xref: /linux/drivers/tty/serial/jsm/jsm_tty.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /************************************************************************
2  * Copyright 2003 Digi International (www.digi.com)
3  *
4  * Copyright (C) 2004 IBM Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14  * PURPOSE.  See the GNU General Public License for more details.
15  *
16  * Contact Information:
17  * Scott H Kilau <Scott_Kilau@digi.com>
18  * Ananda Venkatarman <mansarov@us.ibm.com>
19  * Modifications:
20  * 01/19/06:	changed jsm_input routine to use the dynamically allocated
21  *		tty_buffer changes. Contributors: Scott Kilau and Ananda V.
22  ***********************************************************************/
23 #include <linux/tty.h>
24 #include <linux/tty_flip.h>
25 #include <linux/serial_reg.h>
26 #include <linux/delay.h>	/* For udelay */
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 
30 #include "jsm.h"
31 
32 static DECLARE_BITMAP(linemap, MAXLINES);
33 
34 static void jsm_carrier(struct jsm_channel *ch);
35 
36 static inline int jsm_get_mstat(struct jsm_channel *ch)
37 {
38 	unsigned char mstat;
39 	unsigned result;
40 
41 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "start\n");
42 
43 	mstat = (ch->ch_mostat | ch->ch_mistat);
44 
45 	result = 0;
46 
47 	if (mstat & UART_MCR_DTR)
48 		result |= TIOCM_DTR;
49 	if (mstat & UART_MCR_RTS)
50 		result |= TIOCM_RTS;
51 	if (mstat & UART_MSR_CTS)
52 		result |= TIOCM_CTS;
53 	if (mstat & UART_MSR_DSR)
54 		result |= TIOCM_DSR;
55 	if (mstat & UART_MSR_RI)
56 		result |= TIOCM_RI;
57 	if (mstat & UART_MSR_DCD)
58 		result |= TIOCM_CD;
59 
60 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n");
61 	return result;
62 }
63 
64 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
65 {
66 	return TIOCSER_TEMT;
67 }
68 
69 /*
70  * Return modem signals to ld.
71  */
72 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
73 {
74 	int result;
75 	struct jsm_channel *channel =
76 		container_of(port, struct jsm_channel, uart_port);
77 
78 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
79 
80 	result = jsm_get_mstat(channel);
81 
82 	if (result < 0)
83 		return -ENXIO;
84 
85 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
86 
87 	return result;
88 }
89 
90 /*
91  * jsm_set_modem_info()
92  *
93  * Set modem signals, called by ld.
94  */
95 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
96 {
97 	struct jsm_channel *channel =
98 		container_of(port, struct jsm_channel, uart_port);
99 
100 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
101 
102 	if (mctrl & TIOCM_RTS)
103 		channel->ch_mostat |= UART_MCR_RTS;
104 	else
105 		channel->ch_mostat &= ~UART_MCR_RTS;
106 
107 	if (mctrl & TIOCM_DTR)
108 		channel->ch_mostat |= UART_MCR_DTR;
109 	else
110 		channel->ch_mostat &= ~UART_MCR_DTR;
111 
112 	channel->ch_bd->bd_ops->assert_modem_signals(channel);
113 
114 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
115 	udelay(10);
116 }
117 
118 /*
119  * jsm_tty_write()
120  *
121  * Take data from the user or kernel and send it out to the FEP.
122  * In here exists all the Transparent Print magic as well.
123  */
124 static void jsm_tty_write(struct uart_port *port)
125 {
126 	struct jsm_channel *channel;
127 	channel = container_of(port, struct jsm_channel, uart_port);
128 	channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
129 }
130 
131 static void jsm_tty_start_tx(struct uart_port *port)
132 {
133 	struct jsm_channel *channel =
134 		container_of(port, struct jsm_channel, uart_port);
135 
136 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
137 
138 	channel->ch_flags &= ~(CH_STOP);
139 	jsm_tty_write(port);
140 
141 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
142 }
143 
144 static void jsm_tty_stop_tx(struct uart_port *port)
145 {
146 	struct jsm_channel *channel =
147 		container_of(port, struct jsm_channel, uart_port);
148 
149 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
150 
151 	channel->ch_flags |= (CH_STOP);
152 
153 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
154 }
155 
156 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
157 {
158 	unsigned long lock_flags;
159 	struct jsm_channel *channel =
160 		container_of(port, struct jsm_channel, uart_port);
161 	struct ktermios *termios;
162 
163 	spin_lock_irqsave(&port->lock, lock_flags);
164 	termios = &port->state->port.tty->termios;
165 	if (ch == termios->c_cc[VSTART])
166 		channel->ch_bd->bd_ops->send_start_character(channel);
167 
168 	if (ch == termios->c_cc[VSTOP])
169 		channel->ch_bd->bd_ops->send_stop_character(channel);
170 	spin_unlock_irqrestore(&port->lock, lock_flags);
171 }
172 
173 static void jsm_tty_stop_rx(struct uart_port *port)
174 {
175 	struct jsm_channel *channel =
176 		container_of(port, struct jsm_channel, uart_port);
177 
178 	channel->ch_bd->bd_ops->disable_receiver(channel);
179 }
180 
181 static void jsm_tty_break(struct uart_port *port, int break_state)
182 {
183 	unsigned long lock_flags;
184 	struct jsm_channel *channel =
185 		container_of(port, struct jsm_channel, uart_port);
186 
187 	spin_lock_irqsave(&port->lock, lock_flags);
188 	if (break_state == -1)
189 		channel->ch_bd->bd_ops->send_break(channel);
190 	else
191 		channel->ch_bd->bd_ops->clear_break(channel);
192 
193 	spin_unlock_irqrestore(&port->lock, lock_flags);
194 }
195 
196 static int jsm_tty_open(struct uart_port *port)
197 {
198 	struct jsm_board *brd;
199 	struct jsm_channel *channel =
200 		container_of(port, struct jsm_channel, uart_port);
201 	struct ktermios *termios;
202 
203 	/* Get board pointer from our array of majors we have allocated */
204 	brd = channel->ch_bd;
205 
206 	/*
207 	 * Allocate channel buffers for read/write/error.
208 	 * Set flag, so we don't get trounced on.
209 	 */
210 	channel->ch_flags |= (CH_OPENING);
211 
212 	/* Drop locks, as malloc with GFP_KERNEL can sleep */
213 
214 	if (!channel->ch_rqueue) {
215 		channel->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL);
216 		if (!channel->ch_rqueue) {
217 			jsm_dbg(INIT, &channel->ch_bd->pci_dev,
218 				"unable to allocate read queue buf\n");
219 			return -ENOMEM;
220 		}
221 	}
222 	if (!channel->ch_equeue) {
223 		channel->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL);
224 		if (!channel->ch_equeue) {
225 			jsm_dbg(INIT, &channel->ch_bd->pci_dev,
226 				"unable to allocate error queue buf\n");
227 			return -ENOMEM;
228 		}
229 	}
230 
231 	channel->ch_flags &= ~(CH_OPENING);
232 	/*
233 	 * Initialize if neither terminal is open.
234 	 */
235 	jsm_dbg(OPEN, &channel->ch_bd->pci_dev,
236 		"jsm_open: initializing channel in open...\n");
237 
238 	/*
239 	 * Flush input queues.
240 	 */
241 	channel->ch_r_head = channel->ch_r_tail = 0;
242 	channel->ch_e_head = channel->ch_e_tail = 0;
243 
244 	brd->bd_ops->flush_uart_write(channel);
245 	brd->bd_ops->flush_uart_read(channel);
246 
247 	channel->ch_flags = 0;
248 	channel->ch_cached_lsr = 0;
249 	channel->ch_stops_sent = 0;
250 
251 	termios = &port->state->port.tty->termios;
252 	channel->ch_c_cflag	= termios->c_cflag;
253 	channel->ch_c_iflag	= termios->c_iflag;
254 	channel->ch_c_oflag	= termios->c_oflag;
255 	channel->ch_c_lflag	= termios->c_lflag;
256 	channel->ch_startc	= termios->c_cc[VSTART];
257 	channel->ch_stopc	= termios->c_cc[VSTOP];
258 
259 	/* Tell UART to init itself */
260 	brd->bd_ops->uart_init(channel);
261 
262 	/*
263 	 * Run param in case we changed anything
264 	 */
265 	brd->bd_ops->param(channel);
266 
267 	jsm_carrier(channel);
268 
269 	channel->ch_open_count++;
270 
271 	jsm_dbg(OPEN, &channel->ch_bd->pci_dev, "finish\n");
272 	return 0;
273 }
274 
275 static void jsm_tty_close(struct uart_port *port)
276 {
277 	struct jsm_board *bd;
278 	struct ktermios *ts;
279 	struct jsm_channel *channel =
280 		container_of(port, struct jsm_channel, uart_port);
281 
282 	jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "start\n");
283 
284 	bd = channel->ch_bd;
285 	ts = &port->state->port.tty->termios;
286 
287 	channel->ch_flags &= ~(CH_STOPI);
288 
289 	channel->ch_open_count--;
290 
291 	/*
292 	 * If we have HUPCL set, lower DTR and RTS
293 	 */
294 	if (channel->ch_c_cflag & HUPCL) {
295 		jsm_dbg(CLOSE, &channel->ch_bd->pci_dev,
296 			"Close. HUPCL set, dropping DTR/RTS\n");
297 
298 		/* Drop RTS/DTR */
299 		channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
300 		bd->bd_ops->assert_modem_signals(channel);
301 	}
302 
303 	/* Turn off UART interrupts for this port */
304 	channel->ch_bd->bd_ops->uart_off(channel);
305 
306 	jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "finish\n");
307 }
308 
309 static void jsm_tty_set_termios(struct uart_port *port,
310 				 struct ktermios *termios,
311 				 struct ktermios *old_termios)
312 {
313 	unsigned long lock_flags;
314 	struct jsm_channel *channel =
315 		container_of(port, struct jsm_channel, uart_port);
316 
317 	spin_lock_irqsave(&port->lock, lock_flags);
318 	channel->ch_c_cflag	= termios->c_cflag;
319 	channel->ch_c_iflag	= termios->c_iflag;
320 	channel->ch_c_oflag	= termios->c_oflag;
321 	channel->ch_c_lflag	= termios->c_lflag;
322 	channel->ch_startc	= termios->c_cc[VSTART];
323 	channel->ch_stopc	= termios->c_cc[VSTOP];
324 
325 	channel->ch_bd->bd_ops->param(channel);
326 	jsm_carrier(channel);
327 	spin_unlock_irqrestore(&port->lock, lock_flags);
328 }
329 
330 static const char *jsm_tty_type(struct uart_port *port)
331 {
332 	return "jsm";
333 }
334 
335 static void jsm_tty_release_port(struct uart_port *port)
336 {
337 }
338 
339 static int jsm_tty_request_port(struct uart_port *port)
340 {
341 	return 0;
342 }
343 
344 static void jsm_config_port(struct uart_port *port, int flags)
345 {
346 	port->type = PORT_JSM;
347 }
348 
349 static struct uart_ops jsm_ops = {
350 	.tx_empty	= jsm_tty_tx_empty,
351 	.set_mctrl	= jsm_tty_set_mctrl,
352 	.get_mctrl	= jsm_tty_get_mctrl,
353 	.stop_tx	= jsm_tty_stop_tx,
354 	.start_tx	= jsm_tty_start_tx,
355 	.send_xchar	= jsm_tty_send_xchar,
356 	.stop_rx	= jsm_tty_stop_rx,
357 	.break_ctl	= jsm_tty_break,
358 	.startup	= jsm_tty_open,
359 	.shutdown	= jsm_tty_close,
360 	.set_termios	= jsm_tty_set_termios,
361 	.type		= jsm_tty_type,
362 	.release_port	= jsm_tty_release_port,
363 	.request_port	= jsm_tty_request_port,
364 	.config_port	= jsm_config_port,
365 };
366 
367 /*
368  * jsm_tty_init()
369  *
370  * Init the tty subsystem.  Called once per board after board has been
371  * downloaded and init'ed.
372  */
373 int jsm_tty_init(struct jsm_board *brd)
374 {
375 	int i;
376 	void __iomem *vaddr;
377 	struct jsm_channel *ch;
378 
379 	if (!brd)
380 		return -ENXIO;
381 
382 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
383 
384 	/*
385 	 * Initialize board structure elements.
386 	 */
387 
388 	brd->nasync = brd->maxports;
389 
390 	/*
391 	 * Allocate channel memory that might not have been allocated
392 	 * when the driver was first loaded.
393 	 */
394 	for (i = 0; i < brd->nasync; i++) {
395 		if (!brd->channels[i]) {
396 
397 			/*
398 			 * Okay to malloc with GFP_KERNEL, we are not at
399 			 * interrupt context, and there are no locks held.
400 			 */
401 			brd->channels[i] = kzalloc(sizeof(struct jsm_channel), GFP_KERNEL);
402 			if (!brd->channels[i]) {
403 				jsm_dbg(CORE, &brd->pci_dev,
404 					"%s:%d Unable to allocate memory for channel struct\n",
405 					__FILE__, __LINE__);
406 			}
407 		}
408 	}
409 
410 	ch = brd->channels[0];
411 	vaddr = brd->re_map_membase;
412 
413 	/* Set up channel variables */
414 	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
415 
416 		if (!brd->channels[i])
417 			continue;
418 
419 		spin_lock_init(&ch->ch_lock);
420 
421 		if (brd->bd_uart_offset == 0x200)
422 			ch->ch_neo_uart =  vaddr + (brd->bd_uart_offset * i);
423 		else
424 			ch->ch_cls_uart =  vaddr + (brd->bd_uart_offset * i);
425 
426 		ch->ch_bd = brd;
427 		ch->ch_portnum = i;
428 
429 		/* .25 second delay */
430 		ch->ch_close_delay = 250;
431 
432 		init_waitqueue_head(&ch->ch_flags_wait);
433 	}
434 
435 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
436 	return 0;
437 }
438 
439 int jsm_uart_port_init(struct jsm_board *brd)
440 {
441 	int i, rc;
442 	unsigned int line;
443 	struct jsm_channel *ch;
444 
445 	if (!brd)
446 		return -ENXIO;
447 
448 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
449 
450 	/*
451 	 * Initialize board structure elements.
452 	 */
453 
454 	brd->nasync = brd->maxports;
455 
456 	/* Set up channel variables */
457 	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
458 
459 		if (!brd->channels[i])
460 			continue;
461 
462 		brd->channels[i]->uart_port.irq = brd->irq;
463 		brd->channels[i]->uart_port.uartclk = 14745600;
464 		brd->channels[i]->uart_port.type = PORT_JSM;
465 		brd->channels[i]->uart_port.iotype = UPIO_MEM;
466 		brd->channels[i]->uart_port.membase = brd->re_map_membase;
467 		brd->channels[i]->uart_port.fifosize = 16;
468 		brd->channels[i]->uart_port.ops = &jsm_ops;
469 		line = find_first_zero_bit(linemap, MAXLINES);
470 		if (line >= MAXLINES) {
471 			printk(KERN_INFO "jsm: linemap is full, added device failed\n");
472 			continue;
473 		} else
474 			set_bit(line, linemap);
475 		brd->channels[i]->uart_port.line = line;
476 		rc = uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port);
477 		if (rc){
478 			printk(KERN_INFO "jsm: Port %d failed. Aborting...\n", i);
479 			return rc;
480 		}
481 		else
482 			printk(KERN_INFO "jsm: Port %d added\n", i);
483 	}
484 
485 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
486 	return 0;
487 }
488 
489 int jsm_remove_uart_port(struct jsm_board *brd)
490 {
491 	int i;
492 	struct jsm_channel *ch;
493 
494 	if (!brd)
495 		return -ENXIO;
496 
497 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
498 
499 	/*
500 	 * Initialize board structure elements.
501 	 */
502 
503 	brd->nasync = brd->maxports;
504 
505 	/* Set up channel variables */
506 	for (i = 0; i < brd->nasync; i++) {
507 
508 		if (!brd->channels[i])
509 			continue;
510 
511 		ch = brd->channels[i];
512 
513 		clear_bit(ch->uart_port.line, linemap);
514 		uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
515 	}
516 
517 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
518 	return 0;
519 }
520 
521 void jsm_input(struct jsm_channel *ch)
522 {
523 	struct jsm_board *bd;
524 	struct tty_struct *tp;
525 	struct tty_port *port;
526 	u32 rmask;
527 	u16 head;
528 	u16 tail;
529 	int data_len;
530 	unsigned long lock_flags;
531 	int len = 0;
532 	int s = 0;
533 	int i = 0;
534 
535 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n");
536 
537 	if (!ch)
538 		return;
539 
540 	port = &ch->uart_port.state->port;
541 	tp = port->tty;
542 
543 	bd = ch->ch_bd;
544 	if(!bd)
545 		return;
546 
547 	spin_lock_irqsave(&ch->ch_lock, lock_flags);
548 
549 	/*
550 	 *Figure the number of characters in the buffer.
551 	 *Exit immediately if none.
552 	 */
553 
554 	rmask = RQUEUEMASK;
555 
556 	head = ch->ch_r_head & rmask;
557 	tail = ch->ch_r_tail & rmask;
558 
559 	data_len = (head - tail) & rmask;
560 	if (data_len == 0) {
561 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
562 		return;
563 	}
564 
565 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n");
566 
567 	/*
568 	 *If the device is not open, or CREAD is off, flush
569 	 *input data and return immediately.
570 	 */
571 	if (!tp || !C_CREAD(tp)) {
572 
573 		jsm_dbg(READ, &ch->ch_bd->pci_dev,
574 			"input. dropping %d bytes on port %d...\n",
575 			data_len, ch->ch_portnum);
576 		ch->ch_r_head = tail;
577 
578 		/* Force queue flow control to be released, if needed */
579 		jsm_check_queue_flow_control(ch);
580 
581 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
582 		return;
583 	}
584 
585 	/*
586 	 * If we are throttled, simply don't read any data.
587 	 */
588 	if (ch->ch_flags & CH_STOPI) {
589 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
590 		jsm_dbg(READ, &ch->ch_bd->pci_dev,
591 			"Port %d throttled, not reading any data. head: %x tail: %x\n",
592 			ch->ch_portnum, head, tail);
593 		return;
594 	}
595 
596 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start 2\n");
597 
598 	len = tty_buffer_request_room(port, data_len);
599 
600 	/*
601 	 * len now contains the most amount of data we can copy,
602 	 * bounded either by the flip buffer size or the amount
603 	 * of data the card actually has pending...
604 	 */
605 	while (len) {
606 		s = ((head >= tail) ? head : RQUEUESIZE) - tail;
607 		s = min(s, len);
608 
609 		if (s <= 0)
610 			break;
611 
612 			/*
613 			 * If conditions are such that ld needs to see all
614 			 * UART errors, we will have to walk each character
615 			 * and error byte and send them to the buffer one at
616 			 * a time.
617 			 */
618 
619 		if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
620 			for (i = 0; i < s; i++) {
621 				/*
622 				 * Give the Linux ld the flags in the
623 				 * format it likes.
624 				 */
625 				if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
626 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i),  TTY_BREAK);
627 				else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
628 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_PARITY);
629 				else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
630 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_FRAME);
631 				else
632 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
633 			}
634 		} else {
635 			tty_insert_flip_string(port, ch->ch_rqueue + tail, s);
636 		}
637 		tail += s;
638 		len -= s;
639 		/* Flip queue if needed */
640 		tail &= rmask;
641 	}
642 
643 	ch->ch_r_tail = tail & rmask;
644 	ch->ch_e_tail = tail & rmask;
645 	jsm_check_queue_flow_control(ch);
646 	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
647 
648 	/* Tell the tty layer its okay to "eat" the data now */
649 	tty_flip_buffer_push(port);
650 
651 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n");
652 }
653 
654 static void jsm_carrier(struct jsm_channel *ch)
655 {
656 	struct jsm_board *bd;
657 
658 	int virt_carrier = 0;
659 	int phys_carrier = 0;
660 
661 	jsm_dbg(CARR, &ch->ch_bd->pci_dev, "start\n");
662 	if (!ch)
663 		return;
664 
665 	bd = ch->ch_bd;
666 
667 	if (!bd)
668 		return;
669 
670 	if (ch->ch_mistat & UART_MSR_DCD) {
671 		jsm_dbg(CARR, &ch->ch_bd->pci_dev, "mistat: %x D_CD: %x\n",
672 			ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
673 		phys_carrier = 1;
674 	}
675 
676 	if (ch->ch_c_cflag & CLOCAL)
677 		virt_carrier = 1;
678 
679 	jsm_dbg(CARR, &ch->ch_bd->pci_dev, "DCD: physical: %d virt: %d\n",
680 		phys_carrier, virt_carrier);
681 
682 	/*
683 	 * Test for a VIRTUAL carrier transition to HIGH.
684 	 */
685 	if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
686 
687 		/*
688 		 * When carrier rises, wake any threads waiting
689 		 * for carrier in the open routine.
690 		 */
691 
692 		jsm_dbg(CARR, &ch->ch_bd->pci_dev, "carrier: virt DCD rose\n");
693 
694 		if (waitqueue_active(&(ch->ch_flags_wait)))
695 			wake_up_interruptible(&ch->ch_flags_wait);
696 	}
697 
698 	/*
699 	 * Test for a PHYSICAL carrier transition to HIGH.
700 	 */
701 	if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
702 
703 		/*
704 		 * When carrier rises, wake any threads waiting
705 		 * for carrier in the open routine.
706 		 */
707 
708 		jsm_dbg(CARR, &ch->ch_bd->pci_dev,
709 			"carrier: physical DCD rose\n");
710 
711 		if (waitqueue_active(&(ch->ch_flags_wait)))
712 			wake_up_interruptible(&ch->ch_flags_wait);
713 	}
714 
715 	/*
716 	 *  Test for a PHYSICAL transition to low, so long as we aren't
717 	 *  currently ignoring physical transitions (which is what "virtual
718 	 *  carrier" indicates).
719 	 *
720 	 *  The transition of the virtual carrier to low really doesn't
721 	 *  matter... it really only means "ignore carrier state", not
722 	 *  "make pretend that carrier is there".
723 	 */
724 	if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
725 			&& (phys_carrier == 0)) {
726 		/*
727 		 *	When carrier drops:
728 		 *
729 		 *	Drop carrier on all open units.
730 		 *
731 		 *	Flush queues, waking up any task waiting in the
732 		 *	line discipline.
733 		 *
734 		 *	Send a hangup to the control terminal.
735 		 *
736 		 *	Enable all select calls.
737 		 */
738 		if (waitqueue_active(&(ch->ch_flags_wait)))
739 			wake_up_interruptible(&ch->ch_flags_wait);
740 	}
741 
742 	/*
743 	 *  Make sure that our cached values reflect the current reality.
744 	 */
745 	if (virt_carrier == 1)
746 		ch->ch_flags |= CH_FCAR;
747 	else
748 		ch->ch_flags &= ~CH_FCAR;
749 
750 	if (phys_carrier == 1)
751 		ch->ch_flags |= CH_CD;
752 	else
753 		ch->ch_flags &= ~CH_CD;
754 }
755 
756 
757 void jsm_check_queue_flow_control(struct jsm_channel *ch)
758 {
759 	struct board_ops *bd_ops = ch->ch_bd->bd_ops;
760 	int qleft;
761 
762 	/* Store how much space we have left in the queue */
763 	if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
764 		qleft += RQUEUEMASK + 1;
765 
766 	/*
767 	 * Check to see if we should enforce flow control on our queue because
768 	 * the ld (or user) isn't reading data out of our queue fast enuf.
769 	 *
770 	 * NOTE: This is done based on what the current flow control of the
771 	 * port is set for.
772 	 *
773 	 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
774 	 *	This will cause the UART's FIFO to back up, and force
775 	 *	the RTS signal to be dropped.
776 	 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
777 	 *	the other side, in hopes it will stop sending data to us.
778 	 * 3) NONE - Nothing we can do.  We will simply drop any extra data
779 	 *	that gets sent into us when the queue fills up.
780 	 */
781 	if (qleft < 256) {
782 		/* HWFLOW */
783 		if (ch->ch_c_cflag & CRTSCTS) {
784 			if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
785 				bd_ops->disable_receiver(ch);
786 				ch->ch_flags |= (CH_RECEIVER_OFF);
787 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
788 					"Internal queue hit hilevel mark (%d)! Turning off interrupts\n",
789 					qleft);
790 			}
791 		}
792 		/* SWFLOW */
793 		else if (ch->ch_c_iflag & IXOFF) {
794 			if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
795 				bd_ops->send_stop_character(ch);
796 				ch->ch_stops_sent++;
797 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
798 					"Sending stop char! Times sent: %x\n",
799 					ch->ch_stops_sent);
800 			}
801 		}
802 	}
803 
804 	/*
805 	 * Check to see if we should unenforce flow control because
806 	 * ld (or user) finally read enuf data out of our queue.
807 	 *
808 	 * NOTE: This is done based on what the current flow control of the
809 	 * port is set for.
810 	 *
811 	 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
812 	 *	This will cause the UART's FIFO to raise RTS back up,
813 	 *	which will allow the other side to start sending data again.
814 	 * 2) SWFLOW (IXOFF) - Send a start character to
815 	 *	the other side, so it will start sending data to us again.
816 	 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
817 	 *	other side, we don't need to do anything now.
818 	 */
819 	if (qleft > (RQUEUESIZE / 2)) {
820 		/* HWFLOW */
821 		if (ch->ch_c_cflag & CRTSCTS) {
822 			if (ch->ch_flags & CH_RECEIVER_OFF) {
823 				bd_ops->enable_receiver(ch);
824 				ch->ch_flags &= ~(CH_RECEIVER_OFF);
825 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
826 					"Internal queue hit lowlevel mark (%d)! Turning on interrupts\n",
827 					qleft);
828 			}
829 		}
830 		/* SWFLOW */
831 		else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
832 			ch->ch_stops_sent = 0;
833 			bd_ops->send_start_character(ch);
834 			jsm_dbg(READ, &ch->ch_bd->pci_dev,
835 				"Sending start char!\n");
836 		}
837 	}
838 }
839