1 // SPDX-License-Identifier: GPL-2.0+ 2 /************************************************************************ 3 * Copyright 2003 Digi International (www.digi.com) 4 * 5 * Copyright (C) 2004 IBM Corporation. All rights reserved. 6 * 7 * Contact Information: 8 * Scott H Kilau <Scott_Kilau@digi.com> 9 * Wendy Xiong <wendyx@us.ibm.com> 10 * 11 ***********************************************************************/ 12 #include <linux/delay.h> /* For udelay */ 13 #include <linux/serial_reg.h> /* For the various UART offsets */ 14 #include <linux/tty.h> 15 #include <linux/pci.h> 16 #include <asm/io.h> 17 18 #include "jsm.h" /* Driver main header file */ 19 20 static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; 21 22 /* 23 * This function allows calls to ensure that all outstanding 24 * PCI writes have been completed, by doing a PCI read against 25 * a non-destructive, read-only location on the Neo card. 26 * 27 * In this case, we are reading the DVID (Read-only Device Identification) 28 * value of the Neo card. 29 */ 30 static inline void neo_pci_posting_flush(struct jsm_board *bd) 31 { 32 readb(bd->re_map_membase + 0x8D); 33 } 34 35 static void neo_set_cts_flow_control(struct jsm_channel *ch) 36 { 37 u8 ier, efr; 38 ier = readb(&ch->ch_neo_uart->ier); 39 efr = readb(&ch->ch_neo_uart->efr); 40 41 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n"); 42 43 /* Turn on auto CTS flow control */ 44 ier |= (UART_17158_IER_CTSDSR); 45 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR); 46 47 /* Turn off auto Xon flow control */ 48 efr &= ~(UART_17158_EFR_IXON); 49 50 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 51 writeb(0, &ch->ch_neo_uart->efr); 52 53 /* Turn on UART enhanced bits */ 54 writeb(efr, &ch->ch_neo_uart->efr); 55 56 /* Turn on table D, with 8 char hi/low watermarks */ 57 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); 58 59 /* Feed the UART our trigger levels */ 60 writeb(8, &ch->ch_neo_uart->tfifo); 61 ch->ch_t_tlevel = 8; 62 63 writeb(ier, &ch->ch_neo_uart->ier); 64 } 65 66 static void neo_set_rts_flow_control(struct jsm_channel *ch) 67 { 68 u8 ier, efr; 69 ier = readb(&ch->ch_neo_uart->ier); 70 efr = readb(&ch->ch_neo_uart->efr); 71 72 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n"); 73 74 /* Turn on auto RTS flow control */ 75 ier |= (UART_17158_IER_RTSDTR); 76 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR); 77 78 /* Turn off auto Xoff flow control */ 79 ier &= ~(UART_17158_IER_XOFF); 80 efr &= ~(UART_17158_EFR_IXOFF); 81 82 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 83 writeb(0, &ch->ch_neo_uart->efr); 84 85 /* Turn on UART enhanced bits */ 86 writeb(efr, &ch->ch_neo_uart->efr); 87 88 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); 89 ch->ch_r_watermark = 4; 90 91 writeb(56, &ch->ch_neo_uart->rfifo); 92 ch->ch_r_tlevel = 56; 93 94 writeb(ier, &ch->ch_neo_uart->ier); 95 96 /* 97 * From the Neo UART spec sheet: 98 * The auto RTS/DTR function must be started by asserting 99 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after 100 * it is enabled. 101 */ 102 ch->ch_mostat |= (UART_MCR_RTS); 103 } 104 105 106 static void neo_set_ixon_flow_control(struct jsm_channel *ch) 107 { 108 u8 ier, efr; 109 ier = readb(&ch->ch_neo_uart->ier); 110 efr = readb(&ch->ch_neo_uart->efr); 111 112 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n"); 113 114 /* Turn off auto CTS flow control */ 115 ier &= ~(UART_17158_IER_CTSDSR); 116 efr &= ~(UART_17158_EFR_CTSDSR); 117 118 /* Turn on auto Xon flow control */ 119 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON); 120 121 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 122 writeb(0, &ch->ch_neo_uart->efr); 123 124 /* Turn on UART enhanced bits */ 125 writeb(efr, &ch->ch_neo_uart->efr); 126 127 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); 128 ch->ch_r_watermark = 4; 129 130 writeb(32, &ch->ch_neo_uart->rfifo); 131 ch->ch_r_tlevel = 32; 132 133 /* Tell UART what start/stop chars it should be looking for */ 134 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); 135 writeb(0, &ch->ch_neo_uart->xonchar2); 136 137 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); 138 writeb(0, &ch->ch_neo_uart->xoffchar2); 139 140 writeb(ier, &ch->ch_neo_uart->ier); 141 } 142 143 static void neo_set_ixoff_flow_control(struct jsm_channel *ch) 144 { 145 u8 ier, efr; 146 ier = readb(&ch->ch_neo_uart->ier); 147 efr = readb(&ch->ch_neo_uart->efr); 148 149 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n"); 150 151 /* Turn off auto RTS flow control */ 152 ier &= ~(UART_17158_IER_RTSDTR); 153 efr &= ~(UART_17158_EFR_RTSDTR); 154 155 /* Turn on auto Xoff flow control */ 156 ier |= (UART_17158_IER_XOFF); 157 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); 158 159 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 160 writeb(0, &ch->ch_neo_uart->efr); 161 162 /* Turn on UART enhanced bits */ 163 writeb(efr, &ch->ch_neo_uart->efr); 164 165 /* Turn on table D, with 8 char hi/low watermarks */ 166 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); 167 168 writeb(8, &ch->ch_neo_uart->tfifo); 169 ch->ch_t_tlevel = 8; 170 171 /* Tell UART what start/stop chars it should be looking for */ 172 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); 173 writeb(0, &ch->ch_neo_uart->xonchar2); 174 175 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); 176 writeb(0, &ch->ch_neo_uart->xoffchar2); 177 178 writeb(ier, &ch->ch_neo_uart->ier); 179 } 180 181 static void neo_set_no_input_flow_control(struct jsm_channel *ch) 182 { 183 u8 ier, efr; 184 ier = readb(&ch->ch_neo_uart->ier); 185 efr = readb(&ch->ch_neo_uart->efr); 186 187 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n"); 188 189 /* Turn off auto RTS flow control */ 190 ier &= ~(UART_17158_IER_RTSDTR); 191 efr &= ~(UART_17158_EFR_RTSDTR); 192 193 /* Turn off auto Xoff flow control */ 194 ier &= ~(UART_17158_IER_XOFF); 195 if (ch->ch_c_iflag & IXON) 196 efr &= ~(UART_17158_EFR_IXOFF); 197 else 198 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); 199 200 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 201 writeb(0, &ch->ch_neo_uart->efr); 202 203 /* Turn on UART enhanced bits */ 204 writeb(efr, &ch->ch_neo_uart->efr); 205 206 /* Turn on table D, with 8 char hi/low watermarks */ 207 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); 208 209 ch->ch_r_watermark = 0; 210 211 writeb(16, &ch->ch_neo_uart->tfifo); 212 ch->ch_t_tlevel = 16; 213 214 writeb(16, &ch->ch_neo_uart->rfifo); 215 ch->ch_r_tlevel = 16; 216 217 writeb(ier, &ch->ch_neo_uart->ier); 218 } 219 220 static void neo_set_no_output_flow_control(struct jsm_channel *ch) 221 { 222 u8 ier, efr; 223 ier = readb(&ch->ch_neo_uart->ier); 224 efr = readb(&ch->ch_neo_uart->efr); 225 226 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n"); 227 228 /* Turn off auto CTS flow control */ 229 ier &= ~(UART_17158_IER_CTSDSR); 230 efr &= ~(UART_17158_EFR_CTSDSR); 231 232 /* Turn off auto Xon flow control */ 233 if (ch->ch_c_iflag & IXOFF) 234 efr &= ~(UART_17158_EFR_IXON); 235 else 236 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON); 237 238 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 239 writeb(0, &ch->ch_neo_uart->efr); 240 241 /* Turn on UART enhanced bits */ 242 writeb(efr, &ch->ch_neo_uart->efr); 243 244 /* Turn on table D, with 8 char hi/low watermarks */ 245 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); 246 247 ch->ch_r_watermark = 0; 248 249 writeb(16, &ch->ch_neo_uart->tfifo); 250 ch->ch_t_tlevel = 16; 251 252 writeb(16, &ch->ch_neo_uart->rfifo); 253 ch->ch_r_tlevel = 16; 254 255 writeb(ier, &ch->ch_neo_uart->ier); 256 } 257 258 static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch) 259 { 260 261 /* if hardware flow control is set, then skip this whole thing */ 262 if (ch->ch_c_cflag & CRTSCTS) 263 return; 264 265 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "start\n"); 266 267 /* Tell UART what start/stop chars it should be looking for */ 268 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); 269 writeb(0, &ch->ch_neo_uart->xonchar2); 270 271 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); 272 writeb(0, &ch->ch_neo_uart->xoffchar2); 273 } 274 275 static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch) 276 { 277 int qleft = 0; 278 u8 linestatus = 0; 279 u8 error_mask = 0; 280 int n = 0; 281 int total = 0; 282 u16 head; 283 u16 tail; 284 285 /* cache head and tail of queue */ 286 head = ch->ch_r_head & RQUEUEMASK; 287 tail = ch->ch_r_tail & RQUEUEMASK; 288 289 /* Get our cached LSR */ 290 linestatus = ch->ch_cached_lsr; 291 ch->ch_cached_lsr = 0; 292 293 /* Store how much space we have left in the queue */ 294 qleft = tail - head - 1; 295 if (qleft < 0) 296 qleft += RQUEUEMASK + 1; 297 298 /* 299 * If the UART is not in FIFO mode, force the FIFO copy to 300 * NOT be run, by setting total to 0. 301 * 302 * On the other hand, if the UART IS in FIFO mode, then ask 303 * the UART to give us an approximation of data it has RX'ed. 304 */ 305 if (!(ch->ch_flags & CH_FIFO_ENABLED)) 306 total = 0; 307 else { 308 total = readb(&ch->ch_neo_uart->rfifo); 309 310 /* 311 * EXAR chip bug - RX FIFO COUNT - Fudge factor. 312 * 313 * This resolves a problem/bug with the Exar chip that sometimes 314 * returns a bogus value in the rfifo register. 315 * The count can be any where from 0-3 bytes "off". 316 * Bizarre, but true. 317 */ 318 total -= 3; 319 } 320 321 /* 322 * Finally, bound the copy to make sure we don't overflow 323 * our own queue... 324 * The byte by byte copy loop below this loop this will 325 * deal with the queue overflow possibility. 326 */ 327 total = min(total, qleft); 328 329 while (total > 0) { 330 /* 331 * Grab the linestatus register, we need to check 332 * to see if there are any errors in the FIFO. 333 */ 334 linestatus = readb(&ch->ch_neo_uart->lsr); 335 336 /* 337 * Break out if there is a FIFO error somewhere. 338 * This will allow us to go byte by byte down below, 339 * finding the exact location of the error. 340 */ 341 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) 342 break; 343 344 /* Make sure we don't go over the end of our queue */ 345 n = min(((u32) total), (RQUEUESIZE - (u32) head)); 346 347 /* 348 * Cut down n even further if needed, this is to fix 349 * a problem with memcpy_fromio() with the Neo on the 350 * IBM pSeries platform. 351 * 15 bytes max appears to be the magic number. 352 */ 353 n = min((u32) n, (u32) 12); 354 355 /* 356 * Since we are grabbing the linestatus register, which 357 * will reset some bits after our read, we need to ensure 358 * we don't miss our TX FIFO emptys. 359 */ 360 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) 361 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 362 363 linestatus = 0; 364 365 /* Copy data from uart to the queue */ 366 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n); 367 /* 368 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed 369 * that all the data currently in the FIFO is free of 370 * breaks and parity/frame/orun errors. 371 */ 372 memset(ch->ch_equeue + head, 0, n); 373 374 /* Add to and flip head if needed */ 375 head = (head + n) & RQUEUEMASK; 376 total -= n; 377 qleft -= n; 378 ch->ch_rxcount += n; 379 } 380 381 /* 382 * Create a mask to determine whether we should 383 * insert the character (if any) into our queue. 384 */ 385 if (ch->ch_c_iflag & IGNBRK) 386 error_mask |= UART_LSR_BI; 387 388 /* 389 * Now cleanup any leftover bytes still in the UART. 390 * Also deal with any possible queue overflow here as well. 391 */ 392 while (1) { 393 394 /* 395 * Its possible we have a linestatus from the loop above 396 * this, so we "OR" on any extra bits. 397 */ 398 linestatus |= readb(&ch->ch_neo_uart->lsr); 399 400 /* 401 * If the chip tells us there is no more data pending to 402 * be read, we can then leave. 403 * But before we do, cache the linestatus, just in case. 404 */ 405 if (!(linestatus & UART_LSR_DR)) { 406 ch->ch_cached_lsr = linestatus; 407 break; 408 } 409 410 /* No need to store this bit */ 411 linestatus &= ~UART_LSR_DR; 412 413 /* 414 * Since we are grabbing the linestatus register, which 415 * will reset some bits after our read, we need to ensure 416 * we don't miss our TX FIFO emptys. 417 */ 418 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) { 419 linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR); 420 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 421 } 422 423 /* 424 * Discard character if we are ignoring the error mask. 425 */ 426 if (linestatus & error_mask) { 427 u8 discard; 428 linestatus = 0; 429 memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1); 430 continue; 431 } 432 433 /* 434 * If our queue is full, we have no choice but to drop some data. 435 * The assumption is that HWFLOW or SWFLOW should have stopped 436 * things way way before we got to this point. 437 * 438 * I decided that I wanted to ditch the oldest data first, 439 * I hope thats okay with everyone? Yes? Good. 440 */ 441 while (qleft < 1) { 442 jsm_dbg(READ, &ch->ch_bd->pci_dev, 443 "Queue full, dropping DATA:%x LSR:%x\n", 444 ch->ch_rqueue[tail], ch->ch_equeue[tail]); 445 446 ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK; 447 ch->ch_err_overrun++; 448 qleft++; 449 } 450 451 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1); 452 ch->ch_equeue[head] = (u8) linestatus; 453 454 jsm_dbg(READ, &ch->ch_bd->pci_dev, "DATA/LSR pair: %x %x\n", 455 ch->ch_rqueue[head], ch->ch_equeue[head]); 456 457 /* Ditch any remaining linestatus value. */ 458 linestatus = 0; 459 460 /* Add to and flip head if needed */ 461 head = (head + 1) & RQUEUEMASK; 462 463 qleft--; 464 ch->ch_rxcount++; 465 } 466 467 /* 468 * Write new final heads to channel structure. 469 */ 470 ch->ch_r_head = head & RQUEUEMASK; 471 ch->ch_e_head = head & EQUEUEMASK; 472 jsm_input(ch); 473 } 474 475 static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch) 476 { 477 u16 head; 478 u16 tail; 479 int n; 480 int s; 481 int qlen; 482 u32 len_written = 0; 483 struct circ_buf *circ; 484 485 if (!ch) 486 return; 487 488 circ = &ch->uart_port.state->xmit; 489 490 /* No data to write to the UART */ 491 if (uart_circ_empty(circ)) 492 return; 493 494 /* If port is "stopped", don't send any data to the UART */ 495 if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING)) 496 return; 497 /* 498 * If FIFOs are disabled. Send data directly to txrx register 499 */ 500 if (!(ch->ch_flags & CH_FIFO_ENABLED)) { 501 u8 lsrbits = readb(&ch->ch_neo_uart->lsr); 502 503 ch->ch_cached_lsr |= lsrbits; 504 if (ch->ch_cached_lsr & UART_LSR_THRE) { 505 ch->ch_cached_lsr &= ~(UART_LSR_THRE); 506 507 writeb(circ->buf[circ->tail], &ch->ch_neo_uart->txrx); 508 jsm_dbg(WRITE, &ch->ch_bd->pci_dev, 509 "Tx data: %x\n", circ->buf[circ->tail]); 510 circ->tail = (circ->tail + 1) & (UART_XMIT_SIZE - 1); 511 ch->ch_txcount++; 512 } 513 return; 514 } 515 516 /* 517 * We have to do it this way, because of the EXAR TXFIFO count bug. 518 */ 519 if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM))) 520 return; 521 522 n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel; 523 524 /* cache head and tail of queue */ 525 head = circ->head & (UART_XMIT_SIZE - 1); 526 tail = circ->tail & (UART_XMIT_SIZE - 1); 527 qlen = uart_circ_chars_pending(circ); 528 529 /* Find minimum of the FIFO space, versus queue length */ 530 n = min(n, qlen); 531 532 while (n > 0) { 533 534 s = ((head >= tail) ? head : UART_XMIT_SIZE) - tail; 535 s = min(s, n); 536 537 if (s <= 0) 538 break; 539 540 memcpy_toio(&ch->ch_neo_uart->txrxburst, circ->buf + tail, s); 541 /* Add and flip queue if needed */ 542 tail = (tail + s) & (UART_XMIT_SIZE - 1); 543 n -= s; 544 ch->ch_txcount += s; 545 len_written += s; 546 } 547 548 /* Update the final tail */ 549 circ->tail = tail & (UART_XMIT_SIZE - 1); 550 551 if (len_written >= ch->ch_t_tlevel) 552 ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 553 554 if (uart_circ_empty(circ)) 555 uart_write_wakeup(&ch->uart_port); 556 } 557 558 static void neo_parse_modem(struct jsm_channel *ch, u8 signals) 559 { 560 u8 msignals = signals; 561 562 jsm_dbg(MSIGS, &ch->ch_bd->pci_dev, 563 "neo_parse_modem: port: %d msignals: %x\n", 564 ch->ch_portnum, msignals); 565 566 /* Scrub off lower bits. They signify delta's, which I don't care about */ 567 /* Keep DDCD and DDSR though */ 568 msignals &= 0xf8; 569 570 if (msignals & UART_MSR_DDCD) 571 uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD); 572 if (msignals & UART_MSR_DDSR) 573 uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS); 574 if (msignals & UART_MSR_DCD) 575 ch->ch_mistat |= UART_MSR_DCD; 576 else 577 ch->ch_mistat &= ~UART_MSR_DCD; 578 579 if (msignals & UART_MSR_DSR) 580 ch->ch_mistat |= UART_MSR_DSR; 581 else 582 ch->ch_mistat &= ~UART_MSR_DSR; 583 584 if (msignals & UART_MSR_RI) 585 ch->ch_mistat |= UART_MSR_RI; 586 else 587 ch->ch_mistat &= ~UART_MSR_RI; 588 589 if (msignals & UART_MSR_CTS) 590 ch->ch_mistat |= UART_MSR_CTS; 591 else 592 ch->ch_mistat &= ~UART_MSR_CTS; 593 594 jsm_dbg(MSIGS, &ch->ch_bd->pci_dev, 595 "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n", 596 ch->ch_portnum, 597 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR), 598 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS), 599 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS), 600 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR), 601 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI), 602 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD)); 603 } 604 605 /* Make the UART raise any of the output signals we want up */ 606 static void neo_assert_modem_signals(struct jsm_channel *ch) 607 { 608 if (!ch) 609 return; 610 611 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); 612 613 /* flush write operation */ 614 neo_pci_posting_flush(ch->ch_bd); 615 } 616 617 /* 618 * Flush the WRITE FIFO on the Neo. 619 * 620 * NOTE: Channel lock MUST be held before calling this function! 621 */ 622 static void neo_flush_uart_write(struct jsm_channel *ch) 623 { 624 u8 tmp = 0; 625 int i = 0; 626 627 if (!ch) 628 return; 629 630 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); 631 632 for (i = 0; i < 10; i++) { 633 634 /* Check to see if the UART feels it completely flushed the FIFO. */ 635 tmp = readb(&ch->ch_neo_uart->isr_fcr); 636 if (tmp & UART_FCR_CLEAR_XMIT) { 637 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, 638 "Still flushing TX UART... i: %d\n", i); 639 udelay(10); 640 } 641 else 642 break; 643 } 644 645 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 646 } 647 648 649 /* 650 * Flush the READ FIFO on the Neo. 651 * 652 * NOTE: Channel lock MUST be held before calling this function! 653 */ 654 static void neo_flush_uart_read(struct jsm_channel *ch) 655 { 656 u8 tmp = 0; 657 int i = 0; 658 659 if (!ch) 660 return; 661 662 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr); 663 664 for (i = 0; i < 10; i++) { 665 666 /* Check to see if the UART feels it completely flushed the FIFO. */ 667 tmp = readb(&ch->ch_neo_uart->isr_fcr); 668 if (tmp & 2) { 669 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, 670 "Still flushing RX UART... i: %d\n", i); 671 udelay(10); 672 } 673 else 674 break; 675 } 676 } 677 678 /* 679 * No locks are assumed to be held when calling this function. 680 */ 681 static void neo_clear_break(struct jsm_channel *ch) 682 { 683 unsigned long lock_flags; 684 685 spin_lock_irqsave(&ch->ch_lock, lock_flags); 686 687 /* Turn break off, and unset some variables */ 688 if (ch->ch_flags & CH_BREAK_SENDING) { 689 u8 temp = readb(&ch->ch_neo_uart->lcr); 690 writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); 691 692 ch->ch_flags &= ~(CH_BREAK_SENDING); 693 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, 694 "clear break Finishing UART_LCR_SBC! finished: %lx\n", 695 jiffies); 696 697 /* flush write operation */ 698 neo_pci_posting_flush(ch->ch_bd); 699 } 700 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 701 } 702 703 /* 704 * Parse the ISR register. 705 */ 706 static void neo_parse_isr(struct jsm_board *brd, u32 port) 707 { 708 struct jsm_channel *ch; 709 u8 isr; 710 u8 cause; 711 unsigned long lock_flags; 712 713 if (!brd) 714 return; 715 716 if (port >= brd->maxports) 717 return; 718 719 ch = brd->channels[port]; 720 if (!ch) 721 return; 722 723 /* Here we try to figure out what caused the interrupt to happen */ 724 while (1) { 725 726 isr = readb(&ch->ch_neo_uart->isr_fcr); 727 728 /* Bail if no pending interrupt */ 729 if (isr & UART_IIR_NO_INT) 730 break; 731 732 /* 733 * Yank off the upper 2 bits, which just show that the FIFO's are enabled. 734 */ 735 isr &= ~(UART_17158_IIR_FIFO_ENABLED); 736 737 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d isr: %x\n", 738 __FILE__, __LINE__, isr); 739 740 if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) { 741 /* Read data from uart -> queue */ 742 neo_copy_data_from_uart_to_queue(ch); 743 744 /* Call our tty layer to enforce queue flow control if needed. */ 745 spin_lock_irqsave(&ch->ch_lock, lock_flags); 746 jsm_check_queue_flow_control(ch); 747 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 748 } 749 750 if (isr & UART_IIR_THRI) { 751 /* Transfer data (if any) from Write Queue -> UART. */ 752 spin_lock_irqsave(&ch->ch_lock, lock_flags); 753 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 754 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 755 neo_copy_data_from_queue_to_uart(ch); 756 } 757 758 if (isr & UART_17158_IIR_XONXOFF) { 759 cause = readb(&ch->ch_neo_uart->xoffchar1); 760 761 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 762 "Port %d. Got ISR_XONXOFF: cause:%x\n", 763 port, cause); 764 765 /* 766 * Since the UART detected either an XON or 767 * XOFF match, we need to figure out which 768 * one it was, so we can suspend or resume data flow. 769 */ 770 spin_lock_irqsave(&ch->ch_lock, lock_flags); 771 if (cause == UART_17158_XON_DETECT) { 772 /* Is output stopped right now, if so, resume it */ 773 if (brd->channels[port]->ch_flags & CH_STOP) { 774 ch->ch_flags &= ~(CH_STOP); 775 } 776 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 777 "Port %d. XON detected in incoming data\n", 778 port); 779 } 780 else if (cause == UART_17158_XOFF_DETECT) { 781 if (!(brd->channels[port]->ch_flags & CH_STOP)) { 782 ch->ch_flags |= CH_STOP; 783 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 784 "Setting CH_STOP\n"); 785 } 786 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 787 "Port: %d. XOFF detected in incoming data\n", 788 port); 789 } 790 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 791 } 792 793 if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) { 794 /* 795 * If we get here, this means the hardware is doing auto flow control. 796 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt. 797 */ 798 cause = readb(&ch->ch_neo_uart->mcr); 799 800 /* Which pin is doing auto flow? RTS or DTR? */ 801 spin_lock_irqsave(&ch->ch_lock, lock_flags); 802 if ((cause & 0x4) == 0) { 803 if (cause & UART_MCR_RTS) 804 ch->ch_mostat |= UART_MCR_RTS; 805 else 806 ch->ch_mostat &= ~(UART_MCR_RTS); 807 } else { 808 if (cause & UART_MCR_DTR) 809 ch->ch_mostat |= UART_MCR_DTR; 810 else 811 ch->ch_mostat &= ~(UART_MCR_DTR); 812 } 813 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 814 } 815 816 /* Parse any modem signal changes */ 817 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 818 "MOD_STAT: sending to parse_modem_sigs\n"); 819 uart_port_lock_irqsave(&ch->uart_port, &lock_flags); 820 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); 821 uart_port_unlock_irqrestore(&ch->uart_port, lock_flags); 822 } 823 } 824 825 static inline void neo_parse_lsr(struct jsm_board *brd, u32 port) 826 { 827 struct jsm_channel *ch; 828 int linestatus; 829 unsigned long lock_flags; 830 831 if (!brd) 832 return; 833 834 if (port >= brd->maxports) 835 return; 836 837 ch = brd->channels[port]; 838 if (!ch) 839 return; 840 841 linestatus = readb(&ch->ch_neo_uart->lsr); 842 843 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d port: %d linestatus: %x\n", 844 __FILE__, __LINE__, port, linestatus); 845 846 ch->ch_cached_lsr |= linestatus; 847 848 if (ch->ch_cached_lsr & UART_LSR_DR) { 849 /* Read data from uart -> queue */ 850 neo_copy_data_from_uart_to_queue(ch); 851 spin_lock_irqsave(&ch->ch_lock, lock_flags); 852 jsm_check_queue_flow_control(ch); 853 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 854 } 855 856 /* 857 * This is a special flag. It indicates that at least 1 858 * RX error (parity, framing, or break) has happened. 859 * Mark this in our struct, which will tell me that I have 860 *to do the special RX+LSR read for this FIFO load. 861 */ 862 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) 863 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 864 "%s:%d Port: %d Got an RX error, need to parse LSR\n", 865 __FILE__, __LINE__, port); 866 867 /* 868 * The next 3 tests should *NOT* happen, as the above test 869 * should encapsulate all 3... At least, thats what Exar says. 870 */ 871 872 if (linestatus & UART_LSR_PE) { 873 ch->ch_err_parity++; 874 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. PAR ERR!\n", 875 __FILE__, __LINE__, port); 876 } 877 878 if (linestatus & UART_LSR_FE) { 879 ch->ch_err_frame++; 880 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. FRM ERR!\n", 881 __FILE__, __LINE__, port); 882 } 883 884 if (linestatus & UART_LSR_BI) { 885 ch->ch_err_break++; 886 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 887 "%s:%d Port: %d. BRK INTR!\n", 888 __FILE__, __LINE__, port); 889 } 890 891 if (linestatus & UART_LSR_OE) { 892 /* 893 * Rx Oruns. Exar says that an orun will NOT corrupt 894 * the FIFO. It will just replace the holding register 895 * with this new data byte. So basically just ignore this. 896 * Probably we should eventually have an orun stat in our driver... 897 */ 898 ch->ch_err_overrun++; 899 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 900 "%s:%d Port: %d. Rx Overrun!\n", 901 __FILE__, __LINE__, port); 902 } 903 904 if (linestatus & UART_LSR_THRE) { 905 spin_lock_irqsave(&ch->ch_lock, lock_flags); 906 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 907 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 908 909 /* Transfer data (if any) from Write Queue -> UART. */ 910 neo_copy_data_from_queue_to_uart(ch); 911 } 912 else if (linestatus & UART_17158_TX_AND_FIFO_CLR) { 913 spin_lock_irqsave(&ch->ch_lock, lock_flags); 914 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 915 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 916 917 /* Transfer data (if any) from Write Queue -> UART. */ 918 neo_copy_data_from_queue_to_uart(ch); 919 } 920 } 921 922 /* 923 * neo_param() 924 * Send any/all changes to the line to the UART. 925 */ 926 static void neo_param(struct jsm_channel *ch) 927 { 928 u8 lcr = 0; 929 u8 uart_lcr, ier; 930 u32 baud; 931 int quot; 932 struct jsm_board *bd; 933 934 bd = ch->ch_bd; 935 if (!bd) 936 return; 937 938 /* 939 * If baud rate is zero, flush queues, and set mval to drop DTR. 940 */ 941 if ((ch->ch_c_cflag & CBAUD) == B0) { 942 ch->ch_r_head = ch->ch_r_tail = 0; 943 ch->ch_e_head = ch->ch_e_tail = 0; 944 945 neo_flush_uart_write(ch); 946 neo_flush_uart_read(ch); 947 948 ch->ch_flags |= (CH_BAUD0); 949 ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR); 950 neo_assert_modem_signals(ch); 951 return; 952 953 } else { 954 int i; 955 unsigned int cflag; 956 static struct { 957 unsigned int rate; 958 unsigned int cflag; 959 } baud_rates[] = { 960 { 921600, B921600 }, 961 { 460800, B460800 }, 962 { 230400, B230400 }, 963 { 115200, B115200 }, 964 { 57600, B57600 }, 965 { 38400, B38400 }, 966 { 19200, B19200 }, 967 { 9600, B9600 }, 968 { 4800, B4800 }, 969 { 2400, B2400 }, 970 { 1200, B1200 }, 971 { 600, B600 }, 972 { 300, B300 }, 973 { 200, B200 }, 974 { 150, B150 }, 975 { 134, B134 }, 976 { 110, B110 }, 977 { 75, B75 }, 978 { 50, B50 }, 979 }; 980 981 cflag = C_BAUD(ch->uart_port.state->port.tty); 982 baud = 9600; 983 for (i = 0; i < ARRAY_SIZE(baud_rates); i++) { 984 if (baud_rates[i].cflag == cflag) { 985 baud = baud_rates[i].rate; 986 break; 987 } 988 } 989 990 if (ch->ch_flags & CH_BAUD0) 991 ch->ch_flags &= ~(CH_BAUD0); 992 } 993 994 if (ch->ch_c_cflag & PARENB) 995 lcr |= UART_LCR_PARITY; 996 997 if (!(ch->ch_c_cflag & PARODD)) 998 lcr |= UART_LCR_EPAR; 999 1000 if (ch->ch_c_cflag & CMSPAR) 1001 lcr |= UART_LCR_SPAR; 1002 1003 if (ch->ch_c_cflag & CSTOPB) 1004 lcr |= UART_LCR_STOP; 1005 1006 lcr |= UART_LCR_WLEN(tty_get_char_size(ch->ch_c_cflag)); 1007 1008 ier = readb(&ch->ch_neo_uart->ier); 1009 uart_lcr = readb(&ch->ch_neo_uart->lcr); 1010 1011 quot = ch->ch_bd->bd_dividend / baud; 1012 1013 if (quot != 0) { 1014 writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr); 1015 writeb((quot & 0xff), &ch->ch_neo_uart->txrx); 1016 writeb((quot >> 8), &ch->ch_neo_uart->ier); 1017 writeb(lcr, &ch->ch_neo_uart->lcr); 1018 } 1019 1020 if (uart_lcr != lcr) 1021 writeb(lcr, &ch->ch_neo_uart->lcr); 1022 1023 if (ch->ch_c_cflag & CREAD) 1024 ier |= (UART_IER_RDI | UART_IER_RLSI); 1025 1026 ier |= (UART_IER_THRI | UART_IER_MSI); 1027 1028 writeb(ier, &ch->ch_neo_uart->ier); 1029 1030 /* Set new start/stop chars */ 1031 neo_set_new_start_stop_chars(ch); 1032 1033 if (ch->ch_c_cflag & CRTSCTS) 1034 neo_set_cts_flow_control(ch); 1035 else if (ch->ch_c_iflag & IXON) { 1036 /* If start/stop is set to disable, then we should disable flow control */ 1037 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) 1038 neo_set_no_output_flow_control(ch); 1039 else 1040 neo_set_ixon_flow_control(ch); 1041 } 1042 else 1043 neo_set_no_output_flow_control(ch); 1044 1045 if (ch->ch_c_cflag & CRTSCTS) 1046 neo_set_rts_flow_control(ch); 1047 else if (ch->ch_c_iflag & IXOFF) { 1048 /* If start/stop is set to disable, then we should disable flow control */ 1049 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) 1050 neo_set_no_input_flow_control(ch); 1051 else 1052 neo_set_ixoff_flow_control(ch); 1053 } 1054 else 1055 neo_set_no_input_flow_control(ch); 1056 /* 1057 * Adjust the RX FIFO Trigger level if baud is less than 9600. 1058 * Not exactly elegant, but this is needed because of the Exar chip's 1059 * delay on firing off the RX FIFO interrupt on slower baud rates. 1060 */ 1061 if (baud < 9600) { 1062 writeb(1, &ch->ch_neo_uart->rfifo); 1063 ch->ch_r_tlevel = 1; 1064 } 1065 1066 neo_assert_modem_signals(ch); 1067 1068 /* Get current status of the modem signals now */ 1069 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); 1070 return; 1071 } 1072 1073 /* 1074 * jsm_neo_intr() 1075 * 1076 * Neo specific interrupt handler. 1077 */ 1078 static irqreturn_t neo_intr(int irq, void *voidbrd) 1079 { 1080 struct jsm_board *brd = voidbrd; 1081 struct jsm_channel *ch; 1082 int port = 0; 1083 int type = 0; 1084 int current_port; 1085 u32 tmp; 1086 u32 uart_poll; 1087 unsigned long lock_flags; 1088 unsigned long lock_flags2; 1089 int outofloop_count = 0; 1090 1091 /* Lock out the slow poller from running on this board. */ 1092 spin_lock_irqsave(&brd->bd_intr_lock, lock_flags); 1093 1094 /* 1095 * Read in "extended" IRQ information from the 32bit Neo register. 1096 * Bits 0-7: What port triggered the interrupt. 1097 * Bits 8-31: Each 3bits indicate what type of interrupt occurred. 1098 */ 1099 uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET); 1100 1101 jsm_dbg(INTR, &brd->pci_dev, "%s:%d uart_poll: %x\n", 1102 __FILE__, __LINE__, uart_poll); 1103 1104 if (!uart_poll) { 1105 jsm_dbg(INTR, &brd->pci_dev, 1106 "Kernel interrupted to me, but no pending interrupts...\n"); 1107 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); 1108 return IRQ_NONE; 1109 } 1110 1111 /* At this point, we have at least SOMETHING to service, dig further... */ 1112 1113 current_port = 0; 1114 1115 /* Loop on each port */ 1116 while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){ 1117 1118 tmp = uart_poll; 1119 outofloop_count++; 1120 1121 /* Check current port to see if it has interrupt pending */ 1122 if ((tmp & jsm_offset_table[current_port]) != 0) { 1123 port = current_port; 1124 type = tmp >> (8 + (port * 3)); 1125 type &= 0x7; 1126 } else { 1127 current_port++; 1128 continue; 1129 } 1130 1131 jsm_dbg(INTR, &brd->pci_dev, "%s:%d port: %x type: %x\n", 1132 __FILE__, __LINE__, port, type); 1133 1134 /* Remove this port + type from uart_poll */ 1135 uart_poll &= ~(jsm_offset_table[port]); 1136 1137 if (!type) { 1138 /* If no type, just ignore it, and move onto next port */ 1139 jsm_dbg(INTR, &brd->pci_dev, 1140 "Interrupt with no type! port: %d\n", port); 1141 continue; 1142 } 1143 1144 /* Switch on type of interrupt we have */ 1145 switch (type) { 1146 1147 case UART_17158_RXRDY_TIMEOUT: 1148 /* 1149 * RXRDY Time-out is cleared by reading data in the 1150 * RX FIFO until it falls below the trigger level. 1151 */ 1152 1153 /* Verify the port is in range. */ 1154 if (port >= brd->nasync) 1155 continue; 1156 1157 ch = brd->channels[port]; 1158 if (!ch) 1159 continue; 1160 1161 neo_copy_data_from_uart_to_queue(ch); 1162 1163 /* Call our tty layer to enforce queue flow control if needed. */ 1164 spin_lock_irqsave(&ch->ch_lock, lock_flags2); 1165 jsm_check_queue_flow_control(ch); 1166 spin_unlock_irqrestore(&ch->ch_lock, lock_flags2); 1167 1168 continue; 1169 1170 case UART_17158_RX_LINE_STATUS: 1171 /* 1172 * RXRDY and RX LINE Status (logic OR of LSR[4:1]) 1173 */ 1174 neo_parse_lsr(brd, port); 1175 continue; 1176 1177 case UART_17158_TXRDY: 1178 /* 1179 * TXRDY interrupt clears after reading ISR register for the UART channel. 1180 */ 1181 1182 /* 1183 * Yes, this is odd... 1184 * Why would I check EVERY possibility of type of 1185 * interrupt, when we know its TXRDY??? 1186 * Becuz for some reason, even tho we got triggered for TXRDY, 1187 * it seems to be occasionally wrong. Instead of TX, which 1188 * it should be, I was getting things like RXDY too. Weird. 1189 */ 1190 neo_parse_isr(brd, port); 1191 continue; 1192 1193 case UART_17158_MSR: 1194 /* 1195 * MSR or flow control was seen. 1196 */ 1197 neo_parse_isr(brd, port); 1198 continue; 1199 1200 default: 1201 /* 1202 * The UART triggered us with a bogus interrupt type. 1203 * It appears the Exar chip, when REALLY bogged down, will throw 1204 * these once and awhile. 1205 * Its harmless, just ignore it and move on. 1206 */ 1207 jsm_dbg(INTR, &brd->pci_dev, 1208 "%s:%d Unknown Interrupt type: %x\n", 1209 __FILE__, __LINE__, type); 1210 continue; 1211 } 1212 } 1213 1214 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); 1215 1216 jsm_dbg(INTR, &brd->pci_dev, "finish\n"); 1217 return IRQ_HANDLED; 1218 } 1219 1220 /* 1221 * Neo specific way of turning off the receiver. 1222 * Used as a way to enforce queue flow control when in 1223 * hardware flow control mode. 1224 */ 1225 static void neo_disable_receiver(struct jsm_channel *ch) 1226 { 1227 u8 tmp = readb(&ch->ch_neo_uart->ier); 1228 tmp &= ~(UART_IER_RDI); 1229 writeb(tmp, &ch->ch_neo_uart->ier); 1230 1231 /* flush write operation */ 1232 neo_pci_posting_flush(ch->ch_bd); 1233 } 1234 1235 1236 /* 1237 * Neo specific way of turning on the receiver. 1238 * Used as a way to un-enforce queue flow control when in 1239 * hardware flow control mode. 1240 */ 1241 static void neo_enable_receiver(struct jsm_channel *ch) 1242 { 1243 u8 tmp = readb(&ch->ch_neo_uart->ier); 1244 tmp |= (UART_IER_RDI); 1245 writeb(tmp, &ch->ch_neo_uart->ier); 1246 1247 /* flush write operation */ 1248 neo_pci_posting_flush(ch->ch_bd); 1249 } 1250 1251 static void neo_send_start_character(struct jsm_channel *ch) 1252 { 1253 if (!ch) 1254 return; 1255 1256 if (ch->ch_startc != __DISABLED_CHAR) { 1257 ch->ch_xon_sends++; 1258 writeb(ch->ch_startc, &ch->ch_neo_uart->txrx); 1259 1260 /* flush write operation */ 1261 neo_pci_posting_flush(ch->ch_bd); 1262 } 1263 } 1264 1265 static void neo_send_stop_character(struct jsm_channel *ch) 1266 { 1267 if (!ch) 1268 return; 1269 1270 if (ch->ch_stopc != __DISABLED_CHAR) { 1271 ch->ch_xoff_sends++; 1272 writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx); 1273 1274 /* flush write operation */ 1275 neo_pci_posting_flush(ch->ch_bd); 1276 } 1277 } 1278 1279 /* 1280 * neo_uart_init 1281 */ 1282 static void neo_uart_init(struct jsm_channel *ch) 1283 { 1284 writeb(0, &ch->ch_neo_uart->ier); 1285 writeb(0, &ch->ch_neo_uart->efr); 1286 writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr); 1287 1288 /* Clear out UART and FIFO */ 1289 readb(&ch->ch_neo_uart->txrx); 1290 writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); 1291 readb(&ch->ch_neo_uart->lsr); 1292 readb(&ch->ch_neo_uart->msr); 1293 1294 ch->ch_flags |= CH_FIFO_ENABLED; 1295 1296 /* Assert any signals we want up */ 1297 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); 1298 } 1299 1300 /* 1301 * Make the UART completely turn off. 1302 */ 1303 static void neo_uart_off(struct jsm_channel *ch) 1304 { 1305 /* Turn off UART enhanced bits */ 1306 writeb(0, &ch->ch_neo_uart->efr); 1307 1308 /* Stop all interrupts from occurring. */ 1309 writeb(0, &ch->ch_neo_uart->ier); 1310 } 1311 1312 /* Channel lock MUST be held by the calling function! */ 1313 static void neo_send_break(struct jsm_channel *ch) 1314 { 1315 /* 1316 * Set the time we should stop sending the break. 1317 * If we are already sending a break, toss away the existing 1318 * time to stop, and use this new value instead. 1319 */ 1320 1321 /* Tell the UART to start sending the break */ 1322 if (!(ch->ch_flags & CH_BREAK_SENDING)) { 1323 u8 temp = readb(&ch->ch_neo_uart->lcr); 1324 writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr); 1325 ch->ch_flags |= (CH_BREAK_SENDING); 1326 1327 /* flush write operation */ 1328 neo_pci_posting_flush(ch->ch_bd); 1329 } 1330 } 1331 1332 struct board_ops jsm_neo_ops = { 1333 .intr = neo_intr, 1334 .uart_init = neo_uart_init, 1335 .uart_off = neo_uart_off, 1336 .param = neo_param, 1337 .assert_modem_signals = neo_assert_modem_signals, 1338 .flush_uart_write = neo_flush_uart_write, 1339 .flush_uart_read = neo_flush_uart_read, 1340 .disable_receiver = neo_disable_receiver, 1341 .enable_receiver = neo_enable_receiver, 1342 .send_break = neo_send_break, 1343 .clear_break = neo_clear_break, 1344 .send_start_character = neo_send_start_character, 1345 .send_stop_character = neo_send_stop_character, 1346 .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart, 1347 }; 1348