1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/circ_buf.h> 12 #include <linux/module.h> 13 #include <linux/ioport.h> 14 #include <linux/init.h> 15 #include <linux/console.h> 16 #include <linux/sysrq.h> 17 #include <linux/platform_device.h> 18 #include <linux/tty.h> 19 #include <linux/tty_flip.h> 20 #include <linux/serial_core.h> 21 #include <linux/serial.h> 22 #include <linux/clk.h> 23 #include <linux/delay.h> 24 #include <linux/ktime.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/rational.h> 27 #include <linux/slab.h> 28 #include <linux/of.h> 29 #include <linux/io.h> 30 #include <linux/iopoll.h> 31 #include <linux/dma-mapping.h> 32 33 #include <asm/irq.h> 34 #include <linux/dma/imx-dma.h> 35 36 #include "serial_mctrl_gpio.h" 37 38 /* Register definitions */ 39 #define URXD0 0x0 /* Receiver Register */ 40 #define URTX0 0x40 /* Transmitter Register */ 41 #define UCR1 0x80 /* Control Register 1 */ 42 #define UCR2 0x84 /* Control Register 2 */ 43 #define UCR3 0x88 /* Control Register 3 */ 44 #define UCR4 0x8c /* Control Register 4 */ 45 #define UFCR 0x90 /* FIFO Control Register */ 46 #define USR1 0x94 /* Status Register 1 */ 47 #define USR2 0x98 /* Status Register 2 */ 48 #define UESC 0x9c /* Escape Character Register */ 49 #define UTIM 0xa0 /* Escape Timer Register */ 50 #define UBIR 0xa4 /* BRM Incremental Register */ 51 #define UBMR 0xa8 /* BRM Modulator Register */ 52 #define UBRC 0xac /* Baud Rate Count Register */ 53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 56 57 /* UART Control Register Bit Fields.*/ 58 #define URXD_DUMMY_READ (1<<16) 59 #define URXD_CHARRDY (1<<15) 60 #define URXD_ERR (1<<14) 61 #define URXD_OVRRUN (1<<13) 62 #define URXD_FRMERR (1<<12) 63 #define URXD_BRK (1<<11) 64 #define URXD_PRERR (1<<10) 65 #define URXD_RX_DATA (0xFF<<0) 66 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 67 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 68 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 69 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 71 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 72 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 73 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 74 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 75 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 76 #define UCR1_SNDBRK (1<<4) /* Send break */ 77 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 79 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 80 #define UCR1_DOZE (1<<1) /* Doze */ 81 #define UCR1_UARTEN (1<<0) /* UART enabled */ 82 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 83 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 84 #define UCR2_CTSC (1<<13) /* CTS pin control */ 85 #define UCR2_CTS (1<<12) /* Clear to send */ 86 #define UCR2_ESCEN (1<<11) /* Escape enable */ 87 #define UCR2_PREN (1<<8) /* Parity enable */ 88 #define UCR2_PROE (1<<7) /* Parity odd/even */ 89 #define UCR2_STPB (1<<6) /* Stop */ 90 #define UCR2_WS (1<<5) /* Word size */ 91 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 92 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 93 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 94 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 95 #define UCR2_SRST (1<<0) /* SW reset */ 96 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 97 #define UCR3_PARERREN (1<<12) /* Parity enable */ 98 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 99 #define UCR3_DSR (1<<10) /* Data set ready */ 100 #define UCR3_DCD (1<<9) /* Data carrier detect */ 101 #define UCR3_RI (1<<8) /* Ring indicator */ 102 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 103 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 104 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 105 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 106 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 107 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 108 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 109 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 110 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 111 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 112 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 113 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 114 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 115 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 116 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 117 #define UCR4_IRSC (1<<5) /* IR special case */ 118 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 119 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 120 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 121 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 122 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 123 #define UFCR_RXTL_MASK 0x3F /* Receiver trigger 6 bits wide */ 124 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 125 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 126 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 127 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 128 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 129 #define USR1_RTSS (1<<14) /* RTS pin status */ 130 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 131 #define USR1_RTSD (1<<12) /* RTS delta */ 132 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 133 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 134 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 135 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 136 #define USR1_DTRD (1<<7) /* DTR Delta */ 137 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 138 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 139 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 140 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 141 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 142 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 143 #define USR2_IDLE (1<<12) /* Idle condition */ 144 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 145 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 146 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 147 #define USR2_WAKE (1<<7) /* Wake */ 148 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 149 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 150 #define USR2_TXDC (1<<3) /* Transmitter complete */ 151 #define USR2_BRCD (1<<2) /* Break condition */ 152 #define USR2_ORE (1<<1) /* Overrun error */ 153 #define USR2_RDR (1<<0) /* Recv data ready */ 154 #define UTS_FRCPERR (1<<13) /* Force parity error */ 155 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 156 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 157 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 158 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 159 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 160 #define UTS_SOFTRST (1<<0) /* Software reset */ 161 162 /* We've been assigned a range on the "Low-density serial ports" major */ 163 #define SERIAL_IMX_MAJOR 207 164 #define MINOR_START 16 165 #define DEV_NAME "ttymxc" 166 167 /* 168 * This determines how often we check the modem status signals 169 * for any change. They generally aren't connected to an IRQ 170 * so we have to poll them. We also check immediately before 171 * filling the TX fifo incase CTS has been dropped. 172 */ 173 #define MCTRL_TIMEOUT (250*HZ/1000) 174 175 #define DRIVER_NAME "IMX-uart" 176 177 #define UART_NR 8 178 179 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 180 enum imx_uart_type { 181 IMX1_UART, 182 IMX21_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* counter to stop 0xff flood */ 214 int idle_counter; 215 216 /* DMA fields */ 217 unsigned int dma_is_enabled:1; 218 unsigned int dma_is_rxing:1; 219 unsigned int dma_is_txing:1; 220 struct dma_chan *dma_chan_rx, *dma_chan_tx; 221 struct scatterlist rx_sgl, tx_sgl[2]; 222 void *rx_buf; 223 struct circ_buf rx_ring; 224 unsigned int rx_buf_size; 225 unsigned int rx_period_length; 226 unsigned int rx_periods; 227 dma_cookie_t rx_cookie; 228 unsigned int tx_bytes; 229 unsigned int dma_tx_nents; 230 unsigned int saved_reg[10]; 231 bool context_saved; 232 233 enum imx_tx_state tx_state; 234 struct hrtimer trigger_start_tx; 235 struct hrtimer trigger_stop_tx; 236 }; 237 238 struct imx_port_ucrs { 239 unsigned int ucr1; 240 unsigned int ucr2; 241 unsigned int ucr3; 242 }; 243 244 static const struct imx_uart_data imx_uart_imx1_devdata = { 245 .uts_reg = IMX1_UTS, 246 .devtype = IMX1_UART, 247 }; 248 249 static const struct imx_uart_data imx_uart_imx21_devdata = { 250 .uts_reg = IMX21_UTS, 251 .devtype = IMX21_UART, 252 }; 253 254 static const struct of_device_id imx_uart_dt_ids[] = { 255 /* 256 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are 257 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the 258 * original imx6q's UART is compatible to fsl,imx21-uart. This driver 259 * doesn't make any distinction between these two variants. 260 */ 261 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, }, 262 { .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, }, 263 { .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, }, 264 { /* sentinel */ } 265 }; 266 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 267 268 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 269 { 270 writel(val, sport->port.membase + offset); 271 } 272 273 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 274 { 275 return readl(sport->port.membase + offset); 276 } 277 278 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 279 { 280 return sport->devdata->uts_reg; 281 } 282 283 static inline int imx_uart_is_imx1(struct imx_port *sport) 284 { 285 return sport->devdata->devtype == IMX1_UART; 286 } 287 288 /* 289 * Save and restore functions for UCR1, UCR2 and UCR3 registers 290 */ 291 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 292 static void imx_uart_ucrs_save(struct imx_port *sport, 293 struct imx_port_ucrs *ucr) 294 { 295 /* save control registers */ 296 ucr->ucr1 = imx_uart_readl(sport, UCR1); 297 ucr->ucr2 = imx_uart_readl(sport, UCR2); 298 ucr->ucr3 = imx_uart_readl(sport, UCR3); 299 } 300 301 static void imx_uart_ucrs_restore(struct imx_port *sport, 302 struct imx_port_ucrs *ucr) 303 { 304 /* restore control registers */ 305 imx_uart_writel(sport, ucr->ucr1, UCR1); 306 imx_uart_writel(sport, ucr->ucr2, UCR2); 307 imx_uart_writel(sport, ucr->ucr3, UCR3); 308 } 309 #endif 310 311 /* called with port.lock taken and irqs caller dependent */ 312 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 313 { 314 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 315 316 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 317 } 318 319 /* called with port.lock taken and irqs caller dependent */ 320 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 321 { 322 *ucr2 &= ~UCR2_CTSC; 323 *ucr2 |= UCR2_CTS; 324 325 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 326 } 327 328 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 329 { 330 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 331 } 332 333 /* called with port.lock taken and irqs off */ 334 static void imx_uart_soft_reset(struct imx_port *sport) 335 { 336 int i = 10; 337 u32 ucr2, ubir, ubmr, uts; 338 339 /* 340 * According to the Reference Manual description of the UART SRST bit: 341 * 342 * "Reset the transmit and receive state machines, 343 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 344 * and UTS[6-3]". 345 * 346 * We don't need to restore the old values from USR1, USR2, URXD and 347 * UTXD. UBRC is read only, so only save/restore the other three 348 * registers. 349 */ 350 ubir = imx_uart_readl(sport, UBIR); 351 ubmr = imx_uart_readl(sport, UBMR); 352 uts = imx_uart_readl(sport, IMX21_UTS); 353 354 ucr2 = imx_uart_readl(sport, UCR2); 355 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 356 357 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 358 udelay(1); 359 360 /* Restore the registers */ 361 imx_uart_writel(sport, ubir, UBIR); 362 imx_uart_writel(sport, ubmr, UBMR); 363 imx_uart_writel(sport, uts, IMX21_UTS); 364 365 sport->idle_counter = 0; 366 } 367 368 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 369 { 370 unsigned int uts; 371 372 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 373 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 374 uts &= ~UTS_LOOP; 375 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 376 } 377 378 /* called with port.lock taken and irqs off */ 379 static void imx_uart_start_rx(struct uart_port *port) 380 { 381 struct imx_port *sport = (struct imx_port *)port; 382 unsigned int ucr1, ucr2; 383 384 ucr1 = imx_uart_readl(sport, UCR1); 385 ucr2 = imx_uart_readl(sport, UCR2); 386 387 ucr2 |= UCR2_RXEN; 388 389 if (sport->dma_is_enabled) { 390 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 391 } else { 392 ucr1 |= UCR1_RRDYEN; 393 ucr2 |= UCR2_ATEN; 394 } 395 396 /* Write UCR2 first as it includes RXEN */ 397 imx_uart_writel(sport, ucr2, UCR2); 398 imx_uart_writel(sport, ucr1, UCR1); 399 imx_uart_disable_loopback_rs485(sport); 400 } 401 402 /* called with port.lock taken and irqs off */ 403 static void imx_uart_stop_tx(struct uart_port *port) 404 { 405 struct imx_port *sport = (struct imx_port *)port; 406 u32 ucr1, ucr4, usr2; 407 408 if (sport->tx_state == OFF) 409 return; 410 411 /* 412 * We are maybe in the SMP context, so if the DMA TX thread is running 413 * on other cpu, we have to wait for it to finish. 414 */ 415 if (sport->dma_is_txing) 416 return; 417 418 ucr1 = imx_uart_readl(sport, UCR1); 419 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 420 421 ucr4 = imx_uart_readl(sport, UCR4); 422 usr2 = imx_uart_readl(sport, USR2); 423 if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) { 424 /* The shifter is still busy, so retry once TC triggers */ 425 return; 426 } 427 428 ucr4 &= ~UCR4_TCEN; 429 imx_uart_writel(sport, ucr4, UCR4); 430 431 /* in rs485 mode disable transmitter */ 432 if (port->rs485.flags & SER_RS485_ENABLED) { 433 if (sport->tx_state == SEND) { 434 sport->tx_state = WAIT_AFTER_SEND; 435 436 if (port->rs485.delay_rts_after_send > 0) { 437 start_hrtimer_ms(&sport->trigger_stop_tx, 438 port->rs485.delay_rts_after_send); 439 return; 440 } 441 442 /* continue without any delay */ 443 } 444 445 if (sport->tx_state == WAIT_AFTER_RTS || 446 sport->tx_state == WAIT_AFTER_SEND) { 447 u32 ucr2; 448 449 hrtimer_try_to_cancel(&sport->trigger_start_tx); 450 451 ucr2 = imx_uart_readl(sport, UCR2); 452 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 453 imx_uart_rts_active(sport, &ucr2); 454 else 455 imx_uart_rts_inactive(sport, &ucr2); 456 imx_uart_writel(sport, ucr2, UCR2); 457 458 if (!port->rs485_rx_during_tx_gpio) 459 imx_uart_start_rx(port); 460 461 sport->tx_state = OFF; 462 } 463 } else { 464 sport->tx_state = OFF; 465 } 466 } 467 468 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback) 469 { 470 struct imx_port *sport = (struct imx_port *)port; 471 u32 ucr1, ucr2, ucr4, uts; 472 473 ucr1 = imx_uart_readl(sport, UCR1); 474 ucr2 = imx_uart_readl(sport, UCR2); 475 ucr4 = imx_uart_readl(sport, UCR4); 476 477 if (sport->dma_is_enabled) { 478 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 479 } else { 480 ucr1 &= ~UCR1_RRDYEN; 481 ucr2 &= ~UCR2_ATEN; 482 ucr4 &= ~UCR4_OREN; 483 } 484 imx_uart_writel(sport, ucr1, UCR1); 485 imx_uart_writel(sport, ucr4, UCR4); 486 487 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 488 if (port->rs485.flags & SER_RS485_ENABLED && 489 port->rs485.flags & SER_RS485_RTS_ON_SEND && 490 sport->have_rtscts && !sport->have_rtsgpio && loopback) { 491 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 492 uts |= UTS_LOOP; 493 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 494 ucr2 |= UCR2_RXEN; 495 } else { 496 ucr2 &= ~UCR2_RXEN; 497 } 498 499 imx_uart_writel(sport, ucr2, UCR2); 500 } 501 502 /* called with port.lock taken and irqs off */ 503 static void imx_uart_stop_rx(struct uart_port *port) 504 { 505 /* 506 * Stop RX and enable loopback in order to make sure RS485 bus 507 * is not blocked. Se comment in imx_uart_probe(). 508 */ 509 imx_uart_stop_rx_with_loopback_ctrl(port, true); 510 } 511 512 /* called with port.lock taken and irqs off */ 513 static void imx_uart_enable_ms(struct uart_port *port) 514 { 515 struct imx_port *sport = (struct imx_port *)port; 516 517 mod_timer(&sport->timer, jiffies); 518 519 mctrl_gpio_enable_ms(sport->gpios); 520 } 521 522 static void imx_uart_dma_tx(struct imx_port *sport); 523 524 /* called with port.lock taken and irqs off */ 525 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 526 { 527 struct tty_port *tport = &sport->port.state->port; 528 unsigned char c; 529 530 if (sport->port.x_char) { 531 /* Send next char */ 532 imx_uart_writel(sport, sport->port.x_char, URTX0); 533 sport->port.icount.tx++; 534 sport->port.x_char = 0; 535 return; 536 } 537 538 if (kfifo_is_empty(&tport->xmit_fifo) || 539 uart_tx_stopped(&sport->port)) { 540 imx_uart_stop_tx(&sport->port); 541 return; 542 } 543 544 if (sport->dma_is_enabled) { 545 u32 ucr1; 546 /* 547 * We've just sent a X-char Ensure the TX DMA is enabled 548 * and the TX IRQ is disabled. 549 **/ 550 ucr1 = imx_uart_readl(sport, UCR1); 551 ucr1 &= ~UCR1_TRDYEN; 552 if (sport->dma_is_txing) { 553 ucr1 |= UCR1_TXDMAEN; 554 imx_uart_writel(sport, ucr1, UCR1); 555 } else { 556 imx_uart_writel(sport, ucr1, UCR1); 557 imx_uart_dma_tx(sport); 558 } 559 560 return; 561 } 562 563 while (!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) && 564 uart_fifo_get(&sport->port, &c)) 565 imx_uart_writel(sport, c, URTX0); 566 567 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 568 uart_write_wakeup(&sport->port); 569 570 if (kfifo_is_empty(&tport->xmit_fifo)) 571 imx_uart_stop_tx(&sport->port); 572 } 573 574 static void imx_uart_dma_tx_callback(void *data) 575 { 576 struct imx_port *sport = data; 577 struct tty_port *tport = &sport->port.state->port; 578 struct scatterlist *sgl = &sport->tx_sgl[0]; 579 unsigned long flags; 580 u32 ucr1; 581 582 uart_port_lock_irqsave(&sport->port, &flags); 583 584 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 585 586 ucr1 = imx_uart_readl(sport, UCR1); 587 ucr1 &= ~UCR1_TXDMAEN; 588 imx_uart_writel(sport, ucr1, UCR1); 589 590 uart_xmit_advance(&sport->port, sport->tx_bytes); 591 592 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 593 594 sport->dma_is_txing = 0; 595 596 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 597 uart_write_wakeup(&sport->port); 598 599 if (!kfifo_is_empty(&tport->xmit_fifo) && 600 !uart_tx_stopped(&sport->port)) 601 imx_uart_dma_tx(sport); 602 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 603 u32 ucr4 = imx_uart_readl(sport, UCR4); 604 ucr4 |= UCR4_TCEN; 605 imx_uart_writel(sport, ucr4, UCR4); 606 } 607 608 uart_port_unlock_irqrestore(&sport->port, flags); 609 } 610 611 /* called with port.lock taken and irqs off */ 612 static void imx_uart_dma_tx(struct imx_port *sport) 613 { 614 struct tty_port *tport = &sport->port.state->port; 615 struct scatterlist *sgl = sport->tx_sgl; 616 struct dma_async_tx_descriptor *desc; 617 struct dma_chan *chan = sport->dma_chan_tx; 618 struct device *dev = sport->port.dev; 619 u32 ucr1, ucr4; 620 int ret; 621 622 if (sport->dma_is_txing) 623 return; 624 625 ucr4 = imx_uart_readl(sport, UCR4); 626 ucr4 &= ~UCR4_TCEN; 627 imx_uart_writel(sport, ucr4, UCR4); 628 629 sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl)); 630 sport->tx_bytes = kfifo_len(&tport->xmit_fifo); 631 sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl, 632 ARRAY_SIZE(sport->tx_sgl), sport->tx_bytes); 633 634 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 635 if (ret == 0) { 636 dev_err(dev, "DMA mapping error for TX.\n"); 637 return; 638 } 639 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 640 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 641 if (!desc) { 642 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 643 DMA_TO_DEVICE); 644 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 645 return; 646 } 647 desc->callback = imx_uart_dma_tx_callback; 648 desc->callback_param = sport; 649 650 dev_dbg(dev, "TX: prepare to send %u bytes by DMA.\n", sport->tx_bytes); 651 652 ucr1 = imx_uart_readl(sport, UCR1); 653 ucr1 |= UCR1_TXDMAEN; 654 imx_uart_writel(sport, ucr1, UCR1); 655 656 /* fire it */ 657 sport->dma_is_txing = 1; 658 dmaengine_submit(desc); 659 dma_async_issue_pending(chan); 660 return; 661 } 662 663 /* called with port.lock taken and irqs off */ 664 static void imx_uart_start_tx(struct uart_port *port) 665 { 666 struct imx_port *sport = (struct imx_port *)port; 667 struct tty_port *tport = &sport->port.state->port; 668 u32 ucr1; 669 670 if (!sport->port.x_char && kfifo_is_empty(&tport->xmit_fifo)) 671 return; 672 673 /* 674 * We cannot simply do nothing here if sport->tx_state == SEND already 675 * because UCR1_TXMPTYEN might already have been cleared in 676 * imx_uart_stop_tx(), but tx_state is still SEND. 677 */ 678 679 if (port->rs485.flags & SER_RS485_ENABLED) { 680 if (sport->tx_state == OFF) { 681 u32 ucr2 = imx_uart_readl(sport, UCR2); 682 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 683 imx_uart_rts_active(sport, &ucr2); 684 else 685 imx_uart_rts_inactive(sport, &ucr2); 686 imx_uart_writel(sport, ucr2, UCR2); 687 688 /* 689 * Since we are about to transmit we can not stop RX 690 * with loopback enabled because that will make our 691 * transmitted data being just looped to RX. 692 */ 693 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 694 !port->rs485_rx_during_tx_gpio) 695 imx_uart_stop_rx_with_loopback_ctrl(port, false); 696 697 sport->tx_state = WAIT_AFTER_RTS; 698 699 if (port->rs485.delay_rts_before_send > 0) { 700 start_hrtimer_ms(&sport->trigger_start_tx, 701 port->rs485.delay_rts_before_send); 702 return; 703 } 704 705 /* continue without any delay */ 706 } 707 708 if (sport->tx_state == WAIT_AFTER_SEND 709 || sport->tx_state == WAIT_AFTER_RTS) { 710 711 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 712 713 /* 714 * Enable transmitter and shifter empty irq only if DMA 715 * is off. In the DMA case this is done in the 716 * tx-callback. 717 */ 718 if (!sport->dma_is_enabled) { 719 u32 ucr4 = imx_uart_readl(sport, UCR4); 720 ucr4 |= UCR4_TCEN; 721 imx_uart_writel(sport, ucr4, UCR4); 722 } 723 724 sport->tx_state = SEND; 725 } 726 } else { 727 sport->tx_state = SEND; 728 } 729 730 if (!sport->dma_is_enabled) { 731 ucr1 = imx_uart_readl(sport, UCR1); 732 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 733 } 734 735 if (sport->dma_is_enabled) { 736 if (sport->port.x_char) { 737 /* We have X-char to send, so enable TX IRQ and 738 * disable TX DMA to let TX interrupt to send X-char */ 739 ucr1 = imx_uart_readl(sport, UCR1); 740 ucr1 &= ~UCR1_TXDMAEN; 741 ucr1 |= UCR1_TRDYEN; 742 imx_uart_writel(sport, ucr1, UCR1); 743 return; 744 } 745 746 if (!kfifo_is_empty(&tport->xmit_fifo) && 747 !uart_tx_stopped(port)) 748 imx_uart_dma_tx(sport); 749 return; 750 } 751 } 752 753 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 754 { 755 struct imx_port *sport = dev_id; 756 u32 usr1; 757 758 imx_uart_writel(sport, USR1_RTSD, USR1); 759 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 760 uart_handle_cts_change(&sport->port, usr1); 761 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 762 763 return IRQ_HANDLED; 764 } 765 766 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 767 { 768 struct imx_port *sport = dev_id; 769 irqreturn_t ret; 770 771 uart_port_lock(&sport->port); 772 773 ret = __imx_uart_rtsint(irq, dev_id); 774 775 uart_port_unlock(&sport->port); 776 777 return ret; 778 } 779 780 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 781 { 782 struct imx_port *sport = dev_id; 783 784 uart_port_lock(&sport->port); 785 imx_uart_transmit_buffer(sport); 786 uart_port_unlock(&sport->port); 787 return IRQ_HANDLED; 788 } 789 790 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 791 * This is to be called from Rx ISRs only when some bytes were actually 792 * received. 793 * 794 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 795 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 796 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 797 * that is terminated by any activity on RxD line, or could be stopped by 798 * issuing soft reset to the UART (just stop/start of RX does not help). Note 799 * that what we do here is sending isolated start bit about 2.4 times shorter 800 * than it is to be on UART configured baud rate. 801 */ 802 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 803 { 804 /* To detect hardware 0xff flood we monitor RxD line between RX 805 * interrupts to isolate "receiving" of char(s) with no activity 806 * on RxD line, that'd never happen on actual data transfers. 807 * 808 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 809 * race here if we clear USR2_WAKE when receiving of a char is in 810 * progress, so we might get RX interrupt later with USR2_WAKE bit 811 * cleared. Note though that as we don't try to clear USR2_WAKE when we 812 * detected no activity, this race may hide actual activity only once. 813 * 814 * Yet another case where receive interrupt may occur without RxD 815 * activity is expiration of aging timer, so we consider this as well. 816 * 817 * We use 'idle_counter' to ensure that we got at least so many RX 818 * interrupts without any detected activity on RxD line. 2 cases 819 * described plus 1 to be on the safe side gives us a margin of 3, 820 * below. In practice I was not able to produce a false positive to 821 * induce soft reset at regular data transfers even using 1 as the 822 * margin, so 3 is actually very strong. 823 * 824 * We count interrupts, not chars in 'idle-counter' for simplicity. 825 */ 826 827 if (usr2 & USR2_WAKE) { 828 imx_uart_writel(sport, USR2_WAKE, USR2); 829 sport->idle_counter = 0; 830 } else if (++sport->idle_counter > 3) { 831 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 832 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 833 } 834 } 835 836 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 837 { 838 struct imx_port *sport = dev_id; 839 struct tty_port *port = &sport->port.state->port; 840 u32 usr2, rx; 841 842 /* If we received something, check for 0xff flood */ 843 usr2 = imx_uart_readl(sport, USR2); 844 if (usr2 & USR2_RDR) 845 imx_uart_check_flood(sport, usr2); 846 847 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 848 unsigned int flg = TTY_NORMAL; 849 sport->port.icount.rx++; 850 851 if (unlikely(rx & URXD_ERR)) { 852 if (rx & URXD_BRK) { 853 sport->port.icount.brk++; 854 if (uart_handle_break(&sport->port)) 855 continue; 856 } 857 else if (rx & URXD_PRERR) 858 sport->port.icount.parity++; 859 else if (rx & URXD_FRMERR) 860 sport->port.icount.frame++; 861 if (rx & URXD_OVRRUN) 862 sport->port.icount.overrun++; 863 864 if (rx & sport->port.ignore_status_mask) 865 continue; 866 867 rx &= (sport->port.read_status_mask | 0xFF); 868 869 if (rx & URXD_BRK) 870 flg = TTY_BREAK; 871 else if (rx & URXD_PRERR) 872 flg = TTY_PARITY; 873 else if (rx & URXD_FRMERR) 874 flg = TTY_FRAME; 875 if (rx & URXD_OVRRUN) 876 flg = TTY_OVERRUN; 877 878 sport->port.sysrq = 0; 879 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 880 continue; 881 } 882 883 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 884 continue; 885 886 if (tty_insert_flip_char(port, rx, flg) == 0) 887 sport->port.icount.buf_overrun++; 888 } 889 890 tty_flip_buffer_push(port); 891 892 return IRQ_HANDLED; 893 } 894 895 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 896 { 897 struct imx_port *sport = dev_id; 898 irqreturn_t ret; 899 900 uart_port_lock(&sport->port); 901 902 ret = __imx_uart_rxint(irq, dev_id); 903 904 uart_port_unlock(&sport->port); 905 906 return ret; 907 } 908 909 static void imx_uart_clear_rx_errors(struct imx_port *sport); 910 911 /* 912 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 913 */ 914 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 915 { 916 unsigned int tmp = TIOCM_DSR; 917 unsigned usr1 = imx_uart_readl(sport, USR1); 918 unsigned usr2 = imx_uart_readl(sport, USR2); 919 920 if (usr1 & USR1_RTSS) 921 tmp |= TIOCM_CTS; 922 923 /* in DCE mode DCDIN is always 0 */ 924 if (!(usr2 & USR2_DCDIN)) 925 tmp |= TIOCM_CAR; 926 927 if (sport->dte_mode) 928 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 929 tmp |= TIOCM_RI; 930 931 return tmp; 932 } 933 934 /* 935 * Handle any change of modem status signal since we were last called. 936 */ 937 static void imx_uart_mctrl_check(struct imx_port *sport) 938 { 939 unsigned int status, changed; 940 941 status = imx_uart_get_hwmctrl(sport); 942 changed = status ^ sport->old_status; 943 944 if (changed == 0) 945 return; 946 947 sport->old_status = status; 948 949 if (changed & TIOCM_RI && status & TIOCM_RI) 950 sport->port.icount.rng++; 951 if (changed & TIOCM_DSR) 952 sport->port.icount.dsr++; 953 if (changed & TIOCM_CAR) 954 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 955 if (changed & TIOCM_CTS) 956 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 957 958 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 959 } 960 961 static irqreturn_t imx_uart_int(int irq, void *dev_id) 962 { 963 struct imx_port *sport = dev_id; 964 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 965 irqreturn_t ret = IRQ_NONE; 966 967 uart_port_lock(&sport->port); 968 969 usr1 = imx_uart_readl(sport, USR1); 970 usr2 = imx_uart_readl(sport, USR2); 971 ucr1 = imx_uart_readl(sport, UCR1); 972 ucr2 = imx_uart_readl(sport, UCR2); 973 ucr3 = imx_uart_readl(sport, UCR3); 974 ucr4 = imx_uart_readl(sport, UCR4); 975 976 /* 977 * Even if a condition is true that can trigger an irq only handle it if 978 * the respective irq source is enabled. This prevents some undesired 979 * actions, for example if a character that sits in the RX FIFO and that 980 * should be fetched via DMA is tried to be fetched using PIO. Or the 981 * receiver is currently off and so reading from URXD0 results in an 982 * exception. So just mask the (raw) status bits for disabled irqs. 983 */ 984 if ((ucr1 & UCR1_RRDYEN) == 0) 985 usr1 &= ~USR1_RRDY; 986 if ((ucr2 & UCR2_ATEN) == 0) 987 usr1 &= ~USR1_AGTIM; 988 if ((ucr1 & UCR1_TRDYEN) == 0) 989 usr1 &= ~USR1_TRDY; 990 if ((ucr4 & UCR4_TCEN) == 0) 991 usr2 &= ~USR2_TXDC; 992 if ((ucr3 & UCR3_DTRDEN) == 0) 993 usr1 &= ~USR1_DTRD; 994 if ((ucr1 & UCR1_RTSDEN) == 0) 995 usr1 &= ~USR1_RTSD; 996 if ((ucr3 & UCR3_AWAKEN) == 0) 997 usr1 &= ~USR1_AWAKE; 998 if ((ucr4 & UCR4_OREN) == 0) 999 usr2 &= ~USR2_ORE; 1000 1001 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1002 imx_uart_writel(sport, USR1_AGTIM, USR1); 1003 1004 __imx_uart_rxint(irq, dev_id); 1005 ret = IRQ_HANDLED; 1006 } 1007 1008 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1009 imx_uart_transmit_buffer(sport); 1010 ret = IRQ_HANDLED; 1011 } 1012 1013 if (usr1 & USR1_DTRD) { 1014 imx_uart_writel(sport, USR1_DTRD, USR1); 1015 1016 imx_uart_mctrl_check(sport); 1017 1018 ret = IRQ_HANDLED; 1019 } 1020 1021 if (usr1 & USR1_RTSD) { 1022 __imx_uart_rtsint(irq, dev_id); 1023 ret = IRQ_HANDLED; 1024 } 1025 1026 if (usr1 & USR1_AWAKE) { 1027 imx_uart_writel(sport, USR1_AWAKE, USR1); 1028 ret = IRQ_HANDLED; 1029 } 1030 1031 if (usr2 & USR2_ORE) { 1032 sport->port.icount.overrun++; 1033 imx_uart_writel(sport, USR2_ORE, USR2); 1034 ret = IRQ_HANDLED; 1035 } 1036 1037 uart_port_unlock(&sport->port); 1038 1039 return ret; 1040 } 1041 1042 /* 1043 * Return TIOCSER_TEMT when transmitter is not busy. 1044 */ 1045 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1046 { 1047 struct imx_port *sport = (struct imx_port *)port; 1048 unsigned int ret; 1049 1050 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1051 1052 /* If the TX DMA is working, return 0. */ 1053 if (sport->dma_is_txing) 1054 ret = 0; 1055 1056 return ret; 1057 } 1058 1059 /* called with port.lock taken and irqs off */ 1060 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1061 { 1062 struct imx_port *sport = (struct imx_port *)port; 1063 unsigned int ret = imx_uart_get_hwmctrl(sport); 1064 1065 mctrl_gpio_get(sport->gpios, &ret); 1066 1067 return ret; 1068 } 1069 1070 /* called with port.lock taken and irqs off */ 1071 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1072 { 1073 struct imx_port *sport = (struct imx_port *)port; 1074 u32 ucr3, uts; 1075 1076 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1077 u32 ucr2; 1078 1079 /* 1080 * Turn off autoRTS if RTS is lowered and restore autoRTS 1081 * setting if RTS is raised. 1082 */ 1083 ucr2 = imx_uart_readl(sport, UCR2); 1084 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1085 if (mctrl & TIOCM_RTS) { 1086 ucr2 |= UCR2_CTS; 1087 /* 1088 * UCR2_IRTS is unset if and only if the port is 1089 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1090 * to get the state to restore to. 1091 */ 1092 if (!(ucr2 & UCR2_IRTS)) 1093 ucr2 |= UCR2_CTSC; 1094 } 1095 imx_uart_writel(sport, ucr2, UCR2); 1096 } 1097 1098 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1099 if (!(mctrl & TIOCM_DTR)) 1100 ucr3 |= UCR3_DSR; 1101 imx_uart_writel(sport, ucr3, UCR3); 1102 1103 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1104 if (mctrl & TIOCM_LOOP) 1105 uts |= UTS_LOOP; 1106 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1107 1108 mctrl_gpio_set(sport->gpios, mctrl); 1109 } 1110 1111 /* 1112 * Interrupts always disabled. 1113 */ 1114 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1115 { 1116 struct imx_port *sport = (struct imx_port *)port; 1117 unsigned long flags; 1118 u32 ucr1; 1119 1120 uart_port_lock_irqsave(&sport->port, &flags); 1121 1122 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1123 1124 if (break_state != 0) 1125 ucr1 |= UCR1_SNDBRK; 1126 1127 imx_uart_writel(sport, ucr1, UCR1); 1128 1129 uart_port_unlock_irqrestore(&sport->port, flags); 1130 } 1131 1132 /* 1133 * This is our per-port timeout handler, for checking the 1134 * modem status signals. 1135 */ 1136 static void imx_uart_timeout(struct timer_list *t) 1137 { 1138 struct imx_port *sport = from_timer(sport, t, timer); 1139 unsigned long flags; 1140 1141 if (sport->port.state) { 1142 uart_port_lock_irqsave(&sport->port, &flags); 1143 imx_uart_mctrl_check(sport); 1144 uart_port_unlock_irqrestore(&sport->port, flags); 1145 1146 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1147 } 1148 } 1149 1150 /* 1151 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1152 * [1] the RX DMA buffer is full. 1153 * [2] the aging timer expires 1154 * 1155 * Condition [2] is triggered when a character has been sitting in the FIFO 1156 * for at least 8 byte durations. 1157 */ 1158 static void imx_uart_dma_rx_callback(void *data) 1159 { 1160 struct imx_port *sport = data; 1161 struct dma_chan *chan = sport->dma_chan_rx; 1162 struct scatterlist *sgl = &sport->rx_sgl; 1163 struct tty_port *port = &sport->port.state->port; 1164 struct dma_tx_state state; 1165 struct circ_buf *rx_ring = &sport->rx_ring; 1166 enum dma_status status; 1167 unsigned int w_bytes = 0; 1168 unsigned int r_bytes; 1169 unsigned int bd_size; 1170 1171 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1172 1173 if (status == DMA_ERROR) { 1174 uart_port_lock(&sport->port); 1175 imx_uart_clear_rx_errors(sport); 1176 uart_port_unlock(&sport->port); 1177 return; 1178 } 1179 1180 /* 1181 * The state-residue variable represents the empty space 1182 * relative to the entire buffer. Taking this in consideration 1183 * the head is always calculated base on the buffer total 1184 * length - DMA transaction residue. The UART script from the 1185 * SDMA firmware will jump to the next buffer descriptor, 1186 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1187 * Taking this in consideration the tail is always at the 1188 * beginning of the buffer descriptor that contains the head. 1189 */ 1190 1191 /* Calculate the head */ 1192 rx_ring->head = sg_dma_len(sgl) - state.residue; 1193 1194 /* Calculate the tail. */ 1195 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1196 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1197 1198 if (rx_ring->head <= sg_dma_len(sgl) && 1199 rx_ring->head > rx_ring->tail) { 1200 1201 /* Move data from tail to head */ 1202 r_bytes = rx_ring->head - rx_ring->tail; 1203 1204 /* If we received something, check for 0xff flood */ 1205 uart_port_lock(&sport->port); 1206 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1207 uart_port_unlock(&sport->port); 1208 1209 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1210 1211 /* CPU claims ownership of RX DMA buffer */ 1212 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1213 DMA_FROM_DEVICE); 1214 1215 w_bytes = tty_insert_flip_string(port, 1216 sport->rx_buf + rx_ring->tail, r_bytes); 1217 1218 /* UART retrieves ownership of RX DMA buffer */ 1219 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1220 DMA_FROM_DEVICE); 1221 1222 if (w_bytes != r_bytes) 1223 sport->port.icount.buf_overrun++; 1224 1225 sport->port.icount.rx += w_bytes; 1226 } 1227 } else { 1228 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1229 WARN_ON(rx_ring->head <= rx_ring->tail); 1230 } 1231 1232 if (w_bytes) { 1233 tty_flip_buffer_push(port); 1234 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1235 } 1236 } 1237 1238 static int imx_uart_start_rx_dma(struct imx_port *sport) 1239 { 1240 struct scatterlist *sgl = &sport->rx_sgl; 1241 struct dma_chan *chan = sport->dma_chan_rx; 1242 struct device *dev = sport->port.dev; 1243 struct dma_async_tx_descriptor *desc; 1244 int ret; 1245 1246 sport->rx_ring.head = 0; 1247 sport->rx_ring.tail = 0; 1248 1249 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1250 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1251 if (ret == 0) { 1252 dev_err(dev, "DMA mapping error for RX.\n"); 1253 return -EINVAL; 1254 } 1255 1256 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1257 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1258 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1259 1260 if (!desc) { 1261 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1262 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1263 return -EINVAL; 1264 } 1265 desc->callback = imx_uart_dma_rx_callback; 1266 desc->callback_param = sport; 1267 1268 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1269 sport->dma_is_rxing = 1; 1270 sport->rx_cookie = dmaengine_submit(desc); 1271 dma_async_issue_pending(chan); 1272 return 0; 1273 } 1274 1275 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1276 { 1277 struct tty_port *port = &sport->port.state->port; 1278 u32 usr1, usr2; 1279 1280 usr1 = imx_uart_readl(sport, USR1); 1281 usr2 = imx_uart_readl(sport, USR2); 1282 1283 if (usr2 & USR2_BRCD) { 1284 sport->port.icount.brk++; 1285 imx_uart_writel(sport, USR2_BRCD, USR2); 1286 uart_handle_break(&sport->port); 1287 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1288 sport->port.icount.buf_overrun++; 1289 tty_flip_buffer_push(port); 1290 } else { 1291 if (usr1 & USR1_FRAMERR) { 1292 sport->port.icount.frame++; 1293 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1294 } else if (usr1 & USR1_PARITYERR) { 1295 sport->port.icount.parity++; 1296 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1297 } 1298 } 1299 1300 if (usr2 & USR2_ORE) { 1301 sport->port.icount.overrun++; 1302 imx_uart_writel(sport, USR2_ORE, USR2); 1303 } 1304 1305 sport->idle_counter = 0; 1306 1307 } 1308 1309 #define TXTL_DEFAULT 8 1310 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1311 #define TXTL_DMA 8 /* DMA burst setting */ 1312 #define RXTL_DMA 9 /* DMA burst setting */ 1313 1314 static void imx_uart_setup_ufcr(struct imx_port *sport, 1315 unsigned char txwl, unsigned char rxwl) 1316 { 1317 unsigned int val; 1318 1319 /* set receiver / transmitter trigger level */ 1320 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1321 val |= txwl << UFCR_TXTL_SHF | rxwl; 1322 imx_uart_writel(sport, val, UFCR); 1323 } 1324 1325 static void imx_uart_dma_exit(struct imx_port *sport) 1326 { 1327 if (sport->dma_chan_rx) { 1328 dmaengine_terminate_sync(sport->dma_chan_rx); 1329 dma_release_channel(sport->dma_chan_rx); 1330 sport->dma_chan_rx = NULL; 1331 sport->rx_cookie = -EINVAL; 1332 kfree(sport->rx_buf); 1333 sport->rx_buf = NULL; 1334 } 1335 1336 if (sport->dma_chan_tx) { 1337 dmaengine_terminate_sync(sport->dma_chan_tx); 1338 dma_release_channel(sport->dma_chan_tx); 1339 sport->dma_chan_tx = NULL; 1340 } 1341 } 1342 1343 static int imx_uart_dma_init(struct imx_port *sport) 1344 { 1345 struct dma_slave_config slave_config = {}; 1346 struct device *dev = sport->port.dev; 1347 struct dma_chan *chan; 1348 int ret; 1349 1350 /* Prepare for RX : */ 1351 chan = dma_request_chan(dev, "rx"); 1352 if (IS_ERR(chan)) { 1353 dev_dbg(dev, "cannot get the DMA channel.\n"); 1354 sport->dma_chan_rx = NULL; 1355 ret = PTR_ERR(chan); 1356 goto err; 1357 } 1358 sport->dma_chan_rx = chan; 1359 1360 slave_config.direction = DMA_DEV_TO_MEM; 1361 slave_config.src_addr = sport->port.mapbase + URXD0; 1362 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1363 /* one byte less than the watermark level to enable the aging timer */ 1364 slave_config.src_maxburst = RXTL_DMA - 1; 1365 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1366 if (ret) { 1367 dev_err(dev, "error in RX dma configuration.\n"); 1368 goto err; 1369 } 1370 1371 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1372 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1373 if (!sport->rx_buf) { 1374 ret = -ENOMEM; 1375 goto err; 1376 } 1377 sport->rx_ring.buf = sport->rx_buf; 1378 1379 /* Prepare for TX : */ 1380 chan = dma_request_chan(dev, "tx"); 1381 if (IS_ERR(chan)) { 1382 dev_err(dev, "cannot get the TX DMA channel!\n"); 1383 sport->dma_chan_tx = NULL; 1384 ret = PTR_ERR(chan); 1385 goto err; 1386 } 1387 sport->dma_chan_tx = chan; 1388 1389 slave_config.direction = DMA_MEM_TO_DEV; 1390 slave_config.dst_addr = sport->port.mapbase + URTX0; 1391 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1392 slave_config.dst_maxburst = TXTL_DMA; 1393 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1394 if (ret) { 1395 dev_err(dev, "error in TX dma configuration."); 1396 goto err; 1397 } 1398 1399 return 0; 1400 err: 1401 imx_uart_dma_exit(sport); 1402 return ret; 1403 } 1404 1405 static void imx_uart_enable_dma(struct imx_port *sport) 1406 { 1407 u32 ucr1; 1408 1409 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1410 1411 /* set UCR1 */ 1412 ucr1 = imx_uart_readl(sport, UCR1); 1413 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1414 imx_uart_writel(sport, ucr1, UCR1); 1415 1416 sport->dma_is_enabled = 1; 1417 } 1418 1419 static void imx_uart_disable_dma(struct imx_port *sport) 1420 { 1421 u32 ucr1; 1422 1423 /* clear UCR1 */ 1424 ucr1 = imx_uart_readl(sport, UCR1); 1425 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1426 imx_uart_writel(sport, ucr1, UCR1); 1427 1428 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1429 1430 sport->dma_is_enabled = 0; 1431 } 1432 1433 /* half the RX buffer size */ 1434 #define CTSTL 16 1435 1436 static int imx_uart_startup(struct uart_port *port) 1437 { 1438 struct imx_port *sport = (struct imx_port *)port; 1439 int retval; 1440 unsigned long flags; 1441 int dma_is_inited = 0; 1442 u32 ucr1, ucr2, ucr3, ucr4; 1443 1444 retval = clk_prepare_enable(sport->clk_per); 1445 if (retval) 1446 return retval; 1447 retval = clk_prepare_enable(sport->clk_ipg); 1448 if (retval) { 1449 clk_disable_unprepare(sport->clk_per); 1450 return retval; 1451 } 1452 1453 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1454 1455 /* disable the DREN bit (Data Ready interrupt enable) before 1456 * requesting IRQs 1457 */ 1458 ucr4 = imx_uart_readl(sport, UCR4); 1459 1460 /* set the trigger level for CTS */ 1461 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1462 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1463 1464 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1465 1466 /* Can we enable the DMA support? */ 1467 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) { 1468 lockdep_set_subclass(&port->lock, 1); 1469 dma_is_inited = 1; 1470 } 1471 1472 uart_port_lock_irqsave(&sport->port, &flags); 1473 1474 /* Reset fifo's and state machines */ 1475 imx_uart_soft_reset(sport); 1476 1477 /* 1478 * Finally, clear and enable interrupts 1479 */ 1480 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1481 imx_uart_writel(sport, USR2_ORE, USR2); 1482 1483 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1484 ucr1 |= UCR1_UARTEN; 1485 if (sport->have_rtscts) 1486 ucr1 |= UCR1_RTSDEN; 1487 1488 imx_uart_writel(sport, ucr1, UCR1); 1489 1490 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1491 if (!dma_is_inited) 1492 ucr4 |= UCR4_OREN; 1493 if (sport->inverted_rx) 1494 ucr4 |= UCR4_INVR; 1495 imx_uart_writel(sport, ucr4, UCR4); 1496 1497 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1498 /* 1499 * configure tx polarity before enabling tx 1500 */ 1501 if (sport->inverted_tx) 1502 ucr3 |= UCR3_INVT; 1503 1504 if (!imx_uart_is_imx1(sport)) { 1505 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1506 1507 if (sport->dte_mode) 1508 /* disable broken interrupts */ 1509 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1510 } 1511 imx_uart_writel(sport, ucr3, UCR3); 1512 1513 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1514 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1515 if (!sport->have_rtscts) 1516 ucr2 |= UCR2_IRTS; 1517 /* 1518 * make sure the edge sensitive RTS-irq is disabled, 1519 * we're using RTSD instead. 1520 */ 1521 if (!imx_uart_is_imx1(sport)) 1522 ucr2 &= ~UCR2_RTSEN; 1523 imx_uart_writel(sport, ucr2, UCR2); 1524 1525 /* 1526 * Enable modem status interrupts 1527 */ 1528 imx_uart_enable_ms(&sport->port); 1529 1530 if (dma_is_inited) { 1531 imx_uart_enable_dma(sport); 1532 imx_uart_start_rx_dma(sport); 1533 } else { 1534 ucr1 = imx_uart_readl(sport, UCR1); 1535 ucr1 |= UCR1_RRDYEN; 1536 imx_uart_writel(sport, ucr1, UCR1); 1537 1538 ucr2 = imx_uart_readl(sport, UCR2); 1539 ucr2 |= UCR2_ATEN; 1540 imx_uart_writel(sport, ucr2, UCR2); 1541 } 1542 1543 imx_uart_disable_loopback_rs485(sport); 1544 1545 uart_port_unlock_irqrestore(&sport->port, flags); 1546 1547 return 0; 1548 } 1549 1550 static void imx_uart_shutdown(struct uart_port *port) 1551 { 1552 struct imx_port *sport = (struct imx_port *)port; 1553 unsigned long flags; 1554 u32 ucr1, ucr2, ucr4, uts; 1555 int loops; 1556 1557 if (sport->dma_is_enabled) { 1558 dmaengine_terminate_sync(sport->dma_chan_tx); 1559 if (sport->dma_is_txing) { 1560 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1561 sport->dma_tx_nents, DMA_TO_DEVICE); 1562 sport->dma_is_txing = 0; 1563 } 1564 dmaengine_terminate_sync(sport->dma_chan_rx); 1565 if (sport->dma_is_rxing) { 1566 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1567 1, DMA_FROM_DEVICE); 1568 sport->dma_is_rxing = 0; 1569 } 1570 1571 uart_port_lock_irqsave(&sport->port, &flags); 1572 imx_uart_stop_tx(port); 1573 imx_uart_stop_rx(port); 1574 imx_uart_disable_dma(sport); 1575 uart_port_unlock_irqrestore(&sport->port, flags); 1576 imx_uart_dma_exit(sport); 1577 } 1578 1579 mctrl_gpio_disable_ms(sport->gpios); 1580 1581 uart_port_lock_irqsave(&sport->port, &flags); 1582 ucr2 = imx_uart_readl(sport, UCR2); 1583 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1584 imx_uart_writel(sport, ucr2, UCR2); 1585 uart_port_unlock_irqrestore(&sport->port, flags); 1586 1587 /* 1588 * Stop our timer. 1589 */ 1590 del_timer_sync(&sport->timer); 1591 1592 /* 1593 * Disable all interrupts, port and break condition. 1594 */ 1595 1596 uart_port_lock_irqsave(&sport->port, &flags); 1597 1598 ucr1 = imx_uart_readl(sport, UCR1); 1599 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1600 UCR1_ATDMAEN | UCR1_SNDBRK); 1601 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1602 if (port->rs485.flags & SER_RS485_ENABLED && 1603 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1604 sport->have_rtscts && !sport->have_rtsgpio) { 1605 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1606 uts |= UTS_LOOP; 1607 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1608 ucr1 |= UCR1_UARTEN; 1609 } else { 1610 ucr1 &= ~UCR1_UARTEN; 1611 } 1612 imx_uart_writel(sport, ucr1, UCR1); 1613 1614 ucr4 = imx_uart_readl(sport, UCR4); 1615 ucr4 &= ~UCR4_TCEN; 1616 imx_uart_writel(sport, ucr4, UCR4); 1617 1618 /* 1619 * We have to ensure the tx state machine ends up in OFF. This 1620 * is especially important for rs485 where we must not leave 1621 * the RTS signal high, blocking the bus indefinitely. 1622 * 1623 * All interrupts are now disabled, so imx_uart_stop_tx() will 1624 * no longer be called from imx_uart_transmit_buffer(). It may 1625 * still be called via the hrtimers, and if those are in play, 1626 * we have to honour the delays. 1627 */ 1628 if (sport->tx_state == WAIT_AFTER_RTS || sport->tx_state == SEND) 1629 imx_uart_stop_tx(port); 1630 1631 /* 1632 * In many cases (rs232 mode, or if tx_state was 1633 * WAIT_AFTER_RTS, or if tx_state was SEND and there is no 1634 * delay_rts_after_send), this will have moved directly to 1635 * OFF. In rs485 mode, tx_state might already have been 1636 * WAIT_AFTER_SEND and the hrtimer thus already started, or 1637 * the above imx_uart_stop_tx() call could have started it. In 1638 * those cases, we have to wait for the hrtimer to fire and 1639 * complete the transition to OFF. 1640 */ 1641 loops = port->rs485.flags & SER_RS485_ENABLED ? 1642 port->rs485.delay_rts_after_send : 0; 1643 while (sport->tx_state != OFF && loops--) { 1644 uart_port_unlock_irqrestore(&sport->port, flags); 1645 msleep(1); 1646 uart_port_lock_irqsave(&sport->port, &flags); 1647 } 1648 1649 if (sport->tx_state != OFF) { 1650 dev_warn(sport->port.dev, "unexpected tx_state %d\n", 1651 sport->tx_state); 1652 /* 1653 * This machine may be busted, but ensure the RTS 1654 * signal is inactive in order not to block other 1655 * devices. 1656 */ 1657 if (port->rs485.flags & SER_RS485_ENABLED) { 1658 ucr2 = imx_uart_readl(sport, UCR2); 1659 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1660 imx_uart_rts_active(sport, &ucr2); 1661 else 1662 imx_uart_rts_inactive(sport, &ucr2); 1663 imx_uart_writel(sport, ucr2, UCR2); 1664 } 1665 sport->tx_state = OFF; 1666 } 1667 1668 uart_port_unlock_irqrestore(&sport->port, flags); 1669 1670 clk_disable_unprepare(sport->clk_per); 1671 clk_disable_unprepare(sport->clk_ipg); 1672 } 1673 1674 /* called with port.lock taken and irqs off */ 1675 static void imx_uart_flush_buffer(struct uart_port *port) 1676 { 1677 struct imx_port *sport = (struct imx_port *)port; 1678 struct scatterlist *sgl = &sport->tx_sgl[0]; 1679 1680 if (!sport->dma_chan_tx) 1681 return; 1682 1683 sport->tx_bytes = 0; 1684 dmaengine_terminate_all(sport->dma_chan_tx); 1685 if (sport->dma_is_txing) { 1686 u32 ucr1; 1687 1688 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1689 DMA_TO_DEVICE); 1690 ucr1 = imx_uart_readl(sport, UCR1); 1691 ucr1 &= ~UCR1_TXDMAEN; 1692 imx_uart_writel(sport, ucr1, UCR1); 1693 sport->dma_is_txing = 0; 1694 } 1695 1696 imx_uart_soft_reset(sport); 1697 1698 } 1699 1700 static void 1701 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1702 const struct ktermios *old) 1703 { 1704 struct imx_port *sport = (struct imx_port *)port; 1705 unsigned long flags; 1706 u32 ucr2, old_ucr2, ufcr; 1707 unsigned int baud, quot; 1708 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1709 unsigned long div; 1710 unsigned long num, denom, old_ubir, old_ubmr; 1711 uint64_t tdiv64; 1712 1713 /* 1714 * We only support CS7 and CS8. 1715 */ 1716 while ((termios->c_cflag & CSIZE) != CS7 && 1717 (termios->c_cflag & CSIZE) != CS8) { 1718 termios->c_cflag &= ~CSIZE; 1719 termios->c_cflag |= old_csize; 1720 old_csize = CS8; 1721 } 1722 1723 del_timer_sync(&sport->timer); 1724 1725 /* 1726 * Ask the core to calculate the divisor for us. 1727 */ 1728 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1729 quot = uart_get_divisor(port, baud); 1730 1731 uart_port_lock_irqsave(&sport->port, &flags); 1732 1733 /* 1734 * Read current UCR2 and save it for future use, then clear all the bits 1735 * except those we will or may need to preserve. 1736 */ 1737 old_ucr2 = imx_uart_readl(sport, UCR2); 1738 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1739 1740 ucr2 |= UCR2_SRST | UCR2_IRTS; 1741 if ((termios->c_cflag & CSIZE) == CS8) 1742 ucr2 |= UCR2_WS; 1743 1744 if (!sport->have_rtscts) 1745 termios->c_cflag &= ~CRTSCTS; 1746 1747 if (port->rs485.flags & SER_RS485_ENABLED) { 1748 /* 1749 * RTS is mandatory for rs485 operation, so keep 1750 * it under manual control and keep transmitter 1751 * disabled. 1752 */ 1753 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1754 imx_uart_rts_active(sport, &ucr2); 1755 else 1756 imx_uart_rts_inactive(sport, &ucr2); 1757 1758 } else if (termios->c_cflag & CRTSCTS) { 1759 /* 1760 * Only let receiver control RTS output if we were not requested 1761 * to have RTS inactive (which then should take precedence). 1762 */ 1763 if (ucr2 & UCR2_CTS) 1764 ucr2 |= UCR2_CTSC; 1765 } 1766 1767 if (termios->c_cflag & CRTSCTS) 1768 ucr2 &= ~UCR2_IRTS; 1769 if (termios->c_cflag & CSTOPB) 1770 ucr2 |= UCR2_STPB; 1771 if (termios->c_cflag & PARENB) { 1772 ucr2 |= UCR2_PREN; 1773 if (termios->c_cflag & PARODD) 1774 ucr2 |= UCR2_PROE; 1775 } 1776 1777 sport->port.read_status_mask = 0; 1778 if (termios->c_iflag & INPCK) 1779 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1780 if (termios->c_iflag & (BRKINT | PARMRK)) 1781 sport->port.read_status_mask |= URXD_BRK; 1782 1783 /* 1784 * Characters to ignore 1785 */ 1786 sport->port.ignore_status_mask = 0; 1787 if (termios->c_iflag & IGNPAR) 1788 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1789 if (termios->c_iflag & IGNBRK) { 1790 sport->port.ignore_status_mask |= URXD_BRK; 1791 /* 1792 * If we're ignoring parity and break indicators, 1793 * ignore overruns too (for real raw support). 1794 */ 1795 if (termios->c_iflag & IGNPAR) 1796 sport->port.ignore_status_mask |= URXD_OVRRUN; 1797 } 1798 1799 if ((termios->c_cflag & CREAD) == 0) 1800 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1801 1802 /* 1803 * Update the per-port timeout. 1804 */ 1805 uart_update_timeout(port, termios->c_cflag, baud); 1806 1807 /* custom-baudrate handling */ 1808 div = sport->port.uartclk / (baud * 16); 1809 if (baud == 38400 && quot != div) 1810 baud = sport->port.uartclk / (quot * 16); 1811 1812 div = sport->port.uartclk / (baud * 16); 1813 if (div > 7) 1814 div = 7; 1815 if (!div) 1816 div = 1; 1817 1818 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1819 1 << 16, 1 << 16, &num, &denom); 1820 1821 tdiv64 = sport->port.uartclk; 1822 tdiv64 *= num; 1823 do_div(tdiv64, denom * 16 * div); 1824 tty_termios_encode_baud_rate(termios, 1825 (speed_t)tdiv64, (speed_t)tdiv64); 1826 1827 num -= 1; 1828 denom -= 1; 1829 1830 ufcr = imx_uart_readl(sport, UFCR); 1831 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1832 imx_uart_writel(sport, ufcr, UFCR); 1833 1834 /* 1835 * Two registers below should always be written both and in this 1836 * particular order. One consequence is that we need to check if any of 1837 * them changes and then update both. We do need the check for change 1838 * as even writing the same values seem to "restart" 1839 * transmission/receiving logic in the hardware, that leads to data 1840 * breakage even when rate doesn't in fact change. E.g., user switches 1841 * RTS/CTS handshake and suddenly gets broken bytes. 1842 */ 1843 old_ubir = imx_uart_readl(sport, UBIR); 1844 old_ubmr = imx_uart_readl(sport, UBMR); 1845 if (old_ubir != num || old_ubmr != denom) { 1846 imx_uart_writel(sport, num, UBIR); 1847 imx_uart_writel(sport, denom, UBMR); 1848 } 1849 1850 if (!imx_uart_is_imx1(sport)) 1851 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1852 IMX21_ONEMS); 1853 1854 imx_uart_writel(sport, ucr2, UCR2); 1855 1856 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1857 imx_uart_enable_ms(&sport->port); 1858 1859 uart_port_unlock_irqrestore(&sport->port, flags); 1860 } 1861 1862 static const char *imx_uart_type(struct uart_port *port) 1863 { 1864 return port->type == PORT_IMX ? "IMX" : NULL; 1865 } 1866 1867 /* 1868 * Configure/autoconfigure the port. 1869 */ 1870 static void imx_uart_config_port(struct uart_port *port, int flags) 1871 { 1872 if (flags & UART_CONFIG_TYPE) 1873 port->type = PORT_IMX; 1874 } 1875 1876 /* 1877 * Verify the new serial_struct (for TIOCSSERIAL). 1878 * The only change we allow are to the flags and type, and 1879 * even then only between PORT_IMX and PORT_UNKNOWN 1880 */ 1881 static int 1882 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1883 { 1884 int ret = 0; 1885 1886 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1887 ret = -EINVAL; 1888 if (port->irq != ser->irq) 1889 ret = -EINVAL; 1890 if (ser->io_type != UPIO_MEM) 1891 ret = -EINVAL; 1892 if (port->uartclk / 16 != ser->baud_base) 1893 ret = -EINVAL; 1894 if (port->mapbase != (unsigned long)ser->iomem_base) 1895 ret = -EINVAL; 1896 if (port->iobase != ser->port) 1897 ret = -EINVAL; 1898 if (ser->hub6 != 0) 1899 ret = -EINVAL; 1900 return ret; 1901 } 1902 1903 #if defined(CONFIG_CONSOLE_POLL) 1904 1905 static int imx_uart_poll_init(struct uart_port *port) 1906 { 1907 struct imx_port *sport = (struct imx_port *)port; 1908 unsigned long flags; 1909 u32 ucr1, ucr2; 1910 int retval; 1911 1912 retval = clk_prepare_enable(sport->clk_ipg); 1913 if (retval) 1914 return retval; 1915 retval = clk_prepare_enable(sport->clk_per); 1916 if (retval) 1917 clk_disable_unprepare(sport->clk_ipg); 1918 1919 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1920 1921 uart_port_lock_irqsave(&sport->port, &flags); 1922 1923 /* 1924 * Be careful about the order of enabling bits here. First enable the 1925 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1926 * This prevents that a character that already sits in the RX fifo is 1927 * triggering an irq but the try to fetch it from there results in an 1928 * exception because UARTEN or RXEN is still off. 1929 */ 1930 ucr1 = imx_uart_readl(sport, UCR1); 1931 ucr2 = imx_uart_readl(sport, UCR2); 1932 1933 if (imx_uart_is_imx1(sport)) 1934 ucr1 |= IMX1_UCR1_UARTCLKEN; 1935 1936 ucr1 |= UCR1_UARTEN; 1937 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1938 1939 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1940 ucr2 &= ~UCR2_ATEN; 1941 1942 imx_uart_writel(sport, ucr1, UCR1); 1943 imx_uart_writel(sport, ucr2, UCR2); 1944 1945 /* now enable irqs */ 1946 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1947 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1948 1949 uart_port_unlock_irqrestore(&sport->port, flags); 1950 1951 return 0; 1952 } 1953 1954 static int imx_uart_poll_get_char(struct uart_port *port) 1955 { 1956 struct imx_port *sport = (struct imx_port *)port; 1957 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1958 return NO_POLL_CHAR; 1959 1960 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1961 } 1962 1963 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1964 { 1965 struct imx_port *sport = (struct imx_port *)port; 1966 unsigned int status; 1967 1968 /* drain */ 1969 do { 1970 status = imx_uart_readl(sport, USR1); 1971 } while (~status & USR1_TRDY); 1972 1973 /* write */ 1974 imx_uart_writel(sport, c, URTX0); 1975 1976 /* flush */ 1977 do { 1978 status = imx_uart_readl(sport, USR2); 1979 } while (~status & USR2_TXDC); 1980 } 1981 #endif 1982 1983 /* called with port.lock taken and irqs off or from .probe without locking */ 1984 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1985 struct serial_rs485 *rs485conf) 1986 { 1987 struct imx_port *sport = (struct imx_port *)port; 1988 u32 ucr2, ufcr; 1989 1990 if (rs485conf->flags & SER_RS485_ENABLED) { 1991 /* Enable receiver if low-active RTS signal is requested */ 1992 if (sport->have_rtscts && !sport->have_rtsgpio && 1993 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1994 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1995 1996 /* disable transmitter */ 1997 ucr2 = imx_uart_readl(sport, UCR2); 1998 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1999 imx_uart_rts_active(sport, &ucr2); 2000 else 2001 imx_uart_rts_inactive(sport, &ucr2); 2002 imx_uart_writel(sport, ucr2, UCR2); 2003 } 2004 2005 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 2006 if (!(rs485conf->flags & SER_RS485_ENABLED) || 2007 rs485conf->flags & SER_RS485_RX_DURING_TX) { 2008 /* If the receiver trigger is 0, set it to a default value */ 2009 ufcr = imx_uart_readl(sport, UFCR); 2010 if ((ufcr & UFCR_RXTL_MASK) == 0) 2011 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2012 imx_uart_start_rx(port); 2013 } 2014 2015 return 0; 2016 } 2017 2018 static const struct uart_ops imx_uart_pops = { 2019 .tx_empty = imx_uart_tx_empty, 2020 .set_mctrl = imx_uart_set_mctrl, 2021 .get_mctrl = imx_uart_get_mctrl, 2022 .stop_tx = imx_uart_stop_tx, 2023 .start_tx = imx_uart_start_tx, 2024 .stop_rx = imx_uart_stop_rx, 2025 .enable_ms = imx_uart_enable_ms, 2026 .break_ctl = imx_uart_break_ctl, 2027 .startup = imx_uart_startup, 2028 .shutdown = imx_uart_shutdown, 2029 .flush_buffer = imx_uart_flush_buffer, 2030 .set_termios = imx_uart_set_termios, 2031 .type = imx_uart_type, 2032 .config_port = imx_uart_config_port, 2033 .verify_port = imx_uart_verify_port, 2034 #if defined(CONFIG_CONSOLE_POLL) 2035 .poll_init = imx_uart_poll_init, 2036 .poll_get_char = imx_uart_poll_get_char, 2037 .poll_put_char = imx_uart_poll_put_char, 2038 #endif 2039 }; 2040 2041 static struct imx_port *imx_uart_ports[UART_NR]; 2042 2043 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 2044 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 2045 { 2046 struct imx_port *sport = (struct imx_port *)port; 2047 2048 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 2049 barrier(); 2050 2051 imx_uart_writel(sport, ch, URTX0); 2052 } 2053 2054 /* 2055 * Interrupts are disabled on entering 2056 */ 2057 static void 2058 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 2059 { 2060 struct imx_port *sport = imx_uart_ports[co->index]; 2061 struct imx_port_ucrs old_ucr; 2062 unsigned long flags; 2063 unsigned int ucr1, usr2; 2064 int locked = 1; 2065 2066 if (sport->port.sysrq) 2067 locked = 0; 2068 else if (oops_in_progress) 2069 locked = uart_port_trylock_irqsave(&sport->port, &flags); 2070 else 2071 uart_port_lock_irqsave(&sport->port, &flags); 2072 2073 /* 2074 * First, save UCR1/2/3 and then disable interrupts 2075 */ 2076 imx_uart_ucrs_save(sport, &old_ucr); 2077 ucr1 = old_ucr.ucr1; 2078 2079 if (imx_uart_is_imx1(sport)) 2080 ucr1 |= IMX1_UCR1_UARTCLKEN; 2081 ucr1 |= UCR1_UARTEN; 2082 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2083 2084 imx_uart_writel(sport, ucr1, UCR1); 2085 2086 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2087 2088 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2089 2090 /* 2091 * Finally, wait for transmitter to become empty 2092 * and restore UCR1/2/3 2093 */ 2094 read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC, 2095 0, USEC_PER_SEC, false, sport, USR2); 2096 imx_uart_ucrs_restore(sport, &old_ucr); 2097 2098 if (locked) 2099 uart_port_unlock_irqrestore(&sport->port, flags); 2100 } 2101 2102 /* 2103 * If the port was already initialised (eg, by a boot loader), 2104 * try to determine the current setup. 2105 */ 2106 static void 2107 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2108 int *parity, int *bits) 2109 { 2110 2111 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2112 /* ok, the port was enabled */ 2113 unsigned int ucr2, ubir, ubmr, uartclk; 2114 unsigned int baud_raw; 2115 unsigned int ucfr_rfdiv; 2116 2117 ucr2 = imx_uart_readl(sport, UCR2); 2118 2119 *parity = 'n'; 2120 if (ucr2 & UCR2_PREN) { 2121 if (ucr2 & UCR2_PROE) 2122 *parity = 'o'; 2123 else 2124 *parity = 'e'; 2125 } 2126 2127 if (ucr2 & UCR2_WS) 2128 *bits = 8; 2129 else 2130 *bits = 7; 2131 2132 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2133 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2134 2135 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2136 if (ucfr_rfdiv == 6) 2137 ucfr_rfdiv = 7; 2138 else 2139 ucfr_rfdiv = 6 - ucfr_rfdiv; 2140 2141 uartclk = clk_get_rate(sport->clk_per); 2142 uartclk /= ucfr_rfdiv; 2143 2144 { /* 2145 * The next code provides exact computation of 2146 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2147 * without need of float support or long long division, 2148 * which would be required to prevent 32bit arithmetic overflow 2149 */ 2150 unsigned int mul = ubir + 1; 2151 unsigned int div = 16 * (ubmr + 1); 2152 unsigned int rem = uartclk % div; 2153 2154 baud_raw = (uartclk / div) * mul; 2155 baud_raw += (rem * mul + div / 2) / div; 2156 *baud = (baud_raw + 50) / 100 * 100; 2157 } 2158 2159 if (*baud != baud_raw) 2160 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2161 baud_raw, *baud); 2162 } 2163 } 2164 2165 static int 2166 imx_uart_console_setup(struct console *co, char *options) 2167 { 2168 struct imx_port *sport; 2169 int baud = 9600; 2170 int bits = 8; 2171 int parity = 'n'; 2172 int flow = 'n'; 2173 int retval; 2174 2175 /* 2176 * Check whether an invalid uart number has been specified, and 2177 * if so, search for the first available port that does have 2178 * console support. 2179 */ 2180 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2181 co->index = 0; 2182 sport = imx_uart_ports[co->index]; 2183 if (sport == NULL) 2184 return -ENODEV; 2185 2186 /* For setting the registers, we only need to enable the ipg clock. */ 2187 retval = clk_prepare_enable(sport->clk_ipg); 2188 if (retval) 2189 goto error_console; 2190 2191 if (options) 2192 uart_parse_options(options, &baud, &parity, &bits, &flow); 2193 else 2194 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2195 2196 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2197 2198 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2199 2200 if (retval) { 2201 clk_disable_unprepare(sport->clk_ipg); 2202 goto error_console; 2203 } 2204 2205 retval = clk_prepare_enable(sport->clk_per); 2206 if (retval) 2207 clk_disable_unprepare(sport->clk_ipg); 2208 2209 error_console: 2210 return retval; 2211 } 2212 2213 static int 2214 imx_uart_console_exit(struct console *co) 2215 { 2216 struct imx_port *sport = imx_uart_ports[co->index]; 2217 2218 clk_disable_unprepare(sport->clk_per); 2219 clk_disable_unprepare(sport->clk_ipg); 2220 2221 return 0; 2222 } 2223 2224 static struct uart_driver imx_uart_uart_driver; 2225 static struct console imx_uart_console = { 2226 .name = DEV_NAME, 2227 .write = imx_uart_console_write, 2228 .device = uart_console_device, 2229 .setup = imx_uart_console_setup, 2230 .exit = imx_uart_console_exit, 2231 .flags = CON_PRINTBUFFER, 2232 .index = -1, 2233 .data = &imx_uart_uart_driver, 2234 }; 2235 2236 #define IMX_CONSOLE &imx_uart_console 2237 2238 #else 2239 #define IMX_CONSOLE NULL 2240 #endif 2241 2242 static struct uart_driver imx_uart_uart_driver = { 2243 .owner = THIS_MODULE, 2244 .driver_name = DRIVER_NAME, 2245 .dev_name = DEV_NAME, 2246 .major = SERIAL_IMX_MAJOR, 2247 .minor = MINOR_START, 2248 .nr = ARRAY_SIZE(imx_uart_ports), 2249 .cons = IMX_CONSOLE, 2250 }; 2251 2252 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2253 { 2254 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2255 unsigned long flags; 2256 2257 uart_port_lock_irqsave(&sport->port, &flags); 2258 if (sport->tx_state == WAIT_AFTER_RTS) 2259 imx_uart_start_tx(&sport->port); 2260 uart_port_unlock_irqrestore(&sport->port, flags); 2261 2262 return HRTIMER_NORESTART; 2263 } 2264 2265 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2266 { 2267 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2268 unsigned long flags; 2269 2270 uart_port_lock_irqsave(&sport->port, &flags); 2271 if (sport->tx_state == WAIT_AFTER_SEND) 2272 imx_uart_stop_tx(&sport->port); 2273 uart_port_unlock_irqrestore(&sport->port, flags); 2274 2275 return HRTIMER_NORESTART; 2276 } 2277 2278 static const struct serial_rs485 imx_rs485_supported = { 2279 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2280 SER_RS485_RX_DURING_TX, 2281 .delay_rts_before_send = 1, 2282 .delay_rts_after_send = 1, 2283 }; 2284 2285 /* Default RX DMA buffer configuration */ 2286 #define RX_DMA_PERIODS 16 2287 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2288 2289 static int imx_uart_probe(struct platform_device *pdev) 2290 { 2291 struct device_node *np = pdev->dev.of_node; 2292 struct imx_port *sport; 2293 void __iomem *base; 2294 u32 dma_buf_conf[2]; 2295 int ret = 0; 2296 u32 ucr1, ucr2, uts; 2297 struct resource *res; 2298 int txirq, rxirq, rtsirq; 2299 2300 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2301 if (!sport) 2302 return -ENOMEM; 2303 2304 sport->devdata = of_device_get_match_data(&pdev->dev); 2305 2306 ret = of_alias_get_id(np, "serial"); 2307 if (ret < 0) { 2308 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2309 return ret; 2310 } 2311 sport->port.line = ret; 2312 2313 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2314 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2315 2316 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2317 2318 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2319 2320 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2321 2322 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2323 2324 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2325 sport->rx_period_length = dma_buf_conf[0]; 2326 sport->rx_periods = dma_buf_conf[1]; 2327 } else { 2328 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2329 sport->rx_periods = RX_DMA_PERIODS; 2330 } 2331 2332 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2333 dev_err(&pdev->dev, "serial%d out of range\n", 2334 sport->port.line); 2335 return -EINVAL; 2336 } 2337 2338 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2339 if (IS_ERR(base)) 2340 return PTR_ERR(base); 2341 2342 rxirq = platform_get_irq(pdev, 0); 2343 if (rxirq < 0) 2344 return rxirq; 2345 txirq = platform_get_irq_optional(pdev, 1); 2346 rtsirq = platform_get_irq_optional(pdev, 2); 2347 2348 sport->port.dev = &pdev->dev; 2349 sport->port.mapbase = res->start; 2350 sport->port.membase = base; 2351 sport->port.type = PORT_IMX; 2352 sport->port.iotype = UPIO_MEM; 2353 sport->port.irq = rxirq; 2354 sport->port.fifosize = 32; 2355 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2356 sport->port.ops = &imx_uart_pops; 2357 sport->port.rs485_config = imx_uart_rs485_config; 2358 /* RTS is required to control the RS485 transmitter */ 2359 if (sport->have_rtscts || sport->have_rtsgpio) 2360 sport->port.rs485_supported = imx_rs485_supported; 2361 sport->port.flags = UPF_BOOT_AUTOCONF; 2362 timer_setup(&sport->timer, imx_uart_timeout, 0); 2363 2364 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2365 if (IS_ERR(sport->gpios)) 2366 return PTR_ERR(sport->gpios); 2367 2368 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2369 if (IS_ERR(sport->clk_ipg)) { 2370 ret = PTR_ERR(sport->clk_ipg); 2371 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2372 return ret; 2373 } 2374 2375 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2376 if (IS_ERR(sport->clk_per)) { 2377 ret = PTR_ERR(sport->clk_per); 2378 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2379 return ret; 2380 } 2381 2382 sport->port.uartclk = clk_get_rate(sport->clk_per); 2383 2384 /* For register access, we only need to enable the ipg clock. */ 2385 ret = clk_prepare_enable(sport->clk_ipg); 2386 if (ret) { 2387 dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret); 2388 return ret; 2389 } 2390 2391 ret = uart_get_rs485_mode(&sport->port); 2392 if (ret) 2393 goto err_clk; 2394 2395 /* 2396 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2397 * signal cannot be set low during transmission in case the 2398 * receiver is off (limitation of the i.MX UART IP). 2399 */ 2400 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2401 sport->have_rtscts && !sport->have_rtsgpio && 2402 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2403 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2404 dev_err(&pdev->dev, 2405 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2406 2407 /* Disable interrupts before requesting them */ 2408 ucr1 = imx_uart_readl(sport, UCR1); 2409 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2410 imx_uart_writel(sport, ucr1, UCR1); 2411 2412 /* Disable Ageing Timer interrupt */ 2413 ucr2 = imx_uart_readl(sport, UCR2); 2414 ucr2 &= ~UCR2_ATEN; 2415 imx_uart_writel(sport, ucr2, UCR2); 2416 2417 /* 2418 * In case RS485 is enabled without GPIO RTS control, the UART IP 2419 * is used to control CTS signal. Keep both the UART and Receiver 2420 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2421 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2422 * data from being fed into the RX FIFO, enable loopback mode in 2423 * UTS register, which disconnects the RX path from external RXD 2424 * pin and connects it to the Transceiver, which is disabled, so 2425 * no data can be fed to the RX FIFO that way. 2426 */ 2427 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2428 sport->have_rtscts && !sport->have_rtsgpio) { 2429 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2430 uts |= UTS_LOOP; 2431 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2432 2433 ucr1 = imx_uart_readl(sport, UCR1); 2434 ucr1 |= UCR1_UARTEN; 2435 imx_uart_writel(sport, ucr1, UCR1); 2436 2437 ucr2 = imx_uart_readl(sport, UCR2); 2438 ucr2 |= UCR2_RXEN; 2439 imx_uart_writel(sport, ucr2, UCR2); 2440 } 2441 2442 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2443 /* 2444 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2445 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2446 * and DCD (when they are outputs) or enables the respective 2447 * irqs. So set this bit early, i.e. before requesting irqs. 2448 */ 2449 u32 ufcr = imx_uart_readl(sport, UFCR); 2450 if (!(ufcr & UFCR_DCEDTE)) 2451 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2452 2453 /* 2454 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2455 * enabled later because they cannot be cleared 2456 * (confirmed on i.MX25) which makes them unusable. 2457 */ 2458 imx_uart_writel(sport, 2459 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2460 UCR3); 2461 2462 } else { 2463 u32 ucr3 = UCR3_DSR; 2464 u32 ufcr = imx_uart_readl(sport, UFCR); 2465 if (ufcr & UFCR_DCEDTE) 2466 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2467 2468 if (!imx_uart_is_imx1(sport)) 2469 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2470 imx_uart_writel(sport, ucr3, UCR3); 2471 } 2472 2473 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2474 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2475 sport->trigger_start_tx.function = imx_trigger_start_tx; 2476 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2477 2478 /* 2479 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2480 * chips only have one interrupt. 2481 */ 2482 if (txirq > 0) { 2483 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2484 dev_name(&pdev->dev), sport); 2485 if (ret) { 2486 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2487 ret); 2488 goto err_clk; 2489 } 2490 2491 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2492 dev_name(&pdev->dev), sport); 2493 if (ret) { 2494 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2495 ret); 2496 goto err_clk; 2497 } 2498 2499 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2500 dev_name(&pdev->dev), sport); 2501 if (ret) { 2502 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2503 ret); 2504 goto err_clk; 2505 } 2506 } else { 2507 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2508 dev_name(&pdev->dev), sport); 2509 if (ret) { 2510 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2511 goto err_clk; 2512 } 2513 } 2514 2515 imx_uart_ports[sport->port.line] = sport; 2516 2517 platform_set_drvdata(pdev, sport); 2518 2519 ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2520 2521 err_clk: 2522 clk_disable_unprepare(sport->clk_ipg); 2523 2524 return ret; 2525 } 2526 2527 static void imx_uart_remove(struct platform_device *pdev) 2528 { 2529 struct imx_port *sport = platform_get_drvdata(pdev); 2530 2531 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2532 } 2533 2534 static void imx_uart_restore_context(struct imx_port *sport) 2535 { 2536 unsigned long flags; 2537 2538 uart_port_lock_irqsave(&sport->port, &flags); 2539 if (!sport->context_saved) { 2540 uart_port_unlock_irqrestore(&sport->port, flags); 2541 return; 2542 } 2543 2544 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2545 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2546 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2547 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2548 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2549 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2550 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2551 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2552 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2553 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2554 sport->context_saved = false; 2555 uart_port_unlock_irqrestore(&sport->port, flags); 2556 } 2557 2558 static void imx_uart_save_context(struct imx_port *sport) 2559 { 2560 unsigned long flags; 2561 2562 /* Save necessary regs */ 2563 uart_port_lock_irqsave(&sport->port, &flags); 2564 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2565 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2566 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2567 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2568 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2569 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2570 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2571 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2572 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2573 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2574 sport->context_saved = true; 2575 uart_port_unlock_irqrestore(&sport->port, flags); 2576 } 2577 2578 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2579 { 2580 u32 ucr3; 2581 2582 ucr3 = imx_uart_readl(sport, UCR3); 2583 if (on) { 2584 imx_uart_writel(sport, USR1_AWAKE, USR1); 2585 ucr3 |= UCR3_AWAKEN; 2586 } else { 2587 ucr3 &= ~UCR3_AWAKEN; 2588 } 2589 imx_uart_writel(sport, ucr3, UCR3); 2590 2591 if (sport->have_rtscts) { 2592 u32 ucr1 = imx_uart_readl(sport, UCR1); 2593 if (on) { 2594 imx_uart_writel(sport, USR1_RTSD, USR1); 2595 ucr1 |= UCR1_RTSDEN; 2596 } else { 2597 ucr1 &= ~UCR1_RTSDEN; 2598 } 2599 imx_uart_writel(sport, ucr1, UCR1); 2600 } 2601 } 2602 2603 static int imx_uart_suspend_noirq(struct device *dev) 2604 { 2605 struct imx_port *sport = dev_get_drvdata(dev); 2606 2607 imx_uart_save_context(sport); 2608 2609 clk_disable(sport->clk_ipg); 2610 2611 pinctrl_pm_select_sleep_state(dev); 2612 2613 return 0; 2614 } 2615 2616 static int imx_uart_resume_noirq(struct device *dev) 2617 { 2618 struct imx_port *sport = dev_get_drvdata(dev); 2619 int ret; 2620 2621 pinctrl_pm_select_default_state(dev); 2622 2623 ret = clk_enable(sport->clk_ipg); 2624 if (ret) 2625 return ret; 2626 2627 imx_uart_restore_context(sport); 2628 2629 return 0; 2630 } 2631 2632 static int imx_uart_suspend(struct device *dev) 2633 { 2634 struct imx_port *sport = dev_get_drvdata(dev); 2635 int ret; 2636 2637 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2638 disable_irq(sport->port.irq); 2639 2640 ret = clk_prepare_enable(sport->clk_ipg); 2641 if (ret) 2642 return ret; 2643 2644 /* enable wakeup from i.MX UART */ 2645 imx_uart_enable_wakeup(sport, true); 2646 2647 return 0; 2648 } 2649 2650 static int imx_uart_resume(struct device *dev) 2651 { 2652 struct imx_port *sport = dev_get_drvdata(dev); 2653 2654 /* disable wakeup from i.MX UART */ 2655 imx_uart_enable_wakeup(sport, false); 2656 2657 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2658 enable_irq(sport->port.irq); 2659 2660 clk_disable_unprepare(sport->clk_ipg); 2661 2662 return 0; 2663 } 2664 2665 static int imx_uart_freeze(struct device *dev) 2666 { 2667 struct imx_port *sport = dev_get_drvdata(dev); 2668 2669 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2670 2671 return clk_prepare_enable(sport->clk_ipg); 2672 } 2673 2674 static int imx_uart_thaw(struct device *dev) 2675 { 2676 struct imx_port *sport = dev_get_drvdata(dev); 2677 2678 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2679 2680 clk_disable_unprepare(sport->clk_ipg); 2681 2682 return 0; 2683 } 2684 2685 static const struct dev_pm_ops imx_uart_pm_ops = { 2686 .suspend_noirq = imx_uart_suspend_noirq, 2687 .resume_noirq = imx_uart_resume_noirq, 2688 .freeze_noirq = imx_uart_suspend_noirq, 2689 .thaw_noirq = imx_uart_resume_noirq, 2690 .restore_noirq = imx_uart_resume_noirq, 2691 .suspend = imx_uart_suspend, 2692 .resume = imx_uart_resume, 2693 .freeze = imx_uart_freeze, 2694 .thaw = imx_uart_thaw, 2695 .restore = imx_uart_thaw, 2696 }; 2697 2698 static struct platform_driver imx_uart_platform_driver = { 2699 .probe = imx_uart_probe, 2700 .remove_new = imx_uart_remove, 2701 2702 .driver = { 2703 .name = "imx-uart", 2704 .of_match_table = imx_uart_dt_ids, 2705 .pm = &imx_uart_pm_ops, 2706 }, 2707 }; 2708 2709 static int __init imx_uart_init(void) 2710 { 2711 int ret = uart_register_driver(&imx_uart_uart_driver); 2712 2713 if (ret) 2714 return ret; 2715 2716 ret = platform_driver_register(&imx_uart_platform_driver); 2717 if (ret != 0) 2718 uart_unregister_driver(&imx_uart_uart_driver); 2719 2720 return ret; 2721 } 2722 2723 static void __exit imx_uart_exit(void) 2724 { 2725 platform_driver_unregister(&imx_uart_platform_driver); 2726 uart_unregister_driver(&imx_uart_uart_driver); 2727 } 2728 2729 module_init(imx_uart_init); 2730 module_exit(imx_uart_exit); 2731 2732 MODULE_AUTHOR("Sascha Hauer"); 2733 MODULE_DESCRIPTION("IMX generic serial port driver"); 2734 MODULE_LICENSE("GPL"); 2735 MODULE_ALIAS("platform:imx-uart"); 2736