1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/circ_buf.h> 12 #include <linux/module.h> 13 #include <linux/ioport.h> 14 #include <linux/init.h> 15 #include <linux/console.h> 16 #include <linux/sysrq.h> 17 #include <linux/platform_device.h> 18 #include <linux/tty.h> 19 #include <linux/tty_flip.h> 20 #include <linux/serial_core.h> 21 #include <linux/serial.h> 22 #include <linux/clk.h> 23 #include <linux/delay.h> 24 #include <linux/ktime.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/rational.h> 27 #include <linux/slab.h> 28 #include <linux/of.h> 29 #include <linux/io.h> 30 #include <linux/iopoll.h> 31 #include <linux/dma-mapping.h> 32 33 #include <asm/irq.h> 34 #include <linux/dma/imx-dma.h> 35 36 #include "serial_mctrl_gpio.h" 37 38 /* Register definitions */ 39 #define URXD0 0x0 /* Receiver Register */ 40 #define URTX0 0x40 /* Transmitter Register */ 41 #define UCR1 0x80 /* Control Register 1 */ 42 #define UCR2 0x84 /* Control Register 2 */ 43 #define UCR3 0x88 /* Control Register 3 */ 44 #define UCR4 0x8c /* Control Register 4 */ 45 #define UFCR 0x90 /* FIFO Control Register */ 46 #define USR1 0x94 /* Status Register 1 */ 47 #define USR2 0x98 /* Status Register 2 */ 48 #define UESC 0x9c /* Escape Character Register */ 49 #define UTIM 0xa0 /* Escape Timer Register */ 50 #define UBIR 0xa4 /* BRM Incremental Register */ 51 #define UBMR 0xa8 /* BRM Modulator Register */ 52 #define UBRC 0xac /* Baud Rate Count Register */ 53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 56 57 /* UART Control Register Bit Fields.*/ 58 #define URXD_DUMMY_READ (1<<16) 59 #define URXD_CHARRDY (1<<15) 60 #define URXD_ERR (1<<14) 61 #define URXD_OVRRUN (1<<13) 62 #define URXD_FRMERR (1<<12) 63 #define URXD_BRK (1<<11) 64 #define URXD_PRERR (1<<10) 65 #define URXD_RX_DATA (0xFF<<0) 66 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 67 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 68 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 69 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 71 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 72 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 73 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 74 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 75 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 76 #define UCR1_SNDBRK (1<<4) /* Send break */ 77 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 79 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 80 #define UCR1_DOZE (1<<1) /* Doze */ 81 #define UCR1_UARTEN (1<<0) /* UART enabled */ 82 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 83 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 84 #define UCR2_CTSC (1<<13) /* CTS pin control */ 85 #define UCR2_CTS (1<<12) /* Clear to send */ 86 #define UCR2_ESCEN (1<<11) /* Escape enable */ 87 #define UCR2_PREN (1<<8) /* Parity enable */ 88 #define UCR2_PROE (1<<7) /* Parity odd/even */ 89 #define UCR2_STPB (1<<6) /* Stop */ 90 #define UCR2_WS (1<<5) /* Word size */ 91 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 92 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 93 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 94 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 95 #define UCR2_SRST (1<<0) /* SW reset */ 96 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 97 #define UCR3_PARERREN (1<<12) /* Parity enable */ 98 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 99 #define UCR3_DSR (1<<10) /* Data set ready */ 100 #define UCR3_DCD (1<<9) /* Data carrier detect */ 101 #define UCR3_RI (1<<8) /* Ring indicator */ 102 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 103 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 104 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 105 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 106 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 107 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 108 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 109 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 110 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 111 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 112 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 113 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 114 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 115 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 116 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 117 #define UCR4_IRSC (1<<5) /* IR special case */ 118 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 119 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 120 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 121 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 122 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 123 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 124 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 125 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 126 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 127 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 128 #define USR1_RTSS (1<<14) /* RTS pin status */ 129 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 130 #define USR1_RTSD (1<<12) /* RTS delta */ 131 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 132 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 133 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 134 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 135 #define USR1_DTRD (1<<7) /* DTR Delta */ 136 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 137 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 138 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 139 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 140 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 141 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 142 #define USR2_IDLE (1<<12) /* Idle condition */ 143 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 144 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 145 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 146 #define USR2_WAKE (1<<7) /* Wake */ 147 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 148 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 149 #define USR2_TXDC (1<<3) /* Transmitter complete */ 150 #define USR2_BRCD (1<<2) /* Break condition */ 151 #define USR2_ORE (1<<1) /* Overrun error */ 152 #define USR2_RDR (1<<0) /* Recv data ready */ 153 #define UTS_FRCPERR (1<<13) /* Force parity error */ 154 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 155 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 156 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 157 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 158 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 159 #define UTS_SOFTRST (1<<0) /* Software reset */ 160 161 /* We've been assigned a range on the "Low-density serial ports" major */ 162 #define SERIAL_IMX_MAJOR 207 163 #define MINOR_START 16 164 #define DEV_NAME "ttymxc" 165 166 /* 167 * This determines how often we check the modem status signals 168 * for any change. They generally aren't connected to an IRQ 169 * so we have to poll them. We also check immediately before 170 * filling the TX fifo incase CTS has been dropped. 171 */ 172 #define MCTRL_TIMEOUT (250*HZ/1000) 173 174 #define DRIVER_NAME "IMX-uart" 175 176 #define UART_NR 8 177 178 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 179 enum imx_uart_type { 180 IMX1_UART, 181 IMX21_UART, 182 }; 183 184 /* device type dependent stuff */ 185 struct imx_uart_data { 186 unsigned uts_reg; 187 enum imx_uart_type devtype; 188 }; 189 190 enum imx_tx_state { 191 OFF, 192 WAIT_AFTER_RTS, 193 SEND, 194 WAIT_AFTER_SEND, 195 }; 196 197 struct imx_port { 198 struct uart_port port; 199 struct timer_list timer; 200 unsigned int old_status; 201 unsigned int have_rtscts:1; 202 unsigned int have_rtsgpio:1; 203 unsigned int dte_mode:1; 204 unsigned int inverted_tx:1; 205 unsigned int inverted_rx:1; 206 struct clk *clk_ipg; 207 struct clk *clk_per; 208 const struct imx_uart_data *devdata; 209 210 struct mctrl_gpios *gpios; 211 212 /* counter to stop 0xff flood */ 213 int idle_counter; 214 215 /* DMA fields */ 216 unsigned int dma_is_enabled:1; 217 unsigned int dma_is_rxing:1; 218 unsigned int dma_is_txing:1; 219 struct dma_chan *dma_chan_rx, *dma_chan_tx; 220 struct scatterlist rx_sgl, tx_sgl[2]; 221 void *rx_buf; 222 struct circ_buf rx_ring; 223 unsigned int rx_buf_size; 224 unsigned int rx_period_length; 225 unsigned int rx_periods; 226 dma_cookie_t rx_cookie; 227 unsigned int tx_bytes; 228 unsigned int dma_tx_nents; 229 unsigned int saved_reg[10]; 230 bool context_saved; 231 232 enum imx_tx_state tx_state; 233 struct hrtimer trigger_start_tx; 234 struct hrtimer trigger_stop_tx; 235 }; 236 237 struct imx_port_ucrs { 238 unsigned int ucr1; 239 unsigned int ucr2; 240 unsigned int ucr3; 241 }; 242 243 static const struct imx_uart_data imx_uart_imx1_devdata = { 244 .uts_reg = IMX1_UTS, 245 .devtype = IMX1_UART, 246 }; 247 248 static const struct imx_uart_data imx_uart_imx21_devdata = { 249 .uts_reg = IMX21_UTS, 250 .devtype = IMX21_UART, 251 }; 252 253 static const struct of_device_id imx_uart_dt_ids[] = { 254 /* 255 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are 256 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the 257 * original imx6q's UART is compatible to fsl,imx21-uart. This driver 258 * doesn't make any distinction between these two variants. 259 */ 260 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, }, 261 { .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, }, 262 { .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, }, 263 { /* sentinel */ } 264 }; 265 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 266 267 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 268 { 269 writel(val, sport->port.membase + offset); 270 } 271 272 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 273 { 274 return readl(sport->port.membase + offset); 275 } 276 277 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 278 { 279 return sport->devdata->uts_reg; 280 } 281 282 static inline int imx_uart_is_imx1(struct imx_port *sport) 283 { 284 return sport->devdata->devtype == IMX1_UART; 285 } 286 287 /* 288 * Save and restore functions for UCR1, UCR2 and UCR3 registers 289 */ 290 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 291 static void imx_uart_ucrs_save(struct imx_port *sport, 292 struct imx_port_ucrs *ucr) 293 { 294 /* save control registers */ 295 ucr->ucr1 = imx_uart_readl(sport, UCR1); 296 ucr->ucr2 = imx_uart_readl(sport, UCR2); 297 ucr->ucr3 = imx_uart_readl(sport, UCR3); 298 } 299 300 static void imx_uart_ucrs_restore(struct imx_port *sport, 301 struct imx_port_ucrs *ucr) 302 { 303 /* restore control registers */ 304 imx_uart_writel(sport, ucr->ucr1, UCR1); 305 imx_uart_writel(sport, ucr->ucr2, UCR2); 306 imx_uart_writel(sport, ucr->ucr3, UCR3); 307 } 308 #endif 309 310 /* called with port.lock taken and irqs caller dependent */ 311 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 312 { 313 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 314 315 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 316 } 317 318 /* called with port.lock taken and irqs caller dependent */ 319 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 320 { 321 *ucr2 &= ~UCR2_CTSC; 322 *ucr2 |= UCR2_CTS; 323 324 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 325 } 326 327 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 328 { 329 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 330 } 331 332 /* called with port.lock taken and irqs off */ 333 static void imx_uart_soft_reset(struct imx_port *sport) 334 { 335 int i = 10; 336 u32 ucr2, ubir, ubmr, uts; 337 338 /* 339 * According to the Reference Manual description of the UART SRST bit: 340 * 341 * "Reset the transmit and receive state machines, 342 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 343 * and UTS[6-3]". 344 * 345 * We don't need to restore the old values from USR1, USR2, URXD and 346 * UTXD. UBRC is read only, so only save/restore the other three 347 * registers. 348 */ 349 ubir = imx_uart_readl(sport, UBIR); 350 ubmr = imx_uart_readl(sport, UBMR); 351 uts = imx_uart_readl(sport, IMX21_UTS); 352 353 ucr2 = imx_uart_readl(sport, UCR2); 354 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 355 356 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 357 udelay(1); 358 359 /* Restore the registers */ 360 imx_uart_writel(sport, ubir, UBIR); 361 imx_uart_writel(sport, ubmr, UBMR); 362 imx_uart_writel(sport, uts, IMX21_UTS); 363 364 sport->idle_counter = 0; 365 } 366 367 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 368 { 369 unsigned int uts; 370 371 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 372 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 373 uts &= ~UTS_LOOP; 374 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 375 } 376 377 /* called with port.lock taken and irqs off */ 378 static void imx_uart_start_rx(struct uart_port *port) 379 { 380 struct imx_port *sport = (struct imx_port *)port; 381 unsigned int ucr1, ucr2; 382 383 ucr1 = imx_uart_readl(sport, UCR1); 384 ucr2 = imx_uart_readl(sport, UCR2); 385 386 ucr2 |= UCR2_RXEN; 387 388 if (sport->dma_is_enabled) { 389 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 390 } else { 391 ucr1 |= UCR1_RRDYEN; 392 ucr2 |= UCR2_ATEN; 393 } 394 395 /* Write UCR2 first as it includes RXEN */ 396 imx_uart_writel(sport, ucr2, UCR2); 397 imx_uart_writel(sport, ucr1, UCR1); 398 imx_uart_disable_loopback_rs485(sport); 399 } 400 401 /* called with port.lock taken and irqs off */ 402 static void imx_uart_stop_tx(struct uart_port *port) 403 { 404 struct imx_port *sport = (struct imx_port *)port; 405 u32 ucr1, ucr4, usr2; 406 407 if (sport->tx_state == OFF) 408 return; 409 410 /* 411 * We are maybe in the SMP context, so if the DMA TX thread is running 412 * on other cpu, we have to wait for it to finish. 413 */ 414 if (sport->dma_is_txing) 415 return; 416 417 ucr1 = imx_uart_readl(sport, UCR1); 418 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 419 420 ucr4 = imx_uart_readl(sport, UCR4); 421 usr2 = imx_uart_readl(sport, USR2); 422 if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) { 423 /* The shifter is still busy, so retry once TC triggers */ 424 return; 425 } 426 427 ucr4 &= ~UCR4_TCEN; 428 imx_uart_writel(sport, ucr4, UCR4); 429 430 /* in rs485 mode disable transmitter */ 431 if (port->rs485.flags & SER_RS485_ENABLED) { 432 if (sport->tx_state == SEND) { 433 sport->tx_state = WAIT_AFTER_SEND; 434 435 if (port->rs485.delay_rts_after_send > 0) { 436 start_hrtimer_ms(&sport->trigger_stop_tx, 437 port->rs485.delay_rts_after_send); 438 return; 439 } 440 441 /* continue without any delay */ 442 } 443 444 if (sport->tx_state == WAIT_AFTER_RTS || 445 sport->tx_state == WAIT_AFTER_SEND) { 446 u32 ucr2; 447 448 hrtimer_try_to_cancel(&sport->trigger_start_tx); 449 450 ucr2 = imx_uart_readl(sport, UCR2); 451 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 452 imx_uart_rts_active(sport, &ucr2); 453 else 454 imx_uart_rts_inactive(sport, &ucr2); 455 imx_uart_writel(sport, ucr2, UCR2); 456 457 if (!port->rs485_rx_during_tx_gpio) 458 imx_uart_start_rx(port); 459 460 sport->tx_state = OFF; 461 } 462 } else { 463 sport->tx_state = OFF; 464 } 465 } 466 467 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback) 468 { 469 struct imx_port *sport = (struct imx_port *)port; 470 u32 ucr1, ucr2, ucr4, uts; 471 472 ucr1 = imx_uart_readl(sport, UCR1); 473 ucr2 = imx_uart_readl(sport, UCR2); 474 ucr4 = imx_uart_readl(sport, UCR4); 475 476 if (sport->dma_is_enabled) { 477 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 478 } else { 479 ucr1 &= ~UCR1_RRDYEN; 480 ucr2 &= ~UCR2_ATEN; 481 ucr4 &= ~UCR4_OREN; 482 } 483 imx_uart_writel(sport, ucr1, UCR1); 484 imx_uart_writel(sport, ucr4, UCR4); 485 486 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 487 if (port->rs485.flags & SER_RS485_ENABLED && 488 port->rs485.flags & SER_RS485_RTS_ON_SEND && 489 sport->have_rtscts && !sport->have_rtsgpio && loopback) { 490 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 491 uts |= UTS_LOOP; 492 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 493 ucr2 |= UCR2_RXEN; 494 } else { 495 ucr2 &= ~UCR2_RXEN; 496 } 497 498 imx_uart_writel(sport, ucr2, UCR2); 499 } 500 501 /* called with port.lock taken and irqs off */ 502 static void imx_uart_stop_rx(struct uart_port *port) 503 { 504 /* 505 * Stop RX and enable loopback in order to make sure RS485 bus 506 * is not blocked. Se comment in imx_uart_probe(). 507 */ 508 imx_uart_stop_rx_with_loopback_ctrl(port, true); 509 } 510 511 /* called with port.lock taken and irqs off */ 512 static void imx_uart_enable_ms(struct uart_port *port) 513 { 514 struct imx_port *sport = (struct imx_port *)port; 515 516 mod_timer(&sport->timer, jiffies); 517 518 mctrl_gpio_enable_ms(sport->gpios); 519 } 520 521 static void imx_uart_dma_tx(struct imx_port *sport); 522 523 /* called with port.lock taken and irqs off */ 524 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 525 { 526 struct tty_port *tport = &sport->port.state->port; 527 unsigned char c; 528 529 if (sport->port.x_char) { 530 /* Send next char */ 531 imx_uart_writel(sport, sport->port.x_char, URTX0); 532 sport->port.icount.tx++; 533 sport->port.x_char = 0; 534 return; 535 } 536 537 if (kfifo_is_empty(&tport->xmit_fifo) || 538 uart_tx_stopped(&sport->port)) { 539 imx_uart_stop_tx(&sport->port); 540 return; 541 } 542 543 if (sport->dma_is_enabled) { 544 u32 ucr1; 545 /* 546 * We've just sent a X-char Ensure the TX DMA is enabled 547 * and the TX IRQ is disabled. 548 **/ 549 ucr1 = imx_uart_readl(sport, UCR1); 550 ucr1 &= ~UCR1_TRDYEN; 551 if (sport->dma_is_txing) { 552 ucr1 |= UCR1_TXDMAEN; 553 imx_uart_writel(sport, ucr1, UCR1); 554 } else { 555 imx_uart_writel(sport, ucr1, UCR1); 556 imx_uart_dma_tx(sport); 557 } 558 559 return; 560 } 561 562 while (!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) && 563 uart_fifo_get(&sport->port, &c)) 564 imx_uart_writel(sport, c, URTX0); 565 566 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 567 uart_write_wakeup(&sport->port); 568 569 if (kfifo_is_empty(&tport->xmit_fifo)) 570 imx_uart_stop_tx(&sport->port); 571 } 572 573 static void imx_uart_dma_tx_callback(void *data) 574 { 575 struct imx_port *sport = data; 576 struct tty_port *tport = &sport->port.state->port; 577 struct scatterlist *sgl = &sport->tx_sgl[0]; 578 unsigned long flags; 579 u32 ucr1; 580 581 uart_port_lock_irqsave(&sport->port, &flags); 582 583 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 584 585 ucr1 = imx_uart_readl(sport, UCR1); 586 ucr1 &= ~UCR1_TXDMAEN; 587 imx_uart_writel(sport, ucr1, UCR1); 588 589 uart_xmit_advance(&sport->port, sport->tx_bytes); 590 591 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 592 593 sport->dma_is_txing = 0; 594 595 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 596 uart_write_wakeup(&sport->port); 597 598 if (!kfifo_is_empty(&tport->xmit_fifo) && 599 !uart_tx_stopped(&sport->port)) 600 imx_uart_dma_tx(sport); 601 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 602 u32 ucr4 = imx_uart_readl(sport, UCR4); 603 ucr4 |= UCR4_TCEN; 604 imx_uart_writel(sport, ucr4, UCR4); 605 } 606 607 uart_port_unlock_irqrestore(&sport->port, flags); 608 } 609 610 /* called with port.lock taken and irqs off */ 611 static void imx_uart_dma_tx(struct imx_port *sport) 612 { 613 struct tty_port *tport = &sport->port.state->port; 614 struct scatterlist *sgl = sport->tx_sgl; 615 struct dma_async_tx_descriptor *desc; 616 struct dma_chan *chan = sport->dma_chan_tx; 617 struct device *dev = sport->port.dev; 618 u32 ucr1, ucr4; 619 int ret; 620 621 if (sport->dma_is_txing) 622 return; 623 624 ucr4 = imx_uart_readl(sport, UCR4); 625 ucr4 &= ~UCR4_TCEN; 626 imx_uart_writel(sport, ucr4, UCR4); 627 628 sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl)); 629 sport->tx_bytes = kfifo_len(&tport->xmit_fifo); 630 sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl, 631 ARRAY_SIZE(sport->tx_sgl), sport->tx_bytes); 632 633 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 634 if (ret == 0) { 635 dev_err(dev, "DMA mapping error for TX.\n"); 636 return; 637 } 638 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 639 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 640 if (!desc) { 641 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 642 DMA_TO_DEVICE); 643 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 644 return; 645 } 646 desc->callback = imx_uart_dma_tx_callback; 647 desc->callback_param = sport; 648 649 dev_dbg(dev, "TX: prepare to send %u bytes by DMA.\n", sport->tx_bytes); 650 651 ucr1 = imx_uart_readl(sport, UCR1); 652 ucr1 |= UCR1_TXDMAEN; 653 imx_uart_writel(sport, ucr1, UCR1); 654 655 /* fire it */ 656 sport->dma_is_txing = 1; 657 dmaengine_submit(desc); 658 dma_async_issue_pending(chan); 659 return; 660 } 661 662 /* called with port.lock taken and irqs off */ 663 static void imx_uart_start_tx(struct uart_port *port) 664 { 665 struct imx_port *sport = (struct imx_port *)port; 666 struct tty_port *tport = &sport->port.state->port; 667 u32 ucr1; 668 669 if (!sport->port.x_char && kfifo_is_empty(&tport->xmit_fifo)) 670 return; 671 672 /* 673 * We cannot simply do nothing here if sport->tx_state == SEND already 674 * because UCR1_TXMPTYEN might already have been cleared in 675 * imx_uart_stop_tx(), but tx_state is still SEND. 676 */ 677 678 if (port->rs485.flags & SER_RS485_ENABLED) { 679 if (sport->tx_state == OFF) { 680 u32 ucr2 = imx_uart_readl(sport, UCR2); 681 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 682 imx_uart_rts_active(sport, &ucr2); 683 else 684 imx_uart_rts_inactive(sport, &ucr2); 685 imx_uart_writel(sport, ucr2, UCR2); 686 687 /* 688 * Since we are about to transmit we can not stop RX 689 * with loopback enabled because that will make our 690 * transmitted data being just looped to RX. 691 */ 692 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 693 !port->rs485_rx_during_tx_gpio) 694 imx_uart_stop_rx_with_loopback_ctrl(port, false); 695 696 sport->tx_state = WAIT_AFTER_RTS; 697 698 if (port->rs485.delay_rts_before_send > 0) { 699 start_hrtimer_ms(&sport->trigger_start_tx, 700 port->rs485.delay_rts_before_send); 701 return; 702 } 703 704 /* continue without any delay */ 705 } 706 707 if (sport->tx_state == WAIT_AFTER_SEND 708 || sport->tx_state == WAIT_AFTER_RTS) { 709 710 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 711 712 /* 713 * Enable transmitter and shifter empty irq only if DMA 714 * is off. In the DMA case this is done in the 715 * tx-callback. 716 */ 717 if (!sport->dma_is_enabled) { 718 u32 ucr4 = imx_uart_readl(sport, UCR4); 719 ucr4 |= UCR4_TCEN; 720 imx_uart_writel(sport, ucr4, UCR4); 721 } 722 723 sport->tx_state = SEND; 724 } 725 } else { 726 sport->tx_state = SEND; 727 } 728 729 if (!sport->dma_is_enabled) { 730 ucr1 = imx_uart_readl(sport, UCR1); 731 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 732 } 733 734 if (sport->dma_is_enabled) { 735 if (sport->port.x_char) { 736 /* We have X-char to send, so enable TX IRQ and 737 * disable TX DMA to let TX interrupt to send X-char */ 738 ucr1 = imx_uart_readl(sport, UCR1); 739 ucr1 &= ~UCR1_TXDMAEN; 740 ucr1 |= UCR1_TRDYEN; 741 imx_uart_writel(sport, ucr1, UCR1); 742 return; 743 } 744 745 if (!kfifo_is_empty(&tport->xmit_fifo) && 746 !uart_tx_stopped(port)) 747 imx_uart_dma_tx(sport); 748 return; 749 } 750 } 751 752 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 753 { 754 struct imx_port *sport = dev_id; 755 u32 usr1; 756 757 imx_uart_writel(sport, USR1_RTSD, USR1); 758 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 759 uart_handle_cts_change(&sport->port, usr1); 760 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 761 762 return IRQ_HANDLED; 763 } 764 765 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 766 { 767 struct imx_port *sport = dev_id; 768 irqreturn_t ret; 769 770 uart_port_lock(&sport->port); 771 772 ret = __imx_uart_rtsint(irq, dev_id); 773 774 uart_port_unlock(&sport->port); 775 776 return ret; 777 } 778 779 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 780 { 781 struct imx_port *sport = dev_id; 782 783 uart_port_lock(&sport->port); 784 imx_uart_transmit_buffer(sport); 785 uart_port_unlock(&sport->port); 786 return IRQ_HANDLED; 787 } 788 789 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 790 * This is to be called from Rx ISRs only when some bytes were actually 791 * received. 792 * 793 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 794 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 795 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 796 * that is terminated by any activity on RxD line, or could be stopped by 797 * issuing soft reset to the UART (just stop/start of RX does not help). Note 798 * that what we do here is sending isolated start bit about 2.4 times shorter 799 * than it is to be on UART configured baud rate. 800 */ 801 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 802 { 803 /* To detect hardware 0xff flood we monitor RxD line between RX 804 * interrupts to isolate "receiving" of char(s) with no activity 805 * on RxD line, that'd never happen on actual data transfers. 806 * 807 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 808 * race here if we clear USR2_WAKE when receiving of a char is in 809 * progress, so we might get RX interrupt later with USR2_WAKE bit 810 * cleared. Note though that as we don't try to clear USR2_WAKE when we 811 * detected no activity, this race may hide actual activity only once. 812 * 813 * Yet another case where receive interrupt may occur without RxD 814 * activity is expiration of aging timer, so we consider this as well. 815 * 816 * We use 'idle_counter' to ensure that we got at least so many RX 817 * interrupts without any detected activity on RxD line. 2 cases 818 * described plus 1 to be on the safe side gives us a margin of 3, 819 * below. In practice I was not able to produce a false positive to 820 * induce soft reset at regular data transfers even using 1 as the 821 * margin, so 3 is actually very strong. 822 * 823 * We count interrupts, not chars in 'idle-counter' for simplicity. 824 */ 825 826 if (usr2 & USR2_WAKE) { 827 imx_uart_writel(sport, USR2_WAKE, USR2); 828 sport->idle_counter = 0; 829 } else if (++sport->idle_counter > 3) { 830 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 831 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 832 } 833 } 834 835 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 836 { 837 struct imx_port *sport = dev_id; 838 struct tty_port *port = &sport->port.state->port; 839 u32 usr2, rx; 840 841 /* If we received something, check for 0xff flood */ 842 usr2 = imx_uart_readl(sport, USR2); 843 if (usr2 & USR2_RDR) 844 imx_uart_check_flood(sport, usr2); 845 846 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 847 unsigned int flg = TTY_NORMAL; 848 sport->port.icount.rx++; 849 850 if (unlikely(rx & URXD_ERR)) { 851 if (rx & URXD_BRK) { 852 sport->port.icount.brk++; 853 if (uart_handle_break(&sport->port)) 854 continue; 855 } 856 else if (rx & URXD_PRERR) 857 sport->port.icount.parity++; 858 else if (rx & URXD_FRMERR) 859 sport->port.icount.frame++; 860 if (rx & URXD_OVRRUN) 861 sport->port.icount.overrun++; 862 863 if (rx & sport->port.ignore_status_mask) 864 continue; 865 866 rx &= (sport->port.read_status_mask | 0xFF); 867 868 if (rx & URXD_BRK) 869 flg = TTY_BREAK; 870 else if (rx & URXD_PRERR) 871 flg = TTY_PARITY; 872 else if (rx & URXD_FRMERR) 873 flg = TTY_FRAME; 874 if (rx & URXD_OVRRUN) 875 flg = TTY_OVERRUN; 876 877 sport->port.sysrq = 0; 878 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 879 continue; 880 } 881 882 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 883 continue; 884 885 if (tty_insert_flip_char(port, rx, flg) == 0) 886 sport->port.icount.buf_overrun++; 887 } 888 889 tty_flip_buffer_push(port); 890 891 return IRQ_HANDLED; 892 } 893 894 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 895 { 896 struct imx_port *sport = dev_id; 897 irqreturn_t ret; 898 899 uart_port_lock(&sport->port); 900 901 ret = __imx_uart_rxint(irq, dev_id); 902 903 uart_port_unlock(&sport->port); 904 905 return ret; 906 } 907 908 static void imx_uart_clear_rx_errors(struct imx_port *sport); 909 910 /* 911 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 912 */ 913 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 914 { 915 unsigned int tmp = TIOCM_DSR; 916 unsigned usr1 = imx_uart_readl(sport, USR1); 917 unsigned usr2 = imx_uart_readl(sport, USR2); 918 919 if (usr1 & USR1_RTSS) 920 tmp |= TIOCM_CTS; 921 922 /* in DCE mode DCDIN is always 0 */ 923 if (!(usr2 & USR2_DCDIN)) 924 tmp |= TIOCM_CAR; 925 926 if (sport->dte_mode) 927 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 928 tmp |= TIOCM_RI; 929 930 return tmp; 931 } 932 933 /* 934 * Handle any change of modem status signal since we were last called. 935 */ 936 static void imx_uart_mctrl_check(struct imx_port *sport) 937 { 938 unsigned int status, changed; 939 940 status = imx_uart_get_hwmctrl(sport); 941 changed = status ^ sport->old_status; 942 943 if (changed == 0) 944 return; 945 946 sport->old_status = status; 947 948 if (changed & TIOCM_RI && status & TIOCM_RI) 949 sport->port.icount.rng++; 950 if (changed & TIOCM_DSR) 951 sport->port.icount.dsr++; 952 if (changed & TIOCM_CAR) 953 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 954 if (changed & TIOCM_CTS) 955 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 956 957 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 958 } 959 960 static irqreturn_t imx_uart_int(int irq, void *dev_id) 961 { 962 struct imx_port *sport = dev_id; 963 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 964 irqreturn_t ret = IRQ_NONE; 965 966 uart_port_lock(&sport->port); 967 968 usr1 = imx_uart_readl(sport, USR1); 969 usr2 = imx_uart_readl(sport, USR2); 970 ucr1 = imx_uart_readl(sport, UCR1); 971 ucr2 = imx_uart_readl(sport, UCR2); 972 ucr3 = imx_uart_readl(sport, UCR3); 973 ucr4 = imx_uart_readl(sport, UCR4); 974 975 /* 976 * Even if a condition is true that can trigger an irq only handle it if 977 * the respective irq source is enabled. This prevents some undesired 978 * actions, for example if a character that sits in the RX FIFO and that 979 * should be fetched via DMA is tried to be fetched using PIO. Or the 980 * receiver is currently off and so reading from URXD0 results in an 981 * exception. So just mask the (raw) status bits for disabled irqs. 982 */ 983 if ((ucr1 & UCR1_RRDYEN) == 0) 984 usr1 &= ~USR1_RRDY; 985 if ((ucr2 & UCR2_ATEN) == 0) 986 usr1 &= ~USR1_AGTIM; 987 if ((ucr1 & UCR1_TRDYEN) == 0) 988 usr1 &= ~USR1_TRDY; 989 if ((ucr4 & UCR4_TCEN) == 0) 990 usr2 &= ~USR2_TXDC; 991 if ((ucr3 & UCR3_DTRDEN) == 0) 992 usr1 &= ~USR1_DTRD; 993 if ((ucr1 & UCR1_RTSDEN) == 0) 994 usr1 &= ~USR1_RTSD; 995 if ((ucr3 & UCR3_AWAKEN) == 0) 996 usr1 &= ~USR1_AWAKE; 997 if ((ucr4 & UCR4_OREN) == 0) 998 usr2 &= ~USR2_ORE; 999 1000 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1001 imx_uart_writel(sport, USR1_AGTIM, USR1); 1002 1003 __imx_uart_rxint(irq, dev_id); 1004 ret = IRQ_HANDLED; 1005 } 1006 1007 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1008 imx_uart_transmit_buffer(sport); 1009 ret = IRQ_HANDLED; 1010 } 1011 1012 if (usr1 & USR1_DTRD) { 1013 imx_uart_writel(sport, USR1_DTRD, USR1); 1014 1015 imx_uart_mctrl_check(sport); 1016 1017 ret = IRQ_HANDLED; 1018 } 1019 1020 if (usr1 & USR1_RTSD) { 1021 __imx_uart_rtsint(irq, dev_id); 1022 ret = IRQ_HANDLED; 1023 } 1024 1025 if (usr1 & USR1_AWAKE) { 1026 imx_uart_writel(sport, USR1_AWAKE, USR1); 1027 ret = IRQ_HANDLED; 1028 } 1029 1030 if (usr2 & USR2_ORE) { 1031 sport->port.icount.overrun++; 1032 imx_uart_writel(sport, USR2_ORE, USR2); 1033 ret = IRQ_HANDLED; 1034 } 1035 1036 uart_port_unlock(&sport->port); 1037 1038 return ret; 1039 } 1040 1041 /* 1042 * Return TIOCSER_TEMT when transmitter is not busy. 1043 */ 1044 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1045 { 1046 struct imx_port *sport = (struct imx_port *)port; 1047 unsigned int ret; 1048 1049 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1050 1051 /* If the TX DMA is working, return 0. */ 1052 if (sport->dma_is_txing) 1053 ret = 0; 1054 1055 return ret; 1056 } 1057 1058 /* called with port.lock taken and irqs off */ 1059 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1060 { 1061 struct imx_port *sport = (struct imx_port *)port; 1062 unsigned int ret = imx_uart_get_hwmctrl(sport); 1063 1064 mctrl_gpio_get(sport->gpios, &ret); 1065 1066 return ret; 1067 } 1068 1069 /* called with port.lock taken and irqs off */ 1070 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1071 { 1072 struct imx_port *sport = (struct imx_port *)port; 1073 u32 ucr3, uts; 1074 1075 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1076 u32 ucr2; 1077 1078 /* 1079 * Turn off autoRTS if RTS is lowered and restore autoRTS 1080 * setting if RTS is raised. 1081 */ 1082 ucr2 = imx_uart_readl(sport, UCR2); 1083 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1084 if (mctrl & TIOCM_RTS) { 1085 ucr2 |= UCR2_CTS; 1086 /* 1087 * UCR2_IRTS is unset if and only if the port is 1088 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1089 * to get the state to restore to. 1090 */ 1091 if (!(ucr2 & UCR2_IRTS)) 1092 ucr2 |= UCR2_CTSC; 1093 } 1094 imx_uart_writel(sport, ucr2, UCR2); 1095 } 1096 1097 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1098 if (!(mctrl & TIOCM_DTR)) 1099 ucr3 |= UCR3_DSR; 1100 imx_uart_writel(sport, ucr3, UCR3); 1101 1102 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1103 if (mctrl & TIOCM_LOOP) 1104 uts |= UTS_LOOP; 1105 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1106 1107 mctrl_gpio_set(sport->gpios, mctrl); 1108 } 1109 1110 /* 1111 * Interrupts always disabled. 1112 */ 1113 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1114 { 1115 struct imx_port *sport = (struct imx_port *)port; 1116 unsigned long flags; 1117 u32 ucr1; 1118 1119 uart_port_lock_irqsave(&sport->port, &flags); 1120 1121 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1122 1123 if (break_state != 0) 1124 ucr1 |= UCR1_SNDBRK; 1125 1126 imx_uart_writel(sport, ucr1, UCR1); 1127 1128 uart_port_unlock_irqrestore(&sport->port, flags); 1129 } 1130 1131 /* 1132 * This is our per-port timeout handler, for checking the 1133 * modem status signals. 1134 */ 1135 static void imx_uart_timeout(struct timer_list *t) 1136 { 1137 struct imx_port *sport = from_timer(sport, t, timer); 1138 unsigned long flags; 1139 1140 if (sport->port.state) { 1141 uart_port_lock_irqsave(&sport->port, &flags); 1142 imx_uart_mctrl_check(sport); 1143 uart_port_unlock_irqrestore(&sport->port, flags); 1144 1145 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1146 } 1147 } 1148 1149 /* 1150 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1151 * [1] the RX DMA buffer is full. 1152 * [2] the aging timer expires 1153 * 1154 * Condition [2] is triggered when a character has been sitting in the FIFO 1155 * for at least 8 byte durations. 1156 */ 1157 static void imx_uart_dma_rx_callback(void *data) 1158 { 1159 struct imx_port *sport = data; 1160 struct dma_chan *chan = sport->dma_chan_rx; 1161 struct scatterlist *sgl = &sport->rx_sgl; 1162 struct tty_port *port = &sport->port.state->port; 1163 struct dma_tx_state state; 1164 struct circ_buf *rx_ring = &sport->rx_ring; 1165 enum dma_status status; 1166 unsigned int w_bytes = 0; 1167 unsigned int r_bytes; 1168 unsigned int bd_size; 1169 1170 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1171 1172 if (status == DMA_ERROR) { 1173 uart_port_lock(&sport->port); 1174 imx_uart_clear_rx_errors(sport); 1175 uart_port_unlock(&sport->port); 1176 return; 1177 } 1178 1179 /* 1180 * The state-residue variable represents the empty space 1181 * relative to the entire buffer. Taking this in consideration 1182 * the head is always calculated base on the buffer total 1183 * length - DMA transaction residue. The UART script from the 1184 * SDMA firmware will jump to the next buffer descriptor, 1185 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1186 * Taking this in consideration the tail is always at the 1187 * beginning of the buffer descriptor that contains the head. 1188 */ 1189 1190 /* Calculate the head */ 1191 rx_ring->head = sg_dma_len(sgl) - state.residue; 1192 1193 /* Calculate the tail. */ 1194 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1195 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1196 1197 if (rx_ring->head <= sg_dma_len(sgl) && 1198 rx_ring->head > rx_ring->tail) { 1199 1200 /* Move data from tail to head */ 1201 r_bytes = rx_ring->head - rx_ring->tail; 1202 1203 /* If we received something, check for 0xff flood */ 1204 uart_port_lock(&sport->port); 1205 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1206 uart_port_unlock(&sport->port); 1207 1208 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1209 1210 /* CPU claims ownership of RX DMA buffer */ 1211 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1212 DMA_FROM_DEVICE); 1213 1214 w_bytes = tty_insert_flip_string(port, 1215 sport->rx_buf + rx_ring->tail, r_bytes); 1216 1217 /* UART retrieves ownership of RX DMA buffer */ 1218 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1219 DMA_FROM_DEVICE); 1220 1221 if (w_bytes != r_bytes) 1222 sport->port.icount.buf_overrun++; 1223 1224 sport->port.icount.rx += w_bytes; 1225 } 1226 } else { 1227 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1228 WARN_ON(rx_ring->head <= rx_ring->tail); 1229 } 1230 1231 if (w_bytes) { 1232 tty_flip_buffer_push(port); 1233 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1234 } 1235 } 1236 1237 static int imx_uart_start_rx_dma(struct imx_port *sport) 1238 { 1239 struct scatterlist *sgl = &sport->rx_sgl; 1240 struct dma_chan *chan = sport->dma_chan_rx; 1241 struct device *dev = sport->port.dev; 1242 struct dma_async_tx_descriptor *desc; 1243 int ret; 1244 1245 sport->rx_ring.head = 0; 1246 sport->rx_ring.tail = 0; 1247 1248 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1249 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1250 if (ret == 0) { 1251 dev_err(dev, "DMA mapping error for RX.\n"); 1252 return -EINVAL; 1253 } 1254 1255 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1256 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1257 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1258 1259 if (!desc) { 1260 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1261 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1262 return -EINVAL; 1263 } 1264 desc->callback = imx_uart_dma_rx_callback; 1265 desc->callback_param = sport; 1266 1267 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1268 sport->dma_is_rxing = 1; 1269 sport->rx_cookie = dmaengine_submit(desc); 1270 dma_async_issue_pending(chan); 1271 return 0; 1272 } 1273 1274 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1275 { 1276 struct tty_port *port = &sport->port.state->port; 1277 u32 usr1, usr2; 1278 1279 usr1 = imx_uart_readl(sport, USR1); 1280 usr2 = imx_uart_readl(sport, USR2); 1281 1282 if (usr2 & USR2_BRCD) { 1283 sport->port.icount.brk++; 1284 imx_uart_writel(sport, USR2_BRCD, USR2); 1285 uart_handle_break(&sport->port); 1286 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1287 sport->port.icount.buf_overrun++; 1288 tty_flip_buffer_push(port); 1289 } else { 1290 if (usr1 & USR1_FRAMERR) { 1291 sport->port.icount.frame++; 1292 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1293 } else if (usr1 & USR1_PARITYERR) { 1294 sport->port.icount.parity++; 1295 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1296 } 1297 } 1298 1299 if (usr2 & USR2_ORE) { 1300 sport->port.icount.overrun++; 1301 imx_uart_writel(sport, USR2_ORE, USR2); 1302 } 1303 1304 sport->idle_counter = 0; 1305 1306 } 1307 1308 #define TXTL_DEFAULT 8 1309 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1310 #define TXTL_DMA 8 /* DMA burst setting */ 1311 #define RXTL_DMA 9 /* DMA burst setting */ 1312 1313 static void imx_uart_setup_ufcr(struct imx_port *sport, 1314 unsigned char txwl, unsigned char rxwl) 1315 { 1316 unsigned int val; 1317 1318 /* set receiver / transmitter trigger level */ 1319 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1320 val |= txwl << UFCR_TXTL_SHF | rxwl; 1321 imx_uart_writel(sport, val, UFCR); 1322 } 1323 1324 static void imx_uart_dma_exit(struct imx_port *sport) 1325 { 1326 if (sport->dma_chan_rx) { 1327 dmaengine_terminate_sync(sport->dma_chan_rx); 1328 dma_release_channel(sport->dma_chan_rx); 1329 sport->dma_chan_rx = NULL; 1330 sport->rx_cookie = -EINVAL; 1331 kfree(sport->rx_buf); 1332 sport->rx_buf = NULL; 1333 } 1334 1335 if (sport->dma_chan_tx) { 1336 dmaengine_terminate_sync(sport->dma_chan_tx); 1337 dma_release_channel(sport->dma_chan_tx); 1338 sport->dma_chan_tx = NULL; 1339 } 1340 } 1341 1342 static int imx_uart_dma_init(struct imx_port *sport) 1343 { 1344 struct dma_slave_config slave_config = {}; 1345 struct device *dev = sport->port.dev; 1346 struct dma_chan *chan; 1347 int ret; 1348 1349 /* Prepare for RX : */ 1350 chan = dma_request_chan(dev, "rx"); 1351 if (IS_ERR(chan)) { 1352 dev_dbg(dev, "cannot get the DMA channel.\n"); 1353 sport->dma_chan_rx = NULL; 1354 ret = PTR_ERR(chan); 1355 goto err; 1356 } 1357 sport->dma_chan_rx = chan; 1358 1359 slave_config.direction = DMA_DEV_TO_MEM; 1360 slave_config.src_addr = sport->port.mapbase + URXD0; 1361 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1362 /* one byte less than the watermark level to enable the aging timer */ 1363 slave_config.src_maxburst = RXTL_DMA - 1; 1364 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1365 if (ret) { 1366 dev_err(dev, "error in RX dma configuration.\n"); 1367 goto err; 1368 } 1369 1370 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1371 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1372 if (!sport->rx_buf) { 1373 ret = -ENOMEM; 1374 goto err; 1375 } 1376 sport->rx_ring.buf = sport->rx_buf; 1377 1378 /* Prepare for TX : */ 1379 chan = dma_request_chan(dev, "tx"); 1380 if (IS_ERR(chan)) { 1381 dev_err(dev, "cannot get the TX DMA channel!\n"); 1382 sport->dma_chan_tx = NULL; 1383 ret = PTR_ERR(chan); 1384 goto err; 1385 } 1386 sport->dma_chan_tx = chan; 1387 1388 slave_config.direction = DMA_MEM_TO_DEV; 1389 slave_config.dst_addr = sport->port.mapbase + URTX0; 1390 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1391 slave_config.dst_maxburst = TXTL_DMA; 1392 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1393 if (ret) { 1394 dev_err(dev, "error in TX dma configuration."); 1395 goto err; 1396 } 1397 1398 return 0; 1399 err: 1400 imx_uart_dma_exit(sport); 1401 return ret; 1402 } 1403 1404 static void imx_uart_enable_dma(struct imx_port *sport) 1405 { 1406 u32 ucr1; 1407 1408 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1409 1410 /* set UCR1 */ 1411 ucr1 = imx_uart_readl(sport, UCR1); 1412 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1413 imx_uart_writel(sport, ucr1, UCR1); 1414 1415 sport->dma_is_enabled = 1; 1416 } 1417 1418 static void imx_uart_disable_dma(struct imx_port *sport) 1419 { 1420 u32 ucr1; 1421 1422 /* clear UCR1 */ 1423 ucr1 = imx_uart_readl(sport, UCR1); 1424 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1425 imx_uart_writel(sport, ucr1, UCR1); 1426 1427 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1428 1429 sport->dma_is_enabled = 0; 1430 } 1431 1432 /* half the RX buffer size */ 1433 #define CTSTL 16 1434 1435 static int imx_uart_startup(struct uart_port *port) 1436 { 1437 struct imx_port *sport = (struct imx_port *)port; 1438 int retval; 1439 unsigned long flags; 1440 int dma_is_inited = 0; 1441 u32 ucr1, ucr2, ucr3, ucr4; 1442 1443 retval = clk_prepare_enable(sport->clk_per); 1444 if (retval) 1445 return retval; 1446 retval = clk_prepare_enable(sport->clk_ipg); 1447 if (retval) { 1448 clk_disable_unprepare(sport->clk_per); 1449 return retval; 1450 } 1451 1452 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1453 1454 /* disable the DREN bit (Data Ready interrupt enable) before 1455 * requesting IRQs 1456 */ 1457 ucr4 = imx_uart_readl(sport, UCR4); 1458 1459 /* set the trigger level for CTS */ 1460 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1461 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1462 1463 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1464 1465 /* Can we enable the DMA support? */ 1466 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) { 1467 lockdep_set_subclass(&port->lock, 1); 1468 dma_is_inited = 1; 1469 } 1470 1471 uart_port_lock_irqsave(&sport->port, &flags); 1472 1473 /* Reset fifo's and state machines */ 1474 imx_uart_soft_reset(sport); 1475 1476 /* 1477 * Finally, clear and enable interrupts 1478 */ 1479 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1480 imx_uart_writel(sport, USR2_ORE, USR2); 1481 1482 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1483 ucr1 |= UCR1_UARTEN; 1484 if (sport->have_rtscts) 1485 ucr1 |= UCR1_RTSDEN; 1486 1487 imx_uart_writel(sport, ucr1, UCR1); 1488 1489 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1490 if (!dma_is_inited) 1491 ucr4 |= UCR4_OREN; 1492 if (sport->inverted_rx) 1493 ucr4 |= UCR4_INVR; 1494 imx_uart_writel(sport, ucr4, UCR4); 1495 1496 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1497 /* 1498 * configure tx polarity before enabling tx 1499 */ 1500 if (sport->inverted_tx) 1501 ucr3 |= UCR3_INVT; 1502 1503 if (!imx_uart_is_imx1(sport)) { 1504 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1505 1506 if (sport->dte_mode) 1507 /* disable broken interrupts */ 1508 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1509 } 1510 imx_uart_writel(sport, ucr3, UCR3); 1511 1512 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1513 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1514 if (!sport->have_rtscts) 1515 ucr2 |= UCR2_IRTS; 1516 /* 1517 * make sure the edge sensitive RTS-irq is disabled, 1518 * we're using RTSD instead. 1519 */ 1520 if (!imx_uart_is_imx1(sport)) 1521 ucr2 &= ~UCR2_RTSEN; 1522 imx_uart_writel(sport, ucr2, UCR2); 1523 1524 /* 1525 * Enable modem status interrupts 1526 */ 1527 imx_uart_enable_ms(&sport->port); 1528 1529 if (dma_is_inited) { 1530 imx_uart_enable_dma(sport); 1531 imx_uart_start_rx_dma(sport); 1532 } else { 1533 ucr1 = imx_uart_readl(sport, UCR1); 1534 ucr1 |= UCR1_RRDYEN; 1535 imx_uart_writel(sport, ucr1, UCR1); 1536 1537 ucr2 = imx_uart_readl(sport, UCR2); 1538 ucr2 |= UCR2_ATEN; 1539 imx_uart_writel(sport, ucr2, UCR2); 1540 } 1541 1542 imx_uart_disable_loopback_rs485(sport); 1543 1544 uart_port_unlock_irqrestore(&sport->port, flags); 1545 1546 return 0; 1547 } 1548 1549 static void imx_uart_shutdown(struct uart_port *port) 1550 { 1551 struct imx_port *sport = (struct imx_port *)port; 1552 unsigned long flags; 1553 u32 ucr1, ucr2, ucr4, uts; 1554 1555 if (sport->dma_is_enabled) { 1556 dmaengine_terminate_sync(sport->dma_chan_tx); 1557 if (sport->dma_is_txing) { 1558 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1559 sport->dma_tx_nents, DMA_TO_DEVICE); 1560 sport->dma_is_txing = 0; 1561 } 1562 dmaengine_terminate_sync(sport->dma_chan_rx); 1563 if (sport->dma_is_rxing) { 1564 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1565 1, DMA_FROM_DEVICE); 1566 sport->dma_is_rxing = 0; 1567 } 1568 1569 uart_port_lock_irqsave(&sport->port, &flags); 1570 imx_uart_stop_tx(port); 1571 imx_uart_stop_rx(port); 1572 imx_uart_disable_dma(sport); 1573 uart_port_unlock_irqrestore(&sport->port, flags); 1574 imx_uart_dma_exit(sport); 1575 } 1576 1577 mctrl_gpio_disable_ms(sport->gpios); 1578 1579 uart_port_lock_irqsave(&sport->port, &flags); 1580 ucr2 = imx_uart_readl(sport, UCR2); 1581 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1582 imx_uart_writel(sport, ucr2, UCR2); 1583 uart_port_unlock_irqrestore(&sport->port, flags); 1584 1585 /* 1586 * Stop our timer. 1587 */ 1588 del_timer_sync(&sport->timer); 1589 1590 /* 1591 * Disable all interrupts, port and break condition. 1592 */ 1593 1594 uart_port_lock_irqsave(&sport->port, &flags); 1595 1596 ucr1 = imx_uart_readl(sport, UCR1); 1597 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1598 UCR1_ATDMAEN | UCR1_SNDBRK); 1599 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1600 if (port->rs485.flags & SER_RS485_ENABLED && 1601 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1602 sport->have_rtscts && !sport->have_rtsgpio) { 1603 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1604 uts |= UTS_LOOP; 1605 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1606 ucr1 |= UCR1_UARTEN; 1607 } else { 1608 ucr1 &= ~UCR1_UARTEN; 1609 } 1610 imx_uart_writel(sport, ucr1, UCR1); 1611 1612 ucr4 = imx_uart_readl(sport, UCR4); 1613 ucr4 &= ~UCR4_TCEN; 1614 imx_uart_writel(sport, ucr4, UCR4); 1615 1616 uart_port_unlock_irqrestore(&sport->port, flags); 1617 1618 clk_disable_unprepare(sport->clk_per); 1619 clk_disable_unprepare(sport->clk_ipg); 1620 } 1621 1622 /* called with port.lock taken and irqs off */ 1623 static void imx_uart_flush_buffer(struct uart_port *port) 1624 { 1625 struct imx_port *sport = (struct imx_port *)port; 1626 struct scatterlist *sgl = &sport->tx_sgl[0]; 1627 1628 if (!sport->dma_chan_tx) 1629 return; 1630 1631 sport->tx_bytes = 0; 1632 dmaengine_terminate_all(sport->dma_chan_tx); 1633 if (sport->dma_is_txing) { 1634 u32 ucr1; 1635 1636 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1637 DMA_TO_DEVICE); 1638 ucr1 = imx_uart_readl(sport, UCR1); 1639 ucr1 &= ~UCR1_TXDMAEN; 1640 imx_uart_writel(sport, ucr1, UCR1); 1641 sport->dma_is_txing = 0; 1642 } 1643 1644 imx_uart_soft_reset(sport); 1645 1646 } 1647 1648 static void 1649 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1650 const struct ktermios *old) 1651 { 1652 struct imx_port *sport = (struct imx_port *)port; 1653 unsigned long flags; 1654 u32 ucr2, old_ucr2, ufcr; 1655 unsigned int baud, quot; 1656 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1657 unsigned long div; 1658 unsigned long num, denom, old_ubir, old_ubmr; 1659 uint64_t tdiv64; 1660 1661 /* 1662 * We only support CS7 and CS8. 1663 */ 1664 while ((termios->c_cflag & CSIZE) != CS7 && 1665 (termios->c_cflag & CSIZE) != CS8) { 1666 termios->c_cflag &= ~CSIZE; 1667 termios->c_cflag |= old_csize; 1668 old_csize = CS8; 1669 } 1670 1671 del_timer_sync(&sport->timer); 1672 1673 /* 1674 * Ask the core to calculate the divisor for us. 1675 */ 1676 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1677 quot = uart_get_divisor(port, baud); 1678 1679 uart_port_lock_irqsave(&sport->port, &flags); 1680 1681 /* 1682 * Read current UCR2 and save it for future use, then clear all the bits 1683 * except those we will or may need to preserve. 1684 */ 1685 old_ucr2 = imx_uart_readl(sport, UCR2); 1686 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1687 1688 ucr2 |= UCR2_SRST | UCR2_IRTS; 1689 if ((termios->c_cflag & CSIZE) == CS8) 1690 ucr2 |= UCR2_WS; 1691 1692 if (!sport->have_rtscts) 1693 termios->c_cflag &= ~CRTSCTS; 1694 1695 if (port->rs485.flags & SER_RS485_ENABLED) { 1696 /* 1697 * RTS is mandatory for rs485 operation, so keep 1698 * it under manual control and keep transmitter 1699 * disabled. 1700 */ 1701 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1702 imx_uart_rts_active(sport, &ucr2); 1703 else 1704 imx_uart_rts_inactive(sport, &ucr2); 1705 1706 } else if (termios->c_cflag & CRTSCTS) { 1707 /* 1708 * Only let receiver control RTS output if we were not requested 1709 * to have RTS inactive (which then should take precedence). 1710 */ 1711 if (ucr2 & UCR2_CTS) 1712 ucr2 |= UCR2_CTSC; 1713 } 1714 1715 if (termios->c_cflag & CRTSCTS) 1716 ucr2 &= ~UCR2_IRTS; 1717 if (termios->c_cflag & CSTOPB) 1718 ucr2 |= UCR2_STPB; 1719 if (termios->c_cflag & PARENB) { 1720 ucr2 |= UCR2_PREN; 1721 if (termios->c_cflag & PARODD) 1722 ucr2 |= UCR2_PROE; 1723 } 1724 1725 sport->port.read_status_mask = 0; 1726 if (termios->c_iflag & INPCK) 1727 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1728 if (termios->c_iflag & (BRKINT | PARMRK)) 1729 sport->port.read_status_mask |= URXD_BRK; 1730 1731 /* 1732 * Characters to ignore 1733 */ 1734 sport->port.ignore_status_mask = 0; 1735 if (termios->c_iflag & IGNPAR) 1736 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1737 if (termios->c_iflag & IGNBRK) { 1738 sport->port.ignore_status_mask |= URXD_BRK; 1739 /* 1740 * If we're ignoring parity and break indicators, 1741 * ignore overruns too (for real raw support). 1742 */ 1743 if (termios->c_iflag & IGNPAR) 1744 sport->port.ignore_status_mask |= URXD_OVRRUN; 1745 } 1746 1747 if ((termios->c_cflag & CREAD) == 0) 1748 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1749 1750 /* 1751 * Update the per-port timeout. 1752 */ 1753 uart_update_timeout(port, termios->c_cflag, baud); 1754 1755 /* custom-baudrate handling */ 1756 div = sport->port.uartclk / (baud * 16); 1757 if (baud == 38400 && quot != div) 1758 baud = sport->port.uartclk / (quot * 16); 1759 1760 div = sport->port.uartclk / (baud * 16); 1761 if (div > 7) 1762 div = 7; 1763 if (!div) 1764 div = 1; 1765 1766 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1767 1 << 16, 1 << 16, &num, &denom); 1768 1769 tdiv64 = sport->port.uartclk; 1770 tdiv64 *= num; 1771 do_div(tdiv64, denom * 16 * div); 1772 tty_termios_encode_baud_rate(termios, 1773 (speed_t)tdiv64, (speed_t)tdiv64); 1774 1775 num -= 1; 1776 denom -= 1; 1777 1778 ufcr = imx_uart_readl(sport, UFCR); 1779 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1780 imx_uart_writel(sport, ufcr, UFCR); 1781 1782 /* 1783 * Two registers below should always be written both and in this 1784 * particular order. One consequence is that we need to check if any of 1785 * them changes and then update both. We do need the check for change 1786 * as even writing the same values seem to "restart" 1787 * transmission/receiving logic in the hardware, that leads to data 1788 * breakage even when rate doesn't in fact change. E.g., user switches 1789 * RTS/CTS handshake and suddenly gets broken bytes. 1790 */ 1791 old_ubir = imx_uart_readl(sport, UBIR); 1792 old_ubmr = imx_uart_readl(sport, UBMR); 1793 if (old_ubir != num || old_ubmr != denom) { 1794 imx_uart_writel(sport, num, UBIR); 1795 imx_uart_writel(sport, denom, UBMR); 1796 } 1797 1798 if (!imx_uart_is_imx1(sport)) 1799 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1800 IMX21_ONEMS); 1801 1802 imx_uart_writel(sport, ucr2, UCR2); 1803 1804 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1805 imx_uart_enable_ms(&sport->port); 1806 1807 uart_port_unlock_irqrestore(&sport->port, flags); 1808 } 1809 1810 static const char *imx_uart_type(struct uart_port *port) 1811 { 1812 return port->type == PORT_IMX ? "IMX" : NULL; 1813 } 1814 1815 /* 1816 * Configure/autoconfigure the port. 1817 */ 1818 static void imx_uart_config_port(struct uart_port *port, int flags) 1819 { 1820 if (flags & UART_CONFIG_TYPE) 1821 port->type = PORT_IMX; 1822 } 1823 1824 /* 1825 * Verify the new serial_struct (for TIOCSSERIAL). 1826 * The only change we allow are to the flags and type, and 1827 * even then only between PORT_IMX and PORT_UNKNOWN 1828 */ 1829 static int 1830 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1831 { 1832 int ret = 0; 1833 1834 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1835 ret = -EINVAL; 1836 if (port->irq != ser->irq) 1837 ret = -EINVAL; 1838 if (ser->io_type != UPIO_MEM) 1839 ret = -EINVAL; 1840 if (port->uartclk / 16 != ser->baud_base) 1841 ret = -EINVAL; 1842 if (port->mapbase != (unsigned long)ser->iomem_base) 1843 ret = -EINVAL; 1844 if (port->iobase != ser->port) 1845 ret = -EINVAL; 1846 if (ser->hub6 != 0) 1847 ret = -EINVAL; 1848 return ret; 1849 } 1850 1851 #if defined(CONFIG_CONSOLE_POLL) 1852 1853 static int imx_uart_poll_init(struct uart_port *port) 1854 { 1855 struct imx_port *sport = (struct imx_port *)port; 1856 unsigned long flags; 1857 u32 ucr1, ucr2; 1858 int retval; 1859 1860 retval = clk_prepare_enable(sport->clk_ipg); 1861 if (retval) 1862 return retval; 1863 retval = clk_prepare_enable(sport->clk_per); 1864 if (retval) 1865 clk_disable_unprepare(sport->clk_ipg); 1866 1867 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1868 1869 uart_port_lock_irqsave(&sport->port, &flags); 1870 1871 /* 1872 * Be careful about the order of enabling bits here. First enable the 1873 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1874 * This prevents that a character that already sits in the RX fifo is 1875 * triggering an irq but the try to fetch it from there results in an 1876 * exception because UARTEN or RXEN is still off. 1877 */ 1878 ucr1 = imx_uart_readl(sport, UCR1); 1879 ucr2 = imx_uart_readl(sport, UCR2); 1880 1881 if (imx_uart_is_imx1(sport)) 1882 ucr1 |= IMX1_UCR1_UARTCLKEN; 1883 1884 ucr1 |= UCR1_UARTEN; 1885 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1886 1887 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1888 ucr2 &= ~UCR2_ATEN; 1889 1890 imx_uart_writel(sport, ucr1, UCR1); 1891 imx_uart_writel(sport, ucr2, UCR2); 1892 1893 /* now enable irqs */ 1894 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1895 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1896 1897 uart_port_unlock_irqrestore(&sport->port, flags); 1898 1899 return 0; 1900 } 1901 1902 static int imx_uart_poll_get_char(struct uart_port *port) 1903 { 1904 struct imx_port *sport = (struct imx_port *)port; 1905 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1906 return NO_POLL_CHAR; 1907 1908 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1909 } 1910 1911 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1912 { 1913 struct imx_port *sport = (struct imx_port *)port; 1914 unsigned int status; 1915 1916 /* drain */ 1917 do { 1918 status = imx_uart_readl(sport, USR1); 1919 } while (~status & USR1_TRDY); 1920 1921 /* write */ 1922 imx_uart_writel(sport, c, URTX0); 1923 1924 /* flush */ 1925 do { 1926 status = imx_uart_readl(sport, USR2); 1927 } while (~status & USR2_TXDC); 1928 } 1929 #endif 1930 1931 /* called with port.lock taken and irqs off or from .probe without locking */ 1932 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1933 struct serial_rs485 *rs485conf) 1934 { 1935 struct imx_port *sport = (struct imx_port *)port; 1936 u32 ucr2; 1937 1938 if (rs485conf->flags & SER_RS485_ENABLED) { 1939 /* Enable receiver if low-active RTS signal is requested */ 1940 if (sport->have_rtscts && !sport->have_rtsgpio && 1941 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1942 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1943 1944 /* disable transmitter */ 1945 ucr2 = imx_uart_readl(sport, UCR2); 1946 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1947 imx_uart_rts_active(sport, &ucr2); 1948 else 1949 imx_uart_rts_inactive(sport, &ucr2); 1950 imx_uart_writel(sport, ucr2, UCR2); 1951 } 1952 1953 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1954 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1955 rs485conf->flags & SER_RS485_RX_DURING_TX) { 1956 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1957 imx_uart_start_rx(port); 1958 } 1959 1960 return 0; 1961 } 1962 1963 static const struct uart_ops imx_uart_pops = { 1964 .tx_empty = imx_uart_tx_empty, 1965 .set_mctrl = imx_uart_set_mctrl, 1966 .get_mctrl = imx_uart_get_mctrl, 1967 .stop_tx = imx_uart_stop_tx, 1968 .start_tx = imx_uart_start_tx, 1969 .stop_rx = imx_uart_stop_rx, 1970 .enable_ms = imx_uart_enable_ms, 1971 .break_ctl = imx_uart_break_ctl, 1972 .startup = imx_uart_startup, 1973 .shutdown = imx_uart_shutdown, 1974 .flush_buffer = imx_uart_flush_buffer, 1975 .set_termios = imx_uart_set_termios, 1976 .type = imx_uart_type, 1977 .config_port = imx_uart_config_port, 1978 .verify_port = imx_uart_verify_port, 1979 #if defined(CONFIG_CONSOLE_POLL) 1980 .poll_init = imx_uart_poll_init, 1981 .poll_get_char = imx_uart_poll_get_char, 1982 .poll_put_char = imx_uart_poll_put_char, 1983 #endif 1984 }; 1985 1986 static struct imx_port *imx_uart_ports[UART_NR]; 1987 1988 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1989 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 1990 { 1991 struct imx_port *sport = (struct imx_port *)port; 1992 1993 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1994 barrier(); 1995 1996 imx_uart_writel(sport, ch, URTX0); 1997 } 1998 1999 /* 2000 * Interrupts are disabled on entering 2001 */ 2002 static void 2003 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 2004 { 2005 struct imx_port *sport = imx_uart_ports[co->index]; 2006 struct imx_port_ucrs old_ucr; 2007 unsigned long flags; 2008 unsigned int ucr1, usr2; 2009 int locked = 1; 2010 2011 if (sport->port.sysrq) 2012 locked = 0; 2013 else if (oops_in_progress) 2014 locked = uart_port_trylock_irqsave(&sport->port, &flags); 2015 else 2016 uart_port_lock_irqsave(&sport->port, &flags); 2017 2018 /* 2019 * First, save UCR1/2/3 and then disable interrupts 2020 */ 2021 imx_uart_ucrs_save(sport, &old_ucr); 2022 ucr1 = old_ucr.ucr1; 2023 2024 if (imx_uart_is_imx1(sport)) 2025 ucr1 |= IMX1_UCR1_UARTCLKEN; 2026 ucr1 |= UCR1_UARTEN; 2027 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2028 2029 imx_uart_writel(sport, ucr1, UCR1); 2030 2031 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2032 2033 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2034 2035 /* 2036 * Finally, wait for transmitter to become empty 2037 * and restore UCR1/2/3 2038 */ 2039 read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC, 2040 0, USEC_PER_SEC, false, sport, USR2); 2041 imx_uart_ucrs_restore(sport, &old_ucr); 2042 2043 if (locked) 2044 uart_port_unlock_irqrestore(&sport->port, flags); 2045 } 2046 2047 /* 2048 * If the port was already initialised (eg, by a boot loader), 2049 * try to determine the current setup. 2050 */ 2051 static void 2052 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2053 int *parity, int *bits) 2054 { 2055 2056 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2057 /* ok, the port was enabled */ 2058 unsigned int ucr2, ubir, ubmr, uartclk; 2059 unsigned int baud_raw; 2060 unsigned int ucfr_rfdiv; 2061 2062 ucr2 = imx_uart_readl(sport, UCR2); 2063 2064 *parity = 'n'; 2065 if (ucr2 & UCR2_PREN) { 2066 if (ucr2 & UCR2_PROE) 2067 *parity = 'o'; 2068 else 2069 *parity = 'e'; 2070 } 2071 2072 if (ucr2 & UCR2_WS) 2073 *bits = 8; 2074 else 2075 *bits = 7; 2076 2077 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2078 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2079 2080 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2081 if (ucfr_rfdiv == 6) 2082 ucfr_rfdiv = 7; 2083 else 2084 ucfr_rfdiv = 6 - ucfr_rfdiv; 2085 2086 uartclk = clk_get_rate(sport->clk_per); 2087 uartclk /= ucfr_rfdiv; 2088 2089 { /* 2090 * The next code provides exact computation of 2091 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2092 * without need of float support or long long division, 2093 * which would be required to prevent 32bit arithmetic overflow 2094 */ 2095 unsigned int mul = ubir + 1; 2096 unsigned int div = 16 * (ubmr + 1); 2097 unsigned int rem = uartclk % div; 2098 2099 baud_raw = (uartclk / div) * mul; 2100 baud_raw += (rem * mul + div / 2) / div; 2101 *baud = (baud_raw + 50) / 100 * 100; 2102 } 2103 2104 if (*baud != baud_raw) 2105 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2106 baud_raw, *baud); 2107 } 2108 } 2109 2110 static int 2111 imx_uart_console_setup(struct console *co, char *options) 2112 { 2113 struct imx_port *sport; 2114 int baud = 9600; 2115 int bits = 8; 2116 int parity = 'n'; 2117 int flow = 'n'; 2118 int retval; 2119 2120 /* 2121 * Check whether an invalid uart number has been specified, and 2122 * if so, search for the first available port that does have 2123 * console support. 2124 */ 2125 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2126 co->index = 0; 2127 sport = imx_uart_ports[co->index]; 2128 if (sport == NULL) 2129 return -ENODEV; 2130 2131 /* For setting the registers, we only need to enable the ipg clock. */ 2132 retval = clk_prepare_enable(sport->clk_ipg); 2133 if (retval) 2134 goto error_console; 2135 2136 if (options) 2137 uart_parse_options(options, &baud, &parity, &bits, &flow); 2138 else 2139 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2140 2141 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2142 2143 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2144 2145 if (retval) { 2146 clk_disable_unprepare(sport->clk_ipg); 2147 goto error_console; 2148 } 2149 2150 retval = clk_prepare_enable(sport->clk_per); 2151 if (retval) 2152 clk_disable_unprepare(sport->clk_ipg); 2153 2154 error_console: 2155 return retval; 2156 } 2157 2158 static int 2159 imx_uart_console_exit(struct console *co) 2160 { 2161 struct imx_port *sport = imx_uart_ports[co->index]; 2162 2163 clk_disable_unprepare(sport->clk_per); 2164 clk_disable_unprepare(sport->clk_ipg); 2165 2166 return 0; 2167 } 2168 2169 static struct uart_driver imx_uart_uart_driver; 2170 static struct console imx_uart_console = { 2171 .name = DEV_NAME, 2172 .write = imx_uart_console_write, 2173 .device = uart_console_device, 2174 .setup = imx_uart_console_setup, 2175 .exit = imx_uart_console_exit, 2176 .flags = CON_PRINTBUFFER, 2177 .index = -1, 2178 .data = &imx_uart_uart_driver, 2179 }; 2180 2181 #define IMX_CONSOLE &imx_uart_console 2182 2183 #else 2184 #define IMX_CONSOLE NULL 2185 #endif 2186 2187 static struct uart_driver imx_uart_uart_driver = { 2188 .owner = THIS_MODULE, 2189 .driver_name = DRIVER_NAME, 2190 .dev_name = DEV_NAME, 2191 .major = SERIAL_IMX_MAJOR, 2192 .minor = MINOR_START, 2193 .nr = ARRAY_SIZE(imx_uart_ports), 2194 .cons = IMX_CONSOLE, 2195 }; 2196 2197 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2198 { 2199 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2200 unsigned long flags; 2201 2202 uart_port_lock_irqsave(&sport->port, &flags); 2203 if (sport->tx_state == WAIT_AFTER_RTS) 2204 imx_uart_start_tx(&sport->port); 2205 uart_port_unlock_irqrestore(&sport->port, flags); 2206 2207 return HRTIMER_NORESTART; 2208 } 2209 2210 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2211 { 2212 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2213 unsigned long flags; 2214 2215 uart_port_lock_irqsave(&sport->port, &flags); 2216 if (sport->tx_state == WAIT_AFTER_SEND) 2217 imx_uart_stop_tx(&sport->port); 2218 uart_port_unlock_irqrestore(&sport->port, flags); 2219 2220 return HRTIMER_NORESTART; 2221 } 2222 2223 static const struct serial_rs485 imx_rs485_supported = { 2224 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2225 SER_RS485_RX_DURING_TX, 2226 .delay_rts_before_send = 1, 2227 .delay_rts_after_send = 1, 2228 }; 2229 2230 /* Default RX DMA buffer configuration */ 2231 #define RX_DMA_PERIODS 16 2232 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2233 2234 static int imx_uart_probe(struct platform_device *pdev) 2235 { 2236 struct device_node *np = pdev->dev.of_node; 2237 struct imx_port *sport; 2238 void __iomem *base; 2239 u32 dma_buf_conf[2]; 2240 int ret = 0; 2241 u32 ucr1, ucr2, uts; 2242 struct resource *res; 2243 int txirq, rxirq, rtsirq; 2244 2245 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2246 if (!sport) 2247 return -ENOMEM; 2248 2249 sport->devdata = of_device_get_match_data(&pdev->dev); 2250 2251 ret = of_alias_get_id(np, "serial"); 2252 if (ret < 0) { 2253 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2254 return ret; 2255 } 2256 sport->port.line = ret; 2257 2258 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2259 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2260 2261 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2262 2263 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2264 2265 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2266 2267 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2268 2269 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2270 sport->rx_period_length = dma_buf_conf[0]; 2271 sport->rx_periods = dma_buf_conf[1]; 2272 } else { 2273 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2274 sport->rx_periods = RX_DMA_PERIODS; 2275 } 2276 2277 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2278 dev_err(&pdev->dev, "serial%d out of range\n", 2279 sport->port.line); 2280 return -EINVAL; 2281 } 2282 2283 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2284 if (IS_ERR(base)) 2285 return PTR_ERR(base); 2286 2287 rxirq = platform_get_irq(pdev, 0); 2288 if (rxirq < 0) 2289 return rxirq; 2290 txirq = platform_get_irq_optional(pdev, 1); 2291 rtsirq = platform_get_irq_optional(pdev, 2); 2292 2293 sport->port.dev = &pdev->dev; 2294 sport->port.mapbase = res->start; 2295 sport->port.membase = base; 2296 sport->port.type = PORT_IMX; 2297 sport->port.iotype = UPIO_MEM; 2298 sport->port.irq = rxirq; 2299 sport->port.fifosize = 32; 2300 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2301 sport->port.ops = &imx_uart_pops; 2302 sport->port.rs485_config = imx_uart_rs485_config; 2303 /* RTS is required to control the RS485 transmitter */ 2304 if (sport->have_rtscts || sport->have_rtsgpio) 2305 sport->port.rs485_supported = imx_rs485_supported; 2306 sport->port.flags = UPF_BOOT_AUTOCONF; 2307 timer_setup(&sport->timer, imx_uart_timeout, 0); 2308 2309 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2310 if (IS_ERR(sport->gpios)) 2311 return PTR_ERR(sport->gpios); 2312 2313 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2314 if (IS_ERR(sport->clk_ipg)) { 2315 ret = PTR_ERR(sport->clk_ipg); 2316 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2317 return ret; 2318 } 2319 2320 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2321 if (IS_ERR(sport->clk_per)) { 2322 ret = PTR_ERR(sport->clk_per); 2323 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2324 return ret; 2325 } 2326 2327 sport->port.uartclk = clk_get_rate(sport->clk_per); 2328 2329 /* For register access, we only need to enable the ipg clock. */ 2330 ret = clk_prepare_enable(sport->clk_ipg); 2331 if (ret) { 2332 dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret); 2333 return ret; 2334 } 2335 2336 ret = uart_get_rs485_mode(&sport->port); 2337 if (ret) 2338 goto err_clk; 2339 2340 /* 2341 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2342 * signal cannot be set low during transmission in case the 2343 * receiver is off (limitation of the i.MX UART IP). 2344 */ 2345 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2346 sport->have_rtscts && !sport->have_rtsgpio && 2347 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2348 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2349 dev_err(&pdev->dev, 2350 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2351 2352 /* Disable interrupts before requesting them */ 2353 ucr1 = imx_uart_readl(sport, UCR1); 2354 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2355 imx_uart_writel(sport, ucr1, UCR1); 2356 2357 /* Disable Ageing Timer interrupt */ 2358 ucr2 = imx_uart_readl(sport, UCR2); 2359 ucr2 &= ~UCR2_ATEN; 2360 imx_uart_writel(sport, ucr2, UCR2); 2361 2362 /* 2363 * In case RS485 is enabled without GPIO RTS control, the UART IP 2364 * is used to control CTS signal. Keep both the UART and Receiver 2365 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2366 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2367 * data from being fed into the RX FIFO, enable loopback mode in 2368 * UTS register, which disconnects the RX path from external RXD 2369 * pin and connects it to the Transceiver, which is disabled, so 2370 * no data can be fed to the RX FIFO that way. 2371 */ 2372 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2373 sport->have_rtscts && !sport->have_rtsgpio) { 2374 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2375 uts |= UTS_LOOP; 2376 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2377 2378 ucr1 = imx_uart_readl(sport, UCR1); 2379 ucr1 |= UCR1_UARTEN; 2380 imx_uart_writel(sport, ucr1, UCR1); 2381 2382 ucr2 = imx_uart_readl(sport, UCR2); 2383 ucr2 |= UCR2_RXEN; 2384 imx_uart_writel(sport, ucr2, UCR2); 2385 } 2386 2387 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2388 /* 2389 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2390 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2391 * and DCD (when they are outputs) or enables the respective 2392 * irqs. So set this bit early, i.e. before requesting irqs. 2393 */ 2394 u32 ufcr = imx_uart_readl(sport, UFCR); 2395 if (!(ufcr & UFCR_DCEDTE)) 2396 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2397 2398 /* 2399 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2400 * enabled later because they cannot be cleared 2401 * (confirmed on i.MX25) which makes them unusable. 2402 */ 2403 imx_uart_writel(sport, 2404 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2405 UCR3); 2406 2407 } else { 2408 u32 ucr3 = UCR3_DSR; 2409 u32 ufcr = imx_uart_readl(sport, UFCR); 2410 if (ufcr & UFCR_DCEDTE) 2411 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2412 2413 if (!imx_uart_is_imx1(sport)) 2414 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2415 imx_uart_writel(sport, ucr3, UCR3); 2416 } 2417 2418 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2419 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2420 sport->trigger_start_tx.function = imx_trigger_start_tx; 2421 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2422 2423 /* 2424 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2425 * chips only have one interrupt. 2426 */ 2427 if (txirq > 0) { 2428 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2429 dev_name(&pdev->dev), sport); 2430 if (ret) { 2431 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2432 ret); 2433 goto err_clk; 2434 } 2435 2436 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2437 dev_name(&pdev->dev), sport); 2438 if (ret) { 2439 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2440 ret); 2441 goto err_clk; 2442 } 2443 2444 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2445 dev_name(&pdev->dev), sport); 2446 if (ret) { 2447 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2448 ret); 2449 goto err_clk; 2450 } 2451 } else { 2452 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2453 dev_name(&pdev->dev), sport); 2454 if (ret) { 2455 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2456 goto err_clk; 2457 } 2458 } 2459 2460 imx_uart_ports[sport->port.line] = sport; 2461 2462 platform_set_drvdata(pdev, sport); 2463 2464 ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2465 2466 err_clk: 2467 clk_disable_unprepare(sport->clk_ipg); 2468 2469 return ret; 2470 } 2471 2472 static void imx_uart_remove(struct platform_device *pdev) 2473 { 2474 struct imx_port *sport = platform_get_drvdata(pdev); 2475 2476 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2477 } 2478 2479 static void imx_uart_restore_context(struct imx_port *sport) 2480 { 2481 unsigned long flags; 2482 2483 uart_port_lock_irqsave(&sport->port, &flags); 2484 if (!sport->context_saved) { 2485 uart_port_unlock_irqrestore(&sport->port, flags); 2486 return; 2487 } 2488 2489 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2490 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2491 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2492 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2493 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2494 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2495 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2496 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2497 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2498 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2499 sport->context_saved = false; 2500 uart_port_unlock_irqrestore(&sport->port, flags); 2501 } 2502 2503 static void imx_uart_save_context(struct imx_port *sport) 2504 { 2505 unsigned long flags; 2506 2507 /* Save necessary regs */ 2508 uart_port_lock_irqsave(&sport->port, &flags); 2509 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2510 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2511 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2512 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2513 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2514 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2515 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2516 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2517 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2518 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2519 sport->context_saved = true; 2520 uart_port_unlock_irqrestore(&sport->port, flags); 2521 } 2522 2523 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2524 { 2525 u32 ucr3; 2526 2527 ucr3 = imx_uart_readl(sport, UCR3); 2528 if (on) { 2529 imx_uart_writel(sport, USR1_AWAKE, USR1); 2530 ucr3 |= UCR3_AWAKEN; 2531 } else { 2532 ucr3 &= ~UCR3_AWAKEN; 2533 } 2534 imx_uart_writel(sport, ucr3, UCR3); 2535 2536 if (sport->have_rtscts) { 2537 u32 ucr1 = imx_uart_readl(sport, UCR1); 2538 if (on) { 2539 imx_uart_writel(sport, USR1_RTSD, USR1); 2540 ucr1 |= UCR1_RTSDEN; 2541 } else { 2542 ucr1 &= ~UCR1_RTSDEN; 2543 } 2544 imx_uart_writel(sport, ucr1, UCR1); 2545 } 2546 } 2547 2548 static int imx_uart_suspend_noirq(struct device *dev) 2549 { 2550 struct imx_port *sport = dev_get_drvdata(dev); 2551 2552 imx_uart_save_context(sport); 2553 2554 clk_disable(sport->clk_ipg); 2555 2556 pinctrl_pm_select_sleep_state(dev); 2557 2558 return 0; 2559 } 2560 2561 static int imx_uart_resume_noirq(struct device *dev) 2562 { 2563 struct imx_port *sport = dev_get_drvdata(dev); 2564 int ret; 2565 2566 pinctrl_pm_select_default_state(dev); 2567 2568 ret = clk_enable(sport->clk_ipg); 2569 if (ret) 2570 return ret; 2571 2572 imx_uart_restore_context(sport); 2573 2574 return 0; 2575 } 2576 2577 static int imx_uart_suspend(struct device *dev) 2578 { 2579 struct imx_port *sport = dev_get_drvdata(dev); 2580 int ret; 2581 2582 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2583 disable_irq(sport->port.irq); 2584 2585 ret = clk_prepare_enable(sport->clk_ipg); 2586 if (ret) 2587 return ret; 2588 2589 /* enable wakeup from i.MX UART */ 2590 imx_uart_enable_wakeup(sport, true); 2591 2592 return 0; 2593 } 2594 2595 static int imx_uart_resume(struct device *dev) 2596 { 2597 struct imx_port *sport = dev_get_drvdata(dev); 2598 2599 /* disable wakeup from i.MX UART */ 2600 imx_uart_enable_wakeup(sport, false); 2601 2602 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2603 enable_irq(sport->port.irq); 2604 2605 clk_disable_unprepare(sport->clk_ipg); 2606 2607 return 0; 2608 } 2609 2610 static int imx_uart_freeze(struct device *dev) 2611 { 2612 struct imx_port *sport = dev_get_drvdata(dev); 2613 2614 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2615 2616 return clk_prepare_enable(sport->clk_ipg); 2617 } 2618 2619 static int imx_uart_thaw(struct device *dev) 2620 { 2621 struct imx_port *sport = dev_get_drvdata(dev); 2622 2623 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2624 2625 clk_disable_unprepare(sport->clk_ipg); 2626 2627 return 0; 2628 } 2629 2630 static const struct dev_pm_ops imx_uart_pm_ops = { 2631 .suspend_noirq = imx_uart_suspend_noirq, 2632 .resume_noirq = imx_uart_resume_noirq, 2633 .freeze_noirq = imx_uart_suspend_noirq, 2634 .thaw_noirq = imx_uart_resume_noirq, 2635 .restore_noirq = imx_uart_resume_noirq, 2636 .suspend = imx_uart_suspend, 2637 .resume = imx_uart_resume, 2638 .freeze = imx_uart_freeze, 2639 .thaw = imx_uart_thaw, 2640 .restore = imx_uart_thaw, 2641 }; 2642 2643 static struct platform_driver imx_uart_platform_driver = { 2644 .probe = imx_uart_probe, 2645 .remove_new = imx_uart_remove, 2646 2647 .driver = { 2648 .name = "imx-uart", 2649 .of_match_table = imx_uart_dt_ids, 2650 .pm = &imx_uart_pm_ops, 2651 }, 2652 }; 2653 2654 static int __init imx_uart_init(void) 2655 { 2656 int ret = uart_register_driver(&imx_uart_uart_driver); 2657 2658 if (ret) 2659 return ret; 2660 2661 ret = platform_driver_register(&imx_uart_platform_driver); 2662 if (ret != 0) 2663 uart_unregister_driver(&imx_uart_uart_driver); 2664 2665 return ret; 2666 } 2667 2668 static void __exit imx_uart_exit(void) 2669 { 2670 platform_driver_unregister(&imx_uart_platform_driver); 2671 uart_unregister_driver(&imx_uart_uart_driver); 2672 } 2673 2674 module_init(imx_uart_init); 2675 module_exit(imx_uart_exit); 2676 2677 MODULE_AUTHOR("Sascha Hauer"); 2678 MODULE_DESCRIPTION("IMX generic serial port driver"); 2679 MODULE_LICENSE("GPL"); 2680 MODULE_ALIAS("platform:imx-uart"); 2681