1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/io.h> 30 #include <linux/dma-mapping.h> 31 32 #include <asm/irq.h> 33 #include <linux/platform_data/dma-imx.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 123 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 124 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 125 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 126 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 127 #define USR1_RTSS (1<<14) /* RTS pin status */ 128 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 129 #define USR1_RTSD (1<<12) /* RTS delta */ 130 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 131 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 132 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 133 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 134 #define USR1_DTRD (1<<7) /* DTR Delta */ 135 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 136 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 137 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 138 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 139 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 140 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 141 #define USR2_IDLE (1<<12) /* Idle condition */ 142 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 143 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 144 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 145 #define USR2_WAKE (1<<7) /* Wake */ 146 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 147 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 148 #define USR2_TXDC (1<<3) /* Transmitter complete */ 149 #define USR2_BRCD (1<<2) /* Break condition */ 150 #define USR2_ORE (1<<1) /* Overrun error */ 151 #define USR2_RDR (1<<0) /* Recv data ready */ 152 #define UTS_FRCPERR (1<<13) /* Force parity error */ 153 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 154 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 155 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 156 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 157 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 158 #define UTS_SOFTRST (1<<0) /* Software reset */ 159 160 /* We've been assigned a range on the "Low-density serial ports" major */ 161 #define SERIAL_IMX_MAJOR 207 162 #define MINOR_START 16 163 #define DEV_NAME "ttymxc" 164 165 /* 166 * This determines how often we check the modem status signals 167 * for any change. They generally aren't connected to an IRQ 168 * so we have to poll them. We also check immediately before 169 * filling the TX fifo incase CTS has been dropped. 170 */ 171 #define MCTRL_TIMEOUT (250*HZ/1000) 172 173 #define DRIVER_NAME "IMX-uart" 174 175 #define UART_NR 8 176 177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 178 enum imx_uart_type { 179 IMX1_UART, 180 IMX21_UART, 181 IMX53_UART, 182 IMX6Q_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* shadow registers */ 214 unsigned int ucr1; 215 unsigned int ucr2; 216 unsigned int ucr3; 217 unsigned int ucr4; 218 unsigned int ufcr; 219 220 /* DMA fields */ 221 unsigned int dma_is_enabled:1; 222 unsigned int dma_is_rxing:1; 223 unsigned int dma_is_txing:1; 224 struct dma_chan *dma_chan_rx, *dma_chan_tx; 225 struct scatterlist rx_sgl, tx_sgl[2]; 226 void *rx_buf; 227 struct circ_buf rx_ring; 228 unsigned int rx_periods; 229 dma_cookie_t rx_cookie; 230 unsigned int tx_bytes; 231 unsigned int dma_tx_nents; 232 unsigned int saved_reg[10]; 233 bool context_saved; 234 235 enum imx_tx_state tx_state; 236 struct hrtimer trigger_start_tx; 237 struct hrtimer trigger_stop_tx; 238 }; 239 240 struct imx_port_ucrs { 241 unsigned int ucr1; 242 unsigned int ucr2; 243 unsigned int ucr3; 244 }; 245 246 static struct imx_uart_data imx_uart_devdata[] = { 247 [IMX1_UART] = { 248 .uts_reg = IMX1_UTS, 249 .devtype = IMX1_UART, 250 }, 251 [IMX21_UART] = { 252 .uts_reg = IMX21_UTS, 253 .devtype = IMX21_UART, 254 }, 255 [IMX53_UART] = { 256 .uts_reg = IMX21_UTS, 257 .devtype = IMX53_UART, 258 }, 259 [IMX6Q_UART] = { 260 .uts_reg = IMX21_UTS, 261 .devtype = IMX6Q_UART, 262 }, 263 }; 264 265 static const struct of_device_id imx_uart_dt_ids[] = { 266 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 267 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 268 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 269 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 270 { /* sentinel */ } 271 }; 272 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 273 274 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 275 { 276 switch (offset) { 277 case UCR1: 278 sport->ucr1 = val; 279 break; 280 case UCR2: 281 sport->ucr2 = val; 282 break; 283 case UCR3: 284 sport->ucr3 = val; 285 break; 286 case UCR4: 287 sport->ucr4 = val; 288 break; 289 case UFCR: 290 sport->ufcr = val; 291 break; 292 default: 293 break; 294 } 295 writel(val, sport->port.membase + offset); 296 } 297 298 static u32 imx_uart_readl(struct imx_port *sport, u32 offset) 299 { 300 switch (offset) { 301 case UCR1: 302 return sport->ucr1; 303 break; 304 case UCR2: 305 /* 306 * UCR2_SRST is the only bit in the cached registers that might 307 * differ from the value that was last written. As it only 308 * automatically becomes one after being cleared, reread 309 * conditionally. 310 */ 311 if (!(sport->ucr2 & UCR2_SRST)) 312 sport->ucr2 = readl(sport->port.membase + offset); 313 return sport->ucr2; 314 break; 315 case UCR3: 316 return sport->ucr3; 317 break; 318 case UCR4: 319 return sport->ucr4; 320 break; 321 case UFCR: 322 return sport->ufcr; 323 break; 324 default: 325 return readl(sport->port.membase + offset); 326 } 327 } 328 329 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 330 { 331 return sport->devdata->uts_reg; 332 } 333 334 static inline int imx_uart_is_imx1(struct imx_port *sport) 335 { 336 return sport->devdata->devtype == IMX1_UART; 337 } 338 339 static inline int imx_uart_is_imx21(struct imx_port *sport) 340 { 341 return sport->devdata->devtype == IMX21_UART; 342 } 343 344 static inline int imx_uart_is_imx53(struct imx_port *sport) 345 { 346 return sport->devdata->devtype == IMX53_UART; 347 } 348 349 static inline int imx_uart_is_imx6q(struct imx_port *sport) 350 { 351 return sport->devdata->devtype == IMX6Q_UART; 352 } 353 /* 354 * Save and restore functions for UCR1, UCR2 and UCR3 registers 355 */ 356 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 357 static void imx_uart_ucrs_save(struct imx_port *sport, 358 struct imx_port_ucrs *ucr) 359 { 360 /* save control registers */ 361 ucr->ucr1 = imx_uart_readl(sport, UCR1); 362 ucr->ucr2 = imx_uart_readl(sport, UCR2); 363 ucr->ucr3 = imx_uart_readl(sport, UCR3); 364 } 365 366 static void imx_uart_ucrs_restore(struct imx_port *sport, 367 struct imx_port_ucrs *ucr) 368 { 369 /* restore control registers */ 370 imx_uart_writel(sport, ucr->ucr1, UCR1); 371 imx_uart_writel(sport, ucr->ucr2, UCR2); 372 imx_uart_writel(sport, ucr->ucr3, UCR3); 373 } 374 #endif 375 376 /* called with port.lock taken and irqs caller dependent */ 377 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 378 { 379 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 380 381 sport->port.mctrl |= TIOCM_RTS; 382 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 383 } 384 385 /* called with port.lock taken and irqs caller dependent */ 386 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 387 { 388 *ucr2 &= ~UCR2_CTSC; 389 *ucr2 |= UCR2_CTS; 390 391 sport->port.mctrl &= ~TIOCM_RTS; 392 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 393 } 394 395 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 396 { 397 long sec = msec / MSEC_PER_SEC; 398 long nsec = (msec % MSEC_PER_SEC) * 1000000; 399 ktime_t t = ktime_set(sec, nsec); 400 401 hrtimer_start(hrt, t, HRTIMER_MODE_REL); 402 } 403 404 /* called with port.lock taken and irqs off */ 405 static void imx_uart_start_rx(struct uart_port *port) 406 { 407 struct imx_port *sport = (struct imx_port *)port; 408 unsigned int ucr1, ucr2; 409 410 ucr1 = imx_uart_readl(sport, UCR1); 411 ucr2 = imx_uart_readl(sport, UCR2); 412 413 ucr2 |= UCR2_RXEN; 414 415 if (sport->dma_is_enabled) { 416 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 417 } else { 418 ucr1 |= UCR1_RRDYEN; 419 ucr2 |= UCR2_ATEN; 420 } 421 422 /* Write UCR2 first as it includes RXEN */ 423 imx_uart_writel(sport, ucr2, UCR2); 424 imx_uart_writel(sport, ucr1, UCR1); 425 } 426 427 /* called with port.lock taken and irqs off */ 428 static void imx_uart_stop_tx(struct uart_port *port) 429 { 430 struct imx_port *sport = (struct imx_port *)port; 431 u32 ucr1, ucr4, usr2; 432 433 if (sport->tx_state == OFF) 434 return; 435 436 /* 437 * We are maybe in the SMP context, so if the DMA TX thread is running 438 * on other cpu, we have to wait for it to finish. 439 */ 440 if (sport->dma_is_txing) 441 return; 442 443 ucr1 = imx_uart_readl(sport, UCR1); 444 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 445 446 usr2 = imx_uart_readl(sport, USR2); 447 if (!(usr2 & USR2_TXDC)) { 448 /* The shifter is still busy, so retry once TC triggers */ 449 return; 450 } 451 452 ucr4 = imx_uart_readl(sport, UCR4); 453 ucr4 &= ~UCR4_TCEN; 454 imx_uart_writel(sport, ucr4, UCR4); 455 456 /* in rs485 mode disable transmitter */ 457 if (port->rs485.flags & SER_RS485_ENABLED) { 458 if (sport->tx_state == SEND) { 459 sport->tx_state = WAIT_AFTER_SEND; 460 start_hrtimer_ms(&sport->trigger_stop_tx, 461 port->rs485.delay_rts_after_send); 462 return; 463 } 464 465 if (sport->tx_state == WAIT_AFTER_RTS || 466 sport->tx_state == WAIT_AFTER_SEND) { 467 u32 ucr2; 468 469 hrtimer_try_to_cancel(&sport->trigger_start_tx); 470 471 ucr2 = imx_uart_readl(sport, UCR2); 472 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 473 imx_uart_rts_active(sport, &ucr2); 474 else 475 imx_uart_rts_inactive(sport, &ucr2); 476 imx_uart_writel(sport, ucr2, UCR2); 477 478 imx_uart_start_rx(port); 479 480 sport->tx_state = OFF; 481 } 482 } else { 483 sport->tx_state = OFF; 484 } 485 } 486 487 /* called with port.lock taken and irqs off */ 488 static void imx_uart_stop_rx(struct uart_port *port) 489 { 490 struct imx_port *sport = (struct imx_port *)port; 491 u32 ucr1, ucr2; 492 493 ucr1 = imx_uart_readl(sport, UCR1); 494 ucr2 = imx_uart_readl(sport, UCR2); 495 496 if (sport->dma_is_enabled) { 497 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 498 } else { 499 ucr1 &= ~UCR1_RRDYEN; 500 ucr2 &= ~UCR2_ATEN; 501 } 502 imx_uart_writel(sport, ucr1, UCR1); 503 504 ucr2 &= ~UCR2_RXEN; 505 imx_uart_writel(sport, ucr2, UCR2); 506 } 507 508 /* called with port.lock taken and irqs off */ 509 static void imx_uart_enable_ms(struct uart_port *port) 510 { 511 struct imx_port *sport = (struct imx_port *)port; 512 513 mod_timer(&sport->timer, jiffies); 514 515 mctrl_gpio_enable_ms(sport->gpios); 516 } 517 518 static void imx_uart_dma_tx(struct imx_port *sport); 519 520 /* called with port.lock taken and irqs off */ 521 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 522 { 523 struct circ_buf *xmit = &sport->port.state->xmit; 524 525 if (sport->port.x_char) { 526 /* Send next char */ 527 imx_uart_writel(sport, sport->port.x_char, URTX0); 528 sport->port.icount.tx++; 529 sport->port.x_char = 0; 530 return; 531 } 532 533 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 534 imx_uart_stop_tx(&sport->port); 535 return; 536 } 537 538 if (sport->dma_is_enabled) { 539 u32 ucr1; 540 /* 541 * We've just sent a X-char Ensure the TX DMA is enabled 542 * and the TX IRQ is disabled. 543 **/ 544 ucr1 = imx_uart_readl(sport, UCR1); 545 ucr1 &= ~UCR1_TRDYEN; 546 if (sport->dma_is_txing) { 547 ucr1 |= UCR1_TXDMAEN; 548 imx_uart_writel(sport, ucr1, UCR1); 549 } else { 550 imx_uart_writel(sport, ucr1, UCR1); 551 imx_uart_dma_tx(sport); 552 } 553 554 return; 555 } 556 557 while (!uart_circ_empty(xmit) && 558 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 559 /* send xmit->buf[xmit->tail] 560 * out the port here */ 561 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 562 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 563 sport->port.icount.tx++; 564 } 565 566 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 567 uart_write_wakeup(&sport->port); 568 569 if (uart_circ_empty(xmit)) 570 imx_uart_stop_tx(&sport->port); 571 } 572 573 static void imx_uart_dma_tx_callback(void *data) 574 { 575 struct imx_port *sport = data; 576 struct scatterlist *sgl = &sport->tx_sgl[0]; 577 struct circ_buf *xmit = &sport->port.state->xmit; 578 unsigned long flags; 579 u32 ucr1; 580 581 spin_lock_irqsave(&sport->port.lock, flags); 582 583 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 584 585 ucr1 = imx_uart_readl(sport, UCR1); 586 ucr1 &= ~UCR1_TXDMAEN; 587 imx_uart_writel(sport, ucr1, UCR1); 588 589 /* update the stat */ 590 xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1); 591 sport->port.icount.tx += sport->tx_bytes; 592 593 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 594 595 sport->dma_is_txing = 0; 596 597 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 598 uart_write_wakeup(&sport->port); 599 600 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 601 imx_uart_dma_tx(sport); 602 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 603 u32 ucr4 = imx_uart_readl(sport, UCR4); 604 ucr4 |= UCR4_TCEN; 605 imx_uart_writel(sport, ucr4, UCR4); 606 } 607 608 spin_unlock_irqrestore(&sport->port.lock, flags); 609 } 610 611 /* called with port.lock taken and irqs off */ 612 static void imx_uart_dma_tx(struct imx_port *sport) 613 { 614 struct circ_buf *xmit = &sport->port.state->xmit; 615 struct scatterlist *sgl = sport->tx_sgl; 616 struct dma_async_tx_descriptor *desc; 617 struct dma_chan *chan = sport->dma_chan_tx; 618 struct device *dev = sport->port.dev; 619 u32 ucr1, ucr4; 620 int ret; 621 622 if (sport->dma_is_txing) 623 return; 624 625 ucr4 = imx_uart_readl(sport, UCR4); 626 ucr4 &= ~UCR4_TCEN; 627 imx_uart_writel(sport, ucr4, UCR4); 628 629 sport->tx_bytes = uart_circ_chars_pending(xmit); 630 631 if (xmit->tail < xmit->head || xmit->head == 0) { 632 sport->dma_tx_nents = 1; 633 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 634 } else { 635 sport->dma_tx_nents = 2; 636 sg_init_table(sgl, 2); 637 sg_set_buf(sgl, xmit->buf + xmit->tail, 638 UART_XMIT_SIZE - xmit->tail); 639 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 640 } 641 642 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 643 if (ret == 0) { 644 dev_err(dev, "DMA mapping error for TX.\n"); 645 return; 646 } 647 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 648 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 649 if (!desc) { 650 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 651 DMA_TO_DEVICE); 652 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 653 return; 654 } 655 desc->callback = imx_uart_dma_tx_callback; 656 desc->callback_param = sport; 657 658 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 659 uart_circ_chars_pending(xmit)); 660 661 ucr1 = imx_uart_readl(sport, UCR1); 662 ucr1 |= UCR1_TXDMAEN; 663 imx_uart_writel(sport, ucr1, UCR1); 664 665 /* fire it */ 666 sport->dma_is_txing = 1; 667 dmaengine_submit(desc); 668 dma_async_issue_pending(chan); 669 return; 670 } 671 672 /* called with port.lock taken and irqs off */ 673 static void imx_uart_start_tx(struct uart_port *port) 674 { 675 struct imx_port *sport = (struct imx_port *)port; 676 u32 ucr1; 677 678 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 679 return; 680 681 /* 682 * We cannot simply do nothing here if sport->tx_state == SEND already 683 * because UCR1_TXMPTYEN might already have been cleared in 684 * imx_uart_stop_tx(), but tx_state is still SEND. 685 */ 686 687 if (port->rs485.flags & SER_RS485_ENABLED) { 688 if (sport->tx_state == OFF) { 689 u32 ucr2 = imx_uart_readl(sport, UCR2); 690 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 691 imx_uart_rts_active(sport, &ucr2); 692 else 693 imx_uart_rts_inactive(sport, &ucr2); 694 imx_uart_writel(sport, ucr2, UCR2); 695 696 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 697 imx_uart_stop_rx(port); 698 699 sport->tx_state = WAIT_AFTER_RTS; 700 start_hrtimer_ms(&sport->trigger_start_tx, 701 port->rs485.delay_rts_before_send); 702 return; 703 } 704 705 if (sport->tx_state == WAIT_AFTER_SEND 706 || sport->tx_state == WAIT_AFTER_RTS) { 707 708 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 709 710 /* 711 * Enable transmitter and shifter empty irq only if DMA 712 * is off. In the DMA case this is done in the 713 * tx-callback. 714 */ 715 if (!sport->dma_is_enabled) { 716 u32 ucr4 = imx_uart_readl(sport, UCR4); 717 ucr4 |= UCR4_TCEN; 718 imx_uart_writel(sport, ucr4, UCR4); 719 } 720 721 sport->tx_state = SEND; 722 } 723 } else { 724 sport->tx_state = SEND; 725 } 726 727 if (!sport->dma_is_enabled) { 728 ucr1 = imx_uart_readl(sport, UCR1); 729 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 730 } 731 732 if (sport->dma_is_enabled) { 733 if (sport->port.x_char) { 734 /* We have X-char to send, so enable TX IRQ and 735 * disable TX DMA to let TX interrupt to send X-char */ 736 ucr1 = imx_uart_readl(sport, UCR1); 737 ucr1 &= ~UCR1_TXDMAEN; 738 ucr1 |= UCR1_TRDYEN; 739 imx_uart_writel(sport, ucr1, UCR1); 740 return; 741 } 742 743 if (!uart_circ_empty(&port->state->xmit) && 744 !uart_tx_stopped(port)) 745 imx_uart_dma_tx(sport); 746 return; 747 } 748 } 749 750 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 751 { 752 struct imx_port *sport = dev_id; 753 u32 usr1; 754 755 imx_uart_writel(sport, USR1_RTSD, USR1); 756 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 757 uart_handle_cts_change(&sport->port, !!usr1); 758 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 759 760 return IRQ_HANDLED; 761 } 762 763 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 764 { 765 struct imx_port *sport = dev_id; 766 irqreturn_t ret; 767 768 spin_lock(&sport->port.lock); 769 770 ret = __imx_uart_rtsint(irq, dev_id); 771 772 spin_unlock(&sport->port.lock); 773 774 return ret; 775 } 776 777 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 778 { 779 struct imx_port *sport = dev_id; 780 781 spin_lock(&sport->port.lock); 782 imx_uart_transmit_buffer(sport); 783 spin_unlock(&sport->port.lock); 784 return IRQ_HANDLED; 785 } 786 787 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 788 { 789 struct imx_port *sport = dev_id; 790 unsigned int rx, flg, ignored = 0; 791 struct tty_port *port = &sport->port.state->port; 792 793 while (imx_uart_readl(sport, USR2) & USR2_RDR) { 794 u32 usr2; 795 796 flg = TTY_NORMAL; 797 sport->port.icount.rx++; 798 799 rx = imx_uart_readl(sport, URXD0); 800 801 usr2 = imx_uart_readl(sport, USR2); 802 if (usr2 & USR2_BRCD) { 803 imx_uart_writel(sport, USR2_BRCD, USR2); 804 if (uart_handle_break(&sport->port)) 805 continue; 806 } 807 808 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) 809 continue; 810 811 if (unlikely(rx & URXD_ERR)) { 812 if (rx & URXD_BRK) 813 sport->port.icount.brk++; 814 else if (rx & URXD_PRERR) 815 sport->port.icount.parity++; 816 else if (rx & URXD_FRMERR) 817 sport->port.icount.frame++; 818 if (rx & URXD_OVRRUN) 819 sport->port.icount.overrun++; 820 821 if (rx & sport->port.ignore_status_mask) { 822 if (++ignored > 100) 823 goto out; 824 continue; 825 } 826 827 rx &= (sport->port.read_status_mask | 0xFF); 828 829 if (rx & URXD_BRK) 830 flg = TTY_BREAK; 831 else if (rx & URXD_PRERR) 832 flg = TTY_PARITY; 833 else if (rx & URXD_FRMERR) 834 flg = TTY_FRAME; 835 if (rx & URXD_OVRRUN) 836 flg = TTY_OVERRUN; 837 838 sport->port.sysrq = 0; 839 } 840 841 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 842 goto out; 843 844 if (tty_insert_flip_char(port, rx, flg) == 0) 845 sport->port.icount.buf_overrun++; 846 } 847 848 out: 849 tty_flip_buffer_push(port); 850 851 return IRQ_HANDLED; 852 } 853 854 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 855 { 856 struct imx_port *sport = dev_id; 857 irqreturn_t ret; 858 859 spin_lock(&sport->port.lock); 860 861 ret = __imx_uart_rxint(irq, dev_id); 862 863 spin_unlock(&sport->port.lock); 864 865 return ret; 866 } 867 868 static void imx_uart_clear_rx_errors(struct imx_port *sport); 869 870 /* 871 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 872 */ 873 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 874 { 875 unsigned int tmp = TIOCM_DSR; 876 unsigned usr1 = imx_uart_readl(sport, USR1); 877 unsigned usr2 = imx_uart_readl(sport, USR2); 878 879 if (usr1 & USR1_RTSS) 880 tmp |= TIOCM_CTS; 881 882 /* in DCE mode DCDIN is always 0 */ 883 if (!(usr2 & USR2_DCDIN)) 884 tmp |= TIOCM_CAR; 885 886 if (sport->dte_mode) 887 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 888 tmp |= TIOCM_RI; 889 890 return tmp; 891 } 892 893 /* 894 * Handle any change of modem status signal since we were last called. 895 */ 896 static void imx_uart_mctrl_check(struct imx_port *sport) 897 { 898 unsigned int status, changed; 899 900 status = imx_uart_get_hwmctrl(sport); 901 changed = status ^ sport->old_status; 902 903 if (changed == 0) 904 return; 905 906 sport->old_status = status; 907 908 if (changed & TIOCM_RI && status & TIOCM_RI) 909 sport->port.icount.rng++; 910 if (changed & TIOCM_DSR) 911 sport->port.icount.dsr++; 912 if (changed & TIOCM_CAR) 913 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 914 if (changed & TIOCM_CTS) 915 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 916 917 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 918 } 919 920 static irqreturn_t imx_uart_int(int irq, void *dev_id) 921 { 922 struct imx_port *sport = dev_id; 923 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 924 irqreturn_t ret = IRQ_NONE; 925 unsigned long flags = 0; 926 927 /* 928 * IRQs might not be disabled upon entering this interrupt handler, 929 * e.g. when interrupt handlers are forced to be threaded. To support 930 * this scenario as well, disable IRQs when acquiring the spinlock. 931 */ 932 spin_lock_irqsave(&sport->port.lock, flags); 933 934 usr1 = imx_uart_readl(sport, USR1); 935 usr2 = imx_uart_readl(sport, USR2); 936 ucr1 = imx_uart_readl(sport, UCR1); 937 ucr2 = imx_uart_readl(sport, UCR2); 938 ucr3 = imx_uart_readl(sport, UCR3); 939 ucr4 = imx_uart_readl(sport, UCR4); 940 941 /* 942 * Even if a condition is true that can trigger an irq only handle it if 943 * the respective irq source is enabled. This prevents some undesired 944 * actions, for example if a character that sits in the RX FIFO and that 945 * should be fetched via DMA is tried to be fetched using PIO. Or the 946 * receiver is currently off and so reading from URXD0 results in an 947 * exception. So just mask the (raw) status bits for disabled irqs. 948 */ 949 if ((ucr1 & UCR1_RRDYEN) == 0) 950 usr1 &= ~USR1_RRDY; 951 if ((ucr2 & UCR2_ATEN) == 0) 952 usr1 &= ~USR1_AGTIM; 953 if ((ucr1 & UCR1_TRDYEN) == 0) 954 usr1 &= ~USR1_TRDY; 955 if ((ucr4 & UCR4_TCEN) == 0) 956 usr2 &= ~USR2_TXDC; 957 if ((ucr3 & UCR3_DTRDEN) == 0) 958 usr1 &= ~USR1_DTRD; 959 if ((ucr1 & UCR1_RTSDEN) == 0) 960 usr1 &= ~USR1_RTSD; 961 if ((ucr3 & UCR3_AWAKEN) == 0) 962 usr1 &= ~USR1_AWAKE; 963 if ((ucr4 & UCR4_OREN) == 0) 964 usr2 &= ~USR2_ORE; 965 966 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 967 imx_uart_writel(sport, USR1_AGTIM, USR1); 968 969 __imx_uart_rxint(irq, dev_id); 970 ret = IRQ_HANDLED; 971 } 972 973 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 974 imx_uart_transmit_buffer(sport); 975 ret = IRQ_HANDLED; 976 } 977 978 if (usr1 & USR1_DTRD) { 979 imx_uart_writel(sport, USR1_DTRD, USR1); 980 981 imx_uart_mctrl_check(sport); 982 983 ret = IRQ_HANDLED; 984 } 985 986 if (usr1 & USR1_RTSD) { 987 __imx_uart_rtsint(irq, dev_id); 988 ret = IRQ_HANDLED; 989 } 990 991 if (usr1 & USR1_AWAKE) { 992 imx_uart_writel(sport, USR1_AWAKE, USR1); 993 ret = IRQ_HANDLED; 994 } 995 996 if (usr2 & USR2_ORE) { 997 sport->port.icount.overrun++; 998 imx_uart_writel(sport, USR2_ORE, USR2); 999 ret = IRQ_HANDLED; 1000 } 1001 1002 spin_unlock_irqrestore(&sport->port.lock, flags); 1003 1004 return ret; 1005 } 1006 1007 /* 1008 * Return TIOCSER_TEMT when transmitter is not busy. 1009 */ 1010 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1011 { 1012 struct imx_port *sport = (struct imx_port *)port; 1013 unsigned int ret; 1014 1015 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1016 1017 /* If the TX DMA is working, return 0. */ 1018 if (sport->dma_is_txing) 1019 ret = 0; 1020 1021 return ret; 1022 } 1023 1024 /* called with port.lock taken and irqs off */ 1025 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1026 { 1027 struct imx_port *sport = (struct imx_port *)port; 1028 unsigned int ret = imx_uart_get_hwmctrl(sport); 1029 1030 mctrl_gpio_get(sport->gpios, &ret); 1031 1032 return ret; 1033 } 1034 1035 /* called with port.lock taken and irqs off */ 1036 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1037 { 1038 struct imx_port *sport = (struct imx_port *)port; 1039 u32 ucr3, uts; 1040 1041 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1042 u32 ucr2; 1043 1044 /* 1045 * Turn off autoRTS if RTS is lowered and restore autoRTS 1046 * setting if RTS is raised. 1047 */ 1048 ucr2 = imx_uart_readl(sport, UCR2); 1049 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1050 if (mctrl & TIOCM_RTS) { 1051 ucr2 |= UCR2_CTS; 1052 /* 1053 * UCR2_IRTS is unset if and only if the port is 1054 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1055 * to get the state to restore to. 1056 */ 1057 if (!(ucr2 & UCR2_IRTS)) 1058 ucr2 |= UCR2_CTSC; 1059 } 1060 imx_uart_writel(sport, ucr2, UCR2); 1061 } 1062 1063 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1064 if (!(mctrl & TIOCM_DTR)) 1065 ucr3 |= UCR3_DSR; 1066 imx_uart_writel(sport, ucr3, UCR3); 1067 1068 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1069 if (mctrl & TIOCM_LOOP) 1070 uts |= UTS_LOOP; 1071 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1072 1073 mctrl_gpio_set(sport->gpios, mctrl); 1074 } 1075 1076 /* 1077 * Interrupts always disabled. 1078 */ 1079 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1080 { 1081 struct imx_port *sport = (struct imx_port *)port; 1082 unsigned long flags; 1083 u32 ucr1; 1084 1085 spin_lock_irqsave(&sport->port.lock, flags); 1086 1087 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1088 1089 if (break_state != 0) 1090 ucr1 |= UCR1_SNDBRK; 1091 1092 imx_uart_writel(sport, ucr1, UCR1); 1093 1094 spin_unlock_irqrestore(&sport->port.lock, flags); 1095 } 1096 1097 /* 1098 * This is our per-port timeout handler, for checking the 1099 * modem status signals. 1100 */ 1101 static void imx_uart_timeout(struct timer_list *t) 1102 { 1103 struct imx_port *sport = from_timer(sport, t, timer); 1104 unsigned long flags; 1105 1106 if (sport->port.state) { 1107 spin_lock_irqsave(&sport->port.lock, flags); 1108 imx_uart_mctrl_check(sport); 1109 spin_unlock_irqrestore(&sport->port.lock, flags); 1110 1111 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1112 } 1113 } 1114 1115 /* 1116 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1117 * [1] the RX DMA buffer is full. 1118 * [2] the aging timer expires 1119 * 1120 * Condition [2] is triggered when a character has been sitting in the FIFO 1121 * for at least 8 byte durations. 1122 */ 1123 static void imx_uart_dma_rx_callback(void *data) 1124 { 1125 struct imx_port *sport = data; 1126 struct dma_chan *chan = sport->dma_chan_rx; 1127 struct scatterlist *sgl = &sport->rx_sgl; 1128 struct tty_port *port = &sport->port.state->port; 1129 struct dma_tx_state state; 1130 struct circ_buf *rx_ring = &sport->rx_ring; 1131 enum dma_status status; 1132 unsigned int w_bytes = 0; 1133 unsigned int r_bytes; 1134 unsigned int bd_size; 1135 1136 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1137 1138 if (status == DMA_ERROR) { 1139 imx_uart_clear_rx_errors(sport); 1140 return; 1141 } 1142 1143 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1144 1145 /* 1146 * The state-residue variable represents the empty space 1147 * relative to the entire buffer. Taking this in consideration 1148 * the head is always calculated base on the buffer total 1149 * length - DMA transaction residue. The UART script from the 1150 * SDMA firmware will jump to the next buffer descriptor, 1151 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1152 * Taking this in consideration the tail is always at the 1153 * beginning of the buffer descriptor that contains the head. 1154 */ 1155 1156 /* Calculate the head */ 1157 rx_ring->head = sg_dma_len(sgl) - state.residue; 1158 1159 /* Calculate the tail. */ 1160 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1161 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1162 1163 if (rx_ring->head <= sg_dma_len(sgl) && 1164 rx_ring->head > rx_ring->tail) { 1165 1166 /* Move data from tail to head */ 1167 r_bytes = rx_ring->head - rx_ring->tail; 1168 1169 /* CPU claims ownership of RX DMA buffer */ 1170 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1171 DMA_FROM_DEVICE); 1172 1173 w_bytes = tty_insert_flip_string(port, 1174 sport->rx_buf + rx_ring->tail, r_bytes); 1175 1176 /* UART retrieves ownership of RX DMA buffer */ 1177 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1178 DMA_FROM_DEVICE); 1179 1180 if (w_bytes != r_bytes) 1181 sport->port.icount.buf_overrun++; 1182 1183 sport->port.icount.rx += w_bytes; 1184 } else { 1185 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1186 WARN_ON(rx_ring->head <= rx_ring->tail); 1187 } 1188 } 1189 1190 if (w_bytes) { 1191 tty_flip_buffer_push(port); 1192 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1193 } 1194 } 1195 1196 /* RX DMA buffer periods */ 1197 #define RX_DMA_PERIODS 16 1198 #define RX_BUF_SIZE (RX_DMA_PERIODS * PAGE_SIZE / 4) 1199 1200 static int imx_uart_start_rx_dma(struct imx_port *sport) 1201 { 1202 struct scatterlist *sgl = &sport->rx_sgl; 1203 struct dma_chan *chan = sport->dma_chan_rx; 1204 struct device *dev = sport->port.dev; 1205 struct dma_async_tx_descriptor *desc; 1206 int ret; 1207 1208 sport->rx_ring.head = 0; 1209 sport->rx_ring.tail = 0; 1210 sport->rx_periods = RX_DMA_PERIODS; 1211 1212 sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE); 1213 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1214 if (ret == 0) { 1215 dev_err(dev, "DMA mapping error for RX.\n"); 1216 return -EINVAL; 1217 } 1218 1219 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1220 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1221 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1222 1223 if (!desc) { 1224 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1225 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1226 return -EINVAL; 1227 } 1228 desc->callback = imx_uart_dma_rx_callback; 1229 desc->callback_param = sport; 1230 1231 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1232 sport->dma_is_rxing = 1; 1233 sport->rx_cookie = dmaengine_submit(desc); 1234 dma_async_issue_pending(chan); 1235 return 0; 1236 } 1237 1238 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1239 { 1240 struct tty_port *port = &sport->port.state->port; 1241 u32 usr1, usr2; 1242 1243 usr1 = imx_uart_readl(sport, USR1); 1244 usr2 = imx_uart_readl(sport, USR2); 1245 1246 if (usr2 & USR2_BRCD) { 1247 sport->port.icount.brk++; 1248 imx_uart_writel(sport, USR2_BRCD, USR2); 1249 uart_handle_break(&sport->port); 1250 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1251 sport->port.icount.buf_overrun++; 1252 tty_flip_buffer_push(port); 1253 } else { 1254 if (usr1 & USR1_FRAMERR) { 1255 sport->port.icount.frame++; 1256 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1257 } else if (usr1 & USR1_PARITYERR) { 1258 sport->port.icount.parity++; 1259 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1260 } 1261 } 1262 1263 if (usr2 & USR2_ORE) { 1264 sport->port.icount.overrun++; 1265 imx_uart_writel(sport, USR2_ORE, USR2); 1266 } 1267 1268 } 1269 1270 #define TXTL_DEFAULT 2 /* reset default */ 1271 #define RXTL_DEFAULT 1 /* reset default */ 1272 #define TXTL_DMA 8 /* DMA burst setting */ 1273 #define RXTL_DMA 9 /* DMA burst setting */ 1274 1275 static void imx_uart_setup_ufcr(struct imx_port *sport, 1276 unsigned char txwl, unsigned char rxwl) 1277 { 1278 unsigned int val; 1279 1280 /* set receiver / transmitter trigger level */ 1281 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1282 val |= txwl << UFCR_TXTL_SHF | rxwl; 1283 imx_uart_writel(sport, val, UFCR); 1284 } 1285 1286 static void imx_uart_dma_exit(struct imx_port *sport) 1287 { 1288 if (sport->dma_chan_rx) { 1289 dmaengine_terminate_sync(sport->dma_chan_rx); 1290 dma_release_channel(sport->dma_chan_rx); 1291 sport->dma_chan_rx = NULL; 1292 sport->rx_cookie = -EINVAL; 1293 kfree(sport->rx_buf); 1294 sport->rx_buf = NULL; 1295 } 1296 1297 if (sport->dma_chan_tx) { 1298 dmaengine_terminate_sync(sport->dma_chan_tx); 1299 dma_release_channel(sport->dma_chan_tx); 1300 sport->dma_chan_tx = NULL; 1301 } 1302 } 1303 1304 static int imx_uart_dma_init(struct imx_port *sport) 1305 { 1306 struct dma_slave_config slave_config = {}; 1307 struct device *dev = sport->port.dev; 1308 int ret; 1309 1310 /* Prepare for RX : */ 1311 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1312 if (!sport->dma_chan_rx) { 1313 dev_dbg(dev, "cannot get the DMA channel.\n"); 1314 ret = -EINVAL; 1315 goto err; 1316 } 1317 1318 slave_config.direction = DMA_DEV_TO_MEM; 1319 slave_config.src_addr = sport->port.mapbase + URXD0; 1320 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1321 /* one byte less than the watermark level to enable the aging timer */ 1322 slave_config.src_maxburst = RXTL_DMA - 1; 1323 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1324 if (ret) { 1325 dev_err(dev, "error in RX dma configuration.\n"); 1326 goto err; 1327 } 1328 1329 sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL); 1330 if (!sport->rx_buf) { 1331 ret = -ENOMEM; 1332 goto err; 1333 } 1334 sport->rx_ring.buf = sport->rx_buf; 1335 1336 /* Prepare for TX : */ 1337 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1338 if (!sport->dma_chan_tx) { 1339 dev_err(dev, "cannot get the TX DMA channel!\n"); 1340 ret = -EINVAL; 1341 goto err; 1342 } 1343 1344 slave_config.direction = DMA_MEM_TO_DEV; 1345 slave_config.dst_addr = sport->port.mapbase + URTX0; 1346 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1347 slave_config.dst_maxburst = TXTL_DMA; 1348 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1349 if (ret) { 1350 dev_err(dev, "error in TX dma configuration."); 1351 goto err; 1352 } 1353 1354 return 0; 1355 err: 1356 imx_uart_dma_exit(sport); 1357 return ret; 1358 } 1359 1360 static void imx_uart_enable_dma(struct imx_port *sport) 1361 { 1362 u32 ucr1; 1363 1364 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1365 1366 /* set UCR1 */ 1367 ucr1 = imx_uart_readl(sport, UCR1); 1368 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1369 imx_uart_writel(sport, ucr1, UCR1); 1370 1371 sport->dma_is_enabled = 1; 1372 } 1373 1374 static void imx_uart_disable_dma(struct imx_port *sport) 1375 { 1376 u32 ucr1; 1377 1378 /* clear UCR1 */ 1379 ucr1 = imx_uart_readl(sport, UCR1); 1380 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1381 imx_uart_writel(sport, ucr1, UCR1); 1382 1383 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1384 1385 sport->dma_is_enabled = 0; 1386 } 1387 1388 /* half the RX buffer size */ 1389 #define CTSTL 16 1390 1391 static int imx_uart_startup(struct uart_port *port) 1392 { 1393 struct imx_port *sport = (struct imx_port *)port; 1394 int retval, i; 1395 unsigned long flags; 1396 int dma_is_inited = 0; 1397 u32 ucr1, ucr2, ucr3, ucr4; 1398 1399 retval = clk_prepare_enable(sport->clk_per); 1400 if (retval) 1401 return retval; 1402 retval = clk_prepare_enable(sport->clk_ipg); 1403 if (retval) { 1404 clk_disable_unprepare(sport->clk_per); 1405 return retval; 1406 } 1407 1408 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1409 1410 /* disable the DREN bit (Data Ready interrupt enable) before 1411 * requesting IRQs 1412 */ 1413 ucr4 = imx_uart_readl(sport, UCR4); 1414 1415 /* set the trigger level for CTS */ 1416 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1417 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1418 1419 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1420 1421 /* Can we enable the DMA support? */ 1422 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1423 dma_is_inited = 1; 1424 1425 spin_lock_irqsave(&sport->port.lock, flags); 1426 /* Reset fifo's and state machines */ 1427 i = 100; 1428 1429 ucr2 = imx_uart_readl(sport, UCR2); 1430 ucr2 &= ~UCR2_SRST; 1431 imx_uart_writel(sport, ucr2, UCR2); 1432 1433 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1434 udelay(1); 1435 1436 /* 1437 * Finally, clear and enable interrupts 1438 */ 1439 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1440 imx_uart_writel(sport, USR2_ORE, USR2); 1441 1442 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1443 ucr1 |= UCR1_UARTEN; 1444 if (sport->have_rtscts) 1445 ucr1 |= UCR1_RTSDEN; 1446 1447 imx_uart_writel(sport, ucr1, UCR1); 1448 1449 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1450 if (!sport->dma_is_enabled) 1451 ucr4 |= UCR4_OREN; 1452 if (sport->inverted_rx) 1453 ucr4 |= UCR4_INVR; 1454 imx_uart_writel(sport, ucr4, UCR4); 1455 1456 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1457 /* 1458 * configure tx polarity before enabling tx 1459 */ 1460 if (sport->inverted_tx) 1461 ucr3 |= UCR3_INVT; 1462 1463 if (!imx_uart_is_imx1(sport)) { 1464 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1465 1466 if (sport->dte_mode) 1467 /* disable broken interrupts */ 1468 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1469 } 1470 imx_uart_writel(sport, ucr3, UCR3); 1471 1472 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1473 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1474 if (!sport->have_rtscts) 1475 ucr2 |= UCR2_IRTS; 1476 /* 1477 * make sure the edge sensitive RTS-irq is disabled, 1478 * we're using RTSD instead. 1479 */ 1480 if (!imx_uart_is_imx1(sport)) 1481 ucr2 &= ~UCR2_RTSEN; 1482 imx_uart_writel(sport, ucr2, UCR2); 1483 1484 /* 1485 * Enable modem status interrupts 1486 */ 1487 imx_uart_enable_ms(&sport->port); 1488 1489 if (dma_is_inited) { 1490 imx_uart_enable_dma(sport); 1491 imx_uart_start_rx_dma(sport); 1492 } else { 1493 ucr1 = imx_uart_readl(sport, UCR1); 1494 ucr1 |= UCR1_RRDYEN; 1495 imx_uart_writel(sport, ucr1, UCR1); 1496 1497 ucr2 = imx_uart_readl(sport, UCR2); 1498 ucr2 |= UCR2_ATEN; 1499 imx_uart_writel(sport, ucr2, UCR2); 1500 } 1501 1502 spin_unlock_irqrestore(&sport->port.lock, flags); 1503 1504 return 0; 1505 } 1506 1507 static void imx_uart_shutdown(struct uart_port *port) 1508 { 1509 struct imx_port *sport = (struct imx_port *)port; 1510 unsigned long flags; 1511 u32 ucr1, ucr2, ucr4; 1512 1513 if (sport->dma_is_enabled) { 1514 dmaengine_terminate_sync(sport->dma_chan_tx); 1515 if (sport->dma_is_txing) { 1516 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1517 sport->dma_tx_nents, DMA_TO_DEVICE); 1518 sport->dma_is_txing = 0; 1519 } 1520 dmaengine_terminate_sync(sport->dma_chan_rx); 1521 if (sport->dma_is_rxing) { 1522 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1523 1, DMA_FROM_DEVICE); 1524 sport->dma_is_rxing = 0; 1525 } 1526 1527 spin_lock_irqsave(&sport->port.lock, flags); 1528 imx_uart_stop_tx(port); 1529 imx_uart_stop_rx(port); 1530 imx_uart_disable_dma(sport); 1531 spin_unlock_irqrestore(&sport->port.lock, flags); 1532 imx_uart_dma_exit(sport); 1533 } 1534 1535 mctrl_gpio_disable_ms(sport->gpios); 1536 1537 spin_lock_irqsave(&sport->port.lock, flags); 1538 ucr2 = imx_uart_readl(sport, UCR2); 1539 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1540 imx_uart_writel(sport, ucr2, UCR2); 1541 spin_unlock_irqrestore(&sport->port.lock, flags); 1542 1543 /* 1544 * Stop our timer. 1545 */ 1546 del_timer_sync(&sport->timer); 1547 1548 /* 1549 * Disable all interrupts, port and break condition. 1550 */ 1551 1552 spin_lock_irqsave(&sport->port.lock, flags); 1553 1554 ucr1 = imx_uart_readl(sport, UCR1); 1555 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN); 1556 imx_uart_writel(sport, ucr1, UCR1); 1557 1558 ucr4 = imx_uart_readl(sport, UCR4); 1559 ucr4 &= ~(UCR4_OREN | UCR4_TCEN); 1560 imx_uart_writel(sport, ucr4, UCR4); 1561 1562 spin_unlock_irqrestore(&sport->port.lock, flags); 1563 1564 clk_disable_unprepare(sport->clk_per); 1565 clk_disable_unprepare(sport->clk_ipg); 1566 } 1567 1568 /* called with port.lock taken and irqs off */ 1569 static void imx_uart_flush_buffer(struct uart_port *port) 1570 { 1571 struct imx_port *sport = (struct imx_port *)port; 1572 struct scatterlist *sgl = &sport->tx_sgl[0]; 1573 u32 ucr2; 1574 int i = 100, ubir, ubmr, uts; 1575 1576 if (!sport->dma_chan_tx) 1577 return; 1578 1579 sport->tx_bytes = 0; 1580 dmaengine_terminate_all(sport->dma_chan_tx); 1581 if (sport->dma_is_txing) { 1582 u32 ucr1; 1583 1584 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1585 DMA_TO_DEVICE); 1586 ucr1 = imx_uart_readl(sport, UCR1); 1587 ucr1 &= ~UCR1_TXDMAEN; 1588 imx_uart_writel(sport, ucr1, UCR1); 1589 sport->dma_is_txing = 0; 1590 } 1591 1592 /* 1593 * According to the Reference Manual description of the UART SRST bit: 1594 * 1595 * "Reset the transmit and receive state machines, 1596 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 1597 * and UTS[6-3]". 1598 * 1599 * We don't need to restore the old values from USR1, USR2, URXD and 1600 * UTXD. UBRC is read only, so only save/restore the other three 1601 * registers. 1602 */ 1603 ubir = imx_uart_readl(sport, UBIR); 1604 ubmr = imx_uart_readl(sport, UBMR); 1605 uts = imx_uart_readl(sport, IMX21_UTS); 1606 1607 ucr2 = imx_uart_readl(sport, UCR2); 1608 ucr2 &= ~UCR2_SRST; 1609 imx_uart_writel(sport, ucr2, UCR2); 1610 1611 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1612 udelay(1); 1613 1614 /* Restore the registers */ 1615 imx_uart_writel(sport, ubir, UBIR); 1616 imx_uart_writel(sport, ubmr, UBMR); 1617 imx_uart_writel(sport, uts, IMX21_UTS); 1618 } 1619 1620 static void 1621 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1622 struct ktermios *old) 1623 { 1624 struct imx_port *sport = (struct imx_port *)port; 1625 unsigned long flags; 1626 u32 ucr2, old_ucr2, ufcr; 1627 unsigned int baud, quot; 1628 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1629 unsigned long div; 1630 unsigned long num, denom, old_ubir, old_ubmr; 1631 uint64_t tdiv64; 1632 1633 /* 1634 * We only support CS7 and CS8. 1635 */ 1636 while ((termios->c_cflag & CSIZE) != CS7 && 1637 (termios->c_cflag & CSIZE) != CS8) { 1638 termios->c_cflag &= ~CSIZE; 1639 termios->c_cflag |= old_csize; 1640 old_csize = CS8; 1641 } 1642 1643 del_timer_sync(&sport->timer); 1644 1645 /* 1646 * Ask the core to calculate the divisor for us. 1647 */ 1648 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1649 quot = uart_get_divisor(port, baud); 1650 1651 spin_lock_irqsave(&sport->port.lock, flags); 1652 1653 /* 1654 * Read current UCR2 and save it for future use, then clear all the bits 1655 * except those we will or may need to preserve. 1656 */ 1657 old_ucr2 = imx_uart_readl(sport, UCR2); 1658 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1659 1660 ucr2 |= UCR2_SRST | UCR2_IRTS; 1661 if ((termios->c_cflag & CSIZE) == CS8) 1662 ucr2 |= UCR2_WS; 1663 1664 if (!sport->have_rtscts) 1665 termios->c_cflag &= ~CRTSCTS; 1666 1667 if (port->rs485.flags & SER_RS485_ENABLED) { 1668 /* 1669 * RTS is mandatory for rs485 operation, so keep 1670 * it under manual control and keep transmitter 1671 * disabled. 1672 */ 1673 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1674 imx_uart_rts_active(sport, &ucr2); 1675 else 1676 imx_uart_rts_inactive(sport, &ucr2); 1677 1678 } else if (termios->c_cflag & CRTSCTS) { 1679 /* 1680 * Only let receiver control RTS output if we were not requested 1681 * to have RTS inactive (which then should take precedence). 1682 */ 1683 if (ucr2 & UCR2_CTS) 1684 ucr2 |= UCR2_CTSC; 1685 } 1686 1687 if (termios->c_cflag & CRTSCTS) 1688 ucr2 &= ~UCR2_IRTS; 1689 if (termios->c_cflag & CSTOPB) 1690 ucr2 |= UCR2_STPB; 1691 if (termios->c_cflag & PARENB) { 1692 ucr2 |= UCR2_PREN; 1693 if (termios->c_cflag & PARODD) 1694 ucr2 |= UCR2_PROE; 1695 } 1696 1697 sport->port.read_status_mask = 0; 1698 if (termios->c_iflag & INPCK) 1699 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1700 if (termios->c_iflag & (BRKINT | PARMRK)) 1701 sport->port.read_status_mask |= URXD_BRK; 1702 1703 /* 1704 * Characters to ignore 1705 */ 1706 sport->port.ignore_status_mask = 0; 1707 if (termios->c_iflag & IGNPAR) 1708 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1709 if (termios->c_iflag & IGNBRK) { 1710 sport->port.ignore_status_mask |= URXD_BRK; 1711 /* 1712 * If we're ignoring parity and break indicators, 1713 * ignore overruns too (for real raw support). 1714 */ 1715 if (termios->c_iflag & IGNPAR) 1716 sport->port.ignore_status_mask |= URXD_OVRRUN; 1717 } 1718 1719 if ((termios->c_cflag & CREAD) == 0) 1720 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1721 1722 /* 1723 * Update the per-port timeout. 1724 */ 1725 uart_update_timeout(port, termios->c_cflag, baud); 1726 1727 /* custom-baudrate handling */ 1728 div = sport->port.uartclk / (baud * 16); 1729 if (baud == 38400 && quot != div) 1730 baud = sport->port.uartclk / (quot * 16); 1731 1732 div = sport->port.uartclk / (baud * 16); 1733 if (div > 7) 1734 div = 7; 1735 if (!div) 1736 div = 1; 1737 1738 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1739 1 << 16, 1 << 16, &num, &denom); 1740 1741 tdiv64 = sport->port.uartclk; 1742 tdiv64 *= num; 1743 do_div(tdiv64, denom * 16 * div); 1744 tty_termios_encode_baud_rate(termios, 1745 (speed_t)tdiv64, (speed_t)tdiv64); 1746 1747 num -= 1; 1748 denom -= 1; 1749 1750 ufcr = imx_uart_readl(sport, UFCR); 1751 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1752 imx_uart_writel(sport, ufcr, UFCR); 1753 1754 /* 1755 * Two registers below should always be written both and in this 1756 * particular order. One consequence is that we need to check if any of 1757 * them changes and then update both. We do need the check for change 1758 * as even writing the same values seem to "restart" 1759 * transmission/receiving logic in the hardware, that leads to data 1760 * breakage even when rate doesn't in fact change. E.g., user switches 1761 * RTS/CTS handshake and suddenly gets broken bytes. 1762 */ 1763 old_ubir = imx_uart_readl(sport, UBIR); 1764 old_ubmr = imx_uart_readl(sport, UBMR); 1765 if (old_ubir != num || old_ubmr != denom) { 1766 imx_uart_writel(sport, num, UBIR); 1767 imx_uart_writel(sport, denom, UBMR); 1768 } 1769 1770 if (!imx_uart_is_imx1(sport)) 1771 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1772 IMX21_ONEMS); 1773 1774 imx_uart_writel(sport, ucr2, UCR2); 1775 1776 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1777 imx_uart_enable_ms(&sport->port); 1778 1779 spin_unlock_irqrestore(&sport->port.lock, flags); 1780 } 1781 1782 static const char *imx_uart_type(struct uart_port *port) 1783 { 1784 struct imx_port *sport = (struct imx_port *)port; 1785 1786 return sport->port.type == PORT_IMX ? "IMX" : NULL; 1787 } 1788 1789 /* 1790 * Configure/autoconfigure the port. 1791 */ 1792 static void imx_uart_config_port(struct uart_port *port, int flags) 1793 { 1794 struct imx_port *sport = (struct imx_port *)port; 1795 1796 if (flags & UART_CONFIG_TYPE) 1797 sport->port.type = PORT_IMX; 1798 } 1799 1800 /* 1801 * Verify the new serial_struct (for TIOCSSERIAL). 1802 * The only change we allow are to the flags and type, and 1803 * even then only between PORT_IMX and PORT_UNKNOWN 1804 */ 1805 static int 1806 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1807 { 1808 struct imx_port *sport = (struct imx_port *)port; 1809 int ret = 0; 1810 1811 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1812 ret = -EINVAL; 1813 if (sport->port.irq != ser->irq) 1814 ret = -EINVAL; 1815 if (ser->io_type != UPIO_MEM) 1816 ret = -EINVAL; 1817 if (sport->port.uartclk / 16 != ser->baud_base) 1818 ret = -EINVAL; 1819 if (sport->port.mapbase != (unsigned long)ser->iomem_base) 1820 ret = -EINVAL; 1821 if (sport->port.iobase != ser->port) 1822 ret = -EINVAL; 1823 if (ser->hub6 != 0) 1824 ret = -EINVAL; 1825 return ret; 1826 } 1827 1828 #if defined(CONFIG_CONSOLE_POLL) 1829 1830 static int imx_uart_poll_init(struct uart_port *port) 1831 { 1832 struct imx_port *sport = (struct imx_port *)port; 1833 unsigned long flags; 1834 u32 ucr1, ucr2; 1835 int retval; 1836 1837 retval = clk_prepare_enable(sport->clk_ipg); 1838 if (retval) 1839 return retval; 1840 retval = clk_prepare_enable(sport->clk_per); 1841 if (retval) 1842 clk_disable_unprepare(sport->clk_ipg); 1843 1844 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1845 1846 spin_lock_irqsave(&sport->port.lock, flags); 1847 1848 /* 1849 * Be careful about the order of enabling bits here. First enable the 1850 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1851 * This prevents that a character that already sits in the RX fifo is 1852 * triggering an irq but the try to fetch it from there results in an 1853 * exception because UARTEN or RXEN is still off. 1854 */ 1855 ucr1 = imx_uart_readl(sport, UCR1); 1856 ucr2 = imx_uart_readl(sport, UCR2); 1857 1858 if (imx_uart_is_imx1(sport)) 1859 ucr1 |= IMX1_UCR1_UARTCLKEN; 1860 1861 ucr1 |= UCR1_UARTEN; 1862 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1863 1864 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1865 ucr2 &= ~UCR2_ATEN; 1866 1867 imx_uart_writel(sport, ucr1, UCR1); 1868 imx_uart_writel(sport, ucr2, UCR2); 1869 1870 /* now enable irqs */ 1871 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1872 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1873 1874 spin_unlock_irqrestore(&sport->port.lock, flags); 1875 1876 return 0; 1877 } 1878 1879 static int imx_uart_poll_get_char(struct uart_port *port) 1880 { 1881 struct imx_port *sport = (struct imx_port *)port; 1882 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1883 return NO_POLL_CHAR; 1884 1885 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1886 } 1887 1888 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1889 { 1890 struct imx_port *sport = (struct imx_port *)port; 1891 unsigned int status; 1892 1893 /* drain */ 1894 do { 1895 status = imx_uart_readl(sport, USR1); 1896 } while (~status & USR1_TRDY); 1897 1898 /* write */ 1899 imx_uart_writel(sport, c, URTX0); 1900 1901 /* flush */ 1902 do { 1903 status = imx_uart_readl(sport, USR2); 1904 } while (~status & USR2_TXDC); 1905 } 1906 #endif 1907 1908 /* called with port.lock taken and irqs off or from .probe without locking */ 1909 static int imx_uart_rs485_config(struct uart_port *port, 1910 struct serial_rs485 *rs485conf) 1911 { 1912 struct imx_port *sport = (struct imx_port *)port; 1913 u32 ucr2; 1914 1915 /* RTS is required to control the transmitter */ 1916 if (!sport->have_rtscts && !sport->have_rtsgpio) 1917 rs485conf->flags &= ~SER_RS485_ENABLED; 1918 1919 if (rs485conf->flags & SER_RS485_ENABLED) { 1920 /* Enable receiver if low-active RTS signal is requested */ 1921 if (sport->have_rtscts && !sport->have_rtsgpio && 1922 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1923 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1924 1925 /* disable transmitter */ 1926 ucr2 = imx_uart_readl(sport, UCR2); 1927 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1928 imx_uart_rts_active(sport, &ucr2); 1929 else 1930 imx_uart_rts_inactive(sport, &ucr2); 1931 imx_uart_writel(sport, ucr2, UCR2); 1932 } 1933 1934 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1935 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1936 rs485conf->flags & SER_RS485_RX_DURING_TX) 1937 imx_uart_start_rx(port); 1938 1939 port->rs485 = *rs485conf; 1940 1941 return 0; 1942 } 1943 1944 static const struct uart_ops imx_uart_pops = { 1945 .tx_empty = imx_uart_tx_empty, 1946 .set_mctrl = imx_uart_set_mctrl, 1947 .get_mctrl = imx_uart_get_mctrl, 1948 .stop_tx = imx_uart_stop_tx, 1949 .start_tx = imx_uart_start_tx, 1950 .stop_rx = imx_uart_stop_rx, 1951 .enable_ms = imx_uart_enable_ms, 1952 .break_ctl = imx_uart_break_ctl, 1953 .startup = imx_uart_startup, 1954 .shutdown = imx_uart_shutdown, 1955 .flush_buffer = imx_uart_flush_buffer, 1956 .set_termios = imx_uart_set_termios, 1957 .type = imx_uart_type, 1958 .config_port = imx_uart_config_port, 1959 .verify_port = imx_uart_verify_port, 1960 #if defined(CONFIG_CONSOLE_POLL) 1961 .poll_init = imx_uart_poll_init, 1962 .poll_get_char = imx_uart_poll_get_char, 1963 .poll_put_char = imx_uart_poll_put_char, 1964 #endif 1965 }; 1966 1967 static struct imx_port *imx_uart_ports[UART_NR]; 1968 1969 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1970 static void imx_uart_console_putchar(struct uart_port *port, int ch) 1971 { 1972 struct imx_port *sport = (struct imx_port *)port; 1973 1974 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1975 barrier(); 1976 1977 imx_uart_writel(sport, ch, URTX0); 1978 } 1979 1980 /* 1981 * Interrupts are disabled on entering 1982 */ 1983 static void 1984 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1985 { 1986 struct imx_port *sport = imx_uart_ports[co->index]; 1987 struct imx_port_ucrs old_ucr; 1988 unsigned int ucr1; 1989 unsigned long flags = 0; 1990 int locked = 1; 1991 1992 if (sport->port.sysrq) 1993 locked = 0; 1994 else if (oops_in_progress) 1995 locked = spin_trylock_irqsave(&sport->port.lock, flags); 1996 else 1997 spin_lock_irqsave(&sport->port.lock, flags); 1998 1999 /* 2000 * First, save UCR1/2/3 and then disable interrupts 2001 */ 2002 imx_uart_ucrs_save(sport, &old_ucr); 2003 ucr1 = old_ucr.ucr1; 2004 2005 if (imx_uart_is_imx1(sport)) 2006 ucr1 |= IMX1_UCR1_UARTCLKEN; 2007 ucr1 |= UCR1_UARTEN; 2008 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2009 2010 imx_uart_writel(sport, ucr1, UCR1); 2011 2012 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2013 2014 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2015 2016 /* 2017 * Finally, wait for transmitter to become empty 2018 * and restore UCR1/2/3 2019 */ 2020 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 2021 2022 imx_uart_ucrs_restore(sport, &old_ucr); 2023 2024 if (locked) 2025 spin_unlock_irqrestore(&sport->port.lock, flags); 2026 } 2027 2028 /* 2029 * If the port was already initialised (eg, by a boot loader), 2030 * try to determine the current setup. 2031 */ 2032 static void __init 2033 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2034 int *parity, int *bits) 2035 { 2036 2037 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2038 /* ok, the port was enabled */ 2039 unsigned int ucr2, ubir, ubmr, uartclk; 2040 unsigned int baud_raw; 2041 unsigned int ucfr_rfdiv; 2042 2043 ucr2 = imx_uart_readl(sport, UCR2); 2044 2045 *parity = 'n'; 2046 if (ucr2 & UCR2_PREN) { 2047 if (ucr2 & UCR2_PROE) 2048 *parity = 'o'; 2049 else 2050 *parity = 'e'; 2051 } 2052 2053 if (ucr2 & UCR2_WS) 2054 *bits = 8; 2055 else 2056 *bits = 7; 2057 2058 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2059 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2060 2061 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2062 if (ucfr_rfdiv == 6) 2063 ucfr_rfdiv = 7; 2064 else 2065 ucfr_rfdiv = 6 - ucfr_rfdiv; 2066 2067 uartclk = clk_get_rate(sport->clk_per); 2068 uartclk /= ucfr_rfdiv; 2069 2070 { /* 2071 * The next code provides exact computation of 2072 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2073 * without need of float support or long long division, 2074 * which would be required to prevent 32bit arithmetic overflow 2075 */ 2076 unsigned int mul = ubir + 1; 2077 unsigned int div = 16 * (ubmr + 1); 2078 unsigned int rem = uartclk % div; 2079 2080 baud_raw = (uartclk / div) * mul; 2081 baud_raw += (rem * mul + div / 2) / div; 2082 *baud = (baud_raw + 50) / 100 * 100; 2083 } 2084 2085 if (*baud != baud_raw) 2086 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2087 baud_raw, *baud); 2088 } 2089 } 2090 2091 static int __init 2092 imx_uart_console_setup(struct console *co, char *options) 2093 { 2094 struct imx_port *sport; 2095 int baud = 9600; 2096 int bits = 8; 2097 int parity = 'n'; 2098 int flow = 'n'; 2099 int retval; 2100 2101 /* 2102 * Check whether an invalid uart number has been specified, and 2103 * if so, search for the first available port that does have 2104 * console support. 2105 */ 2106 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2107 co->index = 0; 2108 sport = imx_uart_ports[co->index]; 2109 if (sport == NULL) 2110 return -ENODEV; 2111 2112 /* For setting the registers, we only need to enable the ipg clock. */ 2113 retval = clk_prepare_enable(sport->clk_ipg); 2114 if (retval) 2115 goto error_console; 2116 2117 if (options) 2118 uart_parse_options(options, &baud, &parity, &bits, &flow); 2119 else 2120 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2121 2122 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2123 2124 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2125 2126 if (retval) { 2127 clk_disable_unprepare(sport->clk_ipg); 2128 goto error_console; 2129 } 2130 2131 retval = clk_prepare_enable(sport->clk_per); 2132 if (retval) 2133 clk_disable_unprepare(sport->clk_ipg); 2134 2135 error_console: 2136 return retval; 2137 } 2138 2139 static struct uart_driver imx_uart_uart_driver; 2140 static struct console imx_uart_console = { 2141 .name = DEV_NAME, 2142 .write = imx_uart_console_write, 2143 .device = uart_console_device, 2144 .setup = imx_uart_console_setup, 2145 .flags = CON_PRINTBUFFER, 2146 .index = -1, 2147 .data = &imx_uart_uart_driver, 2148 }; 2149 2150 #define IMX_CONSOLE &imx_uart_console 2151 2152 #else 2153 #define IMX_CONSOLE NULL 2154 #endif 2155 2156 static struct uart_driver imx_uart_uart_driver = { 2157 .owner = THIS_MODULE, 2158 .driver_name = DRIVER_NAME, 2159 .dev_name = DEV_NAME, 2160 .major = SERIAL_IMX_MAJOR, 2161 .minor = MINOR_START, 2162 .nr = ARRAY_SIZE(imx_uart_ports), 2163 .cons = IMX_CONSOLE, 2164 }; 2165 2166 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2167 { 2168 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2169 unsigned long flags; 2170 2171 spin_lock_irqsave(&sport->port.lock, flags); 2172 if (sport->tx_state == WAIT_AFTER_RTS) 2173 imx_uart_start_tx(&sport->port); 2174 spin_unlock_irqrestore(&sport->port.lock, flags); 2175 2176 return HRTIMER_NORESTART; 2177 } 2178 2179 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2180 { 2181 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2182 unsigned long flags; 2183 2184 spin_lock_irqsave(&sport->port.lock, flags); 2185 if (sport->tx_state == WAIT_AFTER_SEND) 2186 imx_uart_stop_tx(&sport->port); 2187 spin_unlock_irqrestore(&sport->port.lock, flags); 2188 2189 return HRTIMER_NORESTART; 2190 } 2191 2192 static int imx_uart_probe(struct platform_device *pdev) 2193 { 2194 struct device_node *np = pdev->dev.of_node; 2195 struct imx_port *sport; 2196 void __iomem *base; 2197 int ret = 0; 2198 u32 ucr1; 2199 struct resource *res; 2200 int txirq, rxirq, rtsirq; 2201 2202 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2203 if (!sport) 2204 return -ENOMEM; 2205 2206 sport->devdata = of_device_get_match_data(&pdev->dev); 2207 2208 ret = of_alias_get_id(np, "serial"); 2209 if (ret < 0) { 2210 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2211 return ret; 2212 } 2213 sport->port.line = ret; 2214 2215 if (of_get_property(np, "uart-has-rtscts", NULL) || 2216 of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) 2217 sport->have_rtscts = 1; 2218 2219 if (of_get_property(np, "fsl,dte-mode", NULL)) 2220 sport->dte_mode = 1; 2221 2222 if (of_get_property(np, "rts-gpios", NULL)) 2223 sport->have_rtsgpio = 1; 2224 2225 if (of_get_property(np, "fsl,inverted-tx", NULL)) 2226 sport->inverted_tx = 1; 2227 2228 if (of_get_property(np, "fsl,inverted-rx", NULL)) 2229 sport->inverted_rx = 1; 2230 2231 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2232 dev_err(&pdev->dev, "serial%d out of range\n", 2233 sport->port.line); 2234 return -EINVAL; 2235 } 2236 2237 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2238 base = devm_ioremap_resource(&pdev->dev, res); 2239 if (IS_ERR(base)) 2240 return PTR_ERR(base); 2241 2242 rxirq = platform_get_irq(pdev, 0); 2243 if (rxirq < 0) 2244 return rxirq; 2245 txirq = platform_get_irq_optional(pdev, 1); 2246 rtsirq = platform_get_irq_optional(pdev, 2); 2247 2248 sport->port.dev = &pdev->dev; 2249 sport->port.mapbase = res->start; 2250 sport->port.membase = base; 2251 sport->port.type = PORT_IMX, 2252 sport->port.iotype = UPIO_MEM; 2253 sport->port.irq = rxirq; 2254 sport->port.fifosize = 32; 2255 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2256 sport->port.ops = &imx_uart_pops; 2257 sport->port.rs485_config = imx_uart_rs485_config; 2258 sport->port.flags = UPF_BOOT_AUTOCONF; 2259 timer_setup(&sport->timer, imx_uart_timeout, 0); 2260 2261 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2262 if (IS_ERR(sport->gpios)) 2263 return PTR_ERR(sport->gpios); 2264 2265 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2266 if (IS_ERR(sport->clk_ipg)) { 2267 ret = PTR_ERR(sport->clk_ipg); 2268 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2269 return ret; 2270 } 2271 2272 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2273 if (IS_ERR(sport->clk_per)) { 2274 ret = PTR_ERR(sport->clk_per); 2275 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2276 return ret; 2277 } 2278 2279 sport->port.uartclk = clk_get_rate(sport->clk_per); 2280 2281 /* For register access, we only need to enable the ipg clock. */ 2282 ret = clk_prepare_enable(sport->clk_ipg); 2283 if (ret) { 2284 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2285 return ret; 2286 } 2287 2288 /* initialize shadow register values */ 2289 sport->ucr1 = readl(sport->port.membase + UCR1); 2290 sport->ucr2 = readl(sport->port.membase + UCR2); 2291 sport->ucr3 = readl(sport->port.membase + UCR3); 2292 sport->ucr4 = readl(sport->port.membase + UCR4); 2293 sport->ufcr = readl(sport->port.membase + UFCR); 2294 2295 ret = uart_get_rs485_mode(&sport->port); 2296 if (ret) { 2297 clk_disable_unprepare(sport->clk_ipg); 2298 return ret; 2299 } 2300 2301 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2302 (!sport->have_rtscts && !sport->have_rtsgpio)) 2303 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2304 2305 /* 2306 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2307 * signal cannot be set low during transmission in case the 2308 * receiver is off (limitation of the i.MX UART IP). 2309 */ 2310 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2311 sport->have_rtscts && !sport->have_rtsgpio && 2312 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2313 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2314 dev_err(&pdev->dev, 2315 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2316 2317 imx_uart_rs485_config(&sport->port, &sport->port.rs485); 2318 2319 /* Disable interrupts before requesting them */ 2320 ucr1 = imx_uart_readl(sport, UCR1); 2321 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2322 imx_uart_writel(sport, ucr1, UCR1); 2323 2324 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2325 /* 2326 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2327 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2328 * and DCD (when they are outputs) or enables the respective 2329 * irqs. So set this bit early, i.e. before requesting irqs. 2330 */ 2331 u32 ufcr = imx_uart_readl(sport, UFCR); 2332 if (!(ufcr & UFCR_DCEDTE)) 2333 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2334 2335 /* 2336 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2337 * enabled later because they cannot be cleared 2338 * (confirmed on i.MX25) which makes them unusable. 2339 */ 2340 imx_uart_writel(sport, 2341 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2342 UCR3); 2343 2344 } else { 2345 u32 ucr3 = UCR3_DSR; 2346 u32 ufcr = imx_uart_readl(sport, UFCR); 2347 if (ufcr & UFCR_DCEDTE) 2348 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2349 2350 if (!imx_uart_is_imx1(sport)) 2351 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2352 imx_uart_writel(sport, ucr3, UCR3); 2353 } 2354 2355 clk_disable_unprepare(sport->clk_ipg); 2356 2357 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2358 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2359 sport->trigger_start_tx.function = imx_trigger_start_tx; 2360 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2361 2362 /* 2363 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2364 * chips only have one interrupt. 2365 */ 2366 if (txirq > 0) { 2367 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2368 dev_name(&pdev->dev), sport); 2369 if (ret) { 2370 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2371 ret); 2372 return ret; 2373 } 2374 2375 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2376 dev_name(&pdev->dev), sport); 2377 if (ret) { 2378 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2379 ret); 2380 return ret; 2381 } 2382 2383 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2384 dev_name(&pdev->dev), sport); 2385 if (ret) { 2386 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2387 ret); 2388 return ret; 2389 } 2390 } else { 2391 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2392 dev_name(&pdev->dev), sport); 2393 if (ret) { 2394 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2395 return ret; 2396 } 2397 } 2398 2399 imx_uart_ports[sport->port.line] = sport; 2400 2401 platform_set_drvdata(pdev, sport); 2402 2403 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2404 } 2405 2406 static int imx_uart_remove(struct platform_device *pdev) 2407 { 2408 struct imx_port *sport = platform_get_drvdata(pdev); 2409 2410 return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2411 } 2412 2413 static void imx_uart_restore_context(struct imx_port *sport) 2414 { 2415 unsigned long flags; 2416 2417 spin_lock_irqsave(&sport->port.lock, flags); 2418 if (!sport->context_saved) { 2419 spin_unlock_irqrestore(&sport->port.lock, flags); 2420 return; 2421 } 2422 2423 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2424 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2425 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2426 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2427 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2428 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2429 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2430 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2431 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2432 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2433 sport->context_saved = false; 2434 spin_unlock_irqrestore(&sport->port.lock, flags); 2435 } 2436 2437 static void imx_uart_save_context(struct imx_port *sport) 2438 { 2439 unsigned long flags; 2440 2441 /* Save necessary regs */ 2442 spin_lock_irqsave(&sport->port.lock, flags); 2443 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2444 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2445 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2446 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2447 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2448 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2449 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2450 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2451 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2452 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2453 sport->context_saved = true; 2454 spin_unlock_irqrestore(&sport->port.lock, flags); 2455 } 2456 2457 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2458 { 2459 u32 ucr3; 2460 2461 ucr3 = imx_uart_readl(sport, UCR3); 2462 if (on) { 2463 imx_uart_writel(sport, USR1_AWAKE, USR1); 2464 ucr3 |= UCR3_AWAKEN; 2465 } else { 2466 ucr3 &= ~UCR3_AWAKEN; 2467 } 2468 imx_uart_writel(sport, ucr3, UCR3); 2469 2470 if (sport->have_rtscts) { 2471 u32 ucr1 = imx_uart_readl(sport, UCR1); 2472 if (on) 2473 ucr1 |= UCR1_RTSDEN; 2474 else 2475 ucr1 &= ~UCR1_RTSDEN; 2476 imx_uart_writel(sport, ucr1, UCR1); 2477 } 2478 } 2479 2480 static int imx_uart_suspend_noirq(struct device *dev) 2481 { 2482 struct imx_port *sport = dev_get_drvdata(dev); 2483 2484 imx_uart_save_context(sport); 2485 2486 clk_disable(sport->clk_ipg); 2487 2488 pinctrl_pm_select_sleep_state(dev); 2489 2490 return 0; 2491 } 2492 2493 static int imx_uart_resume_noirq(struct device *dev) 2494 { 2495 struct imx_port *sport = dev_get_drvdata(dev); 2496 int ret; 2497 2498 pinctrl_pm_select_default_state(dev); 2499 2500 ret = clk_enable(sport->clk_ipg); 2501 if (ret) 2502 return ret; 2503 2504 imx_uart_restore_context(sport); 2505 2506 return 0; 2507 } 2508 2509 static int imx_uart_suspend(struct device *dev) 2510 { 2511 struct imx_port *sport = dev_get_drvdata(dev); 2512 int ret; 2513 2514 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2515 disable_irq(sport->port.irq); 2516 2517 ret = clk_prepare_enable(sport->clk_ipg); 2518 if (ret) 2519 return ret; 2520 2521 /* enable wakeup from i.MX UART */ 2522 imx_uart_enable_wakeup(sport, true); 2523 2524 return 0; 2525 } 2526 2527 static int imx_uart_resume(struct device *dev) 2528 { 2529 struct imx_port *sport = dev_get_drvdata(dev); 2530 2531 /* disable wakeup from i.MX UART */ 2532 imx_uart_enable_wakeup(sport, false); 2533 2534 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2535 enable_irq(sport->port.irq); 2536 2537 clk_disable_unprepare(sport->clk_ipg); 2538 2539 return 0; 2540 } 2541 2542 static int imx_uart_freeze(struct device *dev) 2543 { 2544 struct imx_port *sport = dev_get_drvdata(dev); 2545 2546 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2547 2548 return clk_prepare_enable(sport->clk_ipg); 2549 } 2550 2551 static int imx_uart_thaw(struct device *dev) 2552 { 2553 struct imx_port *sport = dev_get_drvdata(dev); 2554 2555 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2556 2557 clk_disable_unprepare(sport->clk_ipg); 2558 2559 return 0; 2560 } 2561 2562 static const struct dev_pm_ops imx_uart_pm_ops = { 2563 .suspend_noirq = imx_uart_suspend_noirq, 2564 .resume_noirq = imx_uart_resume_noirq, 2565 .freeze_noirq = imx_uart_suspend_noirq, 2566 .restore_noirq = imx_uart_resume_noirq, 2567 .suspend = imx_uart_suspend, 2568 .resume = imx_uart_resume, 2569 .freeze = imx_uart_freeze, 2570 .thaw = imx_uart_thaw, 2571 .restore = imx_uart_thaw, 2572 }; 2573 2574 static struct platform_driver imx_uart_platform_driver = { 2575 .probe = imx_uart_probe, 2576 .remove = imx_uart_remove, 2577 2578 .driver = { 2579 .name = "imx-uart", 2580 .of_match_table = imx_uart_dt_ids, 2581 .pm = &imx_uart_pm_ops, 2582 }, 2583 }; 2584 2585 static int __init imx_uart_init(void) 2586 { 2587 int ret = uart_register_driver(&imx_uart_uart_driver); 2588 2589 if (ret) 2590 return ret; 2591 2592 ret = platform_driver_register(&imx_uart_platform_driver); 2593 if (ret != 0) 2594 uart_unregister_driver(&imx_uart_uart_driver); 2595 2596 return ret; 2597 } 2598 2599 static void __exit imx_uart_exit(void) 2600 { 2601 platform_driver_unregister(&imx_uart_platform_driver); 2602 uart_unregister_driver(&imx_uart_uart_driver); 2603 } 2604 2605 module_init(imx_uart_init); 2606 module_exit(imx_uart_exit); 2607 2608 MODULE_AUTHOR("Sascha Hauer"); 2609 MODULE_DESCRIPTION("IMX generic serial port driver"); 2610 MODULE_LICENSE("GPL"); 2611 MODULE_ALIAS("platform:imx-uart"); 2612