborting...\n", i);
478 			return rc;
479 		}
480 		else
481 			printk(KERN_INFO "jsm: Port %d added\n", i);
482 	}
483 
484 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
485 	return 0;
486 }
487 
488 int jsm_remove_uart_port(struct jsm_board *brd)
489 {
490 	int i;
491 	struct jsm_channel *ch;
492 
493 	if (!brd)
494 		return -ENXIO;
495 
496 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
497 
498 	/*
499 	 * Initialize board structure elements.
500 	 */
501 
502 	brd->nasync = brd->maxports;
503 
504 	/* Set up channel variables */
505 	for (i = 0; i < brd->nasync; i++) {
506 
507 		if (!brd->channels[i])
508 			continue;
509 
510 		ch = brd->channels[i];
511 
512 		clear_bit(ch->uart_port.line, linemap);
513 		uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
514 	}
515 
516 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
517 	return 0;
518 }
519 
520 void jsm_input(struct jsm_channel *ch)
521 {
522 	struct jsm_board *bd;
523 	struct tty_struct *tp;
524 	struct tty_port *port;
525 	u32 rmask;
526 	u16 head;
527 	u16 tail;
528 	int data_len;
529 	unsigned long lock_flags;
530 	int len = 0;
531 	int n = 0;
532 	int s = 0;
533 	int i = 0;
534 
535 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n");
536 
537 	if (!ch)
538 		return;
539 
540 	port = &ch->uart_port.state->port;
541 	tp = port->tty;
542 
543 	bd = ch->ch_bd;
544 	if(!bd)
545 		return;
546 
547 	spin_lock_irqsave(&ch->ch_lock, lock_flags);
548 
549 	/*
550 	 *Figure the number of characters in the buffer.
551 	 *Exit immediately if none.
552 	 */
553 
554 	rmask = RQUEUEMASK;
555 
556 	head = ch->ch_r_head & rmask;
557 	tail = ch->ch_r_tail & rmask;
558 
559 	data_len = (head - tail) & rmask;
560 	if (data_len == 0) {
561 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
562 		return;
563 	}
564 
565 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n");
566 
567 	/*
568 	 *If the device is not open, or CREAD is off, flush
569 	 *input data and return immediately.
570 	 */
571 	if (!tp ||
572 		!(tp->termios.c_cflag & CREAD) ) {
573 
574 		jsm_dbg(READ, &ch->ch_bd->pci_dev,
575 			"input. dropping %d bytes on port %d...\n",
576 			data_len, ch->ch_portnum);
577 		ch->ch_r_head = tail;
578 
579 		/* Force queue flow control to be released, if needed */
580 		jsm_check_queue_flow_control(ch);
581 
582 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
583 		return;
584 	}
585 
586 	/*
587 	 * If we are throttled, simply don't read any data.
588 	 */
589 	if (ch->ch_flags & CH_STOPI) {
590 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
591 		jsm_dbg(READ, &ch->ch_bd->pci_dev,
592 			"Port %d throttled, not reading any data. head: %x tail: %x\n",
593 			ch->ch_portnum, head, tail);
594 		return;
595 	}
596 
597 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start 2\n");
598 
599 	len = tty_buffer_request_room(port, data_len);
600 	n = len;
601 
602 	/*
603 	 * n now contains the most amount of data we can copy,
604 	 * bounded either by the flip buffer size or the amount
605 	 * of data the card actually has pending...
606 	 */
607 	while (n) {
608 		s = ((head >= tail) ? head : RQUEUESIZE) - tail;
609 		s = min(s, n);
610 
611 		if (s <= 0)
612 			break;
613 
614 			/*
615 			 * If conditions are such that ld needs to see all
616 			 * UART errors, we will have to walk each character
617 			 * and error byte and send them to the buffer one at
618 			 * a time.
619 			 */
620 
621 		if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
622 			for (i = 0; i < s; i++) {
623 				/*
624 				 * Give the Linux ld the flags in the
625 				 * format it likes.
626 				 */
627 				if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
628 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i),  TTY_BREAK);
629 				else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
630 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_PARITY);
631 				else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
632 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_FRAME);
633 				else
634 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
635 			}
636 		} else {
637 			tty_insert_flip_string(port, ch->ch_rqueue + tail, s);
638 		}
639 		tail += s;
640 		n -= s;
641 		/* Flip queue if needed */
642 		tail &= rmask;
643 	}
644 
645 	ch->ch_r_tail = tail & rmask;
646 	ch->ch_e_tail = tail & rmask;
647 	jsm_check_queue_flow_control(ch);
648 	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
649 
650 	/* Tell the tty layer its okay to "eat" the data now */
651 	tty_flip_buffer_push(port);
652 
653 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n");
654 }
655 
656 static void jsm_carrier(struct jsm_channel *ch)
657 {
658 	struct jsm_board *bd;
659 
660 	int virt_carrier = 0;
661 	int phys_carrier = 0;
662 
663 	jsm_dbg(CARR, &ch->ch_bd->pci_dev, "start\n");
664 	if (!ch)
665 		return;
666 
667 	bd = ch->ch_bd;
668 
669 	if (!bd)
670 		return;
671 
672 	if (ch->ch_mistat & UART_MSR_DCD) {
673 		jsm_dbg(CARR, &ch->ch_bd->pci_dev, "mistat: %x D_CD: %x\n",
674 			ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
675 		phys_carrier = 1;
676 	}
677 
678 	if (ch->ch_c_cflag & CLOCAL)
679 		virt_carrier = 1;
680 
681 	jsm_dbg(CARR, &ch->ch_bd->pci_dev, "DCD: physical: %d virt: %d\n",
682 		phys_carrier, virt_carrier);
683 
684 	/*
685 	 * Test for a VIRTUAL carrier transition to HIGH.
686 	 */
687 	if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
688 
689 		/*
690 		 * When carrier rises, wake any threads waiting
691 		 * for carrier in the open routine.
692 		 */
693 
694 		jsm_dbg(CARR, &ch->ch_bd->pci_dev, "carrier: virt DCD rose\n");
695 
696 		if (waitqueue_active(&(ch->ch_flags_wait)))
697 			wake_up_interruptible(&ch->ch_flags_wait);
698 	}
699 
700 	/*
701 	 * Test for a PHYSICAL carrier transition to HIGH.
702 	 */
703 	if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
704 
705 		/*
706 		 * When carrier rises, wake any threads waiting
707 		 * for carrier in the open routine.
708 		 */
709 
710 		jsm_dbg(CARR, &ch->ch_bd->pci_dev,
711 			"carrier: physical DCD rose\n");
712 
713 		if (waitqueue_active(&(ch->ch_flags_wait)))
714 			wake_up_interruptible(&ch->ch_flags_wait);
715 	}
716 
717 	/*
718 	 *  Test for a PHYSICAL transition to low, so long as we aren't
719 	 *  currently ignoring physical transitions (which is what "virtual
720 	 *  carrier" indicates).
721 	 *
722 	 *  The transition of the virtual carrier to low really doesn't
723 	 *  matter... it really only means "ignore carrier state", not
724 	 *  "make pretend that carrier is there".
725 	 */
726 	if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
727 			&& (phys_carrier == 0)) {
728 		/*
729 		 *	When carrier drops:
730 		 *
731 		 *	Drop carrier on all open units.
732 		 *
733 		 *	Flush queues, waking up any task waiting in the
734 		 *	line discipline.
735 		 *
736 		 *	Send a hangup to the control terminal.
737 		 *
738 		 *	Enable all select calls.
739 		 */
740 		if (waitqueue_active(&(ch->ch_flags_wait)))
741 			wake_up_interruptible(&ch->ch_flags_wait);
742 	}
743 
744 	/*
745 	 *  Make sure that our cached values reflect the current reality.
746 	 */
747 	if (virt_carrier == 1)
748 		ch->ch_flags |= CH_FCAR;
749 	else
750 		ch->ch_flags &= ~CH_FCAR;
751 
752 	if (phys_carrier == 1)
753 		ch->ch_flags |= CH_CD;
754 	else
755 		ch->ch_flags &= ~CH_CD;
756 }
757 
758 
759 void jsm_check_queue_flow_control(struct jsm_channel *ch)
760 {
761 	struct board_ops *bd_ops = ch->ch_bd->bd_ops;
762 	int qleft;
763 
764 	/* Store how much space we have left in the queue */
765 	if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
766 		qleft += RQUEUEMASK + 1;
767 
768 	/*
769 	 * Check to see if we should enforce flow control on our queue because
770 	 * the ld (or user) isn't reading data out of our queue fast enuf.
771 	 *
772 	 * NOTE: This is done based on what the current flow control of the
773 	 * port is set for.
774 	 *
775 	 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
776 	 *	This will cause the UART's FIFO to back up, and force
777 	 *	the RTS signal to be dropped.
778 	 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
779 	 *	the other side, in hopes it will stop sending data to us.
780 	 * 3) NONE - Nothing we can do.  We will simply drop any extra data
781 	 *	that gets sent into us when the queue fills up.
782 	 */
783 	if (qleft < 256) {
784 		/* HWFLOW */
785 		if (ch->ch_c_cflag & CRTSCTS) {
786 			if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
787 				bd_ops->disable_receiver(ch);
788 				ch->ch_flags |= (CH_RECEIVER_OFF);
789 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
790 					"Internal queue hit hilevel mark (%d)! Turning off interrupts\n",
791 					qleft);
792 			}
793 		}
794 		/* SWFLOW */
795 		else if (ch->ch_c_iflag & IXOFF) {
796 			if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
797 				bd_ops->send_stop_character(ch);
798 				ch->ch_stops_sent++;
799 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
800 					"Sending stop char! Times sent: %x\n",
801 					ch->ch_stops_sent);
802 			}
803 		}
804 	}
805 
806 	/*
807 	 * Check to see if we should unenforce flow control because
808 	 * ld (or user) finally read enuf data out of our queue.
809 	 *
810 	 * NOTE: This is done based on what the current flow control of the
811 	 * port is set for.
812 	 *
813 	 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
814 	 *	This will cause the UART's FIFO to raise RTS back up,
815 	 *	which will allow the other side to start sending data again.
816 	 * 2) SWFLOW (IXOFF) - Send a start character to
817 	 *	the other side, so it will start sending data to us again.
818 	 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
819 	 *	other side, we don't need to do anything now.
820 	 */
821 	if (qleft > (RQUEUESIZE / 2)) {
822 		/* HWFLOW */
823 		if (ch->ch_c_cflag & CRTSCTS) {
824 			if (ch->ch_flags & CH_RECEIVER_OFF) {
825 				bd_ops->enable_receiver(ch);
826 				ch->ch_flags &= ~(CH_RECEIVER_OFF);
827 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
828 					"Internal queue hit lowlevel mark (%d)! Turning on interrupts\n",
829 					qleft);
830 			}
831 		}
832 		/* SWFLOW */
833 		else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
834 			ch->ch_stops_sent = 0;
835 			bd_ops->send_start_character(ch);
836 			jsm_dbg(READ, &ch->ch_bd->pci_dev,
837 				"Sending start char!\n");
838 		}
839 	}
840 }
841