1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/circ_buf.h> 12 #include <linux/module.h> 13 #include <linux/ioport.h> 14 #include <linux/init.h> 15 #include <linux/console.h> 16 #include <linux/sysrq.h> 17 #include <linux/platform_device.h> 18 #include <linux/tty.h> 19 #include <linux/tty_flip.h> 20 #include <linux/serial_core.h> 21 #include <linux/serial.h> 22 #include <linux/clk.h> 23 #include <linux/delay.h> 24 #include <linux/ktime.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/rational.h> 27 #include <linux/slab.h> 28 #include <linux/of.h> 29 #include <linux/io.h> 30 #include <linux/iopoll.h> 31 #include <linux/dma-mapping.h> 32 33 #include <asm/irq.h> 34 #include <linux/dma/imx-dma.h> 35 36 #include "serial_mctrl_gpio.h" 37 38 /* Register definitions */ 39 #define URXD0 0x0 /* Receiver Register */ 40 #define URTX0 0x40 /* Transmitter Register */ 41 #define UCR1 0x80 /* Control Register 1 */ 42 #define UCR2 0x84 /* Control Register 2 */ 43 #define UCR3 0x88 /* Control Register 3 */ 44 #define UCR4 0x8c /* Control Register 4 */ 45 #define UFCR 0x90 /* FIFO Control Register */ 46 #define USR1 0x94 /* Status Register 1 */ 47 #define USR2 0x98 /* Status Register 2 */ 48 #define UESC 0x9c /* Escape Character Register */ 49 #define UTIM 0xa0 /* Escape Timer Register */ 50 #define UBIR 0xa4 /* BRM Incremental Register */ 51 #define UBMR 0xa8 /* BRM Modulator Register */ 52 #define UBRC 0xac /* Baud Rate Count Register */ 53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 56 57 /* UART Control Register Bit Fields.*/ 58 #define URXD_DUMMY_READ (1<<16) 59 #define URXD_CHARRDY (1<<15) 60 #define URXD_ERR (1<<14) 61 #define URXD_OVRRUN (1<<13) 62 #define URXD_FRMERR (1<<12) 63 #define URXD_BRK (1<<11) 64 #define URXD_PRERR (1<<10) 65 #define URXD_RX_DATA (0xFF<<0) 66 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 67 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 68 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 69 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 71 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 72 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 73 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 74 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 75 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 76 #define UCR1_SNDBRK (1<<4) /* Send break */ 77 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 79 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 80 #define UCR1_DOZE (1<<1) /* Doze */ 81 #define UCR1_UARTEN (1<<0) /* UART enabled */ 82 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 83 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 84 #define UCR2_CTSC (1<<13) /* CTS pin control */ 85 #define UCR2_CTS (1<<12) /* Clear to send */ 86 #define UCR2_ESCEN (1<<11) /* Escape enable */ 87 #define UCR2_PREN (1<<8) /* Parity enable */ 88 #define UCR2_PROE (1<<7) /* Parity odd/even */ 89 #define UCR2_STPB (1<<6) /* Stop */ 90 #define UCR2_WS (1<<5) /* Word size */ 91 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 92 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 93 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 94 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 95 #define UCR2_SRST (1<<0) /* SW reset */ 96 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 97 #define UCR3_PARERREN (1<<12) /* Parity enable */ 98 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 99 #define UCR3_DSR (1<<10) /* Data set ready */ 100 #define UCR3_DCD (1<<9) /* Data carrier detect */ 101 #define UCR3_RI (1<<8) /* Ring indicator */ 102 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 103 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 104 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 105 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 106 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 107 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 108 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 109 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 110 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 111 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 112 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 113 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 114 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 115 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 116 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 117 #define UCR4_IRSC (1<<5) /* IR special case */ 118 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 119 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 120 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 121 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 122 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 123 #define UFCR_RXTL_MASK 0x3F /* Receiver trigger 6 bits wide */ 124 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 125 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 126 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 127 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 128 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 129 #define USR1_RTSS (1<<14) /* RTS pin status */ 130 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 131 #define USR1_RTSD (1<<12) /* RTS delta */ 132 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 133 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 134 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 135 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 136 #define USR1_DTRD (1<<7) /* DTR Delta */ 137 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 138 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 139 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 140 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 141 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 142 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 143 #define USR2_IDLE (1<<12) /* Idle condition */ 144 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 145 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 146 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 147 #define USR2_WAKE (1<<7) /* Wake */ 148 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 149 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 150 #define USR2_TXDC (1<<3) /* Transmitter complete */ 151 #define USR2_BRCD (1<<2) /* Break condition */ 152 #define USR2_ORE (1<<1) /* Overrun error */ 153 #define USR2_RDR (1<<0) /* Recv data ready */ 154 #define UTS_FRCPERR (1<<13) /* Force parity error */ 155 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 156 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 157 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 158 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 159 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 160 #define UTS_SOFTRST (1<<0) /* Software reset */ 161 162 /* We've been assigned a range on the "Low-density serial ports" major */ 163 #define SERIAL_IMX_MAJOR 207 164 #define MINOR_START 16 165 #define DEV_NAME "ttymxc" 166 167 /* 168 * This determines how often we check the modem status signals 169 * for any change. They generally aren't connected to an IRQ 170 * so we have to poll them. We also check immediately before 171 * filling the TX fifo incase CTS has been dropped. 172 */ 173 #define MCTRL_TIMEOUT (250*HZ/1000) 174 175 #define DRIVER_NAME "IMX-uart" 176 177 #define UART_NR 8 178 179 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 180 enum imx_uart_type { 181 IMX1_UART, 182 IMX21_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* counter to stop 0xff flood */ 214 int idle_counter; 215 216 /* DMA fields */ 217 unsigned int dma_is_enabled:1; 218 unsigned int dma_is_rxing:1; 219 unsigned int dma_is_txing:1; 220 struct dma_chan *dma_chan_rx, *dma_chan_tx; 221 struct scatterlist rx_sgl, tx_sgl[2]; 222 void *rx_buf; 223 struct circ_buf rx_ring; 224 unsigned int rx_buf_size; 225 unsigned int rx_period_length; 226 unsigned int rx_periods; 227 dma_cookie_t rx_cookie; 228 unsigned int tx_bytes; 229 unsigned int dma_tx_nents; 230 unsigned int saved_reg[10]; 231 bool context_saved; 232 233 enum imx_tx_state tx_state; 234 struct hrtimer trigger_start_tx; 235 struct hrtimer trigger_stop_tx; 236 }; 237 238 struct imx_port_ucrs { 239 unsigned int ucr1; 240 unsigned int ucr2; 241 unsigned int ucr3; 242 }; 243 244 static const struct imx_uart_data imx_uart_imx1_devdata = { 245 .uts_reg = IMX1_UTS, 246 .devtype = IMX1_UART, 247 }; 248 249 static const struct imx_uart_data imx_uart_imx21_devdata = { 250 .uts_reg = IMX21_UTS, 251 .devtype = IMX21_UART, 252 }; 253 254 static const struct of_device_id imx_uart_dt_ids[] = { 255 /* 256 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are 257 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the 258 * original imx6q's UART is compatible to fsl,imx21-uart. This driver 259 * doesn't make any distinction between these two variants. 260 */ 261 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, }, 262 { .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, }, 263 { .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, }, 264 { /* sentinel */ } 265 }; 266 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 267 268 static inline struct imx_port *to_imx_port(struct uart_port *port) 269 { 270 return container_of(port, struct imx_port, port); 271 } 272 273 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 274 { 275 writel(val, sport->port.membase + offset); 276 } 277 278 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 279 { 280 return readl(sport->port.membase + offset); 281 } 282 283 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 284 { 285 return sport->devdata->uts_reg; 286 } 287 288 static inline int imx_uart_is_imx1(struct imx_port *sport) 289 { 290 return sport->devdata->devtype == IMX1_UART; 291 } 292 293 /* 294 * Save and restore functions for UCR1, UCR2 and UCR3 registers 295 */ 296 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 297 static void imx_uart_ucrs_save(struct imx_port *sport, 298 struct imx_port_ucrs *ucr) 299 { 300 /* save control registers */ 301 ucr->ucr1 = imx_uart_readl(sport, UCR1); 302 ucr->ucr2 = imx_uart_readl(sport, UCR2); 303 ucr->ucr3 = imx_uart_readl(sport, UCR3); 304 } 305 306 static void imx_uart_ucrs_restore(struct imx_port *sport, 307 struct imx_port_ucrs *ucr) 308 { 309 /* restore control registers */ 310 imx_uart_writel(sport, ucr->ucr1, UCR1); 311 imx_uart_writel(sport, ucr->ucr2, UCR2); 312 imx_uart_writel(sport, ucr->ucr3, UCR3); 313 } 314 #endif 315 316 /* called with port.lock taken and irqs caller dependent */ 317 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 318 { 319 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 320 321 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 322 } 323 324 /* called with port.lock taken and irqs caller dependent */ 325 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 326 { 327 *ucr2 &= ~UCR2_CTSC; 328 *ucr2 |= UCR2_CTS; 329 330 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 331 } 332 333 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 334 { 335 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 336 } 337 338 /* called with port.lock taken and irqs off */ 339 static void imx_uart_soft_reset(struct imx_port *sport) 340 { 341 int i = 10; 342 u32 ucr2, ubir, ubmr, uts; 343 344 /* 345 * According to the Reference Manual description of the UART SRST bit: 346 * 347 * "Reset the transmit and receive state machines, 348 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 349 * and UTS[6-3]". 350 * 351 * We don't need to restore the old values from USR1, USR2, URXD and 352 * UTXD. UBRC is read only, so only save/restore the other three 353 * registers. 354 */ 355 ubir = imx_uart_readl(sport, UBIR); 356 ubmr = imx_uart_readl(sport, UBMR); 357 uts = imx_uart_readl(sport, IMX21_UTS); 358 359 ucr2 = imx_uart_readl(sport, UCR2); 360 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 361 362 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 363 udelay(1); 364 365 /* Restore the registers */ 366 imx_uart_writel(sport, ubir, UBIR); 367 imx_uart_writel(sport, ubmr, UBMR); 368 imx_uart_writel(sport, uts, IMX21_UTS); 369 370 sport->idle_counter = 0; 371 } 372 373 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 374 { 375 unsigned int uts; 376 377 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 378 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 379 uts &= ~UTS_LOOP; 380 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 381 } 382 383 /* called with port.lock taken and irqs off */ 384 static void imx_uart_start_rx(struct uart_port *port) 385 { 386 struct imx_port *sport = to_imx_port(port); 387 unsigned int ucr1, ucr2; 388 389 ucr1 = imx_uart_readl(sport, UCR1); 390 ucr2 = imx_uart_readl(sport, UCR2); 391 392 ucr2 |= UCR2_RXEN; 393 394 if (sport->dma_is_enabled) { 395 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 396 } else { 397 ucr1 |= UCR1_RRDYEN; 398 ucr2 |= UCR2_ATEN; 399 } 400 401 /* Write UCR2 first as it includes RXEN */ 402 imx_uart_writel(sport, ucr2, UCR2); 403 imx_uart_writel(sport, ucr1, UCR1); 404 imx_uart_disable_loopback_rs485(sport); 405 } 406 407 /* called with port.lock taken and irqs off */ 408 static void imx_uart_stop_tx(struct uart_port *port) 409 { 410 struct imx_port *sport = to_imx_port(port); 411 u32 ucr1, ucr4, usr2; 412 413 if (sport->tx_state == OFF) 414 return; 415 416 /* 417 * We are maybe in the SMP context, so if the DMA TX thread is running 418 * on other cpu, we have to wait for it to finish. 419 */ 420 if (sport->dma_is_txing) 421 return; 422 423 ucr1 = imx_uart_readl(sport, UCR1); 424 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 425 426 ucr4 = imx_uart_readl(sport, UCR4); 427 usr2 = imx_uart_readl(sport, USR2); 428 if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) { 429 /* The shifter is still busy, so retry once TC triggers */ 430 return; 431 } 432 433 ucr4 &= ~UCR4_TCEN; 434 imx_uart_writel(sport, ucr4, UCR4); 435 436 /* in rs485 mode disable transmitter */ 437 if (port->rs485.flags & SER_RS485_ENABLED) { 438 if (sport->tx_state == SEND) { 439 sport->tx_state = WAIT_AFTER_SEND; 440 441 if (port->rs485.delay_rts_after_send > 0) { 442 start_hrtimer_ms(&sport->trigger_stop_tx, 443 port->rs485.delay_rts_after_send); 444 return; 445 } 446 447 /* continue without any delay */ 448 } 449 450 if (sport->tx_state == WAIT_AFTER_RTS || 451 sport->tx_state == WAIT_AFTER_SEND) { 452 u32 ucr2; 453 454 hrtimer_try_to_cancel(&sport->trigger_start_tx); 455 456 ucr2 = imx_uart_readl(sport, UCR2); 457 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 458 imx_uart_rts_active(sport, &ucr2); 459 else 460 imx_uart_rts_inactive(sport, &ucr2); 461 imx_uart_writel(sport, ucr2, UCR2); 462 463 if (!port->rs485_rx_during_tx_gpio) 464 imx_uart_start_rx(port); 465 466 sport->tx_state = OFF; 467 } 468 } else { 469 sport->tx_state = OFF; 470 } 471 } 472 473 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback) 474 { 475 struct imx_port *sport = to_imx_port(port); 476 u32 ucr1, ucr2, ucr4, uts; 477 478 ucr1 = imx_uart_readl(sport, UCR1); 479 ucr2 = imx_uart_readl(sport, UCR2); 480 ucr4 = imx_uart_readl(sport, UCR4); 481 482 if (sport->dma_is_enabled) { 483 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 484 } else { 485 ucr1 &= ~UCR1_RRDYEN; 486 ucr2 &= ~UCR2_ATEN; 487 ucr4 &= ~UCR4_OREN; 488 } 489 imx_uart_writel(sport, ucr1, UCR1); 490 imx_uart_writel(sport, ucr4, UCR4); 491 492 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 493 if (port->rs485.flags & SER_RS485_ENABLED && 494 port->rs485.flags & SER_RS485_RTS_ON_SEND && 495 sport->have_rtscts && !sport->have_rtsgpio && loopback) { 496 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 497 uts |= UTS_LOOP; 498 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 499 ucr2 |= UCR2_RXEN; 500 } else { 501 ucr2 &= ~UCR2_RXEN; 502 } 503 504 imx_uart_writel(sport, ucr2, UCR2); 505 } 506 507 /* called with port.lock taken and irqs off */ 508 static void imx_uart_stop_rx(struct uart_port *port) 509 { 510 /* 511 * Stop RX and enable loopback in order to make sure RS485 bus 512 * is not blocked. Se comment in imx_uart_probe(). 513 */ 514 imx_uart_stop_rx_with_loopback_ctrl(port, true); 515 } 516 517 /* called with port.lock taken and irqs off */ 518 static void imx_uart_enable_ms(struct uart_port *port) 519 { 520 struct imx_port *sport = to_imx_port(port); 521 522 mod_timer(&sport->timer, jiffies); 523 524 mctrl_gpio_enable_ms(sport->gpios); 525 } 526 527 static void imx_uart_dma_tx(struct imx_port *sport); 528 529 /* called with port.lock taken and irqs off */ 530 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 531 { 532 struct tty_port *tport = &sport->port.state->port; 533 unsigned char c; 534 535 if (sport->port.x_char) { 536 /* Send next char */ 537 imx_uart_writel(sport, sport->port.x_char, URTX0); 538 sport->port.icount.tx++; 539 sport->port.x_char = 0; 540 return; 541 } 542 543 if (kfifo_is_empty(&tport->xmit_fifo) || 544 uart_tx_stopped(&sport->port)) { 545 imx_uart_stop_tx(&sport->port); 546 return; 547 } 548 549 if (sport->dma_is_enabled) { 550 u32 ucr1; 551 /* 552 * We've just sent a X-char Ensure the TX DMA is enabled 553 * and the TX IRQ is disabled. 554 **/ 555 ucr1 = imx_uart_readl(sport, UCR1); 556 ucr1 &= ~UCR1_TRDYEN; 557 if (sport->dma_is_txing) { 558 ucr1 |= UCR1_TXDMAEN; 559 imx_uart_writel(sport, ucr1, UCR1); 560 } else { 561 imx_uart_writel(sport, ucr1, UCR1); 562 imx_uart_dma_tx(sport); 563 } 564 565 return; 566 } 567 568 while (!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) && 569 uart_fifo_get(&sport->port, &c)) 570 imx_uart_writel(sport, c, URTX0); 571 572 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 573 uart_write_wakeup(&sport->port); 574 575 if (kfifo_is_empty(&tport->xmit_fifo)) 576 imx_uart_stop_tx(&sport->port); 577 } 578 579 static void imx_uart_dma_tx_callback(void *data) 580 { 581 struct imx_port *sport = data; 582 struct tty_port *tport = &sport->port.state->port; 583 struct scatterlist *sgl = &sport->tx_sgl[0]; 584 unsigned long flags; 585 u32 ucr1; 586 587 uart_port_lock_irqsave(&sport->port, &flags); 588 589 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 590 591 ucr1 = imx_uart_readl(sport, UCR1); 592 ucr1 &= ~UCR1_TXDMAEN; 593 imx_uart_writel(sport, ucr1, UCR1); 594 595 uart_xmit_advance(&sport->port, sport->tx_bytes); 596 597 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 598 599 sport->dma_is_txing = 0; 600 601 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 602 uart_write_wakeup(&sport->port); 603 604 if (!kfifo_is_empty(&tport->xmit_fifo) && 605 !uart_tx_stopped(&sport->port)) 606 imx_uart_dma_tx(sport); 607 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 608 u32 ucr4 = imx_uart_readl(sport, UCR4); 609 ucr4 |= UCR4_TCEN; 610 imx_uart_writel(sport, ucr4, UCR4); 611 } 612 613 uart_port_unlock_irqrestore(&sport->port, flags); 614 } 615 616 /* called with port.lock taken and irqs off */ 617 static void imx_uart_dma_tx(struct imx_port *sport) 618 { 619 struct tty_port *tport = &sport->port.state->port; 620 struct scatterlist *sgl = sport->tx_sgl; 621 struct dma_async_tx_descriptor *desc; 622 struct dma_chan *chan = sport->dma_chan_tx; 623 struct device *dev = sport->port.dev; 624 u32 ucr1, ucr4; 625 int ret; 626 627 if (sport->dma_is_txing) 628 return; 629 630 ucr4 = imx_uart_readl(sport, UCR4); 631 ucr4 &= ~UCR4_TCEN; 632 imx_uart_writel(sport, ucr4, UCR4); 633 634 sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl)); 635 sport->tx_bytes = kfifo_len(&tport->xmit_fifo); 636 sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl, 637 ARRAY_SIZE(sport->tx_sgl), sport->tx_bytes); 638 639 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 640 if (ret == 0) { 641 dev_err(dev, "DMA mapping error for TX.\n"); 642 return; 643 } 644 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 645 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 646 if (!desc) { 647 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 648 DMA_TO_DEVICE); 649 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 650 return; 651 } 652 desc->callback = imx_uart_dma_tx_callback; 653 desc->callback_param = sport; 654 655 dev_dbg(dev, "TX: prepare to send %u bytes by DMA.\n", sport->tx_bytes); 656 657 ucr1 = imx_uart_readl(sport, UCR1); 658 ucr1 |= UCR1_TXDMAEN; 659 imx_uart_writel(sport, ucr1, UCR1); 660 661 /* fire it */ 662 sport->dma_is_txing = 1; 663 dmaengine_submit(desc); 664 dma_async_issue_pending(chan); 665 return; 666 } 667 668 /* called with port.lock taken and irqs off */ 669 static void imx_uart_start_tx(struct uart_port *port) 670 { 671 struct imx_port *sport = to_imx_port(port); 672 struct tty_port *tport = &sport->port.state->port; 673 u32 ucr1; 674 675 if (!sport->port.x_char && kfifo_is_empty(&tport->xmit_fifo)) 676 return; 677 678 /* 679 * We cannot simply do nothing here if sport->tx_state == SEND already 680 * because UCR1_TXMPTYEN might already have been cleared in 681 * imx_uart_stop_tx(), but tx_state is still SEND. 682 */ 683 684 if (port->rs485.flags & SER_RS485_ENABLED) { 685 if (sport->tx_state == OFF) { 686 u32 ucr2 = imx_uart_readl(sport, UCR2); 687 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 688 imx_uart_rts_active(sport, &ucr2); 689 else 690 imx_uart_rts_inactive(sport, &ucr2); 691 imx_uart_writel(sport, ucr2, UCR2); 692 693 /* 694 * Since we are about to transmit we can not stop RX 695 * with loopback enabled because that will make our 696 * transmitted data being just looped to RX. 697 */ 698 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 699 !port->rs485_rx_during_tx_gpio) 700 imx_uart_stop_rx_with_loopback_ctrl(port, false); 701 702 sport->tx_state = WAIT_AFTER_RTS; 703 704 if (port->rs485.delay_rts_before_send > 0) { 705 start_hrtimer_ms(&sport->trigger_start_tx, 706 port->rs485.delay_rts_before_send); 707 return; 708 } 709 710 /* continue without any delay */ 711 } 712 713 if (sport->tx_state == WAIT_AFTER_SEND 714 || sport->tx_state == WAIT_AFTER_RTS) { 715 716 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 717 718 /* 719 * Enable transmitter and shifter empty irq only if DMA 720 * is off. In the DMA case this is done in the 721 * tx-callback. 722 */ 723 if (!sport->dma_is_enabled) { 724 u32 ucr4 = imx_uart_readl(sport, UCR4); 725 ucr4 |= UCR4_TCEN; 726 imx_uart_writel(sport, ucr4, UCR4); 727 } 728 729 sport->tx_state = SEND; 730 } 731 } else { 732 sport->tx_state = SEND; 733 } 734 735 if (!sport->dma_is_enabled) { 736 ucr1 = imx_uart_readl(sport, UCR1); 737 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 738 } 739 740 if (sport->dma_is_enabled) { 741 if (sport->port.x_char) { 742 /* We have X-char to send, so enable TX IRQ and 743 * disable TX DMA to let TX interrupt to send X-char */ 744 ucr1 = imx_uart_readl(sport, UCR1); 745 ucr1 &= ~UCR1_TXDMAEN; 746 ucr1 |= UCR1_TRDYEN; 747 imx_uart_writel(sport, ucr1, UCR1); 748 return; 749 } 750 751 if (!kfifo_is_empty(&tport->xmit_fifo) && 752 !uart_tx_stopped(port)) 753 imx_uart_dma_tx(sport); 754 return; 755 } 756 } 757 758 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 759 { 760 struct imx_port *sport = dev_id; 761 u32 usr1; 762 763 imx_uart_writel(sport, USR1_RTSD, USR1); 764 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 765 uart_handle_cts_change(&sport->port, usr1); 766 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 767 768 return IRQ_HANDLED; 769 } 770 771 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 772 { 773 struct imx_port *sport = dev_id; 774 irqreturn_t ret; 775 776 uart_port_lock(&sport->port); 777 778 ret = __imx_uart_rtsint(irq, dev_id); 779 780 uart_port_unlock(&sport->port); 781 782 return ret; 783 } 784 785 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 786 { 787 struct imx_port *sport = dev_id; 788 789 uart_port_lock(&sport->port); 790 imx_uart_transmit_buffer(sport); 791 uart_port_unlock(&sport->port); 792 return IRQ_HANDLED; 793 } 794 795 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 796 * This is to be called from Rx ISRs only when some bytes were actually 797 * received. 798 * 799 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 800 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 801 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 802 * that is terminated by any activity on RxD line, or could be stopped by 803 * issuing soft reset to the UART (just stop/start of RX does not help). Note 804 * that what we do here is sending isolated start bit about 2.4 times shorter 805 * than it is to be on UART configured baud rate. 806 */ 807 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 808 { 809 /* To detect hardware 0xff flood we monitor RxD line between RX 810 * interrupts to isolate "receiving" of char(s) with no activity 811 * on RxD line, that'd never happen on actual data transfers. 812 * 813 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 814 * race here if we clear USR2_WAKE when receiving of a char is in 815 * progress, so we might get RX interrupt later with USR2_WAKE bit 816 * cleared. Note though that as we don't try to clear USR2_WAKE when we 817 * detected no activity, this race may hide actual activity only once. 818 * 819 * Yet another case where receive interrupt may occur without RxD 820 * activity is expiration of aging timer, so we consider this as well. 821 * 822 * We use 'idle_counter' to ensure that we got at least so many RX 823 * interrupts without any detected activity on RxD line. 2 cases 824 * described plus 1 to be on the safe side gives us a margin of 3, 825 * below. In practice I was not able to produce a false positive to 826 * induce soft reset at regular data transfers even using 1 as the 827 * margin, so 3 is actually very strong. 828 * 829 * We count interrupts, not chars in 'idle-counter' for simplicity. 830 */ 831 832 if (usr2 & USR2_WAKE) { 833 imx_uart_writel(sport, USR2_WAKE, USR2); 834 sport->idle_counter = 0; 835 } else if (++sport->idle_counter > 3) { 836 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 837 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 838 } 839 } 840 841 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 842 { 843 struct imx_port *sport = dev_id; 844 struct tty_port *port = &sport->port.state->port; 845 u32 usr2, rx; 846 847 /* If we received something, check for 0xff flood */ 848 usr2 = imx_uart_readl(sport, USR2); 849 if (usr2 & USR2_RDR) 850 imx_uart_check_flood(sport, usr2); 851 852 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 853 unsigned int flg = TTY_NORMAL; 854 sport->port.icount.rx++; 855 856 if (unlikely(rx & URXD_ERR)) { 857 if (rx & URXD_BRK) { 858 sport->port.icount.brk++; 859 if (uart_handle_break(&sport->port)) 860 continue; 861 } 862 else if (rx & URXD_PRERR) 863 sport->port.icount.parity++; 864 else if (rx & URXD_FRMERR) 865 sport->port.icount.frame++; 866 if (rx & URXD_OVRRUN) 867 sport->port.icount.overrun++; 868 869 if (rx & sport->port.ignore_status_mask) 870 continue; 871 872 rx &= (sport->port.read_status_mask | 0xFF); 873 874 if (rx & URXD_BRK) 875 flg = TTY_BREAK; 876 else if (rx & URXD_PRERR) 877 flg = TTY_PARITY; 878 else if (rx & URXD_FRMERR) 879 flg = TTY_FRAME; 880 if (rx & URXD_OVRRUN) 881 flg = TTY_OVERRUN; 882 883 sport->port.sysrq = 0; 884 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 885 continue; 886 } 887 888 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 889 continue; 890 891 if (tty_insert_flip_char(port, rx, flg) == 0) 892 sport->port.icount.buf_overrun++; 893 } 894 895 tty_flip_buffer_push(port); 896 897 return IRQ_HANDLED; 898 } 899 900 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 901 { 902 struct imx_port *sport = dev_id; 903 irqreturn_t ret; 904 905 uart_port_lock(&sport->port); 906 907 ret = __imx_uart_rxint(irq, dev_id); 908 909 uart_port_unlock(&sport->port); 910 911 return ret; 912 } 913 914 static void imx_uart_clear_rx_errors(struct imx_port *sport); 915 916 /* 917 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 918 */ 919 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 920 { 921 unsigned int tmp = TIOCM_DSR; 922 unsigned usr1 = imx_uart_readl(sport, USR1); 923 unsigned usr2 = imx_uart_readl(sport, USR2); 924 925 if (usr1 & USR1_RTSS) 926 tmp |= TIOCM_CTS; 927 928 /* in DCE mode DCDIN is always 0 */ 929 if (!(usr2 & USR2_DCDIN)) 930 tmp |= TIOCM_CAR; 931 932 if (sport->dte_mode) 933 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 934 tmp |= TIOCM_RI; 935 936 return tmp; 937 } 938 939 /* 940 * Handle any change of modem status signal since we were last called. 941 */ 942 static void imx_uart_mctrl_check(struct imx_port *sport) 943 { 944 unsigned int status, changed; 945 946 status = imx_uart_get_hwmctrl(sport); 947 changed = status ^ sport->old_status; 948 949 if (changed == 0) 950 return; 951 952 sport->old_status = status; 953 954 if (changed & TIOCM_RI && status & TIOCM_RI) 955 sport->port.icount.rng++; 956 if (changed & TIOCM_DSR) 957 sport->port.icount.dsr++; 958 if (changed & TIOCM_CAR) 959 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 960 if (changed & TIOCM_CTS) 961 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 962 963 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 964 } 965 966 static irqreturn_t imx_uart_int(int irq, void *dev_id) 967 { 968 struct imx_port *sport = dev_id; 969 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 970 irqreturn_t ret = IRQ_NONE; 971 972 uart_port_lock(&sport->port); 973 974 usr1 = imx_uart_readl(sport, USR1); 975 usr2 = imx_uart_readl(sport, USR2); 976 ucr1 = imx_uart_readl(sport, UCR1); 977 ucr2 = imx_uart_readl(sport, UCR2); 978 ucr3 = imx_uart_readl(sport, UCR3); 979 ucr4 = imx_uart_readl(sport, UCR4); 980 981 /* 982 * Even if a condition is true that can trigger an irq only handle it if 983 * the respective irq source is enabled. This prevents some undesired 984 * actions, for example if a character that sits in the RX FIFO and that 985 * should be fetched via DMA is tried to be fetched using PIO. Or the 986 * receiver is currently off and so reading from URXD0 results in an 987 * exception. So just mask the (raw) status bits for disabled irqs. 988 */ 989 if ((ucr1 & UCR1_RRDYEN) == 0) 990 usr1 &= ~USR1_RRDY; 991 if ((ucr2 & UCR2_ATEN) == 0) 992 usr1 &= ~USR1_AGTIM; 993 if ((ucr1 & UCR1_TRDYEN) == 0) 994 usr1 &= ~USR1_TRDY; 995 if ((ucr4 & UCR4_TCEN) == 0) 996 usr2 &= ~USR2_TXDC; 997 if ((ucr3 & UCR3_DTRDEN) == 0) 998 usr1 &= ~USR1_DTRD; 999 if ((ucr1 & UCR1_RTSDEN) == 0) 1000 usr1 &= ~USR1_RTSD; 1001 if ((ucr3 & UCR3_AWAKEN) == 0) 1002 usr1 &= ~USR1_AWAKE; 1003 if ((ucr4 & UCR4_OREN) == 0) 1004 usr2 &= ~USR2_ORE; 1005 1006 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1007 imx_uart_writel(sport, USR1_AGTIM, USR1); 1008 1009 __imx_uart_rxint(irq, dev_id); 1010 ret = IRQ_HANDLED; 1011 } 1012 1013 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1014 imx_uart_transmit_buffer(sport); 1015 ret = IRQ_HANDLED; 1016 } 1017 1018 if (usr1 & USR1_DTRD) { 1019 imx_uart_writel(sport, USR1_DTRD, USR1); 1020 1021 imx_uart_mctrl_check(sport); 1022 1023 ret = IRQ_HANDLED; 1024 } 1025 1026 if (usr1 & USR1_RTSD) { 1027 __imx_uart_rtsint(irq, dev_id); 1028 ret = IRQ_HANDLED; 1029 } 1030 1031 if (usr1 & USR1_AWAKE) { 1032 imx_uart_writel(sport, USR1_AWAKE, USR1); 1033 ret = IRQ_HANDLED; 1034 } 1035 1036 if (usr2 & USR2_ORE) { 1037 sport->port.icount.overrun++; 1038 imx_uart_writel(sport, USR2_ORE, USR2); 1039 ret = IRQ_HANDLED; 1040 } 1041 1042 uart_port_unlock(&sport->port); 1043 1044 return ret; 1045 } 1046 1047 /* 1048 * Return TIOCSER_TEMT when transmitter is not busy. 1049 */ 1050 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1051 { 1052 struct imx_port *sport = to_imx_port(port); 1053 unsigned int ret; 1054 1055 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1056 1057 /* If the TX DMA is working, return 0. */ 1058 if (sport->dma_is_txing) 1059 ret = 0; 1060 1061 return ret; 1062 } 1063 1064 /* called with port.lock taken and irqs off */ 1065 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1066 { 1067 struct imx_port *sport = to_imx_port(port); 1068 unsigned int ret = imx_uart_get_hwmctrl(sport); 1069 1070 mctrl_gpio_get(sport->gpios, &ret); 1071 1072 return ret; 1073 } 1074 1075 /* called with port.lock taken and irqs off */ 1076 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1077 { 1078 struct imx_port *sport = to_imx_port(port); 1079 u32 ucr3, uts; 1080 1081 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1082 u32 ucr2; 1083 1084 /* 1085 * Turn off autoRTS if RTS is lowered and restore autoRTS 1086 * setting if RTS is raised. 1087 */ 1088 ucr2 = imx_uart_readl(sport, UCR2); 1089 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1090 if (mctrl & TIOCM_RTS) { 1091 ucr2 |= UCR2_CTS; 1092 /* 1093 * UCR2_IRTS is unset if and only if the port is 1094 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1095 * to get the state to restore to. 1096 */ 1097 if (!(ucr2 & UCR2_IRTS)) 1098 ucr2 |= UCR2_CTSC; 1099 } 1100 imx_uart_writel(sport, ucr2, UCR2); 1101 } 1102 1103 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1104 if (!(mctrl & TIOCM_DTR)) 1105 ucr3 |= UCR3_DSR; 1106 imx_uart_writel(sport, ucr3, UCR3); 1107 1108 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1109 if (mctrl & TIOCM_LOOP) 1110 uts |= UTS_LOOP; 1111 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1112 1113 mctrl_gpio_set(sport->gpios, mctrl); 1114 } 1115 1116 /* 1117 * Interrupts always disabled. 1118 */ 1119 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1120 { 1121 struct imx_port *sport = to_imx_port(port); 1122 unsigned long flags; 1123 u32 ucr1; 1124 1125 uart_port_lock_irqsave(&sport->port, &flags); 1126 1127 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1128 1129 if (break_state != 0) 1130 ucr1 |= UCR1_SNDBRK; 1131 1132 imx_uart_writel(sport, ucr1, UCR1); 1133 1134 uart_port_unlock_irqrestore(&sport->port, flags); 1135 } 1136 1137 /* 1138 * This is our per-port timeout handler, for checking the 1139 * modem status signals. 1140 */ 1141 static void imx_uart_timeout(struct timer_list *t) 1142 { 1143 struct imx_port *sport = from_timer(sport, t, timer); 1144 unsigned long flags; 1145 1146 if (sport->port.state) { 1147 uart_port_lock_irqsave(&sport->port, &flags); 1148 imx_uart_mctrl_check(sport); 1149 uart_port_unlock_irqrestore(&sport->port, flags); 1150 1151 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1152 } 1153 } 1154 1155 /* 1156 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1157 * [1] the RX DMA buffer is full. 1158 * [2] the aging timer expires 1159 * 1160 * Condition [2] is triggered when a character has been sitting in the FIFO 1161 * for at least 8 byte durations. 1162 */ 1163 static void imx_uart_dma_rx_callback(void *data) 1164 { 1165 struct imx_port *sport = data; 1166 struct dma_chan *chan = sport->dma_chan_rx; 1167 struct scatterlist *sgl = &sport->rx_sgl; 1168 struct tty_port *port = &sport->port.state->port; 1169 struct dma_tx_state state; 1170 struct circ_buf *rx_ring = &sport->rx_ring; 1171 enum dma_status status; 1172 unsigned int w_bytes = 0; 1173 unsigned int r_bytes; 1174 unsigned int bd_size; 1175 1176 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1177 1178 if (status == DMA_ERROR) { 1179 uart_port_lock(&sport->port); 1180 imx_uart_clear_rx_errors(sport); 1181 uart_port_unlock(&sport->port); 1182 return; 1183 } 1184 1185 /* 1186 * The state-residue variable represents the empty space 1187 * relative to the entire buffer. Taking this in consideration 1188 * the head is always calculated base on the buffer total 1189 * length - DMA transaction residue. The UART script from the 1190 * SDMA firmware will jump to the next buffer descriptor, 1191 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1192 * Taking this in consideration the tail is always at the 1193 * beginning of the buffer descriptor that contains the head. 1194 */ 1195 1196 /* Calculate the head */ 1197 rx_ring->head = sg_dma_len(sgl) - state.residue; 1198 1199 /* Calculate the tail. */ 1200 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1201 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1202 1203 if (rx_ring->head <= sg_dma_len(sgl) && 1204 rx_ring->head > rx_ring->tail) { 1205 1206 /* Move data from tail to head */ 1207 r_bytes = rx_ring->head - rx_ring->tail; 1208 1209 /* If we received something, check for 0xff flood */ 1210 uart_port_lock(&sport->port); 1211 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1212 uart_port_unlock(&sport->port); 1213 1214 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1215 1216 /* CPU claims ownership of RX DMA buffer */ 1217 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1218 DMA_FROM_DEVICE); 1219 1220 w_bytes = tty_insert_flip_string(port, 1221 sport->rx_buf + rx_ring->tail, r_bytes); 1222 1223 /* UART retrieves ownership of RX DMA buffer */ 1224 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1225 DMA_FROM_DEVICE); 1226 1227 if (w_bytes != r_bytes) 1228 sport->port.icount.buf_overrun++; 1229 1230 sport->port.icount.rx += w_bytes; 1231 } 1232 } else { 1233 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1234 WARN_ON(rx_ring->head <= rx_ring->tail); 1235 } 1236 1237 if (w_bytes) { 1238 tty_flip_buffer_push(port); 1239 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1240 } 1241 } 1242 1243 static int imx_uart_start_rx_dma(struct imx_port *sport) 1244 { 1245 struct scatterlist *sgl = &sport->rx_sgl; 1246 struct dma_chan *chan = sport->dma_chan_rx; 1247 struct device *dev = sport->port.dev; 1248 struct dma_async_tx_descriptor *desc; 1249 int ret; 1250 1251 sport->rx_ring.head = 0; 1252 sport->rx_ring.tail = 0; 1253 1254 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1255 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1256 if (ret == 0) { 1257 dev_err(dev, "DMA mapping error for RX.\n"); 1258 return -EINVAL; 1259 } 1260 1261 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1262 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1263 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1264 1265 if (!desc) { 1266 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1267 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1268 return -EINVAL; 1269 } 1270 desc->callback = imx_uart_dma_rx_callback; 1271 desc->callback_param = sport; 1272 1273 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1274 sport->dma_is_rxing = 1; 1275 sport->rx_cookie = dmaengine_submit(desc); 1276 dma_async_issue_pending(chan); 1277 return 0; 1278 } 1279 1280 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1281 { 1282 struct tty_port *port = &sport->port.state->port; 1283 u32 usr1, usr2; 1284 1285 usr1 = imx_uart_readl(sport, USR1); 1286 usr2 = imx_uart_readl(sport, USR2); 1287 1288 if (usr2 & USR2_BRCD) { 1289 sport->port.icount.brk++; 1290 imx_uart_writel(sport, USR2_BRCD, USR2); 1291 uart_handle_break(&sport->port); 1292 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1293 sport->port.icount.buf_overrun++; 1294 tty_flip_buffer_push(port); 1295 } else { 1296 if (usr1 & USR1_FRAMERR) { 1297 sport->port.icount.frame++; 1298 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1299 } else if (usr1 & USR1_PARITYERR) { 1300 sport->port.icount.parity++; 1301 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1302 } 1303 } 1304 1305 if (usr2 & USR2_ORE) { 1306 sport->port.icount.overrun++; 1307 imx_uart_writel(sport, USR2_ORE, USR2); 1308 } 1309 1310 sport->idle_counter = 0; 1311 1312 } 1313 1314 #define TXTL_DEFAULT 8 1315 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1316 #define TXTL_DMA 8 /* DMA burst setting */ 1317 #define RXTL_DMA 9 /* DMA burst setting */ 1318 1319 static void imx_uart_setup_ufcr(struct imx_port *sport, 1320 unsigned char txwl, unsigned char rxwl) 1321 { 1322 unsigned int val; 1323 1324 /* set receiver / transmitter trigger level */ 1325 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1326 val |= txwl << UFCR_TXTL_SHF | rxwl; 1327 imx_uart_writel(sport, val, UFCR); 1328 } 1329 1330 static void imx_uart_dma_exit(struct imx_port *sport) 1331 { 1332 if (sport->dma_chan_rx) { 1333 dmaengine_terminate_sync(sport->dma_chan_rx); 1334 dma_release_channel(sport->dma_chan_rx); 1335 sport->dma_chan_rx = NULL; 1336 sport->rx_cookie = -EINVAL; 1337 kfree(sport->rx_buf); 1338 sport->rx_buf = NULL; 1339 } 1340 1341 if (sport->dma_chan_tx) { 1342 dmaengine_terminate_sync(sport->dma_chan_tx); 1343 dma_release_channel(sport->dma_chan_tx); 1344 sport->dma_chan_tx = NULL; 1345 } 1346 } 1347 1348 static int imx_uart_dma_init(struct imx_port *sport) 1349 { 1350 struct dma_slave_config slave_config = {}; 1351 struct device *dev = sport->port.dev; 1352 struct dma_chan *chan; 1353 int ret; 1354 1355 /* Prepare for RX : */ 1356 chan = dma_request_chan(dev, "rx"); 1357 if (IS_ERR(chan)) { 1358 dev_dbg(dev, "cannot get the DMA channel.\n"); 1359 sport->dma_chan_rx = NULL; 1360 ret = PTR_ERR(chan); 1361 goto err; 1362 } 1363 sport->dma_chan_rx = chan; 1364 1365 slave_config.direction = DMA_DEV_TO_MEM; 1366 slave_config.src_addr = sport->port.mapbase + URXD0; 1367 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1368 /* one byte less than the watermark level to enable the aging timer */ 1369 slave_config.src_maxburst = RXTL_DMA - 1; 1370 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1371 if (ret) { 1372 dev_err(dev, "error in RX dma configuration.\n"); 1373 goto err; 1374 } 1375 1376 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1377 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1378 if (!sport->rx_buf) { 1379 ret = -ENOMEM; 1380 goto err; 1381 } 1382 sport->rx_ring.buf = sport->rx_buf; 1383 1384 /* Prepare for TX : */ 1385 chan = dma_request_chan(dev, "tx"); 1386 if (IS_ERR(chan)) { 1387 dev_err(dev, "cannot get the TX DMA channel!\n"); 1388 sport->dma_chan_tx = NULL; 1389 ret = PTR_ERR(chan); 1390 goto err; 1391 } 1392 sport->dma_chan_tx = chan; 1393 1394 slave_config.direction = DMA_MEM_TO_DEV; 1395 slave_config.dst_addr = sport->port.mapbase + URTX0; 1396 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1397 slave_config.dst_maxburst = TXTL_DMA; 1398 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1399 if (ret) { 1400 dev_err(dev, "error in TX dma configuration."); 1401 goto err; 1402 } 1403 1404 return 0; 1405 err: 1406 imx_uart_dma_exit(sport); 1407 return ret; 1408 } 1409 1410 static void imx_uart_enable_dma(struct imx_port *sport) 1411 { 1412 u32 ucr1; 1413 1414 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1415 1416 /* set UCR1 */ 1417 ucr1 = imx_uart_readl(sport, UCR1); 1418 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1419 imx_uart_writel(sport, ucr1, UCR1); 1420 1421 sport->dma_is_enabled = 1; 1422 } 1423 1424 static void imx_uart_disable_dma(struct imx_port *sport) 1425 { 1426 u32 ucr1; 1427 1428 /* clear UCR1 */ 1429 ucr1 = imx_uart_readl(sport, UCR1); 1430 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1431 imx_uart_writel(sport, ucr1, UCR1); 1432 1433 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1434 1435 sport->dma_is_enabled = 0; 1436 } 1437 1438 /* half the RX buffer size */ 1439 #define CTSTL 16 1440 1441 static int imx_uart_startup(struct uart_port *port) 1442 { 1443 struct imx_port *sport = to_imx_port(port); 1444 int retval; 1445 unsigned long flags; 1446 int dma_is_inited = 0; 1447 u32 ucr1, ucr2, ucr3, ucr4; 1448 1449 retval = clk_prepare_enable(sport->clk_per); 1450 if (retval) 1451 return retval; 1452 retval = clk_prepare_enable(sport->clk_ipg); 1453 if (retval) { 1454 clk_disable_unprepare(sport->clk_per); 1455 return retval; 1456 } 1457 1458 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1459 1460 /* disable the DREN bit (Data Ready interrupt enable) before 1461 * requesting IRQs 1462 */ 1463 ucr4 = imx_uart_readl(sport, UCR4); 1464 1465 /* set the trigger level for CTS */ 1466 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1467 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1468 1469 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1470 1471 /* Can we enable the DMA support? */ 1472 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) { 1473 lockdep_set_subclass(&port->lock, 1); 1474 dma_is_inited = 1; 1475 } 1476 1477 uart_port_lock_irqsave(&sport->port, &flags); 1478 1479 /* Reset fifo's and state machines */ 1480 imx_uart_soft_reset(sport); 1481 1482 /* 1483 * Finally, clear and enable interrupts 1484 */ 1485 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1486 imx_uart_writel(sport, USR2_ORE, USR2); 1487 1488 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1489 ucr1 |= UCR1_UARTEN; 1490 if (sport->have_rtscts) 1491 ucr1 |= UCR1_RTSDEN; 1492 1493 imx_uart_writel(sport, ucr1, UCR1); 1494 1495 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1496 if (!dma_is_inited) 1497 ucr4 |= UCR4_OREN; 1498 if (sport->inverted_rx) 1499 ucr4 |= UCR4_INVR; 1500 imx_uart_writel(sport, ucr4, UCR4); 1501 1502 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1503 /* 1504 * configure tx polarity before enabling tx 1505 */ 1506 if (sport->inverted_tx) 1507 ucr3 |= UCR3_INVT; 1508 1509 if (!imx_uart_is_imx1(sport)) { 1510 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1511 1512 if (sport->dte_mode) 1513 /* disable broken interrupts */ 1514 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1515 } 1516 imx_uart_writel(sport, ucr3, UCR3); 1517 1518 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1519 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1520 if (!sport->have_rtscts) 1521 ucr2 |= UCR2_IRTS; 1522 /* 1523 * make sure the edge sensitive RTS-irq is disabled, 1524 * we're using RTSD instead. 1525 */ 1526 if (!imx_uart_is_imx1(sport)) 1527 ucr2 &= ~UCR2_RTSEN; 1528 imx_uart_writel(sport, ucr2, UCR2); 1529 1530 /* 1531 * Enable modem status interrupts 1532 */ 1533 imx_uart_enable_ms(&sport->port); 1534 1535 if (dma_is_inited) { 1536 imx_uart_enable_dma(sport); 1537 imx_uart_start_rx_dma(sport); 1538 } else { 1539 ucr1 = imx_uart_readl(sport, UCR1); 1540 ucr1 |= UCR1_RRDYEN; 1541 imx_uart_writel(sport, ucr1, UCR1); 1542 1543 ucr2 = imx_uart_readl(sport, UCR2); 1544 ucr2 |= UCR2_ATEN; 1545 imx_uart_writel(sport, ucr2, UCR2); 1546 } 1547 1548 imx_uart_disable_loopback_rs485(sport); 1549 1550 uart_port_unlock_irqrestore(&sport->port, flags); 1551 1552 return 0; 1553 } 1554 1555 static void imx_uart_shutdown(struct uart_port *port) 1556 { 1557 struct imx_port *sport = to_imx_port(port); 1558 unsigned long flags; 1559 u32 ucr1, ucr2, ucr4, uts; 1560 int loops; 1561 1562 if (sport->dma_is_enabled) { 1563 dmaengine_terminate_sync(sport->dma_chan_tx); 1564 if (sport->dma_is_txing) { 1565 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1566 sport->dma_tx_nents, DMA_TO_DEVICE); 1567 sport->dma_is_txing = 0; 1568 } 1569 dmaengine_terminate_sync(sport->dma_chan_rx); 1570 if (sport->dma_is_rxing) { 1571 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1572 1, DMA_FROM_DEVICE); 1573 sport->dma_is_rxing = 0; 1574 } 1575 1576 uart_port_lock_irqsave(&sport->port, &flags); 1577 imx_uart_stop_tx(port); 1578 imx_uart_stop_rx(port); 1579 imx_uart_disable_dma(sport); 1580 uart_port_unlock_irqrestore(&sport->port, flags); 1581 imx_uart_dma_exit(sport); 1582 } 1583 1584 mctrl_gpio_disable_ms(sport->gpios); 1585 1586 uart_port_lock_irqsave(&sport->port, &flags); 1587 ucr2 = imx_uart_readl(sport, UCR2); 1588 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1589 imx_uart_writel(sport, ucr2, UCR2); 1590 uart_port_unlock_irqrestore(&sport->port, flags); 1591 1592 /* 1593 * Stop our timer. 1594 */ 1595 del_timer_sync(&sport->timer); 1596 1597 /* 1598 * Disable all interrupts, port and break condition. 1599 */ 1600 1601 uart_port_lock_irqsave(&sport->port, &flags); 1602 1603 ucr1 = imx_uart_readl(sport, UCR1); 1604 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1605 UCR1_ATDMAEN | UCR1_SNDBRK); 1606 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1607 if (port->rs485.flags & SER_RS485_ENABLED && 1608 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1609 sport->have_rtscts && !sport->have_rtsgpio) { 1610 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1611 uts |= UTS_LOOP; 1612 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1613 ucr1 |= UCR1_UARTEN; 1614 } else { 1615 ucr1 &= ~UCR1_UARTEN; 1616 } 1617 imx_uart_writel(sport, ucr1, UCR1); 1618 1619 ucr4 = imx_uart_readl(sport, UCR4); 1620 ucr4 &= ~UCR4_TCEN; 1621 imx_uart_writel(sport, ucr4, UCR4); 1622 1623 /* 1624 * We have to ensure the tx state machine ends up in OFF. This 1625 * is especially important for rs485 where we must not leave 1626 * the RTS signal high, blocking the bus indefinitely. 1627 * 1628 * All interrupts are now disabled, so imx_uart_stop_tx() will 1629 * no longer be called from imx_uart_transmit_buffer(). It may 1630 * still be called via the hrtimers, and if those are in play, 1631 * we have to honour the delays. 1632 */ 1633 if (sport->tx_state == WAIT_AFTER_RTS || sport->tx_state == SEND) 1634 imx_uart_stop_tx(port); 1635 1636 /* 1637 * In many cases (rs232 mode, or if tx_state was 1638 * WAIT_AFTER_RTS, or if tx_state was SEND and there is no 1639 * delay_rts_after_send), this will have moved directly to 1640 * OFF. In rs485 mode, tx_state might already have been 1641 * WAIT_AFTER_SEND and the hrtimer thus already started, or 1642 * the above imx_uart_stop_tx() call could have started it. In 1643 * those cases, we have to wait for the hrtimer to fire and 1644 * complete the transition to OFF. 1645 */ 1646 loops = port->rs485.flags & SER_RS485_ENABLED ? 1647 port->rs485.delay_rts_after_send : 0; 1648 while (sport->tx_state != OFF && loops--) { 1649 uart_port_unlock_irqrestore(&sport->port, flags); 1650 msleep(1); 1651 uart_port_lock_irqsave(&sport->port, &flags); 1652 } 1653 1654 if (sport->tx_state != OFF) { 1655 dev_warn(sport->port.dev, "unexpected tx_state %d\n", 1656 sport->tx_state); 1657 /* 1658 * This machine may be busted, but ensure the RTS 1659 * signal is inactive in order not to block other 1660 * devices. 1661 */ 1662 if (port->rs485.flags & SER_RS485_ENABLED) { 1663 ucr2 = imx_uart_readl(sport, UCR2); 1664 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1665 imx_uart_rts_active(sport, &ucr2); 1666 else 1667 imx_uart_rts_inactive(sport, &ucr2); 1668 imx_uart_writel(sport, ucr2, UCR2); 1669 } 1670 sport->tx_state = OFF; 1671 } 1672 1673 uart_port_unlock_irqrestore(&sport->port, flags); 1674 1675 clk_disable_unprepare(sport->clk_per); 1676 clk_disable_unprepare(sport->clk_ipg); 1677 } 1678 1679 /* called with port.lock taken and irqs off */ 1680 static void imx_uart_flush_buffer(struct uart_port *port) 1681 { 1682 struct imx_port *sport = to_imx_port(port); 1683 struct scatterlist *sgl = &sport->tx_sgl[0]; 1684 1685 if (!sport->dma_chan_tx) 1686 return; 1687 1688 sport->tx_bytes = 0; 1689 dmaengine_terminate_all(sport->dma_chan_tx); 1690 if (sport->dma_is_txing) { 1691 u32 ucr1; 1692 1693 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1694 DMA_TO_DEVICE); 1695 ucr1 = imx_uart_readl(sport, UCR1); 1696 ucr1 &= ~UCR1_TXDMAEN; 1697 imx_uart_writel(sport, ucr1, UCR1); 1698 sport->dma_is_txing = 0; 1699 } 1700 1701 imx_uart_soft_reset(sport); 1702 1703 } 1704 1705 static void 1706 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1707 const struct ktermios *old) 1708 { 1709 struct imx_port *sport = to_imx_port(port); 1710 unsigned long flags; 1711 u32 ucr2, old_ucr2, ufcr; 1712 unsigned int baud, quot; 1713 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1714 unsigned long div; 1715 unsigned long num, denom, old_ubir, old_ubmr; 1716 uint64_t tdiv64; 1717 1718 /* 1719 * We only support CS7 and CS8. 1720 */ 1721 while ((termios->c_cflag & CSIZE) != CS7 && 1722 (termios->c_cflag & CSIZE) != CS8) { 1723 termios->c_cflag &= ~CSIZE; 1724 termios->c_cflag |= old_csize; 1725 old_csize = CS8; 1726 } 1727 1728 del_timer_sync(&sport->timer); 1729 1730 /* 1731 * Ask the core to calculate the divisor for us. 1732 */ 1733 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1734 quot = uart_get_divisor(port, baud); 1735 1736 uart_port_lock_irqsave(&sport->port, &flags); 1737 1738 /* 1739 * Read current UCR2 and save it for future use, then clear all the bits 1740 * except those we will or may need to preserve. 1741 */ 1742 old_ucr2 = imx_uart_readl(sport, UCR2); 1743 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1744 1745 ucr2 |= UCR2_SRST | UCR2_IRTS; 1746 if ((termios->c_cflag & CSIZE) == CS8) 1747 ucr2 |= UCR2_WS; 1748 1749 if (!sport->have_rtscts) 1750 termios->c_cflag &= ~CRTSCTS; 1751 1752 if (port->rs485.flags & SER_RS485_ENABLED) { 1753 /* 1754 * RTS is mandatory for rs485 operation, so keep 1755 * it under manual control and keep transmitter 1756 * disabled. 1757 */ 1758 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1759 imx_uart_rts_active(sport, &ucr2); 1760 else 1761 imx_uart_rts_inactive(sport, &ucr2); 1762 1763 } else if (termios->c_cflag & CRTSCTS) { 1764 /* 1765 * Only let receiver control RTS output if we were not requested 1766 * to have RTS inactive (which then should take precedence). 1767 */ 1768 if (ucr2 & UCR2_CTS) 1769 ucr2 |= UCR2_CTSC; 1770 } 1771 1772 if (termios->c_cflag & CRTSCTS) 1773 ucr2 &= ~UCR2_IRTS; 1774 if (termios->c_cflag & CSTOPB) 1775 ucr2 |= UCR2_STPB; 1776 if (termios->c_cflag & PARENB) { 1777 ucr2 |= UCR2_PREN; 1778 if (termios->c_cflag & PARODD) 1779 ucr2 |= UCR2_PROE; 1780 } 1781 1782 sport->port.read_status_mask = 0; 1783 if (termios->c_iflag & INPCK) 1784 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1785 if (termios->c_iflag & (BRKINT | PARMRK)) 1786 sport->port.read_status_mask |= URXD_BRK; 1787 1788 /* 1789 * Characters to ignore 1790 */ 1791 sport->port.ignore_status_mask = 0; 1792 if (termios->c_iflag & IGNPAR) 1793 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1794 if (termios->c_iflag & IGNBRK) { 1795 sport->port.ignore_status_mask |= URXD_BRK; 1796 /* 1797 * If we're ignoring parity and break indicators, 1798 * ignore overruns too (for real raw support). 1799 */ 1800 if (termios->c_iflag & IGNPAR) 1801 sport->port.ignore_status_mask |= URXD_OVRRUN; 1802 } 1803 1804 if ((termios->c_cflag & CREAD) == 0) 1805 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1806 1807 /* 1808 * Update the per-port timeout. 1809 */ 1810 uart_update_timeout(port, termios->c_cflag, baud); 1811 1812 /* custom-baudrate handling */ 1813 div = sport->port.uartclk / (baud * 16); 1814 if (baud == 38400 && quot != div) 1815 baud = sport->port.uartclk / (quot * 16); 1816 1817 div = sport->port.uartclk / (baud * 16); 1818 if (div > 7) 1819 div = 7; 1820 if (!div) 1821 div = 1; 1822 1823 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1824 1 << 16, 1 << 16, &num, &denom); 1825 1826 tdiv64 = sport->port.uartclk; 1827 tdiv64 *= num; 1828 do_div(tdiv64, denom * 16 * div); 1829 tty_termios_encode_baud_rate(termios, 1830 (speed_t)tdiv64, (speed_t)tdiv64); 1831 1832 num -= 1; 1833 denom -= 1; 1834 1835 ufcr = imx_uart_readl(sport, UFCR); 1836 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1837 imx_uart_writel(sport, ufcr, UFCR); 1838 1839 /* 1840 * Two registers below should always be written both and in this 1841 * particular order. One consequence is that we need to check if any of 1842 * them changes and then update both. We do need the check for change 1843 * as even writing the same values seem to "restart" 1844 * transmission/receiving logic in the hardware, that leads to data 1845 * breakage even when rate doesn't in fact change. E.g., user switches 1846 * RTS/CTS handshake and suddenly gets broken bytes. 1847 */ 1848 old_ubir = imx_uart_readl(sport, UBIR); 1849 old_ubmr = imx_uart_readl(sport, UBMR); 1850 if (old_ubir != num || old_ubmr != denom) { 1851 imx_uart_writel(sport, num, UBIR); 1852 imx_uart_writel(sport, denom, UBMR); 1853 } 1854 1855 if (!imx_uart_is_imx1(sport)) 1856 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1857 IMX21_ONEMS); 1858 1859 imx_uart_writel(sport, ucr2, UCR2); 1860 1861 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1862 imx_uart_enable_ms(&sport->port); 1863 1864 uart_port_unlock_irqrestore(&sport->port, flags); 1865 } 1866 1867 static const char *imx_uart_type(struct uart_port *port) 1868 { 1869 return port->type == PORT_IMX ? "IMX" : NULL; 1870 } 1871 1872 /* 1873 * Configure/autoconfigure the port. 1874 */ 1875 static void imx_uart_config_port(struct uart_port *port, int flags) 1876 { 1877 if (flags & UART_CONFIG_TYPE) 1878 port->type = PORT_IMX; 1879 } 1880 1881 /* 1882 * Verify the new serial_struct (for TIOCSSERIAL). 1883 * The only change we allow are to the flags and type, and 1884 * even then only between PORT_IMX and PORT_UNKNOWN 1885 */ 1886 static int 1887 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1888 { 1889 int ret = 0; 1890 1891 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1892 ret = -EINVAL; 1893 if (port->irq != ser->irq) 1894 ret = -EINVAL; 1895 if (ser->io_type != UPIO_MEM) 1896 ret = -EINVAL; 1897 if (port->uartclk / 16 != ser->baud_base) 1898 ret = -EINVAL; 1899 if (port->mapbase != (unsigned long)ser->iomem_base) 1900 ret = -EINVAL; 1901 if (port->iobase != ser->port) 1902 ret = -EINVAL; 1903 if (ser->hub6 != 0) 1904 ret = -EINVAL; 1905 return ret; 1906 } 1907 1908 #if defined(CONFIG_CONSOLE_POLL) 1909 1910 static int imx_uart_poll_init(struct uart_port *port) 1911 { 1912 struct imx_port *sport = to_imx_port(port); 1913 unsigned long flags; 1914 u32 ucr1, ucr2; 1915 int retval; 1916 1917 retval = clk_prepare_enable(sport->clk_ipg); 1918 if (retval) 1919 return retval; 1920 retval = clk_prepare_enable(sport->clk_per); 1921 if (retval) 1922 clk_disable_unprepare(sport->clk_ipg); 1923 1924 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1925 1926 uart_port_lock_irqsave(&sport->port, &flags); 1927 1928 /* 1929 * Be careful about the order of enabling bits here. First enable the 1930 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1931 * This prevents that a character that already sits in the RX fifo is 1932 * triggering an irq but the try to fetch it from there results in an 1933 * exception because UARTEN or RXEN is still off. 1934 */ 1935 ucr1 = imx_uart_readl(sport, UCR1); 1936 ucr2 = imx_uart_readl(sport, UCR2); 1937 1938 if (imx_uart_is_imx1(sport)) 1939 ucr1 |= IMX1_UCR1_UARTCLKEN; 1940 1941 ucr1 |= UCR1_UARTEN; 1942 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1943 1944 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1945 ucr2 &= ~UCR2_ATEN; 1946 1947 imx_uart_writel(sport, ucr1, UCR1); 1948 imx_uart_writel(sport, ucr2, UCR2); 1949 1950 /* now enable irqs */ 1951 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1952 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1953 1954 uart_port_unlock_irqrestore(&sport->port, flags); 1955 1956 return 0; 1957 } 1958 1959 static int imx_uart_poll_get_char(struct uart_port *port) 1960 { 1961 struct imx_port *sport = to_imx_port(port); 1962 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1963 return NO_POLL_CHAR; 1964 1965 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1966 } 1967 1968 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1969 { 1970 struct imx_port *sport = to_imx_port(port); 1971 unsigned int status; 1972 1973 /* drain */ 1974 do { 1975 status = imx_uart_readl(sport, USR1); 1976 } while (~status & USR1_TRDY); 1977 1978 /* write */ 1979 imx_uart_writel(sport, c, URTX0); 1980 1981 /* flush */ 1982 do { 1983 status = imx_uart_readl(sport, USR2); 1984 } while (~status & USR2_TXDC); 1985 } 1986 #endif 1987 1988 /* called with port.lock taken and irqs off or from .probe without locking */ 1989 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1990 struct serial_rs485 *rs485conf) 1991 { 1992 struct imx_port *sport = to_imx_port(port); 1993 u32 ucr2, ufcr; 1994 1995 if (rs485conf->flags & SER_RS485_ENABLED) { 1996 /* Enable receiver if low-active RTS signal is requested */ 1997 if (sport->have_rtscts && !sport->have_rtsgpio && 1998 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1999 rs485conf->flags |= SER_RS485_RX_DURING_TX; 2000 2001 /* disable transmitter */ 2002 ucr2 = imx_uart_readl(sport, UCR2); 2003 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 2004 imx_uart_rts_active(sport, &ucr2); 2005 else 2006 imx_uart_rts_inactive(sport, &ucr2); 2007 imx_uart_writel(sport, ucr2, UCR2); 2008 } 2009 2010 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 2011 if (!(rs485conf->flags & SER_RS485_ENABLED) || 2012 rs485conf->flags & SER_RS485_RX_DURING_TX) { 2013 /* If the receiver trigger is 0, set it to a default value */ 2014 ufcr = imx_uart_readl(sport, UFCR); 2015 if ((ufcr & UFCR_RXTL_MASK) == 0) 2016 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2017 imx_uart_start_rx(port); 2018 } 2019 2020 return 0; 2021 } 2022 2023 static const struct uart_ops imx_uart_pops = { 2024 .tx_empty = imx_uart_tx_empty, 2025 .set_mctrl = imx_uart_set_mctrl, 2026 .get_mctrl = imx_uart_get_mctrl, 2027 .stop_tx = imx_uart_stop_tx, 2028 .start_tx = imx_uart_start_tx, 2029 .stop_rx = imx_uart_stop_rx, 2030 .enable_ms = imx_uart_enable_ms, 2031 .break_ctl = imx_uart_break_ctl, 2032 .startup = imx_uart_startup, 2033 .shutdown = imx_uart_shutdown, 2034 .flush_buffer = imx_uart_flush_buffer, 2035 .set_termios = imx_uart_set_termios, 2036 .type = imx_uart_type, 2037 .config_port = imx_uart_config_port, 2038 .verify_port = imx_uart_verify_port, 2039 #if defined(CONFIG_CONSOLE_POLL) 2040 .poll_init = imx_uart_poll_init, 2041 .poll_get_char = imx_uart_poll_get_char, 2042 .poll_put_char = imx_uart_poll_put_char, 2043 #endif 2044 }; 2045 2046 static struct imx_port *imx_uart_ports[UART_NR]; 2047 2048 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 2049 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 2050 { 2051 struct imx_port *sport = to_imx_port(port); 2052 2053 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 2054 barrier(); 2055 2056 imx_uart_writel(sport, ch, URTX0); 2057 } 2058 2059 /* 2060 * Interrupts are disabled on entering 2061 */ 2062 static void 2063 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 2064 { 2065 struct imx_port *sport = imx_uart_ports[co->index]; 2066 struct imx_port_ucrs old_ucr; 2067 unsigned long flags; 2068 unsigned int ucr1, usr2; 2069 int locked = 1; 2070 2071 if (sport->port.sysrq) 2072 locked = 0; 2073 else if (oops_in_progress) 2074 locked = uart_port_trylock_irqsave(&sport->port, &flags); 2075 else 2076 uart_port_lock_irqsave(&sport->port, &flags); 2077 2078 /* 2079 * First, save UCR1/2/3 and then disable interrupts 2080 */ 2081 imx_uart_ucrs_save(sport, &old_ucr); 2082 ucr1 = old_ucr.ucr1; 2083 2084 if (imx_uart_is_imx1(sport)) 2085 ucr1 |= IMX1_UCR1_UARTCLKEN; 2086 ucr1 |= UCR1_UARTEN; 2087 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2088 2089 imx_uart_writel(sport, ucr1, UCR1); 2090 2091 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2092 2093 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2094 2095 /* 2096 * Finally, wait for transmitter to become empty 2097 * and restore UCR1/2/3 2098 */ 2099 read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC, 2100 0, USEC_PER_SEC, false, sport, USR2); 2101 imx_uart_ucrs_restore(sport, &old_ucr); 2102 2103 if (locked) 2104 uart_port_unlock_irqrestore(&sport->port, flags); 2105 } 2106 2107 /* 2108 * If the port was already initialised (eg, by a boot loader), 2109 * try to determine the current setup. 2110 */ 2111 static void 2112 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2113 int *parity, int *bits) 2114 { 2115 2116 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2117 /* ok, the port was enabled */ 2118 unsigned int ucr2, ubir, ubmr, uartclk; 2119 unsigned int baud_raw; 2120 unsigned int ucfr_rfdiv; 2121 2122 ucr2 = imx_uart_readl(sport, UCR2); 2123 2124 *parity = 'n'; 2125 if (ucr2 & UCR2_PREN) { 2126 if (ucr2 & UCR2_PROE) 2127 *parity = 'o'; 2128 else 2129 *parity = 'e'; 2130 } 2131 2132 if (ucr2 & UCR2_WS) 2133 *bits = 8; 2134 else 2135 *bits = 7; 2136 2137 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2138 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2139 2140 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2141 if (ucfr_rfdiv == 6) 2142 ucfr_rfdiv = 7; 2143 else 2144 ucfr_rfdiv = 6 - ucfr_rfdiv; 2145 2146 uartclk = clk_get_rate(sport->clk_per); 2147 uartclk /= ucfr_rfdiv; 2148 2149 { /* 2150 * The next code provides exact computation of 2151 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2152 * without need of float support or long long division, 2153 * which would be required to prevent 32bit arithmetic overflow 2154 */ 2155 unsigned int mul = ubir + 1; 2156 unsigned int div = 16 * (ubmr + 1); 2157 unsigned int rem = uartclk % div; 2158 2159 baud_raw = (uartclk / div) * mul; 2160 baud_raw += (rem * mul + div / 2) / div; 2161 *baud = (baud_raw + 50) / 100 * 100; 2162 } 2163 2164 if (*baud != baud_raw) 2165 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2166 baud_raw, *baud); 2167 } 2168 } 2169 2170 static int 2171 imx_uart_console_setup(struct console *co, char *options) 2172 { 2173 struct imx_port *sport; 2174 int baud = 9600; 2175 int bits = 8; 2176 int parity = 'n'; 2177 int flow = 'n'; 2178 int retval; 2179 2180 /* 2181 * Check whether an invalid uart number has been specified, and 2182 * if so, search for the first available port that does have 2183 * console support. 2184 */ 2185 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2186 co->index = 0; 2187 sport = imx_uart_ports[co->index]; 2188 if (sport == NULL) 2189 return -ENODEV; 2190 2191 /* For setting the registers, we only need to enable the ipg clock. */ 2192 retval = clk_prepare_enable(sport->clk_ipg); 2193 if (retval) 2194 goto error_console; 2195 2196 if (options) 2197 uart_parse_options(options, &baud, &parity, &bits, &flow); 2198 else 2199 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2200 2201 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2202 2203 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2204 2205 if (retval) { 2206 clk_disable_unprepare(sport->clk_ipg); 2207 goto error_console; 2208 } 2209 2210 retval = clk_prepare_enable(sport->clk_per); 2211 if (retval) 2212 clk_disable_unprepare(sport->clk_ipg); 2213 2214 error_console: 2215 return retval; 2216 } 2217 2218 static int 2219 imx_uart_console_exit(struct console *co) 2220 { 2221 struct imx_port *sport = imx_uart_ports[co->index]; 2222 2223 clk_disable_unprepare(sport->clk_per); 2224 clk_disable_unprepare(sport->clk_ipg); 2225 2226 return 0; 2227 } 2228 2229 static struct uart_driver imx_uart_uart_driver; 2230 static struct console imx_uart_console = { 2231 .name = DEV_NAME, 2232 .write = imx_uart_console_write, 2233 .device = uart_console_device, 2234 .setup = imx_uart_console_setup, 2235 .exit = imx_uart_console_exit, 2236 .flags = CON_PRINTBUFFER, 2237 .index = -1, 2238 .data = &imx_uart_uart_driver, 2239 }; 2240 2241 #define IMX_CONSOLE &imx_uart_console 2242 2243 #else 2244 #define IMX_CONSOLE NULL 2245 #endif 2246 2247 static struct uart_driver imx_uart_uart_driver = { 2248 .owner = THIS_MODULE, 2249 .driver_name = DRIVER_NAME, 2250 .dev_name = DEV_NAME, 2251 .major = SERIAL_IMX_MAJOR, 2252 .minor = MINOR_START, 2253 .nr = ARRAY_SIZE(imx_uart_ports), 2254 .cons = IMX_CONSOLE, 2255 }; 2256 2257 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2258 { 2259 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2260 unsigned long flags; 2261 2262 uart_port_lock_irqsave(&sport->port, &flags); 2263 if (sport->tx_state == WAIT_AFTER_RTS) 2264 imx_uart_start_tx(&sport->port); 2265 uart_port_unlock_irqrestore(&sport->port, flags); 2266 2267 return HRTIMER_NORESTART; 2268 } 2269 2270 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2271 { 2272 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2273 unsigned long flags; 2274 2275 uart_port_lock_irqsave(&sport->port, &flags); 2276 if (sport->tx_state == WAIT_AFTER_SEND) 2277 imx_uart_stop_tx(&sport->port); 2278 uart_port_unlock_irqrestore(&sport->port, flags); 2279 2280 return HRTIMER_NORESTART; 2281 } 2282 2283 static const struct serial_rs485 imx_rs485_supported = { 2284 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2285 SER_RS485_RX_DURING_TX, 2286 .delay_rts_before_send = 1, 2287 .delay_rts_after_send = 1, 2288 }; 2289 2290 /* Default RX DMA buffer configuration */ 2291 #define RX_DMA_PERIODS 16 2292 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2293 2294 static int imx_uart_probe(struct platform_device *pdev) 2295 { 2296 struct device_node *np = pdev->dev.of_node; 2297 struct imx_port *sport; 2298 void __iomem *base; 2299 u32 dma_buf_conf[2]; 2300 int ret = 0; 2301 u32 ucr1, ucr2, uts; 2302 struct resource *res; 2303 int txirq, rxirq, rtsirq; 2304 2305 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2306 if (!sport) 2307 return -ENOMEM; 2308 2309 sport->devdata = of_device_get_match_data(&pdev->dev); 2310 2311 ret = of_alias_get_id(np, "serial"); 2312 if (ret < 0) { 2313 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2314 return ret; 2315 } 2316 sport->port.line = ret; 2317 2318 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2319 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2320 2321 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2322 2323 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2324 2325 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2326 2327 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2328 2329 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2330 sport->rx_period_length = dma_buf_conf[0]; 2331 sport->rx_periods = dma_buf_conf[1]; 2332 } else { 2333 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2334 sport->rx_periods = RX_DMA_PERIODS; 2335 } 2336 2337 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2338 dev_err(&pdev->dev, "serial%d out of range\n", 2339 sport->port.line); 2340 return -EINVAL; 2341 } 2342 2343 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2344 if (IS_ERR(base)) 2345 return PTR_ERR(base); 2346 2347 rxirq = platform_get_irq(pdev, 0); 2348 if (rxirq < 0) 2349 return rxirq; 2350 txirq = platform_get_irq_optional(pdev, 1); 2351 rtsirq = platform_get_irq_optional(pdev, 2); 2352 2353 sport->port.dev = &pdev->dev; 2354 sport->port.mapbase = res->start; 2355 sport->port.membase = base; 2356 sport->port.type = PORT_IMX; 2357 sport->port.iotype = UPIO_MEM; 2358 sport->port.irq = rxirq; 2359 sport->port.fifosize = 32; 2360 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2361 sport->port.ops = &imx_uart_pops; 2362 sport->port.rs485_config = imx_uart_rs485_config; 2363 /* RTS is required to control the RS485 transmitter */ 2364 if (sport->have_rtscts || sport->have_rtsgpio) 2365 sport->port.rs485_supported = imx_rs485_supported; 2366 sport->port.flags = UPF_BOOT_AUTOCONF; 2367 timer_setup(&sport->timer, imx_uart_timeout, 0); 2368 2369 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2370 if (IS_ERR(sport->gpios)) 2371 return PTR_ERR(sport->gpios); 2372 2373 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2374 if (IS_ERR(sport->clk_ipg)) { 2375 ret = PTR_ERR(sport->clk_ipg); 2376 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2377 return ret; 2378 } 2379 2380 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2381 if (IS_ERR(sport->clk_per)) { 2382 ret = PTR_ERR(sport->clk_per); 2383 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2384 return ret; 2385 } 2386 2387 sport->port.uartclk = clk_get_rate(sport->clk_per); 2388 2389 /* For register access, we only need to enable the ipg clock. */ 2390 ret = clk_prepare_enable(sport->clk_ipg); 2391 if (ret) { 2392 dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret); 2393 return ret; 2394 } 2395 2396 ret = uart_get_rs485_mode(&sport->port); 2397 if (ret) 2398 goto err_clk; 2399 2400 /* 2401 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2402 * signal cannot be set low during transmission in case the 2403 * receiver is off (limitation of the i.MX UART IP). 2404 */ 2405 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2406 sport->have_rtscts && !sport->have_rtsgpio && 2407 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2408 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2409 dev_err(&pdev->dev, 2410 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2411 2412 /* Disable interrupts before requesting them */ 2413 ucr1 = imx_uart_readl(sport, UCR1); 2414 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2415 imx_uart_writel(sport, ucr1, UCR1); 2416 2417 /* Disable Ageing Timer interrupt */ 2418 ucr2 = imx_uart_readl(sport, UCR2); 2419 ucr2 &= ~UCR2_ATEN; 2420 imx_uart_writel(sport, ucr2, UCR2); 2421 2422 /* 2423 * In case RS485 is enabled without GPIO RTS control, the UART IP 2424 * is used to control CTS signal. Keep both the UART and Receiver 2425 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2426 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2427 * data from being fed into the RX FIFO, enable loopback mode in 2428 * UTS register, which disconnects the RX path from external RXD 2429 * pin and connects it to the Transceiver, which is disabled, so 2430 * no data can be fed to the RX FIFO that way. 2431 */ 2432 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2433 sport->have_rtscts && !sport->have_rtsgpio) { 2434 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2435 uts |= UTS_LOOP; 2436 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2437 2438 ucr1 = imx_uart_readl(sport, UCR1); 2439 ucr1 |= UCR1_UARTEN; 2440 imx_uart_writel(sport, ucr1, UCR1); 2441 2442 ucr2 = imx_uart_readl(sport, UCR2); 2443 ucr2 |= UCR2_RXEN; 2444 imx_uart_writel(sport, ucr2, UCR2); 2445 } 2446 2447 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2448 /* 2449 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2450 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2451 * and DCD (when they are outputs) or enables the respective 2452 * irqs. So set this bit early, i.e. before requesting irqs. 2453 */ 2454 u32 ufcr = imx_uart_readl(sport, UFCR); 2455 if (!(ufcr & UFCR_DCEDTE)) 2456 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2457 2458 /* 2459 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2460 * enabled later because they cannot be cleared 2461 * (confirmed on i.MX25) which makes them unusable. 2462 */ 2463 imx_uart_writel(sport, 2464 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2465 UCR3); 2466 2467 } else { 2468 u32 ucr3 = UCR3_DSR; 2469 u32 ufcr = imx_uart_readl(sport, UFCR); 2470 if (ufcr & UFCR_DCEDTE) 2471 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2472 2473 if (!imx_uart_is_imx1(sport)) 2474 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2475 imx_uart_writel(sport, ucr3, UCR3); 2476 } 2477 2478 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2479 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2480 sport->trigger_start_tx.function = imx_trigger_start_tx; 2481 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2482 2483 /* 2484 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2485 * chips only have one interrupt. 2486 */ 2487 if (txirq > 0) { 2488 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2489 dev_name(&pdev->dev), sport); 2490 if (ret) { 2491 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2492 ret); 2493 goto err_clk; 2494 } 2495 2496 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2497 dev_name(&pdev->dev), sport); 2498 if (ret) { 2499 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2500 ret); 2501 goto err_clk; 2502 } 2503 2504 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2505 dev_name(&pdev->dev), sport); 2506 if (ret) { 2507 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2508 ret); 2509 goto err_clk; 2510 } 2511 } else { 2512 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2513 dev_name(&pdev->dev), sport); 2514 if (ret) { 2515 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2516 goto err_clk; 2517 } 2518 } 2519 2520 imx_uart_ports[sport->port.line] = sport; 2521 2522 platform_set_drvdata(pdev, sport); 2523 2524 ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2525 2526 err_clk: 2527 clk_disable_unprepare(sport->clk_ipg); 2528 2529 return ret; 2530 } 2531 2532 static void imx_uart_remove(struct platform_device *pdev) 2533 { 2534 struct imx_port *sport = platform_get_drvdata(pdev); 2535 2536 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2537 } 2538 2539 static void imx_uart_restore_context(struct imx_port *sport) 2540 { 2541 unsigned long flags; 2542 2543 uart_port_lock_irqsave(&sport->port, &flags); 2544 if (!sport->context_saved) { 2545 uart_port_unlock_irqrestore(&sport->port, flags); 2546 return; 2547 } 2548 2549 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2550 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2551 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2552 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2553 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2554 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2555 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2556 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2557 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2558 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2559 sport->context_saved = false; 2560 uart_port_unlock_irqrestore(&sport->port, flags); 2561 } 2562 2563 static void imx_uart_save_context(struct imx_port *sport) 2564 { 2565 unsigned long flags; 2566 2567 /* Save necessary regs */ 2568 uart_port_lock_irqsave(&sport->port, &flags); 2569 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2570 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2571 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2572 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2573 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2574 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2575 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2576 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2577 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2578 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2579 sport->context_saved = true; 2580 uart_port_unlock_irqrestore(&sport->port, flags); 2581 } 2582 2583 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2584 { 2585 u32 ucr3; 2586 2587 ucr3 = imx_uart_readl(sport, UCR3); 2588 if (on) { 2589 imx_uart_writel(sport, USR1_AWAKE, USR1); 2590 ucr3 |= UCR3_AWAKEN; 2591 } else { 2592 ucr3 &= ~UCR3_AWAKEN; 2593 } 2594 imx_uart_writel(sport, ucr3, UCR3); 2595 2596 if (sport->have_rtscts) { 2597 u32 ucr1 = imx_uart_readl(sport, UCR1); 2598 if (on) { 2599 imx_uart_writel(sport, USR1_RTSD, USR1); 2600 ucr1 |= UCR1_RTSDEN; 2601 } else { 2602 ucr1 &= ~UCR1_RTSDEN; 2603 } 2604 imx_uart_writel(sport, ucr1, UCR1); 2605 } 2606 } 2607 2608 static int imx_uart_suspend_noirq(struct device *dev) 2609 { 2610 struct imx_port *sport = dev_get_drvdata(dev); 2611 2612 imx_uart_save_context(sport); 2613 2614 clk_disable(sport->clk_ipg); 2615 2616 pinctrl_pm_select_sleep_state(dev); 2617 2618 return 0; 2619 } 2620 2621 static int imx_uart_resume_noirq(struct device *dev) 2622 { 2623 struct imx_port *sport = dev_get_drvdata(dev); 2624 int ret; 2625 2626 pinctrl_pm_select_default_state(dev); 2627 2628 ret = clk_enable(sport->clk_ipg); 2629 if (ret) 2630 return ret; 2631 2632 imx_uart_restore_context(sport); 2633 2634 return 0; 2635 } 2636 2637 static int imx_uart_suspend(struct device *dev) 2638 { 2639 struct imx_port *sport = dev_get_drvdata(dev); 2640 int ret; 2641 2642 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2643 disable_irq(sport->port.irq); 2644 2645 ret = clk_prepare_enable(sport->clk_ipg); 2646 if (ret) 2647 return ret; 2648 2649 /* enable wakeup from i.MX UART */ 2650 imx_uart_enable_wakeup(sport, true); 2651 2652 return 0; 2653 } 2654 2655 static int imx_uart_resume(struct device *dev) 2656 { 2657 struct imx_port *sport = dev_get_drvdata(dev); 2658 2659 /* disable wakeup from i.MX UART */ 2660 imx_uart_enable_wakeup(sport, false); 2661 2662 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2663 enable_irq(sport->port.irq); 2664 2665 clk_disable_unprepare(sport->clk_ipg); 2666 2667 return 0; 2668 } 2669 2670 static int imx_uart_freeze(struct device *dev) 2671 { 2672 struct imx_port *sport = dev_get_drvdata(dev); 2673 2674 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2675 2676 return clk_prepare_enable(sport->clk_ipg); 2677 } 2678 2679 static int imx_uart_thaw(struct device *dev) 2680 { 2681 struct imx_port *sport = dev_get_drvdata(dev); 2682 2683 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2684 2685 clk_disable_unprepare(sport->clk_ipg); 2686 2687 return 0; 2688 } 2689 2690 static const struct dev_pm_ops imx_uart_pm_ops = { 2691 .suspend_noirq = imx_uart_suspend_noirq, 2692 .resume_noirq = imx_uart_resume_noirq, 2693 .freeze_noirq = imx_uart_suspend_noirq, 2694 .thaw_noirq = imx_uart_resume_noirq, 2695 .restore_noirq = imx_uart_resume_noirq, 2696 .suspend = imx_uart_suspend, 2697 .resume = imx_uart_resume, 2698 .freeze = imx_uart_freeze, 2699 .thaw = imx_uart_thaw, 2700 .restore = imx_uart_thaw, 2701 }; 2702 2703 static struct platform_driver imx_uart_platform_driver = { 2704 .probe = imx_uart_probe, 2705 .remove_new = imx_uart_remove, 2706 2707 .driver = { 2708 .name = "imx-uart", 2709 .of_match_table = imx_uart_dt_ids, 2710 .pm = &imx_uart_pm_ops, 2711 }, 2712 }; 2713 2714 static int __init imx_uart_init(void) 2715 { 2716 int ret = uart_register_driver(&imx_uart_uart_driver); 2717 2718 if (ret) 2719 return ret; 2720 2721 ret = platform_driver_register(&imx_uart_platform_driver); 2722 if (ret != 0) 2723 uart_unregister_driver(&imx_uart_uart_driver); 2724 2725 return ret; 2726 } 2727 2728 static void __exit imx_uart_exit(void) 2729 { 2730 platform_driver_unregister(&imx_uart_platform_driver); 2731 uart_unregister_driver(&imx_uart_uart_driver); 2732 } 2733 2734 module_init(imx_uart_init); 2735 module_exit(imx_uart_exit); 2736 2737 MODULE_AUTHOR("Sascha Hauer"); 2738 MODULE_DESCRIPTION("IMX generic serial port driver"); 2739 MODULE_LICENSE("GPL"); 2740 MODULE_ALIAS("platform:imx-uart"); 2741