1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/circ_buf.h> 12 #include <linux/module.h> 13 #include <linux/ioport.h> 14 #include <linux/init.h> 15 #include <linux/console.h> 16 #include <linux/sysrq.h> 17 #include <linux/platform_device.h> 18 #include <linux/tty.h> 19 #include <linux/tty_flip.h> 20 #include <linux/serial_core.h> 21 #include <linux/serial.h> 22 #include <linux/clk.h> 23 #include <linux/delay.h> 24 #include <linux/ktime.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/rational.h> 27 #include <linux/slab.h> 28 #include <linux/of.h> 29 #include <linux/io.h> 30 #include <linux/iopoll.h> 31 #include <linux/dma-mapping.h> 32 33 #include <asm/irq.h> 34 #include <linux/dma/imx-dma.h> 35 36 #include "serial_mctrl_gpio.h" 37 38 /* Register definitions */ 39 #define URXD0 0x0 /* Receiver Register */ 40 #define URTX0 0x40 /* Transmitter Register */ 41 #define UCR1 0x80 /* Control Register 1 */ 42 #define UCR2 0x84 /* Control Register 2 */ 43 #define UCR3 0x88 /* Control Register 3 */ 44 #define UCR4 0x8c /* Control Register 4 */ 45 #define UFCR 0x90 /* FIFO Control Register */ 46 #define USR1 0x94 /* Status Register 1 */ 47 #define USR2 0x98 /* Status Register 2 */ 48 #define UESC 0x9c /* Escape Character Register */ 49 #define UTIM 0xa0 /* Escape Timer Register */ 50 #define UBIR 0xa4 /* BRM Incremental Register */ 51 #define UBMR 0xa8 /* BRM Modulator Register */ 52 #define UBRC 0xac /* Baud Rate Count Register */ 53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 56 57 /* UART Control Register Bit Fields.*/ 58 #define URXD_DUMMY_READ (1<<16) 59 #define URXD_CHARRDY (1<<15) 60 #define URXD_ERR (1<<14) 61 #define URXD_OVRRUN (1<<13) 62 #define URXD_FRMERR (1<<12) 63 #define URXD_BRK (1<<11) 64 #define URXD_PRERR (1<<10) 65 #define URXD_RX_DATA (0xFF<<0) 66 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 67 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 68 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 69 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 71 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 72 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 73 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 74 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 75 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 76 #define UCR1_SNDBRK (1<<4) /* Send break */ 77 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 79 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 80 #define UCR1_DOZE (1<<1) /* Doze */ 81 #define UCR1_UARTEN (1<<0) /* UART enabled */ 82 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 83 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 84 #define UCR2_CTSC (1<<13) /* CTS pin control */ 85 #define UCR2_CTS (1<<12) /* Clear to send */ 86 #define UCR2_ESCEN (1<<11) /* Escape enable */ 87 #define UCR2_PREN (1<<8) /* Parity enable */ 88 #define UCR2_PROE (1<<7) /* Parity odd/even */ 89 #define UCR2_STPB (1<<6) /* Stop */ 90 #define UCR2_WS (1<<5) /* Word size */ 91 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 92 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 93 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 94 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 95 #define UCR2_SRST (1<<0) /* SW reset */ 96 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 97 #define UCR3_PARERREN (1<<12) /* Parity enable */ 98 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 99 #define UCR3_DSR (1<<10) /* Data set ready */ 100 #define UCR3_DCD (1<<9) /* Data carrier detect */ 101 #define UCR3_RI (1<<8) /* Ring indicator */ 102 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 103 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 104 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 105 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 106 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 107 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 108 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 109 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 110 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 111 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 112 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 113 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 114 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 115 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 116 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 117 #define UCR4_IRSC (1<<5) /* IR special case */ 118 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 119 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 120 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 121 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 122 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 123 #define UFCR_RXTL_MASK 0x3F /* Receiver trigger 6 bits wide */ 124 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 125 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 126 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 127 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 128 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 129 #define USR1_RTSS (1<<14) /* RTS pin status */ 130 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 131 #define USR1_RTSD (1<<12) /* RTS delta */ 132 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 133 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 134 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 135 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 136 #define USR1_DTRD (1<<7) /* DTR Delta */ 137 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 138 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 139 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 140 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 141 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 142 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 143 #define USR2_IDLE (1<<12) /* Idle condition */ 144 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 145 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 146 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 147 #define USR2_WAKE (1<<7) /* Wake */ 148 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 149 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 150 #define USR2_TXDC (1<<3) /* Transmitter complete */ 151 #define USR2_BRCD (1<<2) /* Break condition */ 152 #define USR2_ORE (1<<1) /* Overrun error */ 153 #define USR2_RDR (1<<0) /* Recv data ready */ 154 #define UTS_FRCPERR (1<<13) /* Force parity error */ 155 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 156 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 157 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 158 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 159 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 160 #define UTS_SOFTRST (1<<0) /* Software reset */ 161 162 /* We've been assigned a range on the "Low-density serial ports" major */ 163 #define SERIAL_IMX_MAJOR 207 164 #define MINOR_START 16 165 #define DEV_NAME "ttymxc" 166 167 /* 168 * This determines how often we check the modem status signals 169 * for any change. They generally aren't connected to an IRQ 170 * so we have to poll them. We also check immediately before 171 * filling the TX fifo incase CTS has been dropped. 172 */ 173 #define MCTRL_TIMEOUT (250*HZ/1000) 174 175 #define DRIVER_NAME "IMX-uart" 176 177 #define UART_NR 8 178 179 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 180 enum imx_uart_type { 181 IMX1_UART, 182 IMX21_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* counter to stop 0xff flood */ 214 int idle_counter; 215 216 /* DMA fields */ 217 unsigned int dma_is_enabled:1; 218 unsigned int dma_is_rxing:1; 219 unsigned int dma_is_txing:1; 220 struct dma_chan *dma_chan_rx, *dma_chan_tx; 221 struct scatterlist rx_sgl, tx_sgl[2]; 222 void *rx_buf; 223 struct circ_buf rx_ring; 224 unsigned int rx_buf_size; 225 unsigned int rx_period_length; 226 unsigned int rx_periods; 227 dma_cookie_t rx_cookie; 228 unsigned int tx_bytes; 229 unsigned int dma_tx_nents; 230 unsigned int saved_reg[10]; 231 bool context_saved; 232 233 enum imx_tx_state tx_state; 234 struct hrtimer trigger_start_tx; 235 struct hrtimer trigger_stop_tx; 236 }; 237 238 struct imx_port_ucrs { 239 unsigned int ucr1; 240 unsigned int ucr2; 241 unsigned int ucr3; 242 }; 243 244 static const struct imx_uart_data imx_uart_imx1_devdata = { 245 .uts_reg = IMX1_UTS, 246 .devtype = IMX1_UART, 247 }; 248 249 static const struct imx_uart_data imx_uart_imx21_devdata = { 250 .uts_reg = IMX21_UTS, 251 .devtype = IMX21_UART, 252 }; 253 254 static const struct of_device_id imx_uart_dt_ids[] = { 255 /* 256 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are 257 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the 258 * original imx6q's UART is compatible to fsl,imx21-uart. This driver 259 * doesn't make any distinction between these two variants. 260 */ 261 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, }, 262 { .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, }, 263 { .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, }, 264 { /* sentinel */ } 265 }; 266 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 267 268 static inline struct imx_port *to_imx_port(struct uart_port *port) 269 { 270 return container_of(port, struct imx_port, port); 271 } 272 273 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 274 { 275 writel(val, sport->port.membase + offset); 276 } 277 278 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 279 { 280 return readl(sport->port.membase + offset); 281 } 282 283 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 284 { 285 return sport->devdata->uts_reg; 286 } 287 288 static inline int imx_uart_is_imx1(struct imx_port *sport) 289 { 290 return sport->devdata->devtype == IMX1_UART; 291 } 292 293 /* 294 * Save and restore functions for UCR1, UCR2 and UCR3 registers 295 */ 296 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 297 static void imx_uart_ucrs_save(struct imx_port *sport, 298 struct imx_port_ucrs *ucr) 299 { 300 /* save control registers */ 301 ucr->ucr1 = imx_uart_readl(sport, UCR1); 302 ucr->ucr2 = imx_uart_readl(sport, UCR2); 303 ucr->ucr3 = imx_uart_readl(sport, UCR3); 304 } 305 306 static void imx_uart_ucrs_restore(struct imx_port *sport, 307 struct imx_port_ucrs *ucr) 308 { 309 /* restore control registers */ 310 imx_uart_writel(sport, ucr->ucr1, UCR1); 311 imx_uart_writel(sport, ucr->ucr2, UCR2); 312 imx_uart_writel(sport, ucr->ucr3, UCR3); 313 } 314 #endif 315 316 /* called with port.lock taken and irqs caller dependent */ 317 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 318 { 319 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 320 321 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 322 } 323 324 /* called with port.lock taken and irqs caller dependent */ 325 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 326 { 327 *ucr2 &= ~UCR2_CTSC; 328 *ucr2 |= UCR2_CTS; 329 330 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 331 } 332 333 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 334 { 335 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 336 } 337 338 /* called with port.lock taken and irqs off */ 339 static void imx_uart_soft_reset(struct imx_port *sport) 340 { 341 int i = 10; 342 u32 ucr2, ubir, ubmr, uts; 343 344 /* 345 * According to the Reference Manual description of the UART SRST bit: 346 * 347 * "Reset the transmit and receive state machines, 348 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 349 * and UTS[6-3]". 350 * 351 * We don't need to restore the old values from USR1, USR2, URXD and 352 * UTXD. UBRC is read only, so only save/restore the other three 353 * registers. 354 */ 355 ubir = imx_uart_readl(sport, UBIR); 356 ubmr = imx_uart_readl(sport, UBMR); 357 uts = imx_uart_readl(sport, IMX21_UTS); 358 359 ucr2 = imx_uart_readl(sport, UCR2); 360 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 361 362 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 363 udelay(1); 364 365 /* Restore the registers */ 366 imx_uart_writel(sport, ubir, UBIR); 367 imx_uart_writel(sport, ubmr, UBMR); 368 imx_uart_writel(sport, uts, IMX21_UTS); 369 370 sport->idle_counter = 0; 371 } 372 373 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 374 { 375 unsigned int uts; 376 377 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 378 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 379 uts &= ~UTS_LOOP; 380 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 381 } 382 383 /* called with port.lock taken and irqs off */ 384 static void imx_uart_start_rx(struct uart_port *port) 385 { 386 struct imx_port *sport = to_imx_port(port); 387 unsigned int ucr1, ucr2; 388 389 ucr1 = imx_uart_readl(sport, UCR1); 390 ucr2 = imx_uart_readl(sport, UCR2); 391 392 ucr2 |= UCR2_RXEN; 393 394 if (sport->dma_is_enabled) { 395 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 396 } else { 397 ucr1 |= UCR1_RRDYEN; 398 ucr2 |= UCR2_ATEN; 399 } 400 401 /* Write UCR2 first as it includes RXEN */ 402 imx_uart_writel(sport, ucr2, UCR2); 403 imx_uart_writel(sport, ucr1, UCR1); 404 imx_uart_disable_loopback_rs485(sport); 405 } 406 407 /* called with port.lock taken and irqs off */ 408 static void imx_uart_stop_tx(struct uart_port *port) 409 { 410 struct imx_port *sport = to_imx_port(port); 411 u32 ucr1, ucr4, usr2; 412 413 if (sport->tx_state == OFF) 414 return; 415 416 /* 417 * We are maybe in the SMP context, so if the DMA TX thread is running 418 * on other cpu, we have to wait for it to finish. 419 */ 420 if (sport->dma_is_txing) 421 return; 422 423 ucr1 = imx_uart_readl(sport, UCR1); 424 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 425 426 ucr4 = imx_uart_readl(sport, UCR4); 427 usr2 = imx_uart_readl(sport, USR2); 428 if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) { 429 /* The shifter is still busy, so retry once TC triggers */ 430 return; 431 } 432 433 ucr4 &= ~UCR4_TCEN; 434 imx_uart_writel(sport, ucr4, UCR4); 435 436 /* in rs485 mode disable transmitter */ 437 if (port->rs485.flags & SER_RS485_ENABLED) { 438 if (sport->tx_state == SEND) { 439 sport->tx_state = WAIT_AFTER_SEND; 440 441 if (port->rs485.delay_rts_after_send > 0) { 442 start_hrtimer_ms(&sport->trigger_stop_tx, 443 port->rs485.delay_rts_after_send); 444 return; 445 } 446 447 /* continue without any delay */ 448 } 449 450 if (sport->tx_state == WAIT_AFTER_RTS || 451 sport->tx_state == WAIT_AFTER_SEND) { 452 u32 ucr2; 453 454 hrtimer_try_to_cancel(&sport->trigger_start_tx); 455 456 ucr2 = imx_uart_readl(sport, UCR2); 457 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 458 imx_uart_rts_active(sport, &ucr2); 459 else 460 imx_uart_rts_inactive(sport, &ucr2); 461 imx_uart_writel(sport, ucr2, UCR2); 462 463 if (!port->rs485_rx_during_tx_gpio) 464 imx_uart_start_rx(port); 465 466 sport->tx_state = OFF; 467 } 468 } else { 469 sport->tx_state = OFF; 470 } 471 } 472 473 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback) 474 { 475 struct imx_port *sport = to_imx_port(port); 476 u32 ucr1, ucr2, ucr4, uts; 477 478 ucr1 = imx_uart_readl(sport, UCR1); 479 ucr2 = imx_uart_readl(sport, UCR2); 480 ucr4 = imx_uart_readl(sport, UCR4); 481 482 if (sport->dma_is_enabled) { 483 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 484 } else { 485 ucr1 &= ~UCR1_RRDYEN; 486 ucr2 &= ~UCR2_ATEN; 487 ucr4 &= ~UCR4_OREN; 488 } 489 imx_uart_writel(sport, ucr1, UCR1); 490 imx_uart_writel(sport, ucr4, UCR4); 491 492 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 493 if (port->rs485.flags & SER_RS485_ENABLED && 494 port->rs485.flags & SER_RS485_RTS_ON_SEND && 495 sport->have_rtscts && !sport->have_rtsgpio && loopback) { 496 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 497 uts |= UTS_LOOP; 498 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 499 ucr2 |= UCR2_RXEN; 500 } else { 501 ucr2 &= ~UCR2_RXEN; 502 } 503 504 imx_uart_writel(sport, ucr2, UCR2); 505 } 506 507 /* called with port.lock taken and irqs off */ 508 static void imx_uart_stop_rx(struct uart_port *port) 509 { 510 /* 511 * Stop RX and enable loopback in order to make sure RS485 bus 512 * is not blocked. Se comment in imx_uart_probe(). 513 */ 514 imx_uart_stop_rx_with_loopback_ctrl(port, true); 515 } 516 517 /* called with port.lock taken and irqs off */ 518 static void imx_uart_enable_ms(struct uart_port *port) 519 { 520 struct imx_port *sport = to_imx_port(port); 521 522 mod_timer(&sport->timer, jiffies); 523 524 mctrl_gpio_enable_ms(sport->gpios); 525 } 526 527 static void imx_uart_dma_tx(struct imx_port *sport); 528 529 /* called with port.lock taken and irqs off */ 530 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 531 { 532 struct tty_port *tport = &sport->port.state->port; 533 unsigned char c; 534 535 if (sport->port.x_char) { 536 /* Send next char */ 537 imx_uart_writel(sport, sport->port.x_char, URTX0); 538 sport->port.icount.tx++; 539 sport->port.x_char = 0; 540 return; 541 } 542 543 if (kfifo_is_empty(&tport->xmit_fifo) || 544 uart_tx_stopped(&sport->port)) { 545 imx_uart_stop_tx(&sport->port); 546 return; 547 } 548 549 if (sport->dma_is_enabled) { 550 u32 ucr1; 551 /* 552 * We've just sent a X-char Ensure the TX DMA is enabled 553 * and the TX IRQ is disabled. 554 **/ 555 ucr1 = imx_uart_readl(sport, UCR1); 556 ucr1 &= ~UCR1_TRDYEN; 557 if (sport->dma_is_txing) { 558 ucr1 |= UCR1_TXDMAEN; 559 imx_uart_writel(sport, ucr1, UCR1); 560 } else { 561 imx_uart_writel(sport, ucr1, UCR1); 562 imx_uart_dma_tx(sport); 563 } 564 565 return; 566 } 567 568 while (!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) && 569 uart_fifo_get(&sport->port, &c)) 570 imx_uart_writel(sport, c, URTX0); 571 572 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 573 uart_write_wakeup(&sport->port); 574 575 if (kfifo_is_empty(&tport->xmit_fifo)) 576 imx_uart_stop_tx(&sport->port); 577 } 578 579 static void imx_uart_dma_tx_callback(void *data) 580 { 581 struct imx_port *sport = data; 582 struct tty_port *tport = &sport->port.state->port; 583 struct scatterlist *sgl = &sport->tx_sgl[0]; 584 unsigned long flags; 585 u32 ucr1; 586 587 uart_port_lock_irqsave(&sport->port, &flags); 588 589 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 590 591 ucr1 = imx_uart_readl(sport, UCR1); 592 ucr1 &= ~UCR1_TXDMAEN; 593 imx_uart_writel(sport, ucr1, UCR1); 594 595 uart_xmit_advance(&sport->port, sport->tx_bytes); 596 597 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 598 599 sport->dma_is_txing = 0; 600 601 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 602 uart_write_wakeup(&sport->port); 603 604 if (!kfifo_is_empty(&tport->xmit_fifo) && 605 !uart_tx_stopped(&sport->port)) 606 imx_uart_dma_tx(sport); 607 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 608 u32 ucr4 = imx_uart_readl(sport, UCR4); 609 ucr4 |= UCR4_TCEN; 610 imx_uart_writel(sport, ucr4, UCR4); 611 } 612 613 uart_port_unlock_irqrestore(&sport->port, flags); 614 } 615 616 /* called with port.lock taken and irqs off */ 617 static void imx_uart_dma_tx(struct imx_port *sport) 618 { 619 struct tty_port *tport = &sport->port.state->port; 620 struct scatterlist *sgl = sport->tx_sgl; 621 struct dma_async_tx_descriptor *desc; 622 struct dma_chan *chan = sport->dma_chan_tx; 623 struct device *dev = sport->port.dev; 624 u32 ucr1, ucr4; 625 int ret; 626 627 if (sport->dma_is_txing) 628 return; 629 630 ucr4 = imx_uart_readl(sport, UCR4); 631 ucr4 &= ~UCR4_TCEN; 632 imx_uart_writel(sport, ucr4, UCR4); 633 634 sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl)); 635 sport->tx_bytes = kfifo_len(&tport->xmit_fifo); 636 sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl, 637 ARRAY_SIZE(sport->tx_sgl), sport->tx_bytes); 638 639 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 640 if (ret == 0) { 641 dev_err(dev, "DMA mapping error for TX.\n"); 642 return; 643 } 644 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 645 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 646 if (!desc) { 647 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 648 DMA_TO_DEVICE); 649 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 650 return; 651 } 652 desc->callback = imx_uart_dma_tx_callback; 653 desc->callback_param = sport; 654 655 dev_dbg(dev, "TX: prepare to send %u bytes by DMA.\n", sport->tx_bytes); 656 657 ucr1 = imx_uart_readl(sport, UCR1); 658 ucr1 |= UCR1_TXDMAEN; 659 imx_uart_writel(sport, ucr1, UCR1); 660 661 /* fire it */ 662 sport->dma_is_txing = 1; 663 dmaengine_submit(desc); 664 dma_async_issue_pending(chan); 665 return; 666 } 667 668 /* called with port.lock taken and irqs off */ 669 static void imx_uart_start_tx(struct uart_port *port) 670 { 671 struct imx_port *sport = to_imx_port(port); 672 struct tty_port *tport = &sport->port.state->port; 673 u32 ucr1; 674 675 if (!sport->port.x_char && kfifo_is_empty(&tport->xmit_fifo)) 676 return; 677 678 /* 679 * We cannot simply do nothing here if sport->tx_state == SEND already 680 * because UCR1_TXMPTYEN might already have been cleared in 681 * imx_uart_stop_tx(), but tx_state is still SEND. 682 */ 683 684 if (port->rs485.flags & SER_RS485_ENABLED) { 685 if (sport->tx_state == OFF) { 686 u32 ucr2 = imx_uart_readl(sport, UCR2); 687 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 688 imx_uart_rts_active(sport, &ucr2); 689 else 690 imx_uart_rts_inactive(sport, &ucr2); 691 imx_uart_writel(sport, ucr2, UCR2); 692 693 /* 694 * Since we are about to transmit we can not stop RX 695 * with loopback enabled because that will make our 696 * transmitted data being just looped to RX. 697 */ 698 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 699 !port->rs485_rx_during_tx_gpio) 700 imx_uart_stop_rx_with_loopback_ctrl(port, false); 701 702 sport->tx_state = WAIT_AFTER_RTS; 703 704 if (port->rs485.delay_rts_before_send > 0) { 705 start_hrtimer_ms(&sport->trigger_start_tx, 706 port->rs485.delay_rts_before_send); 707 return; 708 } 709 710 /* continue without any delay */ 711 } 712 713 if (sport->tx_state == WAIT_AFTER_SEND 714 || sport->tx_state == WAIT_AFTER_RTS) { 715 716 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 717 718 /* 719 * Enable transmitter and shifter empty irq only if DMA 720 * is off. In the DMA case this is done in the 721 * tx-callback. 722 */ 723 if (!sport->dma_is_enabled) { 724 u32 ucr4 = imx_uart_readl(sport, UCR4); 725 ucr4 |= UCR4_TCEN; 726 imx_uart_writel(sport, ucr4, UCR4); 727 } 728 729 sport->tx_state = SEND; 730 } 731 } else { 732 sport->tx_state = SEND; 733 } 734 735 if (!sport->dma_is_enabled) { 736 ucr1 = imx_uart_readl(sport, UCR1); 737 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 738 } 739 740 if (sport->dma_is_enabled) { 741 if (sport->port.x_char) { 742 /* We have X-char to send, so enable TX IRQ and 743 * disable TX DMA to let TX interrupt to send X-char */ 744 ucr1 = imx_uart_readl(sport, UCR1); 745 ucr1 &= ~UCR1_TXDMAEN; 746 ucr1 |= UCR1_TRDYEN; 747 imx_uart_writel(sport, ucr1, UCR1); 748 return; 749 } 750 751 if (!kfifo_is_empty(&tport->xmit_fifo) && 752 !uart_tx_stopped(port)) 753 imx_uart_dma_tx(sport); 754 return; 755 } 756 } 757 758 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 759 { 760 struct imx_port *sport = dev_id; 761 u32 usr1; 762 763 imx_uart_writel(sport, USR1_RTSD, USR1); 764 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 765 /* 766 * Update sport->old_status here, so any follow-up calls to 767 * imx_uart_mctrl_check() will be able to recognize that RTS 768 * state changed since last imx_uart_mctrl_check() call. 769 * 770 * In case RTS has been detected as asserted here and later on 771 * deasserted by the time imx_uart_mctrl_check() was called, 772 * imx_uart_mctrl_check() can detect the RTS state change and 773 * trigger uart_handle_cts_change() to unblock the port for 774 * further TX transfers. 775 */ 776 if (usr1 & USR1_RTSS) 777 sport->old_status |= TIOCM_CTS; 778 else 779 sport->old_status &= ~TIOCM_CTS; 780 uart_handle_cts_change(&sport->port, usr1); 781 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 782 783 return IRQ_HANDLED; 784 } 785 786 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 787 { 788 struct imx_port *sport = dev_id; 789 irqreturn_t ret; 790 791 uart_port_lock(&sport->port); 792 793 ret = __imx_uart_rtsint(irq, dev_id); 794 795 uart_port_unlock(&sport->port); 796 797 return ret; 798 } 799 800 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 801 { 802 struct imx_port *sport = dev_id; 803 804 uart_port_lock(&sport->port); 805 imx_uart_transmit_buffer(sport); 806 uart_port_unlock(&sport->port); 807 return IRQ_HANDLED; 808 } 809 810 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 811 * This is to be called from Rx ISRs only when some bytes were actually 812 * received. 813 * 814 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 815 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 816 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 817 * that is terminated by any activity on RxD line, or could be stopped by 818 * issuing soft reset to the UART (just stop/start of RX does not help). Note 819 * that what we do here is sending isolated start bit about 2.4 times shorter 820 * than it is to be on UART configured baud rate. 821 */ 822 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 823 { 824 /* To detect hardware 0xff flood we monitor RxD line between RX 825 * interrupts to isolate "receiving" of char(s) with no activity 826 * on RxD line, that'd never happen on actual data transfers. 827 * 828 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 829 * race here if we clear USR2_WAKE when receiving of a char is in 830 * progress, so we might get RX interrupt later with USR2_WAKE bit 831 * cleared. Note though that as we don't try to clear USR2_WAKE when we 832 * detected no activity, this race may hide actual activity only once. 833 * 834 * Yet another case where receive interrupt may occur without RxD 835 * activity is expiration of aging timer, so we consider this as well. 836 * 837 * We use 'idle_counter' to ensure that we got at least so many RX 838 * interrupts without any detected activity on RxD line. 2 cases 839 * described plus 1 to be on the safe side gives us a margin of 3, 840 * below. In practice I was not able to produce a false positive to 841 * induce soft reset at regular data transfers even using 1 as the 842 * margin, so 3 is actually very strong. 843 * 844 * We count interrupts, not chars in 'idle-counter' for simplicity. 845 */ 846 847 if (usr2 & USR2_WAKE) { 848 imx_uart_writel(sport, USR2_WAKE, USR2); 849 sport->idle_counter = 0; 850 } else if (++sport->idle_counter > 3) { 851 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 852 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 853 } 854 } 855 856 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 857 { 858 struct imx_port *sport = dev_id; 859 struct tty_port *port = &sport->port.state->port; 860 u32 usr2, rx; 861 862 /* If we received something, check for 0xff flood */ 863 usr2 = imx_uart_readl(sport, USR2); 864 if (usr2 & USR2_RDR) 865 imx_uart_check_flood(sport, usr2); 866 867 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 868 unsigned int flg = TTY_NORMAL; 869 sport->port.icount.rx++; 870 871 if (unlikely(rx & URXD_ERR)) { 872 if (rx & URXD_BRK) { 873 sport->port.icount.brk++; 874 if (uart_handle_break(&sport->port)) 875 continue; 876 } 877 else if (rx & URXD_PRERR) 878 sport->port.icount.parity++; 879 else if (rx & URXD_FRMERR) 880 sport->port.icount.frame++; 881 if (rx & URXD_OVRRUN) 882 sport->port.icount.overrun++; 883 884 if (rx & sport->port.ignore_status_mask) 885 continue; 886 887 rx &= (sport->port.read_status_mask | 0xFF); 888 889 if (rx & URXD_BRK) 890 flg = TTY_BREAK; 891 else if (rx & URXD_PRERR) 892 flg = TTY_PARITY; 893 else if (rx & URXD_FRMERR) 894 flg = TTY_FRAME; 895 if (rx & URXD_OVRRUN) 896 flg = TTY_OVERRUN; 897 898 sport->port.sysrq = 0; 899 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 900 continue; 901 } 902 903 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 904 continue; 905 906 if (tty_insert_flip_char(port, rx, flg) == 0) 907 sport->port.icount.buf_overrun++; 908 } 909 910 tty_flip_buffer_push(port); 911 912 return IRQ_HANDLED; 913 } 914 915 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 916 { 917 struct imx_port *sport = dev_id; 918 irqreturn_t ret; 919 920 uart_port_lock(&sport->port); 921 922 ret = __imx_uart_rxint(irq, dev_id); 923 924 uart_port_unlock(&sport->port); 925 926 return ret; 927 } 928 929 static void imx_uart_clear_rx_errors(struct imx_port *sport); 930 931 /* 932 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 933 */ 934 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 935 { 936 unsigned int tmp = TIOCM_DSR; 937 unsigned usr1 = imx_uart_readl(sport, USR1); 938 unsigned usr2 = imx_uart_readl(sport, USR2); 939 940 if (usr1 & USR1_RTSS) 941 tmp |= TIOCM_CTS; 942 943 /* in DCE mode DCDIN is always 0 */ 944 if (!(usr2 & USR2_DCDIN)) 945 tmp |= TIOCM_CAR; 946 947 if (sport->dte_mode) 948 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 949 tmp |= TIOCM_RI; 950 951 return tmp; 952 } 953 954 /* 955 * Handle any change of modem status signal since we were last called. 956 */ 957 static void imx_uart_mctrl_check(struct imx_port *sport) 958 { 959 unsigned int status, changed; 960 961 status = imx_uart_get_hwmctrl(sport); 962 changed = status ^ sport->old_status; 963 964 if (changed == 0) 965 return; 966 967 sport->old_status = status; 968 969 if (changed & TIOCM_RI && status & TIOCM_RI) 970 sport->port.icount.rng++; 971 if (changed & TIOCM_DSR) 972 sport->port.icount.dsr++; 973 if (changed & TIOCM_CAR) 974 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 975 if (changed & TIOCM_CTS) 976 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 977 978 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 979 } 980 981 static irqreturn_t imx_uart_int(int irq, void *dev_id) 982 { 983 struct imx_port *sport = dev_id; 984 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 985 irqreturn_t ret = IRQ_NONE; 986 987 uart_port_lock(&sport->port); 988 989 usr1 = imx_uart_readl(sport, USR1); 990 usr2 = imx_uart_readl(sport, USR2); 991 ucr1 = imx_uart_readl(sport, UCR1); 992 ucr2 = imx_uart_readl(sport, UCR2); 993 ucr3 = imx_uart_readl(sport, UCR3); 994 ucr4 = imx_uart_readl(sport, UCR4); 995 996 /* 997 * Even if a condition is true that can trigger an irq only handle it if 998 * the respective irq source is enabled. This prevents some undesired 999 * actions, for example if a character that sits in the RX FIFO and that 1000 * should be fetched via DMA is tried to be fetched using PIO. Or the 1001 * receiver is currently off and so reading from URXD0 results in an 1002 * exception. So just mask the (raw) status bits for disabled irqs. 1003 */ 1004 if ((ucr1 & UCR1_RRDYEN) == 0) 1005 usr1 &= ~USR1_RRDY; 1006 if ((ucr2 & UCR2_ATEN) == 0) 1007 usr1 &= ~USR1_AGTIM; 1008 if ((ucr1 & UCR1_TRDYEN) == 0) 1009 usr1 &= ~USR1_TRDY; 1010 if ((ucr4 & UCR4_TCEN) == 0) 1011 usr2 &= ~USR2_TXDC; 1012 if ((ucr3 & UCR3_DTRDEN) == 0) 1013 usr1 &= ~USR1_DTRD; 1014 if ((ucr1 & UCR1_RTSDEN) == 0) 1015 usr1 &= ~USR1_RTSD; 1016 if ((ucr3 & UCR3_AWAKEN) == 0) 1017 usr1 &= ~USR1_AWAKE; 1018 if ((ucr4 & UCR4_OREN) == 0) 1019 usr2 &= ~USR2_ORE; 1020 1021 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1022 imx_uart_writel(sport, USR1_AGTIM, USR1); 1023 1024 __imx_uart_rxint(irq, dev_id); 1025 ret = IRQ_HANDLED; 1026 } 1027 1028 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1029 imx_uart_transmit_buffer(sport); 1030 ret = IRQ_HANDLED; 1031 } 1032 1033 if (usr1 & USR1_DTRD) { 1034 imx_uart_writel(sport, USR1_DTRD, USR1); 1035 1036 imx_uart_mctrl_check(sport); 1037 1038 ret = IRQ_HANDLED; 1039 } 1040 1041 if (usr1 & USR1_RTSD) { 1042 __imx_uart_rtsint(irq, dev_id); 1043 ret = IRQ_HANDLED; 1044 } 1045 1046 if (usr1 & USR1_AWAKE) { 1047 imx_uart_writel(sport, USR1_AWAKE, USR1); 1048 ret = IRQ_HANDLED; 1049 } 1050 1051 if (usr2 & USR2_ORE) { 1052 sport->port.icount.overrun++; 1053 imx_uart_writel(sport, USR2_ORE, USR2); 1054 ret = IRQ_HANDLED; 1055 } 1056 1057 uart_port_unlock(&sport->port); 1058 1059 return ret; 1060 } 1061 1062 /* 1063 * Return TIOCSER_TEMT when transmitter is not busy. 1064 */ 1065 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1066 { 1067 struct imx_port *sport = to_imx_port(port); 1068 unsigned int ret; 1069 1070 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1071 1072 /* If the TX DMA is working, return 0. */ 1073 if (sport->dma_is_txing) 1074 ret = 0; 1075 1076 return ret; 1077 } 1078 1079 /* called with port.lock taken and irqs off */ 1080 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1081 { 1082 struct imx_port *sport = to_imx_port(port); 1083 unsigned int ret = imx_uart_get_hwmctrl(sport); 1084 1085 mctrl_gpio_get(sport->gpios, &ret); 1086 1087 return ret; 1088 } 1089 1090 /* called with port.lock taken and irqs off */ 1091 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1092 { 1093 struct imx_port *sport = to_imx_port(port); 1094 u32 ucr3, uts; 1095 1096 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1097 u32 ucr2; 1098 1099 /* 1100 * Turn off autoRTS if RTS is lowered and restore autoRTS 1101 * setting if RTS is raised. 1102 */ 1103 ucr2 = imx_uart_readl(sport, UCR2); 1104 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1105 if (mctrl & TIOCM_RTS) { 1106 ucr2 |= UCR2_CTS; 1107 /* 1108 * UCR2_IRTS is unset if and only if the port is 1109 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1110 * to get the state to restore to. 1111 */ 1112 if (!(ucr2 & UCR2_IRTS)) 1113 ucr2 |= UCR2_CTSC; 1114 } 1115 imx_uart_writel(sport, ucr2, UCR2); 1116 } 1117 1118 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1119 if (!(mctrl & TIOCM_DTR)) 1120 ucr3 |= UCR3_DSR; 1121 imx_uart_writel(sport, ucr3, UCR3); 1122 1123 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1124 if (mctrl & TIOCM_LOOP) 1125 uts |= UTS_LOOP; 1126 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1127 1128 mctrl_gpio_set(sport->gpios, mctrl); 1129 } 1130 1131 /* 1132 * Interrupts always disabled. 1133 */ 1134 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1135 { 1136 struct imx_port *sport = to_imx_port(port); 1137 unsigned long flags; 1138 u32 ucr1; 1139 1140 uart_port_lock_irqsave(&sport->port, &flags); 1141 1142 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1143 1144 if (break_state != 0) 1145 ucr1 |= UCR1_SNDBRK; 1146 1147 imx_uart_writel(sport, ucr1, UCR1); 1148 1149 uart_port_unlock_irqrestore(&sport->port, flags); 1150 } 1151 1152 /* 1153 * This is our per-port timeout handler, for checking the 1154 * modem status signals. 1155 */ 1156 static void imx_uart_timeout(struct timer_list *t) 1157 { 1158 struct imx_port *sport = from_timer(sport, t, timer); 1159 unsigned long flags; 1160 1161 if (sport->port.state) { 1162 uart_port_lock_irqsave(&sport->port, &flags); 1163 imx_uart_mctrl_check(sport); 1164 uart_port_unlock_irqrestore(&sport->port, flags); 1165 1166 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1167 } 1168 } 1169 1170 /* 1171 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1172 * [1] the RX DMA buffer is full. 1173 * [2] the aging timer expires 1174 * 1175 * Condition [2] is triggered when a character has been sitting in the FIFO 1176 * for at least 8 byte durations. 1177 */ 1178 static void imx_uart_dma_rx_callback(void *data) 1179 { 1180 struct imx_port *sport = data; 1181 struct dma_chan *chan = sport->dma_chan_rx; 1182 struct scatterlist *sgl = &sport->rx_sgl; 1183 struct tty_port *port = &sport->port.state->port; 1184 struct dma_tx_state state; 1185 struct circ_buf *rx_ring = &sport->rx_ring; 1186 enum dma_status status; 1187 unsigned int w_bytes = 0; 1188 unsigned int r_bytes; 1189 unsigned int bd_size; 1190 1191 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1192 1193 if (status == DMA_ERROR) { 1194 uart_port_lock(&sport->port); 1195 imx_uart_clear_rx_errors(sport); 1196 uart_port_unlock(&sport->port); 1197 return; 1198 } 1199 1200 /* 1201 * The state-residue variable represents the empty space 1202 * relative to the entire buffer. Taking this in consideration 1203 * the head is always calculated base on the buffer total 1204 * length - DMA transaction residue. The UART script from the 1205 * SDMA firmware will jump to the next buffer descriptor, 1206 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1207 * Taking this in consideration the tail is always at the 1208 * beginning of the buffer descriptor that contains the head. 1209 */ 1210 1211 /* Calculate the head */ 1212 rx_ring->head = sg_dma_len(sgl) - state.residue; 1213 1214 /* Calculate the tail. */ 1215 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1216 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1217 1218 if (rx_ring->head <= sg_dma_len(sgl) && 1219 rx_ring->head > rx_ring->tail) { 1220 1221 /* Move data from tail to head */ 1222 r_bytes = rx_ring->head - rx_ring->tail; 1223 1224 /* If we received something, check for 0xff flood */ 1225 uart_port_lock(&sport->port); 1226 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1227 uart_port_unlock(&sport->port); 1228 1229 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1230 1231 /* CPU claims ownership of RX DMA buffer */ 1232 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1233 DMA_FROM_DEVICE); 1234 1235 w_bytes = tty_insert_flip_string(port, 1236 sport->rx_buf + rx_ring->tail, r_bytes); 1237 1238 /* UART retrieves ownership of RX DMA buffer */ 1239 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1240 DMA_FROM_DEVICE); 1241 1242 if (w_bytes != r_bytes) 1243 sport->port.icount.buf_overrun++; 1244 1245 sport->port.icount.rx += w_bytes; 1246 } 1247 } else { 1248 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1249 WARN_ON(rx_ring->head <= rx_ring->tail); 1250 } 1251 1252 if (w_bytes) { 1253 tty_flip_buffer_push(port); 1254 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1255 } 1256 } 1257 1258 static int imx_uart_start_rx_dma(struct imx_port *sport) 1259 { 1260 struct scatterlist *sgl = &sport->rx_sgl; 1261 struct dma_chan *chan = sport->dma_chan_rx; 1262 struct device *dev = sport->port.dev; 1263 struct dma_async_tx_descriptor *desc; 1264 int ret; 1265 1266 sport->rx_ring.head = 0; 1267 sport->rx_ring.tail = 0; 1268 1269 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1270 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1271 if (ret == 0) { 1272 dev_err(dev, "DMA mapping error for RX.\n"); 1273 return -EINVAL; 1274 } 1275 1276 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1277 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1278 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1279 1280 if (!desc) { 1281 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1282 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1283 return -EINVAL; 1284 } 1285 desc->callback = imx_uart_dma_rx_callback; 1286 desc->callback_param = sport; 1287 1288 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1289 sport->dma_is_rxing = 1; 1290 sport->rx_cookie = dmaengine_submit(desc); 1291 dma_async_issue_pending(chan); 1292 return 0; 1293 } 1294 1295 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1296 { 1297 struct tty_port *port = &sport->port.state->port; 1298 u32 usr1, usr2; 1299 1300 usr1 = imx_uart_readl(sport, USR1); 1301 usr2 = imx_uart_readl(sport, USR2); 1302 1303 if (usr2 & USR2_BRCD) { 1304 sport->port.icount.brk++; 1305 imx_uart_writel(sport, USR2_BRCD, USR2); 1306 uart_handle_break(&sport->port); 1307 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1308 sport->port.icount.buf_overrun++; 1309 tty_flip_buffer_push(port); 1310 } else { 1311 if (usr1 & USR1_FRAMERR) { 1312 sport->port.icount.frame++; 1313 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1314 } else if (usr1 & USR1_PARITYERR) { 1315 sport->port.icount.parity++; 1316 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1317 } 1318 } 1319 1320 if (usr2 & USR2_ORE) { 1321 sport->port.icount.overrun++; 1322 imx_uart_writel(sport, USR2_ORE, USR2); 1323 } 1324 1325 sport->idle_counter = 0; 1326 1327 } 1328 1329 #define TXTL_DEFAULT 8 1330 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1331 #define TXTL_DMA 8 /* DMA burst setting */ 1332 #define RXTL_DMA 9 /* DMA burst setting */ 1333 1334 static void imx_uart_setup_ufcr(struct imx_port *sport, 1335 unsigned char txwl, unsigned char rxwl) 1336 { 1337 unsigned int val; 1338 1339 /* set receiver / transmitter trigger level */ 1340 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1341 val |= txwl << UFCR_TXTL_SHF | rxwl; 1342 imx_uart_writel(sport, val, UFCR); 1343 } 1344 1345 static void imx_uart_dma_exit(struct imx_port *sport) 1346 { 1347 if (sport->dma_chan_rx) { 1348 dmaengine_terminate_sync(sport->dma_chan_rx); 1349 dma_release_channel(sport->dma_chan_rx); 1350 sport->dma_chan_rx = NULL; 1351 sport->rx_cookie = -EINVAL; 1352 kfree(sport->rx_buf); 1353 sport->rx_buf = NULL; 1354 } 1355 1356 if (sport->dma_chan_tx) { 1357 dmaengine_terminate_sync(sport->dma_chan_tx); 1358 dma_release_channel(sport->dma_chan_tx); 1359 sport->dma_chan_tx = NULL; 1360 } 1361 } 1362 1363 static int imx_uart_dma_init(struct imx_port *sport) 1364 { 1365 struct dma_slave_config slave_config = {}; 1366 struct device *dev = sport->port.dev; 1367 struct dma_chan *chan; 1368 int ret; 1369 1370 /* Prepare for RX : */ 1371 chan = dma_request_chan(dev, "rx"); 1372 if (IS_ERR(chan)) { 1373 dev_dbg(dev, "cannot get the DMA channel.\n"); 1374 sport->dma_chan_rx = NULL; 1375 ret = PTR_ERR(chan); 1376 goto err; 1377 } 1378 sport->dma_chan_rx = chan; 1379 1380 slave_config.direction = DMA_DEV_TO_MEM; 1381 slave_config.src_addr = sport->port.mapbase + URXD0; 1382 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1383 /* one byte less than the watermark level to enable the aging timer */ 1384 slave_config.src_maxburst = RXTL_DMA - 1; 1385 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1386 if (ret) { 1387 dev_err(dev, "error in RX dma configuration.\n"); 1388 goto err; 1389 } 1390 1391 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1392 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1393 if (!sport->rx_buf) { 1394 ret = -ENOMEM; 1395 goto err; 1396 } 1397 sport->rx_ring.buf = sport->rx_buf; 1398 1399 /* Prepare for TX : */ 1400 chan = dma_request_chan(dev, "tx"); 1401 if (IS_ERR(chan)) { 1402 dev_err(dev, "cannot get the TX DMA channel!\n"); 1403 sport->dma_chan_tx = NULL; 1404 ret = PTR_ERR(chan); 1405 goto err; 1406 } 1407 sport->dma_chan_tx = chan; 1408 1409 slave_config.direction = DMA_MEM_TO_DEV; 1410 slave_config.dst_addr = sport->port.mapbase + URTX0; 1411 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1412 slave_config.dst_maxburst = TXTL_DMA; 1413 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1414 if (ret) { 1415 dev_err(dev, "error in TX dma configuration."); 1416 goto err; 1417 } 1418 1419 return 0; 1420 err: 1421 imx_uart_dma_exit(sport); 1422 return ret; 1423 } 1424 1425 static void imx_uart_enable_dma(struct imx_port *sport) 1426 { 1427 u32 ucr1; 1428 1429 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1430 1431 /* set UCR1 */ 1432 ucr1 = imx_uart_readl(sport, UCR1); 1433 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1434 imx_uart_writel(sport, ucr1, UCR1); 1435 1436 sport->dma_is_enabled = 1; 1437 } 1438 1439 static void imx_uart_disable_dma(struct imx_port *sport) 1440 { 1441 u32 ucr1; 1442 1443 /* clear UCR1 */ 1444 ucr1 = imx_uart_readl(sport, UCR1); 1445 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1446 imx_uart_writel(sport, ucr1, UCR1); 1447 1448 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1449 1450 sport->dma_is_enabled = 0; 1451 } 1452 1453 /* half the RX buffer size */ 1454 #define CTSTL 16 1455 1456 static int imx_uart_startup(struct uart_port *port) 1457 { 1458 struct imx_port *sport = to_imx_port(port); 1459 int retval; 1460 unsigned long flags; 1461 int dma_is_inited = 0; 1462 u32 ucr1, ucr2, ucr3, ucr4; 1463 1464 retval = clk_prepare_enable(sport->clk_per); 1465 if (retval) 1466 return retval; 1467 retval = clk_prepare_enable(sport->clk_ipg); 1468 if (retval) { 1469 clk_disable_unprepare(sport->clk_per); 1470 return retval; 1471 } 1472 1473 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1474 1475 /* disable the DREN bit (Data Ready interrupt enable) before 1476 * requesting IRQs 1477 */ 1478 ucr4 = imx_uart_readl(sport, UCR4); 1479 1480 /* set the trigger level for CTS */ 1481 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1482 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1483 1484 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1485 1486 /* Can we enable the DMA support? */ 1487 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) { 1488 lockdep_set_subclass(&port->lock, 1); 1489 dma_is_inited = 1; 1490 } 1491 1492 uart_port_lock_irqsave(&sport->port, &flags); 1493 1494 /* Reset fifo's and state machines */ 1495 imx_uart_soft_reset(sport); 1496 1497 /* 1498 * Finally, clear and enable interrupts 1499 */ 1500 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1501 imx_uart_writel(sport, USR2_ORE, USR2); 1502 1503 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1504 ucr1 |= UCR1_UARTEN; 1505 if (sport->have_rtscts) 1506 ucr1 |= UCR1_RTSDEN; 1507 1508 imx_uart_writel(sport, ucr1, UCR1); 1509 1510 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1511 if (!dma_is_inited) 1512 ucr4 |= UCR4_OREN; 1513 if (sport->inverted_rx) 1514 ucr4 |= UCR4_INVR; 1515 imx_uart_writel(sport, ucr4, UCR4); 1516 1517 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1518 /* 1519 * configure tx polarity before enabling tx 1520 */ 1521 if (sport->inverted_tx) 1522 ucr3 |= UCR3_INVT; 1523 1524 if (!imx_uart_is_imx1(sport)) { 1525 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1526 1527 if (sport->dte_mode) 1528 /* disable broken interrupts */ 1529 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1530 } 1531 imx_uart_writel(sport, ucr3, UCR3); 1532 1533 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1534 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1535 if (!sport->have_rtscts) 1536 ucr2 |= UCR2_IRTS; 1537 /* 1538 * make sure the edge sensitive RTS-irq is disabled, 1539 * we're using RTSD instead. 1540 */ 1541 if (!imx_uart_is_imx1(sport)) 1542 ucr2 &= ~UCR2_RTSEN; 1543 imx_uart_writel(sport, ucr2, UCR2); 1544 1545 /* 1546 * Enable modem status interrupts 1547 */ 1548 imx_uart_enable_ms(&sport->port); 1549 1550 if (dma_is_inited) { 1551 imx_uart_enable_dma(sport); 1552 imx_uart_start_rx_dma(sport); 1553 } else { 1554 ucr1 = imx_uart_readl(sport, UCR1); 1555 ucr1 |= UCR1_RRDYEN; 1556 imx_uart_writel(sport, ucr1, UCR1); 1557 1558 ucr2 = imx_uart_readl(sport, UCR2); 1559 ucr2 |= UCR2_ATEN; 1560 imx_uart_writel(sport, ucr2, UCR2); 1561 } 1562 1563 imx_uart_disable_loopback_rs485(sport); 1564 1565 uart_port_unlock_irqrestore(&sport->port, flags); 1566 1567 return 0; 1568 } 1569 1570 static void imx_uart_shutdown(struct uart_port *port) 1571 { 1572 struct imx_port *sport = to_imx_port(port); 1573 unsigned long flags; 1574 u32 ucr1, ucr2, ucr4, uts; 1575 int loops; 1576 1577 if (sport->dma_is_enabled) { 1578 dmaengine_terminate_sync(sport->dma_chan_tx); 1579 if (sport->dma_is_txing) { 1580 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1581 sport->dma_tx_nents, DMA_TO_DEVICE); 1582 sport->dma_is_txing = 0; 1583 } 1584 dmaengine_terminate_sync(sport->dma_chan_rx); 1585 if (sport->dma_is_rxing) { 1586 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1587 1, DMA_FROM_DEVICE); 1588 sport->dma_is_rxing = 0; 1589 } 1590 1591 uart_port_lock_irqsave(&sport->port, &flags); 1592 imx_uart_stop_tx(port); 1593 imx_uart_stop_rx(port); 1594 imx_uart_disable_dma(sport); 1595 uart_port_unlock_irqrestore(&sport->port, flags); 1596 imx_uart_dma_exit(sport); 1597 } 1598 1599 mctrl_gpio_disable_ms(sport->gpios); 1600 1601 uart_port_lock_irqsave(&sport->port, &flags); 1602 ucr2 = imx_uart_readl(sport, UCR2); 1603 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1604 imx_uart_writel(sport, ucr2, UCR2); 1605 uart_port_unlock_irqrestore(&sport->port, flags); 1606 1607 /* 1608 * Stop our timer. 1609 */ 1610 del_timer_sync(&sport->timer); 1611 1612 /* 1613 * Disable all interrupts, port and break condition. 1614 */ 1615 1616 uart_port_lock_irqsave(&sport->port, &flags); 1617 1618 ucr1 = imx_uart_readl(sport, UCR1); 1619 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1620 UCR1_ATDMAEN | UCR1_SNDBRK); 1621 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1622 if (port->rs485.flags & SER_RS485_ENABLED && 1623 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1624 sport->have_rtscts && !sport->have_rtsgpio) { 1625 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1626 uts |= UTS_LOOP; 1627 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1628 ucr1 |= UCR1_UARTEN; 1629 } else { 1630 ucr1 &= ~UCR1_UARTEN; 1631 } 1632 imx_uart_writel(sport, ucr1, UCR1); 1633 1634 ucr4 = imx_uart_readl(sport, UCR4); 1635 ucr4 &= ~UCR4_TCEN; 1636 imx_uart_writel(sport, ucr4, UCR4); 1637 1638 /* 1639 * We have to ensure the tx state machine ends up in OFF. This 1640 * is especially important for rs485 where we must not leave 1641 * the RTS signal high, blocking the bus indefinitely. 1642 * 1643 * All interrupts are now disabled, so imx_uart_stop_tx() will 1644 * no longer be called from imx_uart_transmit_buffer(). It may 1645 * still be called via the hrtimers, and if those are in play, 1646 * we have to honour the delays. 1647 */ 1648 if (sport->tx_state == WAIT_AFTER_RTS || sport->tx_state == SEND) 1649 imx_uart_stop_tx(port); 1650 1651 /* 1652 * In many cases (rs232 mode, or if tx_state was 1653 * WAIT_AFTER_RTS, or if tx_state was SEND and there is no 1654 * delay_rts_after_send), this will have moved directly to 1655 * OFF. In rs485 mode, tx_state might already have been 1656 * WAIT_AFTER_SEND and the hrtimer thus already started, or 1657 * the above imx_uart_stop_tx() call could have started it. In 1658 * those cases, we have to wait for the hrtimer to fire and 1659 * complete the transition to OFF. 1660 */ 1661 loops = port->rs485.flags & SER_RS485_ENABLED ? 1662 port->rs485.delay_rts_after_send : 0; 1663 while (sport->tx_state != OFF && loops--) { 1664 uart_port_unlock_irqrestore(&sport->port, flags); 1665 msleep(1); 1666 uart_port_lock_irqsave(&sport->port, &flags); 1667 } 1668 1669 if (sport->tx_state != OFF) { 1670 dev_warn(sport->port.dev, "unexpected tx_state %d\n", 1671 sport->tx_state); 1672 /* 1673 * This machine may be busted, but ensure the RTS 1674 * signal is inactive in order not to block other 1675 * devices. 1676 */ 1677 if (port->rs485.flags & SER_RS485_ENABLED) { 1678 ucr2 = imx_uart_readl(sport, UCR2); 1679 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1680 imx_uart_rts_active(sport, &ucr2); 1681 else 1682 imx_uart_rts_inactive(sport, &ucr2); 1683 imx_uart_writel(sport, ucr2, UCR2); 1684 } 1685 sport->tx_state = OFF; 1686 } 1687 1688 uart_port_unlock_irqrestore(&sport->port, flags); 1689 1690 clk_disable_unprepare(sport->clk_per); 1691 clk_disable_unprepare(sport->clk_ipg); 1692 } 1693 1694 /* called with port.lock taken and irqs off */ 1695 static void imx_uart_flush_buffer(struct uart_port *port) 1696 { 1697 struct imx_port *sport = to_imx_port(port); 1698 struct scatterlist *sgl = &sport->tx_sgl[0]; 1699 1700 if (!sport->dma_chan_tx) 1701 return; 1702 1703 sport->tx_bytes = 0; 1704 dmaengine_terminate_all(sport->dma_chan_tx); 1705 if (sport->dma_is_txing) { 1706 u32 ucr1; 1707 1708 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1709 DMA_TO_DEVICE); 1710 ucr1 = imx_uart_readl(sport, UCR1); 1711 ucr1 &= ~UCR1_TXDMAEN; 1712 imx_uart_writel(sport, ucr1, UCR1); 1713 sport->dma_is_txing = 0; 1714 } 1715 1716 imx_uart_soft_reset(sport); 1717 1718 } 1719 1720 static void 1721 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1722 const struct ktermios *old) 1723 { 1724 struct imx_port *sport = to_imx_port(port); 1725 unsigned long flags; 1726 u32 ucr2, old_ucr2, ufcr; 1727 unsigned int baud, quot; 1728 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1729 unsigned long div; 1730 unsigned long num, denom, old_ubir, old_ubmr; 1731 uint64_t tdiv64; 1732 1733 /* 1734 * We only support CS7 and CS8. 1735 */ 1736 while ((termios->c_cflag & CSIZE) != CS7 && 1737 (termios->c_cflag & CSIZE) != CS8) { 1738 termios->c_cflag &= ~CSIZE; 1739 termios->c_cflag |= old_csize; 1740 old_csize = CS8; 1741 } 1742 1743 del_timer_sync(&sport->timer); 1744 1745 /* 1746 * Ask the core to calculate the divisor for us. 1747 */ 1748 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1749 quot = uart_get_divisor(port, baud); 1750 1751 uart_port_lock_irqsave(&sport->port, &flags); 1752 1753 /* 1754 * Read current UCR2 and save it for future use, then clear all the bits 1755 * except those we will or may need to preserve. 1756 */ 1757 old_ucr2 = imx_uart_readl(sport, UCR2); 1758 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1759 1760 ucr2 |= UCR2_SRST | UCR2_IRTS; 1761 if ((termios->c_cflag & CSIZE) == CS8) 1762 ucr2 |= UCR2_WS; 1763 1764 if (!sport->have_rtscts) 1765 termios->c_cflag &= ~CRTSCTS; 1766 1767 if (port->rs485.flags & SER_RS485_ENABLED) { 1768 /* 1769 * RTS is mandatory for rs485 operation, so keep 1770 * it under manual control and keep transmitter 1771 * disabled. 1772 */ 1773 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1774 imx_uart_rts_active(sport, &ucr2); 1775 else 1776 imx_uart_rts_inactive(sport, &ucr2); 1777 1778 } else if (termios->c_cflag & CRTSCTS) { 1779 /* 1780 * Only let receiver control RTS output if we were not requested 1781 * to have RTS inactive (which then should take precedence). 1782 */ 1783 if (ucr2 & UCR2_CTS) 1784 ucr2 |= UCR2_CTSC; 1785 } 1786 1787 if (termios->c_cflag & CRTSCTS) 1788 ucr2 &= ~UCR2_IRTS; 1789 if (termios->c_cflag & CSTOPB) 1790 ucr2 |= UCR2_STPB; 1791 if (termios->c_cflag & PARENB) { 1792 ucr2 |= UCR2_PREN; 1793 if (termios->c_cflag & PARODD) 1794 ucr2 |= UCR2_PROE; 1795 } 1796 1797 sport->port.read_status_mask = 0; 1798 if (termios->c_iflag & INPCK) 1799 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1800 if (termios->c_iflag & (BRKINT | PARMRK)) 1801 sport->port.read_status_mask |= URXD_BRK; 1802 1803 /* 1804 * Characters to ignore 1805 */ 1806 sport->port.ignore_status_mask = 0; 1807 if (termios->c_iflag & IGNPAR) 1808 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1809 if (termios->c_iflag & IGNBRK) { 1810 sport->port.ignore_status_mask |= URXD_BRK; 1811 /* 1812 * If we're ignoring parity and break indicators, 1813 * ignore overruns too (for real raw support). 1814 */ 1815 if (termios->c_iflag & IGNPAR) 1816 sport->port.ignore_status_mask |= URXD_OVRRUN; 1817 } 1818 1819 if ((termios->c_cflag & CREAD) == 0) 1820 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1821 1822 /* 1823 * Update the per-port timeout. 1824 */ 1825 uart_update_timeout(port, termios->c_cflag, baud); 1826 1827 /* custom-baudrate handling */ 1828 div = sport->port.uartclk / (baud * 16); 1829 if (baud == 38400 && quot != div) 1830 baud = sport->port.uartclk / (quot * 16); 1831 1832 div = sport->port.uartclk / (baud * 16); 1833 if (div > 7) 1834 div = 7; 1835 if (!div) 1836 div = 1; 1837 1838 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1839 1 << 16, 1 << 16, &num, &denom); 1840 1841 tdiv64 = sport->port.uartclk; 1842 tdiv64 *= num; 1843 do_div(tdiv64, denom * 16 * div); 1844 tty_termios_encode_baud_rate(termios, 1845 (speed_t)tdiv64, (speed_t)tdiv64); 1846 1847 num -= 1; 1848 denom -= 1; 1849 1850 ufcr = imx_uart_readl(sport, UFCR); 1851 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1852 imx_uart_writel(sport, ufcr, UFCR); 1853 1854 /* 1855 * Two registers below should always be written both and in this 1856 * particular order. One consequence is that we need to check if any of 1857 * them changes and then update both. We do need the check for change 1858 * as even writing the same values seem to "restart" 1859 * transmission/receiving logic in the hardware, that leads to data 1860 * breakage even when rate doesn't in fact change. E.g., user switches 1861 * RTS/CTS handshake and suddenly gets broken bytes. 1862 */ 1863 old_ubir = imx_uart_readl(sport, UBIR); 1864 old_ubmr = imx_uart_readl(sport, UBMR); 1865 if (old_ubir != num || old_ubmr != denom) { 1866 imx_uart_writel(sport, num, UBIR); 1867 imx_uart_writel(sport, denom, UBMR); 1868 } 1869 1870 if (!imx_uart_is_imx1(sport)) 1871 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1872 IMX21_ONEMS); 1873 1874 imx_uart_writel(sport, ucr2, UCR2); 1875 1876 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1877 imx_uart_enable_ms(&sport->port); 1878 1879 uart_port_unlock_irqrestore(&sport->port, flags); 1880 } 1881 1882 static const char *imx_uart_type(struct uart_port *port) 1883 { 1884 return port->type == PORT_IMX ? "IMX" : NULL; 1885 } 1886 1887 /* 1888 * Configure/autoconfigure the port. 1889 */ 1890 static void imx_uart_config_port(struct uart_port *port, int flags) 1891 { 1892 if (flags & UART_CONFIG_TYPE) 1893 port->type = PORT_IMX; 1894 } 1895 1896 /* 1897 * Verify the new serial_struct (for TIOCSSERIAL). 1898 * The only change we allow are to the flags and type, and 1899 * even then only between PORT_IMX and PORT_UNKNOWN 1900 */ 1901 static int 1902 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1903 { 1904 int ret = 0; 1905 1906 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1907 ret = -EINVAL; 1908 if (port->irq != ser->irq) 1909 ret = -EINVAL; 1910 if (ser->io_type != UPIO_MEM) 1911 ret = -EINVAL; 1912 if (port->uartclk / 16 != ser->baud_base) 1913 ret = -EINVAL; 1914 if (port->mapbase != (unsigned long)ser->iomem_base) 1915 ret = -EINVAL; 1916 if (port->iobase != ser->port) 1917 ret = -EINVAL; 1918 if (ser->hub6 != 0) 1919 ret = -EINVAL; 1920 return ret; 1921 } 1922 1923 #if defined(CONFIG_CONSOLE_POLL) 1924 1925 static int imx_uart_poll_init(struct uart_port *port) 1926 { 1927 struct imx_port *sport = to_imx_port(port); 1928 unsigned long flags; 1929 u32 ucr1, ucr2; 1930 int retval; 1931 1932 retval = clk_prepare_enable(sport->clk_ipg); 1933 if (retval) 1934 return retval; 1935 retval = clk_prepare_enable(sport->clk_per); 1936 if (retval) 1937 clk_disable_unprepare(sport->clk_ipg); 1938 1939 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1940 1941 uart_port_lock_irqsave(&sport->port, &flags); 1942 1943 /* 1944 * Be careful about the order of enabling bits here. First enable the 1945 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1946 * This prevents that a character that already sits in the RX fifo is 1947 * triggering an irq but the try to fetch it from there results in an 1948 * exception because UARTEN or RXEN is still off. 1949 */ 1950 ucr1 = imx_uart_readl(sport, UCR1); 1951 ucr2 = imx_uart_readl(sport, UCR2); 1952 1953 if (imx_uart_is_imx1(sport)) 1954 ucr1 |= IMX1_UCR1_UARTCLKEN; 1955 1956 ucr1 |= UCR1_UARTEN; 1957 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1958 1959 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1960 ucr2 &= ~UCR2_ATEN; 1961 1962 imx_uart_writel(sport, ucr1, UCR1); 1963 imx_uart_writel(sport, ucr2, UCR2); 1964 1965 /* now enable irqs */ 1966 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1967 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1968 1969 uart_port_unlock_irqrestore(&sport->port, flags); 1970 1971 return 0; 1972 } 1973 1974 static int imx_uart_poll_get_char(struct uart_port *port) 1975 { 1976 struct imx_port *sport = to_imx_port(port); 1977 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1978 return NO_POLL_CHAR; 1979 1980 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1981 } 1982 1983 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1984 { 1985 struct imx_port *sport = to_imx_port(port); 1986 unsigned int status; 1987 1988 /* drain */ 1989 do { 1990 status = imx_uart_readl(sport, USR1); 1991 } while (~status & USR1_TRDY); 1992 1993 /* write */ 1994 imx_uart_writel(sport, c, URTX0); 1995 1996 /* flush */ 1997 do { 1998 status = imx_uart_readl(sport, USR2); 1999 } while (~status & USR2_TXDC); 2000 } 2001 #endif 2002 2003 /* called with port.lock taken and irqs off or from .probe without locking */ 2004 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 2005 struct serial_rs485 *rs485conf) 2006 { 2007 struct imx_port *sport = to_imx_port(port); 2008 u32 ucr2, ufcr; 2009 2010 if (rs485conf->flags & SER_RS485_ENABLED) { 2011 /* Enable receiver if low-active RTS signal is requested */ 2012 if (sport->have_rtscts && !sport->have_rtsgpio && 2013 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 2014 rs485conf->flags |= SER_RS485_RX_DURING_TX; 2015 2016 /* disable transmitter */ 2017 ucr2 = imx_uart_readl(sport, UCR2); 2018 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 2019 imx_uart_rts_active(sport, &ucr2); 2020 else 2021 imx_uart_rts_inactive(sport, &ucr2); 2022 imx_uart_writel(sport, ucr2, UCR2); 2023 } 2024 2025 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 2026 if (!(rs485conf->flags & SER_RS485_ENABLED) || 2027 rs485conf->flags & SER_RS485_RX_DURING_TX) { 2028 /* If the receiver trigger is 0, set it to a default value */ 2029 ufcr = imx_uart_readl(sport, UFCR); 2030 if ((ufcr & UFCR_RXTL_MASK) == 0) 2031 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2032 imx_uart_start_rx(port); 2033 } 2034 2035 return 0; 2036 } 2037 2038 static const struct uart_ops imx_uart_pops = { 2039 .tx_empty = imx_uart_tx_empty, 2040 .set_mctrl = imx_uart_set_mctrl, 2041 .get_mctrl = imx_uart_get_mctrl, 2042 .stop_tx = imx_uart_stop_tx, 2043 .start_tx = imx_uart_start_tx, 2044 .stop_rx = imx_uart_stop_rx, 2045 .enable_ms = imx_uart_enable_ms, 2046 .break_ctl = imx_uart_break_ctl, 2047 .startup = imx_uart_startup, 2048 .shutdown = imx_uart_shutdown, 2049 .flush_buffer = imx_uart_flush_buffer, 2050 .set_termios = imx_uart_set_termios, 2051 .type = imx_uart_type, 2052 .config_port = imx_uart_config_port, 2053 .verify_port = imx_uart_verify_port, 2054 #if defined(CONFIG_CONSOLE_POLL) 2055 .poll_init = imx_uart_poll_init, 2056 .poll_get_char = imx_uart_poll_get_char, 2057 .poll_put_char = imx_uart_poll_put_char, 2058 #endif 2059 }; 2060 2061 static struct imx_port *imx_uart_ports[UART_NR]; 2062 2063 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 2064 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 2065 { 2066 struct imx_port *sport = to_imx_port(port); 2067 2068 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 2069 barrier(); 2070 2071 imx_uart_writel(sport, ch, URTX0); 2072 } 2073 2074 /* 2075 * Interrupts are disabled on entering 2076 */ 2077 static void 2078 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 2079 { 2080 struct imx_port *sport = imx_uart_ports[co->index]; 2081 struct imx_port_ucrs old_ucr; 2082 unsigned long flags; 2083 unsigned int ucr1, usr2; 2084 int locked = 1; 2085 2086 if (sport->port.sysrq) 2087 locked = 0; 2088 else if (oops_in_progress) 2089 locked = uart_port_trylock_irqsave(&sport->port, &flags); 2090 else 2091 uart_port_lock_irqsave(&sport->port, &flags); 2092 2093 /* 2094 * First, save UCR1/2/3 and then disable interrupts 2095 */ 2096 imx_uart_ucrs_save(sport, &old_ucr); 2097 ucr1 = old_ucr.ucr1; 2098 2099 if (imx_uart_is_imx1(sport)) 2100 ucr1 |= IMX1_UCR1_UARTCLKEN; 2101 ucr1 |= UCR1_UARTEN; 2102 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2103 2104 imx_uart_writel(sport, ucr1, UCR1); 2105 2106 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2107 2108 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2109 2110 /* 2111 * Finally, wait for transmitter to become empty 2112 * and restore UCR1/2/3 2113 */ 2114 read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC, 2115 0, USEC_PER_SEC, false, sport, USR2); 2116 imx_uart_ucrs_restore(sport, &old_ucr); 2117 2118 if (locked) 2119 uart_port_unlock_irqrestore(&sport->port, flags); 2120 } 2121 2122 /* 2123 * If the port was already initialised (eg, by a boot loader), 2124 * try to determine the current setup. 2125 */ 2126 static void 2127 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2128 int *parity, int *bits) 2129 { 2130 2131 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2132 /* ok, the port was enabled */ 2133 unsigned int ucr2, ubir, ubmr, uartclk; 2134 unsigned int baud_raw; 2135 unsigned int ucfr_rfdiv; 2136 2137 ucr2 = imx_uart_readl(sport, UCR2); 2138 2139 *parity = 'n'; 2140 if (ucr2 & UCR2_PREN) { 2141 if (ucr2 & UCR2_PROE) 2142 *parity = 'o'; 2143 else 2144 *parity = 'e'; 2145 } 2146 2147 if (ucr2 & UCR2_WS) 2148 *bits = 8; 2149 else 2150 *bits = 7; 2151 2152 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2153 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2154 2155 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2156 if (ucfr_rfdiv == 6) 2157 ucfr_rfdiv = 7; 2158 else 2159 ucfr_rfdiv = 6 - ucfr_rfdiv; 2160 2161 uartclk = clk_get_rate(sport->clk_per); 2162 uartclk /= ucfr_rfdiv; 2163 2164 { /* 2165 * The next code provides exact computation of 2166 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2167 * without need of float support or long long division, 2168 * which would be required to prevent 32bit arithmetic overflow 2169 */ 2170 unsigned int mul = ubir + 1; 2171 unsigned int div = 16 * (ubmr + 1); 2172 unsigned int rem = uartclk % div; 2173 2174 baud_raw = (uartclk / div) * mul; 2175 baud_raw += (rem * mul + div / 2) / div; 2176 *baud = (baud_raw + 50) / 100 * 100; 2177 } 2178 2179 if (*baud != baud_raw) 2180 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2181 baud_raw, *baud); 2182 } 2183 } 2184 2185 static int 2186 imx_uart_console_setup(struct console *co, char *options) 2187 { 2188 struct imx_port *sport; 2189 int baud = 9600; 2190 int bits = 8; 2191 int parity = 'n'; 2192 int flow = 'n'; 2193 int retval; 2194 2195 /* 2196 * Check whether an invalid uart number has been specified, and 2197 * if so, search for the first available port that does have 2198 * console support. 2199 */ 2200 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2201 co->index = 0; 2202 sport = imx_uart_ports[co->index]; 2203 if (sport == NULL) 2204 return -ENODEV; 2205 2206 /* For setting the registers, we only need to enable the ipg clock. */ 2207 retval = clk_prepare_enable(sport->clk_ipg); 2208 if (retval) 2209 goto error_console; 2210 2211 if (options) 2212 uart_parse_options(options, &baud, &parity, &bits, &flow); 2213 else 2214 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2215 2216 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2217 2218 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2219 2220 if (retval) { 2221 clk_disable_unprepare(sport->clk_ipg); 2222 goto error_console; 2223 } 2224 2225 retval = clk_prepare_enable(sport->clk_per); 2226 if (retval) 2227 clk_disable_unprepare(sport->clk_ipg); 2228 2229 error_console: 2230 return retval; 2231 } 2232 2233 static int 2234 imx_uart_console_exit(struct console *co) 2235 { 2236 struct imx_port *sport = imx_uart_ports[co->index]; 2237 2238 clk_disable_unprepare(sport->clk_per); 2239 clk_disable_unprepare(sport->clk_ipg); 2240 2241 return 0; 2242 } 2243 2244 static struct uart_driver imx_uart_uart_driver; 2245 static struct console imx_uart_console = { 2246 .name = DEV_NAME, 2247 .write = imx_uart_console_write, 2248 .device = uart_console_device, 2249 .setup = imx_uart_console_setup, 2250 .exit = imx_uart_console_exit, 2251 .flags = CON_PRINTBUFFER, 2252 .index = -1, 2253 .data = &imx_uart_uart_driver, 2254 }; 2255 2256 #define IMX_CONSOLE &imx_uart_console 2257 2258 #else 2259 #define IMX_CONSOLE NULL 2260 #endif 2261 2262 static struct uart_driver imx_uart_uart_driver = { 2263 .owner = THIS_MODULE, 2264 .driver_name = DRIVER_NAME, 2265 .dev_name = DEV_NAME, 2266 .major = SERIAL_IMX_MAJOR, 2267 .minor = MINOR_START, 2268 .nr = ARRAY_SIZE(imx_uart_ports), 2269 .cons = IMX_CONSOLE, 2270 }; 2271 2272 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2273 { 2274 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2275 unsigned long flags; 2276 2277 uart_port_lock_irqsave(&sport->port, &flags); 2278 if (sport->tx_state == WAIT_AFTER_RTS) 2279 imx_uart_start_tx(&sport->port); 2280 uart_port_unlock_irqrestore(&sport->port, flags); 2281 2282 return HRTIMER_NORESTART; 2283 } 2284 2285 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2286 { 2287 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2288 unsigned long flags; 2289 2290 uart_port_lock_irqsave(&sport->port, &flags); 2291 if (sport->tx_state == WAIT_AFTER_SEND) 2292 imx_uart_stop_tx(&sport->port); 2293 uart_port_unlock_irqrestore(&sport->port, flags); 2294 2295 return HRTIMER_NORESTART; 2296 } 2297 2298 static const struct serial_rs485 imx_rs485_supported = { 2299 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2300 SER_RS485_RX_DURING_TX, 2301 .delay_rts_before_send = 1, 2302 .delay_rts_after_send = 1, 2303 }; 2304 2305 /* Default RX DMA buffer configuration */ 2306 #define RX_DMA_PERIODS 16 2307 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2308 2309 static int imx_uart_probe(struct platform_device *pdev) 2310 { 2311 struct device_node *np = pdev->dev.of_node; 2312 struct imx_port *sport; 2313 void __iomem *base; 2314 u32 dma_buf_conf[2]; 2315 int ret = 0; 2316 u32 ucr1, ucr2, uts; 2317 struct resource *res; 2318 int txirq, rxirq, rtsirq; 2319 2320 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2321 if (!sport) 2322 return -ENOMEM; 2323 2324 sport->devdata = of_device_get_match_data(&pdev->dev); 2325 2326 ret = of_alias_get_id(np, "serial"); 2327 if (ret < 0) { 2328 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2329 return ret; 2330 } 2331 sport->port.line = ret; 2332 2333 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2334 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2335 2336 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2337 2338 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2339 2340 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2341 2342 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2343 2344 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2345 sport->rx_period_length = dma_buf_conf[0]; 2346 sport->rx_periods = dma_buf_conf[1]; 2347 } else { 2348 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2349 sport->rx_periods = RX_DMA_PERIODS; 2350 } 2351 2352 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2353 dev_err(&pdev->dev, "serial%d out of range\n", 2354 sport->port.line); 2355 return -EINVAL; 2356 } 2357 2358 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2359 if (IS_ERR(base)) 2360 return PTR_ERR(base); 2361 2362 rxirq = platform_get_irq(pdev, 0); 2363 if (rxirq < 0) 2364 return rxirq; 2365 txirq = platform_get_irq_optional(pdev, 1); 2366 rtsirq = platform_get_irq_optional(pdev, 2); 2367 2368 sport->port.dev = &pdev->dev; 2369 sport->port.mapbase = res->start; 2370 sport->port.membase = base; 2371 sport->port.type = PORT_IMX; 2372 sport->port.iotype = UPIO_MEM; 2373 sport->port.irq = rxirq; 2374 sport->port.fifosize = 32; 2375 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2376 sport->port.ops = &imx_uart_pops; 2377 sport->port.rs485_config = imx_uart_rs485_config; 2378 /* RTS is required to control the RS485 transmitter */ 2379 if (sport->have_rtscts || sport->have_rtsgpio) 2380 sport->port.rs485_supported = imx_rs485_supported; 2381 sport->port.flags = UPF_BOOT_AUTOCONF; 2382 timer_setup(&sport->timer, imx_uart_timeout, 0); 2383 2384 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2385 if (IS_ERR(sport->gpios)) 2386 return PTR_ERR(sport->gpios); 2387 2388 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2389 if (IS_ERR(sport->clk_ipg)) { 2390 ret = PTR_ERR(sport->clk_ipg); 2391 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2392 return ret; 2393 } 2394 2395 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2396 if (IS_ERR(sport->clk_per)) { 2397 ret = PTR_ERR(sport->clk_per); 2398 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2399 return ret; 2400 } 2401 2402 sport->port.uartclk = clk_get_rate(sport->clk_per); 2403 2404 /* For register access, we only need to enable the ipg clock. */ 2405 ret = clk_prepare_enable(sport->clk_ipg); 2406 if (ret) { 2407 dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret); 2408 return ret; 2409 } 2410 2411 ret = uart_get_rs485_mode(&sport->port); 2412 if (ret) 2413 goto err_clk; 2414 2415 /* 2416 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2417 * signal cannot be set low during transmission in case the 2418 * receiver is off (limitation of the i.MX UART IP). 2419 */ 2420 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2421 sport->have_rtscts && !sport->have_rtsgpio && 2422 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2423 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2424 dev_err(&pdev->dev, 2425 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2426 2427 /* Disable interrupts before requesting them */ 2428 ucr1 = imx_uart_readl(sport, UCR1); 2429 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2430 imx_uart_writel(sport, ucr1, UCR1); 2431 2432 /* Disable Ageing Timer interrupt */ 2433 ucr2 = imx_uart_readl(sport, UCR2); 2434 ucr2 &= ~UCR2_ATEN; 2435 imx_uart_writel(sport, ucr2, UCR2); 2436 2437 /* 2438 * In case RS485 is enabled without GPIO RTS control, the UART IP 2439 * is used to control CTS signal. Keep both the UART and Receiver 2440 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2441 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2442 * data from being fed into the RX FIFO, enable loopback mode in 2443 * UTS register, which disconnects the RX path from external RXD 2444 * pin and connects it to the Transceiver, which is disabled, so 2445 * no data can be fed to the RX FIFO that way. 2446 */ 2447 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2448 sport->have_rtscts && !sport->have_rtsgpio) { 2449 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2450 uts |= UTS_LOOP; 2451 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2452 2453 ucr1 = imx_uart_readl(sport, UCR1); 2454 ucr1 |= UCR1_UARTEN; 2455 imx_uart_writel(sport, ucr1, UCR1); 2456 2457 ucr2 = imx_uart_readl(sport, UCR2); 2458 ucr2 |= UCR2_RXEN; 2459 imx_uart_writel(sport, ucr2, UCR2); 2460 } 2461 2462 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2463 /* 2464 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2465 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2466 * and DCD (when they are outputs) or enables the respective 2467 * irqs. So set this bit early, i.e. before requesting irqs. 2468 */ 2469 u32 ufcr = imx_uart_readl(sport, UFCR); 2470 if (!(ufcr & UFCR_DCEDTE)) 2471 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2472 2473 /* 2474 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2475 * enabled later because they cannot be cleared 2476 * (confirmed on i.MX25) which makes them unusable. 2477 */ 2478 imx_uart_writel(sport, 2479 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2480 UCR3); 2481 2482 } else { 2483 u32 ucr3 = UCR3_DSR; 2484 u32 ufcr = imx_uart_readl(sport, UFCR); 2485 if (ufcr & UFCR_DCEDTE) 2486 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2487 2488 if (!imx_uart_is_imx1(sport)) 2489 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2490 imx_uart_writel(sport, ucr3, UCR3); 2491 } 2492 2493 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2494 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2495 sport->trigger_start_tx.function = imx_trigger_start_tx; 2496 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2497 2498 /* 2499 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2500 * chips only have one interrupt. 2501 */ 2502 if (txirq > 0) { 2503 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2504 dev_name(&pdev->dev), sport); 2505 if (ret) { 2506 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2507 ret); 2508 goto err_clk; 2509 } 2510 2511 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2512 dev_name(&pdev->dev), sport); 2513 if (ret) { 2514 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2515 ret); 2516 goto err_clk; 2517 } 2518 2519 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2520 dev_name(&pdev->dev), sport); 2521 if (ret) { 2522 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2523 ret); 2524 goto err_clk; 2525 } 2526 } else { 2527 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2528 dev_name(&pdev->dev), sport); 2529 if (ret) { 2530 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2531 goto err_clk; 2532 } 2533 } 2534 2535 imx_uart_ports[sport->port.line] = sport; 2536 2537 platform_set_drvdata(pdev, sport); 2538 2539 ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2540 2541 err_clk: 2542 clk_disable_unprepare(sport->clk_ipg); 2543 2544 return ret; 2545 } 2546 2547 static void imx_uart_remove(struct platform_device *pdev) 2548 { 2549 struct imx_port *sport = platform_get_drvdata(pdev); 2550 2551 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2552 } 2553 2554 static void imx_uart_restore_context(struct imx_port *sport) 2555 { 2556 unsigned long flags; 2557 2558 uart_port_lock_irqsave(&sport->port, &flags); 2559 if (!sport->context_saved) { 2560 uart_port_unlock_irqrestore(&sport->port, flags); 2561 return; 2562 } 2563 2564 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2565 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2566 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2567 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2568 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2569 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2570 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2571 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2572 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2573 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2574 sport->context_saved = false; 2575 uart_port_unlock_irqrestore(&sport->port, flags); 2576 } 2577 2578 static void imx_uart_save_context(struct imx_port *sport) 2579 { 2580 unsigned long flags; 2581 2582 /* Save necessary regs */ 2583 uart_port_lock_irqsave(&sport->port, &flags); 2584 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2585 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2586 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2587 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2588 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2589 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2590 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2591 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2592 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2593 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2594 sport->context_saved = true; 2595 uart_port_unlock_irqrestore(&sport->port, flags); 2596 } 2597 2598 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2599 { 2600 u32 ucr3; 2601 2602 ucr3 = imx_uart_readl(sport, UCR3); 2603 if (on) { 2604 imx_uart_writel(sport, USR1_AWAKE, USR1); 2605 ucr3 |= UCR3_AWAKEN; 2606 } else { 2607 ucr3 &= ~UCR3_AWAKEN; 2608 } 2609 imx_uart_writel(sport, ucr3, UCR3); 2610 2611 if (sport->have_rtscts) { 2612 u32 ucr1 = imx_uart_readl(sport, UCR1); 2613 if (on) { 2614 imx_uart_writel(sport, USR1_RTSD, USR1); 2615 ucr1 |= UCR1_RTSDEN; 2616 } else { 2617 ucr1 &= ~UCR1_RTSDEN; 2618 } 2619 imx_uart_writel(sport, ucr1, UCR1); 2620 } 2621 } 2622 2623 static int imx_uart_suspend_noirq(struct device *dev) 2624 { 2625 struct imx_port *sport = dev_get_drvdata(dev); 2626 2627 imx_uart_save_context(sport); 2628 2629 clk_disable(sport->clk_ipg); 2630 2631 pinctrl_pm_select_sleep_state(dev); 2632 2633 return 0; 2634 } 2635 2636 static int imx_uart_resume_noirq(struct device *dev) 2637 { 2638 struct imx_port *sport = dev_get_drvdata(dev); 2639 int ret; 2640 2641 pinctrl_pm_select_default_state(dev); 2642 2643 ret = clk_enable(sport->clk_ipg); 2644 if (ret) 2645 return ret; 2646 2647 imx_uart_restore_context(sport); 2648 2649 return 0; 2650 } 2651 2652 static int imx_uart_suspend(struct device *dev) 2653 { 2654 struct imx_port *sport = dev_get_drvdata(dev); 2655 int ret; 2656 2657 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2658 disable_irq(sport->port.irq); 2659 2660 ret = clk_prepare_enable(sport->clk_ipg); 2661 if (ret) 2662 return ret; 2663 2664 /* enable wakeup from i.MX UART */ 2665 imx_uart_enable_wakeup(sport, true); 2666 2667 return 0; 2668 } 2669 2670 static int imx_uart_resume(struct device *dev) 2671 { 2672 struct imx_port *sport = dev_get_drvdata(dev); 2673 2674 /* disable wakeup from i.MX UART */ 2675 imx_uart_enable_wakeup(sport, false); 2676 2677 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2678 enable_irq(sport->port.irq); 2679 2680 clk_disable_unprepare(sport->clk_ipg); 2681 2682 return 0; 2683 } 2684 2685 static int imx_uart_freeze(struct device *dev) 2686 { 2687 struct imx_port *sport = dev_get_drvdata(dev); 2688 2689 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2690 2691 return clk_prepare_enable(sport->clk_ipg); 2692 } 2693 2694 static int imx_uart_thaw(struct device *dev) 2695 { 2696 struct imx_port *sport = dev_get_drvdata(dev); 2697 2698 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2699 2700 clk_disable_unprepare(sport->clk_ipg); 2701 2702 return 0; 2703 } 2704 2705 static const struct dev_pm_ops imx_uart_pm_ops = { 2706 .suspend_noirq = imx_uart_suspend_noirq, 2707 .resume_noirq = imx_uart_resume_noirq, 2708 .freeze_noirq = imx_uart_suspend_noirq, 2709 .thaw_noirq = imx_uart_resume_noirq, 2710 .restore_noirq = imx_uart_resume_noirq, 2711 .suspend = imx_uart_suspend, 2712 .resume = imx_uart_resume, 2713 .freeze = imx_uart_freeze, 2714 .thaw = imx_uart_thaw, 2715 .restore = imx_uart_thaw, 2716 }; 2717 2718 static struct platform_driver imx_uart_platform_driver = { 2719 .probe = imx_uart_probe, 2720 .remove_new = imx_uart_remove, 2721 2722 .driver = { 2723 .name = "imx-uart", 2724 .of_match_table = imx_uart_dt_ids, 2725 .pm = &imx_uart_pm_ops, 2726 }, 2727 }; 2728 2729 static int __init imx_uart_init(void) 2730 { 2731 int ret = uart_register_driver(&imx_uart_uart_driver); 2732 2733 if (ret) 2734 return ret; 2735 2736 ret = platform_driver_register(&imx_uart_platform_driver); 2737 if (ret != 0) 2738 uart_unregister_driver(&imx_uart_uart_driver); 2739 2740 return ret; 2741 } 2742 2743 static void __exit imx_uart_exit(void) 2744 { 2745 platform_driver_unregister(&imx_uart_platform_driver); 2746 uart_unregister_driver(&imx_uart_uart_driver); 2747 } 2748 2749 module_init(imx_uart_init); 2750 module_exit(imx_uart_exit); 2751 2752 MODULE_AUTHOR("Sascha Hauer"); 2753 MODULE_DESCRIPTION("IMX generic serial port driver"); 2754 MODULE_LICENSE("GPL"); 2755 MODULE_ALIAS("platform:imx-uart"); 2756