1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/io.h> 30 #include <linux/dma-mapping.h> 31 32 #include <asm/irq.h> 33 #include <linux/dma/imx-dma.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 123 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 124 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 125 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 126 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 127 #define USR1_RTSS (1<<14) /* RTS pin status */ 128 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 129 #define USR1_RTSD (1<<12) /* RTS delta */ 130 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 131 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 132 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 133 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 134 #define USR1_DTRD (1<<7) /* DTR Delta */ 135 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 136 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 137 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 138 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 139 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 140 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 141 #define USR2_IDLE (1<<12) /* Idle condition */ 142 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 143 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 144 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 145 #define USR2_WAKE (1<<7) /* Wake */ 146 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 147 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 148 #define USR2_TXDC (1<<3) /* Transmitter complete */ 149 #define USR2_BRCD (1<<2) /* Break condition */ 150 #define USR2_ORE (1<<1) /* Overrun error */ 151 #define USR2_RDR (1<<0) /* Recv data ready */ 152 #define UTS_FRCPERR (1<<13) /* Force parity error */ 153 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 154 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 155 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 156 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 157 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 158 #define UTS_SOFTRST (1<<0) /* Software reset */ 159 160 /* We've been assigned a range on the "Low-density serial ports" major */ 161 #define SERIAL_IMX_MAJOR 207 162 #define MINOR_START 16 163 #define DEV_NAME "ttymxc" 164 165 /* 166 * This determines how often we check the modem status signals 167 * for any change. They generally aren't connected to an IRQ 168 * so we have to poll them. We also check immediately before 169 * filling the TX fifo incase CTS has been dropped. 170 */ 171 #define MCTRL_TIMEOUT (250*HZ/1000) 172 173 #define DRIVER_NAME "IMX-uart" 174 175 #define UART_NR 8 176 177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 178 enum imx_uart_type { 179 IMX1_UART, 180 IMX21_UART, 181 IMX53_UART, 182 IMX6Q_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* counter to stop 0xff flood */ 214 int idle_counter; 215 216 /* DMA fields */ 217 unsigned int dma_is_enabled:1; 218 unsigned int dma_is_rxing:1; 219 unsigned int dma_is_txing:1; 220 struct dma_chan *dma_chan_rx, *dma_chan_tx; 221 struct scatterlist rx_sgl, tx_sgl[2]; 222 void *rx_buf; 223 struct circ_buf rx_ring; 224 unsigned int rx_buf_size; 225 unsigned int rx_period_length; 226 unsigned int rx_periods; 227 dma_cookie_t rx_cookie; 228 unsigned int tx_bytes; 229 unsigned int dma_tx_nents; 230 unsigned int saved_reg[10]; 231 bool context_saved; 232 233 enum imx_tx_state tx_state; 234 struct hrtimer trigger_start_tx; 235 struct hrtimer trigger_stop_tx; 236 }; 237 238 struct imx_port_ucrs { 239 unsigned int ucr1; 240 unsigned int ucr2; 241 unsigned int ucr3; 242 }; 243 244 static struct imx_uart_data imx_uart_devdata[] = { 245 [IMX1_UART] = { 246 .uts_reg = IMX1_UTS, 247 .devtype = IMX1_UART, 248 }, 249 [IMX21_UART] = { 250 .uts_reg = IMX21_UTS, 251 .devtype = IMX21_UART, 252 }, 253 [IMX53_UART] = { 254 .uts_reg = IMX21_UTS, 255 .devtype = IMX53_UART, 256 }, 257 [IMX6Q_UART] = { 258 .uts_reg = IMX21_UTS, 259 .devtype = IMX6Q_UART, 260 }, 261 }; 262 263 static const struct of_device_id imx_uart_dt_ids[] = { 264 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 265 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 266 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 267 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 268 { /* sentinel */ } 269 }; 270 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 271 272 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 273 { 274 writel(val, sport->port.membase + offset); 275 } 276 277 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 278 { 279 return readl(sport->port.membase + offset); 280 } 281 282 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 283 { 284 return sport->devdata->uts_reg; 285 } 286 287 static inline int imx_uart_is_imx1(struct imx_port *sport) 288 { 289 return sport->devdata->devtype == IMX1_UART; 290 } 291 292 /* 293 * Save and restore functions for UCR1, UCR2 and UCR3 registers 294 */ 295 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 296 static void imx_uart_ucrs_save(struct imx_port *sport, 297 struct imx_port_ucrs *ucr) 298 { 299 /* save control registers */ 300 ucr->ucr1 = imx_uart_readl(sport, UCR1); 301 ucr->ucr2 = imx_uart_readl(sport, UCR2); 302 ucr->ucr3 = imx_uart_readl(sport, UCR3); 303 } 304 305 static void imx_uart_ucrs_restore(struct imx_port *sport, 306 struct imx_port_ucrs *ucr) 307 { 308 /* restore control registers */ 309 imx_uart_writel(sport, ucr->ucr1, UCR1); 310 imx_uart_writel(sport, ucr->ucr2, UCR2); 311 imx_uart_writel(sport, ucr->ucr3, UCR3); 312 } 313 #endif 314 315 /* called with port.lock taken and irqs caller dependent */ 316 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 317 { 318 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 319 320 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 321 } 322 323 /* called with port.lock taken and irqs caller dependent */ 324 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 325 { 326 *ucr2 &= ~UCR2_CTSC; 327 *ucr2 |= UCR2_CTS; 328 329 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 330 } 331 332 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 333 { 334 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 335 } 336 337 /* called with port.lock taken and irqs off */ 338 static void imx_uart_soft_reset(struct imx_port *sport) 339 { 340 int i = 10; 341 u32 ucr2, ubir, ubmr, uts; 342 343 /* 344 * According to the Reference Manual description of the UART SRST bit: 345 * 346 * "Reset the transmit and receive state machines, 347 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 348 * and UTS[6-3]". 349 * 350 * We don't need to restore the old values from USR1, USR2, URXD and 351 * UTXD. UBRC is read only, so only save/restore the other three 352 * registers. 353 */ 354 ubir = imx_uart_readl(sport, UBIR); 355 ubmr = imx_uart_readl(sport, UBMR); 356 uts = imx_uart_readl(sport, IMX21_UTS); 357 358 ucr2 = imx_uart_readl(sport, UCR2); 359 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 360 361 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 362 udelay(1); 363 364 /* Restore the registers */ 365 imx_uart_writel(sport, ubir, UBIR); 366 imx_uart_writel(sport, ubmr, UBMR); 367 imx_uart_writel(sport, uts, IMX21_UTS); 368 369 sport->idle_counter = 0; 370 } 371 372 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 373 { 374 unsigned int uts; 375 376 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 377 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 378 uts &= ~UTS_LOOP; 379 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 380 } 381 382 /* called with port.lock taken and irqs off */ 383 static void imx_uart_start_rx(struct uart_port *port) 384 { 385 struct imx_port *sport = (struct imx_port *)port; 386 unsigned int ucr1, ucr2; 387 388 ucr1 = imx_uart_readl(sport, UCR1); 389 ucr2 = imx_uart_readl(sport, UCR2); 390 391 ucr2 |= UCR2_RXEN; 392 393 if (sport->dma_is_enabled) { 394 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 395 } else { 396 ucr1 |= UCR1_RRDYEN; 397 ucr2 |= UCR2_ATEN; 398 } 399 400 /* Write UCR2 first as it includes RXEN */ 401 imx_uart_writel(sport, ucr2, UCR2); 402 imx_uart_writel(sport, ucr1, UCR1); 403 imx_uart_disable_loopback_rs485(sport); 404 } 405 406 /* called with port.lock taken and irqs off */ 407 static void imx_uart_stop_tx(struct uart_port *port) 408 { 409 struct imx_port *sport = (struct imx_port *)port; 410 u32 ucr1, ucr4, usr2; 411 412 if (sport->tx_state == OFF) 413 return; 414 415 /* 416 * We are maybe in the SMP context, so if the DMA TX thread is running 417 * on other cpu, we have to wait for it to finish. 418 */ 419 if (sport->dma_is_txing) 420 return; 421 422 ucr1 = imx_uart_readl(sport, UCR1); 423 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 424 425 usr2 = imx_uart_readl(sport, USR2); 426 if (!(usr2 & USR2_TXDC)) { 427 /* The shifter is still busy, so retry once TC triggers */ 428 return; 429 } 430 431 ucr4 = imx_uart_readl(sport, UCR4); 432 ucr4 &= ~UCR4_TCEN; 433 imx_uart_writel(sport, ucr4, UCR4); 434 435 /* in rs485 mode disable transmitter */ 436 if (port->rs485.flags & SER_RS485_ENABLED) { 437 if (sport->tx_state == SEND) { 438 sport->tx_state = WAIT_AFTER_SEND; 439 440 if (port->rs485.delay_rts_after_send > 0) { 441 start_hrtimer_ms(&sport->trigger_stop_tx, 442 port->rs485.delay_rts_after_send); 443 return; 444 } 445 446 /* continue without any delay */ 447 } 448 449 if (sport->tx_state == WAIT_AFTER_RTS || 450 sport->tx_state == WAIT_AFTER_SEND) { 451 u32 ucr2; 452 453 hrtimer_try_to_cancel(&sport->trigger_start_tx); 454 455 ucr2 = imx_uart_readl(sport, UCR2); 456 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 457 imx_uart_rts_active(sport, &ucr2); 458 else 459 imx_uart_rts_inactive(sport, &ucr2); 460 imx_uart_writel(sport, ucr2, UCR2); 461 462 if (!port->rs485_rx_during_tx_gpio) 463 imx_uart_start_rx(port); 464 465 sport->tx_state = OFF; 466 } 467 } else { 468 sport->tx_state = OFF; 469 } 470 } 471 472 /* called with port.lock taken and irqs off */ 473 static void imx_uart_stop_rx(struct uart_port *port) 474 { 475 struct imx_port *sport = (struct imx_port *)port; 476 u32 ucr1, ucr2, ucr4, uts; 477 478 ucr1 = imx_uart_readl(sport, UCR1); 479 ucr2 = imx_uart_readl(sport, UCR2); 480 ucr4 = imx_uart_readl(sport, UCR4); 481 482 if (sport->dma_is_enabled) { 483 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 484 } else { 485 ucr1 &= ~UCR1_RRDYEN; 486 ucr2 &= ~UCR2_ATEN; 487 ucr4 &= ~UCR4_OREN; 488 } 489 imx_uart_writel(sport, ucr1, UCR1); 490 imx_uart_writel(sport, ucr4, UCR4); 491 492 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 493 if (port->rs485.flags & SER_RS485_ENABLED && 494 port->rs485.flags & SER_RS485_RTS_ON_SEND && 495 sport->have_rtscts && !sport->have_rtsgpio) { 496 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 497 uts |= UTS_LOOP; 498 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 499 ucr2 |= UCR2_RXEN; 500 } else { 501 ucr2 &= ~UCR2_RXEN; 502 } 503 504 imx_uart_writel(sport, ucr2, UCR2); 505 } 506 507 /* called with port.lock taken and irqs off */ 508 static void imx_uart_enable_ms(struct uart_port *port) 509 { 510 struct imx_port *sport = (struct imx_port *)port; 511 512 mod_timer(&sport->timer, jiffies); 513 514 mctrl_gpio_enable_ms(sport->gpios); 515 } 516 517 static void imx_uart_dma_tx(struct imx_port *sport); 518 519 /* called with port.lock taken and irqs off */ 520 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 521 { 522 struct circ_buf *xmit = &sport->port.state->xmit; 523 524 if (sport->port.x_char) { 525 /* Send next char */ 526 imx_uart_writel(sport, sport->port.x_char, URTX0); 527 sport->port.icount.tx++; 528 sport->port.x_char = 0; 529 return; 530 } 531 532 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 533 imx_uart_stop_tx(&sport->port); 534 return; 535 } 536 537 if (sport->dma_is_enabled) { 538 u32 ucr1; 539 /* 540 * We've just sent a X-char Ensure the TX DMA is enabled 541 * and the TX IRQ is disabled. 542 **/ 543 ucr1 = imx_uart_readl(sport, UCR1); 544 ucr1 &= ~UCR1_TRDYEN; 545 if (sport->dma_is_txing) { 546 ucr1 |= UCR1_TXDMAEN; 547 imx_uart_writel(sport, ucr1, UCR1); 548 } else { 549 imx_uart_writel(sport, ucr1, UCR1); 550 imx_uart_dma_tx(sport); 551 } 552 553 return; 554 } 555 556 while (!uart_circ_empty(xmit) && 557 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 558 /* send xmit->buf[xmit->tail] 559 * out the port here */ 560 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 561 uart_xmit_advance(&sport->port, 1); 562 } 563 564 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 565 uart_write_wakeup(&sport->port); 566 567 if (uart_circ_empty(xmit)) 568 imx_uart_stop_tx(&sport->port); 569 } 570 571 static void imx_uart_dma_tx_callback(void *data) 572 { 573 struct imx_port *sport = data; 574 struct scatterlist *sgl = &sport->tx_sgl[0]; 575 struct circ_buf *xmit = &sport->port.state->xmit; 576 unsigned long flags; 577 u32 ucr1; 578 579 spin_lock_irqsave(&sport->port.lock, flags); 580 581 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 582 583 ucr1 = imx_uart_readl(sport, UCR1); 584 ucr1 &= ~UCR1_TXDMAEN; 585 imx_uart_writel(sport, ucr1, UCR1); 586 587 uart_xmit_advance(&sport->port, sport->tx_bytes); 588 589 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 590 591 sport->dma_is_txing = 0; 592 593 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 594 uart_write_wakeup(&sport->port); 595 596 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 597 imx_uart_dma_tx(sport); 598 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 599 u32 ucr4 = imx_uart_readl(sport, UCR4); 600 ucr4 |= UCR4_TCEN; 601 imx_uart_writel(sport, ucr4, UCR4); 602 } 603 604 spin_unlock_irqrestore(&sport->port.lock, flags); 605 } 606 607 /* called with port.lock taken and irqs off */ 608 static void imx_uart_dma_tx(struct imx_port *sport) 609 { 610 struct circ_buf *xmit = &sport->port.state->xmit; 611 struct scatterlist *sgl = sport->tx_sgl; 612 struct dma_async_tx_descriptor *desc; 613 struct dma_chan *chan = sport->dma_chan_tx; 614 struct device *dev = sport->port.dev; 615 u32 ucr1, ucr4; 616 int ret; 617 618 if (sport->dma_is_txing) 619 return; 620 621 ucr4 = imx_uart_readl(sport, UCR4); 622 ucr4 &= ~UCR4_TCEN; 623 imx_uart_writel(sport, ucr4, UCR4); 624 625 sport->tx_bytes = uart_circ_chars_pending(xmit); 626 627 if (xmit->tail < xmit->head || xmit->head == 0) { 628 sport->dma_tx_nents = 1; 629 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 630 } else { 631 sport->dma_tx_nents = 2; 632 sg_init_table(sgl, 2); 633 sg_set_buf(sgl, xmit->buf + xmit->tail, 634 UART_XMIT_SIZE - xmit->tail); 635 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 636 } 637 638 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 639 if (ret == 0) { 640 dev_err(dev, "DMA mapping error for TX.\n"); 641 return; 642 } 643 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 644 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 645 if (!desc) { 646 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 647 DMA_TO_DEVICE); 648 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 649 return; 650 } 651 desc->callback = imx_uart_dma_tx_callback; 652 desc->callback_param = sport; 653 654 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 655 uart_circ_chars_pending(xmit)); 656 657 ucr1 = imx_uart_readl(sport, UCR1); 658 ucr1 |= UCR1_TXDMAEN; 659 imx_uart_writel(sport, ucr1, UCR1); 660 661 /* fire it */ 662 sport->dma_is_txing = 1; 663 dmaengine_submit(desc); 664 dma_async_issue_pending(chan); 665 return; 666 } 667 668 /* called with port.lock taken and irqs off */ 669 static void imx_uart_start_tx(struct uart_port *port) 670 { 671 struct imx_port *sport = (struct imx_port *)port; 672 u32 ucr1; 673 674 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 675 return; 676 677 /* 678 * We cannot simply do nothing here if sport->tx_state == SEND already 679 * because UCR1_TXMPTYEN might already have been cleared in 680 * imx_uart_stop_tx(), but tx_state is still SEND. 681 */ 682 683 if (port->rs485.flags & SER_RS485_ENABLED) { 684 if (sport->tx_state == OFF) { 685 u32 ucr2 = imx_uart_readl(sport, UCR2); 686 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 687 imx_uart_rts_active(sport, &ucr2); 688 else 689 imx_uart_rts_inactive(sport, &ucr2); 690 imx_uart_writel(sport, ucr2, UCR2); 691 692 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 693 !port->rs485_rx_during_tx_gpio) 694 imx_uart_stop_rx(port); 695 696 sport->tx_state = WAIT_AFTER_RTS; 697 698 if (port->rs485.delay_rts_before_send > 0) { 699 start_hrtimer_ms(&sport->trigger_start_tx, 700 port->rs485.delay_rts_before_send); 701 return; 702 } 703 704 /* continue without any delay */ 705 } 706 707 if (sport->tx_state == WAIT_AFTER_SEND 708 || sport->tx_state == WAIT_AFTER_RTS) { 709 710 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 711 712 /* 713 * Enable transmitter and shifter empty irq only if DMA 714 * is off. In the DMA case this is done in the 715 * tx-callback. 716 */ 717 if (!sport->dma_is_enabled) { 718 u32 ucr4 = imx_uart_readl(sport, UCR4); 719 ucr4 |= UCR4_TCEN; 720 imx_uart_writel(sport, ucr4, UCR4); 721 } 722 723 sport->tx_state = SEND; 724 } 725 } else { 726 sport->tx_state = SEND; 727 } 728 729 if (!sport->dma_is_enabled) { 730 ucr1 = imx_uart_readl(sport, UCR1); 731 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 732 } 733 734 if (sport->dma_is_enabled) { 735 if (sport->port.x_char) { 736 /* We have X-char to send, so enable TX IRQ and 737 * disable TX DMA to let TX interrupt to send X-char */ 738 ucr1 = imx_uart_readl(sport, UCR1); 739 ucr1 &= ~UCR1_TXDMAEN; 740 ucr1 |= UCR1_TRDYEN; 741 imx_uart_writel(sport, ucr1, UCR1); 742 return; 743 } 744 745 if (!uart_circ_empty(&port->state->xmit) && 746 !uart_tx_stopped(port)) 747 imx_uart_dma_tx(sport); 748 return; 749 } 750 } 751 752 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 753 { 754 struct imx_port *sport = dev_id; 755 u32 usr1; 756 757 imx_uart_writel(sport, USR1_RTSD, USR1); 758 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 759 uart_handle_cts_change(&sport->port, usr1); 760 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 761 762 return IRQ_HANDLED; 763 } 764 765 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 766 { 767 struct imx_port *sport = dev_id; 768 irqreturn_t ret; 769 770 spin_lock(&sport->port.lock); 771 772 ret = __imx_uart_rtsint(irq, dev_id); 773 774 spin_unlock(&sport->port.lock); 775 776 return ret; 777 } 778 779 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 780 { 781 struct imx_port *sport = dev_id; 782 783 spin_lock(&sport->port.lock); 784 imx_uart_transmit_buffer(sport); 785 spin_unlock(&sport->port.lock); 786 return IRQ_HANDLED; 787 } 788 789 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 790 * This is to be called from Rx ISRs only when some bytes were actually 791 * received. 792 * 793 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 794 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 795 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 796 * that is terminated by any activity on RxD line, or could be stopped by 797 * issuing soft reset to the UART (just stop/start of RX does not help). Note 798 * that what we do here is sending isolated start bit about 2.4 times shorter 799 * than it is to be on UART configured baud rate. 800 */ 801 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 802 { 803 /* To detect hardware 0xff flood we monitor RxD line between RX 804 * interrupts to isolate "receiving" of char(s) with no activity 805 * on RxD line, that'd never happen on actual data transfers. 806 * 807 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 808 * race here if we clear USR2_WAKE when receiving of a char is in 809 * progress, so we might get RX interrupt later with USR2_WAKE bit 810 * cleared. Note though that as we don't try to clear USR2_WAKE when we 811 * detected no activity, this race may hide actual activity only once. 812 * 813 * Yet another case where receive interrupt may occur without RxD 814 * activity is expiration of aging timer, so we consider this as well. 815 * 816 * We use 'idle_counter' to ensure that we got at least so many RX 817 * interrupts without any detected activity on RxD line. 2 cases 818 * described plus 1 to be on the safe side gives us a margin of 3, 819 * below. In practice I was not able to produce a false positive to 820 * induce soft reset at regular data transfers even using 1 as the 821 * margin, so 3 is actually very strong. 822 * 823 * We count interrupts, not chars in 'idle-counter' for simplicity. 824 */ 825 826 if (usr2 & USR2_WAKE) { 827 imx_uart_writel(sport, USR2_WAKE, USR2); 828 sport->idle_counter = 0; 829 } else if (++sport->idle_counter > 3) { 830 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 831 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 832 } 833 } 834 835 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 836 { 837 struct imx_port *sport = dev_id; 838 struct tty_port *port = &sport->port.state->port; 839 u32 usr2, rx; 840 841 /* If we received something, check for 0xff flood */ 842 usr2 = imx_uart_readl(sport, USR2); 843 if (usr2 & USR2_RDR) 844 imx_uart_check_flood(sport, usr2); 845 846 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 847 unsigned int flg = TTY_NORMAL; 848 sport->port.icount.rx++; 849 850 if (unlikely(rx & URXD_ERR)) { 851 if (rx & URXD_BRK) { 852 sport->port.icount.brk++; 853 if (uart_handle_break(&sport->port)) 854 continue; 855 } 856 else if (rx & URXD_PRERR) 857 sport->port.icount.parity++; 858 else if (rx & URXD_FRMERR) 859 sport->port.icount.frame++; 860 if (rx & URXD_OVRRUN) 861 sport->port.icount.overrun++; 862 863 if (rx & sport->port.ignore_status_mask) 864 continue; 865 866 rx &= (sport->port.read_status_mask | 0xFF); 867 868 if (rx & URXD_BRK) 869 flg = TTY_BREAK; 870 else if (rx & URXD_PRERR) 871 flg = TTY_PARITY; 872 else if (rx & URXD_FRMERR) 873 flg = TTY_FRAME; 874 if (rx & URXD_OVRRUN) 875 flg = TTY_OVERRUN; 876 877 sport->port.sysrq = 0; 878 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 879 continue; 880 } 881 882 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 883 continue; 884 885 if (tty_insert_flip_char(port, rx, flg) == 0) 886 sport->port.icount.buf_overrun++; 887 } 888 889 tty_flip_buffer_push(port); 890 891 return IRQ_HANDLED; 892 } 893 894 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 895 { 896 struct imx_port *sport = dev_id; 897 irqreturn_t ret; 898 899 spin_lock(&sport->port.lock); 900 901 ret = __imx_uart_rxint(irq, dev_id); 902 903 spin_unlock(&sport->port.lock); 904 905 return ret; 906 } 907 908 static void imx_uart_clear_rx_errors(struct imx_port *sport); 909 910 /* 911 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 912 */ 913 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 914 { 915 unsigned int tmp = TIOCM_DSR; 916 unsigned usr1 = imx_uart_readl(sport, USR1); 917 unsigned usr2 = imx_uart_readl(sport, USR2); 918 919 if (usr1 & USR1_RTSS) 920 tmp |= TIOCM_CTS; 921 922 /* in DCE mode DCDIN is always 0 */ 923 if (!(usr2 & USR2_DCDIN)) 924 tmp |= TIOCM_CAR; 925 926 if (sport->dte_mode) 927 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 928 tmp |= TIOCM_RI; 929 930 return tmp; 931 } 932 933 /* 934 * Handle any change of modem status signal since we were last called. 935 */ 936 static void imx_uart_mctrl_check(struct imx_port *sport) 937 { 938 unsigned int status, changed; 939 940 status = imx_uart_get_hwmctrl(sport); 941 changed = status ^ sport->old_status; 942 943 if (changed == 0) 944 return; 945 946 sport->old_status = status; 947 948 if (changed & TIOCM_RI && status & TIOCM_RI) 949 sport->port.icount.rng++; 950 if (changed & TIOCM_DSR) 951 sport->port.icount.dsr++; 952 if (changed & TIOCM_CAR) 953 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 954 if (changed & TIOCM_CTS) 955 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 956 957 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 958 } 959 960 static irqreturn_t imx_uart_int(int irq, void *dev_id) 961 { 962 struct imx_port *sport = dev_id; 963 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 964 irqreturn_t ret = IRQ_NONE; 965 966 spin_lock(&sport->port.lock); 967 968 usr1 = imx_uart_readl(sport, USR1); 969 usr2 = imx_uart_readl(sport, USR2); 970 ucr1 = imx_uart_readl(sport, UCR1); 971 ucr2 = imx_uart_readl(sport, UCR2); 972 ucr3 = imx_uart_readl(sport, UCR3); 973 ucr4 = imx_uart_readl(sport, UCR4); 974 975 /* 976 * Even if a condition is true that can trigger an irq only handle it if 977 * the respective irq source is enabled. This prevents some undesired 978 * actions, for example if a character that sits in the RX FIFO and that 979 * should be fetched via DMA is tried to be fetched using PIO. Or the 980 * receiver is currently off and so reading from URXD0 results in an 981 * exception. So just mask the (raw) status bits for disabled irqs. 982 */ 983 if ((ucr1 & UCR1_RRDYEN) == 0) 984 usr1 &= ~USR1_RRDY; 985 if ((ucr2 & UCR2_ATEN) == 0) 986 usr1 &= ~USR1_AGTIM; 987 if ((ucr1 & UCR1_TRDYEN) == 0) 988 usr1 &= ~USR1_TRDY; 989 if ((ucr4 & UCR4_TCEN) == 0) 990 usr2 &= ~USR2_TXDC; 991 if ((ucr3 & UCR3_DTRDEN) == 0) 992 usr1 &= ~USR1_DTRD; 993 if ((ucr1 & UCR1_RTSDEN) == 0) 994 usr1 &= ~USR1_RTSD; 995 if ((ucr3 & UCR3_AWAKEN) == 0) 996 usr1 &= ~USR1_AWAKE; 997 if ((ucr4 & UCR4_OREN) == 0) 998 usr2 &= ~USR2_ORE; 999 1000 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1001 imx_uart_writel(sport, USR1_AGTIM, USR1); 1002 1003 __imx_uart_rxint(irq, dev_id); 1004 ret = IRQ_HANDLED; 1005 } 1006 1007 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1008 imx_uart_transmit_buffer(sport); 1009 ret = IRQ_HANDLED; 1010 } 1011 1012 if (usr1 & USR1_DTRD) { 1013 imx_uart_writel(sport, USR1_DTRD, USR1); 1014 1015 imx_uart_mctrl_check(sport); 1016 1017 ret = IRQ_HANDLED; 1018 } 1019 1020 if (usr1 & USR1_RTSD) { 1021 __imx_uart_rtsint(irq, dev_id); 1022 ret = IRQ_HANDLED; 1023 } 1024 1025 if (usr1 & USR1_AWAKE) { 1026 imx_uart_writel(sport, USR1_AWAKE, USR1); 1027 ret = IRQ_HANDLED; 1028 } 1029 1030 if (usr2 & USR2_ORE) { 1031 sport->port.icount.overrun++; 1032 imx_uart_writel(sport, USR2_ORE, USR2); 1033 ret = IRQ_HANDLED; 1034 } 1035 1036 spin_unlock(&sport->port.lock); 1037 1038 return ret; 1039 } 1040 1041 /* 1042 * Return TIOCSER_TEMT when transmitter is not busy. 1043 */ 1044 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1045 { 1046 struct imx_port *sport = (struct imx_port *)port; 1047 unsigned int ret; 1048 1049 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1050 1051 /* If the TX DMA is working, return 0. */ 1052 if (sport->dma_is_txing) 1053 ret = 0; 1054 1055 return ret; 1056 } 1057 1058 /* called with port.lock taken and irqs off */ 1059 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1060 { 1061 struct imx_port *sport = (struct imx_port *)port; 1062 unsigned int ret = imx_uart_get_hwmctrl(sport); 1063 1064 mctrl_gpio_get(sport->gpios, &ret); 1065 1066 return ret; 1067 } 1068 1069 /* called with port.lock taken and irqs off */ 1070 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1071 { 1072 struct imx_port *sport = (struct imx_port *)port; 1073 u32 ucr3, uts; 1074 1075 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1076 u32 ucr2; 1077 1078 /* 1079 * Turn off autoRTS if RTS is lowered and restore autoRTS 1080 * setting if RTS is raised. 1081 */ 1082 ucr2 = imx_uart_readl(sport, UCR2); 1083 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1084 if (mctrl & TIOCM_RTS) { 1085 ucr2 |= UCR2_CTS; 1086 /* 1087 * UCR2_IRTS is unset if and only if the port is 1088 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1089 * to get the state to restore to. 1090 */ 1091 if (!(ucr2 & UCR2_IRTS)) 1092 ucr2 |= UCR2_CTSC; 1093 } 1094 imx_uart_writel(sport, ucr2, UCR2); 1095 } 1096 1097 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1098 if (!(mctrl & TIOCM_DTR)) 1099 ucr3 |= UCR3_DSR; 1100 imx_uart_writel(sport, ucr3, UCR3); 1101 1102 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1103 if (mctrl & TIOCM_LOOP) 1104 uts |= UTS_LOOP; 1105 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1106 1107 mctrl_gpio_set(sport->gpios, mctrl); 1108 } 1109 1110 /* 1111 * Interrupts always disabled. 1112 */ 1113 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1114 { 1115 struct imx_port *sport = (struct imx_port *)port; 1116 unsigned long flags; 1117 u32 ucr1; 1118 1119 spin_lock_irqsave(&sport->port.lock, flags); 1120 1121 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1122 1123 if (break_state != 0) 1124 ucr1 |= UCR1_SNDBRK; 1125 1126 imx_uart_writel(sport, ucr1, UCR1); 1127 1128 spin_unlock_irqrestore(&sport->port.lock, flags); 1129 } 1130 1131 /* 1132 * This is our per-port timeout handler, for checking the 1133 * modem status signals. 1134 */ 1135 static void imx_uart_timeout(struct timer_list *t) 1136 { 1137 struct imx_port *sport = from_timer(sport, t, timer); 1138 unsigned long flags; 1139 1140 if (sport->port.state) { 1141 spin_lock_irqsave(&sport->port.lock, flags); 1142 imx_uart_mctrl_check(sport); 1143 spin_unlock_irqrestore(&sport->port.lock, flags); 1144 1145 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1146 } 1147 } 1148 1149 /* 1150 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1151 * [1] the RX DMA buffer is full. 1152 * [2] the aging timer expires 1153 * 1154 * Condition [2] is triggered when a character has been sitting in the FIFO 1155 * for at least 8 byte durations. 1156 */ 1157 static void imx_uart_dma_rx_callback(void *data) 1158 { 1159 struct imx_port *sport = data; 1160 struct dma_chan *chan = sport->dma_chan_rx; 1161 struct scatterlist *sgl = &sport->rx_sgl; 1162 struct tty_port *port = &sport->port.state->port; 1163 struct dma_tx_state state; 1164 struct circ_buf *rx_ring = &sport->rx_ring; 1165 enum dma_status status; 1166 unsigned int w_bytes = 0; 1167 unsigned int r_bytes; 1168 unsigned int bd_size; 1169 1170 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1171 1172 if (status == DMA_ERROR) { 1173 spin_lock(&sport->port.lock); 1174 imx_uart_clear_rx_errors(sport); 1175 spin_unlock(&sport->port.lock); 1176 return; 1177 } 1178 1179 /* 1180 * The state-residue variable represents the empty space 1181 * relative to the entire buffer. Taking this in consideration 1182 * the head is always calculated base on the buffer total 1183 * length - DMA transaction residue. The UART script from the 1184 * SDMA firmware will jump to the next buffer descriptor, 1185 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1186 * Taking this in consideration the tail is always at the 1187 * beginning of the buffer descriptor that contains the head. 1188 */ 1189 1190 /* Calculate the head */ 1191 rx_ring->head = sg_dma_len(sgl) - state.residue; 1192 1193 /* Calculate the tail. */ 1194 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1195 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1196 1197 if (rx_ring->head <= sg_dma_len(sgl) && 1198 rx_ring->head > rx_ring->tail) { 1199 1200 /* Move data from tail to head */ 1201 r_bytes = rx_ring->head - rx_ring->tail; 1202 1203 /* If we received something, check for 0xff flood */ 1204 spin_lock(&sport->port.lock); 1205 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1206 spin_unlock(&sport->port.lock); 1207 1208 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1209 1210 /* CPU claims ownership of RX DMA buffer */ 1211 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1212 DMA_FROM_DEVICE); 1213 1214 w_bytes = tty_insert_flip_string(port, 1215 sport->rx_buf + rx_ring->tail, r_bytes); 1216 1217 /* UART retrieves ownership of RX DMA buffer */ 1218 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1219 DMA_FROM_DEVICE); 1220 1221 if (w_bytes != r_bytes) 1222 sport->port.icount.buf_overrun++; 1223 1224 sport->port.icount.rx += w_bytes; 1225 } 1226 } else { 1227 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1228 WARN_ON(rx_ring->head <= rx_ring->tail); 1229 } 1230 1231 if (w_bytes) { 1232 tty_flip_buffer_push(port); 1233 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1234 } 1235 } 1236 1237 static int imx_uart_start_rx_dma(struct imx_port *sport) 1238 { 1239 struct scatterlist *sgl = &sport->rx_sgl; 1240 struct dma_chan *chan = sport->dma_chan_rx; 1241 struct device *dev = sport->port.dev; 1242 struct dma_async_tx_descriptor *desc; 1243 int ret; 1244 1245 sport->rx_ring.head = 0; 1246 sport->rx_ring.tail = 0; 1247 1248 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1249 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1250 if (ret == 0) { 1251 dev_err(dev, "DMA mapping error for RX.\n"); 1252 return -EINVAL; 1253 } 1254 1255 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1256 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1257 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1258 1259 if (!desc) { 1260 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1261 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1262 return -EINVAL; 1263 } 1264 desc->callback = imx_uart_dma_rx_callback; 1265 desc->callback_param = sport; 1266 1267 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1268 sport->dma_is_rxing = 1; 1269 sport->rx_cookie = dmaengine_submit(desc); 1270 dma_async_issue_pending(chan); 1271 return 0; 1272 } 1273 1274 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1275 { 1276 struct tty_port *port = &sport->port.state->port; 1277 u32 usr1, usr2; 1278 1279 usr1 = imx_uart_readl(sport, USR1); 1280 usr2 = imx_uart_readl(sport, USR2); 1281 1282 if (usr2 & USR2_BRCD) { 1283 sport->port.icount.brk++; 1284 imx_uart_writel(sport, USR2_BRCD, USR2); 1285 uart_handle_break(&sport->port); 1286 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1287 sport->port.icount.buf_overrun++; 1288 tty_flip_buffer_push(port); 1289 } else { 1290 if (usr1 & USR1_FRAMERR) { 1291 sport->port.icount.frame++; 1292 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1293 } else if (usr1 & USR1_PARITYERR) { 1294 sport->port.icount.parity++; 1295 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1296 } 1297 } 1298 1299 if (usr2 & USR2_ORE) { 1300 sport->port.icount.overrun++; 1301 imx_uart_writel(sport, USR2_ORE, USR2); 1302 } 1303 1304 sport->idle_counter = 0; 1305 1306 } 1307 1308 #define TXTL_DEFAULT 2 /* reset default */ 1309 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1310 #define TXTL_DMA 8 /* DMA burst setting */ 1311 #define RXTL_DMA 9 /* DMA burst setting */ 1312 1313 static void imx_uart_setup_ufcr(struct imx_port *sport, 1314 unsigned char txwl, unsigned char rxwl) 1315 { 1316 unsigned int val; 1317 1318 /* set receiver / transmitter trigger level */ 1319 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1320 val |= txwl << UFCR_TXTL_SHF | rxwl; 1321 imx_uart_writel(sport, val, UFCR); 1322 } 1323 1324 static void imx_uart_dma_exit(struct imx_port *sport) 1325 { 1326 if (sport->dma_chan_rx) { 1327 dmaengine_terminate_sync(sport->dma_chan_rx); 1328 dma_release_channel(sport->dma_chan_rx); 1329 sport->dma_chan_rx = NULL; 1330 sport->rx_cookie = -EINVAL; 1331 kfree(sport->rx_buf); 1332 sport->rx_buf = NULL; 1333 } 1334 1335 if (sport->dma_chan_tx) { 1336 dmaengine_terminate_sync(sport->dma_chan_tx); 1337 dma_release_channel(sport->dma_chan_tx); 1338 sport->dma_chan_tx = NULL; 1339 } 1340 } 1341 1342 static int imx_uart_dma_init(struct imx_port *sport) 1343 { 1344 struct dma_slave_config slave_config = {}; 1345 struct device *dev = sport->port.dev; 1346 int ret; 1347 1348 /* Prepare for RX : */ 1349 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1350 if (!sport->dma_chan_rx) { 1351 dev_dbg(dev, "cannot get the DMA channel.\n"); 1352 ret = -EINVAL; 1353 goto err; 1354 } 1355 1356 slave_config.direction = DMA_DEV_TO_MEM; 1357 slave_config.src_addr = sport->port.mapbase + URXD0; 1358 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1359 /* one byte less than the watermark level to enable the aging timer */ 1360 slave_config.src_maxburst = RXTL_DMA - 1; 1361 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1362 if (ret) { 1363 dev_err(dev, "error in RX dma configuration.\n"); 1364 goto err; 1365 } 1366 1367 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1368 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1369 if (!sport->rx_buf) { 1370 ret = -ENOMEM; 1371 goto err; 1372 } 1373 sport->rx_ring.buf = sport->rx_buf; 1374 1375 /* Prepare for TX : */ 1376 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1377 if (!sport->dma_chan_tx) { 1378 dev_err(dev, "cannot get the TX DMA channel!\n"); 1379 ret = -EINVAL; 1380 goto err; 1381 } 1382 1383 slave_config.direction = DMA_MEM_TO_DEV; 1384 slave_config.dst_addr = sport->port.mapbase + URTX0; 1385 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1386 slave_config.dst_maxburst = TXTL_DMA; 1387 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1388 if (ret) { 1389 dev_err(dev, "error in TX dma configuration."); 1390 goto err; 1391 } 1392 1393 return 0; 1394 err: 1395 imx_uart_dma_exit(sport); 1396 return ret; 1397 } 1398 1399 static void imx_uart_enable_dma(struct imx_port *sport) 1400 { 1401 u32 ucr1; 1402 1403 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1404 1405 /* set UCR1 */ 1406 ucr1 = imx_uart_readl(sport, UCR1); 1407 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1408 imx_uart_writel(sport, ucr1, UCR1); 1409 1410 sport->dma_is_enabled = 1; 1411 } 1412 1413 static void imx_uart_disable_dma(struct imx_port *sport) 1414 { 1415 u32 ucr1; 1416 1417 /* clear UCR1 */ 1418 ucr1 = imx_uart_readl(sport, UCR1); 1419 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1420 imx_uart_writel(sport, ucr1, UCR1); 1421 1422 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1423 1424 sport->dma_is_enabled = 0; 1425 } 1426 1427 /* half the RX buffer size */ 1428 #define CTSTL 16 1429 1430 static int imx_uart_startup(struct uart_port *port) 1431 { 1432 struct imx_port *sport = (struct imx_port *)port; 1433 int retval; 1434 unsigned long flags; 1435 int dma_is_inited = 0; 1436 u32 ucr1, ucr2, ucr3, ucr4; 1437 1438 retval = clk_prepare_enable(sport->clk_per); 1439 if (retval) 1440 return retval; 1441 retval = clk_prepare_enable(sport->clk_ipg); 1442 if (retval) { 1443 clk_disable_unprepare(sport->clk_per); 1444 return retval; 1445 } 1446 1447 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1448 1449 /* disable the DREN bit (Data Ready interrupt enable) before 1450 * requesting IRQs 1451 */ 1452 ucr4 = imx_uart_readl(sport, UCR4); 1453 1454 /* set the trigger level for CTS */ 1455 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1456 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1457 1458 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1459 1460 /* Can we enable the DMA support? */ 1461 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1462 dma_is_inited = 1; 1463 1464 spin_lock_irqsave(&sport->port.lock, flags); 1465 1466 /* Reset fifo's and state machines */ 1467 imx_uart_soft_reset(sport); 1468 1469 /* 1470 * Finally, clear and enable interrupts 1471 */ 1472 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1473 imx_uart_writel(sport, USR2_ORE, USR2); 1474 1475 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1476 ucr1 |= UCR1_UARTEN; 1477 if (sport->have_rtscts) 1478 ucr1 |= UCR1_RTSDEN; 1479 1480 imx_uart_writel(sport, ucr1, UCR1); 1481 1482 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1483 if (!dma_is_inited) 1484 ucr4 |= UCR4_OREN; 1485 if (sport->inverted_rx) 1486 ucr4 |= UCR4_INVR; 1487 imx_uart_writel(sport, ucr4, UCR4); 1488 1489 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1490 /* 1491 * configure tx polarity before enabling tx 1492 */ 1493 if (sport->inverted_tx) 1494 ucr3 |= UCR3_INVT; 1495 1496 if (!imx_uart_is_imx1(sport)) { 1497 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1498 1499 if (sport->dte_mode) 1500 /* disable broken interrupts */ 1501 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1502 } 1503 imx_uart_writel(sport, ucr3, UCR3); 1504 1505 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1506 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1507 if (!sport->have_rtscts) 1508 ucr2 |= UCR2_IRTS; 1509 /* 1510 * make sure the edge sensitive RTS-irq is disabled, 1511 * we're using RTSD instead. 1512 */ 1513 if (!imx_uart_is_imx1(sport)) 1514 ucr2 &= ~UCR2_RTSEN; 1515 imx_uart_writel(sport, ucr2, UCR2); 1516 1517 /* 1518 * Enable modem status interrupts 1519 */ 1520 imx_uart_enable_ms(&sport->port); 1521 1522 if (dma_is_inited) { 1523 imx_uart_enable_dma(sport); 1524 imx_uart_start_rx_dma(sport); 1525 } else { 1526 ucr1 = imx_uart_readl(sport, UCR1); 1527 ucr1 |= UCR1_RRDYEN; 1528 imx_uart_writel(sport, ucr1, UCR1); 1529 1530 ucr2 = imx_uart_readl(sport, UCR2); 1531 ucr2 |= UCR2_ATEN; 1532 imx_uart_writel(sport, ucr2, UCR2); 1533 } 1534 1535 imx_uart_disable_loopback_rs485(sport); 1536 1537 spin_unlock_irqrestore(&sport->port.lock, flags); 1538 1539 return 0; 1540 } 1541 1542 static void imx_uart_shutdown(struct uart_port *port) 1543 { 1544 struct imx_port *sport = (struct imx_port *)port; 1545 unsigned long flags; 1546 u32 ucr1, ucr2, ucr4, uts; 1547 1548 if (sport->dma_is_enabled) { 1549 dmaengine_terminate_sync(sport->dma_chan_tx); 1550 if (sport->dma_is_txing) { 1551 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1552 sport->dma_tx_nents, DMA_TO_DEVICE); 1553 sport->dma_is_txing = 0; 1554 } 1555 dmaengine_terminate_sync(sport->dma_chan_rx); 1556 if (sport->dma_is_rxing) { 1557 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1558 1, DMA_FROM_DEVICE); 1559 sport->dma_is_rxing = 0; 1560 } 1561 1562 spin_lock_irqsave(&sport->port.lock, flags); 1563 imx_uart_stop_tx(port); 1564 imx_uart_stop_rx(port); 1565 imx_uart_disable_dma(sport); 1566 spin_unlock_irqrestore(&sport->port.lock, flags); 1567 imx_uart_dma_exit(sport); 1568 } 1569 1570 mctrl_gpio_disable_ms(sport->gpios); 1571 1572 spin_lock_irqsave(&sport->port.lock, flags); 1573 ucr2 = imx_uart_readl(sport, UCR2); 1574 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1575 imx_uart_writel(sport, ucr2, UCR2); 1576 spin_unlock_irqrestore(&sport->port.lock, flags); 1577 1578 /* 1579 * Stop our timer. 1580 */ 1581 del_timer_sync(&sport->timer); 1582 1583 /* 1584 * Disable all interrupts, port and break condition. 1585 */ 1586 1587 spin_lock_irqsave(&sport->port.lock, flags); 1588 1589 ucr1 = imx_uart_readl(sport, UCR1); 1590 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1591 UCR1_ATDMAEN | UCR1_SNDBRK); 1592 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1593 if (port->rs485.flags & SER_RS485_ENABLED && 1594 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1595 sport->have_rtscts && !sport->have_rtsgpio) { 1596 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1597 uts |= UTS_LOOP; 1598 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1599 ucr1 |= UCR1_UARTEN; 1600 } else { 1601 ucr1 &= ~UCR1_UARTEN; 1602 } 1603 imx_uart_writel(sport, ucr1, UCR1); 1604 1605 ucr4 = imx_uart_readl(sport, UCR4); 1606 ucr4 &= ~UCR4_TCEN; 1607 imx_uart_writel(sport, ucr4, UCR4); 1608 1609 spin_unlock_irqrestore(&sport->port.lock, flags); 1610 1611 clk_disable_unprepare(sport->clk_per); 1612 clk_disable_unprepare(sport->clk_ipg); 1613 } 1614 1615 /* called with port.lock taken and irqs off */ 1616 static void imx_uart_flush_buffer(struct uart_port *port) 1617 { 1618 struct imx_port *sport = (struct imx_port *)port; 1619 struct scatterlist *sgl = &sport->tx_sgl[0]; 1620 1621 if (!sport->dma_chan_tx) 1622 return; 1623 1624 sport->tx_bytes = 0; 1625 dmaengine_terminate_all(sport->dma_chan_tx); 1626 if (sport->dma_is_txing) { 1627 u32 ucr1; 1628 1629 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1630 DMA_TO_DEVICE); 1631 ucr1 = imx_uart_readl(sport, UCR1); 1632 ucr1 &= ~UCR1_TXDMAEN; 1633 imx_uart_writel(sport, ucr1, UCR1); 1634 sport->dma_is_txing = 0; 1635 } 1636 1637 imx_uart_soft_reset(sport); 1638 1639 } 1640 1641 static void 1642 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1643 const struct ktermios *old) 1644 { 1645 struct imx_port *sport = (struct imx_port *)port; 1646 unsigned long flags; 1647 u32 ucr2, old_ucr2, ufcr; 1648 unsigned int baud, quot; 1649 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1650 unsigned long div; 1651 unsigned long num, denom, old_ubir, old_ubmr; 1652 uint64_t tdiv64; 1653 1654 /* 1655 * We only support CS7 and CS8. 1656 */ 1657 while ((termios->c_cflag & CSIZE) != CS7 && 1658 (termios->c_cflag & CSIZE) != CS8) { 1659 termios->c_cflag &= ~CSIZE; 1660 termios->c_cflag |= old_csize; 1661 old_csize = CS8; 1662 } 1663 1664 del_timer_sync(&sport->timer); 1665 1666 /* 1667 * Ask the core to calculate the divisor for us. 1668 */ 1669 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1670 quot = uart_get_divisor(port, baud); 1671 1672 spin_lock_irqsave(&sport->port.lock, flags); 1673 1674 /* 1675 * Read current UCR2 and save it for future use, then clear all the bits 1676 * except those we will or may need to preserve. 1677 */ 1678 old_ucr2 = imx_uart_readl(sport, UCR2); 1679 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1680 1681 ucr2 |= UCR2_SRST | UCR2_IRTS; 1682 if ((termios->c_cflag & CSIZE) == CS8) 1683 ucr2 |= UCR2_WS; 1684 1685 if (!sport->have_rtscts) 1686 termios->c_cflag &= ~CRTSCTS; 1687 1688 if (port->rs485.flags & SER_RS485_ENABLED) { 1689 /* 1690 * RTS is mandatory for rs485 operation, so keep 1691 * it under manual control and keep transmitter 1692 * disabled. 1693 */ 1694 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1695 imx_uart_rts_active(sport, &ucr2); 1696 else 1697 imx_uart_rts_inactive(sport, &ucr2); 1698 1699 } else if (termios->c_cflag & CRTSCTS) { 1700 /* 1701 * Only let receiver control RTS output if we were not requested 1702 * to have RTS inactive (which then should take precedence). 1703 */ 1704 if (ucr2 & UCR2_CTS) 1705 ucr2 |= UCR2_CTSC; 1706 } 1707 1708 if (termios->c_cflag & CRTSCTS) 1709 ucr2 &= ~UCR2_IRTS; 1710 if (termios->c_cflag & CSTOPB) 1711 ucr2 |= UCR2_STPB; 1712 if (termios->c_cflag & PARENB) { 1713 ucr2 |= UCR2_PREN; 1714 if (termios->c_cflag & PARODD) 1715 ucr2 |= UCR2_PROE; 1716 } 1717 1718 sport->port.read_status_mask = 0; 1719 if (termios->c_iflag & INPCK) 1720 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1721 if (termios->c_iflag & (BRKINT | PARMRK)) 1722 sport->port.read_status_mask |= URXD_BRK; 1723 1724 /* 1725 * Characters to ignore 1726 */ 1727 sport->port.ignore_status_mask = 0; 1728 if (termios->c_iflag & IGNPAR) 1729 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1730 if (termios->c_iflag & IGNBRK) { 1731 sport->port.ignore_status_mask |= URXD_BRK; 1732 /* 1733 * If we're ignoring parity and break indicators, 1734 * ignore overruns too (for real raw support). 1735 */ 1736 if (termios->c_iflag & IGNPAR) 1737 sport->port.ignore_status_mask |= URXD_OVRRUN; 1738 } 1739 1740 if ((termios->c_cflag & CREAD) == 0) 1741 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1742 1743 /* 1744 * Update the per-port timeout. 1745 */ 1746 uart_update_timeout(port, termios->c_cflag, baud); 1747 1748 /* custom-baudrate handling */ 1749 div = sport->port.uartclk / (baud * 16); 1750 if (baud == 38400 && quot != div) 1751 baud = sport->port.uartclk / (quot * 16); 1752 1753 div = sport->port.uartclk / (baud * 16); 1754 if (div > 7) 1755 div = 7; 1756 if (!div) 1757 div = 1; 1758 1759 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1760 1 << 16, 1 << 16, &num, &denom); 1761 1762 tdiv64 = sport->port.uartclk; 1763 tdiv64 *= num; 1764 do_div(tdiv64, denom * 16 * div); 1765 tty_termios_encode_baud_rate(termios, 1766 (speed_t)tdiv64, (speed_t)tdiv64); 1767 1768 num -= 1; 1769 denom -= 1; 1770 1771 ufcr = imx_uart_readl(sport, UFCR); 1772 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1773 imx_uart_writel(sport, ufcr, UFCR); 1774 1775 /* 1776 * Two registers below should always be written both and in this 1777 * particular order. One consequence is that we need to check if any of 1778 * them changes and then update both. We do need the check for change 1779 * as even writing the same values seem to "restart" 1780 * transmission/receiving logic in the hardware, that leads to data 1781 * breakage even when rate doesn't in fact change. E.g., user switches 1782 * RTS/CTS handshake and suddenly gets broken bytes. 1783 */ 1784 old_ubir = imx_uart_readl(sport, UBIR); 1785 old_ubmr = imx_uart_readl(sport, UBMR); 1786 if (old_ubir != num || old_ubmr != denom) { 1787 imx_uart_writel(sport, num, UBIR); 1788 imx_uart_writel(sport, denom, UBMR); 1789 } 1790 1791 if (!imx_uart_is_imx1(sport)) 1792 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1793 IMX21_ONEMS); 1794 1795 imx_uart_writel(sport, ucr2, UCR2); 1796 1797 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1798 imx_uart_enable_ms(&sport->port); 1799 1800 spin_unlock_irqrestore(&sport->port.lock, flags); 1801 } 1802 1803 static const char *imx_uart_type(struct uart_port *port) 1804 { 1805 return port->type == PORT_IMX ? "IMX" : NULL; 1806 } 1807 1808 /* 1809 * Configure/autoconfigure the port. 1810 */ 1811 static void imx_uart_config_port(struct uart_port *port, int flags) 1812 { 1813 if (flags & UART_CONFIG_TYPE) 1814 port->type = PORT_IMX; 1815 } 1816 1817 /* 1818 * Verify the new serial_struct (for TIOCSSERIAL). 1819 * The only change we allow are to the flags and type, and 1820 * even then only between PORT_IMX and PORT_UNKNOWN 1821 */ 1822 static int 1823 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1824 { 1825 int ret = 0; 1826 1827 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1828 ret = -EINVAL; 1829 if (port->irq != ser->irq) 1830 ret = -EINVAL; 1831 if (ser->io_type != UPIO_MEM) 1832 ret = -EINVAL; 1833 if (port->uartclk / 16 != ser->baud_base) 1834 ret = -EINVAL; 1835 if (port->mapbase != (unsigned long)ser->iomem_base) 1836 ret = -EINVAL; 1837 if (port->iobase != ser->port) 1838 ret = -EINVAL; 1839 if (ser->hub6 != 0) 1840 ret = -EINVAL; 1841 return ret; 1842 } 1843 1844 #if defined(CONFIG_CONSOLE_POLL) 1845 1846 static int imx_uart_poll_init(struct uart_port *port) 1847 { 1848 struct imx_port *sport = (struct imx_port *)port; 1849 unsigned long flags; 1850 u32 ucr1, ucr2; 1851 int retval; 1852 1853 retval = clk_prepare_enable(sport->clk_ipg); 1854 if (retval) 1855 return retval; 1856 retval = clk_prepare_enable(sport->clk_per); 1857 if (retval) 1858 clk_disable_unprepare(sport->clk_ipg); 1859 1860 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1861 1862 spin_lock_irqsave(&sport->port.lock, flags); 1863 1864 /* 1865 * Be careful about the order of enabling bits here. First enable the 1866 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1867 * This prevents that a character that already sits in the RX fifo is 1868 * triggering an irq but the try to fetch it from there results in an 1869 * exception because UARTEN or RXEN is still off. 1870 */ 1871 ucr1 = imx_uart_readl(sport, UCR1); 1872 ucr2 = imx_uart_readl(sport, UCR2); 1873 1874 if (imx_uart_is_imx1(sport)) 1875 ucr1 |= IMX1_UCR1_UARTCLKEN; 1876 1877 ucr1 |= UCR1_UARTEN; 1878 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1879 1880 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1881 ucr2 &= ~UCR2_ATEN; 1882 1883 imx_uart_writel(sport, ucr1, UCR1); 1884 imx_uart_writel(sport, ucr2, UCR2); 1885 1886 /* now enable irqs */ 1887 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1888 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1889 1890 spin_unlock_irqrestore(&sport->port.lock, flags); 1891 1892 return 0; 1893 } 1894 1895 static int imx_uart_poll_get_char(struct uart_port *port) 1896 { 1897 struct imx_port *sport = (struct imx_port *)port; 1898 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1899 return NO_POLL_CHAR; 1900 1901 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1902 } 1903 1904 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1905 { 1906 struct imx_port *sport = (struct imx_port *)port; 1907 unsigned int status; 1908 1909 /* drain */ 1910 do { 1911 status = imx_uart_readl(sport, USR1); 1912 } while (~status & USR1_TRDY); 1913 1914 /* write */ 1915 imx_uart_writel(sport, c, URTX0); 1916 1917 /* flush */ 1918 do { 1919 status = imx_uart_readl(sport, USR2); 1920 } while (~status & USR2_TXDC); 1921 } 1922 #endif 1923 1924 /* called with port.lock taken and irqs off or from .probe without locking */ 1925 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1926 struct serial_rs485 *rs485conf) 1927 { 1928 struct imx_port *sport = (struct imx_port *)port; 1929 u32 ucr2; 1930 1931 if (rs485conf->flags & SER_RS485_ENABLED) { 1932 /* Enable receiver if low-active RTS signal is requested */ 1933 if (sport->have_rtscts && !sport->have_rtsgpio && 1934 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1935 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1936 1937 /* disable transmitter */ 1938 ucr2 = imx_uart_readl(sport, UCR2); 1939 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1940 imx_uart_rts_active(sport, &ucr2); 1941 else 1942 imx_uart_rts_inactive(sport, &ucr2); 1943 imx_uart_writel(sport, ucr2, UCR2); 1944 } 1945 1946 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1947 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1948 rs485conf->flags & SER_RS485_RX_DURING_TX) 1949 imx_uart_start_rx(port); 1950 1951 if (port->rs485_rx_during_tx_gpio) 1952 gpiod_set_value_cansleep(port->rs485_rx_during_tx_gpio, 1953 !!(rs485conf->flags & SER_RS485_RX_DURING_TX)); 1954 1955 return 0; 1956 } 1957 1958 static const struct uart_ops imx_uart_pops = { 1959 .tx_empty = imx_uart_tx_empty, 1960 .set_mctrl = imx_uart_set_mctrl, 1961 .get_mctrl = imx_uart_get_mctrl, 1962 .stop_tx = imx_uart_stop_tx, 1963 .start_tx = imx_uart_start_tx, 1964 .stop_rx = imx_uart_stop_rx, 1965 .enable_ms = imx_uart_enable_ms, 1966 .break_ctl = imx_uart_break_ctl, 1967 .startup = imx_uart_startup, 1968 .shutdown = imx_uart_shutdown, 1969 .flush_buffer = imx_uart_flush_buffer, 1970 .set_termios = imx_uart_set_termios, 1971 .type = imx_uart_type, 1972 .config_port = imx_uart_config_port, 1973 .verify_port = imx_uart_verify_port, 1974 #if defined(CONFIG_CONSOLE_POLL) 1975 .poll_init = imx_uart_poll_init, 1976 .poll_get_char = imx_uart_poll_get_char, 1977 .poll_put_char = imx_uart_poll_put_char, 1978 #endif 1979 }; 1980 1981 static struct imx_port *imx_uart_ports[UART_NR]; 1982 1983 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1984 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 1985 { 1986 struct imx_port *sport = (struct imx_port *)port; 1987 1988 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1989 barrier(); 1990 1991 imx_uart_writel(sport, ch, URTX0); 1992 } 1993 1994 /* 1995 * Interrupts are disabled on entering 1996 */ 1997 static void 1998 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1999 { 2000 struct imx_port *sport = imx_uart_ports[co->index]; 2001 struct imx_port_ucrs old_ucr; 2002 unsigned long flags; 2003 unsigned int ucr1; 2004 int locked = 1; 2005 2006 if (sport->port.sysrq) 2007 locked = 0; 2008 else if (oops_in_progress) 2009 locked = spin_trylock_irqsave(&sport->port.lock, flags); 2010 else 2011 spin_lock_irqsave(&sport->port.lock, flags); 2012 2013 /* 2014 * First, save UCR1/2/3 and then disable interrupts 2015 */ 2016 imx_uart_ucrs_save(sport, &old_ucr); 2017 ucr1 = old_ucr.ucr1; 2018 2019 if (imx_uart_is_imx1(sport)) 2020 ucr1 |= IMX1_UCR1_UARTCLKEN; 2021 ucr1 |= UCR1_UARTEN; 2022 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2023 2024 imx_uart_writel(sport, ucr1, UCR1); 2025 2026 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2027 2028 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2029 2030 /* 2031 * Finally, wait for transmitter to become empty 2032 * and restore UCR1/2/3 2033 */ 2034 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 2035 2036 imx_uart_ucrs_restore(sport, &old_ucr); 2037 2038 if (locked) 2039 spin_unlock_irqrestore(&sport->port.lock, flags); 2040 } 2041 2042 /* 2043 * If the port was already initialised (eg, by a boot loader), 2044 * try to determine the current setup. 2045 */ 2046 static void 2047 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2048 int *parity, int *bits) 2049 { 2050 2051 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2052 /* ok, the port was enabled */ 2053 unsigned int ucr2, ubir, ubmr, uartclk; 2054 unsigned int baud_raw; 2055 unsigned int ucfr_rfdiv; 2056 2057 ucr2 = imx_uart_readl(sport, UCR2); 2058 2059 *parity = 'n'; 2060 if (ucr2 & UCR2_PREN) { 2061 if (ucr2 & UCR2_PROE) 2062 *parity = 'o'; 2063 else 2064 *parity = 'e'; 2065 } 2066 2067 if (ucr2 & UCR2_WS) 2068 *bits = 8; 2069 else 2070 *bits = 7; 2071 2072 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2073 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2074 2075 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2076 if (ucfr_rfdiv == 6) 2077 ucfr_rfdiv = 7; 2078 else 2079 ucfr_rfdiv = 6 - ucfr_rfdiv; 2080 2081 uartclk = clk_get_rate(sport->clk_per); 2082 uartclk /= ucfr_rfdiv; 2083 2084 { /* 2085 * The next code provides exact computation of 2086 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2087 * without need of float support or long long division, 2088 * which would be required to prevent 32bit arithmetic overflow 2089 */ 2090 unsigned int mul = ubir + 1; 2091 unsigned int div = 16 * (ubmr + 1); 2092 unsigned int rem = uartclk % div; 2093 2094 baud_raw = (uartclk / div) * mul; 2095 baud_raw += (rem * mul + div / 2) / div; 2096 *baud = (baud_raw + 50) / 100 * 100; 2097 } 2098 2099 if (*baud != baud_raw) 2100 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2101 baud_raw, *baud); 2102 } 2103 } 2104 2105 static int 2106 imx_uart_console_setup(struct console *co, char *options) 2107 { 2108 struct imx_port *sport; 2109 int baud = 9600; 2110 int bits = 8; 2111 int parity = 'n'; 2112 int flow = 'n'; 2113 int retval; 2114 2115 /* 2116 * Check whether an invalid uart number has been specified, and 2117 * if so, search for the first available port that does have 2118 * console support. 2119 */ 2120 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2121 co->index = 0; 2122 sport = imx_uart_ports[co->index]; 2123 if (sport == NULL) 2124 return -ENODEV; 2125 2126 /* For setting the registers, we only need to enable the ipg clock. */ 2127 retval = clk_prepare_enable(sport->clk_ipg); 2128 if (retval) 2129 goto error_console; 2130 2131 if (options) 2132 uart_parse_options(options, &baud, &parity, &bits, &flow); 2133 else 2134 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2135 2136 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2137 2138 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2139 2140 if (retval) { 2141 clk_disable_unprepare(sport->clk_ipg); 2142 goto error_console; 2143 } 2144 2145 retval = clk_prepare_enable(sport->clk_per); 2146 if (retval) 2147 clk_disable_unprepare(sport->clk_ipg); 2148 2149 error_console: 2150 return retval; 2151 } 2152 2153 static int 2154 imx_uart_console_exit(struct console *co) 2155 { 2156 struct imx_port *sport = imx_uart_ports[co->index]; 2157 2158 clk_disable_unprepare(sport->clk_per); 2159 clk_disable_unprepare(sport->clk_ipg); 2160 2161 return 0; 2162 } 2163 2164 static struct uart_driver imx_uart_uart_driver; 2165 static struct console imx_uart_console = { 2166 .name = DEV_NAME, 2167 .write = imx_uart_console_write, 2168 .device = uart_console_device, 2169 .setup = imx_uart_console_setup, 2170 .exit = imx_uart_console_exit, 2171 .flags = CON_PRINTBUFFER, 2172 .index = -1, 2173 .data = &imx_uart_uart_driver, 2174 }; 2175 2176 #define IMX_CONSOLE &imx_uart_console 2177 2178 #else 2179 #define IMX_CONSOLE NULL 2180 #endif 2181 2182 static struct uart_driver imx_uart_uart_driver = { 2183 .owner = THIS_MODULE, 2184 .driver_name = DRIVER_NAME, 2185 .dev_name = DEV_NAME, 2186 .major = SERIAL_IMX_MAJOR, 2187 .minor = MINOR_START, 2188 .nr = ARRAY_SIZE(imx_uart_ports), 2189 .cons = IMX_CONSOLE, 2190 }; 2191 2192 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2193 { 2194 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2195 unsigned long flags; 2196 2197 spin_lock_irqsave(&sport->port.lock, flags); 2198 if (sport->tx_state == WAIT_AFTER_RTS) 2199 imx_uart_start_tx(&sport->port); 2200 spin_unlock_irqrestore(&sport->port.lock, flags); 2201 2202 return HRTIMER_NORESTART; 2203 } 2204 2205 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2206 { 2207 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2208 unsigned long flags; 2209 2210 spin_lock_irqsave(&sport->port.lock, flags); 2211 if (sport->tx_state == WAIT_AFTER_SEND) 2212 imx_uart_stop_tx(&sport->port); 2213 spin_unlock_irqrestore(&sport->port.lock, flags); 2214 2215 return HRTIMER_NORESTART; 2216 } 2217 2218 static const struct serial_rs485 imx_no_rs485 = {}; /* No RS485 if no RTS */ 2219 static const struct serial_rs485 imx_rs485_supported = { 2220 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2221 SER_RS485_RX_DURING_TX, 2222 .delay_rts_before_send = 1, 2223 .delay_rts_after_send = 1, 2224 }; 2225 2226 /* Default RX DMA buffer configuration */ 2227 #define RX_DMA_PERIODS 16 2228 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2229 2230 static int imx_uart_probe(struct platform_device *pdev) 2231 { 2232 struct device_node *np = pdev->dev.of_node; 2233 struct imx_port *sport; 2234 void __iomem *base; 2235 u32 dma_buf_conf[2]; 2236 int ret = 0; 2237 u32 ucr1, ucr2, uts; 2238 struct resource *res; 2239 int txirq, rxirq, rtsirq; 2240 2241 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2242 if (!sport) 2243 return -ENOMEM; 2244 2245 sport->devdata = of_device_get_match_data(&pdev->dev); 2246 2247 ret = of_alias_get_id(np, "serial"); 2248 if (ret < 0) { 2249 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2250 return ret; 2251 } 2252 sport->port.line = ret; 2253 2254 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2255 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2256 2257 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2258 2259 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2260 2261 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2262 2263 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2264 2265 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2266 sport->rx_period_length = dma_buf_conf[0]; 2267 sport->rx_periods = dma_buf_conf[1]; 2268 } else { 2269 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2270 sport->rx_periods = RX_DMA_PERIODS; 2271 } 2272 2273 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2274 dev_err(&pdev->dev, "serial%d out of range\n", 2275 sport->port.line); 2276 return -EINVAL; 2277 } 2278 2279 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2280 base = devm_ioremap_resource(&pdev->dev, res); 2281 if (IS_ERR(base)) 2282 return PTR_ERR(base); 2283 2284 rxirq = platform_get_irq(pdev, 0); 2285 if (rxirq < 0) 2286 return rxirq; 2287 txirq = platform_get_irq_optional(pdev, 1); 2288 rtsirq = platform_get_irq_optional(pdev, 2); 2289 2290 sport->port.dev = &pdev->dev; 2291 sport->port.mapbase = res->start; 2292 sport->port.membase = base; 2293 sport->port.type = PORT_IMX; 2294 sport->port.iotype = UPIO_MEM; 2295 sport->port.irq = rxirq; 2296 sport->port.fifosize = 32; 2297 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2298 sport->port.ops = &imx_uart_pops; 2299 sport->port.rs485_config = imx_uart_rs485_config; 2300 /* RTS is required to control the RS485 transmitter */ 2301 if (sport->have_rtscts || sport->have_rtsgpio) 2302 sport->port.rs485_supported = imx_rs485_supported; 2303 else 2304 sport->port.rs485_supported = imx_no_rs485; 2305 sport->port.flags = UPF_BOOT_AUTOCONF; 2306 timer_setup(&sport->timer, imx_uart_timeout, 0); 2307 2308 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2309 if (IS_ERR(sport->gpios)) 2310 return PTR_ERR(sport->gpios); 2311 2312 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2313 if (IS_ERR(sport->clk_ipg)) { 2314 ret = PTR_ERR(sport->clk_ipg); 2315 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2316 return ret; 2317 } 2318 2319 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2320 if (IS_ERR(sport->clk_per)) { 2321 ret = PTR_ERR(sport->clk_per); 2322 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2323 return ret; 2324 } 2325 2326 sport->port.uartclk = clk_get_rate(sport->clk_per); 2327 2328 /* For register access, we only need to enable the ipg clock. */ 2329 ret = clk_prepare_enable(sport->clk_ipg); 2330 if (ret) { 2331 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2332 return ret; 2333 } 2334 2335 ret = uart_get_rs485_mode(&sport->port); 2336 if (ret) { 2337 clk_disable_unprepare(sport->clk_ipg); 2338 return ret; 2339 } 2340 2341 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2342 (!sport->have_rtscts && !sport->have_rtsgpio)) 2343 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2344 2345 /* 2346 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2347 * signal cannot be set low during transmission in case the 2348 * receiver is off (limitation of the i.MX UART IP). 2349 */ 2350 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2351 sport->have_rtscts && !sport->have_rtsgpio && 2352 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2353 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2354 dev_err(&pdev->dev, 2355 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2356 2357 /* Disable interrupts before requesting them */ 2358 ucr1 = imx_uart_readl(sport, UCR1); 2359 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2360 imx_uart_writel(sport, ucr1, UCR1); 2361 2362 /* Disable Ageing Timer interrupt */ 2363 ucr2 = imx_uart_readl(sport, UCR2); 2364 ucr2 &= ~UCR2_ATEN; 2365 imx_uart_writel(sport, ucr2, UCR2); 2366 2367 /* 2368 * In case RS485 is enabled without GPIO RTS control, the UART IP 2369 * is used to control CTS signal. Keep both the UART and Receiver 2370 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2371 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2372 * data from being fed into the RX FIFO, enable loopback mode in 2373 * UTS register, which disconnects the RX path from external RXD 2374 * pin and connects it to the Transceiver, which is disabled, so 2375 * no data can be fed to the RX FIFO that way. 2376 */ 2377 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2378 sport->have_rtscts && !sport->have_rtsgpio) { 2379 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2380 uts |= UTS_LOOP; 2381 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2382 2383 ucr1 = imx_uart_readl(sport, UCR1); 2384 ucr1 |= UCR1_UARTEN; 2385 imx_uart_writel(sport, ucr1, UCR1); 2386 2387 ucr2 = imx_uart_readl(sport, UCR2); 2388 ucr2 |= UCR2_RXEN; 2389 imx_uart_writel(sport, ucr2, UCR2); 2390 } 2391 2392 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2393 /* 2394 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2395 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2396 * and DCD (when they are outputs) or enables the respective 2397 * irqs. So set this bit early, i.e. before requesting irqs. 2398 */ 2399 u32 ufcr = imx_uart_readl(sport, UFCR); 2400 if (!(ufcr & UFCR_DCEDTE)) 2401 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2402 2403 /* 2404 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2405 * enabled later because they cannot be cleared 2406 * (confirmed on i.MX25) which makes them unusable. 2407 */ 2408 imx_uart_writel(sport, 2409 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2410 UCR3); 2411 2412 } else { 2413 u32 ucr3 = UCR3_DSR; 2414 u32 ufcr = imx_uart_readl(sport, UFCR); 2415 if (ufcr & UFCR_DCEDTE) 2416 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2417 2418 if (!imx_uart_is_imx1(sport)) 2419 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2420 imx_uart_writel(sport, ucr3, UCR3); 2421 } 2422 2423 clk_disable_unprepare(sport->clk_ipg); 2424 2425 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2426 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2427 sport->trigger_start_tx.function = imx_trigger_start_tx; 2428 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2429 2430 /* 2431 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2432 * chips only have one interrupt. 2433 */ 2434 if (txirq > 0) { 2435 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2436 dev_name(&pdev->dev), sport); 2437 if (ret) { 2438 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2439 ret); 2440 return ret; 2441 } 2442 2443 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2444 dev_name(&pdev->dev), sport); 2445 if (ret) { 2446 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2447 ret); 2448 return ret; 2449 } 2450 2451 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2452 dev_name(&pdev->dev), sport); 2453 if (ret) { 2454 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2455 ret); 2456 return ret; 2457 } 2458 } else { 2459 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2460 dev_name(&pdev->dev), sport); 2461 if (ret) { 2462 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2463 return ret; 2464 } 2465 } 2466 2467 imx_uart_ports[sport->port.line] = sport; 2468 2469 platform_set_drvdata(pdev, sport); 2470 2471 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2472 } 2473 2474 static int imx_uart_remove(struct platform_device *pdev) 2475 { 2476 struct imx_port *sport = platform_get_drvdata(pdev); 2477 2478 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2479 2480 return 0; 2481 } 2482 2483 static void imx_uart_restore_context(struct imx_port *sport) 2484 { 2485 unsigned long flags; 2486 2487 spin_lock_irqsave(&sport->port.lock, flags); 2488 if (!sport->context_saved) { 2489 spin_unlock_irqrestore(&sport->port.lock, flags); 2490 return; 2491 } 2492 2493 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2494 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2495 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2496 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2497 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2498 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2499 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2500 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2501 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2502 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2503 sport->context_saved = false; 2504 spin_unlock_irqrestore(&sport->port.lock, flags); 2505 } 2506 2507 static void imx_uart_save_context(struct imx_port *sport) 2508 { 2509 unsigned long flags; 2510 2511 /* Save necessary regs */ 2512 spin_lock_irqsave(&sport->port.lock, flags); 2513 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2514 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2515 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2516 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2517 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2518 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2519 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2520 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2521 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2522 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2523 sport->context_saved = true; 2524 spin_unlock_irqrestore(&sport->port.lock, flags); 2525 } 2526 2527 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2528 { 2529 u32 ucr3; 2530 2531 ucr3 = imx_uart_readl(sport, UCR3); 2532 if (on) { 2533 imx_uart_writel(sport, USR1_AWAKE, USR1); 2534 ucr3 |= UCR3_AWAKEN; 2535 } else { 2536 ucr3 &= ~UCR3_AWAKEN; 2537 } 2538 imx_uart_writel(sport, ucr3, UCR3); 2539 2540 if (sport->have_rtscts) { 2541 u32 ucr1 = imx_uart_readl(sport, UCR1); 2542 if (on) { 2543 imx_uart_writel(sport, USR1_RTSD, USR1); 2544 ucr1 |= UCR1_RTSDEN; 2545 } else { 2546 ucr1 &= ~UCR1_RTSDEN; 2547 } 2548 imx_uart_writel(sport, ucr1, UCR1); 2549 } 2550 } 2551 2552 static int imx_uart_suspend_noirq(struct device *dev) 2553 { 2554 struct imx_port *sport = dev_get_drvdata(dev); 2555 2556 imx_uart_save_context(sport); 2557 2558 clk_disable(sport->clk_ipg); 2559 2560 pinctrl_pm_select_sleep_state(dev); 2561 2562 return 0; 2563 } 2564 2565 static int imx_uart_resume_noirq(struct device *dev) 2566 { 2567 struct imx_port *sport = dev_get_drvdata(dev); 2568 int ret; 2569 2570 pinctrl_pm_select_default_state(dev); 2571 2572 ret = clk_enable(sport->clk_ipg); 2573 if (ret) 2574 return ret; 2575 2576 imx_uart_restore_context(sport); 2577 2578 return 0; 2579 } 2580 2581 static int imx_uart_suspend(struct device *dev) 2582 { 2583 struct imx_port *sport = dev_get_drvdata(dev); 2584 int ret; 2585 2586 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2587 disable_irq(sport->port.irq); 2588 2589 ret = clk_prepare_enable(sport->clk_ipg); 2590 if (ret) 2591 return ret; 2592 2593 /* enable wakeup from i.MX UART */ 2594 imx_uart_enable_wakeup(sport, true); 2595 2596 return 0; 2597 } 2598 2599 static int imx_uart_resume(struct device *dev) 2600 { 2601 struct imx_port *sport = dev_get_drvdata(dev); 2602 2603 /* disable wakeup from i.MX UART */ 2604 imx_uart_enable_wakeup(sport, false); 2605 2606 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2607 enable_irq(sport->port.irq); 2608 2609 clk_disable_unprepare(sport->clk_ipg); 2610 2611 return 0; 2612 } 2613 2614 static int imx_uart_freeze(struct device *dev) 2615 { 2616 struct imx_port *sport = dev_get_drvdata(dev); 2617 2618 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2619 2620 return clk_prepare_enable(sport->clk_ipg); 2621 } 2622 2623 static int imx_uart_thaw(struct device *dev) 2624 { 2625 struct imx_port *sport = dev_get_drvdata(dev); 2626 2627 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2628 2629 clk_disable_unprepare(sport->clk_ipg); 2630 2631 return 0; 2632 } 2633 2634 static const struct dev_pm_ops imx_uart_pm_ops = { 2635 .suspend_noirq = imx_uart_suspend_noirq, 2636 .resume_noirq = imx_uart_resume_noirq, 2637 .freeze_noirq = imx_uart_suspend_noirq, 2638 .thaw_noirq = imx_uart_resume_noirq, 2639 .restore_noirq = imx_uart_resume_noirq, 2640 .suspend = imx_uart_suspend, 2641 .resume = imx_uart_resume, 2642 .freeze = imx_uart_freeze, 2643 .thaw = imx_uart_thaw, 2644 .restore = imx_uart_thaw, 2645 }; 2646 2647 static struct platform_driver imx_uart_platform_driver = { 2648 .probe = imx_uart_probe, 2649 .remove = imx_uart_remove, 2650 2651 .driver = { 2652 .name = "imx-uart", 2653 .of_match_table = imx_uart_dt_ids, 2654 .pm = &imx_uart_pm_ops, 2655 }, 2656 }; 2657 2658 static int __init imx_uart_init(void) 2659 { 2660 int ret = uart_register_driver(&imx_uart_uart_driver); 2661 2662 if (ret) 2663 return ret; 2664 2665 ret = platform_driver_register(&imx_uart_platform_driver); 2666 if (ret != 0) 2667 uart_unregister_driver(&imx_uart_uart_driver); 2668 2669 return ret; 2670 } 2671 2672 static void __exit imx_uart_exit(void) 2673 { 2674 platform_driver_unregister(&imx_uart_platform_driver); 2675 uart_unregister_driver(&imx_uart_uart_driver); 2676 } 2677 2678 module_init(imx_uart_init); 2679 module_exit(imx_uart_exit); 2680 2681 MODULE_AUTHOR("Sascha Hauer"); 2682 MODULE_DESCRIPTION("IMX generic serial port driver"); 2683 MODULE_LICENSE("GPL"); 2684 MODULE_ALIAS("platform:imx-uart"); 2685